Mostra i principali dati dell'item

dc.contributor.advisorVolpe, Gualtiero <1974>
dc.contributor.authorAdhami, Romina <1997>
dc.contributor.otherBarbara Mazzolai
dc.date.accessioned2023-12-21T15:29:01Z
dc.date.available2023-12-21T15:29:01Z
dc.date.issued2023-12-19
dc.identifier.urihttps://unire.unige.it/handle/123456789/7289
dc.description.abstractIn the realm of agricultural quality control, this study pioneers a non-visual machine learning approach, uniting a sensorized, octopus-inspired suction cup with machine learning algorithms, to improve the assessment of Hayward Kiwifruit ripeness. Four key machine learning algorithms—Decision Trees, Support Vector Machines (SVM), Random Forest (RF), and K-Nearest Neighbors (KNN)—are strategically employed to process tactile data and gauge kiwifruit ripeness. Through a meticulous nested cross-validation procedure, Support Vector Machines (SVM) emerge as the top-performing model, boasting a mean accuracy of 98.11%. This research represents an advancement in accurately and efficiently evaluating kiwifruit ripeness. Through the collaborative integration of a sensorized suction cup and machine learning model, this work introduces valuable insights that can contribute to the agricultural field. The proposed non-visual, non-destructive technology not only addresses the unique challenges of kiwifruit ripeness detection but also presents a scalable solution with broader applications across the agricultural sector. Moreover, this study extends its impact by exploring the real-time application of the developed model. Seamlessly integrating the sensorized suction cup and machine learning algorithms into real-world scenarios, the research demonstrates the practicality and efficacy of the proposed approach in dynamic agricultural environments. The real-time application enhances the versatility of the technology, further solidifying its potential to improve fruit quality assessment practices on a larger scale. This research, therefore, represents a contribution to both the scientific understanding of ripeness detection and the practical implementation of cutting-edge technology in agriculture. convert to italian in good way ChatGPT Nel campo del controllo qualità agricola, questo studio apre la strada a un approccio di machine learning non visivo, unendo una ventosa sensorizzatait_IT
dc.description.abstractIn the realm of agricultural quality control, this study pioneers a non-visual machine learning approach, uniting a sensorized, octopus-inspired suction cup with machine learning algorithms, to improve the assessment of Hayward Kiwifruit ripeness. Four key machine learning algorithms—Decision Trees, Support Vector Machines (SVM), Random Forest (RF), and K-Nearest Neighbors (KNN)—are strategically employed to process tactile data and gauge kiwifruit ripeness. Through a meticulous nested cross-validation procedure, Support Vector Machines (SVM) emerge as the top-performing model, boasting a mean accuracy of 98.11%. This research represents an advancement in accurately and efficiently evaluating kiwifruit ripeness. Through the collaborative integration of a sensorized suction cup and machine learning model, this work introduces valuable insights that can contribute to the agricultural field. The proposed non-visual, non-destructive technology not only addresses the unique challenges of kiwifruit ripeness detection but also presents a scalable solution with broader applications across the agricultural sector. Moreover, this study extends its impact by exploring the real-time application of the developed model. Seamlessly integrating the sensorized suction cup and machine learning algorithms into real-world scenarios, the research demonstrates the practicality and efficacy of the proposed approach in dynamic agricultural environments. The real-time application enhances the versatility of the technology, further solidifying its potential to improve fruit quality assessment practices on a larger scale. This research, therefore, represents a contribution to both the scientific understanding of ripeness detection and the practical implementation of cutting-edge technology in agriculture.en_UK
dc.language.isoen
dc.rightsinfo:eu-repo/semantics/restrictedAccess
dc.titlePresa autonoma attraverso una pinza sensoriale basata su ventosait_IT
dc.title.alternativeAutonomous grasping through a sensory suction cup-based gripperen_UK
dc.typeinfo:eu-repo/semantics/masterThesis
dc.subject.miurING-INF/05 - SISTEMI DI ELABORAZIONE DELLE INFORMAZIONI
dc.subject.miurING-INF/05 - SISTEMI DI ELABORAZIONE DELLE INFORMAZIONI
dc.subject.miurING-INF/05 - SISTEMI DI ELABORAZIONE DELLE INFORMAZIONI
dc.publisher.nameUniversità degli studi di Genova
dc.date.academicyear2022/2023
dc.description.corsolaurea11160 - COMPUTER ENGINEERING
dc.description.area9 - INGEGNERIA
dc.description.department100023 - DIPARTIMENTO DI INFORMATICA, BIOINGEGNERIA, ROBOTICA E INGEGNERIA DEI SISTEMI


Files in questo item

Questo item appare nelle seguenti collezioni

Mostra i principali dati dell'item