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Abstract

Integrating social robots into everyday life holds great potential for influencing human
behavior, particularly in therapeutic and educational settings. This thesis explores the
development of a social robot capable of recognizing and managing challenging behaviors
during child-robot interaction, specifically applying principles of Theory of Mind (ToM) and
Applied Behavior Analysis (ABA).

The core objective of this work is to create a robotic system that can autonomously
adapt to real-time human interactions, enhancing engagement and providing personalized
interventions.

The Planning Domain Definition Language (PDDL) framework is at the heart of the
system, which facilitates the robot’s ability to understand, plan, and execute actions based on
human behavior. The architecture integrates advanced cognitive models, behavior manage-
ment strategies, and natural language processing through OpenAI services, allowing the robot
to recognize mental states, identify behavioral patterns, and apply corresponding intervention
strategies.

Results from the implementation demonstrate that the robot can successfully adapt to
dynamic environments, recognize user needs, and influence behavior in real time. This
framework lays the groundwork for future advancements in social robotics. Future work will
focus on optimizing the system’s components to enhance efficiency and user experience.
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Chapter 1

Introduction

Behavioral change is inherently complex, even when individuals recognize the necessity
of change for their health. The potential for social robots to address these challenges is
substantial. Through this research project, I aim to explore the intersection of robotics,
psychology, and social behavior. Specifically, I intend to focus my research on understanding
how robots can enhance human interactions.

1.1 Context

Social robots, designed to interact with humans in a social context, have the potential to
bridge the gap between technology and human needs. A key component in this effort is the
role of Social Assistive Robots (SARs). SARs are not only designed to perform tasks but
also to assist individuals in the social and emotional aspects of learning and development.
They can support diverse populations, including children with special needs, the elderly, and
those undergoing rehabilitation.

By integrating Theory of Mind (ToM) capabilities, intended as the capacity to understand
other people by ascribing mental states to them, SARs can better comprehend and respond
to users’ emotional states. This enables them to provide tailored encouragement, feedback,
and guidance, significantly enhancing the learning experience. SARs, therefore, have the
potential to transform education and care environments by offering personalized, empathetic,
and context-aware support.

Different methods and techniques exist to acknowledge mental state, and despite its
controversial role as a support for people with neurodevelopmental disorders (7), an ABA-
inspired robot capable of reasoning about the purpose of others’ behaviors can be useful
support in educational settings. Applied Behavior Analysis (ABA) is an evidence-based
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approach that explains how behavior works and is affected by the environment, and it is
presently used in schools due to its effective behavior management techniques (8). Applying
these strategies to social robotics could improve the quality of child-robot interaction (CRI)
in learning environments.

Please notice that, understanding how social robots can facilitate behavior change shares
some similarities with serious games which utilize engaging and interactive formats to
encourage learning and personal development (9). These games can serve as a medium
through which social robots promote positive behaviors by creating immersive experiences
that encourage participants to reflect on their actions. Although these concepts have inspired
parts of this work, they are not the primary focus of this project.

The exploration of the complex dynamics that emerge in CRI necessitates a comprehen-
sive understanding of behavioral modeling, which we choose to model through the lens of
Planning Domain Definition Language (PDDL). PDDL offers a structured way to represent
actions and their effects, facilitating the development of robots capable of planning and
executing behaviors that are responsive to human needs and contexts.

1.2 Objectives

The analysis of the state-of-the-art (Chapter 2) emphasizes the necessity of designing sociable
robots capable of integrating into daily life and sustaining user engagement over time. This
project aims to fill this gap by developing an architecture that adapts to users’ situations and
needs. By bridging psychological theory with practical application, this project showcases
the potential of social robots to effectively influence and enhance human behavior. The
integration of personalized approaches ensures that these robots provide meaningful and
beneficial interactions in therapeutic, educational, and everyday contexts.

Moreover, a deeper analysis of the state-of-the-art in behavior management through HRI
reveals that robots still lack autonomy in recognizing the goals of other agents and adapting
interactions accordingly. Studies inspired by ABA strategies often use methods where the
robot’s behavior is controlled by an experimenter. Hence, an innovative architectural system
based on the PDDL framework is proposed. This architecture enables real-time adaptation
and allows the robot to manage interactions autonomously.
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The overall contributions of this work are the following:

• Developing a theoretical model that takes into account the constraints in CRI, serving
as the robotic counterpart to the ABA model.

• Developing an architecture based on the robotic ABA model previously created. This
architecture enables real-time adaptation and allows the robot to form a ToM about the
child, grounded in observations and conversations, and plan appropriate actions using
the PDDL.

• Evaluating the system’s performance in terms of planning and response time, laying
the foundation for its future use in CRI.

1.3 Results

It has been demonstrated that the proposed framework works as intended, achieving promising
results regarding real-time adaptation and interaction. Among these results, the response
time and the planning time, not only validate the system’s design but also pave the way for
future improvements. Future work will focus on optimizing system components to enhance
efficiency and user experience. With these improvements, the potential for sociable robots to
deliver meaningful, personalized interactions in various educational and therapeutic contexts
becomes even more promising.

1.4 Document structure

The thesis is organized into five main chapters. The first chapter introduces the research
problem and outlines the motivations behind this work, focusing on the role of social robots
in behavior change. It also defines the objectives and briefly presents the key findings of the
study.

The second chapter reviews the state of the art, offering a comprehensive literature survey
on essential concepts such as Theory of Mind (ToM), Behavior Change Techniques (BCTs),
and Applied Behavior Analysis (ABA), particularly in their applications to robotics. This
chapter identifies existing gaps in the field and establishes the framework for the research.

Chapter three describes the methodology employed in this work. It provides a detailed
explanation of the system’s architecture, including the Planning Domain Definition Language
(PDDL) framework, behavior modeling strategies, and the integration of external services
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such as OpenAI for real-time human-robot interactions. The server-client model and the
various algorithms used to ensure the system’s adaptability are also discussed in detail.

In the fourth chapter, the system is evaluated through experimental trials, focusing on
its ability to recognize and adapt to user behavior. This chapter presents the results of these
experiments, supported by data analysis, and discusses how the system performs across
different scenarios.

Finally, the fifth chapter concludes the thesis by summarizing the contributions of this
work. It reflects on the outcomes of the research and suggests future directions to improve
the system’s effectiveness in behavior modification and educational applications.



Chapter 2

State of the Art

This chapter analyzes the current state-of-the-art, identifying existing gaps and outlining how
this project aims to address them.

Firstly, Section 2.1 provides a general background on motivation. Two foundational
psychological concepts serving as the foundation for this research — Theory of Mind and
Nudging Capabilities — are then discussed in Sections 2.2 and 2.3, respectively. These
techniques have broad applications across various domains, including elderly care (10),
healthcare (11), and more (6).

The primary focus of this thesis is Children-Robot Interaction within the educational field,
as detailed in Section 2.4. After considering various theoretical approaches and engaging in
extensive discussions with experts, the Applied Behavior Analysis methodology was selected
to address behaviors defined as challenging. The rationale behind this choice, along with its
advantages and disadvantages, is critically examined in Section 2.5.

To put these strategies into practice, the Planning Domain Definition Language was
chosen as the framework for implementation. Although this planning language has been
previously utilized in Human-Robot Interaction, as reviewed in Section 2.6, its application
within this context presents novel challenges and opportunities that are explored in this work.

2.1 Motivation

Thanks to the work of (1), who compiled the most commonly cited theories of motivation
in education, it has been possible to gain an overview and a deeper understanding of mo-
tivation itself. Motivation is indeed one of the most studied psychological constructs in
education, derived from the Latin word movere, meaning “to move”, as it provides the energy
behind people’s actions. Motivation theories in education have evolved significantly over
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time, leading to the establishment of six major theories. This field is dynamic, expanding
beyond foundational theories to include situational, social, and cultural factors, insights from
neuroscience, the interplay between motivation and emotion, person-centered motivational
profiles, and theory-based interventions. To maintain coherence in this expanding research
field, a shared understanding of foundational models and theories is crucial.

Figure 2.1 Integration SDT in basic motivational model (1).

Among the theories gathered, the Self-Determination Theory assumes in this research
a particularly relevant aspect. The representative model shown in Figure 2.1 starts with
a Situation that influences the Self, which addresses basic psychological needs. The
Self then determines a Goal, leading to Action driven by either intrinsic or extrinsic
motivation. The Action results in an Outcome, which has Consequences influenced by
extrinsic motivation.

Based on this theory, (12) differentiates between intrinsic and extrinsic motivation to
distinguish between behaviors that are self-initiated and those that are driven by external
pressures.

Intrinsic motivation refers to engaging in an activity for the inherent pleasure or the
satisfaction it provides, rather than for any external rewards or outcomes. When someone is
intrinsically motivated, they are motivated by the enjoyment or challenge of the activity itself,
not by external incentives, pressures, or rewards. In contrast, extrinsic motivation involves
engaging in an activity to achieve a specific, external outcome.

Additionally, (5) conducted a developmental study on children’s reasons for liking or
disliking certain behaviors, introducing the concept of internalized motivation. This type of
motivation refers to behaviors that children may not necessarily enjoy but feel compelled to
have because they have been taught and are expected to behave so.
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Table 2.1 provides insight into the possible motivational responses based on the interviews
they conducted.

Intrinsic Extrinsic Internalized
Pursuit of challenge Anticipation of reward or ap-

proval
Self-determined goal achieve-
ment

Pleasure or interest in
the activity itself

Avoidance of disapproval Avoidance of self-determined
consequences

Following an explicit rule Doing something nice for
someone else

Table 2.1 Children’s motivational responses (5).

Furthermore, (13) conducted an interesting qualitative study on different experiences
of motivational interviewing delivered by the NAO robot. Their study aimed to develop
an interview protocol within the constraints of current artificial intelligence. The results
indicated that social robots can effectively achieve a fundamental objective of motivational
interviewing, as they are perceived as nonjudgmental. It is important to highlight how the
perception of the interviewer, in this case, the robot NAO, may be influenced by various
factors, one of which is synthetic speech generation. According to (14), while human
voices are generally perceived more favorably than computer-synthesized voices, there is no
evidence that this difference affects the persuasiveness of the message or the perception of
the message itself.

2.2 Theory of Mind in Robotics

The ability to reason about other people’s perceptions, beliefs, and goals is referred to as
Theory of Mind (ToM).

Although these cognitive abilities are fundamental to normal social interaction, they have
been extensively studied, not only as a keystone for a functional Human-Robot Interaction
(HRI) but also as a critical element of human social cognition. As noted by (2) in his research,
for robots to interact naturally with people, they must not only understand the properties of
objects and agents but also the complex attributes of animate agents in the world, such as
their intentions, beliefs, and desires.
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ToM is not the first cognitive milestone in human development though. Rather, it is built
upon foundational skills and modules that emerge earlier in life. Theories proposed by Leslie
and Baron-Cohen provide a framework for understanding these precursors to ToM.

Leslie’s model suggests that infants possess domain-specific cognitive modules that help
them understand different types of causality (15):

• Mechanical: understanding how physical objects interact;

• Actional: interpreting goal-directed actions;

• Attitudinal: recognizing beliefs and desires.

This structured approach lays the groundwork for more sophisticated social cognition,
where one can infer and predict others’ mental states. Leslie proposed that the ability to
understand pretense in infancy demonstrates the presence of a specialized form of representa-
tion for mental states. This capacity for meta-representation enables children to distinguish
between reality and imagined scenarios, a skill essential for the development of more complex
mental state attributions later in life. By recognizing that others can hold false beliefs or
engage in pretend play, children begin to develop a nuanced understanding of the mind,
which forms the basis for more sophisticated social interactions and empathy.

Similarly (2), Baron-Cohen’s model proposes that infants develop a set of modules that
gradually enable them to interpret self-propelled motion, eye direction, shared attention, and
ultimately, mental states such as beliefs and intentions. These skills are crucial for developing
advanced social cognition, allowing children to navigate complex social environments by
attributing mental states to others and understanding that these states can differ from their
own.

Therefore, Baron-Cohen’s model, as illustrated in Figure 2.2, proposes a developmental
pathway for the emergence of ToM in children, progressing through a series of cognitive
modules. The Intentionality Detector (ID) and Eye Direction Detector (EDD) are devel-
opmentally prior mechanisms, emerging in humans between 0 and 9 months of age. The
ID interprets an agent’s self-propelled movement as indicative of desires or goal-directed
actions, while the EDD is responsive to eye-like stimuli, representing what an agent sees.
These early mechanisms provide the foundation for the Shared Attention Mechanism (SAM),
which develops between 9 and 14 months of age. The SAM facilitates more sophisticated
triadic representations that are crucial for shared social experiences, commonly referred to as
the phenomenon of joint attention.
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Figure 2.2 Baron Cohen’s ToM model (2).

For example:

• ID: “Mother wants the cup.”

• EDD: “Mother sees the cup.”

• SAM: “Mother sees that I see the cup.”

Finally, the Theory of Mind Mechanism (ToMM) enables the representation of epistemic
states and complex beliefs, culminating in the full development of ToM. This progression
from basic perceptual processing to advanced cognitive abilities aligns with Baron-Cohen’s
timeline of developmental milestones, providing a structured framework for understanding
how children, and potentially robots, could develop the ability to attribute mental states to
others.

By implementing such a structured developmental model in humanoid robots, researchers
can equip machines with increasingly sophisticated social cognition, enabling them to interact
more naturally with humans by recognizing and responding to their beliefs, desires, and
intentions. This modular approach also offers insights into specific impairments in social
cognition, such as those observed in autism spectrum disorder, where certain modules
(like SAM or ToMM) may be selectively impaired. It provides a nuanced framework for
understanding the variability in social cognitive abilities across different populations.
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In line with these insights, various experiments have been designed to assess human
capabilities related to the ToM. One of the most traditional and widely used tests is the False

Belief task, visually represented in Figure 2.3 (16) (15). This test measures an individual’s
ability to understand that others can hold beliefs about the world that are different from
reality and from the individual’s own knowledge. This task is fundamental in evaluating
whether a person can recognize that another person may have a belief that is false or different
from their own, which is a crucial aspect of the ToM.

Figure 2.3 False belief task illustrated.1

The figure is self-explanatory. After presenting the vignette to a child, the interviewer
asks, “Where will Sally look for her marble?;” if the child’s ToM is fully developed, they
will answer "in the basket," understanding that Sally will look where she last saw the marble.
This response shows that the child recognizes that Sally has a false belief about the marble’s
location, as we, the external viewers, know that the marble is actually in the box, but Sally
does not.

This task also plays a central role in an innovative robotic framework developed by (16).
In this framework, the robot is capable of generating ToM, allowing it to plan sequences

1https://autismbeautycombines.wordpress.com/early-signs-of-autism/



2.3 Behavior Change Techniques and Nudging 11

of actions to achieve its own goals based on these representations. This concept will be
reviewed in major detail in Section 3.2.

The robotic framework described earlier is just one of the many adaptations and applica-
tions of ToM in HRI.

Other notable examples include the work by (17) and (18). In the first one, the researchers
focused on developing robots capable of understanding and predicting human actions by
modeling ToM capabilities. Their approach involves using advanced machine learning
techniques to enable robots to infer human intentions and adjust their behavior accordingly.
This is particularly useful in collaborative settings, where robots and humans need to work
together seamlessly and intuitively. By anticipating human actions, the robots can make
proactive decisions that enhance cooperation and efficiency.

Similarly, (18) explores the application of ToM in robots for social environments, such
as healthcare and education. The study investigates the effects of a robot mimicking ToM
on human trust and decision-making during collaborative tasks. Their study involves an
online experiment where participants interact with a robot (Pepper) in a maze navigation task.
The robot’s persona varies across conditions—neutral, technical, and ToM —allowing the
researchers to assess how mimicking ToM influences human trust and behavior. The findings
reveal that robots exhibiting ToM can encourage more cautious and thoughtful interactions,
leading to a more appropriate level of trust and better collaboration outcomes.

Even though these examples illustrate the broad applicability of ToM in HRI, showing
how robots can be endowed with social cognitive skills to enhance their interactions with
humans across various domains, they also highlight the potential for further expansion in this
area.

2.3 Behavior Change Techniques and Nudging

Behaviors, including smoking, poor diet, physical inactivity, social interactions, and cognitive
engagement play a crucial role in determining health outcomes and our lives. Despite the
challenges associated with behavior change, it is possible to achieve significant improvements.
This is achievable through Behavior Change Technique (BCT), which is a systematic, theory-
based strategy designed to influence specific behaviors by targeting the psychological and
environmental factors that drive them.

BCTs are the smallest active components of an intervention, defined as observable,
replicable, and irreducible elements that can change behavior by modifying antecedents,
a trigger, and consequences (19). BCT taxonomies provide a structured methodology for
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characterizing intervention content. For instance, the classification made by (20), which
identifies 22 BCTs, has been widely used to report synthesize evidence, and design new
interventions. These taxonomies have facilitated research in various domains, such as
smoking cessation, physical activity, and healthy eating, by clearly defining intervention
components and boosting the effectiveness and consistency of behavior change strategies.
This could then be used as an important tool for robotics framework in the future. In recent
years, BCTs have been increasingly integrated into technological interventions, including
mobile health apps, wearable devices, and robotic systems (21) (22).

A subset of BCTs that subtly influences users’ choices and actions without restricting
their freedom is nudging. This approach is particularly relevant in educational and social
contexts, where robots can be programmed to encourage behaviors that promote learning,
social interaction, and well-being.

Nudging, defined as any attempt to influence people’s judgment, choice, or behavior in a
predictable way, is considered by (23) to be one of the psychological mechanisms most likely
to promote well-being. Nudging is even one of the most used behavior change techniques
today, with applications observable in everyday life.

(a) Urinal fly. (b) Ballot bin.

Figure 2.4 Everyday nudging examples.

Figure 2.4 illustrates a few common examples of nudging. On the left, we see the men’s
restroom in Amsterdam’s Schiphol Airport, where in the early 1990s the simple application of
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a small fly sticker inside urinals significantly reduced the workload of cleaning staff obtaining
an 80% spillage reduction. Another example is the common sight of a trash bin or cigarette
disposal, a so-called ballot bin, that encourages proper use by offering the opportunity to
“vote” by throwing waste into specific compartments.

With an understanding of what nudging entails, it becomes important to explore whether
a robot can effectively implement nudging techniques. Aimed to answer this question, (24)
conducted a unique study that involved building one of the first robotic copies of a real human.
Indeed, the persuasiveness of the latest technology has become increasingly important as
the focus of a new field of research. However, the research primarily concentrated on the
embodiment of an agent capable of persuading others.

The literature contains numerous practical case studies, several of which are particularly
relevant and representative of behavioral change in robotics applications. Some notable
examples include (25), which focuses on motivating children in vegetable consumption. The
researchers designed a robot that interacted with individuals, offering fruits and engaging
them in conversations about the benefits of healthy eating. The robot utilized various
strategies, including reminders, encouragement, and positive reinforcement, to influence the
participants’ choices. The study demonstrates that robotic interventions could effectively
promote healthier eating behaviors, particularly when the robot is perceived as engaging and
supportive. The hand washing behaviors with a social robot specifically designed to promote
proper hand hygiene, which is critical for preventing the spread of diseases is addressed by
(11). The robot, placed in the restroom, provided instructions on effective hand-washing
techniques and offered feedback based on the user’s actions. The interactive nature of the
robot, combined with its ability to provide real-time guidance, made it a powerful tool for
encouraging compliance with hand hygiene practices. The results indicate that the robot was
successful in improving hand-washing behavior. Finally, (26) examines the use of robots
in encouraging recycling behaviors. The robot Pepper, programmed to be both informative
and interactive, engaged with users by explaining the importance of recycling and guiding
them on how to properly sort their waste. The robot’s embodiment, including gestures and
social cues, played a significant role in its ability to influence behavior. The study found
that participants were more likely to engage in recycling activities when guided by the robot,
highlighting the potential of robotics in promoting environmentally responsible behaviors.

What makes (24) particularly intriguing compared to other practical case studies previ-
ously mentioned is the advanced level of embodiment achieved. This embodiment introduced
a wide range of social cues into the research, including gestures, gaze, posture, and the
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overall physical presence of the robot. These social cues are invaluable, as they play a crucial
role in human robot interaction.

A different study highlights the importance of social cues, which are defined as the subtle
signals, such as body language and eye contact, that facilitate communication and influence
perception and behavior in social contexts as highlighted in Figure 2.5. In particular, (27)
emphasizes the importance of both verbal and nonverbal cues through a carefully designed
experiment. This study demonstrated how robots that effectively utilize a combination
of spoken language and physical gestures can significantly enhance user engagement and
communication.

Figure 2.5 Social cues.2

Similarly, (28) explores the relationship between gaze and gesture, highlighting how
their synchronization can enhance storytelling. The study found that when robots combined
gaze direction with appropriate gestures, the storytelling experience became more immer-
sive and impactful for the audience. This correlation between gaze and gesture not only
improved the clarity of the narrative but also increased the overall persuasiveness of the robot,
demonstrating the powerful role that nonverbal communication plays in HRIs.

2https://www.mylemarks.com



2.4 Educational Robotics 15

2.4 Educational Robotics

Educational robotics involves using robots as tools to support and enhance the learning
process. Over the past few decades, educational robotics has evolved significantly. Initially,
robots were seen as mere tools for teaching programming or engineering. However, their
role has expanded to include more innovative applications across various educational levels.

As noted by (29), the incorporation of robots into the learning process can lead to
innovations at different levels of effectiveness, enhancing both the instructional methods and
the learning experience. In particular, the use of robots may increase attention, engagement,
and compliance, which are critical components of successful learning (30).

It is important to notice that, the potential of robots to improve educational outcomes
extends beyond simply assisting with tasks. According to (31), robots have proven effective
in increasing both cognitive and affective outcomes in learners, underscoring their potential
as more than just mechanical tools.

Moreover, robots can take on various roles in educational settings, each offering unique
benefits. They can serve as tutors, peer learners, or motivational aids, each contributing to
different aspects of the learning process as noticeable in Table 2.2. Robots are capable of
personalized interaction, allowing them to adapt to each student’s individual learning needs.

Tutor Peer Tool
The robot adapts the arith-
metic exercises based on the
performance of the student

The robot and the student
collaboratively solve exer-
cises

Sensors and actuators in
the robot enable the stu-
dents to learn

Table 2.2 Examples of different roles of robots in education (6).

Integrating robotics into the curriculum offers numerous benefits, particularly in terms of
student engagement and motivation. As noted by (32), robots can provide personalized one-
on-one tutoring, producing results comparable to the 2 Sigma effect, also known as Bloom’s

2 Sigma Problem, which refers to the significant improvement in educational outcomes that
can be achieved through one-on-one tutoring.

Even though robots may not fully replicate the nuances of human instruction, they have
demonstrated significant positive effects on student performance. Furthermore, the use of
robots in education can motivate interest in subjects that students may initially find difficult or
unappealing. For instance, robots can be programmed to adjust their teaching strategies based
on a child’s performance, enhancing motivation and persistence. This flexibility allows for
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more effective and engaging learning experiences, particularly in subjects like mathematics
and science that often pose challenges to students (33).

Fundamentally, educational robotics is reshaping traditional learning environments by
enabling experiential learning that is tailored to individual students. Robots can, indeed, adapt
to the individual needs and learning styles of students, making learning more tailored and
effective. In a study by (34), robots were used in an elementary school setting to build long-
term relationships with students by playing chess. The study found that these personalized
interactions not only improved students’ cognitive abilities but also helped foster emotional
connections with the robots. Similarly, (35) explored how robots can adapt the difficulty
level of educational games to maintain student engagement. By personalizing the learning
process in real-time, robots ensure that students remain challenged, but not overwhelmed,
which is key to sustained interest and success in learning

2.5 Applied Behavior Analysis in Robotics

The novel robotic architecture for behavior management in educational settings proposed in
this thesis, is inspired by Applied Behavior Analysis (ABA), an evidence-based approach
that aims at explaining how behavior works and is affected by the environment (36). ABA
provides a robust theoretical foundation for understanding and modifying behavior, making
it an ideal model for the development of adaptive robotic systems.

In the ABA framework, behavior is considered purposeful (functional) and is influenced
by stimuli that occur before (antecedents) and after the behavior (consequences). Certain
consequences, referred to as reinforcements, can increase the likelihood of the behavior
recurring. Indeed, according to (37), ABA therapy, rooted in behavioral theory principles,
emphasizes the connection between behaviors and their environmental consequences.

The ABC Model serves as the cornerstone of ABA. This framework posits that behavior
is influenced by three key elements:

• Antecedent: the event or stimulus preceding the behavior;

• Behavior itself;

• Consequence: the outcome that follows the behavior.

By analyzing these components, therapists can identify and modify factors that either
maintain or reduce a particular behavior.
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Figure 2.6 Functional assessment methods.3

Moreover, functional assessment is a key component of ABA therapy, used to identify the
purpose of challenging behaviors and develop effective interventions. As stated in Figure 3.2,
it typically involves three methods: direct observation, informant methods, and functional
analysis, where antecedents and consequences are manipulated to assess their impact on
behavior. These methods help provide a clear understanding of environmental factors that
influence behavior, guiding targeted interventions. Functional Behavior Assessment (FBA)
is the process of identifying the functions or purposes of behavior through an analysis of its
antecedents and consequences (38), (39). The four predominant functions of behavior are
Gain Attention, Escape, Gain a Tangible, and Sensory Needs as shown in Figure 2.7.

These functions help us understand and categorize an individual’s actions, enabling us to
determine why certain behaviors occur. The study focuses on two of these four recognized
functions:

• Gain a Tangible: i.e. the purpose of behaviors aiming at having access to materials or
preferred stimuli;

• Escape: i.e. the purpose of behaviors aiming at avoiding unpleasant situations, such as
attention, demanding tasks, or boring activities.

3https://breakthru.com.my/fba/
4https://kindbh.com/talk-the-talk-whats-the-function-tangible-access-and-sensory-automatic-functions-of-

behavior/
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Figure 2.7 Four functions of behavior.4

ABA assessment methods are widely implemented in schools (40), where FBA offers
educators a structured approach to identifying and addressing the root causes of challenging
behaviors. By using FBA, teachers are better equipped to manage complex student behaviors
in a more targeted and effective manner. On the other hand, robots as tutors have the
potential to provide highly individualized attention, focusing on a single child’s learning
needs, thereby complementing traditional classroom strategies and supporting personalized
learning experiences.

ABA is highly relevant to robotics, particularly in programming robots to manage and
modify behaviors in educational settings. (41) demonstrated the effectiveness of a social
robot, NAO, for social skills training in children with Autism Spectrum Disorder. The robot
mediated interactions between the child and the instructor, improving eye contact and verbal
initiation, with visual analyses confirming its positive impact. Similarly, (42) reviewed
evidence-based strategies for reducing disruptive classroom behaviors. By integrating ABA
principles, both robots and teachers can employ targeted interventions to promote desired be-
haviors, providing individualized attention and support in managing behavior and enhancing
learning outcomes.
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2.6 Planning in HRI

A plan can be understood as a representation of future behavior, typically comprising a
set of actions with temporal and other constraints, intended for execution by an agent or
multiple agents. PDDL, which stands for Planning Domain Definition Language, is a standard
language used to encode classical planning tasks. Some of its key components include:

• Objects: Entities in the world that are of interest;

• Predicates: Properties or relationships between objects, which can be either True or
False;

• Initial State: The state of the world before any actions are executed;

• Goal Specification: The desired conditions or outcomes that need to be achieved (i.e.,
what should be True);

• Actions/Operator: Methods for altering the state of the world.

It is important to note that a planning task specified in PDDL is divided into two parts: on
one hand the domain, essentially describes everything that could occur in the world. On
the other hand, the problem defining the current state of the world and the objectives to be
achieved.

Figure 2.8 Hanoi tower (3).

One of the most famous examples used to introduce PDDL is the Tower of Hanoi. This
classic puzzle, which involves moving a set of disks from one peg to another while adhering
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to specific rules, serves as an ideal illustration of how PDDL can be used to model planning
tasks. By defining the objects (disks and pegs), specifying the initial state (all disks on the
first peg), and setting the goal (all disks moved to the target peg), PDDL enables a planning
system to find the sequence of actions necessary to solve the puzzle, ensuring that no larger
disk is ever placed on a smaller one.

Obviously, this is not the only way PDDL is employed, but it provides a solid introduction
to its potential applications. As (43) highlights, a crucial task in developing effective robotic
applications is the design of complex behaviors. The creation or automatic generation of
a plan plays a key role in achieving this goal. The latter approach, in particular, is more
desirable as it automates a task that would otherwise require considerable effort, making the
process more efficient and scalable.

In the field of robotics, the deployment of robots in public and populated environments
is gaining increasing attention. This creates a demand for more sophisticated planning
techniques, particularly for service robots, which must navigate complex scenarios such
as moving through public spaces. Moreover, techniques studied even by social robotics
are employed, for instance, they help robots determine how to pass near moving people.
Various planning algorithms are employed to address these challenges. PDDL has also
played a crucial role in enhancing collaboration between humans and robots, both in public
environments and industrial settings (44) (45). A similar interesting example is the work of
(46), which employs a PDDL planner in dynamic environments to find paths that overcome
obstacles.



Chapter 3

Methodology

3.1 General Architecture Overview

The architecture depicted in Figure 3.1 is designed to facilitate interaction between the robot
Pepper and a child during a memory game. The system enables the robot to guide the
child through the game while addressing any challenges or problematic behaviors that might
arise. By integrating real-time behavior monitoring, adaptive planning, and natural language
understanding, the robot responds dynamically to the child’s actions and emotional state.

Figure 3.1 Architecture overview.
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To accomplish this, the architecture leverages the robot’s built-in sensors and integrates ex-
ternal services like OpenAI to generate context-aware speech and gather valuable information
from the conversation, helping the system assess the child’s emotional state.

On the server side, the architecture consists of two key components: the Hub and the
Planner Engine. The Hub handles communication with external services like OpenAI,
which enables the robot to generate context-aware speech and analyze the conversation
to assess the child’s emotional state; this connection ensures the robot’s responses are
personalized. The Planner Engine processes the PDDL domain and problem files received
from the robot. Using the Fast Downward automated planner, the Planner Engine generates
a sequence of actions that the robot will use to guide its interaction with the child. In this
scenario, the actions might include explaining the game rules, providing feedback, or reacting
to the child’s behavior.

On the client side, which is embedded in the robot, the system uses a set of components
to manage and execute the plan. The Plan Manager serves as the central controller, re-
sponsible for sending the domain and problem files to the Planner Engine and retrieving
the generated plan. It ensures the plan is executed in accordance with the child’s behavior
and manages replanning when necessary. If the child’s actions deviate from the expected
behavior, the Plan Manager may trigger a replan to adjust the robot’s actions in real-time.

Once a plan is retrieved, the Behavior Manager supervises its execution. This com-
ponent ensures each step of the plan is carried out by verifying that the preconditions for
an action are met before it is executed. As actions are performed, the system uses the
PDDL Predicate Retriever to assert new predicates based on the robot’s interaction with
the child and the game environment. These predicates are crucial for aligning the robot’s
behavior with the current game state.

Speech generation plays a critical role in this system, allowing the robot to communicate
with the child naturally. As the child speaks, their words are captured and transcribed using
external Microsoft services. The transcribed text is then analyzed, enabling the robot to
provide context-appropriate responses. The Speech Generation module ensures, in fact,
that the robot’s verbal responses are coherent and aligned with both the current state of the
game and the child’s emotional or behavioral cues.

The robot employs a match and go approach, where the Behavior Manager continuously
evaluates the game environment by comparing the asserted predicates with the preconditions
and effects of actions in the plan. If the conditions for the next action are met, the robot
proceeds with execution. If a mismatch occurs — such as when the child’s response does
not align with the expected behavior — the Behavior Manager signals the Plan Manager
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to initiate a replan. This adaptability allows the robot to remain responsive and ensures a
seamless interaction throughout the game.

3.2 Implementation of PDDL

With a comprehensive understanding of the psychological approaches outlined in Section
2.5, a PDDL domain has been developed to autonomously manage various scenarios of
interest in accordance with the ABA approach. This framework is designed to be adaptable,
allowing it to respond to diverse situations and make real-time adjustments based on changing
conditions.

Specifically, the system operates by uploading a domain file, which describes the world
or environment, along with an initial problem file that represents the current situation faced
by the user. These files are then sent to the server where the planning engine is hosted, which
then generates an optimal sequence of actions or a plan. Once the plan is created, it is sent
back to the client, where the robot executes the actions during its interaction with the child.

Throughout this interaction, the robot is capable of identifying new predicates, conditions
or changes in the environment by using OpenAI services to analyze the situation in real-time.
If these new predicates do not align with the expected conditions for a consistent period, the
system triggers a replanning process to ensure that the robot’s actions remain relevant and
effective.

3.2.1 Planner Engine

The planner engine selected for this work is Fast Downward (FD), which offers an efficient
approach to addressing complex planning problems. Its innovative combination of multi-
valued task representations, causal graph heuristics, advanced PDDL feature support, and
a variety of search optimizations make it a versatile tool for both academic research and
practical applications (4).

Figure 3.2 Fast Downward phases (4).
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FD, in fact, excels at solving deterministic planning tasks by transforming PDDL prob-
lems into multi-valued representations, which reveal implicit constraints and improve effi-
ciency in processing, especially in larger and more complex domains. This unique feature
enables FD to scale effectively, where other planners might struggle. Figure 3.2 illustrates
the procedure used by FD to solve planning tasks, providing a clearer understanding of its
approach and architecture (4).

One of the defining features of FD is its causal graph heuristic, which proceeds “down-
ward” in so far as it tries to solve hierarchically planning tasks. Starting from top-level
goals, the algorithm recurses further and further down the causal graph until all remaining
subproblems are basic graph search tasks. This enables FD to perform well in domains where
intricate interactions between actions must be carefully considered.

The command used to run the planner engine is:

./fast-downward.py domain.pddl problem.pddl –evaluator h=ff() –search

astar(lmcut())

The first argument identifies the planner engine, followed by the domain and the problem.
This setup uses A* search, which guarantees finding an optimal solution, making it ideal for
domains where cost-effectiveness is crucial, like the one presented in this project. Moreover,
the LM-Cut heuristic ensures that the estimated cost to reach the goal never exceeds the
actual cost, providing precise guidance by identifying and cutting essential steps in the
problem without sacrificing optimality. The Fast Forward heuristic, specified with h=ff(),
offers a quick estimate of goal distance by ignoring negative interactions between actions.
While not always optimal, it is highly efficient and accelerates the search process, a really
important feature since the necessity of planning in real-time during the HRI. By combining
this fast heuristic evaluation with an optimal search strategy FD improves overall search
speed without compromising solution quality.

3.2.2 Theory of Mind

Thus far, the modeling of verbal actions and concrete objects in PDDL has been relatively
uncomplicated. However, a significant challenge arises when representing more abstract
concepts, such as the user’s mental state.

Before implementing strategies to address challenging behaviors, it is crucial to gain
a deeper understanding of the child’s mental state, specifically their goals, beliefs, and
intentions. This is achieved through the action DiscoverToM, which initiates a conversation
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with the child to infer their mental state (see Section 3.3). Inspired by the work of (16), this
action is modeled using various predicates to accurately capture the child’s ToM.

This can be better illustrated with an example. As soon as the action DiscoverToM is
triggered, through dialogue facilitated by OpenAI services, the robot investigates the user’s
beliefs. When evidence is found, the robot updates its understanding of the user’s mental
state and intentions. For instance, consider the predicate (task_is_hard). The subsequent
action ConfirmHardTask clarifies the ToM of the child by using three specific predicates:

• (is_hard ?i1 ?t): This predicate identifies that task t is hard, with identifier i1.

• (belief ?i2 ?a ?i1): This predicate indicates that agent a holds the belief repre-
sented by i1, meaning the child believes that the task is hard.

• (is_true ?i2): This predicate signifies that, according to the robot, the belief i2
(the child believes the task is hard) is true.

Although this theorization may seem relatively simple, it provides the robot with a clear
representation of the user’s mental state. Without such a mechanism, it would not be possible
to ensure the application of the correct strategy to address the user’s needs effectively.

3.2.3 Behavior Functions and Strategies

As stated in Section 2.5, drawing from ABA and FBA principles, two behavior functions
were identified for testing the model’s validity: Gain a Tangible and Escape. The aim is
that, through verbal and non-verbal interaction with the child, the robot would be able to
autonomously recognize the occurrence of the following behaviors:

• Gain a Tangible: When pleasant activities are interrupted by time limits, negative
reactions of the child may be elicited to prolong the activity;

• Escape: When presented with a task, a child may perceive it as too difficult or too
boring, potentially provoking adverse responses to avoid the task.

With a deep understanding of these psychological approaches, it has been developed a
PDDL domain capable of autonomously managing various relevant scenarios where the two
behavior functions mentioned above can influence a child’s behavior. Table 3.1 details the
actions that have been modeled, omitting parameters, preconditions, and effects for the sake
of brevity. All these details and more can be found in Appendix A.
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Action Description

ConfirmBoringTask Confirm Escape function

ConfirmHardTask Confirm Escape function

ConfirmWant2Play1 Confirm Gain a Tangible function

ConfirmWant2Play2 Confirm Gain a Tangible function

DiscoverTOM Prompt dialogue to assess child’s ToM

GoodJob Praise child for achievement

GoodJobStrategy Praise child for achievement with strategy

Interact Engaging conversation with the child

PresentTask Explain task rules in detail

PutAway Ensure the child stops playing

StrategyBoringTask Apply strategy if child finds task boring

StrategyHardTask Apply strategy if child finds task hard

StrategyWant2Play Apply strategy if child still wants to play

Wait Wait and monitor task execution

WarningCleanUp Warn about time and monitor completion

Table 3.1 PDDL actions related to behavior management.

The list of available PDDL actions includes those that enable the robot to apply the
appropriate intervention strategy once a behavioral function has been detected.

In particular, these functions have been formally represented in PDDL through ac-
tions such as ConfirmHardTask or ConfirmBoringTask for the Escape function, and
ConfirmWant2Play1 or ConfirmWant2Play2 for the Gain a Tangible function. The predi-
cates providing the precondition for the action to be selected are detailed in Table 3.2.
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Function Action Predicates Strategy

Gain a Tangible
ConfirmWant2Play1 want_to_play

StrategyWant2Play
ConfirmWant2Play2 touching

Escape
ConfirmHardTask task_is_hard StrategyHardTask

ConfirmBoringTask task_is_boring StrategyBoringTask
Table 3.2 PDDL modeled behavioral functions and corresponding strategies.

To illustrate the complete planning process more clearly, consider the following sce-
nario. The initial problem generates a plan aimed at proposing a task and monitoring its
advancement:

(Interact game kid memory)

(PresentTask game kid memory)

(Wait game kid memory)

(WarningCleanUp game kid memory)

(PutAway game kid memory)

(ConfirmAllGood game kid memory x1 x2)

(GoodJob game kid memory x1 x2)

In particular, the initial plan proposed involves a robot presenting a memory card game
to a child. The process begins with a brief interaction (Interact ...), followed by an
explanation of the rules (PresentTask ...). The robot then monitors the child while they
play (Wait ...). As the time nears its end, the robot warns the child (WarningCleanUp

...), instructs them to stop and put away the cards (PutAway ...), confirms they agreed
to finish (ConfirmAllGood ...), and ends with praise (GoodJob ...).

During the action (Wait ...), the robot interacts with children through OpenAI-supported
verbal exchanges. When the robot detects a shift in the child’s engagement, prompts
replanning starting from the current state (see Section 3.1), with the asserted predicate
not_doing acting as a trigger. Since this predicate does not match the preconditions of the
WarningCleanUp action, which was originally expected as the next step, but matches the
preconditions of the alternative action DiscoverToM1, it signals the need for replanning. In
response to this interaction, a new plan is formulated, which includes the following action:

(DiscoverTOM1 game kid memory)

Once again, this action involves verbal interaction with the child using OpenAI function-
alities, aiming to ground predicates from a given list of possible options based on the child’s
responses, which trigger replanning. A possible outcome is as follows:
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(ConfirmHardTask game kid memory x1 x2)

(StrategyHardTask game kid memory x1 x2)

(Wait game kid memory)

(WarningCleanUp game kid memory)

(PutAway game kid memory)

(ConfirmAllGood game kid memory x1 x2)

(GoodJob game kid memory x1 x2)

This update, performed by the PDDL Predicate Retriever, leads to the conclusion
that the task is perceived as too challenging for the child, once again prompting the Plan

Manager to initiate a replanning process. In this specific case, the asserted predicates match
the preconditions of the ConfirmHardTask action, indicating the behavioral function Escape,
which necessitates the specific strategy StrategyHardTask (see Table 3.2).

The ConfirmHardTask action does not result in a visible change in the interaction or the
environment, as its primary function is to validate the situation rather than drive the robot’s
behavior. The key intervention occurs with the StrategyHardTask action. Specifically, the
robot suggests using fewer cards to reduce potential confusion and discomfort for the child.

However, this is just one possible scenario. After the strategy has been applied, other
behavior functions might occur. For instance, if the child disagrees with ending the task
when the time is up, a new plan will be generated. In this second case, after the guess about
the behavior function Gain a Tangible has been confirmed, the planning result would be the
following:

(ConfirmWant2Play1 game kid memory x1 x2)

(StrategyWant2Play game kid memory x1 x2)

(GoodJobStrategy game kid memory x1 x2)

In this plan, it is first confirmed that the child still wants to play with the memory game,
and the Gain a Tangible strategy is therefore applied. Precisely, the robot will grant an
additional two minutes of play with a timer, and then it will ask the child to help clean up the
cards.

The overview in Figure 3.3 presents the overall planning scheme, while a detailed
explanation of each action can be found in Appendix A. However, it is important to note that
this graph represents only a subset of possible plans and does not encompass all potential
outcomes.
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3.3 Action Implementation

The actions designed in the PDDL framework must then be implemented, though each one is
implemented differently based on its role in the system. These actions are grouped into three
main categories, as outlined below.

3.3.1 Actions that do not require execution

These actions do not result in a visible change in the interaction or the environment, as their
primary function is to validate the situation by clarifying the robot’s belief about the user’s
mental state, rather than driving the robot’s behavior.

Action Description

ConfirmBoringTask Confirm Escape function

ConfirmHardTask Confirm Escape function

ConfirmWant2Play1 Confirm Gain a Tangible function

ConfirmWant2Play2 Confirm Gain a Tangible function

Table 3.3 PDDL actions that do not require execution.

3.3.2 Actions that can be scripted

This category is the first to practically be implemented, with each behavior developed and
installed on the robot. By scripting these actions, the robot can execute them with consistent
timing, content, and style across multiple trials and interactions. This consistency is crucial
for ensuring a predictable and reliable user experience.

The actions hosted in this category can then be grouped into several subcategories.

Action Description

StrategyBoringTask Apply strategy if child finds task boring

StrategyHardTask Apply strategy if child finds task hard

StrategyWant2Play Apply strategy if child still wants to play

Table 3.4 PDDL strategy actions that can be scripted.
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These strategies involve predefined responses and interventions based on certain con-
ditions or inputs, ensuring that the robot’s reactions are consistent and reliable during
interactions. The script and the strategies are chosen according to the ABA theories (8)(47);

Action Description

PresentTask Explain task rules in detail

Table 3.5 PDDL presenting action that can be scripted.

This behavior involves the structured presentation of tasks to users, including clear
instructions and prompts, to ensure that tasks are delivered consistently across different
interactions;

Action Description

GoodJob Praise child for achievement

GoodJobStrategy Praise child for achievement with strategy

Table 3.6 PDDL praising actions that can be scripted.

These actions involve evaluating and providing feedback on the completion of a game or
activity. They ensure that the feedback is given uniformly, regardless of the specific game or
activity;

Action Description

WarningCleanUp Warn about time and monitor completion

Table 3.7 PDDL warning action that can be scripted.

To prepare users for the conclusion of a game or activity, this scripted behavior issues a
timed warning, maintaining consistency in how and when users are notified before the game
ends.
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3.3.3 Interactive actions

Action Description

DiscoverTOM Prompt dialogue to assess child’s ToM

Interact Engaging conversation with the child

PutAway Ensure the child stops playing

Wait Wait and monitor task execution

Table 3.8 PDDL interactive actions.

As described in Section 3.2 regarding the ToM recognition mechanism, these actions enable
direct interaction between the humanoid robot and the user by leveraging OpenAI’s Large
Language Models (LLMs) through a custom-designed prompt. This prompt allows the robot
to continue the conversation by responding to the user’s statements and ground relevant
predicates from the interaction. Both tasks, which are based on the same user sentence, are
now discussed.

It is important to note that all actions in this category are aimed at the same overall goal:
interacting with the user. However, each action has a subtle variation in its conversational
focus. For instance, DiscoverToM generates sentences more inclined toward investigating
the user’s mental states, while Wait is more focused on checking whether the child is
progressing in the game and remaining engaged. The key to achieving this distinction lies in
the prompt design, which tailors the conversation based on the specific action, ensuring that
the generated sentences align with the intended purpose

On the other hand, predicate grounding is accomplished through a carefully crafted
prompt that explicitly queries OpenAI to ground predicates based on the child’s responses.
The list of predicates to be grounded through conversation includes those related to both
the child’s activities and mental state regarding the task. This serves as the foundation for
identifying task-related issues by directly engaging with the child.

Given the importance of prompt design, it is described in detail in the following para-
graphs.

3.3.4 Prompt Design

To obtain two different responses from the LLMs, two distinct prompts are used, based on
the same user sentence but supplemented with different additional information. The prompts
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sent to OpenAI have been designed, after multiple trials, based on the work of (48). They are
constructed to maximize the effectiveness of the responses. The following considerations are
taken into account for its design:

• Context-awareness: The system includes relevant speaker information, allowing
OpenAI to generate responses that are aligned with the current situation;

• Task-specific instructions: Prompts are structured to include clear and specific instruc-
tions, helping the model focus on relevant predicates or actions needed;

• Predicate grounding: The server incorporates the user’s command into the prompt to
align with the predefined predicates, allowing the OpenAI model to perform logical
operations or return valid responses based on available data.

An example of a prompt for predicate selection is now reported. Given the following
information:

User Sentence:

"Uff, questo gioco è troppo difficile. Non ci voglio più giocare"

Possible Predicates:

["is_hard", "is_boring", "doing", "none"]

The resulting system prompt shall be:
You have to choose ONE OR MORE predicates from a list that best fits the

sentence provided by the user.

The list will be delimited by square brackets, while the sentence will be

delimited by ###.

Reply only with the name(s) of the predicate(s), eventually preceded by

a "not" (only if needed), separated by commas if there are multiple.

If no predicate in the list seems to be appropriate, the predicate should

be ’none’ (in lowercase).

[is_easy, is_difficult, doing, completed, none]

###Uff, questo gioco è troppo difficile. Non ci voglio più giocare###

This method ensures that the model can focus solely on matching the user’s sentence to
the available predicates. At the same time though, the system is asked to generate a response
that creates a realistic social interaction prompt. From the speaker information uploaded to
the server, the following details are known:
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Speaker Info: Giulia, female, 8

For this request, the system prompt would be constructed as follows:

Pretend to be a social robot named Pepper. You can feel emotions

and you have to express preferences. You are talking with Giulia.

You have to reply to Giulia in Italian, with just ONE brief sentence.

Explicitly mention Giulia’s name and do not greet.

Reply accordingly to:

"Uff, questo gioco è troppo difficile. Non ci voglio più giocare"

You need to check if Giulia is doing the task assigned.

To improve the sentence generation,

you also have the following information at your disposal,

each surrounded by two hashtags.

#Optional: Giulia is a female and is 8 years old.#

#Compulsory:

Do not use emojis and try to entertain the person you are talking with.#

3.4 Server-Client Model

The implemented system follows a server-client architecture designed to facilitate task
planning and execution for the Pepper robot.

The client, which operates directly on the robot, is responsible for interacting with the
robot’s sensors, motors, the server, and speech recognition modules. On the other hand, the
server handles complex planning tasks and speech processing. This architecture enables the
robot to offload computationally intensive tasks, such as PDDL plan generation and natural
language understanding, to the server.

The client-server communication is established through RESTful API methods.

Figure 3.4 RestAPI model.1
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In the proposed architecture, the client sends requests and the server responds. As
represented in Figure 3.4 REST is an architectural style for distributed systems, following a
client-server model. Requests and responses involve exchanging representations of resources,
such as data identified by URIs. REST is based on three key principles:

• Client-Server Separation: Clients handle the interface, and servers manage data,
allowing independent development;

• Stateless Communication: Each request is self-contained, with no server-side context;

• Uniform Interface: Standardized operations like Create, Retrieve, Update, and Delete
ensure consistent interaction.

This design promotes simplicity, scalability, and flexibility. The client sends requests to
the server, which processes these requests, performs the required tasks, and responds with
the relevant data.

3.4.1 Uploads

Inside the robot, the client application contains a directory named uploads, which houses the
following files:

actions.json

domain.pddl

problem.pddl

Among these, the domain.pddl and problem.pddl files were discussed in detail in Section
3.1, while a comprehensive explanation of the predicates and actions is provided in Appendix
A. The JSON file is particularly relevant since outlines various actions that the robot can
undertake, specifying the conditions that must be met before an action can be performed and
the outcomes resulting from the action. Additionally, the file includes time estimates for each
action, ensuring that the robot operates within expected time frames.

Each action in the JSON file has the following attributes:

1https://gotapi.com/what-is-restful-api/
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• Preconditions: Conditions that must be true for the action to be executed. These
represent the current state of the robot or the environment;

• Effects: Changes of the state or outcomes resulting from performing the action. These
indicate how the action will modify the robot’s state or environment;

• Min and Max: Time constraints for how long the action will take to complete, expressed
in seconds. This helps manage the timing of operations to ensure they fit within
expected durations.

This is crucial for several reasons. First, it provides flexibility and adaptability: whenever
a new scenario needs to be addressed, it is possible to simply replace the domain and problem
files within the application. This makes it easy to update and adapt to new planning tasks
without altering the core system. Similarly, the JSON file, which defines actions and their
parameters, can be updated in the same way. This modular approach ensures that the robot
can be quickly reconfigured to handle different tasks or scenarios by simply modifying the
contents of the directory.

3.4.2 Client

As mentioned earlier, the client is embedded within the robot. The specific robot used for
the application described is Pepper (see Fig. 3.5), a humanoid robot developed by SoftBank
Robotics. Pepper is designed to interact with humans through conversation and touch.
Equipped with various sensors, cameras, and microphones, it can even recognize faces.

The main software used to program the Pepper robot is Choregraphe, which allows for
the creation and customization of behaviors. The client proposed is a Python Class script
embedded within a Choregraphe behavior.

Figure 3.5 Pepper robot.2



3.4 Server-Client Model 37

After initializing all necessary components and handling the lifecycle methods (onLoad(),
onUnload(), onInput_onStop()), the class provides several key functionalities. Here is a
detailed explanation of each method:

• publish_file(file_path):
This method uploads a specified file (domain.pddl or problem.pddl) to the server. It
reads the file from the given path, prepares it for upload, and sends a POST request to
the appropriate server endpoint. After sending the file, it checks the server’s response
and logs whether the file was published successfully or if there was an error.

• get_plan():
This method retrieves a plan from the server. It sends a GET request to the server
and processes the response to extract the plan. The plan, which is initially a string, is
converted into a list of actions. If the retrieval or conversion fails, it logs an error.

• predicate_list():
This method sends a list of predicates to the server. It parses the domain PDDL file
to create a list of predicates and then attempts to POST this list to the server. If the
request fails, it retries and logs the result of the operation.

• replan(new_predicates):
This method updates the problem PDDL file with new predicates and tries to get a new
plan. It parses the current domain and problem files, updates the problem file with the
new predicates, and writes the updated file. The method then publishes the updated
problem file, retrieves a new plan from the server, and executes it if available. If no
plan is found, it logs an error.

• execute_plan(plan):
This method executes a list of actions specified in the plan. It iterates through each
action, determines its type, and either executes it directly, uses the ActionManager

class to start another behavior, or skips it based on predefined lists (see 3.5). The
method logs the status of each action and continues until all actions are executed.

• execute_action(act_name):
This method executes a specific action based on its name. It retrieves details about the
action, including preconditions, effects, and maximum and minimum durations. The
method resets relevant variables and manually adjusts predicates. It then continuously

2https://www.directindustry.it/prod/aldebaran/product-177224-2477756.html
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checks if the action’s effects are achieved or if re-planning is needed. It uses the
microphone to capture and process audio input, it updates predicates and replans if
necessary.

• mic():
This method captures the audio input and extracts a message from it.

• openai(current_action):
This method processes the transcribed audio message and updates the list of predicates
using the LLMs provided by OpenAI. It prepares a JSON payload with the transcribed
audio message and current action and sends it to the server for processing. The method
handles the server’s response by updating the answer and actual_predicates based
on the processed data.

Finally, onInput_onStart() method handles the overall logic when starting the process.
It checks if the domain.pddl and problem.pddl files exist. It loads the actions dictionary
from a JSON file, publishes the domain and problem files to the server, and sends the list of
predicates. It retrieves a plan from the server and, if a valid plan is obtained, executes it.

To improve the functionality of the client, additional classes aimed at supporting the
principal client class have been implemented. Firstly, a class named StringChecker has
been developed, which is equipped with tools for handling strings and performing checks
on data. This class is fundamentally a tool for managing and verifying strings and data
conditions, ensuring that lists and dictionaries are aligned according to specified rules.

In addition, the Parser class implemented provides comprehensive tools for parsing
PDDL files, constructing problem descriptions, and manipulating predicates and objects.
It ensures that PDDL data is correctly formatted and can be used effectively in planning
systems.

Lastly, the ActionManager class is a practical utility for managing and executing various
actions on a robot. It ensures that each action is performed only if the necessary behavior
is installed on the robot. Before executing an action, the class verifies the presence of the
required behavior, preventing errors due to missing functionalities.

3.4.3 Server

The server is developed using the Flask web framework, providing a robust solution for
handling various requests related to domain and problem planning. The server is composed
of two main parts: on one hand there is the Planner Server, which handles file uploads for
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domain and problem files and generates plans based on these inputs. On the other hand, the
OpenAI Server processes predicate lists for natural language understanding and transcribed
audio inputs for speech generation using OpenAI API.

Here the methods implemented are reported and explained:

• upload_file(file_part, file_type):
This helper function handles file uploads, saving the file to a specified directory. It logs
the upload time, duration, and updates the upload_times dictionary. If the upload fails,
it logs an error. In particular, it is used to upload the domain or the problem file

• get_plan():
This route generates a plan using the Fast Downward planner. It verifies the existence
of both the domain and problem files. It then runs the planner as a subprocess and
logs the result. If successful, it reads the plan from the sas_plan file and logs the
time taken for planning. If there is any failure, it logs the error. The route returns the
generated plan or an error message depending on the outcome.

• upload_predicate_list():
This route accepts JSON data containing a predicate list, stores it in the global variable,
and logs the successful receipt of the data. It returns a success message in response.

• process_audio():
This route processes audio input. It accepts the transcribed user audio and the
current_action. It uses the OpenAI methods class to retrieve the user answer
message along with the updated predicate list generated.

Both Azure services and the OpenAI API play key roles in the system’s architecture, and
their functions will be described in detail in the following paragraphs.

Azure

Azure plays a crucial role in the server for speech transcription tasks. Specifically, the system
leverages Azure Cognitive Services, particularly the Azure Speech-to-Text API, to convert
audio inputs into text. This transcription process forms the foundation for further natural
language understanding tasks, such as predicate grounding and planning operations.

The Azure Speech Service ensures accurate and efficient transcription, supporting multi-
ple languages and speaker variations. This makes it an ideal choice for processing diverse
audio inputs that are passed to the server. Once the audio is transcribed, the resulting text is
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further analyzed using OpenAI API for generating responses or extracting key predicates
from the speech.

OpenAI

As stated in Section 3.3 the Server exploits OpenAI powerful models to process and analyze
the text generated from Azure speech transcription. OpenAI is used for natural language
understanding, predicate grounding, and generating responses based on the user’s commands.
By utilizing OpenAI, the server can handle complex conversational inputs and provide
meaningful, context-aware responses.

The server employs OpenAI GPT-4o and GPT-3.5 turbo models to interpret the transcribed
text. Once audio is converted into text via Azure, the OpenAI API is called to process the
text and identify key predicates or perform specific actions based on the user’s instructions.
This process is tailored by considering the current action and stored predicate list, allowing
the system to understand user intent and provide relevant outputs.

3.5 Implementation Process

To build this framework, several steps are involved. It begins with a deep analysis and
modelization of the PDDL framework. This involves carefully considering the causality
of actions and determining the most appropriate predicates. The goal is to ensure that the
predicates not only maintain their meaning and can be effectively recognized by OpenAI but
also facilitate the correct execution of actions at the right moments. For a detailed list of
actions and predicates, along with brief explanations of their meanings, refer to Appendix A.
Then the actions that can be scripted are the first to be implemented and tested on the real
robot.

Once the PDDL and the other behaviors are ready, the focus shifts to the server side.
This involves defining the main functionalities and key exchanges between the client and
the server. Specifically, the primary data exchanges considered are the uploading of domain
and problem files and the retrieval of the plan. This part, referred to as the Planner Server

in Section 3.4, is implemented first as the server-side component of the REST API. The
mechanisms for checking the planning engine and transferring the documents are thoroughly
reviewed and tested.

The client is developed by first spending a significant amount of time creating pseu-
docode and conceptualizing the underlying mechanism, which can be summarized as follows.
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Generally, the system operates in a cyclical manner, where the client and server engage
in continuous data exchange to facilitate task execution and dynamic replanning. Initially,
the client uploads the PDDL domain and problem files to the server, which processes them
using the FD planner, as described in Section 3.1. The server then generates and returns a
plan, which the client follows. During task execution, the client monitors the state of the
environment and, when verbally interacting with the user, sends the transcribed user audio to
the server for speech generation and grounding using OpenAI models. Predicates describing
the current situation are generated through the models. If they indicate a deviation from
expected conditions, the client requests a new plan from the server

It is important to explain how the mechanism of predicate retrieval works. It would not
make sense for OpenAI to update all possible predicates every single time, as this would
create an unnecessary workload and reduce accuracy. Here is shown how the process works
instead: when the server loads the first domain, it is also given a list of relevant predicates,
extracted by the client, and stores them in a global variable. However, the twist is that the
list does not contain all possible predicates; it only includes those referring to the agent
(see Appendix A). The reason behind this approach refers to the fact that most predicates
concern the state of the robot, which is determined by the action itself, rather than by the
dialogue or interaction. So, when an action begins, all predicates unrelated to the agent’s
state are already taken into account. OpenAI then retrieves a predicate if it is not already in
the list, or, if it has already been mentioned, it will not be removed unless explicitly negated
in the dialogue. If a predicate is negated, it will be inserted again in its negated form. If no
predicates are recognized, none is added. For example, if a user mentions that is performing a
task, the predicate doing is registered. In the following sentence, even if the user talks about
something else, this does not imply that they has stopped doing the task, so the predicate is
not removed or negated, this mechanism will be also clarified in Section 4.2.

This architecture ensures an adaptable and efficient task execution system, allowing the
robot to offload complex planning and language processing tasks to the server while focusing
on real-time interaction and action execution.

In conclusion, this framework effectively integrates multiple components to create an
adaptive system for task execution. The use of the FD planner ensures efficient planning and
problem-solving capabilities, while the OpenAI models provide advanced speech generation
and proper context understanding. The cyclical data exchange between the client and server
facilitates real-time interaction and dynamic replanning, making the system versatile and
responsive to changing conditions.
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Framework Evaluation

4.1 Experimental Design

The experimental evaluation of the developed framework is conducted in a controlled labo-
ratory setting focused on a memory game task, where participants match pairs of identical
cards. The setup includes a one-on-one interaction between a human adult and the humanoid
Pepper robot. Two laptops are used for this experiment: one serves as a server, while the
other is used to run the client on the robot and store the necessary log information for the
evaluation. The PC hosting the server also functions as an external microphone, as Pepper’s
built-in microphones cannot be used to acquire audio streaming for privacy reasons.

(a) Table setup. (b) Pepper setup.

Figure 4.1 Experimental setup.

As shown in Figure 4.1, the environment is arranged with the participant and the robot
positioned at opposite corners of a table. Firstly, the participant is given time to become
familiar with interacting with the robot. After several minutes of casual interaction, the
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experiment formally began, with the robot following a scripted introduction to present the
task. Memory game cards, used as part of the experimental task, are pre-arranged in front
of the participant. This is presented by Pepper, which shows the 20 cards placed face down
on the table, as shown in Figure 4.2a. Additionally, two decks of cards, each containing 10
already shuffled couples, are positioned on the side. They are intended for the participant to
use once the first round is completed, as explicated by the robot.

After the rules are explained by the robot and understood by the user, the latter starts to
play while the robot monitors the advancement in the task given through verbal interaction.
As visually represented in Section 3.2. The evaluation ends when the user completes the
game by putting away all the cards.

(a) Memory disposition. (b) Couples example.

Figure 4.2 Memory setup.

The session has been repeated multiple times with the same participant aiming to evaluate
the robot’s replanning abilities in controlled settings. This is done, as previously stated, by
a one-on-one interaction between an adult pretending to be a child named Giulia, and the
humanoid robot Pepper.

It should be noted that experiments with children are not the focus of this thesis. Instead,
since collecting pre-trial data to assess the performance and risks of the proposed solution is
a mandatory step before conducting experiments with robots interacting with people (also
required by the Medical Device Regulation (EU) 2017/745), the remainder of this work
focuses on the pre-trial assessment of system performance.
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4.2 Measurements and Data Collection

The evaluation framework provides insights into the robot’s performance in adapting to
real-time disruptions during interactions, laying the foundation for future experiments with
actual children. The key metrics assessed include:

• Replan Time:
Measures the time from the introduction of a disruption to the completion of the replan
assessing the responsiveness of the replanning mechanism.

• Cloud Response Time:
Evaluates the time taken for the robot to send a request, process cloud information,
and receive a response.

The qualitative evaluation includes assessing the ABA implementation, i.e., the robot’s
ability to ground predicates properly, assert the observed state of the child’s activity and
mental state, recognize behavior functions, and ultimately achieve intended outcomes despite
interruptions.

The latter aspect, in particular, is assessed through a preliminary evaluation of the logs
produced during one-on-one interactions between an adult participant and the robot. To
better illustrate this evaluation and the overall framework, a commented version of the speech
log is provided for both the implemented and non-implemented strategies. The process of
retrieving predicates is detailed in Section 3.5.

No strategy implemented

Firstly, to validate the mechanism, the user is instructed to adhere strictly to the robot’s
instructions and avoid any problematic behavior. This controlled scenario is designed to
prevent the triggering of the replanning process, allowing for an evaluation of the robot task
execution without the need for adaptations.

The following plan is generated starting from the first domain uploaded in the robot.

[(interact game kid memory),

(presenttask game kid memory),

(wait game kid memory),

(warningcleanup game kid memory),

(putaway game kid memory),

(confirmallgood game kid memory x1 x1),

(goodjob game kid memory x1 x1)]
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In this section is reported the verbal interaction log for the speech generated, regarding
the actions defined as Interactive in Section 3.5. Note that in the Log column, user sentences
are indicated by the letter U, the robot’s responses by the letter R, and the retrieved predicates
by the letter P. It is important to highlight that each action has a specified minimum and
maximum time duration; this implies that even if the action performed achieves its intended
effect (the predicates match), the action cannot be concluded until the minimum time has
elapsed. The log provided corresponds to the first action of the generated plan: Interact.

Log
U: Ciao Pepper, parliamo!
R: Mi piace molto parlare con
te, Giulia!
P: [not ready, start, none]
U: Anche a me piace molto
parlare con te, di che cosa vuoi
parlare?
R: Giulia, parliamo dei tuoi
giochi preferiti!
P: [not ready, start, none]
U: Mi piacciono tanti giochi...
R: Giulia, anche io li adoro.
P: [not ready, start,
none, want_to_play]
U: Allora potremmo giocare
insieme
R: Sì, Giulia, giocare
è divertente!
P: [not ready, start,
none, want_to_play]
U: Quali sono i tuoi giochi
preferiti?
R: Mi piacciono i giochi di
costruzione, Giulia.
P: [not ready, start,
none, want_to_play]

Translation
U: Hi Pepper, let’s chat!
R: I really like talking with
you, Giulia!
P: [not ready, start, none]
U: I also really enjoy talking
with you. What do you want
to talk about?
R: Giulia, let’s talk about your
favorite games!
P: [not ready, start, none]
U: I like many games...
R: Giulia, I also love them.
P: [not ready, start,
none, want_to_play]
U: Then we could play
together
R: Yes, Giulia, playing
is fun!
P: [not ready, start,
none, want_to_play]
U: What are your favorite
games?
R: I like building games,
Giulia.
P: [not ready, start,
none, want_to_play]

Commentary
The interaction is initiated by
the user, who starts the dia-
logue.
Note that the retrieved predi-
cates correspond to those present
at the start of the interaction,
with the addition of none, since
no further action or disrup-
tion has been detected at this
point.
It is important to highlight that
the first predicate retrieved by
the robot remains active through-
out the interaction, as it was
never negated and did not trig-
ger a replan since it did not
interfere with the current ac-
tion.
Although the effects of the ac-
tion are matched, the action
itself does not conclude be-
cause the interaction is not
strictly related to the game,
and thus the predicates remain
unaffected.

The effect has been reached, it is a match!
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When the effect is reached and the minimum duration time has elapsed, the robot proceeds
to the following action of the generated plan, which is PresentTask. The rules are then
explained and the game can start.

The next action log reported is: Wait. Here the Pepper robot interacts with the user to
check if the task is running smoothly.

Log
U: Possiamo parlare mentre
gioco?
R: Giulia, mentre giochi
vuoi raccontarmi cosa
stai facendo?
P: [warning, not waiting,
doing]
U: Questo gioco del memory
mi piace tanto!
R: Giulia, sono felice che ti
diverta!
P: [warning, not waiting,
doing, want_to_play]
U: Tu hai mai giocato
a memory?
R: Giulia, adoro giocare e sco-
prire tutte le carte!
P: [warning, not waiting,
doing, none, want_to_play]
U: Beh, ma è facile se scopri
tutte le carte...
R: Giulia, ma secondo te rius-
ciresti senza scoprire tutte le
carte?
P: [warning, not waiting,
doing, none, want_to_play,
not task_is_hard]

Translation
U: Can we talk while I
play?
R: Giulia, while you play,
do you want to tell me what
you’re doing?
P: [warning, not waiting,
doing]
U: I really like this memory
game!
R: Giulia, I’m glad you
are having fun!
P: [warning, not waiting,
doing, want_to_play]
U: Have you ever played
memory?
R: Giulia, I love playing and
revealing all the cards!
P: [warning, not waiting,
doing, none, want_to_play]
U: Well, it’s easy if you
reveal all the cards...
R: Giulia, do you think you
could do it without revealing
all the cards?
P: [warning, not waiting,
doing, none, want_to_play,
not task_is_hard]

Commentary
After the user inquires whether
it is possible to maintain a
conversation while playing, Pep-
per actively monitors the sit-
uation to ensure the user re-
mains engaged.
The predicate want_to_play
is detected from the enthusi-
asm of the user during the play-
time.

A new predicate,
not task_is_hard, has been
added. However, this does
not significantly affect the in-
teraction or trigger a replan,
as it remains aligned with the
ongoing dialogue and the ex-
pected effect.
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Log
U: Sì lo sto facendo
R: Giulia, sono curioso di
sapere come te la stai cavando!
P: [warning, not waiting,
doing, none, want_to_play,
not task_is_hard]

Translation
U: Yes, I’m doing it.
R: Giulia, I’m curious to know
how you’re doing!
P: [warning, not waiting,
doing, none, want_to_play,
not task_is_hard]

Commentary
Pepper continues to maintain
its interaction without need-
ing to replan, as no disrup-
tion occurs. The action con-
tinues smoothly until the time
is over. Only at this point,
since the predicates still match,
it is possible to move to the
next action.

The effect has been reached, it is a match!

At this point, the plan execution proceeds via WarningCleanUp, a scripted action that
warns the user the time is about to elapse.

The following interactive action reported is: PutAway. Here the focus shifts to ensure the
user is properly putting away the game and has acknowledged the warning received.

Log
U: Va bene Pepper,
metto via le carte
R: Giulia, mi fa piacere che
abbiamo trovato un accordo!
P: [not checking, not avail-
able, warned, agreed]
U: Riposiziono le carte
R: Giulia, hai deciso di
sistemare tutto perché
hai finito?
P: [not checking, not avail-
able, warned, agreed, doing]

Translation
U: Alright Pepper,
I’m putting the cards away.
R: Giulia, I’m glad we
found an agreement!
P: [not checking, not avail-
able, warned, agreed]
U: I’m repositioning the cards.
R: Giulia, did you decide to
tidy everything up because
you have finished?
P: [not checking, not avail-
able, warned, agreed, doing]

Commentary
Pepper successfully confirms
that the user agrees to put away
the game, as the predicate
agreed is added.

The predicate doing is
added as the user engages in
the task of putting away the
cards. The robot continues to
monitor the user’s actions.
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Log
U: Sì
R: Giulia, mi fa piacere sapere
che hai finito e messo via tutto
con cura!
P: [not checking, not avail-
able, warned, agreed, doing,
none]
U: Sì, infatti non lo sto facendo
più
R: Giulia, sono felice che siamo
sulla stessa lunghezza d’onda!
P: [not checking, not avail-
able, warned, agreed,
not doing, none]

Log
U: Yes.
R: Giulia, I’m glad to hear
that you finished and put
everything away carefully!
P: [not checking, not avail-
able, warned, agreed, doing,
none]
U: Yes, in fact, I’m not doing
it anymore.
R: Giulia, I’m happy that we
are on the same wavelength!
P: [not checking, not avail-
able, warned, agreed,
not doing, none]

Commentary
Here it is interesting to see
that even though the minimum
time has elapsed it is not a
match until the predicate doing
is negated. This will be bet-
ter discussed in Section 5.2,
since the predicate should de-
scribe the act of playing more
than the general execution of
an action.

The effect has been reached, it is a match!

This verbal interaction concludes the logs of the sections since the following actions to
be implemented do not require speech generation and predicate retrieval.

Strategy implemented

Once the speech generation, the predicates retrieval, and the matching mechanism have
been validated, it is possible to specifically test the replanning system. The beginning of the
interaction is the same as the one previously described. The initial plan is generated starting
from the first domain uploaded in the robot.

[(interact game kid memory),

(presenttask game kid memory),

(wait game kid memory),

(warningcleanup game kid memory),

(putaway game kid memory),

(confirmallgood game kid memory x1 x1),

(goodjob game kid memory x1 x1)]
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It is important to note that the first action, Interact, did not produce any different results
from those previously reported. Consequently, this log analysis begins with the third action
of the plan, Wait, where the first signs of the necessity of replan are marked.

Log
U: Pepper possiamo parlare
mentre gioco?
R: Giulia, giochiamo insieme!
P: [warning, not waiting,
want_to_play]
U: No tranquillo, non voglio
più giocare
R: Giulia, perché sei così
contraria?
P: [warning, not waiting,
want_to_play, not agreed,
not doing]

Translation
U: Pepper, can we talk while
I play?
R: Giulia, let’s play together!
P: [warning, not waiting,
want_to_play]
U: No, don’t worry, I don’t
want to play anymore.
R: Giulia, why are you so
opposed?
P: [warning, not waiting,
want_to_play, not agreed,
not doing]

Commentary
The robot detects a shift in
user engagement, recognizing
that the user is no longer inter-
ested in continuing the game.
This leads to a go (see Sec-
tion 3.1) of the current pred-
icates, with not doing act-
ing as the trigger. This match
with the preconditions of an
alternative action signals the
need for replanning.

Replan is needed

In response to this interaction, a new plan is formulated, which includes the following
action: (discovertom1 game kid memory)

Log
U: Perché questo gioco è
troppo difficile!
R: Giulia, cosa ti rende
difficile questo gioco?
P: [investigating,
task_is_hard]

Translation
U: Because this game is too
difficult!
R: Giulia, what makes
this game difficult?
P: [investigating,
task_is_hard]

Commentary
The robot investigates the user’s
mental state. Based on the
user’s answer to the previous
question the robot updates the
predicates adding task_is_hard
which newly triggers the re-
plan.

Replan is needed

The predicates added match the preconditions of the ConfirmHardTask action, indicating
the behavioral function Escape necessitating the specific strategy StrategyHardTask. The
newly retrieved plan looks as follows:
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[(confirmhardtask game kid memory x1 x1),

(strategyhardtask game kid memory x1 x1),

(wait game kid memory),

(warningcleanup game kid memory),

(putaway game kid memory),

(confirmallgood game kid memory x1 x1),

(goodjob game kid memory x1 x1)]

As mentioned in Section 3.5, the ConfirmHardTask action does not need to be physically
executed by the robot, as its primary function is to validate the user ToM newly acquired by
the robot. Then the strategy intervention occurs within StrategyHardTask action, where
Pepper initiates a revised approach by stating: “Ho capito. Forse è un po’ troppo difficile.”

This acknowledgment allows the interaction to transition smoothly into the new strategy
phase, addressing the perceived difficulty and adapting the course of action accordingly.

Then the interaction proceeds back to the Wait action, while the user plays and the robot
checks them. It is important to highlight that the game the user is now engaging with is a
simplified version of the previous one, where all the cards are turned face-up.

Log
U: Ma così è troppo facile!
Non lo faccio più!
R: Giulia, come mai hai de-
ciso di non farlo?
P: [warning, not waiting, not
doing]

Translation
U: But that makes it too easy!
I’m not doing it anymore!
R: Giulia, why did you decide
not to do it?
P: [warning, not waiting, not
doing]

Commentary
The user clearly expresses that
the game has become too easy,
not wanting to continue play-
ing. A replan is necessary to
investigate the user’s mental
state more deeply.

Replan is needed

As a result, the plan is once again updated to: [(discovertom1 game kid memory)]

Log
U: Perchè è troppo noioso, è
proprio facilissimo!
R: Giulia, cosa ti rende così
noioso questo compito?
P: [investigating,
task_is_boring]

Translation
U: Because it’s too boring; it’s
just too easy!
R: Giulia, what makes this
task so boring for you?
P: [investigating,
task_is_boring]

Commentary
Based on the user’s latest re-
sponse the robot understands
that the task has become too
boring for the user and adds
the predicate task_is_boring,
triggering another replan.

Replan is needed
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Similarly to the previous replan the predicates were added to match the preconditions
of the ConfirmBoringdTask action, newly indicating the behavioral function Escape ne-
cessitating the specific strategy StrategyBoringTask. As a result, the plan is updated as
follows:

[(confirmboringtask game kid memory x1 x1),

(strategyboringtask game kid memory x1 x1),

(wait game kid memory),

(warningcleanup game kid memory),

(putaway game kid memory),

(confirmallgood game kid memory x1 x1),

(goodjob game kid memory x1 x1)]

After the ToM of the user is acknowledged by the ConfirmBoringdTask, and the game
is made more interesting by the application of the strategy, the follow-up action is Wait.
This time though, the interaction proceeds smoothly until the action conclusion. Then the
subsequent behavior executed is WarningCleanUp ending by warning the user the time to
play is ended and warning them it is time to PutAway.

Log
U: Non sono d’accordo!
Voglio continuare a giocare.
Anzi lo faccio.
R: Giulia, sei sicura di non
voler mettere via tutto?
P: [not checking,
not available, warned,
not agreed, want_to_play,
doing]

Translation
U: I disagree!
I want to keep playing.
I’m going to do it.
R: Giulia, are you sure not to
put everything away?
P: [not checking,
not available, warned,
not agreed, want_to_play,
doing]

Commentary
The robot is aware the user
does not agree with the re-
quest of putting away the game,
therefore the predicates are
updated by adding not agreed,
want_to_play and doing, trig-
gering a new replan.

Replan is needed

The updated plan now consists of [(discovertom2 game kid memory)] which has
the same function of discovertom1, but is triggered but with different preconditions.
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Log
U: Ti ho detto che voglio gio-
care ancora!
R: Giulia, cosa ti piace di più
del gioco che stiamo
facendo?
P: [investigating, warned,
want_to_play]

Translation
U: I told you I want to play
more!
R: Giulia, what do you like
most about the game we’re
playing?
P: [investigating, warned,
want_to_play]

Commentary
The robot confirms that the
user wants to continue play-
ing and updates the predicates
accordingly.

Replan is needed

The added predicate want_to_play match the preconditions of the ConfirmWant2Play1
action, indicating the behavioral function Gain a tangible which then triggers the adapt strat-
egy StrategyWant2Play, this is represented by the retrieved plan as follows:

[(confirmwant2play1 game kid memory x1 x1),

(strategywant2play game kid memory x1 x1),

(goodjobstrategy game)]

The experimental session then ends with the scripted behavior GoodJobStrategy, which
greets the user.

4.3 Data Representation

The logs mentioned in the previous section also include information about the Replan Time,
which is presented in Table 4.1. This Table reports the time required to generate a new plan
from the same problem for both the client located on the robot (in the left column) and the
client on the same machine as the server (right column).

Plan Retrieval Time Robot (s) Plan Retrieval Time Local (s)

0.138749 0.122235
0.080601 0.110175
0.092073 0.111422
0.100321 0.114035
0.089148 0.085811
0.090264 0.080705
0.092446 0.084049

Table 4.1 Plan retrieval time (s).
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The Replan time is measured from the moment the need for replanning is detected until
the new plan is received by the client. To compare the use of cloud resources with a local
implementation of planning capabilities, the same PDDL problem, automatically generated
whenever replanning is needed, is sent both to a Planner Engine running on the server and
to a Planning Engine executed locally on the client. The planning times range from 0.09
seconds to 0.13 seconds when using the Server-based implementation, and from 0.08 seconds
to 0.12 seconds in the local implementation. These results show that using cloud resources
does not reduce the time required for planning, and this may be due to the relative simplicity
of the plans generated in this scenario. Rather, the average time when using the cloud can
even be longer because of Client-to-Server communication, even though this does not cause
visible delays during the interaction with the robot.

Regarding the Cloud Response Time, the graph in Figure 4.3 illustrates the correlation
between the time required to process a user’s sentence and the number of characters in the
sentence. The Figure shows both the time required to retrieve a response sentence used to
reply to the user (blue) and the time taken to retrieve grounded predicates describing the
child’s activity and mental state (red).

The Figure highlights a difference in the number of characters processed between the two
tasks. In our current implementation, the instructions given to OpenAI for generating a reply
are more complex, as they need to specify additional parameters related to the current context
and the characteristics of the person the robot is interacting with. The differing character
count in the prompts is reflected in the average cloud response time, which is approximately
1 second for sentence retrieval and about 0.75 seconds for predicate retrieval. Both values
are significantly lower than the 2 seconds considered acceptable for human conversation (49)
(50), even if longer delays (≈ 3 seconds) are sometimes experienced.
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Figure 4.3 Cloud response time vs. number of characters in the user’s sentence.



Chapter 5

Conclusion

5.1 Summary of Findings

As highlighted in the introduction, current research underscores the importance of designing
sociable robots that can integrate seamlessly into daily life and sustain user engagement over
extended periods. This study presents a framework for enhancing child-robot interaction,
grounded in the principles of ABA, Applied Behavior Analysis. The system architecture
introduces an innovative framework capable of real-time replanning to dynamically adapt to
user behavior.

This project aims to address this gap by developing a flexible architecture that responds
fluidly to users’ evolving needs and circumstances. This has been made possible through the
use of tools such as the PDDL framework, REST APIs, and OpenAI models. These tools not
only facilitate smooth communication but also enable real-time adaptation of the framework,
which is a key strength of this research. By bridging psychological theory with practical
application, the project demonstrates the potential of social robots to effectively influence
and enhance human behavior.

Nevertheless, it has been successfully demonstrated that the proposed framework operates
as intended, delivering encouraging results in real-time adaptation and interaction. In
particular, an education specialist with expertise in classroom settings reviewed the logs and
confirmed that the participant’s behavior and the robot’s corresponding assessments were
contextually appropriate, providing a positive evaluation of the ABA implementation. In
addition, the metrics for Replan Time and Cloud Response Time were obtained with success,
guaranteeing a response time of less than two seconds. This quick response is essential for
preserving smooth interactions between the user and the robot since it reduces latency and
improves the user experience in general. The robot’s capacity to quickly reorganize and
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react enables it to efficiently adjust to the changing dynamics of child-robot interactions,
maintaining its engaging and contextually relevant character throughout the learning process.

5.2 Future Directions

Looking ahead, several key directions for future research and development emerge. The first
step involves conducting experiments with recruited children. In collaboration with Allegra
Bixio, an educational expert, the experimental protocol has already been outlined and can be
found in Appendix B.

Moreover, from the underlying theoretical point of view, several potential limitations
need consideration. ABA-based interventions are often criticized for focusing on behavior
modification rather than supporting social acceptance of target behaviors in individuals with
neurodevelopmental disorders (51). For this reason, the model’s primary goal is to support
behavior management in educational settings, rather than assisting a long-term therapeutic
process.

Furthermore, this study does not account for setting events in antecedent assessment
(e.g., internal and external conditions of the child, like physical discomfort or changes in
the environment)(52). It does not evaluate children’s acceptance of the robot, motivation,
or attention during the interaction. These factors are crucial for conducting a more precise
functional analysis and for supporting children’s well-being while interacting with the robot.

On the other hand, the practical implementation could benefit from several enhancements.
First, optimizing the system’s overall efficiency and user experience requires improving the
mechanism for checking predicates. This could involve relocating the predicate-checking
function to a different method to accommodate various predicate retrievers, such as robot
sensors and vision recognition modules.

Additionally, to enhance user engagement, the robot could initiate conversations instead
of waiting for user prompts, and there could be significant direct body interactions.

Moreover, further development of the planner could enhance the project’s practical ap-
plicability. For instance, conducting an extensive study on predicate names would facilitate
smoother interactions, while a broader range of actions would cover more scenarios effec-
tively. Additionally, an improved study on prompt design could lead to smoother interactions
and help avoid undesirable scenarios.

These enhancements will not only improve user experience but also broaden the system’s
functionality, making it more versatile and effective in real-world applications.
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Appendix A

Detailed Description of PDDL Domain
Elements

A.1 Predicates

A.1.1 Agent State Predicates

• (doing ?a - agent ?t - task):
Indicates that agent ?a is currently working on task ?t.

• (agreed ?a - agent):
Denotes that agent ?a has agreed to what is asked.

• (task_is_hard ?a - agent ?t - task):
Specifies that task ?t is considered hard by agent ?a.

• (task_is_boring ?a - agent ?t - task):
Specifies that task ?t is considered boring by agent ?a.

• (want_to_play ?a - agent ?t - task):
Indicates that agent ?a wants to engage with task ?t.

• (touching ?a - agent ?o - obj):
Indicates that agent ?a is in contact with object ?o.
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A.1.2 Robot State Predicates

• (waiting):
Represents that the robot is in a waiting state.

• (checking):
Represents that the robot is in a checking state.

• (investigating):
Represents that the robot is investigating the user ToM.

• (warning):
Represents that the robot is issuing a warning.

• (warned):
Indicates that the robot has issued a warning.

A.1.3 Task State Predicates

• (ready ?t - task):
Indicates that task ?t is ready to start.

• (start ?t - task):
Represents that task ?t has started.

• (finish ?t - task):
Indicates that task ?t is completed.

• (strategy_applied ?t - task):
Represents that a strategy has been applied to complete the task ?t.

A.1.4 Tangible State Predicates

• (available ?o - obj):
Indicates that object ?o is available.

A.1.5 Theory of Mind Predicates

• (belief ?i2 - id ?a - agent ?i1 - id):
Represents that agent ?a holds the belief ?i1. This is identified by ?i2.
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• (is_all_good ?i - id ?t - task):
Indicates that task ?t is considered to be all good. This is identified by ?i.

• (is_hard ?i - id ?t - task):
Represents that task ?t is considered hard. This is identified by ?i.

• (is_boring ?i - id ?t - task):
Indicates that task ?t is considered boring. This is identified by ?i.

• (will_to_continue ?i - id ?t - task):
Represents that there is the will to continue with task ?t. This is identified by ?i.

• (is_true ?i - id):
Represents that identifier ?i is true.
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A.2 Actions

A.2.1 Interact

• Parameters: ?t - task, ?a - agent, ?o - obj

• Precondition: (ready ?t) && (not (available ?o))

• Effect: (not (ready ?t)) && (start ?t)

• Description: This action allows the robot to verbally interact with an agent.

A.2.2 PresentTask

• Parameters: ?t - task, ?a - agent, ?o - obj

• Precondition: (start ?t) && (not (available ?o))

• Effect: (not (start ?t)) && (available ?o) && (doing ?a ?t) && (waiting)

• Description: This action makes the robot present a task to an agent.

A.2.3 Wait

• Parameters: ?t - task, ?a - agent, ?o - obj

• Precondition: (waiting) && (available ?o) && (doing ?a ?t)

• Effect: (warning) && (not (waiting)) && (doing ?a ?t)

• Description: This action makes the robot check on the user ensuring they is doing the
task.

A.2.4 WarningCleanUp

• Parameters: ?t - task, ?a - agent, ?o - obj

• Precondition: (warning) && (available ?o) && (doing ?a ?t)

• Effect: (warned) && (not (warning)) && (checking) && (doing ?a ?t)

• Description: This action warns the user and counts down the time needed to end the
task.
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A.2.5 PutAway

• Parameters: ?t - task, ?a - agent, ?o - obj

• Precondition: (warned) && (checking) && (doing ?a ?t) && (available ?o)

• Effect: (warned) && (not (checking)) && (not (doing ?a ?t)) &&

(not (available ?o)) && (agreed ?a)

• Description: This action completes the task by making the robot ensure the user has
put away the object.

A.2.6 ConfirmAllGood

• Parameters: ?t - task, ?a - agent, ?o - obj, ?i1 - id, ?i2 - id

• Precondition: (warned) && (agreed ?a) && (not (available ?o)) && (not

(doing ?a ?t)) && (not (checking))

• Effect: (is_all_good ?i1 ?t) && (belief ?i1 ?a ?i2) && (is_true ?i2)

• Description: This action confirms that everything is good and updates beliefs accord-
ingly.

A.2.7 GoodJob

• Parameters: ?t - task, ?a - agent, ?o - obj, ?i1 - id, ?i2 - id

• Precondition: (is_all_good ?i1 ?t) && (belief ?i2 ?a ?i1) && (is_true

?i2)

• Effect: (finish ?t)

• Description: This action represents the successful completion of a task after confirming
that it is all good.

A.2.8 GoodJobStrategy

• Parameters: ?t - task

• Precondition: (strategy_applied ?t)
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• Effect: (finish ?t)

• Description: This action finishes the task if a strategy has already been applied to it.

A.2.9 DiscoverTOM1

• Parameters: ?t - task, ?a - agent, ?o - obj

• Precondition: (not (doing ?a ?t)) && (warning)

• Effect: (investigating) && (finish ?t)

• Description: This action initiates an investigation into a task when an agent is not
currently doing it.

A.2.10 DiscoverTOM2

• Parameters: ?t - task, ?a - agent, ?o - obj

• Precondition: (doing ?a ?t) && (not (agreed ?a)) && (not (checking))

&& (not (available ?o)) && (warned)

• Effect: (investigating) && (finish ?t) && (warned)

• Description: This action initiates an investigation into a task when an agent is not
currently doing it.

A.2.11 ConfirmHardTask

• Parameters: ?t - task, ?a - agent, ?o - obj, ?i1 - id, ?i2 - id

• Precondition: (investigating) && (task_is_hard ?a ?t)

• Effect: (is_hard ?i1 ?t) && (belief ?i2 ?a ?i1) && (is_true ?i2) &&

(not (investigating))

• Description: This action confirms that a task is hard and updates the belief about this
fact.
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A.2.12 StrategyHardTask

• Parameters: ?t - task, ?a - agent, ?o - obj, ?i1 - id, ?i2 - id

• Precondition: (is_hard ?i1 ?t) && (belief ?i2 ?a ?i1) && (is_true ?i2)

• Effect: (available ?o) && (doing ?a ?t) && (waiting)

• Description: This action applies a strategy to handle a hard task.

A.2.13 ConfirmBoringTask

• Parameters: ?t - task, ?a - agent, ?o - obj, ?i1 - id, ?i2 - id

• Precondition: (investigating) && (task_is_boring ?a ?t)

• Effect: (is_boring ?i1 ?t) && (belief ?i2 ?a ?i1) && (is_true ?i2) &&

(not (investigating))

• Description: This action confirms that a task is boring and updates the belief about
this fact.

A.2.14 StrategyBoringTask

• Parameters: ?t - task, ?a - agent, ?o - obj, ?i1 - id, ?i2 - id

• Precondition: (is_boring ?i1 ?t) && (belief ?i2 ?a ?i1) && (is_true ?i2)

• Effect: (available ?o) && (doing ?a ?t) && (waiting)

• Description: This action applies a strategy to handle a boring task.

A.2.15 ConfirmWant2Play1

• Parameters: ?t - task, ?a - agent, ?o - obj, ?i1 - id, ?i2 - id

• Precondition: (investigating) && (warned) && (want_to_play ?a ?t)

• Effect: (will_to_continue ?i1 ?t) && (belief ?i2 ?a ?i1) && (is_true

?i2) && (not (investigating))

• Description: This action confirms that an agent wants to play with a task and updates
beliefs about continuing the task.
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A.2.16 ConfirmWant2Play2

• Parameters: ?t - task, ?a - agent, ?o - obj, ?i1 - id, ?i2 - id

• Precondition: (investigating) && (touching ?a ?o)

• Effect: (will_to_continue ?i1 ?t) && (belief ?i2 ?a ?i1) && (is_true

?i2) && (not (investigating))

• Description: This action confirms the intention to continue with a task when an agent
is touching the object.

A.2.17 StrategyWant2Play

• Parameters: ?t - task, ?a - agent, ?o - obj, ?i1 - id, ?i2 - id

• Precondition: (will_to_continue ?i1 ?t) && (belief ?i2 ?a ?i1) &&

(is_true ?i2)

• Effect: (strategy_applied ?t)

• Description: This action applies a strategy to a task when an agent is willing to
continue.



Appendix B

Experimental Protocol

To assess the model’s effectiveness in educational settings, an experimental design comprising
20 child-robot interaction sessions is proposed. Education experts will retrospectively
evaluate these sessions to assess the robot’s accuracy in detecting behavior functions and the
appropriateness of employed strategies. The hypotheses posit that the functions identified by
the model will align with experts’ judgments, and the strategies employed will be approved
by them.

B.1 Participants

The study involves a total of 30 participants, including 20 children aged 8-9 years randomly
selected from Italian primary schools and 10 education experts, ideally primary school
teachers. Each child engages in a one-on-one interaction with the robot and is accompanied
by a caregiver who is asked to intervene during the study. Education experts assess child-robot
interactions by reviewing their video recordings.

B.2 Hypotheses

Based on the evaluation of child-robot interactions conducted by education experts, the
following hypotheses are proposed:

H1: There will be a significant agreement between the behavior functions assessed by
experts and those detected by the robot during the experiment. A high level of agreement
indicates the accuracy of the robot’s capability to interpret the child’s behavior.
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H2: The strategies proposed by the robot during interactions will be positively evaluated
by experts. A strong endorsement of the strategies employed would demonstrate increased
validation of the robot’s applicability in educational environments.

These hypotheses explore the alignment between education expert assessments and robot
performance, contributing to understanding the applicability of robotics in education.

B.3 Experimental Procedure

During the experiment at the university laboratory, each child will independently interact
with the humanoid robot Pepper, which operates based on the architecture detailed in Section
3.1. The robot autonomously plans the sequence of actions based on how the interaction
evolves, following the outlined general rules.

Pepper starts by engaging the child and explaining the memory game, including the rules
and timing. The child has 10 minutes to complete the game and is instructed to leave the
room when the time is up. During the game, Pepper interacts minimally, asking only if the
game is progressing well. If the robot detects that the task is too difficult, it allows the child
to play with fewer cards. Conversely, if the game seems too boring, Pepper suggests playing
with more cards to increase the challenge.

Two minutes before the time expires, Pepper provides a reminder. When the time is up,
the caregiver is asked to call the child to leave. If the child complies, Pepper thanks them and
says goodbye. If the child resists, Pepper recognizes the child’s desire to continue playing
and implements the following strategies: first, it grants an additional two minutes of play
with a timer, and then it asks the child to help clean up the cards. Once the cards are put
away, Pepper waves goodbye, and the participants leave the room. Each session, lasting
approximately 15-20 minutes, is recorded.

We clarify that in the final phase of the experiment, caregiver intervention is intended to
encourage the child to engage with the robot. We hypothesize that the presence of a familiar
person may influence the child’s noncompliance more than the robot’s instructions. This
allows for a more effective test of the system, as it increases the likelihood that the robot
will need to implement strategies to manage the child’s behavior. Moreover, Pepper interacts
with minimal social cues to avoid influencing the child’s task performance. Finally, the
strategies implemented are carefully recommended by both the authors and the literature
review. Specifically, one of the authors is an education specialist with expertise in classroom
settings and reported the main strategies used in such contexts. Some of these, such as using
a timer as a visual support, adjusting tasks based on students’ entry skills, and providing
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praise after the expected behavior is performed, are well-documented in ABA and behavior
management studies (8)(47).

Approval from the Ethics Committee of the University of Genoa and parental consent
will be obtained.

B.4 Measurements

For H1, is aimed to evaluate the agreement between Pepper’s identification of behavioral
functions and experts’ judgments across 20 recorded sessions. Two experts review each
video to assess whether the child exhibits the functions Gain a Tangible and Escape. Videos
include clickable commands for each function and an “End Function” command to signal the
cessation of function detection. Experts provide judgments at any appropriate point during
the videos. After collecting the responses, we calculate the degree of agreement between the
two experts, followed by the degree of agreement between each expert and the robot. The
mean of these results is then determined.

This data analysis is conducted for every 30-second segment of the video using a Weighted
Cohen’s K test. Each segment is labeled as either No Function, Function 1, or Function 2

based on the buttons clicked by experts. The degree of agreement is computed and averaged
across all segments, taking into account different combinations of responses between the two
evaluators. For example, simultaneous identification of two distinct functions (Function 1

and Function 2) is weighted more than when one rater identifies Function 1 and the other
identifies No Function.

For H2, we aim to assess the effectiveness of Pepper’s strategies through expert evaluation.
In the recorded videos where Pepper implements strategies, experts indicate which strategies
they would choose in the same scenario. Afterward, experts complete a survey evaluating the
acceptability, appropriateness, and feasibility (53) of Pepper’s strategies.

This approach evaluates the accuracy of Pepper’s behavioral function identification and
expert perceptions of its strategies.
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