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Abstract

Brain prostheses are neuroengineering devices that interface with the central nervous system

to supplement or restore function in individuals with disabilities through electrical stimula-

tion. Recently, neuromorphic brain prostheses, such as spiking neural networks (SNNs), have

received significant research attention for their ability to mimic neurobiological computations

and process data in real time.

This thesis is divided into two parts. In the first part, we assess the effects of a novel type

of intracortical microstimulation on in vivo models using healthy, anesthetized rats. This

stimulation is driven by two types of SNNs. The results show that SNN-driven stimulation

engages neural networks to varying degrees, depending on the stimulation pattern. Addition-

ally, the findings align with previous studies exploring other forms of stimulation, positioning

this method as a promising approach for achieving same functional recovery outcomes.

In the second part, we propose a multi-objective indicator-based evolutionary algorithm to

fine-tune the SNN, optimizing it to replicate the electrophysiological parameters observed in

the in vivo experiments. This algorithm is a crucial tool for personalizing stimulation based

on the target, potentially improving the interaction between the prosthetic device and the

biological system for more effective therapeutic results.
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Introduction

The power and complexity of the human brain are mind-blowing. It is not only the container

of our thoughts, emotions, and consciousness but also the foundation of every individual’s

identity. Within approximately 1.3 cubic decimeters of matter, the brain contains the entirety

of our self-perceived world. And at the core of this wonder lies one fundamental truth: it’s all

driven by electricity. Every thought, action, and sensation is the result of intricate electrical

impulses firing across neural networks. Neurons, the foundational units of the brain, encode

everything through the depolarization and hyperpolarization of their membrane, effectively

forming an intricate ”electrical code” that represents sensations and actions. This ”code” is

not left to the case: each neuron is connected to others, ensuring that no neuron acts in isola-

tion, but they must work in harmony, constantly considering the state of the entire network.

This careful interaction makes sure that everyone is up to the job and no one is left behind,

maintaining a temporal order as the large number of instruments in an orchestra (Buzsáki

2006).

The brain is also redundant, meaning that vastly different configurations of cellular and synap-

tic components can enable the same neural circuit functions (Mizusaki and O’Donnell 2021).

However, despite these properties, any disruption to the integrity of the brain can lead to sig-

nificant impairments in everyday life, affecting not only the individuals but also those around

them.

From a report of the World Health Organization, diseases and injuries of the nervous systems

constitute about 6.3% of the Global Burden of Disease. This, of course, has and will have a

massive impact on society and economy (Chin and Vora 2014). As a result, there has been a

rapidly growing interest in therapies and technologies aimed at preventing or treating brain dis-

orders. Several large-scale international research initiatives, such as the Human Brain Project

(HBP) and Brain Research through Advancing Innovative Neurotechnologies (BRAIN), have
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emerged in recent years to address these challenges. One of the most promising technologies

focusing on the possibility to remove and retrain people from cerebral impairments are the

electroceuticals : since brain acts using electricity, targeting specific nerve fibers or specific

brain circuits with electrodes makes possible the interaction with its functioning, allowing for

pinpoint interventions (Famm et al. 2013; Reardon 2014). When applied correctly, electrical

stimulation of specific brain areas can be more cost-effective and precise than pharmaceutical

treatments, with the added potential to address drug-resistant conditions. In this context,

several strategies can be adopted, each one specific for the disease: the most famous and con-

solidated tool is the Deep Brain Stimulator (DBS) which stimulates deep areas of the brain to

alleviate or eliminate tremors induced by Parkinson’s Disease or symptoms related to epilepsy

and psychiatric conditions such as obsessive-compulsive disorder and major depression. One

other approach to understand and treat neural pathology is to partially substitute or assist

damaged brain areas. This kind of technologies are named neuroprosthetics.

Neuroprosthetics

A neuroprosthetic is a device or system that has an interface with the nervous system and

supplements or substitutes functionality in the patient’s body (Wright et al. 2016). A spe-

cific category within neuroprosthetics are brain prosthesis, devices directly connected with the

central nervous system in order to replace a damaged area or bridge disconnected areas and

regain the lost functionality (Panuccio et al. 2018). These can be categorized into two main

types: open-loop and closed-loop systems. In open-loop systems, the device delivers a stimulus

directly to the brain without any feedback from the neural activity. In contrast, closed-loop

systems rely on feedback mechanisms, where brain activity (or its processed version) serves

as input to the device, which in turn generates an output that becomes an input back to the

brain. This creates a continuous I/O loop that operates indefinitely.

A brain prosthesis implementing an architecture following a closed-loop policy has been pre-

sented for the first time by Kansas University Medical Center (Guggenmos et al. 2013). An-

other promising example is represented by the hippocampal memory prosthesis, in which the

neural activity of specific hippocampus areas suitably processed can be used to manipulate

and thus restore (through ad hoc electrical stimulation) cognitive mnemonic processes (Berger

et al. 2011).
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To reach a perfect interaction between the device and the brain, different aspects should be

taken into account: the device should be able to ”read” the neural code (decoding), and

subsequently ”write” on the brain (coding) the processed information. This of course takes

a lot of operations that should go almost real-time, to maintain physiological plausibility of

interaction. For this reasons, recently a novel kind of neuroprosthetics has been developed:

neuromorphic neuroprosthetics (Chiappalone, Cota, et al. 2022).

Neuromorphic neuroprosthetics and biohybrid systems

Neuromorphic hardware and computing are specialized fields that take inspiration from the

structure and function of the human brain to design hardware and algorithms capable of more

efficient, brain-like information processing. These systems often utilize spiking neural net-

works, which mimic the way neurons communicate and behave.

Due to their inherent brain-like architecture, neuromorphic systems are well-suited for inter-

facing with biological networks, enabling what are known as ”biohybrid experiments” (Chiap-

palone, Cota, et al. 2022; Beaubois et al. 2024).

Biohybrid systems rely on the functional interaction between biological networks, such as

neural systems, and artificial devices. A notable example is the ”BrainBow” project, which

developed a novel neuromorphic neuroprosthesis capable of artificially connecting two previ-

ously disconnected neuronal populations in vitro, enabling fully bi-directional communication

between them (Chiappalone, Cota, et al. 2022). Translating this knowledge to in vivo appli-

cations in animals is a critical step toward developing devices that seamlessly integrate with

biological systems to restore or enhance neural functions.

Real-Time Interaction of Artificial and Biological Neural Networks

This study aims to evaluate the effects of a novel ”neural-like” open-loop stimulation method

using a neuromorphic devices. Specifically, two FPGA-based Spiking Neural Networks (SNNs)

are used to stimulate anesthetized rats in vivo. The impact of the stimulation will be assessed

by measuring changes in electrophysiological parameters, with a comparison between two

SNNs. Additionally, an optimization algorithm will be developed to fine-tune the FPGA con-

figuration, ensuring the network closely resembles the biological counterpart being stimulated,

thereby achieving a stimulation that is as physiologically plausible as possible. These are
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preliminary experiments, primarily aimed at evaluating the driving capability of this type

of stimulation, with the potential to modulate neural activity, especially impacting on its

dynamic. The insights gained from this research could mark an important step toward the

development of an efficient neuromorphic neuroprosthesis. Such advancements have the poten-

tial to enhance our ability to interface with the nervous system, providing innovative solutions

for restoring lost functionality in patients with neurological impairments.
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Part I

Biohybrid experiments
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Chapter 1

BIOEMUS

To conduct bi-directional bio-hybrid experiments and develop bioelectrical applications for

healthcare, such as electroceuticals (Famm et al. 2013; Reardon 2014), aiming at substituting

an injured brain area, it is essential to have a real-time spiking neural network (SNN) to ensure

interaction at the biological time scale. Most used approaches for biomimetic SNN simulations

rely on software platforms like NEURON (Hines and Carnevale 2001) or NEST (Gewaltig and

Diesmann 2007). However, these tools often suffer from long computation times, especially

when simulating complex neuron models with synaptic plasticity. In contrast, hardware-

based SNNs are better equipped for real-time processing and offer the additional advantage

of enabling large-scale parallel simulations.

In neuromorphic engineering, we can have two different approaches to design an hardware-

based SNN: the biomimetic and the bioinspired.

The bioinspired method wants to replicate the computational power and lower consuption

of our brain, regardless of the biological mechanism that arises. In this context, simple and

abstract models of neurons are involved, such as the Leaky-Integrate and Fire model (Brunel

and van Rossum 2007). These models roughly replicate the shape of an action potential, in

favour of a faster simulation of the dynamic especially relying on a high number of neurons.

They are mainly employed in computations or Artificial Intelligence applications.

The biomimetic approach, in contrast, focuses primarily on the biophysical replication of elec-

trical dynamics within neurons, including the modeling of membrane channel behavior, such

as their opening and closing, which adds biological significance to its components. The most

biologically accurate single-compartment model to date is the Hodgkin-Huxley (HH) model
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(Hodgkin and Huxley 1952). It can simulate a wide range of neural dynamics by tweaking its

parameters or adding extra differential equations to the system. Using this model as a foun-

dational component of a neural network is an effective way to replicate electrophysiological

activity, making it a strong candidate for enabling biohybrid experiments.

Hardware-based SNN can be analog or digital. Implementing a digital SNN allows quicker

and more flexible design, being more suitable to prototyping (Beaubois et al. 2024). In the

following sections an overall presentation of the Bioemus FPGA-based SNN is provided.

1.1 Hodgkin-Huxley (HH) model

The Hodgkin-Huxley model, introduced by Alan Hodgkin and Andrew Huxley in 1952, is one

of the most influential mathematical models in neuroscience (Hodgkin and Huxley 1952). It

describes the electrical characteristics of excitable cells, such as neurons, and explains how

action potentials (nerve impulses) are initiated and propagated along the axon. The model

is based on a set of differential equations that describe how ion channels in the neuron’s

membrane control the flow of ions, leading to changes in membrane potential.

It is a conductance-based model of a neuron, which means it describes the neuron’s electrical

properties in terms of conductances and currents Figure 1.1. In this family of models, the lipid

bi-layer of the neuron’s membrane is modeled as a capacitor because it separates ion charges

across the membrane, storing electrical energy as potential difference between the inside and

outside of the neuron. The ion channels embedded in the membrane are represented by

conductances because they allow ions (such as sodium, potassium, and others) to pass through

the membrane, similar to electrical resistors that control current flow in a circuit.

The conductance of these ion channels changes dynamically in response to the membrane po-

tential, and this directly affects the flow of ions, driving the neuron’s activity. The original

HH model precisely described with differential equations the Na+ and K+ ions current, going

from the inside to the outside of the membrane and vice versa. They saw that the permeability

of the membrane to these ions was not fixed but variable basing on the voltage. As a con-

sequence, they modeled this dynamical permeability as gating particles, other variables that

describes the portions of opened or closed channels, governed by other differential equations.
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Figure 1.1: Hudgkin-Huxley equivalent circuit of the neuronal membrane

The model is represented as an RC circuit, where variable resistances correspond to the flow

(current) of potassium (K) and sodium (Na) ions through voltage-gated channels. The mem-

brane’s phospholipid bi-layer is modeled as a capacitor, reflecting its ability to store charge

across the membrane. A third resistance represents the leakage current, accounting for the

passive, non-voltage-dependent diffusion of ions across the membrane. Additionally, the cir-

cuit includes three voltage sources, which represent the Nernst potentials for potassium, sodium,

and the leakage, driven by the concentration gradients of these ions inside and outside the cell.
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The equation describing the membrane voltage dynamic in time is:

−Cm
dV

dt
= gNam

3h(V − ENa) + gKn
4(V − EK) + gleak(V − Eleak) (1.1)

where gNa, gK , gleak are the average conductances,m, n, h, are the gating particles of activation

and inactivation of the voltage-dependent channels, Cm is the membrane capacitance and ENa

EK and Eleak are the Nernst potentials for sodium, potassium, and leakage, respectively.

The gating variables m, n and h follow their own voltage- and time-dependent differential

equations, which describe how they evolve in response to changes in membrane potential:

dp(v, t)

dt
= αp[1− p(v, t)]− βp(v, t) for p = m,n, h. (1.2)

α and β are measured empirically as the open/close channels ratio, and are also voltage

dependent.

The three addends at the right of the equal are the ion currents, so the same equation can be

written as:

−Cm
dV

dt
= INa + IK + Ileak. (1.3)

Following a similar approach, several studies have extended the Hodgkin-Huxley model to

incorporate additional types of ion channels, such as persistent sodium channels, calcium

channels, and calcium-dependent potassium channels (Computational Modeling Methods for

Neuroscientists 2024; Huguenard and McCormick 1992). This is achieved by introducing

additional resistances in parallel, each corresponding to a different ion channel, and each

governed by its own set of gating variables. As a result, each modeled current for the j-th ion

becomes:

Ij = gjm
pjhqj(V − Ej), (1.4)

These currents are then summed to represent the total ionic current flowing through the

membrane. By including these additional channels, the model can capture more complex

neuronal behaviors, such as bursting, adaptation, and oscillations, thereby providing a more

detailed and biologically realistic representation of the neuron’s electrical activity.
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1.2 Bioemus: Adaptable integrated real-time biomimetic

SNN

Bioemus, standing for BIOmimetic EMUlation Single compartment, is an accessible low cost

platform for real-time emulation of biomimetic SNN (Beaubois et al. 2024). It engages de-

tailed biophysical models of neurons or synapses within a fully customizable network, and its

versatility stems from its use of a Field Programmable Gate Array (FPGA).

An FPGA in digital electronics is a programmable logic device, where the integrated circuit

can be reprogrammed multiple times after manufacturing. It consists of an array of pro-

grammable logic blocks connected by a grid that can be reconfigured to link different blocks

together, enabling various digital functions. These logic blocks are programmed using hard-

ware description languages like VHDL (Sulaiman et al. 2009). The low-cost platform used is

based on a System on Chip (SoC), which combines both Programmable Logic (PL, i.e., FPGA)

and processors in a Processing System (PS). This platform can support up to 1,024 fully con-

nected neurons, managing a total of 220 synapses. Neurons are connected using biomimetic

synapses to allow fast and slow synaptic excitation or inhibition. The PS part of the board

runs the canonical Ubuntu 22.04 operating system, enabling direct FPGA configuration from

the board itself thanks to the python interpreter installed. For remote control, the board offers

various connectivity options, including Ethernet, Wi-Fi, and expansion PMODs. This allows

users to connect and monitor the board from a host PC via serial or SSH protocols Figure 1.3.

A Python script generates JSON and text configuration files for the C++ applications. These

files can be created on an external PC and transferred to the board using protocols like SCP.

When interacting with a biological counterpart in biohybrid experiments, the user can simulate

the entire SNN in real time. This includes the option to receive or provide stimulation to/from

the board and selecting which specific neurons (between 1024) will deliver the stimulus train.

Several outputs are provided at the end of the simulation: the user can choose to save the

membrane potential waveform of a certain number (up to 8) of neurons or the entire raster-

plot of the whole network; both are saved in binary files by default.

The binary spike data file is structured as follows:

• Time Stamp: A 32-bit unsigned integer representing the time stamp in milliseconds.
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Figure 1.2: Kria K26 SOM from AMD Xilinx embedded on the development plat-

form Kria KV260 Robotics Starter Kit. From https: // www. amd. com/ en/ products/

system-on-modules/ kria/ k26/ kv260-vision-starter-kit. html
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Figure 1.3: (Beaubois et al. 2024) Architecture and System Integration of the plat-

form

A) Overview: The system configuration, generated by Python scripts running either on-board

or on a separate computer, is read by a C++ application on the Processing System (PS) to

configure the SNN in the Programmable Logic (PL) part. Emulator allows for predicting net-

work behavior. Sample membrane voltage and raster plots can be exported from the Bioemus

software.

B) System Communication: The system is controlled through the C++ application, either

remotely via SSH or directly from the on-board Ubuntu desktop. Spikes can be monitored con-

currently using Ethernet, Wi-Fi, and on-board file saving. Waveforms can be monitored using

Ethernet, visualized on an oscilloscope by probing the Digital-to-Analog Converter (DAC), and

saved on-board. Sample membrane voltage data can also be exported from Bioemus.
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• Neuron ID: A stream of 1024 (or whatever user-defined number) bits, where each bit

indicates if the corresponding neuron fired (1) or not (0).

This format ensures that file size is determined by simulation duration rather than the number

of spikes produced.

Additionally, a graphical user interface (GUI) has been developed to enable real-time mon-

itoring of simulation results, offering a clear and interactive way to observe spiking activity

as the simulation progresses. Opening this monitoring window gives the possibility to export

the recorded data, whether spike timings or voltage traces, as a .csv file. Finally, the system

offers the option to perform a purely software-based emulation of the network without using

the FPGA. This emulation calculates membrane potential using the forward Euler method,

resulting in significantly longer simulation times. Euler method is a numerical approach used

to solve ordinary differential equations: if the ODE is for example

dy

dx
= f(x, y) (1.5)

the Euler method approximates the solution at subsequent points using:

yn+1 = yn + h · f(xn, yn) (1.6)

where h is the step size (a small interval over which the function is approximated), f(xn, yn)

is the slope at the current point (xn, yn) and yn+1 is the next approximation of the solution.

1.3 Configurable Parameters

The neurons in the Spiking Neural Network (SNN) are modeled with high biological fidelity

using the Hodgkin-Huxley (HH) framework (Hodgkin and Huxley 1952) as implemented in

the Pospichil model (Pospischil et al. 2008), which includes six conductance-based currents.

Synaptic noise is simulated by an injected current following an Ornstein–Uhlenbeck process

(Uhlenbeck and Ornstein 1930), generating spontaneous activity through random action po-

tentials. The HH model parameters and those of the synaptic noise are adjustable through 25

parameters provided in the Python scripts. The scripts include four predefined neuron types:

Fast Spiking (FS), Regular Spiking (RS), Intrinsic Burst (IB), and Low Threshold Spiking

(LTS), with the option for users to define additional types. Ionic channel state equations are

pre-computed and stored using the Euler method (Equation 1.6), allowing modifications to
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channel dynamics without affecting system performance or restricting the use of mathematical

functions.

Neurons are interconnected using biomimetic synapses that emulate AMPA, NMDA, GABAa,

and GABAb receptors (Destexhe, Z. Mainen, and Sejnowski 1998), enabling both rapid and

slow forms of synaptic excitation or inhibition. The parameters for these synaptic models

can be adjusted in the same manner as the Hodgkin-Huxley parameters through the Python

scripts. Synaptic connections can be established among all neurons and weighted indepen-

dently, providing flexibility for users to design custom functions for setting up these connec-

tions.

To emulate the neural architecture of a rat brain, a specialized model was previously developed

(Beaubois et al. 2024). This model specifically incorporates only RS neurons, which function

as excitatory neurons, and FS neurons, which serve as inhibitory neurons. The RS neurons

are connected through AMPA and NMDA synapses, while the FS neurons utilize GABAa

synapses for inhibitory interactions.

The probability of connection between two neurons is determined by their spatial distance:

neurons are randomly positioned in space while maintaining a high degree of clustering. As

the distance between neurons increases, the probability of connection decreases, and this re-

lationship follows a nonlinear dependence:

P = Pmax(1−
dnpre−npost

dnet
) (1.7)

where P is the probability of connection between two neurons, Pmax is the maximum proba-

bility of connection between two neurons, dnpre−npost is the distance between the presynaptic

and postsynaptic neuron, dnet is the diameter of the neuronal network.

This design mimics a ”Small-World” network topology (Watts and Strogatz 1998), character-

ized by high density of connections within clusters of neurons and relatively few connections

between different clusters Figure 1.4. This approach effectively reproduces the spatial organi-

zation and connectivity patterns found in real neural systems (Bassett and Bullmore 2017).
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Figure 1.4: (Beaubois et al. 2024) Small-world topology of the rat-brain configuration

A) Position of each neuron. Red points are excitatory Regular Spiking neurons, blue points

are inhibitory Fast Spiking neurons.

B) Synapses between neurons. Red lines are gluatamatergic AMPA or NMDA synapses (not

distinguished), blue are GABAergic GABAa synapses.
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Chapter 2

Analysis of Biohybrid Experiments

The following biohybrid experiments aim to evaluate the effects of SNN-driven neurostimu-

lation, with the ultimate goal of utilizing this system as a neural prosthesis (Chiappalone,

Cota, et al. 2022). Previous studies have demonstrated promising outcomes with this type

of “neural-like” stimulation, leveraging various FPGA-based neuromorphic devices (Di Flo-

rio et al. 2023). However, no thorough assessment of the effects during the intra-stimulation

phases has been conducted, leaving a critical gap in understanding the real-time impacts of

the stimulation on neural activity. Consequently, these experiments aim to extend the anal-

ysis by evaluating the capacity of the stimulation to drive and modulate neural activity. To

achieve this, two different FPGA boards are employed. First, the experiments are performed

using the same board as in Di Florio et al. 2023, the Zybo Z7-20. The Zybo Z7-20 is a mid-

range evaluation board that contains the same FPGA as the Kria KV260, but in this case

its configurable network is composed by up to 100 neurons all independent and disconnected

(Khoyratee et al. 2019). Subsequently, a new set of experiments is conducted with the Kria

KV260 board, which implements Bioemus, allowing for a comparison between the two sys-

tems and providing insights into the performance and potential improvements of the newer

platform. The stimulation pattern follows the activity of one neuron chosen at random.

2.1 Animals and Dataset

All experiments were approved by the Italian Ministry of Health and Animal Care granted prior

authorization (Italy: authorization n. 509/2020-PR). In total, twenty-one adult male Long-

Evans rats (weight: 350–400 g, age: 4–5 months; Charles River Laboratories, Wilmington, MA,
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USA) are used in this study. Stimulation experiments were performed on healthy anesthetized

preparations following the protocol described in Section 2.3

Rats are divided in three groups:

1. SHAM: animals that do not receive any stimulation. (7 animals)

2. Z-SNN: animals stimulated with the Zybo Z7-20 board, which is referred to simply as

the Z group. (7 animals)

3. K-SNN: animals stimulated with the Kria KV260 board, which is referred to simply as

the K group. (7 animals)

2.2 Surgical Procedure

Anesthesia is induced by placing the rat in a vaporizing chamber and administering gaseous

isoflurane (5% at 1 lpm). To achieve a surgical level of anesthesia, ketamine (80-100 mg/kg IM)

and xylazine (5-10 mg/kg IM) are injected. The rat is then secured in a stereotaxic frame, and

vital parameters are continuously monitored throughout the procedure. The surgical process

begins with the application of lidocaine cream, a topical analgesic, followed by a midline skin

incision to expose the skull. A laminectomy is performed at the Cisterna Magna to allow for

the drainage of cerebrospinal fluid (CSF). Based on stereotaxic measurements (Kleim et al.

2003) +3.5, +2.5 AP, and –1.25, +4.25 ML, burr holes (3 mm in diameter) are carefully drilled

over the primary somatosensory area (S1) and rostral forelimb area (RFA). The dura mater is

then removed from both burr holes to facilitate the insertion of microelectrode arrays (MEAs;

A4x4-5 mm-100-125-703-A16, NeuroNexus).

2.3 Experimental Protocol and recordings

Wide-band signals are recorded from the RFA and S1 using 16-channel MEAs (A4x4-5 mm-

100-125-703-A16, NeuroNexus), which are connected to Intan RHS headstages (RHS 16-

Channel Stim/Recording Headstages, Intan Techonologies). Communication with the head-

stages happens over the SPI protocol, interfacing with the Intan RHS controller, an FPGA-

based electrophysiology data acquisition system (Figure 2.1).

Concerning the stimulation site, an impedance analysis was performed and a single channel
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from S1 is selected according to the lowest value (∼ 200 − 300kΩ). Each time a spike is

generated from the chosen SNN channel, a pulse is sent to the digital input of the Intan RHS

to trigger the stimulation (Figure 2.2). The stimulation pulse is always designed to be a sin-

gle squared 60 µA biphasic, cathodal-leading pulse (200 µs positive, 200 µs negative). The

experimental protocol consisted of 20 minutes of pre-stimulation (PreS) recording, 6 minutes

of connectivity mapping (CM1), 60 minutes of stimulation via SNN-generated activity (apart

for SHAM), 20 minutes of post-stimulation (PoS) recording and 6 minutes of final connec-

tivity mapping (CM2). Connectivity mapping is an excitability test, to see how the neurons

react in response to a single stimulus. To do so, two different channels have been chosen to

investigate whether the effects of stimulation could be location-dependent. During these 6

minutes, a stimulus was delivered every 5 seconds (corresponding to a frequency of 0.2Hz).

Extracellular signals have been continuously sampled at a rate of 25 kHz and 16 bits of depth. .

Figure 2.1: Protocol of the experiment. A: identification of the areas of interest by means

of a stereotaxic frame. B: placement of the electrode arrays in the rostral forelimb area (RFA)

and in the primary somatosensory area (S1). C: timeline of experiments includes 20 minutes

of pre-stimulation (PreS) recording, 6 minutes of connectivity mapping, 60 minutes of SNN-

based stimulation, 20 minutes of post-stimulation (PoS) recording and 6 minutes of connectivity

mapping.
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Figure 2.2: Schematization of the experimental setup for stimulation. Starting from the

spontaneous activity generated by a neuron of the SNN, a spike train is generated. Each time

a spike occurs, a 3.3V pulse is sent to the digital input port of the Intan RHS system. This

pulse triggers the stimulation process. A command is sent to the headstage from the Intan

RHS, which generates a biphasic stimulation pulse for the electrode placed in S1.

2.4 Data and Statistical Analysis

All the analyses on the in-vivo recordings, up to their spike detection, were performed in

MATLAB (The MathWorks, Natick, MA, USA). The electrophysiological data underwent

pre-processing through a custom MATLAB pipeline in the online software NigeLab (https:

//github.com/barbaLab/nigeLab). Briefly, data were formatted into a MATLAB-readable

structure and organized on a per-channel basis. Subsequently, a 4th order elliptic bandpass fil-

ter (300-3000 Hz) was applied to eliminate low-frequency components in the signal, and all the

data were re-referenced with respect to the overall mean value, to avoid common-mode noise.

During this phase, a novel artifact rejection algorithm was applied to mitigate stimulation-

induced artifacts (Negri 2023).

Following artifact suppression, a modified version of energy-based spike detection algorithm

known as Stationary Wavelet Transform Teager Energy Operator (SWTTEO) was employed

to identify spikes from the filtered data. The SWTTEO involved two levels of Stationary

Wavelet Transform (SWT) followed by the use of the Teager Energy Operator (TEO). The
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TEO outputs were smoothed, summed, and their combination was thresholded (Lieb, Stark,

and Thielemann 2017).

The need for a modified version of SWTTEO arises from the characteristic ON-OFF dynamics

of neural recordings from anesthetized rats. ON-OFF dynamic is a recurrent pattern found in

intracortical recordings during deep sleep, anesthesia, coma, and other neurological conditions.

They are mainly related with the raising of slow-waves oscillations (high-amplitude oscillations

in the delta (0.5–4 Hz) band) which are the main biomarker to distinguish between an awake

or a sleepy brain. This dynamics presents a period of profound membrane hyperpolarization

and silence in cortical neurons, lasting for a few hundred milliseconds, where almost no spikes

are detected, whereas during ON phase the neurons fires coherently. .(Massimini et al. 2024).

The standard SWTTEO relies on a global threshold based on the 99th percentile of the trans-

formed signal, causing it to miss spikes during the OFF phases (Figure 2.3). To address this

limitation, an adaptive version of the algorithm was developed, which calculates thresholds

locally within a moving window based on the signal’s activity. This adaptive approach signif-

icantly improves spike detection accuracy, albeit with a slight increase in computational cost

(see Appendix 1 for details).

The analysis was conducted using a multi-unit approach, without the application of any spike-

sorting algorithms.

Figure 2.3: Comparison of spike detection using SWTTEO with global (A) or local (B)

threshold. The adaptive version is able to capture spikes in the OFF phase of the neural signal
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2.4.1 Metrics

To evaluate the effects induced by the stimulation, several metrics are analyzed:

1. Mean Firing Rate (MFR): This metric represents the frequency of neural firing, calcu-

lated as the total number of spikes divided by the recording duration, for each channel

(expressed as spikes/sec).

2. Local Variation compensate for Refractoriness (LvR): This metric, introduced by (Shi-

nomoto et al. 2009), is a measure used to quantify the variability in interspike intervals

(ISIs) on a local timescale. It is calculated by comparing consecutive ISIs to assess how

consistent the timing of spikes is within a spike train. It is mathematically computed

as:

LvR =
3

n− 1

n−1∑
i=1

(
− 4IiIi+1

(Ii + Ii+1)2

)(
1 +

4R

Ii + Ii+1

)
(2.1)

A lower LvR (closer to 0.5) indicates more regular, periodic spiking activity, whereas

higher values (about 1.5) suggest more compact, bursty spike timing. Values around 1

indicates an irregular, random spiking patterns (Figure 2.4).

Figure 2.4: (Example spike sequences of representative neurons with LvR of 0.5 (Regular),

1 (Random), and 1.5 (Bursty). Taken from (Averna, Pasquale, et al. 2020).

3. Post-Stimulus Time Histogram (PSTH): This metric measures the average evoked re-

sponse to stimuli evaluated in a fixed binned time window (in this case 0.3 seconds

binned at 1 ms) (Chiappalone, Vato, et al. 2007; Rieke 1999). Specifically, a time win-

dow, divided into predetermined bins, is captured after each stimulus and the number

of spikes within each bin is counted. These individual windows are then averaged across

all stimuli. This method is commonly used quantify the effectiveness of a stimulation

pattern, particularly during the connectivity mapping phase.
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4. Input-Output (I/O) Correlation: Since ”neural-like” stimulation involves a variable

inter-stimulus interval, the standard PSTH approach becomes impractical during the

stimulation-phase due to variable inter-stimulus interval. Instead, the cross-correlation

between the stimulus and the evoked activity in each channel is used to quantify neural

responses (Averna, Hayley, et al. 2021). This was calculated using a window of 50ms

binned at 1ms (see Appendix 2 for details), on the assumption that this should be a

sufficient window to capture evoked monosynaptic spiking responses.

2.4.2 Statistics

The statistical analysis is conducted using MATLAB as well, with differences deemed statis-

tically significant at p < 0.05. Dataset is split in two intersecting groups and two different

statistical model are fitted:

1. Two-Way Repeated Measures ANOVA: This model assesses differences between the two

types of stimulation (Z and K), independent of the SHAM group, following a visual

inspection of the normality of residuals via QQ plots. The two factors considered are

the areas (S1 and RFA) and the types of stimulation (Z and K).

2. Friedman Test: This model evaluates the differences between the SHAM and stimulated

groups. The Friedman test is employed due to the inability to model the data with linear

models and normal residuals. It serves as the non-parametric equivalent of the one-way

repeated measures ANOVA. In this analysis, the single factor is the group (SHAM, Z,

K), with only S1 recordings included since the SHAM group lacks recordings from RFA.

On both tests results, a post hoc multiple comparison using Tukey’s honestly significant dif-

ference (HSD) test is performed. The box plots representation indicates the 25–75 percentile

(box), the Q1− 1.5× IQR to Q3 + 1.5× IQR (whiskers), and the median (line) values. The

notch represents the confidence interval at α = 0.05.
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2.5 Results

2.5.1 Differences in types of stimulation

The stimulation provided by the two boards differs significantly. The newer board, the Kria

KV260, allows for the selection of the stimulating neuron, introducing a complex decision-

making process. The neurons on this board are modeled using two distinct computational

models and are interconnected via three types of synapses, leading to considerable variations

in both the frequency and occurrence of spikes. In contrast, the Zybo Z7-20 board features

only fast-spiking or regular-spiking neurons, which are not connected. Consequently, the ac-

tivity is uniform across all neurons on this board.

In these experiments, the choice of the stimulating neuron on both boards is made without a

strict selection criterion. The only consideration, particularly for the Kria KV260, is ensuring

the neuron’s firing rate is not excessively high for stimulation purposes. This results in very

different neural dynamics between the two systems. An analysis of the Mean Firing Rate

(MFR), Local Variation of Refractoriness (LvR), and Inter-Spike Interval (ISI) of the stimu-

lating neurons, averaged across all stimulated rats for both the Kria and Zybo boards, reveals

several differences. The Zybo Z7-20 board produces a fourfold higher MFR (4.348±0.011 Hz)

compared to the Kria KV260 (1.213± 0.085 Hz). Additionally, the LvR is lower on the Zybo

Z7-20 (0.919±0.006) than on the Kria KV260 (1.165±0.123), indicating that while the Z7-20

board generates more stimuli, the stimulation pattern is more random. In contrast, the Kria

KV260 shows more burst-like behavior.

These results are further confirmed by the ISI histogram, which displays two distinct patterns:

the Zybo neuron exhibits a much more spread-out histogram, whereas the Kria shows a peak

within the first 20 ms, indicating that the majority of spikes occur approximately 15 ms apart

(Figure 2.5).

2.5.2 Different trends in firing rate

When evaluating the differences in MFR before and after stimulation, alongside those from

the non-stimulated SHAM animals, three distinct trends emerge across the groups: the SHAM

group exhibits a spontaneous increase in firing rate over time, the Z group maintains a steady

firing rate, and stimulation from the Kria board appears to decrease the firing rate (Figure 2.6).
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Figure 2.5: Inter-Stimulus Interval (ISI) histogram for the two boards, Kria (green) and Zybo

(red), covering intervals of 1 and 0.2 seconds binned at 5 ms. The solid line represents the

mean, while the shaded area indicates the standard deviation. The histogram is constructed by

calculating the time intervals between consecutive spikes and counting how often these intervals

fall into each bin. The result is then normalized by the total number of spikes. The Kria KV260

(green) shows a more burst-like firing pattern, as evidenced by the distinct peak in the zoomed-

in window. Additionally, the Kria board exhibits a larger standard deviation compared to the

Zybo, suggesting greater variability in the neural-like stimulation across different experiments.
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Figure 2.6: MFR variation of three groups: each box represents the concatenated vec-

tor of channel-wise variation in each channel of each animal computed as log(MFRpost) −

log(MFRpre). We rejected the null hypothesis of equal median across groups using Friedman’s

test (p = 0.0203, χ = 7.7965). In S1, the SHAM group (blue) has a clearly different trend

compared to the others. This differences are not confirmed by the post hoc Tukey’s HSD test.

No statistically significant differences are found in RFA

Friedman’s test indicated a significant difference among the groups, rejecting the null hypoth-

esis that all groups have the same mean (p = 0.0203, F=0.0042). However, post hoc pairwise

comparisons using Tukey’s HSD test did not reveal any significant differences between the

groups. Two-ways repeated measures ANOVA does not reveal any statistical differences be-

tween the two kinds of stimulation (p=0.949, F=0.0042).

2.5.3 Stimulation changes the variability in firing pattern

Assessing the variations in the LvR, both types of stimulation resulted in an increase in this

metric compared to the SHAM group, where LvR remained relatively stable. An increase

in LvR indicates a shift toward a more ”bursty” activity pattern. The differences between

the groups were confirmed by the Friedman test (p = 1.6463 × 10−9, χ = 40.4494), though

post hoc pairwise comparisons using Tukey’s HSD test failed to detect significant differences
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between the groups (Figure 2.7). Two-ways repeated measures ANOVA does not reveal any

statistical differences between the two kinds of stimulation (p=0.417, F = 0.6801).

2.5.4 Excitability of the tissue decreases after stimulation

Trying to quantify the excitability of the tissue pre- and post- stimulation, the area of the

normalized PSTH in a window of 0.3 seconds binned at 0.001 seconds after the stimulus is

calculated channel by channel. This estimate is done only in the connectivity mapping phase,

since there the inter-stimulus interval is constant. In general, PSTH seems to spontaneously

decrease across the recording in S1, but the stimulation induces major decreasing that the

spontaneous one. Also here, these differences were statistically confirmed by the Friedman’s

test (p = 3.5027 × 10−7, χ = 29.7292) but no positive results are provided by the post hoc

Tukey’s HSD test. In RFA no noticeable differences can be observed. Two-ways repeated mea-

sures ANOVA does not reveal any statistical differences between the two kinds of stimulation

(p=0.495, F = 0.4279).

2.5.5 Stronger engagement of the network using Zybo Z7-20 board

In contrast with the expected results, the Zybo Z7-20 provides an higher I/O correlation with

respect to the Kria KV260 board (two-ways repeated measures ANOVA, p = 4.601×10−14, F =

33.1015). We tested the null hypothesis that the two boards invoke the same network response,

in terms of correlated firing of the network (considered here as the “Output”) with the stimulus

time-series (considered here as the “Input”). Figure 2.9a reveals a distinct difference between

evoked responses in both S1 and RFA, with the Z group showing a notably stronger network

engagement. This suggests that the Zybo board has a greater capacity to activate the network.

This finding can be attributed to the fundamentally different stimulus trains: as mentioned

earlier, the Z group received four times as many stimuli as the K group. Moreover, the

temporal dynamics of these stimuli differ significantly, with the K group experiencing a more

compressed stimulus pattern compared to the Z group.

The statistical analysis shows no significant interaction between area and group (p = 0.2724,

F = 3.311), indicating that the stimulation effect occurs in both areas without distinguishing

between the two boards. Notably, the induced activity in RFA is much lower than in S1.

In conclusion, contrary to expectations, the Kria board did not effectively engage the network
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Figure 2.7: LvR variations (top) and pre- vs. post- distributions (bottom) of the LvR. LvR

changes significantly among groups, (Friedman’s test, p = 1.6463 × 10−9, χ = 40.4494), but

post hoc evaluation failed in detecting the group-wise statistics. After stimulation, it seems

to increase in S1 (compared to SHAM), pushing the network toward a more ”bursty” spiking

activity (closer to 1.5) and decrease in RFA, indicating a more random activity (closer to 1).
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Figure 2.8: A) Example traces of the mean PSTH across channels in S1 taken from one

random animal per group, during the post stimulation connectivity mapping phase.

B) Variation of the PSTH area across groups, each box represents the normalized value taken

channel by channel concatenating each animal belonging to this group. PSTH area changes

significantly among groups, as the Friedman’s test rejected the null hypothesis that all data

have equal median (p = 3.5027× 10−7, χ = 29.7292). Again, post hoc testing failed in finding

statistically significant variations pairwise. Looking at the boxes, stimulation seems to induce

slightly bigger decreasing in the PSTH area, indicating a decreasing in the excitability of the

tissue.
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Figure 2.9: Input/Output correlation between the stimuli and the recorded activity.

A) Area of the I/O correlation taken during the 40 to 50-minute stimulation period. Two-ways

repeated measures ANOVA reveals a significant difference between the two kinds of stimulation

(** means p¡0.001, p = 4.601×10−14, F = 33.1015). In conclusion, the Zybo board is noticeably

better in the engagement of the network.

B) Example I/O correlation vectors in both S1 and RFA for the Z group (red) and the K

group (green). The solid lines represent the mean, while the shaded areas indicate the 95%

confidence intervals around the mean, calculated across all channels from a randomly selected

animal, during the 40 to 50- minutes of stimulation. Clearly the evoked response is bigger in

the rats stimulated with the Zybo Z7-20 board. Axes here are voluntarily different to appreciate

the different amplitudes of correlation peaks in the two areas: S1 (the stimulated area) has a

high correlation with the stimulus while in RFA this correlation is almost absent.
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to the same extent as the Zybo board. However, the findings confirm that different types of

stimulation can have varying impacts on the network’s evoked activity. This suggests that

improving the compatibility between the board and the biological network being stimulated

could enhance communication between the two. To achieve this, fine-tuning the interaction

is necessary, which could likely be accomplished through automatic optimization. In the

following section, the design of an Indicator-Based multi-objective Evolutionary Algorithm is

introduced, along with its results in mimicking the network.
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Part II

Optimization
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Chapter 3

Multi-Objective Optimization using

Indicator-Based Evolutionary

Algorithm

One of the main challenges in computational neuroscience is to tune the parameters of a model

it is able to reproduce some specific patterns of activity derived from experimental data.

The milestone of this process is the hand tuning: neuroscientists experiment with different

sets of parameters, randomly navigating the parameter space, relying mainly on their prior

knowledge to approximate the target activity.

However, as the network intricacy and the complexity of the neuronal model increase, the

parameter space becomes increasingly high-dimensional, making hand tuning progressively

more challenging. For this reason, automated tuning of neuronal model parameters is an

active topic of research and different algorithms have been published (Van Geit, De Schutter,

and Achard 2008).

The construction of a tuning algorithm for neural models can be divided into two stages: the

first involves the choice of an error function (also called fitness function or cost function) that

quantifies how well the model output matches the experimental data, the second is to pick an

optimization algorithm to find minima of the error function. These two decisions are often

independent, as most optimization algorithms can be paired with any error function and vice

versa.

Recent studies have demonstrated the effectiveness of evolutionary algorithms in solving this
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kind of problems (Druckmann et al. 2007; Masoli et al. 2017).

3.1 Introduction to Evolutionary Algorithms

Evolutionary algorithms (EA) are stochastic algorithms that are based on on the concepts of

natural selection and survival of the fittest (Eiben and Smith 2015). Drawing from Darwin’s

concept of ”natural selection”, these algorithms treat combination of parameters as individuals,

each with a specific fitness (or error value, representing how closely the individual approaches

the optimal solution) that influences its likelihood of survival and reproduction.

All evolutionary algorithms follow a similar structure. Initially, a random population of indi-

viduals is generated. The fitness of each individual is then assessed. Based on their fitness,

certain individuals are chosen as parents, which will reproduce and undergo mutations. Re-

production involves combining the parameters of multiple parents, while mutation refers to

a random alteration in the parameters of a single individual. The new individuals created

through reproduction and mutation are evaluated and compared to the original population. A

selection of the fittest individuals is then made to give rise to a new population. This process

is repeated until a specified stopping condition is satisfied (Figure 3.1).

In the many variations of these algorithms, we can distinguish two main branches: genetic

algorithms and evolution strategies.

Genetic algorithms (Holland 1992) are the most popular type of EA. They are termed ”ge-

netic” because each individual here is represented by a single finite binary string and the

recombination step takes place by combining the bit strings of parents, while the mutation

happens by flipping one or more bits, mimicking what happens to genetic materials during

meiosis. For example, if the parameters of one individual are vectors of integers, each indi-

vidual can be represented as a concatenated string of bit.

This encoding step makes genetic algorithms particularly well-suited for handling integers,

while their application becomes more complex when dealing with floating-point numbers, as

their binary representation and performing operations like recombination can be less straight-

forward.

Evolution strategies (Rechenberg 1989), on the other hand, work with real numbers, making

the steps of the algorithm more natural than flipping bits. From an algorithmic point of view,
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evolution strategies are optimization methods that sample new candidate solutions stochas-

tically, most commonly from a multivariate normal distribution, as described in Section 3.2

(Hansen, Arnold, and Auger 2015).

For this reason, they are more appropriate for neuroscience applications, since the neuronal

model parameters are usually floating-point numbers.

Figure 3.1: General structure of an Evolutionary Algorithm

3.2 Recombination and Mutation

Recombination and mutation are the key processes in an EA. They serve as the primary

mechanisms by which the algorithm navigates the solution space, making the choice of how

to proceed in these steps crucial.

3.2.1 Mutation

Regarding mutation, the simplest approach is the ”Isotropic Mutation” where a point-symmetric

perturbation is introduced to the individual xi by adding a vector ri drawn from a Gaussian

distribution. As a result, the new individual is: xi + N (0, σ). The standard deviation σ is

one of the hyperparameters of the algorithm, since it represents the mutation rate: a higher

σ encourages broader exploration of the solution space, though it risks deviating too far from
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the optimum.

Various mutation strategies have been developed, including those with adaptive mutation rate,

which starts high and decreases towards the end of the optimization process (Hansen, Arnold,

and Auger 2015), such as the Non-Local Derandomized Step-Size Control (CSA).

In CSA, the authors successfully implemented a method that takes into account the global

evolution of the search through the vector parameter sσ, referred to as search path, to op-

timize the convergence of the algorithm (Ostermeier, Gawelczyk, and Hansen 1994). This

parameter memorizes the previous mutations, changing the mutation rate σ (that is in gen-

eral n-dimensional) basing on the sum of consecutive successfully mutation steps, which are

the z = N (0, I) summed to the old individual x2 = x1 + zσ. As a result the algorithm adapts

the mutation rate σ after the selection steps, to drive the search optimally toward the objective

(Hansen, Arnold, and Auger 2015). See Appendix 3 for details.

3.2.2 Recombination

Recombination, also called cross-over, is the process that combines information from two

parents to generate new offspring. In the context of evolution strategies, where the search

deals with real numbers, designing an algorithm able to obtain an individual from with values

slightly different from one of the parents is not straightforward. In most cases, a probability

distribution centering the parent solutions is assumed and two children solutions are created

based on that probability distribution.

One method that has gained significant recognition is the ”Simulated binary cross-over” (SBX)

(Deb 1995). To understand SBX, it’s essential to first introduce the single-point binary

crossover, a technique from Genetic Algorithms that leverages binary string encoding in indi-

viduals. In this method, each parent string is split at a designated point, and the segments

are swapped to generate offspring.
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Figure 3.2: Single-point cross-over on two random strings. DV is the Decoded Value. The

average DV is the same for parents and children.

The SBX operator has been developed based on the above method, trying to replicate it in

terms of search power, measure of how flexible the operator is in creating an arbitrary point

in the search space. In order to implement this crossover operator with those characteristics,

for any two parent solutions p1 and p2 a non-dimensionalized spread factor β has been defined

as the ratio of the spread of created children solutions c1 and c2 to that of the parent solutions

as follows:

β =

∣∣∣∣ c1 − c2
p1 − p2

∣∣∣∣ (3.1)

Basing on this value we can classify the cross-over operator in three different classes:

1. If β < 1 it is a contracting cross-over: the children points are enclosed by the parents

points.

2. If β > 1 it is an expanding cross-over: the children points enclose the parent points.

3. If β = 1 it is a stationary cross-over: the children are as distant as the parents.

It has been observed that in the binary single-point crossover operator, both children solutions

lie either inside (contracting crossover) or outside (expanding crossover) the region bounded by

the parent solutions (Deb 1995). Thus, on an average, the overall probabilities of contracting

and expanding crossovers are the same. Again referring to single-point cross-over, it has also

been possible to calculate the probability of creating a pair of children solutions having a

certain β (Deb 1995). That probability distribution has been approximated by a polynomial
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probability distribution:

P (β) =


0.5(n+ 1)βn if β ≤ 1;

0.5(n+ 1) 1
βn+2 otherwise.

(3.2)

The advantage of using a probability distribution as a function of β is that the created children

solutions are relative to the parent solutions. If the parent solutions are distant, children

solutions far away from the parent solutions can be created. On the other hand , if the parent

solutions are close to each other, the children solutions, in general, cannot be far away from

the parent solutions. The n variable is the one that controls this property: the higher n the

higher the probability of children close to the parents.

More specifically, in order to create two children solutions c1 and c2 from the parent solutions

p1 and p2 using the above probability distribution, the following procedure is used.

• Create a random number u between 0 and 1

• Find a β′ for which the cumulative probability∫ β′

0

P (β) dβ = u (3.3)

• Knowing the value of β, the children points are calculated as

c1 = 0.5[(p1 + p2)− β′|p2 − p1|]

c2 = 0.5[(p1 + p2) + β′|p2 − p1|]
(3.4)

This algorithm can be also adapted to generate offspring within predefined bounds, if those

bounds are known in advance, by restricting the distribution of the spread factor β to a specific

range (Deb and Kumar 1995). Due to its flexibility and control, this operator has been selected

for use in this thesis.

3.3 Multi-Objective Optimization (MOO)

Considering the problem of finding a neuronal network model able to reproduce experimental

neural activity, a multi-objective approach can be adopted, as it has been successfully applied

in recent years with remarkable results (Druckmann et al. 2007; Masoli et al. 2017).

37



An optimization problem is defined as a Multi-Objective Optimization problem (MOO) if more

than one error function is used and one considers them in parallel, not by simply summing

them. In this way several criteria can be optimized almost separately, avoiding the conflicts

between them.

For example comparing the Mean Firing Rate and the Inter-Spike Interval distribution of two

networks can be not straightforward because it’s not guaranteed that every Mean Firing Rate

can be associated with every Inter-Spike Interval, leading to potential incompatibilities. How-

ever, considering each objective’s distance separately enables the search for a more balanced

and optimal final solution.

The main difference between single objective optimization and the MOO is in the possible

relations between two solutions. In a single objective problem, a solution can be either better

or worse than another, depending on whether its error value is lower or higher. This is not

the case in multiple objective problems. The relation of better or worse is replaced by that of

domination.

Considering M objective functions, one solution x1 is said to dominate the another x2 if:

fj(x1) ≤ fj(x2) for all j = 1 . . .M (3.5)

fk(x1) ≤ fk(x2) for at least one k ∈ {1 . . .M} (3.6)

In other words a solution dominates on another if it has at least one better objective than

the other solution, and it does not worse than the other for all the remaining objectives.

If solutions do not dominate each other, it means that they represent different trade-offs in

approximating the final goal. A MOO does not yield a single optimal solution but rather a

set of optimal solutions that are not dominated by any other. This set is known as the Pareto

front. The user has the final word to select one or several of them as the best fit for his specific

issue.

3.4 Indicator-Based Evolutionary Algorithm (IBEA)

Starting from ’90, the challenge of designing a successful Multi-Objective Evolutionary al-

gorithm was by far a prominent research topic (Falcón-Cardona and Coello 2020). Several

algorithms were developed, each with its advantages and disadvantages (Deb 2001).
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One solution that received a remarkable attention is the one proposed by Zitzler and Künzli

2004 at the ETH of Zurich: an Indicator-Based Evolutionary Algorithm (IBEA).

In EA, ranking the entire population is necessary for selecting survivors. However, in a MOO

scenario, as previously introduced, this is not possible. To address this, a metric is needed to

evaluate the quality of each solution. This is where the concept of an Indicator (I) comes into

play—a function that maps a Multi-Objective solution to a real number, allowing solutions

to be ranked. Zitzler et al. introduced two types of Binary Indicator (binary means that it

compares two solutions). The simplest one is the binary additive ϵ-indicator:

Iϵ+(x
1, x2) = minϵ{fi(x1)− ϵ ≤ fi(x

2) for i ∈ {1, ..., n}}, (3.7)

with fi the i-th objective function to be minimized. It finds the minimum value ϵ for which

the individual x1 dominates individual x2 as the maximum distance between the objectives

of the two solutions. As a consequence, the smaller is ϵ the more x1 is close to the optimum.

Indeed, this value is positive if x1 does not dominate on x2 and negative in the other case.

This indicator is not commutative so:

Iϵ+(x
1, x2) ̸= Iϵ+(x

2, x1) (3.8)

To rank the solutions preserving the ones with the highest fitness value compared to the whole

population, this fitness operator is introduced:

F (x1) =
∑

x2∈P/x1

−e−Iϵ+ (x2,x1)/κ, (3.9)

which sums all the exponentially mapped indicators of the whole population with respect

to the single individual. Being negated, the individual with the highest F goes first in the

ranking. The κ is a scaling factor, that is very sensitive to the scale of the problem. For

this reasons each objectives and the successive indicators are scaled over their maximum and

minimum values. In this case, κ = 0.05 was assessed to be the best value.

The complete algorithm, as proposed in Zitzler and Künzli 2004, can be described as follows:
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Input:

α (population size)

N (maximum number of generations)

κ (fitness scaling factor) = 0.05

Output:

A (Pareto set approximation)

Step 1: Initialization:

Generate an initial population P of size α;

Set the generation counter m to 0;

Step 2: Fitness assignment:

First scale objective and indicator values, and then use scaled values to

assign fitness values:

1. Compute objectives fi(x) for all x ∈ P for i = 1 . . .M

(M=number of objectives)

2. Determine for each objective fi its lower bound bi = minx∈P fi(x)

and its upper bound bi = maxx∈P fi(x).

3. Scale each objective to the interval [0, 1], i.e., fi(x) = (fi(x)−

bi)/(bi − bi)).

4. Calculate indicator values I(x1, x2) using the scaled objec-

tive values f ′
i instead of the original fi, and determine the

maximum absolute indicator value c = maxx1,x2∈P |I(x1, x2)|.

5. For all x1 ∈ P set F (x1) =
∑

x2∈P/x1

−e−I(x2,x1)/κ.

Step 3: Environmental selection:

Iterate the following three steps until the size of population P does not

exceed α:

1. Choose an individual x∗ ∈ P with the smallest fitness value,

i.e., F (x∗) ≤ F (x) for all x ∈ P .
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2. Remove x∗ from the population.

3. Update the fitness values of the remaining individuals, i.e.,

F (x) = F (x) + e−I(x∗,x)/(c·κ) for all x ∈ P .

Step 4: Termination:

If m ≥ N or another stopping criterion is satisfied then set A to the set

of decision vectors represented by the non-dominated individuals in P .

Stop.

Step 5: Mating selection:

Perform binary tournament selection with replacement on P in order to

fill the temporary mating pool P.

Step 6: Variation:

Apply recombination and mutation operators to the mating pool P and

add the resulting offspring to P . Increment the generation counter (m =

m+ 1) and go to Step 2.

In summary: the algorithm firstly generates a random population α, each individual objective

function is computed separately and, based on that, the indicator based fitness value is de-

termined; the individuals are chosen randomly in couples and the one with the highest fitness

is added to the mating pool; inside this pool the individuals are again matched and the re-

combination/mutation steps take place, generating the offspring; finally the whole population

is ranked and only the α best individuals are kept; this steps are repeated until a criteria is

satisfied. The running-time complexity is O(α2) (Zitzler and Künzli 2004).

3.5 Objective Functions: Median Distance and Kullback-

Leibler Divergency

Last but not least critical step is choosing the method to determine the distances from the

objective. Various objective functions can be employed, ranging from simple linear Euclidean

distances to more complex non-linear functions. In the context of comparing two populations

41



of neurons - one artificial and one biological - it’s important to use metrics that specifically

compare the distributions of values (or their statistical parameters) between the populations.

In this case, two different strategies were adopted:

1. Distance between the median values of the distributions.

2. Kullback-Leibler Divergency between the distributions.

Commonly used in information theory, the Kullback-Leibler Divergency (Kullback and Leibler

1951) is an asymmetric measurement that quantifies the distance between two probability

distributions. The DKL of Q from P (written as DKL(P∥Q) is formally defined as:

DKL(P∥Q) =
∑
i

P (i) log2

(
P (i)

Q(i)

)
. (3.10)

Using these two metrics as objective functions enables to differently compare individuals and

objective: since, in this case study, the final goal is to match the activity of two neural

networks, the median allows to quantify a single statistical summary that captures the overall

behavior of the entire network, whereas the DKL offers a more precise assessment, relying on

the single neuron contribution.

3.6 IBEAforBioemus - Optimization Setup

This section will present the implemented version of the algorithm applied on the FPGA-based

Spiking Neural Network Bioemus.

As said in Chapter 1, Bioemus is implemented directly on the low-cost platform AMD Xilinx

Kria KV260 carrier board, which features both a Programmable Logic part (the FPGA) and

a Processing System part running a Canonical Ubuntu operating system. The algorithm is

designed to execute directly on this Processing System. This approach offers performance

comparable to using an external Windows client PC that communicates with the board to

transfer configuration files. While the Windows PC can generate these files more quickly, the

process is slowed by the file transfer between the PC and the Ubuntu system on the board,

creating a bottleneck.

Summarizing previous information, this algorithm is an Indicator-Based Evolutionary Algo-

rithm, derived formally from Zitzler and Künzli 2004 (Section 4.1 IBEAϵ+); two version are

devised: one that computes objectives as distances between medians and the other using
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Kullback-Leibler Divergency.

Procedure is the same as described in Section 3.4, using Simulated Binary Cross-Over and

Isotropic Mutation as recombination and mutation strategies, respectively with probability of

1 and 0.2, to promote exploration of the search space Section 3.2.

Each time an individual is generated (in the initial population or as a generated child), several

steps are involved to compute the objectives:

1. Each individual has a unique set of parameter that changes the software and hardware

configuration files for the FPGA.

2. Simulate each individual (configuration) for a specified duration.

3. Analyze the resulting SNN activity to extract various electrophysiological biomarkers.

4. Calculate the distances between each biomarker and the corresponding goal (the biomark-

ers of the BNN) individually and use these as objectives.

These objectives are then used as inputs to determine the fitness of each individual, enabling

the population to be ranked accordingly. The general schema can be seen as followed:
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Figure 3.3: General structure of IBEA for Bioemus. The algorithm generates an initial ran-

dom population, where each individual is a different configuration of the SNN. The simulation

produces a file where time stamps of spikes are saved. This file is analyzed and the distances

from the goals are computed. Then, the process goes on in the same way as in Figure 3.1. This

algorithm adopts the simulated binary crossover and the isotropic mutation as recombination

strategies

All the individual networks are composed by 1024 Hodgkin-Huxley neurons, that are randomly

assigned as excitatory or inhibitory. Inhibition is modeled using Fast Spiking neurons con-

necting by GABAa and excitation by Regular Spiking neurons connecting by AMPA and/or

NMDA. Among all the configurable parameters in Bioemus, six are selected as the most likely

to influence population dynamics, and their search is limited in an interval (according to phys-

iological values(Uhlenbeck and Ornstein 1930; Destexhe, Z. F. Mainen, et al. n.d.; Isaacson

and Scanziani 2011; Myme et al. 2003)).

These parameters are: the ratio of inhibitory to excitatory neurons (in the interval 0.1-0.5),

the maximum probability of connectivity used in calculating network connections (in the in-

terval 0.1-1), considering that it should have a Small-World topology), the ratio of AMPA to

NMDA excitatory synapses (in the interval 0.1-1), the synaptic weight of AMPA synapses (in

the interval 0.1-1), the synaptic weight of NMDA synapses (in the interval 0.1-1), and the
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mean value applied in the Ornstein-Uhlenbeck process to model synaptic noise (in the interval

0.01-0.1). As standard deviation of the isotropic mutation step is used the interval divided by

15.

Regarding biomarkers, three are chosen: the Mean Firing Rate (MFR), the Inter-Spike In-

terval(ISI) and the Mean Bursting Rate (MBR). These same biomarkers are extracted from

a 10-minute recording of spontaneous intracortical activity in the S1 area of five adult male

Long-Evans rats, using a 16-channel electrode array. The data are pre-processed and sorted

to isolate single-unit activity. Across the five rats, a total of 194 neurons are identified and

concatenated to form a single, larger biological neural network (BNN).

When measuring distances using DKL, to ensure comparability between the simulated neural

network (SNN) and the BNN, which contain different numbers of neurons, the biomarker dis-

tributions for both networks were generated using Kernel Density Estimation (KDE). Each

neuron contributed a single MFR and MBR value, which were aggregated into a single vec-

tor, from which a continuous probability distribution was computed for each biomarker. A

different procedure was applied with ISI. Instead of generating a single value per neuron, each

neuron produced its own distribution of inter-spike intervals. These distributions were then

summed element-wise and normalized by the total number of neurons, resulting in a single,

overall ISI distribution for both the simulated neural network (SNN) and the biological neural

network (BNN). This approach ensures that the ISI biomarker captures the collective spiking

behavior of all neurons in the network. These distributions were directly used as arguments

of the DKL.

In contrast, for the median-based comparison, no Kernel Density Estimation (KDE) was ap-

plied; instead, the raw data were used directly to compute the medians. The approach for ISI

was again different: since ISI is a distribution itself, the Root-Mean Square Error (RMSE) was

used to compare the two traces directly. Before this comparison, the ISI distributions were

smoothed using a Gaussian filter to account for variability and make the comparison more

robust.

Transitioning from the generation of one network to the next takes approximately 25 seconds.

The total time required to simulate and process the results of each network is therefore the

sum of this 25-second plus the selected simulation time.
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3.7 Results

3.7.1 Hyper-parameters tuning

Several trials were conducted to fine-tune the algorithm’s hyperparameters. The initial pop-

ulation size was set to 200 individuals (α), as this number strikes a balance between limiting

execution time and reducing the occurrence of repeated individuals in the population. A

smaller initial population would lead to the same high-fitness parents being repeatedly se-

lected for the mating pool, which hinders exploration of the search space.

Additionally, 20 offspring were generated per iteration, a value found to offer a good trade-off

between ensuring reasonable convergence and maintaining efficient runtime.

Regarding the simulation duration, trials were conducted with 5, 30, and 60 seconds, with

different seeds. While longer simulations increase the variability of potential activity patterns,

the distributions of key metrics (MFR, MBR, ISI) remained consistent across all three du-

rations. Therefore, 5 seconds is chosen as the optimal simulation time, allowing for faster

processing without compromising the reliability of the results.

Some trials resulted in several winning solutions where many neurons remained largely silent

(producing no spikes or just one spike). This led to poor MFR and MBR values. However, ISI

metric sometimes appeared favorable, as ISI is normalized by definition and does not depend

on the number of active neurons. To ensure an adequate level of network activation, a thresh-

old was introduced, requiring at least 850 neurons to fire a minimum of 2 spikes within the

5-second simulation. Choosing the optimal number of iterations is one of the most challenging

aspects of tuning the algorithm. A sufficient number of iterations is crucial to reach a good

approximation of the target solution. However, the number of iterations is also a key factor

in increasing execution time, as each additional generation requires the simulation of 20 new

networks. To balance this, three trials were conducted with 100 iterations to assess whether

the algorithm consistently converges. All three trials reached approximately the same non-zero

, stable fitness value, at 45 iterations, suggesting that the generated offspring are generally

performing at a similar level to their parent solutions, saturating the solutions (Figure 3.4).

Given these considerations, the total execution time stabilizes at around 8 hours to produce

reasonable results. However, this duration can vary significantly depending on the specific use

case. If less stringent final outcomes are acceptable, the process can require far fewer than
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45 iterations. In fact, even after just 10 iterations, the algorithm was capable of generating a

few acceptable solutions, allowing for the possibility of selecting the best configurations from

the initial results. This suggests that, depending on the required precision, the execution time

can be shortened substantially.

The main bottleneck of the algorithm lies in writing and saving the .txt files containing the

network configuration details, possibly due to the SSD card used in the Kria KV260 board

where the files are stored. Utilizing a faster SSD or optimizing the file saving and reading

process in the C++ code could further reduce the overall execution time.

3.7.2 Optimization outcomes and conflicts between objectives

As mentioned earlier, each optimization process generates 200 individuals. However, not all of

these individuals are non-dominated, meaning some are outperformed by others. Therefore,

an additional selection step is required to filter out only the non-dominated individuals for

further analysis. After the selection step, the number of remaining individuals varies depend-

ing on the run, with each individual outperforming others in at least one of the three metrics,

making the interpretation of the outcome not straightforward. To visualize these results, a

radar plot is generated to provide an immediate overview of the run (Figure 3.5). In this

radar plot, the outer triangle has vertexes representing the three metrics: MFR, MBR, and

ISI. The level of 1 is set as the goal, while each inner triangle represents a different network

configuration, showing how close it comes to the optimum.

The position of each vertex is determined by 1−distancei, where i corresponds to MFR, MBR,

or ISI, and distancei is the DKL divergence between the target objectives and the extracted

features. Configurations with the best distance for each metric are highlighted with distinct

colors. As expected, the configuration that performs best in MFR is often not the best in the

other two metrics, presenting a trade-off between them. This allows for prioritizing the most

important metric based on specific goals.

To identify the best compromise, the configuration that maximizes the area within the tri-

angle is selected as the best overall, representing strong performance across all three metrics.

Occasionally, this best configuration may coincide with the configuration that excels in one

specific metric, but this is not always the case. The optimization algorithm can also highlight

a challenge in achieving a high level of approximation across different metrics simultaneously.
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Figure 3.4: Fitness of best individual across generations. The fitness of the best individual

across generations is plotted to track the individual with the highest fitness in each generation.

Since fitness is a relative metric, an individual’s fitness can fluctuate depending on the pop-

ulation that survives each iteration. As a result, the fitness curve is not strictly monotonic.

It is possible for the best fitness value in a previous generation to be higher than in the sub-

sequent one. This reflects that, in some iterations, the best individual may be less dominant

compared to others in the population than the previous best in earlier iterations. All three

traces (including one with a 30-second simulation time) appear to exhibit an elbow at around

the 45th generation. This suggests that 45 iterations could be a reasonable trade-off, balancing

performance with computational efficiency, and serving as a good choice for the number of

generations.
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Figure 3.5: Visualization of the optimization results. In this radar plot, the outer orange

triangle represents the target values, where each vertex has a distance of 1 from the center,

corresponding to the goal for all three metrics: MFR, MBR, and ISI. The inner triangles

represent the performance of individual configurations, with each vertex’s distance from the

center set to 1−distancei where i is the metric and distancei is calculated using the Kullback-

Leibler (DKL) divergence or the difference between the medians of the goal and individual

distributions. Dashed lines highlight the configurations that have the smallest distance from

the goal for each metric. The legend also displays the number of the corresponding winner

configuration, indicating the order in which they were generated. For instance, a label like

”664” means that the configuration closest to the MFR goal is the 664th configuration generated

by the algorithm. Solid black line indicates the configuration with the largest triangle area,

representing the network that achieves the best compromise across all three metrics (MFR,

MBR, and ISI). In this specific run, we can observe that there is a conflict between reaching a

good MFR together with a good ISI. The best solution represents a good trade off between the

two metrics.
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As seen in Figure 3.5, configurations that perform best in terms of MFR often perform worst

in ISI, indicating a conflict between these two metrics. This issue may be related to the limited

neuronal types used in these networks, specifically regular spiking and fast spiking neurons.

To address this, incorporating additional neuronal types available in Bioemus, such as intrinsic

burst and low-threshold spiking neurons, could help resolve the conflict and introduce greater

variability in the possible patterns, leading to better overall optimizations.

3.7.3 Comparison between DKL and Median distance

Optimization process is developed using two types of objective functions: DKL between dis-

tributions or distance between the median of these. Even though the median distance could

be an overall good solution, the DKL outperforms in finding more similar distributions, mak-

ing a direct comparison between distributions. Indeed, having a precise median value of the

distributions does not necessarily ensure that the two distributions are similar (Figure 3.6).

To make a meaningful comparison between the two methods, the best distribution (as the

largest area in the radar plot) from each of the two different optimization runs is chosen as

a representative of its population. As anticipated, when computing the DKL between these

distributions and the goals, the distributions resulting from the run using DKL as an objective

function show better performance. Additionally, the time required to process the two distances

is comparable and does not act as a bottleneck in the system. Furthermore, the DKL faster

converges toward better solutions.

3.7.4 Parameter convergence

Even if what parameters are chosen as the best is not fundamental to the purpose of mimicking

the biological network, with this kind of optimization algorithm it is possible to investigate

the parameter space and look which combination of parameters are more suited to reproduce

the biological counterpart. The parameter space is composed by: the ratio of inhibitory to

excitatory neurons , the maximum probability of connectivity used in calculating network

connections, considering that it should have a Small-World topology), the ratio of AMPA to

NMDA excitatory synapses, the synaptic weight of AMPA synapses, the synaptic weight of

NMDA synapses, and the mean value applied in the Ornstein-Uhlenbeck process to model

synaptic noise. As expected, there is no single combination of parameters that leads to a
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Figure 3.6: DKL vs. Median distances as objectives functions. Distributions of MFR, MBR,

and ISI are visualized using both bar and violin plots. The goal distributions are represented in

orange, while the distributions obtained using the DKL method are shown in blue, and those

from the median method are depicted in violet. The DKL method performs better in aligning

the overall distributions closely to the goal, whereas the median method ensures proximity in

terms of the median values but overlooks the shape and spread of the entire distribution.
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specific activity pattern; rather, different parameter combinations can have similar effects on

the firing dynamics of the SNN. For example, a higher level of inhibitory neurons could be

partially compensated by an increased weight of excitatory synapses. Examining how the

parameters of the best-performing individuals are distributed within their ranges may provide

insights. If parameters cluster tightly around a single value, this suggests that the value is crit-

ical for achieving the goals. In contrast, a wide spread of parameter values may indicate that

the parameter has little impact on the optimization process, making it a potential candidate

for exclusion in favor of more influential parameters. For instance, as shown in Figure 3.7,

the mean value of synaptic noise does not converge toward a single value, suggesting that it

plays a minor role in the optimization. This figure is also useful for visualizing the direction

of the optimization process. By coloring each point based on the corresponding area value

in the radar plot (see Figure 3.5), it becomes possible to distinguish between the best and

worst-performing individuals. For certain parameters, a gradient of colors can reveal the tra-

jectory of the optimization, indicating the parameter adjustments that are driving the process

towards better results.
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Figure 3.7: (Top) Parameter values of the survived individuals at the last iteration. Only

individuals that have less than 0.5 as DKL are considered as acceptable and shown. These

values are normalized for the upper and lower bound of their range. Each combination of the

six points represents the score according to the area of the corresponding triangle in the radar

pot. We can see that, for some parameters, there is a gradient going from darker to lighter

colors, possibly indicating the direction of the optimization. The mean value applied in the

Ornstein-Uhlenbeck process to model synaptic noise does not converge in a precise cluster as

other parameters, meaning that this value is not involved in the optimization process. (Down)

Each graph has the whole set of parameters of the entire population at each iteration. The red

circles indicate the most clustered parts of the graph. Even here, the synaptic noise have never

had a convergence across iterations.
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Chapter 4

Discussion

Neuroprosthetic devices have received significant attention in recent years, raising critical ques-

tions about how to restore normal function in injured brain areas (Chiappalone, Cota, et al.

2022). The concept of using a stimulating device to reconnect damaged regions is based on

the seminal work of Fetz and colleagues, who first demonstrated the ability to induce Hebbian

plasticity by artificially linking the spiking activity of two cortical neurons in a monkey’s brain

(Jackson, Mavoori, and Fetz 2006).

Various strategies have since been explored, with some showing remarkable behavioral out-

comes. Notably, in 2013, researchers at Kansas University Medical Center introduced a brain

prosthesis utilizing a closed-loop architecture, marking a significant advancement in the field

(Guggenmos et al. 2013). They successfully restored communication between the rostral fore-

limb area (RFA) and the sensorimotor (S1) area by ”bypassing” a lesioned motor area that

disrupted the connection between the two. This was achieved through a novel closed-loop

technique called activity-dependent stimulation (ADS). The system worked by detecting neu-

ral activity in RFA and, each time a spike was generated, delivering a stimulus to the S1 area.

As a result, they were able to restore the rats’ reaching and grasping functions, which had

been impaired by the lesion.

This type of stimulation is inherently ’neural-like’ because the stimulation pattern is driven

by another brain area. In this context, neuromorphic-based neuroprostheses, such as Spiking

Neural Networks (SNNs), offer a promising approach to achieve this kind of neural stimula-

tion. The work of Beaubois and colleagues in 2024 introduced a real-time FPGA-based Spiking

Neural Network , which opens the door to conducting in vivo experiments (Beaubois et al.
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2024). By interfacing this device with the animal’s brain, it is possible to evaluate its ability

to influence biological spontaneous activity. To do so, in this study, an analysis of the impact

of the stimulation is provided, making a comparison between control group (SHAM), where

no stimulation was provided, the group stimulated with the Zybo Z7-20 board (Z) and the

ones stimulated with the novel Bioemus system implemented in the Kria KV260 board (K).

Additionally, a method to automatize SNN parametrization through evolutionary algorithm

is proposed, to obtain a SNN closer in mimicking its biological counterpart.

4.1 Effects of SNN-driven intracortial microstimulation

Following the same framework adopted in Kansas University Medical Center, the SNNs were

interfaced with the S1 area of brain rats, to stimulate this in an open-loop fashion. Simul-

taneously, neural activity from the RFA was recorded to facilitate comparisons with prior

experimental results obtained through ADS, as performed in similar acute experiments on

healthy anesthetized rats (Averna, Pasquale, et al. 2020). The stimulation was provided for

one hour.

Friedman’s test was employed to evaluate differences between all the groups in S1. It revealed

for all the evaluated metrics (MFR, LvR and area of PSTH), that their variations between

pre- and post- stimulation phase did vary significantly across different groups in the S1 area.

However, post hoc analysis failed to identify significant differences between paired groups,

likely due to the low statistical power when groups were considered individually (7 animals

per group). As seen in Figure 2.6, Figure 2.7, and Figure 2.8, the two stimulated groups

appear to differ from the control group in all three metrics. Stimulation seems to reduce MFR

levels in S1 compared to the control group, where it increases. For LvR, stimulation pushes

the network towards more bursty activity in S1, while the effect in RFA is the opposite, with

a direction toward a more random spiking pattern. Finally, regarding the PSTH area, which

estimates tissue excitability, stimulation induces a more pronounced decrease in S1 compared

to controls, while in RFA, the metric slightly decreases. Comparing these results to those

obtained by Averna and colleagues in 2020, where activity-dependent stimulation (ADS) was

employed, the outcomes appear partially consistent (Averna, Pasquale, et al. 2020). In that

study, ADS similarly decreases both LvR and PSTH area after the first hour of stimulation.
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The only contrasting result between the two studies lies in the network’s firing rate: in this

study, the firing rate remained stable, whereas in the previous work it increased. Since ADS

has been proven to be an effective stimulation method for restoring lost functional capabilities,

these findings suggest that SNN-driven stimulation methods could potentially achieve similar

outcomes. Unfortunately, as the control group in the current study was not recorded in the

RFA, a statistical comparison of stimulation effects relative to non-stimulated animals is not

possible. Additionally, further experiments are necessary to improve the statistical power of

these findings and allow for a more reliable comparison between the two methods. Another

unexpected result was observed in the control group, where the firing rate in the S1 area ap-

peared to increase spontaneously, despite the absence of stimulation. It is uncertain whether

this effect is entirely physiological, as no additional data is available for comparison in this

specific brain region of the rats. One potential explanation could be related to the variability

in anesthesia effects, which may not have remained stable throughout the entire experiment.

Further investigations are needed to clarify these aspects.

4.2 Differences between the two FPGA boards

In this study, two different FPGA platforms were used to stimulate the animals. The Zybo

Z7-20 board implemented 100 Hodgkin-Huxley (HH) disconnected neurons, while the Kria

KV260 board utilized Bioemus to implement 1024 HH interconnected neurons in a small-

world network configuration. Both boards successfully engaged the network, demonstrating

their potential to activate neural circuits effectively. Notably, the engagement, especially the

one achieved with the Zybo board, was comparable to that obtained using ADS (Averna,

Hayley, et al. 2021), suggesting that these devices could serve as viable neuroprosthetic tools

for restoring neural function. Nevertheless, there are many differences in the stimulus train

generated by the two boards:

1. The Zybo board delivered four times the number of stimuli compared to the Kria board.

2. The Kria board exhibited a significantly more bursty behavior than the Zybo board.

These differences led to varying levels of network engagement. The analysis of I/O correlation

between the stimulus train and the evoked activity revealed statistically significant differences

between the two boards, as confirmed by a two-way repeated measures ANOVA. The Zybo
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board demonstrated a significantly greater ability to evoke responses compared to the Kria

board.

Discrepancies in network engagement between the two likely stem from differences in their

firing properties, raising questions about which stimulation pattern is more effective in elic-

iting stronger network responses. One potential solution is to align the electrophysiological

parameters of the SNN with those of the biological system. This approach could enable a

more personalized stimulation, potentially resulting in a more robust and appropriate neural

response. To address this, the study introduces an optimization algorithm designed to mimic

experimental outcomes using the spiking neural network. The Bioemus system provides flexi-

bility in configuring the SNN, offering a broad range of network behaviors, further supporting

this goal.

Another critical consideration is the selection of the stimulating neuron. In these experiments,

where only a single electrode serves as the stimulation channel, just one neuron from the arti-

ficial network is responsible for delivering the stimulus train. A potential strategy for selecting

this neuron could involve choosing the one whose firing rate most closely matches the median

one of the biological network. Alternatively, selecting the neuron with the median firing rate

of the artificial network could offer a representative choice for the interfacing SNN.

Further enhancements may be achievable by employing a ”network” stimulation approach,

where multiple channels are used to stimulate the animal’s brain simultaneously. This would

enable the stimulation from several neurons within the artificial SNN, potentially providing a

more effective interaction with the biological system.

4.3 Evolutionary algorithm to fine-tune the biological

and the spiking neural network

Designing an optimization algorithm to fine-tune a spiking neural networks, enabling a better

mimicking of a biological one, presents a significant challenge, particularly in selecting the

optimal strategy from the vast range of possibilities. One approach is to attempt a precise

match of the firing patterns, a task that is nearly impossible due to the complexity of the net-

works. A more practical strategy, and the one adopted in this work, is to focus on matching

broader electrophysiological parameters, specifically the Mean Firing Rate (MFR), the Mean
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Bursting Rate (MBR) and the Inter-Spike Interval (ISI), which provide a more reasonable and

achievable goal.

Furthermore, this match is not achieved across all metrics simultaneously, but rather by keep-

ing the three metrics separate, thereby shifting the optimization towards a multi-objective

approach. This allows for balancing the trade-offs between metrics, where improving one

might not necessarily improve the others, and helps in finding a solution that provides a rea-

sonable compromise across all objectives and adaptable basing on the specific needs. Indeed,

due to its multi-objective nature, this algorithm produces a pool of optimal solutions rather

than a single one, enabling the user to select the solution that most closely aligns with the

desired properties.

The chosen algorithm is the Indicator-Based Evolutionary Algorithm (IBEA) (Zitzler and

Künzli 2004), which has been previously employed in computational neuroscience to fine-tune

parameters of mono- or multi-compartmental single neuron (Masoli et al. 2017). IBEA oper-

ates by generating a population of random individuals and iteratively converging toward an

optimal set by recombining these initial population to produce other individuals and discarding

the worst based on a fitness value, iteratively. Individuals that survive after a predetermined

number of iterations are considered the ”winners,” whose distinct properties are further an-

alyzed. After initial testing of the algorithm, the hyperparameters were fixed to achieve the

fastest compromise for reaching the optimum. Two versions of the IBEA were implemented

directly on the Kria board, using two different objective functions to quantify the distances

between the goals and objectives: one based on the distance between median values, and the

other using the Kullback-Leibler Divergence (DKL) between the distributions of the metrics

(MFR, MBR, ISI). In each configuration, several key parameters were adjusted, focusing on

those expected to have the most significant impact on the resulting network activity. An entire

optimization process took about 8 hours.

To summarize the results of each run, a radar plot is presented to provide an overall view of

the optimization process. As illustrated in Figure 3.5, several individuals can be considered as

potential configurations that closely align with the biological counterpart, each maintaining

different trade-offs in the obtained distributions. The configuration that maximizes the area

within this plot is selected as the best compromise, facilitating a quick identification of the

optimal solution across all three distance metrics. However, it is important to note that this
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configuration should not be regarded as the absolute best individual. For instance, achieving

a perfect match in the mean ISI distribution is significantly less critical than ensuring a strong

alignment in the MFR distribution of the network. The mean ISI distribution serves primarily

as a guideline to guarantee a physiologically relevant ISI and to avoid excessively bursty firing

patterns on average, which could potentially disrupt interactions with the biological network.

By comparing the results obtained with both medians or DKL, this algorithm is capable in

complete its task, obtaining closer results when using the DKL.

Finally, this algorithm is proposed as a valuable tool for enhancing the Bioemus framework,

shedding light on potential limitations and future improvements within the system. For in-

stance, it highlights a set of conflicting metrics, prompting questions about why the spiking

neural network (SNN) struggles to optimize some metrics simultaneously and offers insight on

how these issues might be resolved.

4.4 Future improvements

The Indicator-Based Evolutionary Algorithm (IBEA) for Bioemus does not come without its

challenges. The primary concern is the execution time, which is currently too onerous for

routine use during biohybrid experiments. The algorithm was designed to be executed prior

to the stimulation phase, allowing for a careful tuning of the spiking neural network with the

biological one. However, this version of the algorithm struggles to meet this objective.

Several potential solutions could address this issue. One approach is to change the saving

format; Bioemus currently saves configuration parameters in a large text file (approximately

8 MB, depending on the number of synapses). This file size presents a bottleneck in the sys-

tem, so utilizing a more efficient format, such as a binary format, could enhance performance.

Upgrading to a faster SSD card may also significantly reduce execution time.

Another strategy involves setting a threshold on the distances, alongside a specified number

of generations. This would allow the system to terminate when a sufficiently good network

configuration is produced. Conversely, if the algorithm fails to generate an acceptable solution,

it would stop after the designated number of generations. While this approach carries some

risk, primarily due to the ambiguity surrounding what constitutes a ”sufficiently good” solu-

tion, especially in a multi-objective optimization context, it is noteworthy that the individual
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maximizing the area in the radar plot often emerges many iterations before the algorithm

completes. Ultimately, improving the speed of the IBEA will enable a broader exploration

of the search space by allowing higher-dimensional configurations, increasing the number of

parameters that can be adjusted in each setup. In addition, the inclusion of additional met-

rics is fundamental to enhance the system’s ability to accurately represent the activity of its

biological counterpart. By doing so, the optimization algorithm can yield more comprehensive

insights, leading to more effective tuning of the spiking neural networks in conjunction with

biological systems.
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Conclusion

The work presented in this thesis can be divided in two parts: firstly, we tried to quantify the

impact and the differences between two different SNN-driven intracortical microstimulations,

secondly we developed an evolutionary algorithm able to finely tune the extracted experimen-

tal electrophysiological parameters of the animal with the ones of the SNN.

In addressing the first point, our findings partially align with previous studies, particularly

one that investigated activity-dependent stimulation methods within a similar experimental

framework (Averna, Pasquale, et al. 2020). We demonstrated that open-loop SNN-driven

stimulation is capable of engaging the neural network and impacting its activity. To do so, we

also devised a novel spike-detection algorithm, which is the adaptive version of a previously

developed algorithm named SWTTEO (Lieb, Stark, and Thielemann 2017). In addition, the

variations in firing properties across different SNNs led to differential network engagement,

highlighting the need of a personalized SNN able to mimic the interfacing brain area. While

these results are promising enough to propose SNN-driven stimulation as a potential brain

prosthetic device, further research is essential.

To enhance the robustness of our conclusions, expanding the dataset is crucial to increase

statistical power and validate our findings. Furthermore, testing this stimulation approach in

injured animal models is necessary to assess its efficacy in restoring lost functional capabilities.

To this end, it is necessary to conduct chronic experiments to evaluate the long-term effects

of SNN-driven stimulation on brain activity.

In the second part of the thesis, we proposed an algorithm aimed at effectively matching

experimental recordings with those from the SNN. We designed a Multi-Objective Indicator-

Based Evolutionary Algorithm, following the framework outlined in Zitzler and Künzli 2004,

which yielded promising results. However, there remains significant potential for improvement,

particularly in reducing the algorithm’s overall execution time and incorporating additional
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metrics to enhance its precision in mimicking biological activity.

Future developments will focus on integrating a broader array of neuronal types and synaptic

models to increase the diversity of potential solutions that the system can explore. This di-

versification may lead to more sophisticated and effective configurations of the SNN, further

bridging the gap between artificial and biological neural networks.

The concept of neuromorphic neuroprosthetics represents a significant advancement in the

field. Leveraging the biological plausibility of SNNs serves not merely an aesthetic purpose

but has profound functional implications. Establishing a closed-loop system that facilitates

communication between biological brains and artificial spiking neural networks is crucial for

developing optimal neuroprosthesis. Such an interaction would enable the adaptive capabili-

ties of SNNs to personalize stimulation based on real-time feedback from the biological system,

marking a pivotal step in tailoring neuroprosthetic interventions. Ultimately, this approach

aims to improve outcomes for individuals suffering from brain injuries or neurodegenerative

diseases.

In summary, this thesis contributes to the growing field of neuroprosthetics by providing in-

sights into the capabilities and limitations of SNN-driven microstimulations. While the initial

results are encouraging, the journey toward developing effective neuromorphic neuroprosthetic

devices necessitates continued exploration, validation, and refinement of these methods. This

continued effort is essential for achieving meaningful therapeutic outcomes for individuals with

neural impairments.
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Appendix

Introducing a Novel Spike Detection Algorithm -

Adaptive SWTTEO

The information exchange between neurons is based on rapid changes of the cell membrane

potential called action potentials or spikes: the entire activity of a neuron can be represented

as a delta-train, where each delta corresponds to a spike. However, in extracellular recordings,

separating spikes from the surrounding noise is a challenging task, prompting the development

of various detection strategies (Obeid and Wolf 2004).

In this framework, spike detection algorithms are generally classified into three main categories:

1. Simple Thresholding: This method focuses on the most distinguishable characteristic of

spikes, their amplitude. It assumes that spike signals exhibit higher or more pronounced

peak-to-peak values compared to background noise, allowing for detection through basic

thresholding.

2. Template Based Correlation: This approach relies on the specific shape of spikes. Pre-

defined template waveforms are compared to segments of the recorded signal. When

the similarity between the template and the signal exceeds a set threshold, a spike is

identified.

3. Transient Energy: This category focuses on the sudden changes in amplitude character-

istic of spikes. These transients generate a distinctive frequency pattern that stands out

from typical noise, facilitating their detection.

The Stationary Wavelet-based Teager Energy Operator (SWTTEO) is a recently developed

method that belongs to the third category (Lieb, Stark, and Thielemann 2017).As can be
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intended by the name, this method relies mainly on two operators: the Stationary Wavelet

Transform (SWT) and the Teager Energy Operator (TEO). A wavelet transform is a signal

processing technique that breaks down a signal into scaled and shifted versions of a ”mother”

wavelet, allowing the signal to be analyzed at multiple resolutions. It is particularly efficient

with non-stationary signals, those whose frequency characteristics change over time—such

as neural signals. The term ”stationary” in Stationary Wavelet Transform (SWT) refers to

its time-invariant property, meaning that the transform maintains consistency in time when

analyzing the signal, unlike the Discrete Wavelet Transform (DWT). In DWT, the wavelet

convolution is followed by downsampling (reducing the number of data points after each level),

which can cause shifts in time and a loss of some details. With SWT, there is no downsampling,

so the resolution remains constant across all scales, preserving the time information (Nason

and Silverman 1995).

The Teager Energy Operator is defined as:

Ψ(x(t)) = ẋ2(t)− x(t)ẍ(t). (4.1)

”Energy operator” is motivated by its analogy with the total energy of a classical harmonic

oscillator (Kaiser 1993). These two operators are applied sequentially to the signal, followed

by a global thresholding step to extract the spikes. In this adaptive version, the threshold is

dynamically computed within a sliding window, which calculates the 99th percentile of the

signal locally. Then another global threshold is set as n times the median signal value. When

the transformed signal exceeds this local threshold, the segment is captured, and the position

of its peak is identified and marked as a spike. This adaptive thresholding method ensures

more accurate spike detection, especially in signals with varying characteristics over time (as

slow-waves induced ON-OFF phases during sleep, Figure 2.3). The dimension of the window

and the step-size of the slide is customizable, smaller windows and longer steps results in a

faster computation.

Input-Output Correlation

The cross-correlation between spike trains is a fundamental metric, as it is capable to highlight

synchronization phenomena at the network level. Different steps are necessary to find a cross-

correlation.
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1. Identify a reference train and a target train, denoted respectively as x and y.

2. Divide the two trains into equally spaced bins small enough to contain at most one spike.

In this way a histogram that can tell how the spikes in the reference are related to the

spikes in the target can be built. To do so, spikes of the target train are projected on

the reference spike train. A time delay τ is applied as a variable shift between the two

trains (going from −T to T ). The position of the projected spike becomes the zero of a

new time axis, which has to be divided in bins again in order to count the spikes inside

them.

3. At the end, an histogram is obtained, which has values between −T and T on the x-axis

and Cxy(τ) on the y-axis, that is the cross correlation between the spike trains Figure 4.1.

When τ = 0, the reference spike train is synchronized with the target spike train: it means that

the cross-correlation is high, hence a big central peak and very low lateral ones are expected

(auto-correlation). From a mathematical point of view, the cross-correlation can be written

as:

Cxy(τ) =
1√
NxNy

Nx∑
s=1

(τ+∆τ/2)∑
ti=τ−∆τ/2)

x(ts)y(ts − ti), (4.2)

with 1/
√
NxNy a normalization factor to keep values inside [0,1]. In the case of Input-Output

(I/O) correlation, the reference train is always the stimulation train and the time lag is only

positive, since the evoked-effects of the stimulation is the purpose. In this specific thesis, the

τ goes from 0 to 50 ms and the bin size is 1 ms.
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Figure 4.1: Cross correlation algorithm representation. The final product is a vector repre-

senting the histogram on the right.

Non-Local Derandomized Step-Size Control (CSA)

The mutation operator introduces (“small”) variations by adding a point symmetric perturba-

tion to the result of recombination, represented by a solution vector x ∈ Rn. This perturbation

is sampled from a multivariate normal distribution N (0, C), where C ∈ Rn×n and it is the

covariance matrix. We have x+N (0, C) ∼ N (x,C), meaning that x determines the expected

value of the new offspring individual. For our purposes, we consider C = σ as a diagonal

matrix and is defined as the mutation rate, since it determine the distance of the new children

from the parent. Controlling this parameters of the mutation operator is a key point in an

evolution strategy: without a constant update of the mutation rate,the optimization process

can get stuck in a cycle where newly generated children jumps from one side to the other

of the solution. By iteratively adjusting this step, not only the algorithm should constantly

better approximates the optimum, but also it works much faster, avoiding too big or too small

mutations of the individuals. One possible solution to this is the self-adaptation

Control parameters can be stored at different ”levels.” Each individual can have its own spe-

cific step-size, or a single step-size can be shared and applied uniformly across the entire

population. The same considerations can be applied to the adaptation strategy: either a

single parameter can be used to update all individuals, or each individual can have its own.

The following algorithm will adopt the first case, referencing to as Non-Localized. Another

important aspect is that the self-adaptation should be derandomized. The adjustment of the
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mutation rate should not be left to chance but should be informed by the ongoing progress of

the search, tracking the evolutionary development to guide more effective optimization.

The Non-Local Derandomized Step-Size Control (CSA), is an algorithm that puts together

these aspects: it uses a non-local strategy, in order to avoid that the single children can

afflict the adaptation step, and it is derandomized, since it takes memory of the overall search

progress to adjust the mutation rate. A schematic pseudo-code representation is written in

the following: Given:

• ◦ : the element-wise product

• n ∈ N : dimension of the single individual (and as a consequence of the mutation rate),

• λ : offspring size,

• µ : population size

• cσ ≈
√
µ/(n+ µ)

• d ≈ 1 +
√

µ/n

• di ≈ 3n

Steps:

1. Initialize x ∈ Rn,σ ∈ Rn, sσ = 0

2. while not happy

3. for k ∈ {1, . . . , λ} (generating children)

4. zk = N (0, I)

5. xk = x+ σ ◦ zk

6. P = Selection of the µ best individuals

7. Cross-over

8. sσ ← (1− cσ)sσ +
√

cσ(2− cσ)
√
µ

µ

∑
zk∈P

zk

9. σ ← σ ◦ exp( 1
di
( |sσ |
E|N (0,1)| − 1))× exp( cσ

d
( ∥sσ∥)
E∥N (0,I)∥ − 1))
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Here, zk represents the local mutation steps applied to each individual. All zk that survive

the selection process are considered the best and are subsequently used to update the search

path parameter, sσ. The search path encapsulates information about the interrelation between

individual steps, which can significantly enhance both the adaptation and the overall search

process (Hansen, Arnold, and Auger 2015; Ostermeier, Gawelczyk, and Hansen 1994).
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