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Abstract

The rapid advancement of Artificial Intelligence (AI) and Machine Learning (ML) tech-
nologies has positively transformed numerous industries but also introduced challenges
regarding their trustworthiness and ethicality. A critical issue arises when newly updated
models correct past wrong predictions but simultaneously disrupt already-correct ones lead-
ing to a perceived regression in performance, namely regressiveness. Especially, when this
degradation in performance of some samples is not balanced with respect to a sensitive at-
tribute (e.g. gender or ethnicity), a discriminatory model emerges. Therefore, the intersection
between regressiveness and unfairness in machine learning is foremost studied in this work
by presenting novel methodologies to alleviate this phenomenon.

The study proposes two novel mitigation strategies within the framework of our new
fairness metric, unfair regression, based on the difference in the negative flips phenomenon,
which quantifies the disparity in disrupted predictions between sensitive and non-sensitive
groups in an updated model. By focusing on minimizing this metric, we introduce the
first mitigation approach that only affects the model selection phase. We implement a
double-step cross validation algorithm that accounts for both accuracy and unfair regression
minimization. The second mitigation algorithm directly affects the learning phase, adding the
unfair regression metric as a constraint within the Support Vector Machine (SVM) framework,
yielding to our Unfair-Regression-Free SVM (URFSVM). These algorithms contribute on
reducing bias and enhance fairness in predictive performance. Both approaches ensure
that model updates do not disproportionately affect any particular group, promoting more
equitable and trustworthy machine learning systems.

The objectives of this study include conducting an in-depth review of current bias miti-
gation techniques as well as regression in performance, studying the intersection between
them, developing novel in-processing methods to minimize regressiveness, evaluating these
methods between them and against standard and fairness-enhanced models, and integrating
the proposed approaches into existing machine learning frameworks without compromising



vi

performance. On the whole, this work intends to contribute to the development of AI tech-
nologies that align with ethical standards and international human rights, through our novel
strategies, ensuring that no individual is discriminated against based on gender, ethnicity,
disabilities, or social status.



Abstract

El ràpid avenç de la Intel·ligència Artificial (IA) i l’aprenentatge automàtic, o Machine

Learning (ML), ha transformat positivament nombroses indústries, però també ha plantejat
reptes significatius pel que fa a la fiabilitat i ètica de presa de decisions d’aquests models.
Un problema crític es presenta quan l’actualització d’un model corregeix prediccions que
anteriorment eren errònies, però simultàniament modifica aquelles que ja eren correctes.
Aquest fenomen, anomenat regressió en el rendiment, o regressiveness, es dona a través de
girs negatius, o Negative Flips, generat així, una percepció de no haver millorat el model
després de l’actualització. Específicament, quan aquesta reducció de precisió no es dona
d’igual forma respecte atributs sensibles, com pot ser el gènere o l’ètnia, es crea un model
discriminatori. Així doncs, en aquest treball s’estudia la intersecció de dos fenomens més o
menys estudiats en el món de recerca, que no han estat estudiats en conjunt: la degradació en
el rendiment i l’equitat en els models d’aprenentatge automàtic.

En aquest estudi es proposen dues noves estratègies per a mitigar aquest fenomen dins
del marc de la nova mètrica d’avaluació que proposem, Unfair Regression, que es basa en
els Negative Flips. En minimitzar aquesta mètrica, s’introdueix la primera estratègia de
mitigació que només afecta la fase de selecció del model, o model selection. S’implementen
dos passos en el procés de cross validation, fent que l’algorisme tingui en compte la minim-
ització d’ambdós mètriques: la precisió i l’equitat. En la segona estratègia de mitigació,
l’algorisme afecta directament a la fase d’aprenentatge, incorporat com a restricció la mètrica
desenvolupada, Unfair Regression, dins del marc de Support Vector Machines (SVMs), cre-
ant així el model anomenat Unfair-Regression-Free SVM (URFSVM). Ambdues estratègies
contribueixen en reduir el biaix i en millorar l’equitat en l’aprenentatge automàtic, assegurant
que les actualitzacions del model no afectin negativament de forma desproporcionada a cap
grup en particular, promovent així resultats més fiables, robustos i justos.

Els objectius d’aquest estudi inclouen realitzar una revisió exhaustiva de les tècniques
actuals de mitigació de biaixos així com de la regressió en el rendiment, estudiar la intersecció
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entre aquests fenòmens, desenvolupar nous mètodes del tipus in-processing per minimitzar
aquesta regressió, avaluar aquests mètodes entre ells i en comparació amb els models
estàndards existents, i integrar els mètodes proposats en els marcs existents d’aprenentatge
automàtic sense comprometre el rendiment. En conjunt, aquest treball té el propòsit de
contribuir al desenvolupament de tecnologies d’IA que s’alineïn amb els estàndards ètics i
els drets humans internacionals, assegurant que cap individu sigui discriminat per raons de
gènere, ètnia, discapacitat o estatus social.



Abstract

El rápido adelanto de la Inteligencia Artificial (IA) y el aprendizaje automático, o Machine

Learning (ML), ha transformado positivamente numerosas industrias, pero también ha
planteado retos significativos en cuanto a la fiabilidad y ética de toma de decisiones de estos
modelos. Un problema crítico se presenta cuando la actualización de un modelo corrige
predicciones que anteriormente eran erróneas, pero simultáneamente modifica aquellas que
ya eran correctas. Este fenómeno, denominado regresión en el rendimiento, o regressiveness,
se da a través de giros negativos, o Negative Flips, generado así, una percepción de no haber
mejorado el modelo después de la actualización. Específicamente, cuando esta reducción de
precisión no se da de igual forma respeto atributos sensibles, como puede ser el género o la
etnia, se crea un modelo discriminatorio. Así pues, en este trabajo se estudia a intersección
de dos fenomenos más o menos estudiados en el mundo de investigación, que no han sido
estudiados en conjunto: de la degradación en el rendimiento y la equidad en los modelos de
aprendizaje automático.

En este estudio se proponen dos nuevas estrategias para mitigar este fenómeno dentro
del marco de la nueva métrica de evaluación que propongamos, Unfair Regression, que se
basa en los Negative Flips. Al minimizar esta métrica, se introduce la primera estrategia de
mitigación que solo afecta la fase de selección del modelo, o model selection. Se implementan
dos pasos en el proceso de cross validation, haciendo que el algoritmo tenga en cuenta la
minimización de ambos métricas: la precisión y la equidad. En la segunda estrategia de
mitigación, el algoritmo afecta directamente a la fase de aprendizaje, incorporado como
restricción la métrica desarrollada, Unfair Regression, dentro del marco de Support Vector

Machines (SVMs), creando así el modelo llamado Unfair-Regression-Free SVM (URFSVM).
Ambas estrategias contribuyen al reducir el sesgo y al mejorar la equidad en el aprendizaje
automático, asegurando que las actualizaciones del modelo no afecten negativamente de
forma desproporcionada a ningún grupo en particular, promoviendo así resultados más fiables,
robustos y justos.
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Los objetivos de este estudio incluyen realizar una revisión exhaustiva de las técnicas
actuales de mitigación de sesgos así como de la regresión en el rendimiento, estudiar la
intersección entre estos fenómenos, desarrollar nuevos métodos del tipo in-processing para
minimizar esta regresión, evaluar estos métodos entre ellos y en comparación con los
modelos estándares existentes, e integrar los métodos propuestos en los marcos existentes de
aprendizaje automático sin comprometer el rendimiento. En conjunto, este trabajo pretende
contribuir al desarrollo de tecnologías de IA que se alineen con los estándares éticos y los
derechos humanos internacionales, asegurando que ningún individuo sea discriminado por
razones de género, etnia, discapacidad o estatus social.
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ŷ Predicted output

Acronyms / Abbreviations

ACC Accuracy

ACCG Accuracy Gain due to an update of the model



Nomenclature xviii

AI Artificial Intelligence

B−ACC Balanced Accuracy

COMPAS Correctional Offender Management Profiling for Alternative Sanctions

CV Cross Validation

DDP Difference on Demographic Parity Oportunity

DEO Difference on Equal Oportunity

DL Deep Learning

DP Demographic Parity

EO Equal Oportunity

FN False negative

FP False positive

LGT BIQA+ Collective of lesbians, gays, bisexuals, transgenders, queer, questioning, inter-
sex, asexuals, and others.

ML Machine Learning

NFD Negative Flips Difference

NF Negative Flips

NFR Negative Flip Rate

NN Neural Networks

PC Positive Congruent

PCT Positive Congruent Training

RBF Radial Basis Function

SL Supervised Learning

SVM Support Vector Machine



Nomenclature xix

T N True negative

T P True positive

T PR True positive rate

URFSVM Unfair-Regression-Free Support Vector Machine

UR Unfair Regression



Part I

Section One



Chapter 1

Introduction

Over the past few years, Artificial Intelligence (AI) has experienced extraordinary advances,
which have caused an increase in its worldwide use. Because AI-based algorithms enable
the automation of decision-making processes using data, valuable resources such as time
and money are substantially cut down compared to traditional methods that rely heavily on
human intervention.

AI encompasses a broad range of technologies, with machine learning (ML) being a key
subset that enables AI systems to learn from data and improve their performance over time
without explicit programming. However, since ML algorithms strongly rely on human-
generated data, biases present in these data are unintentionally transferred to the algorithm’s
decisions, leading to unfair outcomes. As a result, along with these advancements comes
a growing concern regarding the fairness of machine learning algorithms. Several studies
have revealed biases in machine learning applications, specifically in areas such as facial
recognition [2], candidate ranking [3], and hiring decisions [4]. For example, if an AI-based
algorithm is used for hiring in a men-dominant job, in most of the cases discrimination
against women will be perpetuated despite having the exact same features as the other class.

Despite the efforts to mitigate these concerns, there remains an important need to address
the issue of regression in machine learning algorithms. This occurs when a model is updated
and begins to incorrectly predict previous accurate examples, leading to a drop in performance
for a specific class. The problem we address in this research focuses on the intersection
between unfairness and regression in performance. This particular case is given when
regressiveness is unbalanced with respect to the sensitive attribute, which can be perceived
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as discriminatory behavior. Such phenomenon will be mentioned several times across this
document as unfairness in regressiveness, unfair regression, unbalanced regression or UR.

This work addresses this critical issue by proposing novel methodologies to mitigate
unbalanced regressiveness in both accuracy and/or fairness within machine learning systems.
By doing so, we attempt to advance in the field and contribute to the development of more
equitable and reliable machine learning models.

The study is structured as follows: first, the topic overview establishes the motivation,
goals, and significance of the research. Following, the literature review is set, highlighting
the existing research gaps. Our new metric is introduced by defining the unbalance between
negative flips (NF) in model updates, which is referred to as unfair regression. After that, two
mitigation strategies are defined to palliate this unbalance in predictive analysis. The first one
affects only the model selection phase while the second one is built within the framework of
Support Vector Machines (SVM). In both scenarios, we use our newly introduced metric (i.e.
Unfair Regression) set as a constraint in the problem optimization that aims to be minimized.
Lastly, the results showcase a comparative analysis between the standard and enhanced
models, discussing how these new methods perform in terms of fairness. In addition, a
summary of the most significant findings, their implications, and potential directions for
further investigation completes the thesis.

1.1 Background

The rapid advancement of AI-based technologies has transformed numerous industries
and processes. From Alan Turing’s pioneering contributions to computer science through
the development of the perceptron and the subsequent initial neural network architecture
(the multilayer perceptron) in the mid-20th century, to the recent boom in deep learning
(DL) algorithms that have driven remarkable advancements in fields like natural language
processing (NLP) and computer vision (CV), machine learning has become an integral part
of our daily lives.

The 21st century brought rapid advancements as AI has significantly evolved with im-
provements in deep learning, natural language processing, and AI’s integration into various
industries, demonstrating profound impacts on technology and society [5], such as the well-
known large language model named GPT-3 [6]. According to a study conducted by Gartner,
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the adoption of AI and machine learning technologies has increased by 270 % in the past
four years [7]. As a result, concerns about the awareness of the trustworthiness of these
systems, particularly regarding bias and fairness, has grown in recent years. Researchers
must ensure that these systems do not perpetuate negative social impacts on minority groups
discriminated against based on gender, ethnicity, or disability, among others.

Furthermore, in machine learning there is also the unrelated problem of regressiveness in
performance, which comes from the term regression, very well known in classical software
development. This concept refers to a decline in software performance or functionality
followed by an update. Similarly, in ML-based systems, updates are also required for various
reasons, such as the availability of new data or models, and the need to optimize different
technical or ethical metrics. The updated versions of ML models are designed to improve the
average performance not taking into account the sample-wise performance (i.e. performance
on specific predictions). Consequently, in classification tasks, an update may decrease the
average number of misclassifications while introducing misclassification on samples that
were correctly predicted in the old model. These newly introduced misclassifications are
called negative flips (NF) [8] and the need for reducing them is a challenge in different
applications [9], [10].

While there is significant literature on algorithmic unfairness, the concept of regression
in ML is relatively new in the literature. Research has focused on developing methods to
handle new data more effectively, making the regression in model updates a less prominent
area of research focus. Accordingly, ongoing and future investigation needs to continue
exploring and refining such strategies that consider the multifaceted nature of bias in data
and that minimize the regression of accuracy and/or fairness in machine learning models
aligned with the existing laws and international human rights standards according to the EU
AI Act [11]. This study reviews existing research dedicated to fairness in machine learning,
as well as techniques and metrics for identifying and reducing biases [12]. Specifically,
new methodologies to deal with unbalanced regression within the SVM framework are
proposed, allowing us to focus for the first time on the intersection between unfairness and
regressiveness.
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1.2 Significance

The awareness of bias and (un)fairness, and the consequent research emerged after the
1964 US Civil Rights Act [13], [14] marking a significant turning point in the fight against
discrimination. Furthermore, discriminating based on certain criteria was illegal as it ex-
plicitly prohibited the unfair treatment of individuals based on their protected attributes (e.g.
gender, race, disability [7], [15]). However, as machine learning relies on human-produced
data, biased and unfair algorithms are still present nowadays. One clear example is seen in
the COMPAS dataset, used for the prediction of recidivism in the criminal justice system,
which has been found to disproportionately classify black defendants as high risk compared
to white defendants with similar backgrounds [1]. Beyond this example, there is still a wide
range of unfair examples, including hiring practices [4], credit scoring [16], and healthcare
decision-making [17].

In addition to these concerns, the issue of regression in machine learning systems, while
less studied than unfairness, also requires attention. This work addresses the intersection of
technical and ethical debt, focusing specifically on the mitigation and interaction between
regression (i.e., the tendency of updated models to fail predictions that were correctly
performed by older versions of the model [8]) and unfairness (i.e., the tendency of algorithms
to perpetuate or amplify historical biases against sensitive groups [18]).

The significance of this study lies in its potential to tackle the problem of unfair regression
in machine learning algorithms, which can have serious implications across various fields
since it perpetuates bias in the predicted outcomes. Therefore, by studying the intersection
between regression and fairness we are able to ease this problematic behavior in the con-
tinuous updates in ML. On the whole, this study contributes to the development of more
equitable and ethical machine learning systems, ensuring no human is discriminated against
for its gender, ethnicity, (dis)abilities, or social status [19].

1.3 Objectives

The main study objective is to develop novel methodologies to mitigate unbalanced
regressiveness in model updating, with resulting accuracy and/or fairness increase within
machine learning systems. To achieve the general goal of enforcing regressiveness to be
equally distributed with respect to the sensitive attribute, more specific objectives are outlined:
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1. Conduct deep research on the existing state-of-the-art techniques for bias mitigation
and identify the main gaps in the literature.

2. Define the phenomenon of Unfair Regression and show its existence by testing it on
standard SVM models and relative updates.

3. Propose a first mitigation acting only on the model selection phase, i.e., taking into
account the unfair regression in the hyperparameter tuning process.

4. Develop a novel in-processing technique introduced as the second mitigation strategy
aimed at minimizing the occurrence of negative flips difference between discriminated
and non-discriminated groups, i.e. unfair regression, within the SVM framework.

5. Evaluate the effectiveness of the new methodologies in mitigating unfair regression
during model updates.

6. Determine how this introduced metric correlates with already existing fairness metrics
in the present literature.

7. Assess how these proposed approaches can be integrated into existing machine learning
frameworks without compromising performance.

8. Explore the vast implications of reducing unfair regression on the trustworthiness and
ethical considerations of AI applications.



Chapter 2

Literature Review

This literature review highlights the importance of fairness in machine learning models by
examining techniques for mitigating bias in such algorithms. More specifically, this section
examines how fairness and regressiveness are currently approached in machine learning,
discusses relevant studies, and points out areas that need further research.

2.1 Related Work

Algorithmic bias and its effects on social equality have become more of a concern as
machine learning becomes increasingly common in major sectors like finance [16], healthcare
[20], and criminal justice [1]. As a result, several fairness evaluations and comparative
works have been introduced in the last decade. Methodologies can be categorized into
pre-processing of data [21, 22, 23, 24], in-processing in the model training, [15, 25, 26, 27,
28, 29], and post-processing on the model outputs [30, 31, 32]. For an extensive review of
the mentioned methodologies refer to Section 3.4).

In the present work we focus on the techniques that incorporate fairness constraints during
the training phase, resulting in the already defined in-processing techniques. Complementary
to the literature reviewed, some other works are presented as a constrained optimization
[33, 34]. However, this methods present certain limitations, as highlighted by Kamishima et al.
work [35], where the lack of a convex objective function yield solutions of logistic regression
trapped in local minima. In Table 2.2, leading research of in-processing techniques for fair
algorithm development is highlighted together with their main findings and limitations.
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On the other hand, regressiveness in machine learning systems is still a less-explored
topic. Some works are presented in the literature such as the research of Angioni et. al. [9]
which deals with the fact that model updates may not only induce a perceived regression of
classification accuracy via negative flips but also a regression of other trustworthiness-related
metrics, such as adversarial robustness. Another example of efforts made on regressiveness
mitigation is the work of Yan et. al. on Positive-Congruent Training: Towards Regression-

Free Model Updates [8], in which a simple approach for positive-congruent (PC) training is
proposed which enforces congruence with the reference model by giving more weights to
samples that were correctly classified. A brief overview of the mentioned research can be
found in Table 2.2.

Table 2.1 Highlighted works in the current literature on fairness in ML within in-processing tech-
niques.

Author(s) Research Title Main Findings Limitations

Agarwal et al.,
2018

A Reductions Approach to Fair
Classification

Introduced a reduction approach to
fair classification by turning the
problem into a sequence of
cost-sensitive problems.

May not generalize well across all
types of data distributions.

Celis et al., 2019 Classification with Fairness
Constraints: A Meta-Algorithm
with Provable Guarantees

Provided a meta-algorithm with
provable guarantees, capable of
handling multiple fairness
constraints.

Complexity increases significantly
with the addition of multiple
constraints.

Goel et al., 2018 Non-Discriminatory Machine
Learning through Convex
Fairness Criteria

Proposed convex fairness criteria
that facilitate non-discriminatory
learning in a convex optimization
framework.

Primarily theoretical; real-world
application and effectiveness can
vary.

Manisha and
Gujar, 2018

A Neural Network Framework
for Fair Classifier

Developed a neural network
framework for fair classification,
aiming at fairness in neural network
training.

May require significant
computational resources;
effectiveness is dependent on
network architecture and size.

Zhang et al., 2018 Mitigating Unwanted Biases
with Adversarial Learning

Applied Adversarial Learning to
mitigate unwanted biases by
training a predictor and an
adversary simultaneously.

Adversarial training can be unstable
and may lead to reduced model
accuracy.

Zafar et al., 2017 Fairness Beyond Disparate
Treatment & Disparate Impact:
Learning Classification without
Disparate Mistreatment

Introduced fairness definitions
beyond disparate treatment and
impact, focusing on avoiding
disparate mistreatment.

Balancing fairness with accuracy
can be challenging, especially with
strict fairness constraints.

Zafar et al., 2017
(Fairness
Constraints)

Fairness Constraints: A
Flexible Approach for Fair
Classification

Provided mechanisms to
incorporate fairness constraints
directly into classifier training
processes.

The constraints can limit the
classifier’s predictive performance
and scalability.
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Table 2.2 Highlighted works on regression in model updates of ML systems.

Author(s) Research Title Main Findings Limitations

Toneva et. al., 2018 An Empirical Study of
Example Forgetting during
Deep Neural Network
Learning

Defines a "forgetting event" to have
occurred when an individual
training example transitions from
being classified correctly to
incorrectly over the course of
learning.

Studies implicit negative flips
during training of a single model.

Yan et al., 2019 Positive-Congruent
Training: Towards
Regression-Free Model
Updates

Proposes a simple approach for
positive-congruent training, Focal
Distillation, which enforces
congruence with the reference
model by giving more weights to
samples that were correctly
classified.

It is not generalized for tracking
both accuracy and fairness metrics
in the regression of model updates.

2.2 Gap in Literature

State-of-the-art literature offers a wide variety of fairness metrics to be used for bias
measurement. However, there is still no consensus on which is "the best" definition of fairness
since it is typically impossible to achieve multiple definitions simultaneously [36, 37]. As
a result, the choice of the metric remains a debated topic. Moreover, there is a significant
research gap regarding a formal and comparative study of each metric’s strengths and
limitations. The literature further outlines algorithms in the three categories aforementioned:
pre-processing, in-processing, and post-processing. Each category has its advantages and
disadvantages, and different fairness metrics are used to address bias in each. Concurrently,
restrictions and recommendations exist on which types of algorithms to use. However, a
systematic approach is still missing that allows the research community to choose the optimal
technique for their specific application. More importantly, the intersection between fairness
and regressiveness in machine learning is still an unexplored topic.

As a result, in this work, we propose a new methodology to mitigate unfair regressiveness
in machine learning systems, by introducing a novel fairness metric based on the so-called
negative flips, named Unfair Regression. Considering positive NF or total NF it is also
possible, however, these two expressions of the same metrics are analogous to considering
the difference in equal opportunity (DEO) or difference in demographic parity (DDP) in
standard definitions of fairness.
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The algorithm developed in this work is intended to minimize the difference between
negative flips in sensitive and non-sensitive attributes (i.e. unfair regression) while preserving,
as much as possible, the accuracy during the optimization of a classification problem using
a support vector machine (SVM). Therefore, this method aims to present a cutting-edge
approach that allows us to measure and minimize untrustworthiness and unfair regression in
machine learning systems.



Chapter 3

Theoretical Background

3.1 Fundamentals of Machine Learning

Artificial Intelligence can be defined as the capability of a computer system and machine
to perform tasks that traditionally require human intelligence. Furthermore, what makes a
machine intelligent is the ability to memorize things. Nowadays, when we talk about artificial
intelligence, in most cases we refer to machine learning systems. As aforementioned, ML is
a branch of AI that allows computers to learn from data and improve their performance over
time without explicit programming. These algorithms can identify patterns and relationships
within data, extract meaningful insights, and make predictions or decisions based on those
patterns. This ability to learn from data enables ML systems to automate tasks, recognize
speech, classify images, and more.

Within ML systems, we can distinguish three fundamental approaches: supervised learn-
ing, unsupervised learning, and reinforcement learning. In supervised learning (SL) the
algorithm learns from labeled examples to make predictions or classifications. On the other
hand, unsupervised learning involves learning from unlabeled data, where the algorithm is
not provided with any target label and it aims to extract meaningful hidden patterns. Rein-
forcement learning is a distinct branch of ML where the computer learns to interact with an
environment and takes actions to maximize a reward signal. ML becomes Deep Learning
(DL) when a neural network architecture is employed to perform tasks of any of the three
aforementioned branches.
Along all these approaches, there exist multiple algorithms, and the choice depends on the
task’s main objective and the data’s nature.
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In the present dissertation, bias mitigation techniques are built and achieved within the SL
framework for classification tasks, using the well-known learning algorithm named support
vector machine.

3.1.1 The Supervised Learning Problem

Supervised learning aims to classify an unknown system, or rule, to a specific outcome.
From a mathematical notation point of view, by observing the system or rule, S : X → Y ,
which maps a point x from an input space X , into a point y of an output space Y , we can build
a rule (i.e. a learning machine) ℜ : X → Y , that similarly maps a point x ∈ X , into a point
ŷ ∈ Y , as displayed in Fig. 3.1. We can define the space Z as the cartesian product between
the input and the output space, Z = X ×Y , being z ∈ Z a point in this space. From the system
S, a series of n examples can be obtained, which compound the dataset Dn. Therefore, the
goal of supervised learning is to project Dn ∈ Zn into a rule ℜ selected from a predefined set
of possible rules, R, during the learning phase [38].

Figure 3.1 Graphical representation of the supervised learning problem.

Given a labeled dataset Dn = {(xi,yi), . . . ,(xn,yn)} that consists of n examples, we can
consider that there is some specific unknown function f within a set of functions F , f ∈ F ,
that best represents the mapping from an input space x ∈ X to an output space y ∈ Y of our
machine ℜ: ŷ = f (x).

Then, the quality of the learning machine, ℜ, that mimics the system’s behavior, S, for
a determined set of data Dn, can be measured through the loss function ℓ, mathematically
described as ℓ(ŷ,y) : Z → R, which quantifies the difference between the predicted output
ŷ = f (x) and the actual output y for a given input x.
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3.1.2 The Classification Problem: Support Vector Machines

SVMs as classifiers became well-known in the 1990s and early 2000s for their excellent
performance in a variety of contexts [39]. SVMs are particularly well-suited for binary
classification tasks, where the objective is to identify the optimal hyperplane that separates
two classes in an n-dimensional feature space. This hyperplane is selected to maximize
the margin, which is the distance between the hyperplane and the closest data points from
each class, known as support vectors. The SVM aims to minimize classification errors by
balancing the trade-off between a wider margin and the penalty for misclassification.

Figure 3.2 Linear Support Vector Machine classification based on two predictors (x1, x2).
Classification hyperplane (-) and maximal margins (- - -) are shown.

The SVM approach is fundamentally grounded in the concept of finding this optimal
separating hyperplane, mathematically defined in Eq. 3.1. Those points that lie immediately
next to the separating hyperplane, namely the support vectors, are the most critical elements
when defining the decision boundary. However, by focusing on these support vectors rather
than on the entire dataset, SVMs can handle high dimensional spaces efficiently and are less
vulnerable to overfitting.

w⃗ · x⃗+b = 0 (3.1)
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The Kernel-Trick

Theoretically, when data is not linearly separable in the original future space, a transfor-
mation can be applied to project the data into a higher-dimensional space where a linear
separation is possible [40]. However, applying such transformation directly may be too
computationally expensive, especially with high-dimensional data. To address this issue,
SVMs take advantage of the "kernel-trick", which enables them to efficiently operate in
high-dimensional spaces without explicitly computing the transformation [41].

The kernel function computes the dot product of the data points in the transformed feature
space directly, allowing the SVM to construct a non-linear decision boundary in the original
space [42]. Different kernel functions can be employed depending on the problem, each
specifying a different kind of decision boundary. Commonly used kernels include the linear
kernel, which is effective when data is approximately linearly separable, and non-linear
kernels such as polynomial and radial basis function (RBF) kernels. The choice of kernel
significantly impacts the performance and complexity of the SVM model. Non-linear kernels,
such as the Gaussian kernel, are more versatile and particularly powerful in capturing complex
decision boundaries but require careful tuning of additional hyperparameters.

Hyperparameters

The primary hyperparameter in SVMs is the regularization parameter C, often referred
to as the box constraint. The parameter C controls the trade-off between achieving a low
training error and a large margin. A smaller value of C allows for a wider margin at the
cost of some misclassifications, promoting better generalization to unseen data. Conversely,
a larger C prioritizes reducing training errors but may lead to overfitting, as it results in a
narrower margin.

When using non-linear kernels, an additional hyperparameter must be optimized, such as
the γ (gamma)parameter in the Gaussian kernel. The γ parameter determines the influence
of individual training samples on the decision boundary. A low γ value implies that the
influence extends far, resulting in smoother decision boundaries, while a high γ value leads
to a more complex model with decision boundaries that closely follow the training data [43].
Proper calibration of these hyperparameters is crucial to the performance of the SVM, as
they directly influence the classifier’s capacity to generalize to new data.



3.1 Fundamentals of Machine Learning 15

3.1.3 Model Selection and Error Estimation

Training an algorithm and evaluating its performance on the same data usually yields
overfitting, the event when an algorithm becomes too specific for the trained data and fails in
generalizing and predicting to new, unseen data. This phenomenon was first explored in the
early 30s by Larson et. al., [44] and, consequently, many efforts were made to fix this issue.
As a result, Cross Validation (CV) was raised in the 70s [45, 46, 47] proving that testing the
output of an algorithm on a new set of data – the so-called test set– brought to more reliable
performance estimates.

At this point, we can define model selection as the process of choosing the best-performing
model among a set of candidate models and/or a set of hyperparameter ranges based on their
relative performance. In classification tasks, CV is a popular strategy for model selection,
based on splitting data into multiple subsets: training the model on the subset of data called
the training set, and evaluating its performance on another subset called the validation set.
Then, CV selects the configuration with the smallest estimated risk. The main foundation of
CV relies on the assumption that data are identically distributed and the training and validation
sets are independent, i.i.d. This makes this method well suited to almost any algorithm in
almost any framework, for instance in classification as demonstrated in previous works
[48, 49]. Furthermore, Arlot et al. in 2010 [50], proved through empirical experiments that
in the framework of binary classifications CV yielded almost always to the best performance.
In the present work, the CV strategy and its modification are used to determine the optimal
hyperparameters to train the support vector machines.

Then, an algorithm AH characterized by a set of hyperparameters, H , permits the design
of a rule ℜ ∈ R whose performance can be measured through the loss function ℓ. The quantity
we want to measure is the generalization error, which is the error that the model will perform
on new unseen data.

L(ℜ) = L( f ) = Ezℓ( f ,z) (3.2)

Since the probability distribution over the set of points in the space Z is unknown, L(ℜ)

cannot be computed and therefore, must be estimated. This yields to the empirical error
expression:

L̂(ℜ,Dn) =
1
n ∑

z∈Dn

ℓ( f ,z) (3.3)
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In addition, to select the best algorithm and hyperparameters configurations, A ∗
H ∗ , in a

set of possible ones, we will define f ∗ as the model built with the algorithm A ∗ and set of
hyperparameters H ∗, which allows achieving a performance close to the optimal one.

Summarizing, the CV technique is intended to select the best algorithm with the optimal
hyperparameters in a set of possible algorithms with a set of possible hyperparameters. Since
we assume data is i.i.d, the optimal algorithm should be able to achieve a small error on a
dataset that is independent of the training set.

Double-step Cross Validation

A novel validation procedure, first introduced in the research of Donini M., Oneto L., et
al. [51], is used for the hyperparameter selection. This procedure, in two steps using 10
folds, is expected to improve not only the hyperparameter selection in terms of accuracy but
also in fairness. The first step of the double-step CV focuses on maximizing the accuracy
by evaluating different hyperparameter configurations and identifying the set of values that
yield the best metric values, which correspond to a pre-set value of above 97% of the best
accuracy. Then, in the second step, the CV procedure is repeated, taking into account only
the earlier best-selected hyperparameters and choosing the optimal values that generate
the lowest negative flip rate difference between the sensitive and non-sensitive groups. An
exemplification of its foundation is shown in Figure 3.3.

The double-step CV algorithm is implemented in the present work to examine which is the
effect of enhancing the model selection phase on the accuracy and fairness metrics we assess.
This approach is critical in scenarios where high accuracy can sometimes lead to unintended
biases against certain groups. By incorporating the double-step CV, we aim to create a more
balanced model that not only performs well overall but also adheres to fairness principles.
This methodology is tested on all the selected datasets, comparing traditional single-step CV
results with those obtained through the double-step CV.
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Figure 3.3 Double step cross validation exemplification. This method is employed to determine the
hyperparameters by taking into account both accuracy and fairness metrics. A filtered list of the best

accuracies is used for a second cross validation where the negative flip metric is considered.

3.2 Bias and Fairness in Machine Learning

As prediction-based decision algorithms are increasingly adopted by several organizations,
concerns about the bias and (un)fairness in the models used arise. Systems that have an impact
on people’s lives create ethical responsibilities about making fair and unbiased judgments
regardless of social aspects such as race, gender, class, and the like [52]. Recognizing and
reducing bias and unfairness can be a tough undertaking task since different notions may
be perceived between cultures [53]. Consequently, (un)fairness criteria are influenced by
many factors such as user experience, as well as cultural, social, historical, political, legal,
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and ethical factors [54]. However, in this dissertation, state-of-the-art definitions and notions
are used to address the main goal of building a fair algorithm under newly introduced fair
metrics.

One of the most relevant and orotund cases of racial bias is found on the COMPAS dataset
(Correctional Offender Management Profiling for Alternative Sanctions) from which judges
and parole officers use a popular commercial algorithm for scoring criminal defendant’s
likelihood of reoffending (recidivism). It has been shown that the algorithm is biased in favor
of white defendants, and against black inmates, based on a 2-year follow-up study (i.e who
actually committed crimes or violent crimes after 2 years) [1]. In such analysis, Larson et. al.
showed a notable pattern of mistakes measured by precision and sensitivity.

Figure 3.4 A famous example of two criminals that were scored using the COMPAS algorithm.
Bernard Parker, left, was rated high risk; Dylan Fugett was rated low risk despite of his critical history.
Source: Josh Ritchie for ProPublica [1].

To understand the basics and main causes for the present bias in machine learning and the
consequent unfair algorithms, in the following subsections various sources of bias and their
impact on fairness are explored.

3.2.1 Definitions and Forms of Bias

Bias can be defined as a systematic error that, under the context of fairness, places the
privileged groups at the advantage of having a positive outcome. We understand a positive
outcome as a favorable prediction to the recipient, such as receiving a loan, being hired for a
job, or not being arrested.
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The ways in which human bias can affect a dataset used to train a ML model are, unfortu-
nately, still copious [7, 12, 36]. Between these several means in how human misperception
can be transferred to the algorithms, we can distinguish between different ways through
which bias in machine learning models is introduced, according to [7]:

• Training data: since machine learning models learn from training data, if this is
corrupted, the resulting model will be so.

• Label definitions: when the target label contains unclear information about the out-
come, incorrect predictions may result, leading to biased decisions.

• Feature selection: when using features that are not significant for the real-world model
application, bias against protected groups can occur.

• Proxies: proxies are variables that are not explicitly sensitive variables such as gender
or ethnicity, but that may represent them. For instance, using height and body weight
as proxies for gender can introduce bias in certain applications.

• Masking: even when deleting any sensitive attributes or proxies, to achieve a new
representation of the data, new features, known as masked features, might be created
to take the place of the other attributes. As a consequence, bias will still be present.

Overall, bias is a significant problem to address and can manifest in various ways, as
previously mentioned. This issue is particularly concerning because it can be subtle and not
easily detected without a thorough analysis of the data and models. Additionally, individuals
are not always aware of their own prejudices, which can inadvertently contribute to unfairness
in machine learning.

3.2.2 Sensitive Variables: the Unprivileged Groups

The sensitive variable concept, also often referred to as protected attribute, was first intro-
duced when researchers began to study the field of fairness in machine learning in the early
2010s [55]. The nature of the problem of proving models to be biased and unfair, developed
the need to identify and categorize those variables that were found to be discriminated, so that
received an unfavorable treatment. Not as a surprise, those attributes for which predictions
were biased, corresponded to unprivileged classes such as colored-skin people, women, the
LGTBIQA+ collective, foreigners, disabled people, and/or aged individuals.
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One pioneer work discussing sensitive variables’ role in machine learning was Moritz
Hardt, Eric Price, and Nathan Srebro’s paper, "Equality of Opportunity in Supervised Learn-
ing," presented at the 2016 Neural Information Processing Systems (NeurIPS) conference
[30], where a criterion for fairness in machine learning models that consider sensitive at-
tributes was introduced to ensure equal opportunity. From now on, several studies have been
carried out that aim to formalize and establish a detailed methodology to address this issue,
as well as to discuss what can be considered a protected attribute.

In the present work, we will focus on the groups based on ethnicity, gender, and origin, the
sensitive variables being racial people, women, and foreigners, respectively. Our goal is to
mitigate any kind of bias towards any group, removing unfair predictions. The methodology
through which this is achieved is based on the implementation of a fair constraint in the
Support Vector Machine formulation, making it an in-processing approach to bias mitigation.

3.2.3 Metrics for Predictive Analysis and Fairness

Defining fairness has become a huge topic in machine learning since is a complex and
multifaceted aspect and thus many notions and perspectives may be considered. Far from now,
there is no unique, comprehensive definition of fairness but a set of proposed metrics that
measure fairness instead. According to previous works [52, 56], more than twenty different
notions of fairness have been proposed, and which to use in each circumstance is still up for
debate [51, 57]. Nevertheless, a general notion of fairness can be defined as a quantification
of how much undesired bias exists in training data or a model. As a result, researchers
have been working on defining mathematical expressions that serve as metrics to assess
(un)fairness. As mentioned, more than 20 expressions are found in the literature, however,
all of them fall into two larger categories that allow us to represent different perspectives
on what means for an algorithm to be fair. The first category is denoted as group fairness,
which is also known as statistical fairness, and aims to achieve equality by focusing on group
membership, such as gender or ethnicity. Meanwhile, the second group, individual fairness,
aims to achieve equitably at the level of individuals, regardless of their group. Further remark,
is that most of the fairness definitions rely on the well-known statistical metrics retrieved
from the confusion matrix.

From this table, the different definitions can be taken out:

• True positive (TP): when the predicted and true outcomes both correspond to the
positive class.
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• False positive (FP): an outcome predicted to be in a positive class when the true
outcome belongs to the negative class.

• False negative (FN): an outcome predicted to be in the negative class when the true
outcome belongs to the positive class.

• True negative (TN): when the predicted and true outcomes both correspond to the
negative class.

Figure 3.5 Confusion matrix and classification metrics for a binary classification problem.

From the definitions retrieved from the confusion matrix, several statistical metrics can be
defined, such as the ones summarized in Table 3.1. While these metrics are often considered
to evaluate the statistical performance of the classifiers, they can also be used to study
the performance in fairness as well as potential trade-offs in algorithmic fairness. In fact,
since the increasing popularity of algorithmic fairness, most of the metrics fairness recently
introduced rely on some of the definitions presented.

In this work, a couple of the fairness notions already introduced in the current literature
are explained as well as used to assess the model performance. Furthermore, we will prove
that it is not possible to satisfy different fairness metrics simultaneously. The metrics chosen
include demographic parity [22, 35, 58] and equal opportunity [30, 32, 59], which belong to
the larger category of group fairness.
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Table 3.1 Classification metrics.

Metric Formula Description

Accuracy T P+T N
T P+T N+FP+FN Overall percentage of correct

classifications

Sensitivity, Recall, True Positive Rate T P
T P+FN Percentage of true label 1 ob-

servations that were classified
as label 1

Specificity, True Negative Rate T N
T N+FP Percentage of true label 0 ob-

servations that were classified
as label 0

False Positive Rate FP
FP+T N Percentage of true label 0 ob-

servations that were classified
as label 1

False Negative Rate FN
FN+T P Percentage of true label 1 ob-

servations that were classified
as label 0

Precision T P
T P+FP Percentage of predicted label

1 observations that were cor-
rectly classified

F1 score 2 · Precision·Recall
Precision+Recall Measures accuracy via a com-

bined recall and precision met-
ric

For the following mathematical definitions, the problem of binary classification is con-
sidered and the following notation is used: y ∈ {0,1}: target variable (e.g. the applicant
deserves or not to be hired, where 1 is the advantageous outcome), ŷ = 1 denotes a prediction
with a positive outcome, S ∈ {a,b}: a binary sensitive attribute where a is the unprivileged

class and b is the privileged class.

Demographic Parity

DP was one of the first fairness metrics suggested in the fairness literature [22, 35, 58] and
one of the most well-known [36]. This metric can be defined as the probability of having
a positive outcome regardless of the group membership. This can be also expressed as the
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probability of achieving a favorable label for the protected class equal to the probability of
achieving a favorable label for the unprotected class:

P(ŷi = 1|Si = a) = P(ŷ j = 1|S j = b), ∀a,b, i ̸= j (3.4)

Therefore, an algorithm is considered fair if it accomplishes this equality. In particular,
the metric of difference in demographic parity is defined as the difference between the
demographic parity computed on the two different groups, which is desired to be as close to
zero as possible:

DDP = |DPS=a = DPS=b|= 0 (3.5)

Equal Opportunity

While demographic parity only focuses on the percentage of observations with favorable
predictions, the introduced metric of equal opportunity, suggested by several authors [30, 32,
59], considers two different classification metrics: False Negatives and True Positive. The
first one, means predicting a positive label when the true label is negative (i.e. P(ŷ= 0|y= 1)),
whereas the second one focuses on predicting the positive labels correctly (i.e. P(ŷ= 1|y= 1).
From these quantities, we can compute the True Positive Rate, defined as follows:

T PR =
T P
FN

(3.6)

For a binary classification problem, where 1 is the positive outcome (i.e. getting a loan or
not being arrested), Equal Opportunity can be defined as:

P(ŷi = 1|Si = a,yi = 1) = P(ŷ j = 1|S j = b,y j = 1), ∀a,b, i ̸= j (3.7)

Specifically, a classifier is considered fair under equal opportunity if the true positive rate
matches both sensitive and non-sensitive attributes, according to:

DEO = |T PRS=a −T PRS=b| (3.8)

Unexplored Metrics

Most of the fairness metrics, such as those previously introduced, are predictive analysis-
based. Instead, this research introduces an unexplored notion of fairness based on changes in
a model’s predictions from correct to incorrect outcomes, or rather, NF. Before we proceed
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further, it is important to understand the background and theoretical framework of the newly
introduced metric we will be discussing. To simplify this understanding, the phenomenon of
regression in model updates is first introduced, which yields to explore the concept of the
negative flip.

3.3 Regression in Model Updates

Technical debt in software engineering refers to the long-term consequences of taking
shortcuts or making sub-optimal decisions during development, which can lead to increased
maintenance costs and difficulties in the future [60]. While the expectation of updating
a model is that only improvements will occur, a decline in performance may happen on
some occasions, leading to the well-known regression in machine learning. Regression and
technical debt are closely related since the more technical debt is accumulated, the higher the
likelihood of regression during model updates. This is because the system becomes more
fragile and harder to manage, leading to unexpected issues when changes are made.

In particular, regression in model updates can be manifested through negative flips, a
phenomenon exemplified by an increase in overall accuracy, but with the misclassification
of some predictions that were correctly predicted in the old version of the model [8], which
is naturally felt as a step backward. Mathematically, we can define a negative flip if the
following event is observed:

ŷold
i = yi and ŷnew

i ̸= yi (3.9)

More specifically, we can define the negative flip rate (NFR) which measures the fraction
of samples that are affected by a negative flip, according to the following expression, where
N is the total number of i samples.

NFR =
1
N

N

∑
i=1

(ŷnew
i ̸= yi, ŷold

i = yi) (3.10)

As aforementioned, when a machine learning model is updated, it’s expected to perform
better or at least maintain its performance across all metrics and groups. However, if the
new model shows a decline in accuracy specifically for the sensitive variables (like gender or
race), it creates an imbalance, leading to unfair regression.
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Figure 3.6 Regression in model update: when updating an old classifier (-) to a new one (- -), we can
introduce errors that the old classifier did not make (negative flips, bottom-left, red).

3.3.1 Unfair Regression

Bias is introduced through regression when an updated model’s accuracy decreases only
for a specific class, maintaining or even increasing the other class’s performance. This
decrease in accuracy can be due to the negative flips presence, in the way that a new model
incorrectly predicts the output for a test sample that the old model correctly classified. If
these incorrect predictions disproportionately affect one group (e.g., female users), it results
in unfair treatment, where the new model is systematically worse for a specific group. This
imbalance in negative flips between classes of the same attribute (e.g., male vs. female) is a
critical fairness issue, leading to unfair regression (UR).

Given the regression metric defined in Eq. 3.10, it is possible to assess how fair a model
is, by quantifying the difference of negative flips that occur for a specific class through UR,
which ideally should be as close to zero as possible.

UR = |NFRS=a −NFRS=b| (3.11)
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In an optimization scenario, we can generalize this equation by setting a threshold, ε , of
unfairness that one is willing to pay. For the particular case study of this research, ε is set to
0.

UR ≤ ε, being ε = 0 (3.12)

Summarizing, our state-of-the-art methodology aims to mitigate unbalanced regressiveness
in accuracy and fairness by means of an optimization problem that encompasses a trade-off
between accuracy and negative flips during the model training.

3.4 Approaches to Mitigate Bias: Fair Algorithms

In the current state-of-the-art literature there exist many algorithms that assist in improving
fairness [7, 22, 31, 51, 61, 62, 63, 64, 65, 66]. Almost all of them belong to three different
approaches depending on the stage of the machine learning pipeline where fairness is imposed,
see Fig. 4.1. In short, these different strategies involve pre-processing algorithms, if fairness
is set before the training; in-processing algorithms if fairness is imposed during the training
phase; and finally post-processing algorithms for those that modify the outcome to enforce
fair predictions.

Pre-processing The first technique includes pre-processing algorithms, based on altering
the original dataset before it is used for training. In this way, the algorithm applied makes it
possible to readjust the features and labels in the original data to ensure that the training data
is diverse and representative of the population. In general, this approach can only be used for
optimizing demographic parity or individual fairness as it does not contain the information
of the target [36]. Some of these algorithms comprise techniques like fair representation
learning [24], resampling, and reweighing [23], among others.

In-processing The second technique aims to incorporate fairness constraints or regulariza-
tion terms during the training process and is the one used in the present work. In this case, the
model is optimized subject to such constraints so that the model output is not biased towards
any particular group. Most of the works in the literature fall into this category [36], as such
methods can be used to optimize any fairness definition [15, 59, 67]. Some approaches
include fair optimization, explainable AI, and adversarial training. However, this approach
has a drawback since it may not be applicable if the classifier is not accessible.
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Post-processing Lastly, post-processing techniques are those that allow fairness to be met
without modifying the classifier [30], as the mitigation attack is done after the model is
trained, i.e. by modifying the outcome decision. Such methods can be used to optimize
most of the fairness constraints except for counterfactual fairness. Some techniques are
thresholding and calibration.

Figure 3.7 Overview of the fair approaches in the machine learning pipeline.

The new methodologies presented in this work are part of in-processing techniques, which
modify directly the learning phase of the machine learning system.

3.5 SVM Under Fairness Constraints: Unfair-Regression-
Free SVM

With the novel metric introduced to address fairness, unfair regression, a new algorithm
emerges for the support vector machine under fairness constraints.
Subject to the UR constraint:

UR = |NFRS=a −NFRS=b|= 0 (3.13)

Let I be the cardinality of samples of a dataset with a correct predicted outcome in the old
model:

I = {i : f old(xi) = yi} (3.14)

Where ISi=a is the number of samples that belong to the sensitive attribute:

ISi=a = Ia = {i : f old(xi) = yi & Si = a} (3.15)

And similarly for the non-sensitive attributes Si = b:
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ISi=b = Ib = {i : f old(xi) = yi & Si = b} (3.16)

Then, our linear support vector machine problem becomes:

1
nIa

∑
i∈Ia

f (xi)−
1

nIb
∑
i∈Ib

f (xi) = 0 (3.17)

Since f (xi) is defined by
f (xi) = ∑

i
wxi +b (3.18)

Combining 3.17 and 3.17 we obtain:

(
1

nIa
∑
i∈Ia

wxi −
1

nIb
∑

i∈I=b
wxi)+b−b = 0 (3.19)

Finally, reorganizing terms,

w(
1

nIa
∑
i∈Ia

xi −
1

nIb
∑
i∈Ib

xi)) = 0, (3.20)

where a = 1
nIa

∑i∈Ia xi − 1
nIb

∑i∈Ib
xi

Similarly, the SVM problem using the Gaussian kernel, can be defined as:

1
nIa

∑
i∈Ia

(
n

∑
j=1

α jy jK(xi,x j)+b)− 1
nIb

∑
i∈Ib

(
n

∑
j=1

α jy jK(xi,x j)+b) = 0 (3.21)

Again, reorganizing and simplifying terms:

n

∑
j=1

α jy j(
1

nIa
∑
i∈Ia

K(xi,x j)−
1

nIb
∑
i∈Ib

K(xi,x j)) = 0 (3.22)

To conclude, the adaptation of the Support Vector Machine framework to incorporate
fairness constraints (i.e. UR) is a determinant step in developing more equitable machine
learning models. We can consistently reduce prediction bias by explicitly including measures
that consider deviations among sensitive variables. This adaptation not only maintains the
algorithm’s predictive performance while improving its fairness but also aligns with legal
and ethical requirements. The mathematical formulations presented here illustrate that it is
feasible to address fairness by changing classic SVM methodologies, and thereby provide



3.5 SVM Under Fairness Constraints: Unfair-Regression-Free SVM 29

the foundation for future study and development in this field. In the following subsection,
the optimization problem under fairness constraints set up in Python is presented.

3.5.1 Optimization Problem

To reach our goal, the support vector machine method must be implemented with fairness
constraints under an optimization problem. This optimization problem is solved with the
Gurobi Optimizer, and in a nutshell, it is implemented by the functions below.

The objective function to be optimized is the regularized loss function, commonly used
in Support Vector Machines (SVMs). For the linear case, we use the following expressions.

min
w,b,ξ

||w||2

2
+C

N

∑
i=1

ξi (3.23)

Within the optimization problem, the constraints include the SVM margin constraints
and the non-negativity of the slack variables ξ , as well as a fairness constraint that adjusts
the decision boundary, as described below.

The margin constraints:

yi(wT xi +b)≥ 1−ξi, ∀i (3.24)

Non-negativity constraints for the slack variables:

ξi ≥ 0, ∀i (3.25)

And the fairness constraints:

wT

(
1

|Si=a| ∑
i∈Si=a

xi −
1

|Si=b| ∑
i∈Si=b

xi

)
= 0 (3.26)

For the non-linear scenario, we have to minimize the following expression:

min
1
2

N

∑
i=1

N

∑
j=1

αiα jyiy jK(xi,x j)−
N

∑
i=1

αi (3.27)

Subject to the following constraints:

N

∑
i=1

αiyi = 0 (3.28)
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N

∑
i=1

αiyi fi = 0 (3.29)

0 ≤ αi ≤C, for i = 1, . . . ,N (3.30)

Where fi is defined as:

fi =

(
1

|Si=a| ∑
i∈Si=a

K(xi,x j)−
1

|Si=b| ∑
i∈Si=b

K(xi,x j)

)
(3.31)

By creating the algorithm that solves this optimization problem, we can conduct a sup-
port vector machine under fairness constraints that maximize the space between the two
classes while minimizing the errors we allow to occur in our problem subject to the defined
constraints. As a result, we hypothesize we will obtain an unbiased and trustworthy classifier.

3.6 Challenges in Bias Mitigation: the Trade-off Between
Accuracy and Fairness

The impact of using fairness metrics on the accuracy performance strongly relies on the
fairness definition used, on the nature of the dataset, and on the algorithms used. Either way,
previous studies on algorithmic fairness showed that in most cases, imposing fairness can
conflict with accuracy: increasing the fairness of solutions concerning subgroups often leads
to a decrease in overall accuracy [21, 59, 64]. This is not a surprise since the objective is
redirected from accuracy to both accuracy and fairness. Therefore, determining potential
trade-offs between both goals is needed. Nowadays, it is still not well understood which
is the actual trade-off to achieve fairness while maintaining the good performance of the
predictor, which is closely related to the regression in both metrics when a model is updated.
Nevertheless, some present works in the current literature allow a systematic evaluation of
potential trade-offs between accuracy and fairness metrics, such as the research done by Haas
et al., 2019, named The Price of Fairness, see [57]. In the cited study, Haas et al. propose a
framework that in a nutshell, calculates the Pareto fronts to optimize hyperparameters and
uses these trade-offs to establish the most appropriate level of fairness for each algorithm.

Despite that, finding the optimal trade-off between accuracy and fairness metrics is out of
the scope of this research, instead, we focus on evaluating the performance by setting our



3.6 Challenges in Bias Mitigation: the Trade-off Between Accuracy and Fairness 31

fairness constraint to a fixed value of zero. This way, we will not only be able to reduce
unfairness, but also assess how the accuracy is affected by the new SVM configuration.



Part II

Section Two



Chapter 4

Methodology

4.1 Research Design Study Overview

When new data becomes available or new algorithms are proposed in the literature, it is
mandatory to ensure the optimal quality of the deployed model by updating (or upgrading)
it, [9], [8]. For this reason, in our methodology, we define f ∗old the "old" model (i.e. the
model trained with the original data and algorithms), and f ∗new the "new" model (i.e. the
model trained with the updated data and upgraded algorithms). Then, two different ways
to make updates 1 are studied, going from f ∗old to f ∗new, in such way to continue to improve
the accuracy of f ∗new with respect to f ∗old , but also minimizing the unfair regression. To do
so, a couple of strategies have been defined: (i) adjusting only the tuning phase, i.e. model
selection phase, by using a refined cross validation method (double-step cross validation);
or (ii) modifying the learning algorithm to account for the unfair regression phenomenon as
well as adjusting the tuning phase.

In both cases, performance and fairness metrics are assessed, and the same set of hyper-
parameters for the cross validation are selected. Additionally, to ensure reliable and robust
outcomes, we trained the classifiers using 30 different random states for splitting the data.
The final metric results are computed as the average across these multiple runs together with
the standard deviations, allowing us to tackle the variability of the results.

In the following subsections, the methodology is carefully set out. Data sources and
preparation are exposed in the first place, followed by the model configurations chosen to

1From now on, we will use the word update for both update and upgrade scenarios for language simplicity
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Figure 4.1 Machine learning sysems-based pipeline.

conduct the analysis. Next, the algorithm design is described and finally, the evaluation
metrics used are defined.

4.1.1 Study Questions and Hypothesis

In this section we list the questions and hypotheses made as a starting point.

Questions
1. Does the type of model update, (i.e. the subset size and kernel function) affect the

model performance when an update is done?

2. What is the mitigation strategy’s impact on the accuracy and fairness metrics?

3. Can we obtain fair classifiers without sacrificing too much accuracy?

Hypothesis
1. Larger subset sizes will generally lead to better model performance due to the increased

amount of training data available, and the non-linear kernels (like Gaussian kernel)
are expected to perform better on datasets with complex, non-linear relationships.
However, within the same dataset, resulting metrics are expected to be more or less
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equal within the different types of updates, indicating the robustness of the mitigation
strategy applied.

2. An enhancement of the fairness metrics (UR) when applying a mitigation strategy is
expected. However, a trade-off between both measures must be studied as we add a
second constraint to the problem.

3. The overall performance can be compromised when the optimization problem is double-
constraint set. However, since we are assessing metrics in model updates which are
hypothesized to perform better, a reasonable increase in accuracy while imposing UR
is expected within the proposed strategies.

4.2 Data Collection and Preparation

This section outlines the sources of data used, providing a detailed overview of the most
important characteristics of each dataset. Note that, the data used to train our models was not
collected but retrieved from pre-existing datasets. Furthermore, data cleaning, preprocessing,
and normalization steps are described.

4.2.1 Data Sources

To conduct the research, four well-known datasets used in fair machine learning (Adult,
Arrhythmia, COMPAS, and German Credit) were employed to evaluate our algorithms.
Further description of each set of data is done next and highlighted specifications are
summarized in Table 4.1.

Adult Dataset

Adult dataset [68] is a database from the UCI repository that contains 12 features of
demographic characteristics for 32,560 examples, where 2,399 are missing values. The
prediction task is to determine whether a person earns over 50K $ a year. Due to time and
computational resources, the dataset has been randomly downsized 30 times in order to make
it possible to achieve the task.

Arrhythmia Dataset

The Arrhythmia dataset [17] from the UCI repository, contains 279 attributes for 452
instances gathered from the study of H. Altay Guvenir, intending to distinguish between the
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presence and absence of cardiac arrhythmia and to classify them in one of the 16 groups.
In the our work, the classification task is reduced to a binary classification problem: to
determine whether there is or not an arrhythmia disease. Therefore the target variable is
binarized in our algorithm to "no illness" against "arrhythmia illness" outcome for any of the
15 different arrhythmia categories.

COMPAS Datset

The COMPAS dataset, an acronym for Correctional Offender Management Profiling
for Alternative Sanctions, is a popular algorithm used in the US criminal justice system
and has recently faced critical examination for being proven biased towards ethnicity. In
particular, the algorithm is used for scoring criminal defendant’s probability of recidivism.
The dataset used for this algorithm contains 10 binary variables and over 6,000 observations.
In this dataset as well, we randomly downsized by six times the number of samples to 1,028
examples due to limitations on time and computational resources.

German Credit Dataset

The German Credit Dataset [69] is a commonly used dataset for evaluating credit risk
and is also employed to assess the presence of bias in machine learning models. It contains
information on about 1,700 loan applicants and includes 20 attributes (7 numerical and 13
categorical) that describe each applicant, such as the purpose of the loan, amount requested,
marital status, age, gender, job, and housing status. Moreover, the target attribute is included
to describe the classification prediction: whether the applicant should be granted with a credit
or not.

Summary

In table 4.1 an overview of the data’s most relevant specifications is done. Note that for
Adult and COMPAS datasets a significant size drop is made, and the final number of features
is 1,025 and 1,028 respectively. An important aspect to be highlighted is the sensitive data
representation. The most balanced dataset regarding the protected attribute, is the Arrythmia
dataset, being equally represented. Adult and COMPAS are shown to be quite unbalanced:
Adult has a higher representation of the non-protected group (66%), while COMPAS has
more data for the sensitive attribute (66%). While this unbalancing is not significant in these
last two datasets, for the German dataset we can report several proportion issues, as up to 96
% of the observations correspond to the protected group of foreigners.
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Table 4.1 Dataset characteristics overview with the related statistics, and the sensitive features
involved. Gender considers the two groups as male and female; ethnicity considers the ethnic group

as white and other ethnic groups; foreign considers being or not being a foreign person.

Dataset Ref. # samples # features Sensitive
Attribute

Adult UCI 1,025 12 Gender
Arrhythmia UCI 452 279 Gender
COMPAS ProPublica 1,028 10 Ethnicity
German UCI 1000 20 Foreign

4.2.2 Data Preparation

Raw data was cleaned, preprocessed and normalized so that it was suitable for further
training and analysis. First, we addressed the problem of missing values consistently accord-
ing to the dataset characteristics. COMPAS and German datasets were complete while Adult
and Arrhythmia had some gaps. For these two last, different approaches were adopted: in
the Adult dataset, we dropped the samples containing any missing values in any feature, as
data was both numerical and categorical, while in the Arrhythmia dataset, which is based on
numerical features, missing values were replaced by the mean of the corresponding column.

To deal with categorical features, we used the so-called get_dummies function build-in
Pandas library to convert those attributes to numerical data suitable for the classification
algorithm, except for the COMPAS dataset, where data is binarized.

Finally, the Scikit Learn preprocessing normalize function was used to normalize data
so that the feature vectors had a unitary norm. We used the default ’L2’ norm, known as
the Euclidean norm, which scaled the input vector so that the sum of the squares of each
element is equal to a unit. The normalization process ensures the features are on a similar
scale, improving the performance and training stability of the model.

4.3 Mitigation Strategies

In this section, we describe how our proposed mitigation strategies are implemented. In
the first place, to simulate model updates, different subset sizes and kernel functions are
considered going from f ∗old to f ∗new, where this last model is supposed to be a more capable
one. The linear kernel is typically well-suited for linearly separable data, while the Gaussian
kernel is chosen for its ability to handle non-linear data separations, potentially improving
model flexibility and fairness in more complex datasets. Moreover, in prior experiments, we
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observed that models trained on the entire dataset and employing a non-linear kernel achieved
superior accuracy. Consequently, configurations using 100% of the data are expected to
have higher overall accuracy due to the larger training set. Similarly, Gaussian kernels are
anticipated to enhance performance due to their capability to manage complex data. Based
on these observations, we define f ∗new as a model that uses more data for the training and/or
the Gaussian Kernel.

Table 4.2 Model configurations varying subset sizes and types of kernel functions.

Model ID Subset Size Kernel Function

1 20 % Linear
2 100 % Linear
3 20 % Gaussian
4 100 % Gaussian

We considered two updating scenarios: (i) Data extension, and (ii) Data extension plus
change on the kernel function. In the first one, we consider the case when the initial set of
data is trained with f ∗old , and then more data become available and we retrain the same model
f ∗new holding the additional data, which means that data of the old model is present on the
new one. On the other side, the second updating scenario does the same as the first type of
model update plus that the kernel function used for generating f ∗new has been changed with
respect to the one used for f ∗old for a more capable one. In our experiments, we used Linear
SVM for f ∗old and Gaussian kernel SVM for f ∗new.

Table 4.3 Considered scenarios for model updating. The new model is the enhanced classifier, while
the old model performs as a reference.

ID
f ∗old f ∗new Improvement

Subset (%) Kernel Subset (%) Kernel

Update Scenario 1 20 Linear 100 Linear Data increase

Update Scenario 2 20 Gaussian 100 Gaussian Data increase

Update Scenario 3 20 Linear 100 Gaussian Change of kernel and
data increase

Two strategies are explored to estimate and mitigate unfair regression in the selected
model updates. The first mitigation strategy focuses on the adjustment of the model selection
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through the implementation of double-step cross validation, carefully described in Subsection
3.1.3. Instead, the second strategy adds a modification in the learning phase to account for
unfair regression in the SVM algorithm.

4.3.1 Mitigation (i): Double-Step Cross Validation

Mitigating unfair regression requires careful tuning of hyperparameters, and within our
objectives, we cannot rely only on one metric, such as accuracy, since it would neglect
the unfair regression aspect. Having this aspect in mind, this strategy incorporates in the
cross validation algorithm an added criteria for hyperparameter selection based on unfair
regression, as already explained in Section 3.1.3. This way, using the SVM algorithm used
from the scikit-learn library, we hypothesize to obtain a fair classifier.

The hyperparameter range for the tuning phase was chosen based on preliminary cross
validation results [51]: for the C parameter, a range of 8 logarithmically spaced values
between 10−4 and 103, and the additional parameter for the non-linear cases, γ , a four-value
range from 0.001 to 1 was set. The hyperparameter optimization was performed through the
GridSearchCV function from scikit-learn for the standard SVM method, while the methods
accounting with a mitigation strategy used our two-step cross validation, where both accuracy
and UR were considered. In all scenarios, the models were subjected to a 10-fold cross
validation to ensure the robustness and reliability of the performance metrics.

Algorithm 1 Simplified Algorithm Snippet for the 2-Step CV: Mitigation Strategy (i)
Require: X_train, y_train, C_values, gamma_values, k f old, CV metric, f ∗old , p = 0.03

1: Step 1: CV to maximize accuracy
2: Perform Grid Search on SVM with the specified kernel over C_values
3: Record accuracies for each C and select values with accuracy above threshold, according

to (1− p)
4: Step 2: CV to minimize UR
5: For each C selected in Step 1, perform CV to minimize UR
6: Return best C and best γ (in case of Gaussian Kernel) based on UR minimization

4.3.2 Mitigation (ii): Unfair-Regression-Free Support Vector Machine

In our second mitigation strategy, we add a constraint on the SVM algorithm, modifying
the learning algorithm, according to Eq. 3.20 and Eq. 3.22. The advantage of this action
is that the learning phase stays aware of our desire to mitigate the unfair regression while
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relying on both metrics in the hyperparameter tuning phase. Therefore, in this new mitigation,
we combine the first strategy with the modification of the learning algorithm. This new model
was implemented using the Gurobi optimizer.

Algorithm 2 Simplified Algorithm Snippet for URFSVM: Mitigation Strategy (ii)
Require: X , y, C, boolS0, bool f old

Step 1: Initialize Model and Variables
2: Create optimization model m and initialize weights w and slack variables ε

Add bias term b to the model
4: Step 2: Define Objective Function

Set the objective function to minimize 0.5 ·wT w+C ·∑ε

6: Step 3: Add Constraints
Add SVM margin constraints and UR constraint based on boolS0 and bool f old

8: Step 4: Optimize
Optimize the model and extract the solution for w and b

10: Return optimized weights w and bias b

4.4 Evaluation Metrics

The performance metrics used to evaluate the models are defined in this section. Our crite-
ria to ensure success, focus on the balance between maintaining accuracy while improving
fairness, and ensuring that the updated model does not disproportionately impact negatively
against any group.

Different types of metrics for evaluating both accuracy and fairness are used. To evaluate
the performance of the classifiers, we use the overall accuracy disaggregated by sensitive
attributes as well as the balanced accuracy. Note that, the accuracy disaggregated by sensitive
attributes also gives us a rough idea of the fairness of the model: if the accuracy is significantly
unbalanced towards any group, it means the classifier may be unfair.

Performance Metrics
• Overall accuracy: gives us a rough idea of how good the classifier is, giving us the

percentage of correct predictions made by the model.

• Disaggregated accuracy: gives us the accuracy separated by attribute.

• Balanced accuracy: very useful in imbalanced data, gives us the arithmetic mean of
the sensitivity and specificity.
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On the other hand, in the standard SVM we use the difference in demographic parity and
the difference in equal opportunity to have a rough overview of the behavior of the classifiers
in terms of fairness. Then, our newly introduced metric, UR, is computed in all models to
examine the effectiveness of our strategies in the different methods.

Fairness metrics
• Difference in Demographic Parity (DDP): computes as the absolute difference of

positive outcomes between groups. This metric is crucial for models that require equal
treatment across demographics. Mathematically defined in Eq. 3.5.

• Difference in Equal Opportunity (DEO): mainly focuses on the true positive rate and it
is calculated as the ratio of correctly predicted positives to actual positives. A notion
of fairness can be yielded by comparing the ratio across the groups. Mathematically
defined in Eq. 3.7.

• Unfair Regression: based on the negative flips difference that happens when a model
update is done in the way that some examples are misclassified in the new model and
were correctly predicted in the old one. Unfair regression stands for the scenario when
regressiveness occurs in an unbalanced way. Mathematically described in 3.11

These metrics are chosen based on their relevance to the regressiveness problem in fairness
and accuracy, providing a balanced view of model performance across different perspectives.
For further description and detailed mathematical notation of the listed metrics, refer to
section 3.2.3.
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Results

In this chapter we test how the methodology presented in the previous section performs
in real-world datasets. It is important to recall our main objective: mitigate unbalanced
regressiveness in accuracy and unfairness within model updates. The different scenarios
to simulate updates are: (i) enlarging the dataset size using Linear SVM, (ii) enlarging the
dataset size using Gaussian kernel SVM, and (iii) enlarging the dataset size plus upgrading
the model modifying the Kernel function of the SVM. Such model updates have been chosen
according to previous results: enhancements were shown in terms of performance when
using rather more data or the Gaussian kernel.

Results are presented in the following order: first, the method using the standard SVM is
presented, proving that unbalanced regression occurs. After that, the results of the models
trained with the first mitigation strategy, namely the 2-step CV, are gathered. Finally, the
results of our second method are displayed, using the URFSVM algorithm as a mitigation
strategy. To ensure statistical significance, we repeated the experiments 30 times.

5.1 Reference Models: Standard SVM

The results of training our data with the SVC algorithm from the scikit-learn library as
well as with the standard cross validation are presented in this section. Accuracy and several
fairness metrics are displayed. In Figure 5.1 the misclassification error is plotted against both
DDP and DEO, showing that the classifier is biased if we are limited to the use of standard
methods.
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Table 5.1 Performance and fairness metrics for the datasets with different kernel methods and dataset
sizes.

Dataset ACC B-ACC DEO DDP

f ∗old : 20% of dataset size with linear kernel

Adult 0.80 ± 0.03 0.67 ± 0.05 0.14 ± 0.10 0.10 ± 0.05
Arrhythmia 0.67 ± 0.04 0.65 ± 0.04 0.46 ± 0.11 0.17 ± 0.03
COMPAS 0.72 ± 0.03 0.69 ± 0.03 0.23 ± 0.15 0.22 ± 0.10
German 0.69 ± 0.03 0.63 ± 0.04 0.34 ± 0.20 0.20 ± 0.13

f ∗old : 20% of dataset size with Gaussian kernel

Adult 0.79 ± 0.03 0.67 ± 0.06 0.17 ± 0.10 0.11 ± 0.06
Arrhythmia 0.68 ± 0.05 0.65 ± 0.05 0.40 ± 0.13 0.25 ± 0.04
COMPAS 0.72 ± 0.03 0.70 ± 0.04 0.23 ± 0.16 0.24 ± 0.10
German 0.69 ± 0.03 0.64 ± 0.04 0.42 ± 0.20 0.22 ± 0.14

f ∗old : 100% of dataset size with linear kernel

Adult 0.71 ± 0.07 0.78 ± 0.04 0.10 ± 0.08 0.31 ± 0.07
Arrhythmia 0.74 ± 0.04 0.74 ± 0.03 0.72 ± 0.06 0.15 ± 0.04
COMPAS 0.72 ± 0.03 0.73 ± 0.02 0.12 ± 0.08 0.22 ± 0.05
German 0.74 ± 0.02 0.64 ± 0.04 0.35 ± 0.13 0.17 ± 0.07

f ∗old : 100% of dataset size with Gaussian kernel

Adult 0.74 ± 0.06 0.79 ± 0.03 0.12 ± 0.09 0.29 ± 0.05
Arrhythmia 0.69 ± 0.04 0.71 ± 0.04 0.84 ± 0.08 0.24 ± 0.05
COMPAS 0.72 ± 0.02 0.73 ± 0.02 0.15 ± 0.09 0.25 ± 0.06
German 0.74 ± 0.02 0.62 ± 0.03 0.37 ± 0.15 0.11 ± 0.07

Figure 5.1 Fairness metrics for the standard SVM. On the left, the normalized difference in equal
opportunity is plotted against the normalized misclassification error. On the right, the same is done
for the difference in demographic parity. Note that, the closer a point to the origin is, the better the

results are in both accuracy and fairness.
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Next, we simulate model updates according to Table 4.3 with no mitigation strategy
applied. The key aspect of this analysis is to observe whether such negative flips occur in an
unbalanced way toward a specific class, i.e. if regression is disproportionately unbalanced.
In such a case, we could say that we are in front of a model update that is promoting bias and
providing unfair predictions.

Table 5.2 Accuracy gain (ACCG) and unfair regression (UR) tested on a model update scenario, for
the different cases considered going from f ∗old to f ∗new.

Dataset UR ACCG

Update Scenario 1: from f ∗old to f ∗new enlarging dataset size maintaining Linear SVM

Adult 0.28 ± 0.02 0.01 ± 0.07
Arrhythmia 0.14 ± 0.06 0.01 ± 0.07
COMPAS 0.03 ± 0.02 0.00 ± 0.04
German 0.12 ± 0.06 0.00 ± 0.05

Update Scenario 2: from f ∗old to f ∗new enlarging dataset size maintaining Gaussian kernel SVM

Adult 0.28 ± 0.02 0.03 ± 0.09
Arrhythmia 0.27 ± 0.09 -0.05 ± 0.06
COMPAS 0.03 ± 0.02 0.00 ± 0.03
German 0.12 ± 0.06 0.00 ± 0.03

Update Scenario 3: from f ∗old to f ∗new enlarging dataset size plus upgrading the kernel function

Adult 0.28 ± 0.02 -0.06 ± 0.07
Arrhythmia 0.25 ± 0.09 0.02 ± 0.06
COMPAS 0.03 ± 0.02 0.00 ± 0.04
German 0.13 ± 0.07 0.05 ± 0.04

Figure 5.2 shows how disparities between sensitive and non-sensitive groups happen
within model updates. Specifically, on the German, Adult, and Arrhythmia datasets, such
differences are bigger than on the COMPAS dataset. From these results, we have a starting
point for a forthcoming comparison and to examine potential trade-offs between accuracy
and fairness.
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Figure 5.2 Normalized percentage of lost accuracy in model updates and unfair regression (UR). The
closer the data point to the origin, the better performance in both accuracy and fairness. Note that the
subscript numeration for the model notation designates the model configuration in terms of dataset

size and kernel function, as listed in Table 4.2.

5.2 Mitigation Strategy (i): Double-Step Cross Validation
Method

Enhanced cross validation procedures play a crucial role in our study, allowing us to
observe and examine how refinements in the tuning phase impact both accuracy and UR. The
novel methodology of double-step cross validation, recently introduced in the literature [51],
has been shown to provide notable improvements in model performance.

While these improved models help fine-tune the model selection process and improve
the robustness of results, it is important to emphasize that they do not incorporate fairness
constraints within the SVM algorithm but in the model selection task. As a drawback, the
learning phase does not know our intentions to incorporate fairness.
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Table 5.3 Overall accuracy (ACC), balanced accuracy (B-ACC), unfair regression (UR), and accuracy
gain (ACCG) obtained when using the 2-step CV method on the three different updating scenarios for

various datasets with f ∗old → f ∗new.

Dataset ACC B-ACC UR ACCG

Update Scenario 1: from f ∗old to f ∗new enlarging dataset size maintaining Linear SVM

Adult 0.81 ± 0.01 0.61 ± 0.01 0.12 ± 0.01 0.16 ± 0.01

Arrhythmia 0.67 ± 0.04 0.65 ± 0.04 0.11 ± 0.05 0.01 ± 0.01

COMPAS 0.73 ± 0.01 0.72 ± 0.01 0.05 ± 0.04 0.01 ± 0.02

German 0.69 ± 0.04 0.62 ± 0.05 0.10 ± 0.06 0.01 ± 0.06

Update Scenario 2: from f ∗old to f ∗new enlarging dataset size maintaining Gaussian kernel SVM

Adult 0.81 ± 0.01 0.61 ± 0.02 0.10 ± 0.01 0.18 ± 0.06

Arrhythmia 0.68 ± 0.04 0.66 ± 0.04 0.14 ± 0.07 0.05 ± 0.06

COMPAS 0.74 ± 0.01 0.72 ± 0.01 0.06 ± 0.04 0.00 ± 0.00

German 0.70 ± 0.03 0.64 ± 0.05 0.10 ± 0.06 0.01 ± 0.01

Update Scenario 3: from f ∗old to f ∗new enlarging dataset size plus upgrading the kernel function

Adult 0.81 ± 0.01 0.61 ± 0.01 0.10 ± 0.01 0.18 ± 0.01

Arrhythmia 0.67 ± 0.04 0.65 ± 0.04 0.14 ± 0.06 0.05 ± 0.03

COMPAS 0.73 ± 0.01 0.72 ± 0.01 0.06 ± 0.04 0.00 ± 0.00

German 0.69 ± 0.04 0.62 ± 0.05 0.10 ± 0.06 0.01 ± 0.03

5.3 Mitigation Strategy (ii): Unfair-Regression-Free SVM
Method

Our Unfair-Regression-Free Support Vector Machine (URFSVM) model is the newly
developed algorithm, used to mitigate the unfair regression phenomena. Such an algorithm,
accounts for the fairness constraint within the SVM framework, by minimizing the unfair
regression occurrences. In other words, this method incorporates a modification in the
learning phase so that the model is aware of our desire to mitigate the unfair regression.
Moreover, the refinement in the model selection phase is also considered.

As a result, this method is not only expected to perform well but also must not exhibit any
unfair disparities towards a specific group when doing model updates. Table 5.4 gathers the
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results of accuracy, balanced accuracy, unfair regression, and accuracy gained from training
the new model on the specified updating scenario.

Table 5.4 Overall accuracy (ACC), balanced accuracy (B-ACC), unfair regression (UR), and accuracy
gain (ACCG) obtained when using the unfair-regression-free SVM (URFSVM) method on the three

different updating scenarios for various datasets with f ∗old → f ∗new.

Dataset ACC B-ACC UR ACCG

Update Scenario 1: from f ∗old to f ∗new enlarging dataset size maintaining Linear SVM

Adult 0.80 ± 0.04 0.78 ± 0.03 0.05 ± 0.04 0.00 ± 0.04

Arrhythmia 0.69 ± 0.09 0.71 ± 0.08 0.08 ± 0.05 0.38 ± 0.12

COMPAS 0.72 ± 0.05 0.73 ± 0.05 0.03 ± 0.03 0.44 ± 0.07

German 0.74 ± 0.02 0.62 ± 0.04 0.11 ± 0.11 0.43 ± 0.04

Update Scenario 2: f ∗old to f ∗new enlarging dataset size maintaining Gaussian kernel SVM

Adult 0.78 ± 0.06 0.67 ± 0.14 0.05 ± 0.03 -0.02 ± 0.06

Arrhythmia 0.58 ± 0.07 0.62 ± 0.06 0.04 ± 0.03 0.27 ± 0.08

COMPAS 0.69 ± 0.06 0.70 ± 0.07 0.04 ± 0.03 0.41 ± 0.08

German 0.73 ± 0.03 0.55 ± 0.07 0.09 ± 0.07 0.43 ± 0.04

Update Scenario 3: f ∗old to f ∗new enlarging dataset size plus upgrading the kernel function

Adult 0.77 ± 0.05 0.70 ± 0.13 0.05 ± 0.03 -0.03 ± 0.04

Arrhythmia 0.55 ± 0.05 0.58 ± 0.04 0.08 ± 0.06 0.27 ± 0.05

COMPAS 0.69 ± 0.07 0.70 ± 0.08 0.04 ± 0.02 0.41 ± 0.08

German 0.73 ± 0.03 0.55 ± 0.07 0.08 ± 0.07 0.42 ± 0.04

5.4 Comparison through Methods

Standard classifiers have been proven to have unfairness issues since inequity performance
can be seen through metrics such as DEO and DDP, as reported in Figure 5.1. From this initial
analysis, we demonstrated that fairness issues go beyond the representation of the sensitive
class in the data. While the Arrhythmia dataset (which indeed is extremely unbalanced being
96% of the data representing the sensitive class) has the highest ratio of DEO in the Gaussian
kernel models, the Adult dataset (which is exemplary balanced), has a high rate of unfairness
as well when referring to the DDP metric. Contrarily, the linear examples of Arrhythmia
have a similar value of DEO as the German dataset, in which the unbalance is not as notable.
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Therefore, we can confirm fairness issues in ML are more complex than just considering the
imbalance in data (a detailed explanation is outlined in Section 3.2).

On the other side, higher occurrences of UR clearly appear when no mitigation strategy
is used, as expected (see Figure 5.2). When performing model updates on the standard SVM
and going from f ∗old to f ∗new with no mitigation strategy applied, it is seen that while very
little or no accuracy improvement is done, the regression on fairness is disproportionately
unbalanced towards a particular group. Instead, after the mitigation strategies are applied, a
significant decrease in the misclassification error and unbalanced regression is seen.

Unfair regression across the accuracy loss is plotted (see Figure 5.3) for the three updating
scenarios and the three studied methods. Red-colored data points represent the Standard-
SVM-trained classifiers, yellow-colored points the models trained with the mitigation strategy
(i), and green ones stand for the mitigation strategy (ii).

A significant improvement is observed in the models trained under fairness constraints
since they are generally clustered towards the lower half of the y-axis, which represents a low
ratio of UR. This suggests that both of the proposed mitigation strategies effectively reduce
disparities in standard SVM models.

Figure 5.3 Normalized UR (the smallest the better) and inverted accuracy gain (the smallest the
better) for each dataset and updating scenario. Gray lines join the results of the different methods on
the same dataset. Note that, for meaningful plots, the inverted accuracy gain has been computed by
subtracting the max value from each accuracy gain value and then normalized. Results retrieved from

Table 5.2.
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Discussion

6.1 Interpretation of Findings

The results clearly show that performing model updates without any fairness mitigation
leads to unbalanced regressiveness in accuracy and fairness. This disproportionate behavior
affecting particular groups is evident in datasets like Arrhythmia and Adult where Standard
SVM models exhibited a high degree of bias, leading to unfair outcomes.

However, the incorporation of the Double-Step Cross Validation (2-step CV) and the
Unfair-Regression-Free SVM (URFSVM) strategies effectively reduced unbalanced regres-
siveness both in accuracy and fairness. This last mitigation strategy, URFSVM, consistently
performed better in reducing unfair regression while maintaining or even increasing the
overall performance. While the Gaussian kernel SVM is proven to yield better results in
terms of performance, it resulted in poorer fairness metrics when compared to the Linear
SVM. We hypothesize this is happening due to the simplicity of the Linear SVM, which can
indeed promote more equitable treatment in some cases, leading to better fairness outcomes.

Results further demonstrate the importance of the 2-step CV method in balancing fairness
and accuracy during the hyperparameter tuning, showing significant improvements in both
aspects for all datasets. In particular, the Adult dataset marked significant improvements
in fairness when this single first mitigation strategy was applied. On the other side, when
the second mitigation strategy was introduced, the Adult dataset did not perform as good in
accuracy metrics, but the Arrhythmia, COMPAS, and German datasets significantly increased
their classification accuracy.
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6.2 Comparison with Prior Studies

Several studies have been done in the field of fairness in machine learning, focusing on bias
mitigation through the different processing techniques. For example, the work of Agarwal
et. al., A Reduction Approach to Fair Classification, introduces a new methodology to deal
with unfair classification by reducing a fair classification to a sequence of cost-sensitive
classification problems, achieving fair outcomes. However, some limitations arise since the
method cannot be applied if the protected attribute is not accessible during training-time,
making it adequate for any type of data.

Zafar et. al. introduced through the research Fairness Constraints: A Flexible approach

for Fair Classification, a flexible constraint-based framework to enable the design of fair
margin-based classifiers. Despite the efforts, the strategy may not be extendable to every
scenario since it does not work well if data is unbalanced, as contrarily seen in our work.

A similar work, made by Kamishima et. al., named Fairness-Aware Classifier with Preju-

dice Remover Regularizer, proposed a regularization approach applicable to any prediction
algorithm however, the problem lacked convexity of the objective function and consequently,
the method was trapped on the local minima.

Yet, the listed studies differ from our investigation since they focus on model outputs and
not on the regressiveness observed in continuous updates. Instead, our approach goes beyond
traditional fairness adjustments by embedding fairness constraints directly in the learning
problem and considering unfair regression in model updates. Accordingly, our method would
be more comparable to the research of Yan et. al. on positive congruent training. However,
we extend the concept by considering sensitive attributes during model updates, tackling
both accuracy and fairness.

6.3 Limitations of the Study

While our method resulted in satisfactory results, we also consider some limitations. On
the first hand, the focus on the Support Vector Machines architecture as the primary machine
learning method may limit the generalization to other learning structures. However, this is
already planned to be expanded in our next research. On the other hand, our algorithm can
perform its task only if the sensitive attribute is properly labeled and separable from the data
since it is needed to start the optimization problem. Lastly, the computational cost of the
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proposed strategies, particularly on the URFSVM, is relatively high, which could restrict
their application in real-time systems.



Chapter 7

Conclusions

This work contributes to the advancement of fairness in ML by developing and validating
a novel fairness metric, namely Unfair Regression (UR), designed to quantify the unbalanced
occurrences of negative flips in ML model updates. This fairness metric allowed us to
develop two mitigation strategies to address the technical issues of unbalanced regressiveness
in accuracy and fairness that occur when using standard methodologies.

The first method, Double-Step Cross Validation (2-step CV), which integrates fairness
constraints into the hyperparameter tuning process, demonstrated a significant fairness
improvement by dramatically decreasing the occurrences of UR. This strategy not only
confirmed an enhancement in performance but also provided evidence of the importance of
considering fairness metrics during the model selection phase. The second approach, Unfair-
Regression-Free SVM (URFSVM), an algorithm created within the standard SVM framework
for a binary classification problem, modifies the learning algorithm itself to minimize UR
directly during the training process. The second set of experiments in real-world data, which
used both of the strategies proposed, showed a further improvement in fairness but above
all, a significant gain in accuracy. Adding this intermediate step of evaluating the model’s
performance by only modifying the tuning phase has given us an insight into the importance
of incorporating fairness constraints both in the model selection and learning process.

In addition, by systematically evaluating the impact of such novel methodologies in real-
world datasets, this research provides empirical evidence that improving fairness is indeed
compatible with the maintainability of the model’s performance. Altogether, this work
contributed to the development of trustworthy AI by addressing both technical and ethical
debt in ML systems.
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Future work should focus on extending this study to other learning systems such as Neural
Networks so that the applicability to other machine learning architectures can be assessed.
Moreover, since most of the AI-based algorithms used currently in the industry belong to
deep learning systems, it would significantly help promote the use of our methodology in
real-world applications. In addition, testing our algorithms on other real-world datasets with
different data distributions would also help us understand the applicability and limitations
of such models. Furthermore, incorporating other fairness metrics such as equalized odds
or demographic parity could help understand how these methods behave across different
fairness definitions.
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