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Introduction

The thesis deals with the problem of computation of SAGBI bases for the co-
ordinate ring of Grassmannians and, more generally, algebras generated by minors
of generic matrices.

The theory of Gröbner bases for ideals is well known and it is a central topic
in commutative algebra. Gröbner bases were introduced in 1965 by Bruno Buch-
berger, who also provided an algorithm to compute them, based on the famous
Buchberger criterion. We do a brief recap of monomial orders and Gröbner bases
theory in Chapter 1.

In the 80s, Robbiano and Sweedler ([13]) presented bases for subalgebras which
are the Subalgebra Analog to Gröbner Bases for Ideals, that is, SAGBI bases.
Roughly speaking, a Gröbner basis is a special set of generators of an ideal which
makes possible symbolic computations such that, for example, deciding if a poly-
nomial belongs to the ideal. In the same way, a SAGBI basis is a special set of
generators of a subalgebra. Although in many respects SAGBI bases theory is
similar to the one of Gröbner bases, there is one major difference: unlike ideals,
subalgebras of polynomial rings are not necessarily finitely generated. In par-
ticular, finite SAGBI bases for finitely generated algebras need not to exist. In
Chapter 2, we give an overview of SAGBI bases trying to mirror Gröbner bases
theory, with the aim of obtaining an analogue of the Buchberger criterion, namely
the SAGBI criterion. Just as the cornerstones of Buchberger criterion are reduc-
tion and lifting of syzygies (i.e. the S-polynomials), the cornestones of SAGBI
criterion are subduction and lifting of binomial relations. However, while the
computation of S-polynomials is not an issue, the identification of the relevant
binomial relations needed for SAGBI bases computation is more complicated. Fi-
nally, again in analogy with Buchberger criterion, the SAGBI criterion suggests
an algorithm for the computation of SAGBI bases.

Consider a d×n, d ≤ n, matrix of indeterminates X = (Xij). By a theorem of
Bernstein, Sturmfels and Zelevinsky (see [3], [19]) the maximal minors of X are a
universal Gröbner basis, namely a Gröbner basis for any monomial order. In view
of this theorem, when moving to subalgebra setting the same question arises: are
the maximal minors of X a universal SAGBI basis?

The starting point for answering this question is Chapter 3. There we introduce
the algebra generated by maximal minors ofX as the homogeneous coordinate ring
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of the Grassmannian variety. The Grassmannian is the set of all d-dimensional
linear subspaces of a n-dimensional vector space over a field K. Through the
Plücker embedding, the Grassmannian can be seen as projective variety with
defining ideal given by the famous Plücker relations. We are interested in its
coordinate ring, the so-called Plücker algebra. This ring is a graded algebra with
straightening law. The special feature of such an algebra is that it is free over
the ground ring with a basis whose multiplication table is compatible with a
partial order on the algebra generators. Specializing this definition to the case
of the Plücker algebra, it means that it has a K-basis consisting of products
of comparable maximal minors of X, which we call standard bitableaux. We
prove that they are linearly independent using the Robinson–Schensted–Knuth
correspondence.

The existence of such a basis for the Plücker algebra assures us that the maxi-
mal minors are a SAGBI basis with respect to any diagonal monomial order, that
is, a monomial order that chooses as initial monomial of a minor the product of
the elements on the main diagonal. However, in Chapter 4 we show that there
exists a lexicographic monomial order under which the maximal minors of a 3× 6
matrix are not a SAGBI basis of the algebra they generate.

By another theorem of Sturmfels ([17]), the t-minors are a Gröbner basis of
the ideal they generate under any diagonal monomial order. Despite the fact that
algebras generated by lower size minors are much more complicated than Grass-
mannians and not yet fully explored, we wonder if the same statement applies
when switching to SAGBI bases. We observe this in Chapter 4: a Krull dimen-
sion argument shows that the t-minors, 1 < t < d, are not a SAGBI basis under
any diagonal monomial order. Nevertheless, for a square matrix of size n, using
the SAGBI criterion we prove that there exists a lexicographic monomial order
under which the n− 1-minors are a SAGBI basis.

A good portion of Chapter 4 is dedicated to the case of the 2-minors of a 3×3
matrix of indeterminates. If we consider a diagonal monomial order, the 2-minors
are not a SAGBI basis. In order to obtain a SAGBI basis, one needs to add
X13 · det(X) and X31 · det(X) to the set of the 2-minors. With an experimental
approach, we observed that adding elements of the form det(X) · Xij to the set
of the 2-minors always gives a SAGBI basis of the algebra generated by the 2-
minors, regardless of the monomial order. Therefore the main purpose of the
chapter is to prove that the 2-minors plus the set {Xij · det(X)} is a universal
SAGBI basis of the algebra generated by the 2-minors. To prove this theorem, we
use the characterization of feasible leading terms of a polynomial as vertices of its
Newton polytope. We compute the vertices of the Newton polytope associated to
the product of all 2-minors of X, then we derive the corresponding monomial order
and finally we check that the set above is indeeed a SAGBI basis of the algebra
generated by the 2-minors. In the end, we discuss some interesting consequences
of this result, proving that there exists a single monomial order, up to symmetry,
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such that the 2-minors of a 3×3 are a SAGBI basis and that there is no monomial
order under which the 2-minors of a matrix of size at least 3 × 4 are a SAGBI
basis.

All computations have been implemented on CoCoA 5 or Macaulay2 and can
be found in Appendix A.
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Chapter 1

Preliminary Results

1.1 Monomial Orders

Let K be a field and consider R = K[X1, . . . , Xn] the polynomial ring in n
variables. Recall that a monomial of R is an element of the form Xu =

∏n
i=1X

ui ,
where u = (u1, . . . , un) ∈ Nn. A term is an element of the form aµ, where a ∈ K∗

and µ is a monomial of R. We call Mon(R) the set of all the monomials of R.
Note that Mon(R) is actually a K-basis of R: for every f ∈ R there exists a
unique finite subset supp(f) of Mon(R) such that

f =
∑

µ∈supp(f)

aµµ, aµ ∈ K, aµ ̸= 0 for µ ∈ supp(f).

The only thing that could be not unique in this representation is the order
in which we write the terms. If we impose a total order on the set Mon(R), the
representation above is uniquely determined if we require that the monomials are
written in order, from the largest to the smallest.

Definition 1.1.1. A monomial order is a total order ≤ on the set Mon(R) that
satisfies the following conditions:

1. 1 ≤ µ for every µ ∈ Mon(R);

2. If µ1, µ2, µ3 ∈ Mon(R) and µ1 ≤ µ2, then µ1µ3 ≤ µ2µ3.

Note that, given condition 2., condition 1. of the previous definition is equiv-
alent to require compatibility with division: if µ1 divides µ2, then µ1 ≤ µ2.

Set now µ1 = Xu1
1 · · ·Xun

n and µ2 = Xv1
1 · · ·Xvn

n . We recall here the most
important monomial orders:

(a) the lexicographic order (Lex): µ1 <Lex µ2 if ui < vi for some i and uj = vj
for all j < i;
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(b) the degree lexicographic order (DegLex): µ1 <DegLex µ2 if deg(µ1) < deg(µ2)
or deg(µ1) = deg(µ2) and µ1 <Lex µ2.

(c) the degree reverse lexicographic order (DegRevLex): µ1 <DegRevLex µ2 if
deg(µ1) < deg(µ2) or deg(µ1) = deg(µ2) and ui > vi for some i and uj = vj
for all j > i;

These monomial orders all satisfy X1 > · · · > Xn. One can choose a different
total order of the indeterminates and consider the Lex, DegLex and DegRevLex
orders induced by that order by changing suitably the definitions above.

An important observation arising from Definition 1.1.1:

Lemma 1.1.2. Given a monomial order on R, there are no infinite descending
chains in Mon(R).

Proof. Let us suppose µ1 > µ2 > . . . is such a chain. Then µi /∈ (µ1, . . . , µi−1),
otherwise mj|mi for some j < i and this implies mj ≤ mi < mj, which is absurd.
Therefore one has (µ1, . . . , µi−1) ⊊ (µ1, . . . , µi) for every i, that is a contradiction
by Noetherianity of R.

From now on, we fix a monomial order < on the monomials of R. Thus every
polynomial f ̸= 0 has a unique representation

f = a1µ1 + . . . akµk,

where ai ∈ K∗ and µ1 > · · · > µk.

Definition 1.1.3. Let f ∈ R, f ̸= 0. The initial monomial of f with respect to
< is denoted by in(f) and is, by definition, µ1. The initial term is init(f) = a1µ1

and the initial coefficient is inic(f) = a1.

The compatibilty of monomial orders with multiplication, namely condition
2. of Definition 1.1.1, has as an immediate consequence that, for every nonzero
polynomials f, g ∈ R,

in(fg) = in(f) in(g). (1.1)

With respect to the sum of polynomials f, g ∈ R, assuming f, g and f + g ̸= 0,
one has

in(f + g) ≤ max{in(f), in(g)}.

1.2 Gröbner Bases

Now consider a K-vector subspace V of R, V ̸= 0. Suppose that R is endowed
with a monomial order and consider the following K-subspace of R

in(V ) = ⟨in(f) | f ∈ V, f ̸= 0⟩.

2



Clearly, the set {in(f) | f ∈ V, f ̸= 0} is a K-basis of in(V ) since every set of
monomials is linearly independent over K, and therefore it is a basis of the sub-
space it generates. Note that if V is an ideal of R or a K-subalgebra of R, the
K-vector space in(V ) is respectively an ideal or a K-subalgebra as well thanks to
1.1. Therefore we can give the following:

Definition 1.2.1. Let I be an ideal ofR. A set of nonzero polynomials f1, . . . , fm ∈
I is a Gröbner basis of I if the monomials in(f1), . . . , in(fm) generate in(I) as an
ideal.

Since R is Noetherian, in(I) is a finitely generated ideal and hence every ideal
I of R has a Gröbner basis.

For a detailed discussion regarding Gröbner bases we refer to [5], Section 1.2.
Here, we just remind the most important concepts and algorithms.

Definition 1.2.2. Let f1, . . . , fm ∈ R. A polynomial r is a reduction of g ∈ R
modulo f1, . . . , fm if there exist q1, . . . , qm ∈ R satisfying the following conditions:

(a) g = q1f1 + · · ·+ qmfm + r;

(b) in(qifi) ≤ in(g) for all i = 1, . . . ,m;

(c) no monomial µ ∈ supp(r) is divisible by any in(fi), i = 1, . . . ,m.

The reduction plays the role of the Euclidean division when working with more
than one variable. The idea, also suggested by the letters used, is that the qi are
the ”quotients” of g modulo fi and r is the ”remainder”. Thanks to this definition
we have the first criterion to decide whether a set of polynomials in I is a Gröbner
basis of I:

Proposition 1.2.3. Let f1, . . . , fm ∈ R, I = (f1, . . . , fm) and J = (in(f1), . . . , in(fm)).
Then the following are equivalent:

(a) f1, . . . , fm form a Gröbner basis of I;

(b) every g ∈ I reduces to 0 modulo f1, . . . , fm;

(c) the monomials µ, µ /∈ J , are linearly independent in the K-vector space
R/I.

An immediate but essential consequence of (a) =⇒ (b) of this proposition is
that a Gröbner basis of I generates I.

Consider again f1, . . . , fm ∈ R. Let I = (f1, . . . , fm), J = (in(f1), . . . , in(fm))
and F = Rm. By the universal property of free R-modules, we have R-linear maps

ϕ : F −→ R ψ : F −→ R

ei 7−→ fi, ei 7−→ init(fi).
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An element s = (s1, . . . , sm) ∈ ker(ϕ) is called a syzygy of f1, . . . , fm. Clearly,
im(ϕ) = I and im(ψ) = J . For x = (x1, . . . , xm) ∈ F , we set

inϕ(x) = max
i

in(xifi).

Then we can assign x ∈ F an initial term initϕ(x) ∈ F :

initϕ(x) =

{
init(xi) if in(xifi) = inϕ(x)

0 otherwise
.

Note that s ∈ ker(ϕ) implies initϕ(s) ∈ ker(ψ), as one easily sees by reading the
equation s1f1 + · · · + smfm = 0 monomial by monomial. We instead say that
s ∈ ker(ϕ) lifts t ∈ ker(ψ) if initϕ(s) = initϕ(t).

Let us take a closer look at ker(ψ). If we consider a pair of monomials of R,
µ and ν, they have a well defined least common multiple. Clearly one has

lcm(µ, ν)

ν
ν − lcm(µ, ν)

µ
µ = 0,

and thus
(

lcm(µ,ν)
ν

,− lcm(µ,ν)
µ

)
is a syzygy of ν, µ, which we call the divided Koszul

syzygy. For f1, . . . , fm we define κij ∈ F by

(κij)k =


lcm(in(fi),in(fj))

init(fi)
, if k = i

− lcm(in(fi),in(fj))

init(fj)
, if k = j

0 else

,

for k = 1, . . . ,m. The elements κij of F are the divided Koszul syzygies of
init(f1), . . . , init(fm). It is not too difficult to see that the divided Koszul syzygies
generate ker(ψ) as an R-module.

Theorem 1.2.4 (Buchberger Criterion). Let f1, . . . , fm ∈ R and I = (f1, . . . , fm).
Then the following are equivalent:

(a) f1, . . . , fm are a Gröbner basis of I;

(b) all κij, 1 ≤ i < j ≤ m, can be lifted to syzygies of f1, . . . , fm;

(c) the S-polynomials

Sij =
lcm(in(fi), in(fj))

init(fi)
fi −

lcm(in(fi), in(fj))

init(fj)
fj,

1 ≤ i < j ≤ m, reduce to 0 modulo f1, . . . , fm.
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The polynomial Sij in the theorem is called the S-polynomial of fi and fj. The
theorem suggests an algorithm, the Buchberger algorithm, in order to compute a
Gröbner basis of an ideal I = (f1, . . . , fm):

1. Set G = {f1, . . . , fm} and G′ = ∅.

2. For all i, j, i < j, apply the reduction algorithm modulo G to Sij. If Sij
reduces to h ̸= 0, replace G′ by G′ ∪ {h}.

3. If G′ = ∅, then G is the desired Gröbner basis.

4. If G′ ̸= ∅, replace G by G ∪G′ and go to 2.

This algorithm clearly terminates after finitely many steps since the ideal
(in(g), g ∈ G) strictly increases if G′ ̸= ∅, and in R, a Noetherian ring, any
strictly ascending chain of ideals is finite.

1.3 Initial Subspaces

At the start of Section 1.2, given a K-vector subspace of R, we defined the
K-vector subspace in(V ) as the subspace spanned by the initial monomials of all
f ∈ V, f ̸= 0. We also observed that the set {in(f) | f ∈ V, f ̸= 0} is a K-basis of
in(V ). For simplicity, we give a name to the set above, namely In(V ).

Proposition 1.3.1. Let V be a K-vector subspace of R. Then:

(a) Mon(R) \ In(V ) is a K-basis of R/V ;

(b) for every µ ∈ In(V ) there exists a unique fµ ∈ V satisfying the following
conditions:

(i) in(fµ) = µ, (ii) inic(fµ) = 1, (iii) supp(fµ) ∩ In(V ) = {µ}.

(c) The set {fµ |µ ∈ In(V )} is a K-basis of V ;

(d) If V has finite dimension, then dim(V ) = dim(in(V ));

(e) if ≤ and ⪯ are monomial orders and in≤(V ) ⊆ in⪯(V ), then in≤(V ) =
in⪯(V ).

Proof. (a). That Mon(R) \ In(V ) generates R/V follows from the same induction
applied both in reduction and subduction algorithms (see Proposition 2.1.5): the
residue class of f ∈ R modulo V does not change if we subtract an element g ∈ V
from f . Therefore we can replace the largest monomial in supp(f) ∩ In(V ) by
smaller monomials. Since descending chains of monomials terminate, we get a
representative of f modulo V that is supported in Mon(R) \ In(V ). The linear
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independence of Mon(R) \ In(V ) modulo V is immediate from the definition of
In(V ).

(b) Let µ ∈ In(V ), and let g be a reduction of µ modulo V as in (a). Then
supp(g) ∩ In(V ) = ∅ by (a). If we set fµ = µ − g, then in(fµ) = µ, inic(fµ) = 1
and moreover supp(fµ) ∩ In(V ) = {µ}. The unicity follows from the unicity of g,
that is an immediate consequence of (a).

(c) Consider f ∈ V . After finitely many reductions as in (a), we must ter-
minate at 0. Moreover in the reduction it is sufficient to use the fµ and their
K-multiples. Therefore the fµ generate V , and they are linearly independent
since they have different initial monomials.

(d) and (e) both follow immediately from (c).

As we will see, this proposition will play a key role in Section 2.4.
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Chapter 2

SAGBI Bases

2.1 Definition and First Properties

Let K be a field and R = K[X1, ..., Xn] the polynomial ring in n variables,
endowed with a monomial order.

Now, let A be a K-subalgebra of R. Since in this Chapter we will always speak
about K-algebras and K-subalgebras, we will sometime refer to them as algebras
and subalgebras, omitting the prefix.

We want to consider the initial algebra in(A), that is, the subalgebra of R
generated by the initial monomials of the nonzero polynomials f ∈ A. The theory
is, in many ways, similar to that of Gröbner bases and initial ideals. However,
while ideals in polynomial rings must be finitely generated, this is not true for
subalgebras, and this fact makes a big difference. Even if A is a finitely generated
subalgebra of R, it is not certain that in(A) is as well:

Example 2.1.1. Let A ⊆ K[X, Y ] be the subalgebra of R generated by X +
Y,XY,XY 2. Our claim is to show that that in(A) is not finitely generated, re-
gardless of the monomial order. Let us assume that X > Y and observe that, since
X2Y = (X+Y )XY −XY 2 ∈ A, the algebra A is invariant under the exchange of
X and Y and by symmetry we are done also in the case Y > X. Of course, tak-
ing the initial monomials of the generators, we have that X, XY, XY 2 ∈ in(A).
Now, since we can obtain XY 3 as XY 2(X + Y ) − (XY )2 ∈ A, we deduce that
XY 3 ∈ in(A). Similarly, we can see that XY k ∈ in(A) for all k ∈ N: in fact
XY k = XY k−1(X + Y )− (XY )(XY k−2) ∈ A for all k > 2.

Now let B be the subalgebra of K[X, Y ] generated by the monomials XY k, k ∈
N. Clearly, B ⊆ in(A) and B is not a finitely generated subalgebra. What we are
going to show is that B = in(A). Suppose that B ⊊ in(A). Then, since in(A)
is a strict monomial overalgebra of B = K[X,XY,XY 2, XY 3, . . . ] contained in
A, in(A) must contain Y k for a certain k > 0. But, being Y k the smallest
monomial of degree k (we supposed X > Y ), it would have to be in A in order
to appear as an initial monomial (A is a graded subalgebra: it contains every
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homogeneous component of its elements). But Y k is not in A for any k > 0,
and so we deduce that B = in(A). In fact, suppose Y k ∈ A. Then we can write
Y k = h(X+Y,XY,XY 2), as h ranges over polynomials in three variables. Setting
X to 0, we obtain h(Y, 0, 0) = Y k, and setting Y to 0 gives h(X, 0, 0) = 0. But
since h(Y, 0, 0) = Y k, it must be h(X, 0, 0) = Xk, and so we get Xk = 0, that is a
contradiction.

While, as we have just seen, subalgebras of R (in particular initial algebras)
are not necessarily finitely generated, they are always countably generated since
R has a countable number of monomials. Therefore, as generators, it is enough
to consider families F = {fi, i ∈ N} of polynomials fi ∈ R, where N is either the
set {1, . . . , n} for some n ∈ N or the set of all positive natural numbers.

Definition 2.1.2. A family F = {fi, i ∈ N} of elements of A is called a SAGBI
basis of A if the monomials in(fi), i ∈ N , generate in(A) as a subalgebra of R.

The acronym ”SAGBI ” stands for “Subalgebra analog to Gröbner bases of
ideals”. Therefore, we want to try to continue with similar arguments to that of
Gröbner bases, starting with reduction. In order to do that, we need to replace
R-linear combinations with polynomial expressions of the polynomials fi ∈ F .

Definition 2.1.3. Let e = {ei, i ∈ N} be an ordered family of natural numbers
such that ei = 0 for all but finitely many i. A monomial in F is an element of
the form

F e =
∏
i∈N

fi
ei .

Note that a monomial in F in general is not a monomial in R and that in(F e) =
(in(F))e, where in(F) = {in(fi)}i∈N is the family of initial monomials of the
elements of F .

We can now define the analogue of reduction, called subduction.

Definition 2.1.4. Let g ∈ R. We say that r ∈ R is a subduction of g modulo F
if there exist monomials F e1 , . . . ,F em and coefficients ai ∈ K, such that:

(a) g = a1F e1 + · · ·+ amF em + r;

(b) in(F ei) ≤ in(g) for all i = 1, . . . ,m;

(c) no monomial µ ∈ supp(r) is of type in(F e).

As it happens for reduction, that is, as we saw in the previous chapter, division
with reminder in Gröbner bases theory, we have the following:

Proposition 2.1.5. Let F be a family of polynomials in R and g ∈ R. Then g
has a subduction modulo F .

8



Proof. Let us start with r = g and suppose that there is a monomial µ in supp(g)
such that µ = in(F e) for some exponent vector e. We replace g with g − aF e,
where a is chosen such that the term µ cancels. Iterating this operation, that
is compatible with condition (2) of the definition, we are only introducing new
monomials ν < µ. Since we cannot have infinite descending chains of monomials
by definition of monomial order, we conclude.

We can now give a first characterization of SAGBI bases, once again mirroring
Gröbner bases:

Proposition 2.1.6. Let F = {fi, i ∈ N} be a family of polynomials in A, B =
K[in(F)] be the subalgebra of R generated by the initial monomials in(fi), i ∈ N .
Then the following are equivalent:

(a) F is a SAGBI basis of A;

(b) every f ∈ A subduces to 0 modulo F ;

(c) the monomials µ /∈ B are linearly independent in the K-vector space R/A.

If the equivalent conditions (a), (b), (c) hold, then:

(d) Every element of R has a unique subduction modulo F ;

(e) Moreover, the subduction depends only on A and the monomial order.

Proof. (a)⇒ (c). Suppose that (c) does not hold. Then there exists a polynomial
r ∈ A such that r is a linear combination of monomials µ /∈ B. But r ∈ A and
F is a SAGBI basis of A, then in(r) must belong to the subalgebra generated by
in(F), which is B, and we get a contradiction.

(c) ⇒ (b). Let r be a subduction of f ∈ A modulo F . We have:

f = a1F e1 + · · ·+ amF em + r.

Since f belongs to A and F is a family of elements of A, we deduce that also r
belongs to A. But, by definition of subduction, no monomial of supp(r) is of type
in(F)e and so r is a linear combination of monomials µ /∈ B that is 0 modulo A
(since r ∈ A). Finally, by (c) we deduce that r = 0.

(b) ⇒ (a). Let f ∈ A, f ̸= 0. By (b), we have the following:

f = a1F e1 + · · ·+ amF em ,

with in(F ei) ≤ in(f) for all i = 1, . . . ,m. The monomial in(f) must appear on
the right side of the equation, and so it must be in(f) = in(F ei) = (in(F))ei for
at least one i. It follows that in(f) belongs to the subalgebra generated by in(F),
and so we conclude by arbitrariness of f that F is a SAGBI basis of A.
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(c) ⇒ (d). Let g ∈ R and let r1 and r2 both be subductions of g modulo F .We
have:

g = a1F e1 + · · ·+ amF em + r1;

g = b1Fh1 + · · ·+ bsFhs + r2.

Then, r1 − r2 belongs to A and it is a linear combination of monomials that are
not in B (again by definition of subduction). By (c), we deduce that r1 − r2 = 0
and so r1 = r2.
(e). In the proof of uniqueness we used only B, that is K[in(F)], and F is a

SAGBI basis of A. It follows that the subduction olny depends on A and the
monomial order.

An immediate consequence of (a) ⇒ (b) of Proposition 2.1.6 is the following:

Corollary 2.1.7. A SAGBI basis of the K-subalgebra A ⊂ R generates A as a
K-algebra.

2.2 The Lifting of Binomial Relations

Now, going on with the analogy with Gröbner bases theory, we want to discuss
SAGBI analogs of Buchberger algorithm and lifting of syzygies.

Let A be the K-subalgebra of R generated by the family of polynomials F =
{fi, i ∈ N}, and let us assume that the polynomials fi are non zero and monic.
Let us choose

P = K[Yi, i ∈ N ],

and consider the surjective algebra homomorphisms

ϕ : P −→ A ψ : P −→ K[in(F)]

Yi 7−→ fi, Yi 7−→ in(fi).

We want to pull back the monomial structure and order from R to P . A
monomial in P is given by an exponent vector e = (eu), u ∈ N of natural numbers
eu of which all but finitely many are 0. We set Y e =

∏
u∈N Yu

eu .
Given two monomials ζ, η ∈ P , the most natural thing to do would be setting

ζ < η ⇐⇒ ψ(ζ) < ψ(η). However, this relation is not defined everywhere since
we may have ψ(ζ) = ψ(η). Therefore, we will use ϕ to define a replacement of the
initial monomial and term. Let F ∈ P , F ̸= 0, F =

∑
i aiY

ei with ai ∈ K and
ai ̸= 0 for all i. We set
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inϕ(F ) = max
i

in(ϕ(Y ei)),

initϕ(F ) =
∑

in(ϕ(Y ei ))=inϕ(F )

aiY
ei .

Note that inϕ(F ) is a monomial in R, but initϕ(F ) is a polynomial in P .
Moreover, in general inϕ(F ) ̸= in(ϕ(F )): we could have in(ϕ(F )) < inϕ(F ) since
there may be cancellations among the leading monomials of ϕ(aiY

ei), namely
ϕ(initϕ(F )) can be 0.

Let now F ∈ ker(ϕ). Then initϕ(F ) ∈ ker(ψ) and we can give the following

Definition 2.2.1. With the notation above, let F ∈ ker(ϕ) and G ∈ ker(ψ). We
say that F lifts G if initϕ(F ) = initϕ(G).

Example 2.2.2. Consider the matrix

X =

(
X11 X12 X13 X14

X21 X22 X23 X24

)
with entries in the polynomial ring R = K[Xij : i = 1, 2, j = 1, . . . , 4]. We want
to consider the subalgebra A generated by the maximal minors of X, that is, the
six determinants

[i j] := det

(
X1i X1j

X2i X2j

)
, i < j.

Let us choose the lexicographic monomial order such that Xuv < Xpq if u < p or
u = p and v < q. This is a diagonal monomial order : the initial monomial of the
minor [i j] is the product of the elements of the diagonal of the submatrix of X
obtained by taking just the i-th and j-th columns, that is, in our case, X1iX2j.
Let P = K[Yij : 1 ≤ i < j ≤ 4], and consider

ϕ : P −→ A

Yij 7−→ [i j].

The maximal minors satisfy the Plücker Relation (see Section 3.2):

[1 2][3 4]− [1 3][2 4] + [1 4][2 3] = 0,

so the polynomial F = Y12Y34 − Y13Y24 + Y14Y23 ∈ P is actually in ker(ϕ). Then,

inϕ(F ) = max
i

in(ϕ(Y ei)) = max {in(ϕ(Y12Y34)), in(ϕ(Y13Y24)), in(ϕ(Y14Y23))}

= max {in([1 2][3 4]), in([1 3][2 4]), in([1 4][2 3])}
= max {X11X22X13X24, X11X23X12X24, X11X24X12X23}
= X11X23X12X24.

11



We deduce that
initϕ(F ) = −Y13Y24 + Y14Y23,

and so G := −Y13Y24 + Y14Y23 ∈ ker(ψ) is lifted by F .

Now, we can give a new characterization of SAGBI bases using the lifting
definition we just introduced. Recall that F is a (countable) family of polynomials
generating A ⊂ R = K[X1, ..., Xn] as a K-subalgebra.

Proposition 2.2.3. The following are equivalent:

(a) F is a SAGBI basis of A;

(b) for every f ∈ A, f ̸= 0, there exists F ∈ P such that f = ϕ(F ) and
inϕ(F ) = in(f);

(c) every G ∈ ker(ψ) can be lifted to a polynomial F ∈ ker(ϕ).

Proof. (a)⇐⇒ (b) is just the equivalence of Proposition 2.1.6 (a) and (b) in terms
of the new notation we introduced. In fact, f ∈ A subduces to 0 modulo F if
and only if f = ϕ(F ) for some F ∈ P (since it has to be a combination of the
elements of F) and inϕ(F ) = in(f) (so that there are not cancellations among the
top monomials of ϕ(F )).

(b) ⇒ (c). Let G ∈ ker(ψ) and set g = ϕ(G) ∈ A. By hypothesis, there
exists F ∈ P such that g = ϕ(F ) and inϕ(F ) = in(g). Since G ∈ ker(ψ),
inϕ(G) > in(ϕ(G)) = in(g) = inϕ(F ), and so initϕ(G − F ) = initϕ(G). Therefore
F −G ∈ ker(ϕ) lifts G.

(c)⇒ (b). Let f ∈ A. Therefore we can write f = a1F e1 + · · ·+amF em , ai ∈ K.
Let F be the inverse image of f via ϕ. If inϕ(F ) > in(f), then G = initϕ(F ) ∈
ker(ψ), as we can see by evaluating the equation f = a1F e1 +· · ·+amF em in degree
inϕ(F ). But, by hypothesis, G can be lifted to a polynomial H ∈ ker(ϕ), and so
we can write f = ϕ(F − H), with inϕ(F − H) < inϕ(F ). If inϕ(F − H) = in(f)
we get the thesis, if not we iterate this process that will end after finitely many
steps by definition of monomial order.

In order to actually use Proposition 2.2.3, we need to understand how ker(ψ)
looks like.

Before that, let us remark that the polynomial ring R = K[X1, . . . , Xn] is Zn-
multigraded: taken a monomial in R, its multidegree will be its exponent vector.
We want to pull back this multigrading to P via ψ: deg ζ = deg(ψ(ζ)) for every
ζ ∈ Mon(P ). Clearly, F ∈ P is ψ-multihomogeneous if and only if F = initϕ(F ).
In particular, from this it follows:

1. Let F ∈ ker(ψ) be ψ-multihomogeneous and ζ ∈ Mon(P ). If F is lifted by
G, then ζF is lifted by ζG;
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2. Let F1, F2 ∈ ker(ψ) be ψ-multihomogeneous and lifted respectively by
G1, G2. If F1 + F2 ̸= 0, then F1 + F2 is lifted by G1 +G2.

We are now ready to prove the following

Proposition 2.2.4.

(a) The kernel of ψ is generated by binomials;

(b) Let B be a binomial system of generators of ker(ψ). Then the following are
equivalent:

(i) every β ∈ B can be lifted to a polynomial Fβ ∈ ker(ϕ);

(ii) every G ∈ ker(ψ) can be lifted to a polynomial F ∈ ker(ϕ).

(c) Under the equivalent conditions in (b), ker(ϕ) is generated by the polynomials
Fβ, β ∈ B.

Proof. (a). Let M := {ψ(ζ) : ζ ∈ Mon(P )}. Then the K-algebra B := im(ψ)
has M as a K-vector space basis. Taken µ ∈ M , let us set Cµ := {ζ ∈ Mon(P ) :
ψ(ζ) = µ}. As µ varies, the sets Cµ form a partition of Mon(P ). Fixed µ, we
choose a representative ζµ ∈ Cµ. Finally, we set

B :=
⋃
µ∈M

{η − ζµ : η ∈ Cµ},

and we want to show that B generates ker(ψ).
Let G ∈ ker(ψ), G =

∑
aηη with η ∈ Mon(P ). Let µ = ψ(η). Set H =

∑
aηζµ.

Then, H = G −
∑
aη(η − ζψ(η)). But, as µ varies, ζµ are linearly independent,

since they are in bijection with a K-basis of im(ψ). Therefore H must be 0, and
so G is a linear combination of the binomials in B.

(b). (ii) ⇒ (i) is trivial. For (i) ⇒ (ii) let G ∈ ker(ψ), G ̸= 0. Then also
initϕ(G) ∈ ker(ψ). So (for proving the existence of a lifting) we can replace G
by initϕ(G), and therefore assume that G is ψ-multihomogeneous. Observe that
binomials in ker(ψ) are also ψ-multihomogeneous.

We have G =
∑

i aiζiβi, with ai ∈ K, ζi ∈ Mon(P ) and βi ∈ B. By multiho-
mogeneity of G, we can assume that, for all i, ζiβi has the same ψ-multidegree
as G. Since all βi are are liftable by hypothesis, it follows from (1) and (2) G is
liftable as well.

(c). Let F ∈ ker(ϕ). We already observed that G := initϕ(F ) ∈ ker(ψ) and that
G is ψ-multihomogeneous. From (b), we know that G can be lifted to H ∈ ker(ϕ)
that is a combination of the polynomials Fβ. If F = H we conclude, if not we
consider F − H ∈ ker(ϕ) and repeat. Since we cannot have infinite descending
chains of monomials in R, this process will stop after finitely many times and we
get F as a combination of the Fβ.
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2.3 The SAGBI Criterion and Algorithm

We can now combine Proposition 2.2.3 and Proposition 2.2.4 to enunciate the
analog of the Buchberger criterion, which we’ll call the SAGBI Criterion:

Theorem 2.3.1. Let A be the K-subalgebra of the polynomial ring R generated
by the family F , and let B be a binomial system of generators of ker(ψ). Then
the following are equivalent:

(a) F is a SAGBI basis of A;

(b) every element of B can be lifted to an element of ker(ϕ);

(c) the polynomials ϕ(β), with β ∈ B, subduce to 0 modulo F .

Proof. The equivalence (a) ⇐⇒ (b) follows from (i) ⇐⇒ (ii) in Proposition 2.2.4
and then from (c) ⇐⇒ (a) in Proposition 2.2.3.

Since ϕ(β) ∈ A, (a) ⇒ (c) is covered by Proposition 2.1.6.
Finally, for (c) ⇒ (b), we can reformulate the subduction of ϕ(β) as we did

in (a) ⇐⇒ (b) in Proposition 2.2.3 and conclude as in (b) ⇒ (c) in the same
Proposition.

An immediate consequence of the SAGBI criterion that is worth observing:

Corollary 2.3.2. Let g1, . . . , gr ∈ R = K[X1, . . . , Xn] and let A be the subalgebra
of R generated by g1, . . . , gr. If in(g1), . . . , in(gr) are algebraically independent,
then g1, . . . , gr form a SAGBI basis of A.

Proof. It is really enough to observe that if in(g1), . . . , in(gr) are algebraically
independent, then ker(ψ) = (0). Therefore there’s no binomial relation to be
lifted, and we conclude that g1, . . . , gr form a SAGBI basis of A.

Example 2.3.3. Let us look again at Example 2.2.2, and set A the K-algebra
generated by the six maximal minors [i j] of

X =

(
X11 X12 X13 X14

X21 X22 X23 X24

)
.

We have:

in[1 2] = X11X22 in[1 3] = X11X23 in[1 4] = X11X24

in[2 3] = X12X23 in[2 4] = X12X24 in[3 4] = X13X24

Observe that both in[1 2] and in[3 4] contain an indeterminate, respectively
X22 and X13, that does not appear in any other monomial. Then they cannot
appear in any binomial relation in ker(ψ). Taking three of the remaining four

14



monomials, we see with the same argument that they are algebraically indepen-
dent. Therefore we have that dim(in(A)) ≥ 5. Clearly dim(in(A)) ≤ 6 and, since
−Y13Y24+Y14Y23 ∈ ker(ψ), we get that dim(in(A)) < 6. Therefore dim(in(A)) = 5,
and this implies that ker(ψ) must be generated by a single binomial, namely the
binomial we just mentioned. We know by Example 2.2.2 that it can be lifted to
an element of ker(ϕ), and by the SAGBI criterion we conclude that the maximal
minors of X are a SAGBI basis of A.

As it happens for the Buchberger Criterion, which suggests an algorithm for
the computation of Gröbner bases, the last Theorem suggests an algorithm for the
computation of SAGBI bases. It starts from the finite family F0 that generates
A as a K-subalgebra of R, then one proceeds as follows:

1. Set i = 0;

2. Set F ′ = ∅ and compute a binomial system of generators Bi of ker(ψi), where
ψi : Pi → K[in(Fi)], Pi = K[YF : F ∈ Fi], ψi(YF ) = in(F );

3. For all β ∈ Bi compute the subduction r of ϕi(β) modulo Fi, where ϕi :
Pi → K[Fi], ϕi(YF ) = F , F ∈ Fi. If r ̸= 0, make r monic and add it to F ′;

4. If F ′ = ∅, set Fj = Fi, Pj = Pi, Bj = Bi for all j ≥ i and stop;

5. If F ′ ̸= ∅, set Fi+1 = Fi ∪ F ′, i = i+ 1 and go to 2.

The similarity with Buchberger algorithm is clear: that starts from a system
of generators g of I, then one computes the S-polynomials and their reductions
modulo g. In the SAGBI algorithm, the ϕi(β) play the role of the S-polynomials
and, of course, reduction is replaced by subduction. Then, in the Buchberger
algorithm, one adds the nonzero reductions to g and repeats the process with
new S-polynomials. We do the same, adding the nonzero subduction to Fi and
repeating from step 2, starting with computing a new system of generators of
ker(ψi).

However, we have to be careful: we know that the Buchberger algorithm will
stop after finitely many steps by Noetherianity of R. We cannot expect the same
for the SAGBI algorithm, since we can have infinite ascending chains of monomials
subalgebras of R.

Proposition 2.3.4.

(a) F =
⋃∞
i=0Fi is a SAGBI basis of A;

(b) If A has a finite SAGBI basis, then the algorithm terminates.

Proof. (a). We set P =
⋃
i Pi and B =

⋃
i Bi. Then, the ϕi and ψi define

homomorphisms ϕ, ψ : P → R, such that B is a binomial system of generators of
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ker(ψ). In addition, the Fi+1 are constructed such that all ϕi(β), β ∈ Bi, subduce
to 0 modulo Fi. Therefore we get that all ϕ(β), β ∈ B, subduce to 0 modulo F ,
and we easily conclude using Theorem 2.3.1.

(b). Let us suppose that A has a finite SAGBI basis. We consider the (unique)
minimal SAGBI basis of A, consisting of the elements f ∈ A for which in(f) is
irreducible in in(A). Using the SAGBI algortihm, we get a SAGBI basis F =⋃∞
i=0Fi of A. Therefore the irreducible monomials of in(A) must be contained

in
⋃
i in(Fi). Since the irreducible monomials of in(A) are finite in number by

hypothesis, there exists an i for which all of them belong to in(Fi), and so Fi is
a SAGBI basis of A. Then one has F ′ = ∅ and the algortihm stops.

2.4 Gradings and Initial Algebras

In general, the computation of SAGBI bases is a very complex operation. In
particular, the algorithm we just introduced has limited practical usage due to its
high complexity. Therefore, we now introduce another tool for the computation
of SAGBI bases.

Recall that any vector w = (w1, . . . , wn) ∈ Nn
>0 induces a N-graded structure

on the polynomial ring R = K[X1, . . . , Xn], which we call the w-grading. With
respect to the w-grading, the indeterminate Xi has degree wi, the monomial Xe

has degree
∑
eiwi and the w-degree of a nonzero polynomial f ∈ R is the largest

w-degree of a monomial in supp(f). Then R =
⊕∞

i=0Ri, where Ri is the K-span
of the monomials of w-degree i and RiRj ⊆ Ri+j. We say that the elements of
Ri are w-homogeneous of w-degree i. Note that every Ri is finitely generated as
a K-vector space: in fact, Ri is contained in the space of monomials of R with
exponent a1, ..., an such that

∑
ajwj ≤ i, which are finite in number since wj > 0

for every j = 1, . . . , n.
Let nowA be a subalgebra ofR. We say thatA is w-graded (or w-homogeneous)

if A is generated by w-homogeneous elements or, equivalently, A has a decompo-
sition A =

⊕∞
i=0Ai, where Ai = A ∩Ri.

Finally, recall that the Hilbert function of A is defined as

HFA : N −→ N
i 7→ dimK(Ai),

while the Hilbert series of A is the formal sum:

HSA(t) =
∑
i∈N

HFA(i)ti ∈ Z[[t]].

Note that, since Ri is finitely generated as a K-vector space for every i ∈ N,
the Hilbert function of A is well defined. For instance, the Hlbert series of the
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polynomial ring R = K[X1, . . . , Xn] when all the indeterminates have degree 1 is

HSR(t) =
1

(1− t)n
.

Proposition 2.4.1. Let w ∈ Nn
>0 and R be a w-graded polynomial ring endowed

with a monomial order, and suppose that A is a positively w-graded subalgebra of
R with decomposition A =

⊕∞
i=0Ai. Then in(A) =

⊕∞
i=0 in(Ai). In particular A

and in(A) have the same Hilbert function.

Proof. The decomposition A =
⊕∞

i=0Ai induces a decomposition of any poly-
nomial f ∈ A as f =

∑
i fi, fi ∈ Ai. Therefore A contains the homogeneous

components of each of its elements, and, since in(fi) ̸= in(fj) if i ̸= j (monomi-
als of different degrees are different), we get that in(f) = max{in(fi), fi ̸= 0}.
Therefore in(A) ∩ Ri = in(Ai), obtaining the decomposition we wanted. We al-
ready know by Proposition 1.3.1 that dimK(Ai) = dimK(in(Ai)), and therefore
HFA(i) = HFin(A)(i) for all i.

Now we can state the following Lemma, that is a simple but useful tool in the
computation of SAGBI bases.

Lemma 2.4.2. Let R be a polynomial ring endowed with a monomial order and
a positive grading, and A a finitely generated graded K-subalgebra of R. Let F be
a family of polynomials in A and set B = K[in(F)]. Then:

(a) HFB(i) ≤ HFA(i) for all i ∈ N;

(b) F is a SAGBI basis of A if and only if HFB(i) = HFA(i) for all i ∈ N.

Proof. First of all note that from the previous Proposition we know that, for a
graded subalgebra A of R, HFA(i) = HFin(A)(i) for all i. Of course we have the
inclusions

Bi ⊆ in(A)i, i ∈ N,
We get the equality if and only if dimK(Bi) = dimK(in(A)i) for all i. Looking at
the definition of the Hilbert function together with our first remark, we have the
thesis.

Example 2.4.3. Once again, consider Example 2.2.2. It turns out that the sub-
algebra A that we considered in the Example is a graded subalgebra of K[Xij].
We know (from the Plücker relations) that F = Y12Y34 − Y13Y24 + Y14Y23 is
in ker(ϕ), where as usual ϕ : P −→ A, ϕ(Yij) = [i j]. Therefore we have
HFA(k) ≤ HFP/(F )(k). We also know that ker(ψ) is generated by the bino-
mial β = −Y13Y24 + Y14Y23. Set B = K[in[i j]] ⊆ in(A), we get that HFin(A)(k) ≥
HFB(k) = HFP/(β)(k) = HFP/(F )(k), where the last equality follows from the fact
that β = initϕ(F ). Thus we have the chain

HFB(k) ≤ HFin(A)(k) = HFA(k) ≤ HFP/(F )(k) = HFP/(β)(k) = HFB(k).
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So HFB(k) = HFin(A)(k) for all k and by the previous Lemma we conclude that
B = in(A), as we already knew from Example 2.3.3.

Now, we make the further assumption that A is a standard graded K-algebra:
this means that A = K[A1], namely A is generated as a K-algebra by elements
of degree 1. Actually, if A = K[Ad] for some d ∈ N, we can normalize the
grading and thus thinking of all generators as elements of degree 1, obtaining
a standard graded algebra as well. Therefore from now on, when speaking of
standard grading, we will include also this case.

If A is standard graded, the following relevant Theorem (see [7], Theorem
4.1.3) holds

Theorem 2.4.4 (Hilbert). Let A be a standard graded K-algebra of Krull dimen-
sion d. Then there exists a polynomial (called the Hilbert polynomial) HPA ∈ Q[t]
of degree d− 1 such that:

HFA(i) = HPA(i) ∀i >> 0.

Starting from Hilbert’s Theorem, one can show that if A is a standard graded
K-algebra of Krull dimension d, then there exists a polynomial hA ∈ Z[t] with
hA(1) ̸= 0, called the h-polynomial of A, such that:

HSA(t) =
hA(t)

(1− t)d
.

One may now ask what happens if A is not standard graded: we have to spend
some words on the Hilbert series of A. If A is generated by elements of positive
degree e1, . . . , en, it is known (see [16]) that the Hilbert series of A has a rational
expression in t as follows:

HSA(t) =
P (t)∏n

i=1(1− tei)
, P (t) ∈ Z[t].

Moreover, if d denotes the Krull dimension of R, then d is the order to which
t = 1 is a pole of HSA(t) (see [2], Chapter 11). In other words, d is the unique
integer for which limt→1(1− t)dHSA(t) is nonzero and noninfinite.

Thus, if A is finitely generated and positively N-graded (either standard or
not), the Hilbert function of A uniquely determines the Krull dimension of A.
Therefore, combining this statement with Proposition 2.4.1, we immediately ob-
tain the following:

Theorem 2.4.5. Let R be a polynomial ring endowed with a monomial order and
a positive grading, and A a finitely generated graded K-subalgebra of R. If in(A) is
a finitely generated K-algebra, then A and in(A) have the same Krull dimension.
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2.5 Weight Orders

Let us consider as usual the polynomial ring R = K[X1, . . . , Xn]. We have
seen that, given a vector w ∈ Nn

>0, we may define on R a N-grading. We now
introduce a partial order on the monomials of R given by w.

Definition 2.5.1. A weight vector on R is a vector w in Nn with positive entries.

Consider now f ∈ R. We can write f =
∑
cαX

α, where α = (α1, . . . , αn) ∈
Nn and Xα = X1

α1 . . . Xn
αn . For any weight vector w ∈ Nn, we write inw(f)

for the sum of all terms cαX
α appearing in f such that the dot product ⟨α, w⟩

is maximized. For a K-vector subspace V of R, in accordance with our usual
notation, we denote inw(V ) the w-initial subspace generated by {inw(f), f ∈ V }.
A simple example to understand how this all works:

Example 2.5.2. Consider f = X2 − XY + Z2 ∈ K[X, Y, Z]. For the weight
vector w = (2, 1, 2) one has inw(f) = X2 + Z2. Changing w to (2, 2, 1), we get
inw(f) = X2 −XY . Finally for w = (4, 2, 1), inw(f) = X2.

At this point, one immediately deduces that the weight vector alone does
not define a monomial order: there are monomials µ, ν, for example Xw2

1 and
Xw1

2 , such that w(µ) = w(ν). This happened also in our previous Example: for
w = (2, 1, 2), w(X2) = w(Z2) = 4. Therefore, we need a refinement of the partial
order given by w, that will be obtained using a monomial order < on R (called
the tie-breaker) as follows:

µ <w ν ⇐⇒

{
w(µ) < w(ν) or

w(µ) = w(ν) and µ < ν.

A standard choice for the tie-breaker is the DegRevLex order. For example,
this is the first choice of many computer packages, including Macaulay2 and Co-
CoA. Taking back Example 2.5.2, using DegRevLex with X > Y > Z one has
inw(f) = X2 for all the w we considered. The next proposition will show us how
the initial spaces related to < and <w are connected to each other.

Proposition 2.5.3. Let w ∈ Nn
>0 and < a monomial order on R. For every

K-subspace V of R one has:

(a) in<w(V ) = in<w(inw(V )) = in<(inw(V ));

(b) if either inw(V ) ⊂ in<(V ) or in<(V ) ⊂ inw(V ), then inw(V ) = in<(V ).

Proof. For (a) it is enough to analyze the selection of the initial monomial for
each space. On the left, one just selects the initial monomial with respect to <w.
In the center, we first select the monomials that have the highest weight, look at
the weight again and then pick the biggest monomial with respect to <: that’s
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Figure 2.1: the polytopes P and Q
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the same as on the left. Finally, on the right we do the exact same thing but
without looking at thw weights a second time, which is obviously superfluous.

(b) Without loss of generality, suppose that inw(V ) ⊂ in<(V ). Then we have
in<(inw(V )) ⊂ in<(in<(V )) = in<(V ). By (a), we know that in<(inw(V )) =
in<w(V ). Therefore we obtain in<w(V ) ⊂ in<(V ). Since they are both monomial
orders, by Proposition 1.3.1 we get the equality.

Summing up, we have seen that from every weight vector on R, although with
a little help, we can get a term order <w. Now, a natural question is: can every
monomial order on R be represented by a weight vector?

Consider f ∈ R. Let us start by characterizing those monomials µ ∈ supp(f)
that can appear as initial monomials with respect to some monomial order.

Recall that the Newton polytope Pf of f is the polytope in Rn spanned by
the exponent vectors of the monomials µ ∈ supp(f). It is a key tool to give the
characterization we wanted and to go from monomial orders to weight vectors:

Lemma 2.5.4. Let f ∈ R and µ ∈ supp(f), µ = Xy1
1 · · ·Xyn

n = Xy. Then the
following are equivalent:

(a) there exists a monomial order < on R such that µ = in<(f);

(b) the exponent vector y of µ is a vertex of Pf and Pf ∩ (y + Rn
+) = {y};

(c) there exists a weight vector w on R such that µ = inw(f).

Proof. (a) ⇒ (b). Let supp(f) ∖ µ = {ν1, · · · , νk} and let zi, i = 1, . . . , k, be the
exponent vector of νi. We set P = Pf and Q = y + Rn

+. Therefore our goal is to
show that P ∩Q = {y}: see Figure 2.1. Since P ∩Q is the intersection of rational
polyhedra (see [6] for general facts about polyhedral geometry), if P ∩ Q ̸= {y}
then P ∩Q must contain a rational point x. After multiplication with a positive
common denominator of the coordinates of x, we can assume that x ∈ Nn: P and
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Q are replaced by homothetic images. Rewriting in terms of monomials, we are
doing nothing but raising all monomials to the same power. Let now ξ be the
monomial with exponent vector x, ξ = Xx. Since x ∈ y + Rn

+ and x ̸= y, we get
that µ < ξ.

So, by (a), now we know that ξ > µ > νi for all i = 1, . . . , k. On the
other hand, since x ∈ P , x is a rational convex combination of z0 = y, z1, . . . , zk:
x =

∑k
i=0(ai/bi)zi, with ai, bi ∈ Z+ and

∑k
i=0 ai/bi = 1. Therefore we obtain the

following binomial relation:

ξb = µa
′
0ν

a′1
1 · · · ν

a′k
k ,

where b =
∏k

i=0 bi and a′i = ai
∏

j ̸=i bj. The fact that
∑k

i=0 ai/bi = 1 implies
that

∑
a′i = b, and therefore the numbers of factors on the left hand side of

our binomial relation equals the number of factors on the right hand side. This
contradicts the fact that ξ is larger than every factor on the right. Therefore
P ∩Q = {y}. The same exact argument shows that y is not a convex combination
of z1, . . . , zk. Hence y is a vertex of P .

(b)⇒ (c). With our notation, (b) can be riformulated as: P and Q intersect in
the common face {y}. By [6], Theorem 1.32, there exists a (rational) hyperplane
H such that y ∈ H, P ∖ {y} is in the interior of one of the two halfspaces defined
by H and Q ∖ {y} lies in the interior of the other halfspace. H is an rational
hyperplane in Rn, and so is defined by a vector w ∈ Zn and w0 ∈ Z via the equation
w1u1 + · · · + wnun = w0. Without loss of generality, we have

∑n
i=1wiui ≥ w0 for

all u = (u1, . . . , un) ∈ Q. Then the definition of Q implies that wi > 0 for all
i = 1, . . . , n. In fact, fix u ∈ Q∖{y}: we know that

∑
wiyi = w0 and u = y+v for

some v ∈ Rn
+∖{0}. Therefore, since u ̸= y,

∑
wiui =

∑
wi(yi+vi) = w0 +wivi >

w0. By arbitrariness of u ∈ Q, we get that wivi > 0 for all v ∈ Rn
+ ∖ {0} and

hence wi > 0 for all i = 1, . . . , n. So, since y ∈ H ∩ P and
∑n

i=1wiui < w0 for all
u ∈ P ∖ {y}, w is our desired weight vector.

Finally, (c) ⇒ (a) is covered by refinement of the weight w that we discussed
above.

The significant implication of the previous lemma is (a) ⇒ (c): it tells us
that, given a monomial order < on R and set f ∈ R, there exists a weight vector
on R that, on f , acts like <. As we have seen in the proof of the lemma, this
weight vector depends on f . Clearly, what we would like to have is a single weight
vector w on R that, at least on a fixed K-subalgebra A of R, does the same job
as <, in order to relate inw(A) and in<(A). This is possible with some finiteness
assumptions on in<(A):

Proposition 2.5.5. Let < be a monomial order on R and let A be a K-subalgebra
of R. If A admits a finite SAGBI basis with respect to < then there exists a weight
vector w on R such that in<(A) = inw(A).

In order to prove this, we need one last simple preliminary lemma:
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Lemma 2.5.6. Let < be a monomial order on R and consider the finite set
{(µ1, ν1), . . . , (µk, νk)}, where (µi, νi) is a pair of monomials such that µi > νi for
all i = 1, . . . , k. Then there exists a weight vector w on R such that w(µi) > w(νi)
for all i = 1, . . . , k.

Proof. One can assume µ = µ1 = · · · = µk: we can multiply both µi and νi by∏
j ̸=i µj without loss of generality, as follows from the monotonicity of < and the

linearity of weights.
Now we set f = µ+ ν1 + · · · νk and conclude just using the implication (a) ⇒

(c) of Lemma 2.5.4.

We are now ready to prove Proposition 2.5.5:

Proof (Proposition 2.5.5). Let F be a finite SAGBI basis of A. Consider the
set U of pairs of monomials (in<(f), µf ), where f ∈ F and µf is any noninitial
monomial appearing in f . Since U is finite, by Lemma 2.5.6 there exists a weight
vector w on R such that, for every f ∈ F , w(in<(f)) > w(µf ). This means that
inw(f) = in<(f) for every f ∈ F . We now show that w is the desired weight
vector. By construction, generators of in<(A), namely {in<(f)}f∈F , belong to
inw(A) so that in<(A) ⊆ inw(A). But now, by Proposition 2.5.3(b), we conclude
that inw(A) = in<(A).
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Chapter 3

The Grassmannian

3.1 Plücker Embedding and Algebra

Fix a field K. We want to consider the d-dimensional subspaces of Kn, d ≤ n.
Taken one of these, it can be expressed as the row span of some d × n matrix
Θ with entries in K. Clearly, Θ must have rank d, since its d rows span a d-
dimensional vector space. This means that there are d columns of Θ forming a
square matrix with nonzero determinant.

Definition 3.1.1. The determinant of a square r × r submatrix, r ≤ d, of the
d × n matrix Θ is called a minor of size r. If r is as large as possible, namely
r = d, we say that the minor is maximal.

Definition 3.1.2. The Grassmannian G(d, n) is the set of all d-dimensional linear
subspaces of Kn.

It follows from the discussion above that a point of G(d, n) can be represented
by a (non-unique) d× n matrix with entries in K and of rank d.

Now, suppose that V is a d-dimensional subspace of Kn. We write i(V ) for

the vector in P(n
d)−1 of all d × d minors (in some prescribed order) of the matrix

representing V .

Example 3.1.3. Let d = 2 and n = 5, and let V be the linear subspace of K5

spanned by (1, 1, 1, 1, 1) and (a1, a2, a3, a4, a5) for some ai ∈ K, not all identical.
Then i(V ) is the point in P9 whose 10 homogeneous coordinates are ai − aj for
1 ≤ i < j ≤ 5.

Note that i(V ) does not depend on the chosen basis of V . In fact, if Θ and Θ′

have the same row span, there exists a d×d invertible matrix Λ such that Θ = ΛΘ′.
If we denote Θσ the d×d submatrix of Θ with columns indices σ1, . . . , σd, we have
Θσ = ΛΘ′

σ and so det(Θσ) = det(Λ) det(Θ′
σ) for every σ ⊂ [n], |σ| = d.

Therefore we can define the following map
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i : G(d, n) −→ P(K(n
d)),

where P(K(n
d)) denotes the projectivization of K(n

d), that is, P(n
d)−1.

Lemma 3.1.4. The map i is injective.

Proof. Consider V1, V2 ⊂ Kn two d-dimensional subspaces and assume i(V1) =
i(V2). Set now MV1 ,MV2 the matrices of rank d that represent V1 and V2 respec-
tively. Without loss of generality we may assume that the first d columns of MV1

and MV2 are linearly independent. By performing linear operations of the rows of
MV1 and MV2 , we transform both MVi in M̃Vi whose leftmost d × d submatrix is
the identity. Now, any entry of M̃Vi not in the first k columns is either a maximal
minor of MVi or its negative. By hypothesis, i(V1) = i(V2), and therefore we get
M̃V1 = M̃V2 . This implies V1 = V2.

This allows us to give the following

Definition 3.1.5. The inclusion of the Grassmannian in P(K(n
d)) is called the

Plücker embedding.

Actually, the Grassmannian in its Plücker embedding is a projective subvariety

of P(K(n
d)):

Proposition 3.1.6. The image of the Grassmannian G(d, n) through the Plücker
embedding is Zariski closed.

We will prove this statement in the special case of G(2, 4) later in Section 3.5.
For the proof of the general statement, see [11], Theorem 5.4.

Clearly, the Plücker embedding is determined by the maximal minors of Θ, to
whom one can refer as Plücker coordinates :

Definition 3.1.7. The Plücker coordinates of Θ are the maximal minors det(Θσ)
for σ ⊂ [n], |σ| = d, σ = σ1 < · · · < σd, where Θσ denotes the d× d submatrix of
Θ with columns indices σ1, . . . , σd.

We can think of the Plücker coordinate indexed by σ as the generic (maximal)
minor det(Xσ) of the d× n generic matrix X = (Xij) of variables. As in the last
definition, Xσ is a d × d submatrix with row indices 1, . . . , d and column indices
σ1, . . . , σd. Therefore, the Plücker coordinates are elements of the polynomial ring
K[X] := K[Xij], i = 1, . . . , d, j = 1, . . . , n.

Definition 3.1.8. The Plücker algebra is the subalgebra G(X) of K[X] generated
by the Plücker coordinates det(Xσ).
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The coordinate ring of the Grassmannian in its Plücker embedding is hence
given by the Plücker algebra. In fact, if a variety Y is given as the closure of the
image of a polynomial map associated to polynomials f1, . . . , fn, it is well known
that its coordinate ring is isomorphic to K[f1, . . . , fn]. Therefore in our setting
we get that the coordinate ring of the Grassmannian in its Plücker embedding is
isomorphic to G(X).

From now on, by G(d, n) we will denote the Grassmannian seen as a subvariety

of P(n
d)−1, namely as the image of the Plücker embedding.

3.2 Plücker Relations

We have just seen that G(d, n) is a subvariety of P(n
d)−1. Next, we want to find

its defining ideal.
As in the previous section, let X = (Xij) be a d× n matrix of indeterminates

and let K[X] denote the polynomial ring over a field K generated by these inde-
terminates. Now define a second polynomial ring K[p] by introducing a variable
pσ for each subset σ of {1, . . . , n}, |σ| = d. It comes natural to define the ring
homomorphism

ϕd,n : K[p] −→ K[X]

pσ 7−→ det(Xσ).

The map ϕd,n gives a presentation for the Plücker algebra as a quotient of
K[p]. Therefore, the defining ideal of G(d, n) is the kernel of this map.

In the next lemma we describe explicitely some relations that are satisfied by
maximal minors: the Plücker relations. We use the notation of Example 2.2.2,
writing [j1, . . . , jm] for the m-minor obtained by taking just the ji-th columns,
i = 1, . . . ,m.

Lemma 3.2.1. For every d × n matrix, d ≤ n, with elements in a commutative
ring and for all indices a1, . . . , ak, bl, . . . , bd, c1, . . . , cs ∈ {1, . . . , n} such that
s = d− k + l − 1 > d and t = d− k > 0 one has∑

i1<···<it
it+1<···<is

{1,...,s}={i1,...,is}

sign(i1, . . . , is)[a1, . . . , ak, ci1 , . . . , cit ][cit+1 , . . . , cis , bl, . . . , bd] = 0,

where sign(i1, . . . , is) denotes the sign of the permutation of {1, . . . , s} represented
by the sequence (i1, . . . , is).

Proof. First of all, note that the minors in the formula are actually maximal
minors. In fact, k+t = d and (s−t)+(d−l+1) = ((d−k+l−1)−t)+(d−l+1) =
2d− k − t = 2d− t+ t− d = d.
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Since every commutative ring is a Z-algebra, by the universal property of
polynomial rings it suffices to prove this for a matrix X of indeterminates over Z.
Next we can replace Z by Q, and finally the ring Q[X] with his ring of fractions
Q(X). Consider the Q(X)-module C generated by the columns of X. As a Q(X)-
module it has rank d. Let α : Cs → Q(X) be given by

α(y1, . . . , ys) =∑
π∈Sym(1,...,s)

sign(π)det(Xa1 , . . . , Xak , yπ(1), . . . , yπ(t)) · det(yπ(t+1), . . . , yπ(s), Xbl , . . . , Xbm),

where Xj denotes the j-th column of X and Sym(1, . . . , s) the group of permu-
tations of {1, . . . , s}. It is straightforward to check that α is a multilinear form
on Cs. When two of the vectors yi coincide, every term in the expansion of α,
which does not vanish already, is canceled by a term of the opposite sign: thus α
is alternating. Since s > rank C, α, being alternating, is the zero map.

Now, we fix a subset {i1, . . . , it} of {1, . . . , s}, with i1 < · · · < it. Then, for all
π such that π({1, . . . , t}) = {i1, . . . , it} the summand corresponding to π in the
expansion of α equals

sign(i1, . . . , is)det(Xa1 , . . . , Xak , yi1 , . . . , yit) · det(yit+1 , . . . , yis , Xbl , . . . , Xbm),

where it+1, . . . , is are chosen as above. Therefore, each of this terms appears
t!(s− t)! times in the expansion of α, and canceling the factor t!(s− t)!, as we can
do since the relation holds in Q(X), we obtain the desired formula.

Note that we have just shown that the ideal of K[p] generated by the Plücker
relations is contained in ker(ϕd,n), since the maximal minors satisfy these relations.
We want to show the opposite containment to get the equality. This will require
some more work.

3.3 Algebras with Straightening Law

With respect to the monomial basis of K[X], a minor of X is a very com-
plicated expression. Therefore, what we would like to have for our purposes is a
new basis of K[X] which contains the minors and as many of their products as
possible.

The first step for the construction of such a basis will be the introduction of a
special class of algebras:

Definition 3.3.1. Let A be a B-algebra and Π ⊂ A a finite subset with a partial
order ≤, namely what we call a poset. We say that A is a graded algebra with
straightening law (on Π, over B) if the following hold:
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(H0) A =
⊕

i≥0Ai is a graded B-algebra such that A0 = B, Π consists of homo-
geneous elements of positive degree and generates A as a B-algebra;

(H1) the products ξ1 · · · ξm,m ∈ N, ξi ∈ Π, such that ξ1 ≤ · · · ≤ ξm are B-linearly
independent. These products are called standard monomials ;

(H2) (Straightening law) for all incomparable ξ, ν ∈ Π the product ξν has a
representation

ξν =
∑

aµµ, aµ ∈ B, aµ ̸= 0, µ standard monomial,

satisfying the following condition: every µ contains a factor ζ ∈ Π such that
ζ ≤ ξ and ζ ≤ ν (it is allowed that ξν = 0,

∑
aµµ being empty).

The notation algebra with straightening law will be abbreviated by ASL, and
the relations in (H2) will be referred to as straightening relations.

Let us give a simple but useful example below:

Example 3.3.2. Let X be a 2×2 matrix, and δ its determinant. Given a ring B,
we consider the B-algebra B[X], with as usual B[X] = B[Xij], i = 1, 2, j = 1, 2.

We (partially) order the set Π of minors with (⪯) as in the previous section:

X22

X12 X21

X11

δ.

Clearly, since the minors of X are homogeneous elements of B[X] of posi-
tive degree, (H0) is satisfied. Regarding (H2), the only incomparable minors are
X12 and X21, and the straightening law consists of the single relation X12X21 =
X11X22−δ. It remains to prove that the standard monomials are linearly indepen-
dent: one has a bijective degree preserving correspondence between the ordinary
monomials and the standard monomials of B[X]:

X i
11X

j
12X

k
21X

l
22 ←→

{
X i

11X
j−k
12 δkX l

22 if j ≥ k,

X i
11X

k−j
21 δjX l

22 if k > j.

Note that this correspondence is actually degree preserving since δ has degree
2, and that it is a bijection, sending the monomialX12X21 to δ. Then, the standard
monomials must be linearly independent, and finally B[X] is an ASL on Π.
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Proposition 3.3.3. Let A be a graded ASL over B on Π. Then the standard
monomials form a B-basis of A.

Proof. For ξ ∈ Π, let u(ξ) be the maximum length of a chain of elements in Π
ascending from ξ: u(ξ) = |{δ ∈ Π : ξ ≤ δ}|, and define the weight of a monomial
in A as

w(µ) =
m∑
i=1

w(ξi) =
m∑
i=1

3u(ξi), µ = ξ1 · · · ξm.

Given ν incomparable with ξ, we have that w(ξν) < w(µ) for all standard
monomials µ appearing in the standard representation of ξν. In fact, set α =
max{u(ξ), u(ν)}. From (H2) we know that for every µ in the straightening rela-
tions it exists a factor ζ ≤ ξ, ζ ≤ ν, and so we get α < u(ζ). It follows that
w(ξν) ≤ 3α + 3α < 3α+1 ≤ 3u(ζ) ≤ w(µ).

Because of (H1), it suffices to prove that every monomial in A (namely an
expression of type µ = ξ1 · · · ξm, with factors that need not be distinct) is a com-
bination of standard monomials. If all the factors ξ1, . . . , ξm of µ are comparable,
µ is a standard monomial (up to reordering the factors). Otherwise, two of the
factors are incomparable, and by (H2) we can replace their product by the right
side of the corresponding straightening relation. It produces a linear combination
of monomials of the same degree as µ but with a greater weight. If any of the re-
sulting monomials is non standard, we repeat the process, but we must terminate
eventually because there are only finitely many monomials of a given degree.

The proof of the preceding proposition shows that the standard representation
of an element of A can be obtained by successive applications of the straightening
relations. As a consequence the straightening relations generate the defining ideal
of A:

Proposition 3.3.4. Let A be a graded ASL over B on Π, and Tξ, ξ ∈ Π, a
family of indeterminates over B. For each monomial µ = ξ1 · · · ξm, ξi ∈ Π, let
Tµ = Tξ1 · · ·Tξm. Then the kernel of the B-algebras epimorphism

ϕ : B[Tξ : ξ ∈ Π] −→ A, Tξ 7−→ ξ,

is generated by the elements TξTν −
∑
aµTµ representing the straightening rela-

tions.

Proof. Let I be the ideal in B[Tξ : ξ ∈ Π] generated by the elements TξTν −∑
aµTµ representing the straightening relations. Clearly I ⊆ ker(ϕ).
Conversely, let f ∈ ker(ϕ), f =

∑
bµTµ, bµ ∈ B. If all the monomials µ are

standard monomials (and therefore linearly independent), then bµ = 0 for all µ
and f ∈ I. Otherwise, the preceding proof shows that there exists g ∈ I such that
f − g =

∑
bζTζ , ζ standard. It follows that 0 = ϕ(f − g) =

∑
bζζ. Then (H1)

assures that all bζ are 0, and hence f ∈ I.
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3.4 Standard Bitableaux

Throughout the last Section, our discussion has been very general. We want
to specialize it to the Plücker algebra G(X). What we are going to do is introduce
new combinatorial objects called the bitableaux, that, as we will see, will take the
place of standard monomials.

First of all, let us recall the setting of this chapter: we have a d × n, d ≤ n,
matrix of indeterminates

X =

X11 · · · X1n
...

...
Xd1 · · · Xdn

 .

The indeterminates live in K[X] = K[Xij], i = 1, . . . , d, j = 1, . . . , n, where K is
a fixed field.

We introduce a notation for the t minors of X:

[a1 . . . at|b1 . . . bt] = det(Xaibj : i = 1, . . . , t, j = 1, . . . , t).

If t = d, since there’s no need to specify the rows from which the minor is obtained,
we find once again the notation of example 2.2.2:

[b1, . . . , bd] = [1, . . . , d|b1 . . . bd].

Now that we have notation for minors, we want to introduce a way of repre-
senting products of minors.

Our symbol for a product δ1 · · · δw of minors will be ∆, and we assume that the
sizes |δi| (namely the number of rows of the submatrix of X whose determinant is
δi) are nonincreasing: this means |δ1| ≥ · · · ≥ |δw|. The shape of ∆ is the sequence
(|δ1|, . . . , |δw|).

A product of of minors is also called a bitableau. The choice of this term is
motivated by a graphical description of a product ∆ as a pair of Young tableaux
(see [20] for a more precise discussion).

Definition 3.4.1. Let λ = (λ1 ≥ · · · ≥ λk ≥ 0). A Young tableaux of shape λ is
a left-justified shape of k rows of boxes of length λ1, . . . , λk that assigns a positive
integer to each box.

According to the notation we introduced above, λ is called the shape of the
tableau.

Example 3.4.2. A bitableau of shape (3, 3, 2):

4 3 1

3 2 1

2

2 3 5

1 4 6

3
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As we said before, every product of minors is represented by a bitableaux, and,
conversely, every bitableau stands for a product of minors. More explicitly, the
general bitableau

a1t1 · · · a11 b11 · · · b1t1

a2t2 · · · a21 b21 · · · b2t2

...
...

awtw · · · aw1 bw1 · · · bwtw

represents the product of minors

∆ = δ1 · · · δw, δi = [ai1 . . . aiti |bi1 . . . biti ], i = 1, . . . , w.

As one may have noticed, for symmetric reasons we read the indices of the left
tableau from right to left. For instance, the bitableau in Example 3.4.2 represents
the product of minors

[1 3 4 | 2 3 5][1 2 3 | 1 4 6][2 | 3].

Now we want to introduce the notion of standard bitableaux. In order to do
that, we have to consider a partial order on the set of the minors of X, defined as
follows:

[a1 . . . at|b1 . . . bt] ⪯ [c1 . . . cu|d1 . . . du]⇐⇒
t ≥ u and ai ≤ ci, bi ≤ di, i = 1, . . . , u.

(⪯)

Note that, respect to this order, [ | ] is maximal among all minors.
If we consider just the maximal minors, we can more simply describe the order

as

[a1, . . . , ad] ⪯ [b1, . . . , bd]⇐⇒ a1 ≤ b1, . . . , ad ≤ bd.

Example 3.4.3. We draw the diagram of the partial order on the maximal minors
of a 2× 4 generic matrix.
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[3 4]

[2 4]

[1 4] [2 3]

[1 3]

[1 2]

We can now go back to our main discussion and give the following

Definition 3.4.4. A product ∆ = δ1 · · · δw of minors is called a standard bitableau
if

δ1 ⪯ · · · ⪯ δw.

In other words, what we are requiring is that:

· |δ1| ≥ · · · ≥ |δw|, namely the sizes of δi are nonincreasing. We already made
this assumption at the start of the section;

· the indices in the columns of our bitableau are nondecreasing from top to
bottom.

Example 3.4.5. The bitableau in example 3.4.2 is not standard: already the first
two indices of the first column of the right size are decreasing from top to bottom.

Here’s an example of a standard bitableau:

3 2 1

4 2 1

2

1 3 5

2 4 6

3

It represents the product [1 2 3 | 1 3 5][1 2 4 | 2 4 6][2 | 3].

3.5 The Grassmannian as an ASL

Finally, this section pulls together all of our previous work: we will show
that the Plücker algebra G(X), that we saw is isomorphic to the coordinate ring
of the Grassmannian, is an ASL with straightening relations resulting from the
Plücker relations. This way, thanks to Proposition 3.3.4, our claim will be proved:
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the ideal generated by the Plücker relations is indeed the defining ideal of the
Grassmannian.

Let K be a field and X = (Xij) a d× n, d ≤ n, matrix of indeterminates over
K. From Section 3.1 we know that the Llücker algebra G(X) is generated by the
Plücker coordinates, namely the maximal minors of X, ordered partially with the
order ⪯, which we introduced in the previous Section. We recall here the simpler
version of ⪯ for the maximal minors:

[a1, . . . , ad] ⪯ [b1, . . . , bd]⇐⇒ a1 ≤ b1, . . . , ad ≤ bd.

This Section goal will be to prove the following

Theorem 3.5.1. The Plücker algebra G(X) is a graded ASL on the set of Plücker
coordinates of X.

Let us take a look at what we already know. Condition (H0) is obviously
satisfied: the maximal minors of X are homogeneous elements of positive degree
d and generate G(X) as a K-algebra. It remains to prove conditions (H1) and
(H2).

Before going on, note that (standard) monomials, when considering Π as
the set of maximal minors ordered with ⪯, actually are nothing but (standard)
bitableaux in which every factor has size d.

What we are going to do now is proving (H2) assuming that (H1) holds. As
anticipated at the start of the Section, we will not describe the straightening
relations in (H2) explicitely, but they will result from the Plücker relations. We
recall here the Plücker relations for a d×n matrix, d ≤ n: for all indices a1, . . . , ak,
bl, . . . , bd, c1, . . . , cs ∈ {1, . . . , n} such that s = d− k+ l− 1 > d and t = d− k > 0
one has∑

i1<···<it
it+1<···<is

{1,...,s}={i1,...,is}

sign(i1, . . . , is)[a1, . . . , ak, ci1 , . . . , cit ][cit+1 , . . . , cis , bl, . . . , bd] = 0.

We already met a non trivial Plücker relation, it occurred for a 2 × 4 matrix
in Example 2.2.2:

[1 2][3 4]− [1 3][2 4] + [1 4][2 3] = 0.

It corresponds to k = 1, a1 = 1, l = 3, (c1, c2, c3) = (2, 3, 4). Note that the
first two bitableaux are standard, but the last is not. One can easily see this
in two ways. First, using the graphical characterization of standard bitableaux:
they must have non decreasing columns from top to bottom. When speaking of
products of maximal minors, as we do not write the rows index since they are
always [1 . . . d], we do not even draw the right half of the corresponding bitableau.
Moreover, since in this case one always selects d columns, these (bi)tableaux will
be ”squared”. In our example we get the three tableaux
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1 2

3 4

1 3

2 4

1 4

2 3

and one immediately sees that the last one is the only nonstandard one. Other-
wise, one can use the definition of standard monomial in (H2) and check if the
maximal minors in each product are comparable. In our case, looking at the dia-
gram in Example 3.4.3, one sees that [1 4] and [2 3] are incomparable, and so the
product [1 4][2 3] is not standard.

Therefore, since the other two bitableaux are standard, solved for [1 4][2 3]
the Plücker relation above is a straightening relation for this case. Note that it’s
actually a straightening relation: [1 2] and [1 3] are less than both [1 4] and [2 3].
Since just [1 4] and [2 3] are incomparable in the entire poset of maximal minors,
this is the only straightening relation that occurs speaking of 2× 4 matrices.

We now deal with a more complicated case:

Example 3.5.2. Consider a generic 3× 6 matrix, and the Plücker relation corre-
sponding to (after reordering the indices in ascending order) k = 1, a1 = 1, l = 3,
b3 = 5, (c1, . . . , c4) = (4, 6, 2, 3):

[1 4 6][2 3 5]+[1 2 4][2 5 6]−[1 3 4][2 5 6]+[1 2 6][3 4 5]−[1 3 6][2 4 5]−[1 2 3][4 5 6] = 0.

The first product is the worst one, with the both last two columns decreasing. For
the fourth and the fifth one, the incomparability results just from the last column.
The other three instead are all standard. We start from the two bitableaux with
just one incomparability position. They are straightened by the Plücker relations

[1 2 6][3 4 5]− [1 2 3][4 5 6] + [1 2 4][3 5 6]− [1 2 5][3 4 6] = 0

[1 3 6][2 4 5]− [1 2 3][4 5 6] + [1 3 4][2 5 6]− [1 3 5][2 4 6] = 0,

corresponding respectively to k = 2, a1 = 1, a2 = 2, l = 4, (c1, . . . , c4) = (6, 3, 4, 5)
and k = 2, a1 = 1, a2 = 3, l = 4, (c1, . . . , c4) = (6, 2, 4, 5).

After substitution we finally obtain the straightening relation for [1 4 6][2 3 5]:

[1 4 6][2 3 5] = −[1 2 3][4 5 6]− [1 2 5][3 4 6] + [1 3 5][2 4 6].

This stepwise method where at each step one increases the number of compa-
rable positions works in general for obtaining the straightening relations:

Lemma 3.5.3. Let [a1, . . . , ad],[b1, . . . , bd] be maximal minors of X, ai ≤ bi for
i = 1, . . . , k, ak+1 > bk+1 (note that k may be 0). We set

l = k + 2, s = d+ 1, (c1, . . . , cs) = (ak+1, . . . , ad, b1, . . . , bk+1).
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Then, in the Plücker relation corresponding to these data, all the terms

[f1, . . . , fd][e1, . . . , ed] ̸= 0 and different from [a1, . . . , ad][b1, . . . , bd]

have the following properties (after arranging the indices in ascending order):

(i) [f1, . . . , fd] ⪯ [a1, . . . , ad] and (ii) f1 ≤ e1, . . . , fk+1 ≤ ek+1.

Proof. After reordering the indices, without loss of generality we have b1 < · · · <
bk+1 < ak+1 < · · · < ad. Looking at the Plücker relations, we see that [f1, . . . , fd]
arises from [a1, . . . , am] by replacing some of the ai with smaller indices. This
implies (i) and fi ≤ ei for i = 1, . . . , k. It remains to prove just fk+1 ≤ ek+1

in (ii). Note that fk+1 ∈ {a1, . . . , ak, b1, . . . , bk+1}, so fk+1 ≤ bk+1, and ek+1 ∈
{ak+1, . . . , ad, bk+1, . . . , bd}, so ek+1 ≥ bk+1. Hence fk+1 ≤ ek+1 and we have the
thesis.

Now we can return to the proof of Theorem 3.5.1. In particular, what we
wanted to prove first was the (H2) condition of the ASL definition.

By induction on k, from Lemma 3.5.3 it follows that every product αβ of
maximal minors can be expressed by a linear combination of standard bitableaux
(involving just maximal minors) δϵ: the fact that δϵ is standard, that is, δ ⪯ ϵ,
is assured by point (ii) of the Lemma. Moreover, δ ⪯ α from point (i) of the
Lemma.

We have to show that starting from this representation we can derive condition
(H2). One could try to obtain a representation satisfying the latter just by Lemma
3.5.3, but likely a standard bitableau violating the condition in (H2) will appear:

Example 3.5.4. Consider the bitableau [1 5 6][2 3 4]. Clearly, it is nonstandard
since the last two positions are decreasing or, equivalently, since the two minors are
incomparable. Now we apply Lemma 3.5.3 in order to straighten the product. We
have k = 1, l = 3, s = 4 and (c1, . . . , c4) = (5, 6, 2, 3), and, from the (c1, . . . , c4)
permutation (5, 3, 2, 6), after reordering the columns one obtains the standard
bitableau [1 3 5][2 4 6] that violates the condition in (H2). In fact, neither [1 3 5]
or [2 4 6] are less or equal (always using ⪯ as partial order) to [2 3 4].

Therefore, we will embark on a different path and for now we will assume
that (H1) holds. When a product αβ of incomparable minors is given (that is,
the corresponding bitableau is nonstandard), one first straightens it in the order
αβ, obtaining, as from the discussion above, a linear combination of standard
bitableaux δiϵi in which δi ⪯ α for every i. Then one straightens it in the order
βα, obtaining a standard representation (up to sign)

∑
j ζjνj in which ζj ⪯ β

always. By linear independence in (H1), the two representations coincide and so
(H2) follows.

Now, always taking condition (H1) for granted, it is finally time for us to
enunciate the following
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Corollary 3.5.5. The ideal generated by the Plücker relations with s = d+ 1 and
a1 ≤ ad, b1 ≤ bd is the defining ideal of the Grassmannian G(d, n) in its Plücker
embedding.

This follows easily from Theorem 3.5.1 and Proposition 3.3.4. In fact, in
Section 3.2, we defined the ring homomorphism

ϕd,n : K[p] −→ K[X]

pσ 7−→ det(Xσ),

by introducing a new set of indeterminates p = {pσ}, one for every maximal
minor det(Xσ), where X is a d × n generic matrix. Always in Section 3.2, we
proved that the ideal generated by the Plücker relations is contained in ker(ϕd,n).
What Proposition 3.3.4 assures us, since by Theorem 3.5.1 the G(X) is actually an
ASL on the set of maximal minors, is that ker(ϕd,n) is generated by the elements
representing the straightening relations. Since, as we showed above, the straight-
ening relations are obtained by iterated applications of the Plücker relations (with
the given parameters) one gets the thesis.

Now that we know what ker(ϕd,n) is, it’s finally time for us to show that the
the Grassmannian in its Plücker embedding is Zariski closed. As we already said,
instead of proving it in the general case, we just show the special case in which n =
4 and d = 2. With the notation above, consider ker(ϕ2,4) ⊂ K[pσ1 , . . . , pσ6 ]. We
know that it is generated by the elements of K[p] representing the straightening
relations. From Section 3.5, we know that when n = 4 and d = 2 we have a single
straightening relation:

[1 2][3 4]− [1 3][2 4] + [1 4][2 3] = 0.

If we set σ1 = {1, 2}, σ2 = {1, 3}, σ3 = {1, 4}, σ4 = {2, 3}, σ5 = {2, 4}, σ6 = {3, 4},
we get

ker(ϕ2,4) = (pσ1pσ6 − pσ2pσ5 + pσ3pσ4).

Now, let a = (a1, . . . , a6) be a point in P5 that satisfies the relation generating
ker(ϕ2,4): a1a6−a2a5+a3a4 = 0. Without loss of generality we can assume a1 = 1.
We want to show that a is the vector of maximal minors of a 2 × 4 matrix A of
rank 2, so that a is a point in G(2, 4). Consider

A =

(
1 0 −a4 −a5
0 1 a2 a3

)
.

Clearly rank(A) = 2 since the leftmost 2× 2 submatrix of A is the identity. The
vector of maximal minors of A is

(det(Aσi))i=1,...,6 = (1, a2, a3, a4, a5,−a3a4 + a2a5) = (1, a2, a3, a4, a5, a6) = a.

Hence a is a point in G(2, 4). By arbitrariety of a, we conclude that G(2, 4) is
Zariski closed.
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3.6 Linear Independence of Standard Bitableaux

To make sure that the good results we have given are true, we still have to
prove (H1), namely that products of comparable maximal minors (that, as we saw,
one can represent as squared standard bitableaux) are linearly independent over
K. We will prove something more, that is, the linear independence of all standard
bitableaux, that clearly will imply the linear independence of the ”squared” ones.

The tool we are going to use will be the Robinson–Schensted–Knuth correspon-
dence, that sets up a bijection between standard bitableaux and monomials in the
ring K[X].

The passage from bitableaux to monomials is done through the deletion algo-
rithm.

Definition 3.6.1. Let A = (aij) be a standard tableau of shape (s1, s2, . . . ) and
let p be an index such that sp > sp+1. Deletion constructs a standard tableau B
and a number x as follows:

1. Define the sequence kp, kp−1, . . . , k1 by setting kp = sp and choosing ki for
i < p to be the largest integer ≤ si such that aiki ≤ ai+1,ki+1

;

2. Define B to be the standard tableau obtained from A by

(i) removing apsp from the p-th row;

(ii) replacing the entry aiki of the i-th row by ai+1,ki+1
, i = 1, . . . , p− 1.

3. Set x = a1k1 .

Let us look at an example to understand how this algorithm actually works:

Example 3.6.2. Consider A as the following tableau of shape (4, 3, 3, 2)

1 3 4 9

1 4 5

2 6 8

2 7

and choose p = 4. We now have to define ki for i = 1, . . . , 4.

(i = 4) Since p = 4, k4 is forced to be s4 = 2;

(i = 3) k3 is defined as the largest integer ≤ s3 = 3 such that a3k3 ≤ a4k4 = a42 = 7.
Hence k3 = 2;

(i = 2) Again, k2 has to be ≤ s2 = 3 and the largest integer such that a2k2 ≤ a3k3 =
a32 = 6. Thus k2 = 3.
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(i = 1) k1 ≤ s1 = 4 and is the largest integer such that a1k1 ≤ a2k2 = 5. We
conclude that k1 = 3.

Now we can go to step 2. (whose affected entries are marked in gray): we remove
a42 = 7 from the fourth row and for i = 1, 2, 3 we replace aiki by ai+1,ki+1

. So
4 = a1k1 is replaced by a2k2 = 5, 5 = a2k2 by a3k3 = 6 and finally 6 = a3k3 by
apkp = 7. So we obtain the standard tableau B:

1 3 5 9

1 4 6

2 7 8

2

In the end, in step 3. we simply set x = a1k1 = a13 = 4.

Basically what we did is to push the entry apsp to the row p− 1, such that it
pushes itself the largest entry ≤ apsp to the row above and so on. This way, we
lose the largest entry of the first row ≤ a2k2 which is, however, encoded in the
variable x.

Note that the deletion algorithm actually produces a standard tableau with
the same shape of A but with the p-th row shorter by one entry. The condition
sp > sp+1 assures us that removing one entry from the p-th row will not be in
contrast with the definition of tableau, and the fact that one always push to
the row above an entry larger than the one that is going to replace ensures the
resulting tableau is standard.

By reversing the process, one can easily construct an inverse to deletion:

Definition 3.6.3. Insertion takes a standard tableauA = (aij) of shape (s1, s2, . . . )
and an integer x, and constructs a standard tableau B and an index p as follows:

1. Set i = 1 and B = A;

2. If si = 0 or x > aisi , then add x at the end of the i-th row of B, set p = i
and terminate;

3. Otherwise, let ki be the smallest j such that x ≤ ajsi , replace bkisi with x,
set x = akisi and i = i+ 1. Then go to 2.

As before, one easily sees that the output of insertion algorithm is a standard
tableau with the same shape of A, except that the p-th row of B is longer by one
entry.

Now we are ready to start constructing the Robinson–Schensted–Knuth (RSK,
for short) correspondence. If one starts from bitableaux, the RSK correspondence
is constructed from the deletion algorithm.

Let Σ = (A |B) = (aij | bij) a non empty standard bitableau. Then the RSK-
step costructs a pair of integers (ℓ, r) and a standard bitableau Σ′ as follows:
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1. Choose the largest entry ℓ in the left tableau of Σ; suppose that {(i1, j1), . . . , (iu, ju)},
i1 < · · · < iu, is the set of indices (i, j) such that ℓ = aij. Set p = iu and
q = ju. We call the pair (p, q) the pivot position;

2. let A′ be the standard tableau obatined by removing apq from A;

3. apply deletion to the pair (B, p), obtaining a standard tableau B′ and an
element r;

4. set Σ′ = (A′ |B′).

Now it is possible to define RSK recursively: let Σ be a nonempty standard
bitableau of shape s1, . . . , sp. Set k = s1 + · · ·+ sp and define the two line array

RSK(Σ) =

(
ℓ1 · · · ℓk
r1 · · · rk

)
,

where the pair (ℓi, ri) is constructed, together with the bitableau Σi−1, by applying
the RSK-step to Σi, starting from Σk = Σ.

Again, we give an example to clarify how the algorithm works.

Example 3.6.4. Consider Σ as the bitableau

5 4 3 1

6 2

1 2 3 6

4 5

We have k = 4 + 2 = 6.
The largest entry of the left tableau is 6 = ℓ6 (marked in gray), and obviously

the pivot position is (p, q) = (2, 2) (remember that, when speaking of bitableaux,
we read the indices of the left tableau from right to left). Now, applying steps 2
and 3 (namely deletion to (B, p); the affected entries are marked in gray as well)
to Σ=Σ6, we get the bitableau Σ5:

5 4 3 1

2

1 2 5 6

4

and the integer r6 = 3.
Now we apply the algorithm again, this time to Σ5: ℓ5 = 5, and the pivot

position is (1, 4). Since p = 1, deletion here does nothing but removing the entry
a1s1 , and we get r5 = 6 and Σ4 as

4 3 1

2

1 2 5

4

Reiterating the algorithm until i = 1 we obtain r4 = 5, r3 = 2, r2 = 1 and r1 = 4:
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3 1

2

1 2

4

1

2

1

4

1 4

Therefore

RSK(Σ) =

(
1 2 3 4 5 6
4 1 2 5 6 3

)
.

Note that in both rows of RSK(Σ) indices may appear several times. However,
they satisfy two properties:

(a) ℓi ≤ ℓi+1 for all i = 1, . . . , k − 1;

(b) if ℓi = ℓi+1, then ri ≥ ri+1.

(a) is clear since by definition the algorithm chooses ℓi+1 ≥ ℓi. If ℓi = ℓi+1,
pi+1 > pi: this means that the pivot position corresponding to ℓi+1 lies below the
one corresponding to ℓi, and so deletion applied to (B, pi+1) in the right tableau
produces an integer less or equal to the one obtained in the next step.

By now, what we constructed through RSK is a correspondence between stan-
dard bitableaux and two-line arrays with properties (a) and (b). Note that this
correspondence is actually bijective since deletion algorithm has an inverse: at
step i, to construct the left tableau, one applies insertion algorithm to (Σi−1, ri)
(starting from [ | ], r1). Simultaneously one constructs the right tableau by placing
ℓi in the position which is added to the left tableau by the i-th insertion.

It remains just to explain how to go from two-line arrays satisfying (a) and
(b) to monomials in K[X]. This is simply done as follows:(

ℓ1 · · · ℓk
r1 · · · rk

)
←→ Xℓ1r1 · · ·Xℓkrk .

Clearly, if we are given a monomial, by arranging its factors in the following order:

Xij ≥ Xst ⇐⇒ i ≤ s or i = s and j ≥ t,

there is always a unique way to represent it as a two rowed array satisfying the
conditions above. Therefore, we actually established a bijection between mono-
mials and standard bitableaux. Looking at the specific case we are interested in,
we get

Theorem 3.6.5. Let X be a d×n matrix of indeterminates. Then the map RSK
is a bijection between the monomials of K[X] and the set of standard bitableaux
where the right tableau has entries in {1, . . . , d} and the left one in {1, . . . , n}.

Hence, we finally proved the linear independence of standard bitableaux and,
consequently, condition (H1) for the Grassmannian: in fact, we needed to prove
that products of comparable maximal minors, that are nothing but the standard
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monomials appearing in condition (H1), are linearly independent over K. As
we told at the start of the current section, products of comparable maximal mi-
nors can be represented as squared standard bitableaux, which turned out to be
linearly independent over K by Theorem 3.6.5. Hence we proved (H1) for the
Grassmannian, and this finally finishes the proof of Theorem 3.5.1.
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Chapter 4

Minors as SAGBI Bases

4.1 Diagonal Monomial Orders

Let K be a field and X = (Xij) a d× n, d ≤ n, matrix of indeterminates. We
denote byM the set of maximal minors of X, and consider the subalgebra K[M]
of K[X] = K[Xij : i = 1, . . . , d, j = 1, . . . , n]. From Chapter 3, we know that
K[M] is the homogeneous coordinate ring of the Grassmannian in its Plücker
embedding, namely the Plücker algebra, which we denoted G(X). Throughout
this chapter, we will maintain this notation.

First of all note that, applying Proposition 3.3.3 to the Grassmannian, we get

Corollary 4.1.1. The standard bitableaux in G(X) form a K-basis of G(X).

We want to study when M is a SAGBI basis of G(X). The first step is
obviously to define a monomial order on the ring K[X]. A natural and easy
choice could be the lexicographic order with

X11 > · · · > X1n > X21 > · · · > X2n > · · · > Xd1 > · · ·Xdn.

It is a diagonal monomial order. We already met this definition in Example 2.2.2:
it means that the product of the indeterminates in the main diagonal is the initial
monomial of each minor.

We introduce a specific notation for diagonals, given the important role they
play in this Section. If δ = [a1 . . . at | b1 . . . bt] is a minor of X, we let

⟨δ⟩ = ⟨a1 . . . at | b1 . . . bt⟩ =
t∏
i=1

Xaibi ,

and for a bitableau ∆ = δ1 · · · δw we set

⟨∆⟩ = ⟨δ1 · · · δw⟩ =
w∏
j=1

⟨δj⟩.
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If one chooses a diagonal monomial order on K[X], clearly one has in(δ) = ⟨δ⟩
and in(∆) = ⟨∆⟩.

Proposition 4.1.2. Let X be a d× n matrix of indeterminates and let K[X] be
endowed with a diagonal monomial order. Then the following hold:

(a) Let the standard bitableaux Σ, Σ′ be products of maximal minors of X . If
Σ ̸= Σ′, then ⟨Σ⟩ ≠ ⟨Σ′⟩;

(b) if f ∈ G(X), f ̸= 0, then there exists a standard bitableau Σ ∈ G(X) such
that in(f) = ⟨Σ⟩.

Proof. (a). If Σ and Σ′ have different shapes (that is, one of them has more factors
than the other), clearly also ⟨Σ⟩ and ⟨Σ′⟩ will have a different number of factors
and we are done.

Let now Σ = δ1 · · · δr, Σ′ = δ′1 · · · δ′r and suppose ⟨Σ⟩ = ⟨Σ′⟩ =: µ. Then
one can factorize µ as µ1 · · ·µd, where µi collects all indeterminates from row i
appearing in µ. Let Xici be the factor of µi with the smallest column index. Then,
since δ1 ⪯ δj for all j ̸= 1, δ1 is forced to be [c1 . . . cd] and so is δ′1. Then we are
done by induction on d.

(b). We know by Corollary 4.1.1 (actually, just from Lemma 3.5.3) that f is a K-
linear combination of standard bitableaux Σi ∈ K[M]. From (a) it follows that,
for every i ̸= j, ⟨Σi⟩ ≠ ⟨Σj⟩ and so the largest monomial among the in(Σi) = ⟨Σi⟩
is the initial monomial of f .

Note that this Proposition implies directly the linear independence of standard
bitableaux in K[M]. In fact, suppose that there exists a K-linear combination of
Σi that is equal to 0. Since K is a field, we can write Σ1 as a K-linear combination
of Σi, i ≥ 2. At this point, as in the proof of (b), one obtains in(Σ1) = in(Σi) for
some i ̸= 1 and thus ⟨Σ1⟩ = ⟨Σi⟩, that is a contradiction by (a).

Another immediate consequence is the following

Theorem 4.1.3. Let K be a field and X a d×n, d ≤ n, matrix of indeterminates.
Consider a diagonal monomial order on the polynomial ring K[X]. Then the set
M of maximal minors of X is a SAGBI basis of G(X).

Proof. Let f ∈ G(X). By Proposition 4.1.2(b), we know that there exists a
standard bitableau Σ = δ1 · · · δw, δi ∈ M, such that in(f) = ⟨Σ⟩ =

∏w
i=1⟨δi⟩.

Since K[X] is endowed with a diagonal monomial order, ⟨δi⟩ = in(δi), and so
in(f) belongs to the subalgebra K[in(M)]. We conclude by arbitrariety of f .

At this point, there are at least two questions that come naturally: are the
maximal minors always a SAGBI basis of G(X), regardless of the monomial order?
And can we generalize Theorem 4.1.3 to minors that are not maximal? Let us
answer the second question first.
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4.2 Minors of Arbitrary Size

Let us put ourselves in the assumptions of Theorem 4.1.3: K is a field, X a
d×n matrix, d ≤ n, and K[X] is endowed with a diagonal monomial order. Now
we introduce a notation for the algebra of minors

At = K[Mt],

whereMt denotes the set of minors of X of size t. We already discussed the case
t = d, and there is nothing to say about the case t = 1, in which A1 = K[X]
and M1 = {Xij : i = 1, . . . , d, j = 1, . . . , n}. For all the other cases, we have the
following

Proposition 4.2.1. If t < d, then dim(At) = dim(K[X]) = dn.

Proof. We know that the Krull dimension of an affine domain over K (namely
an integral domain that is finitely generated as a K-algebra) is the transcendence
degree of its fraction field over K (see [10], Theorem 5.6). With the usual notation
K(X) = frac(K[X]), we have the fields extension

K(X)

K(At)

K

Therefore, by additivity of transcendence degrees, we have

tr. degK(K(X)) = tr. degK(At)(K(X)) + tr. degK(K(At)),

that we reformulate as

dim(K[X]) = tr. degK(At)(K(X)) + dim(At).

So our claim is tr. degK(At)(K(X)) = 0. In other words, we have to prove that
the indeterminates Xij are algebraic over K(At). The general case follows from
the one in which d = n = t+ 1. Therefore let us suppose X is a (t+ 1)× (t+ 1)
generic matrix. The adjoint matrix X̃ is the (t+ 1)× (t+ 1) matrix whose entry
at position (i, j) is the t-minor

(−1)i+j[1 . . . i− 1 i+ 1 . . . t+ 1 | 1 . . . j − 1 j + 1 . . . t+ 1] ∈ At.

By construction, XX̃ is the diagonal matrix with det(X) in all diagonal entries,

it follows that det(X̃) = det(X)t+1

det(X)
= det(X)t. Since X̃ has entries in At, we get

that det(X̃) ∈ At and therefore it follows that det(X) is algebraic over K(At).
Now set D = det(X), L = K(At) and E = L[D]. Since D is algebraic over L, E
is a field. Now, X−1 has entries in E, det(X−1) ̸= 0 and therefore the entries of
X = (X−1)−1 are in E. Therefore K(X) = E.
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Note that, if d = n and t = n − 1, At is isomorphic to a polynomial ring. In
fact, there are nd t-minors m1, . . . ,mnd, so, from universal property of K-algebras,
we know that

At = K[m1, . . . ,mnd] ∼= K[y1, . . . , ynd]/p,

where K[y1, . . . , ynd] is a polynomial ring and p is prime since At is an in-
tegral domain. Since At has dimension nd by the previous proposition, At and
K[y1, . . . , ynd] have the same dimension. Therefore ht(p) is forced to be 0: oth-
erwise one would have dim(At) ≤ dim(K[y1, . . . , ynd]) − 1. Since (0) is prime in
K[y1, . . . , ynd], p = (0) and we get At ∼= K[y1, . . . , ynd].

Example 4.2.2. Set d = n = 3 and t = 2. As we have just seen, in this case
A2 is isomorphic to a polynomial ring of dimension 9. We deduce from this that
the 2-minors are not a SAGBI basis with respect to a diagonal monomial order.
By contradiction, assume that the diagonals of the 2-minors generate in(A2),
namely the 2-minors are a SAGBI basis of A2. Since A2 is a (standard, if we give
degree 1 to the 2-minors) graded algebra and, by our assumption, in(A2) is finitely
generated over K, we know from Theorem 2.4.5 that dim(A2) = dim(in(A2)).
Therefore the diagonals of the 2-minors need to be algebraically independent:
they are nine and the algebra they generate has Krull dimension 9. But this is
not true, since we can find a nontrivial relation between the diagonals, for example:

⟨1 2 |1 3⟩⟨1 3 |2 3⟩ − ⟨1 3 |1 3⟩⟨1 2 |2 3⟩ = X11X23X12X33 −X11X33X12X23 = 0.

Alternatively, one can note that the diagonals of the 2-minors do not involve all
the nine indeterminates, but only seven of them: in fact, the variables on the
antidiagonal corners of X, that is, X13 and X31, do not appear in any of the
diagonals. Hence the algebra generated by the diagonals of the 2-minors is a
subalgebra of a polynomial ring in seven indeterminates, and so it cannot have
Krull dimension 9. We conclude that the 2-minors of a 3 × 3 matrix are not a
SAGBI basis of A2 with respect to the diagonal monomial order.

Using the same Krull dimension argument of Example 4.2.2, one shows

Theorem 4.2.3. Let X be a d × n matrix of indeterminates. Then the set of t
minors of X, 1 < t < d, is not a SAGBI basis of At with respect to any diagonal
monomial order.

This gives us the answer to our question: it is not possible to generalize The-
orem 4.1.3 to minors of arbitrary size, it fails already when speaking of small
matrices like we have seen in the previous example.

At this point, one might wonder if there exists a monomial order for which the
t-minors of X, 1 < t < d, are a SAGBI basis of At. Consider the case in which X
is a n×n matrix of indeterminates and t = n−1. We start by seeking a monomial

44



order that can work for the case n = 3 and t = 2. As a first step, note that in
order not to run into the same problem of Example 4.2.2, we need a monomial
order involving all nine indeterminates in the leading terms of the 2-minors: this
way we can hope that K[in(M2)] has Krull dimension 9. To achieve this goal, we
would like to identify a term order with the following properties:

1. every indeterminate should appear at least in one initial term of a 2-minor;

2. most of the indeterminates appear in exactly one initial term so that the
latter cannot be involved in any algebraic relation among initial terms.

A good candidate could be Lex where the bigger indeterminates are the one ap-
pearing in the main diagonal of X, for example Lex with

X11 > X22 > X33 > · · · , (τ)

where the order in which all the other indeterminates appear is irrelevant.
With respect to this monomial order, we have:

in[1 2 | 1 2] = X11X22 in[1 2 | 2 3] = X13X22 in[1 2 | 1 3] = X11X23

in[1 3 | 1 2] = X11X32 in[1 3 | 1 3] = X11X33 in[1 3 | 2 3] = X12X33

in[2 3 | 1 2] = X22X31 in[2 3 | 1 3] = X21X33 in[2 3 | 2 3] = X22X33

Note that six of the nine initial terms involve an indeterminate that does not ap-
pear in any of the others, as we wanted. Hence none of them can satisfy any rela-
tion of algebraic dependence with any of the other eight. To prove that K[in(M2)]
has Krull dimension 9, it remains to show that X11X22, X11X33 and X22X33

are algebraically independent. Note that S = K[X11X22, X11X33, X22X33] ⊆
K[X11, X22, X33] is an integral extension of rings. In fact:

· X11 satisfies the polynomial t2X22X33 −X11X22 ·X11X33 ∈ S[t];

· X22 satisfies the polynomial t2X11X33 −X11X22 ·X22X33 ∈ S[t];

· X33 satisfies the polynomial t2X11X22 −X11X33 ·X22X33 ∈ S[t].

Therefore, by property of integral extensions:

dim(K[X11X22, X11X33, X22X33]) = dim(K[X11, X22, X33]) = 3.

Hence we can conclude that X11X22, X11X33 and X22X33 are algebraically inde-
pendent. Moreover, we have that dim(K[in(M2)]) = 9 and, since there are no
binomial relations among the initial terms to be lifted, by Theorem 2.3.1, namely
the SAGBI criterion, we conclude that the 2-minors are a SAGBI basis of A3 with
respect to the monomial order τ .

The same strategy works for the general case: consider a n× n matrix X and
the set Mn−1 of the n − 1-minors. For the same reasons as above, choose as

45



monomial order Lex with X11 > X22 > · · · > Xnn > · · · , where again the order
in which the remaining indeterminates appear is irrelevant. We want to show
that the initial terms of the n−1-minors are algebraically independent, so we can
conclude again by the SAGBI criterion that the latter are a SAGBI basis of An−1

with respect to the monomial order we introduced above. As it happened for
n = 3, all indeterminates (except the one on the main diagonal of X) appear just
one time in the initial terms of the n−1-minors: in fact, Xij, i ̸= j, appears in an
initial monomial just when it appears with

∏
k ̸=i,j Xkk. Therefore, what remains

to be shown is that the products X11 · · · X̂ii · · ·Xnn, as i varies in {1, . . . , n}, are
algebraically independent. For simplicity, since we are working just with variables
on the main diagonal of X, let us denote Xii as Xi. We will show that the following
rings extension

S = K[X1 · · · X̂i · · ·Xn | i = 1, . . . , n] ⊆ K[X1, . . . , Xn]

is an integral extension. Fix j ∈ {1, . . . , n}, and consider Xj. Then Xj satisfies
the polynomial

tn−1(X1 · · · X̂j · · ·Xn)n−2 −
∏
i ̸=j

X1 · · · X̂i · · ·Xn ∈ S[t].

Therefore every Xj, j = 1, . . . , n, is algebraic over S: this implies that dim(S) =

dim(K[X1, . . . , Xn]) = n and so the products X1 · · · X̂i · · ·Xn, as i varies in
{1, . . . , n}, are algebraically independent, proving our claim.

With our discussion we have shown

Theorem 4.2.4. Consider a n × n generic matrix of indeterminates X. Then
the n − 1-minors of X are a SAGBI basis of An−1 with respect to the Lex order
associated to the total order X11 > X22 > X33 > · · · , where the order in which the
other indeterminates appear is irrelevant.

Now that we proved Theorem 4.2.4, we want to go back to Example 4.2.2 and
find an actual SAGBI basis for A2 with respect to a diagonal monomial order. In
order to examine this case properly, we need a lemma for the proof of which we
refer to [8], Lemma 10.10.

Lemma 4.2.5. Let u, v ∈ N, 0 ≤ u ≤ v − 2, and suppose that charK = 0. Then
IuIv ⊆ Iu+1Iv−1.

In the terminology of the lemma, given an integer t, It denotes the ideal of
K[X] generated by the t-minors of the matrix X. The first non trivial case is the
one in which u = 1 and v = 3: the lemma states that the product of a 1-minor,
namely and indeterminate, and a 3-minor must be in I22 .

Recall the setting of Example 4.2.2 more precisely: X is a 3× 3 matrix of in-
determinates and the polynomial ring K[X] is endowed with a diagonal monomial
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order. We are interested in finding a SAGBI basis for A2, that is, the algebra gen-
erated by the 2-minors of X. We observed that the nine diagonals of the 2-minors
only involve seven indeterminates out of nine: X13 and X31 are missing. This was
the reason why the 2-minors could not form a SAGBI basis of A2.

Now, since X is a 3×3 matrix, Lemma 4.2.5 assures us that det(X)·Xij is in I22
for every i, j ∈ {1, 2, 3}. Since det(X)·Xij is an homogeneous polynomial of degree
4, it actually belongs to K[M2] = A2. Therefore the products of in(det(X)),
namely the main diagonal of X, with X13 and X31 both belong to in(A2), but
they cannot be written as combinations of the diagonals of the 2-minors for the
reason explained above. We now want to prove that adding these two products to
the set of the 2-minors gives a SAGBI basis of A2. Instead of doing it using the
SAGBI Criterion as in Theorem 4.2.4, this time we will use Hilbert series. Let us
give a name to the diagonals of the nine 2-minors (and thus to the nine 2-minors
themselves)

⟨m1⟩ = X11X22 ⟨m2⟩ = X12X23 ⟨m3⟩ = X21X32

⟨m4⟩ = X22X33 ⟨m5⟩ = X11X23 ⟨m6⟩ = X21X33

⟨m7⟩ = X12X33 ⟨m8⟩ = X11X32 ⟨m9⟩ = X11X33,

and let us set m10 = det(X) ·X13 and m11 = det(X) ·X31. Therefore we have

⟨m10⟩ = X11X22X33X13 ⟨m11⟩ = X11X22X33X31.

We call F the family {m1, . . . ,m11} and we want to present K[in(F)] as a
quotient of a polynomial ring. As we did in Section 2.2, we introduce the algebras
homomorphism

ψ : K[Y1, . . . , Y11] −→ K[in(F)]

Yi 7−→ ⟨mi⟩.

Note that the grading structure induced on K[Y1, . . . , Y11] by the mi is not stan-
dard. In fact, working with normalized degree and so giving degree 1 to the 2-
minors of X, m1, . . . ,m9 have degree 1 while m10 and m11 have degree 2. Therefore
deg(Y1) = · · · = deg(Y9) = 1 and deg(Y10) = deg(Y11) = 2.

We are interested in finding the kernel of ψ, that we know is generated by
binomials by Proposition 2.2.4. Clearly Y10 and Y11 cannot appear in any binomial
relation in ker(ψ) since ⟨m10⟩ and ⟨m11⟩ contain an indeterminate, respectively
X13 and X31, that does not appear in any other monomial among the diagonals
of the mi. To understand ker(ψ) we look for relations of the type

⟨mi⟩⟨mj⟩ − ⟨mk⟩⟨ml⟩,

where {i, j, k, l} ∈ {1, . . . , 9}. Therefore we need to find products of four indeter-
minates that ”cross” well with each other, for example

X11X23X12X33.
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In fact, pairing the first two indeterminates and the last two, one obtains the
product between ⟨m5⟩ and ⟨m7⟩, while pairing the first with the last and the second
with the third one obtains a different product of diagonals, namely ⟨m9⟩⟨m2⟩.
Thus

Y5Y7 − Y9Y2 ∈ ker(ψ).

Applying this argument, one sees that there’s only one other relation of the type
above, that is

⟨m8⟩⟨m6⟩ − ⟨m3⟩⟨m9⟩.

Therefore we conclude that

(Y5Y7 − Y9Y2, Y8Y6 − Y3Y9) ⊆ ker(ψ).

Actually one can prove that the equality holds, and this gives us the presentation
of K[in(F)] we wanted:

K[in(F)] ∼= K[Y1, . . . , Y11]
/

(Y5Y7 − Y9Y2, Y8Y6 − Y3Y9).

We now want to compare the Hilbert series of A2 and K[in(F)], in order to
use Lemma 2.4.2. We already observed that when d = n = 3 A2 is isomorphic
to a polynomial ring in nine indeterminates of normalized degree 1, therefore its
Hilbert series is

HSA2(t) =
1

(1− t)9
.

Set now S = K[Y1, . . . , Y11], B = K[in(F)], β1 = Y5Y7−Y9Y2 and β2 = Y8Y6−Y3Y9.
We need to find the Hilbert series of B, or equivalently the one of S/(β1, β2).
In order to compute the latter, we first need to show that β1, β2 is a S-regular
sequence. Clearly, since S is an integral domain and β1 is nonzero, β1 cannot be
a zero divisor in S and therefore is a S-regular element. Now, from the fact that
B is an integral domain we deduce that the ideal (β1, β2) ⊂ S is prime. Thus we
can assume that both β1 and β2 are irreducible and therefore prime since S is a
UFD. This implies that β2, being nonzero in S/(β1) that is a domain, cannot be
a zero divisor in S/(β1). This proves that β1, β2 is a S-regular sequence.

Recall now that S is a polynomial ring in eleven variables, of which the first
nine have degree 1 and the last two have degree 2. Therefore the Hilbert series of
S has the following form:

HSS(t) =
1

(1− t)9(1− t2)2
.

Since deg(β1) = deg(β2) = 2, multiplying the expression above by (1− t2)2 gives
us the Hilbert series of B = S/(β1, β2):

HSB(t) =
(1− t2)2

(1− t)9(1− t2)2
=

1

(1− t)9
.
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Since HSB(t) = HSA(t), we conclude by Lemma 2.4.2 that F is a SAGBI basis
of A2.

It makes sense to extend this argument in order to find a SAGBI basis of A2 for
d = n = 3 regardless of the monomial order. In fact, we observed that for every
i, j ∈ {1, 2, 3} det(X) · Xij belongs to A2: if it happens, like in Example 4.2.2,
that the diagonal of the 2-minors do not involve all of the nine indeterminates,
we can make up the missing ones using the expression above. Clearly it is not
enough to involve all indeterminates to be a SAGBI basis, but as we observed
again in Example 4.2.2 it is a necessary condition. Our idea is that there may be
two possible scenarios:

1. The set M2 is a SAGBI basis of A2. We are sure that such a situation is
feasible thanks to Theorem 4.2.4;

2. The setM2 is not a SAGBI basis of A2 and the elements that we need to add
to M2 in order to obtain a SAGBI basis of A2 are of the form det(X) ·Xij

for some i, j ∈ {1, 2, 3}.

In order to support this, we did some work on CoCoA, using the character-
ization of leading monomials given by Lemma 2.5.4. First, we calculated the
product F of all 2-minors of a 3× 3 matrix of indeterminates X: this is useful to
understand which monomials in the support of the 2-minors can appear as initial
monomials with respect to some monomial order. After that:

1. We computed all monomials in supp(F ), up to the action of S3 × S3 on X.
We found eight of them:

v1 =

4 2 0
2 2 2
0 2 4

 v2 =

4 2 0
2 1 3
0 3 3

 v3 =

4 2 0
1 3 2
1 1 4

 v4 =

4 1 1
1 4 1
1 1 4



v5 =

3 3 0
3 0 3
0 3 3

 v6 =

4 1 1
1 3 2
1 2 3

 v7 =

3 3 0
2 1 3
1 2 3

 v8 =

3 2 1
2 2 2
1 2 3

.

We want to understand which of these eight are vertices of the Newton
polytope PF .

2. We deleted v6, v7 and v8 since they appear more than once in the product
F , thus they can’t be vertices PF .

3. We checked that the remaining five are actually vertices of PF , and then we
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computed the corresponding weight vectors:

w1 = [2, 1, 0, 0, 0, 0, 0, 1, 2],

w2 = [2, 1, 0, 0, 0, 1, 0, 2, 2],

w3 = [2, 1, 0, 1, 2, 2, 0, 0, 2],

w4 = [2, 1, 1, 1, 2, 1, 1, 1, 2],

w5 = [1, 0, 0, 2, 0, 2, 1, 1, 2].

Note that v1 is the vertex corresponding to the diagonal monomial order of
Example 4.2.2, while v4 is the vertex corresponding to the lexicographic monomial
order that we used to prove Theorem 4.2.4, namely the Lex one induced by the
total order X11 > X22 > X33 > . . . (where the order of the remaining inderminates
is irrelevant). Moreover, observe that none other vertex except v4 involves all nine
variables. Since we know that this is a necessary condition to be a SAGBI basis,
we just proved the following

Theorem 4.2.6. Up to row and column permutations, there exists only one mono-
mial order on K[X] that makes the 2-minors of a 3× 3 matrix of indeterminates
a SAGBI basis of A2.

Now, with a quick test on CoCoA or Macaulay2 considering the monomial or-
ders induced by w1, w2, w3 and w6 one sees that adding the set {det(X)·Xij | i, j =
1, 2, 3} toM2 gives a SAGBI basis of A2 in all these four cases. Something inter-
esting that we observed during this test:

· With respect to the monomial order induced by w1 and w2, the SAGBI basis
has 11 elements.

· With respect to the monomial order induced by w3, the SAGBI basis has
10 elements.

· With respect to the monomial order induced by w5, the SAGBI basis has
12 elements.

Therefore the elements that we need to add to M2 in order to obtain a SAGBI
basis of A2 are exactly the elements {det(X) ·Xij} corresponding to the indeter-
minates that are not involved in any initial monomial of the 2-minors.

Going back to our main discussion, we can finally state the following:

Theorem 4.2.7. A universal SAGBI basis for the algebra generated by the set
M2 of the 2-minors of a 3× 3 generic matrix of indeterminates X is given by the
set

M2 ∪ {det(X) ·Xij | i, j = 1, 2, 3}.

We now discuss an interesting consequence of Theorem 4.2.6, proving the fol-
lowing theorem
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Theorem 4.2.8. There is no monomial order on K[X] such that the set M2 of
the 2-minors of a d× n matrix, d ≥ 3, n ≥ 4, is a SAGBI basis of A2.

Proof. If there existed a monomial order < such that the 2-minors of X were a
SAGBI basis, it would have to work well when restricting to the 3×3 submatrices
of X. By Theorem 4.2.6, this means that <, on every 3 × 3 submatrix of X,
up to rows and columns permutations should behave as Lex where the highest
indeterminates are those on the main diagonal. It is enough to prove the theorem
for a 3× 4 matrix. Let

X =

X11 X12 X13 X14

X21 X22 X23 X24

X31 X32 X33 X34

 .

Suppose that, when considering the first three columns, X11, X22 and X33 are
the three variables that appear 4 times in the leading terms of the 2-minors.
Now consider the submatrix X124 obtained by taking the first, second and fourth
column of X. Then X11 and X22 again have to appear four times, since in the
previous case they appeared respectively with X22, X32 and X11, X31 that all
belong to the submatrix we are considering. Therefore, since the indeterminates
that appear four times have to be all in different rows and columns, X34 is forced
to appear four times: with X11, X22, X12 and X21. Now consider X134. Again, for
the same reason above, X11 and X33 have to appear four times and therefore X24

is forced to appear four times as well: with X11, X31, X12 and X32. If we now go
back to X124, we see that both X24 and X34 have to appear four times, that is a
contradiction since they are in the same column.

4.3 Universality and Maximal Minors

We now want to answer our first question: are maximal minors a SAGBI basis
of G(X) for every monomial order? Namely, are the maximal minors a universal
SAGBI basis for G(X)?

Let us start from the simplest situation: d = 2. This case is covered by the
following

Proposition 4.3.1. Up to row and column permutations there is only one mono-
mial order, the diagonal one, for the 2-minors of a 2× n generic matrix of inde-
terminates X.

Proof. First of all, note that the case n = 2 is trivial. Now, we proceed by
induction on n. We call a variable Xij dominant if every 2-minor containing Xij

has as its initial monomial the one containing Xij. By induction, we just need to
prove that there is a dominant variable. Assume there’s not such a variable, and,
without loss of generality, make the further assumption that the initial monomial
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of [1 2] is X11X22. Since X22 is not dominant, there exists a minor [2 c], c ̸= 1,
with initial monomial X12X2c. Therefore we can assume c = 3. Since X23 is
not dominant, it exists a minor [3 d], d ̸= 2, such that it has X13X2d as initial
monomial. Observe also that d ̸= 1 is impossible. In fact, suppose d = 1. We
know that

X11X22 > X12X21, X12X23 > X13X22, X13X21 > X11X23,

and this leads to a contradiction: the product of the left sides equals the one of
the right sides. Therefore, we can assume d = 4 and proceed like that, shifting
by one column at a time. In the end, since X2n is not dominant, there exists a
minor [n m], m ̸= n− 1, such that it has X1nX2m as initial monomial. But every
m < n− 1 yelds a contradiction as it happened before. Hence we conclude.

Therefore, combining the previous Proposition with Theorem 4.1.3, we get our
answer for the case d = 2.

Corollary 4.3.2. The setM2 of 2-minors of a 2× n generic matrix of indeter-
minates X is a universal SAGBI basis of G(X).

Unfortunately, this is truly an exceptional case. Indeed, as one may have
noticed, the proof of Proposition 4.3.1 strongly uses the fact that d = 2.

Let us go one step further and consider the case of G(3, 6). Let us think of
our 3× 3 usual matrix of indeterminates X as two 3× 3 blocks A and B one next
to each other, that is

X =
(
A B

)
.

Consider now the main diagonal of A, where the indeterminates X11, X22 and X33

appear, and set
X11 > X22 > X33.

Doing the same for the block B we obtain

X14 > X25 > X36,

and finally we combine them:

X11 > X22 > X33 > X14 > X25 > X36.

The monomial order we are going to consider is Lex induced by the chain of in-
equalities above, to be continued with all the other missing indeterminates in some
prescribed order. Seen on the blocks A and B separately, this is the monomial
order that we constructed in order to prove Theorem 4.2.4. Altough it worked
well in that case, our computation on Macaulay2 (see Appendix A.2) shows that
with respect to this monomial order the setM3 of 3-minors of X is not a SAGBI
basis of G(3, 6). Therefore we get a negative answer to our question:
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Proposition 4.3.3. Consider a 3 × 6 matrix of indeterminates X. Then there
exists monomial order on K[X] such that the set M3 of the maximal minors of
X is not a SAGBI basis of G(X).

A proof of this result was given in Corollary 5.6 of [15], but the monomial
order there considered failed to be lexicographic. In fact, the following weight
matrix was considered

W =

2 1 2 1 0 0
1 2 0 0 2 1
0 0 1 2 1 2

 .

This means that the entry Xij of the usual 3 × 6 matrix of indeterminates has
weight Wij. Let us give a look at how the leading terms of the maximal minors
of X are distributed (see [19]):

v(W ) =

8 2 8 2 0 0
2 8 0 0 8 2
0 0 2 8 2 8

 .

In order to read this matrix one has to fix a column, for example the first one. Of
the ten minors involving the first column, eight contain X11 in their leading term
and two contain, again in their leading term, X21. None of the ten leading terms
involve X31.

If the monomial order induced by W on K[X] was lexicographic, there would
be a variable Xij such that Xij is the highest in our order. Then Xij must appear
in the leading term of every of the ten maximal minors of X involving the i-th
column. Therefore the i-th column of v(W ) must contain a 10 in the j-th row,
forcing the other two entries to be zero. As we can see, the matrix v(W ) does
not contain any column with two zero entries, and therefore the monomial order
induced by W on K[X] cannot be lexicographic.

For instance, the matrix of distribution of the leading terms with respect to
our lexicographic monomial order is10 0 0 6 2 2

0 10 0 2 6 2
0 0 10 2 2 6

 ,

and one sees that there’s at least a column with two zero entries.
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Appendix A

Experiments on CoCoA and
Macaulay2

A.1 A Universal SAGBI basis for A2

A.1.1 Preliminary Experiments

We report the Macaulay2 code we used to experimentally support our idea in
Section 4.2 that led to Theorem 4.2.7. In this case, we used as weight matrix a
random 3× 3 matrix with non-negative entries.

needsPackage ” SubalgebraBases ”

−− we cons t ruc t the polynomial r i ng endowed with the
monomial order induced by a random 3x3 matrix

ordR = random (ZZˆ3 ,ZZˆ3)
ordR’= transpose ( ordR )
r = reshape (ZZˆ1 ,ZZˆ9 , ordR ’ )
R = QQ[ X {1 , 1} . . X {3 ,3} , MonomialOrder => {Weights =>

f l a t t e n e n t r i e s ( r ) } ]

−− we cons t ruc t the matrix o f inde te rminate s X and
check i f the 2−minors o f X are a l r eady a SAGBI b a s i s

M = transpose ( gener i cMatr ix (R, X {1 ,1} , 3 ,3 ) )
I = minors (2 ,M)
L = f l a t t e n e n t r i e s ( gens I )
isSAGBI L

−− we cons t ruc t our ( u n i v e r s a l ) SAGBI b a s i s and check
i f i t a c t u a l l y i s a SAGBI b a s i s

inde t = gens R
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d = det M
indet ’ = d∗ i nde t
SagbiUniv = j o i n ( indet ’ , L)
isSAGBI SagbiUniv

Here we report the code that does exactly the same thing on CoCoA 5. Note
that CoCoA doesn’t have a boolean function to check if a certain set is a SAGBI
basis, while as we saw above Macaulay has function isSAGBI.

−− we cons t ruc t the polynomial r i ng endowed with the
monomial order induced by a random vecto r o f n ine
e n t r i e s

S : :=QQ[X [ 1 . . 3 , 1 . . 3 ] ] ;
ordR:= MakeTermOrdMat(RowMat ( [ random (0 ,10 ) | k in 1 . . 9 ] )

) ;
R:=NewPolyRing (QQ, IndetSymbols (S) , ordR , 1) ;

−− we cons t ruc t the matrix o f inde te rminate s X and
check i f the 2−minors o f X are a l r eady a SAGBI b a s i s

L:= i n d e t s (R) ;
M:=MakeMatByRows(3 , 3 ,L) ;
two min:= minors (M, 2 ) ;
SB:= sagb i ( two min ) ;
l en (SB) ;

−− we cons t ruc t our ( u n i v e r s a l ) SAGBI b a s i s and check
i f i t a c t u a l l y i s a SAGBI b a s i s

d:= det (M) ;
univ SB:= concat ( two min , d∗L) ;
LT sagbi :=[LT( f ) | f in SB ] ;
LT sagbi univ :=[LT( f ) | f in univ SB ] ;
I sSubse t ( LT sagbi , LT sagbi univ ) ;

A.1.2 Computation of the Newton Polytope

After these experiments we proved Theorem 4.2.7. Here we report the CoCoA
computation we used:

−− we cons t ruc t the polynomial r i ng and the g e n e r i c matrix
X

Use R: :=QQ[ x [ 1 . . 3 , 1 . . 3 ] ] , Lex ;
X:=Mat ( [ [ x [ I , J ] | J In 1 . . 3 ] | I In 1 . . 3 ] ) ;
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−− we compute the product F o f the 2−minors o f X and we
record in FF a l l the p o s s i b l e ways in which monomials in

the support o f F can form whi le c a l c u l a t i n g the product
F:=Product ( Minors (X, 2 ) ) ;
MM:=Minors (X, 2 ) ;
FF : = [ 1 ] ;

Foreach A In MM Do
SA:=Support (A) ;
FF:=Concat (SA[ 1 ] ∗FF, SA[ 2 ] ∗FF) ;
EndForeach ;

FS:=MakeSet (FF) ;

−− we cons t ruc t the l i s t JF o f the monomials that appear
only once in the product . The v e r t i c e s o f the Newton
polytope are a subset . There are 102 monomials in JF ,
whi l e the support o f F has 156 . C l ea r l y JF i s a subset
o f Support (F)

JF :=[ A In FS | Len ( [ B In FF | B=A] ) =1] ;
Len (JF) ;
Len ( Support (F) ) ;

−− we check which monomials are in the support o f F up to
rows and columns permutat ions o f X

W:=[ exponents (A) | A In Support (F) ] ;
WW: = [ ] ;

Foreach B In W Do
Append( r e f WW, Mat ( [ [ B[ I +3∗(J−1) ] | I In 1 . . 3 ] | J In

1 . . 3 ] ) ) ;
EndForeach ;

SS:= Permutations ( 1 . . 3 ) ;
EWW: = [ ] ;

While WW<>[] Do
B:=WW[ 1 ] ;
Append( r e f EWW, B) ;
ORB: = [ ] ;
Foreach P In SS Do
Foreach Q In SS Do
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Append( r e f ORB, Mat ( [ [ B[P[ I ] , Q[ J ] ] | J In 1 . . 3 ] | I
In 1 . . 3 ] ) ) ;

EndForeach ;
EndForeach ;
ORB:=MakeSet (ORB) ;
WW:=[ C In WW | Not (C I s I n ORB) ] ;
PrintLn Len (WW) , ” ” , Len (ORB) ;
EndWhile ;

Foreach A In EWW Do PrintLn A; EndForeach ;

−− we compute v e r t i c e s o f the Newton polytope o f F with
random weights . After some computations we found 102 ,
but 102 was the c a r d i n a l i t y o f JF and t h e r e f o r e we found

a l l o f them .
W:=Mat ( [ exponents (A) | A In Support (F) ] ) ;

VERT: = [ ] ;
PESI : = [ ] ;

For YU:=1 To 10000 Do
U:=Mat ( [ [ Rand (0 , 2 ) | K In 1 . . 9 ] ] ) ;
WU:=Transposed (W∗Transposed (U) ) ;
WU:=GetRow(WU, 1 ) ;
MAX:=Max(WU) ;
YY:=[ Y In 1 . . NumRows(W) | WU[Y]=MAX] ;
I f l en (YY)=1 Then I f Not (YY[ 1 ] I s I n VERT ) Then Append(

r e f VERT, YY[ 1 ] ) ; Append( r e f PESI , U) ; Pr int ”−” ;
EndIf ;

EndIf ;
EndFor ;

Len (VERT) ;

−− we p r i n t a l l 102 v e r t i c e s with the a s s o c i a t e d weight
v e c t o r s

W:=[ W[K] |K In VERT] ;

WW: = [ ] ;

Foreach B In W Do
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Append( r e f WW, Mat ( [ [ B[ I +3∗(J−1) ] | I In 1 . . 3 ] | J In
1 . . 3 ] ) ) ;

EndForeach ;

For I :=1 To Len (WW) Do
PrintLn ;
PrintLn I , ” ) ” , ”==================”;
PrintLn WW[ I ] ;
PrintLn PESI [ I ] ;
EndFor ;

−− we p r i n t j u s t the v e r t i c e s up to rows and columns
permutat ions o f X

SS:= Permutations ( 1 . . 3 ) ;
EWW: = [ ] ;

While WW<>[] Do
B:=WW[ 1 ] ;
Append( r e f EWW, B) ;
ORB: = [ ] ;
Foreach P In SS Do
Foreach Q In SS Do
Append( r e f ORB, Mat ( [ [ B[P[ I ] , Q[ J ] ] | J In 1 . . 3 ] | I

In 1 . . 3 ] ) ) ;
EndForeach ;
EndForeach ;
ORB:=MakeSet (ORB) ;
WW:=[ C In WW | Not (C I s I n ORB) ] ;
PrintLn Len (WW) , ” ” , Len (ORB) ;
EndWhile ;

Foreach A In EWW Do PrintLn A; EndForeach ;

A.2 A Counterexample for G(3, 6)

The following is the Macaulay2 code we used in order to show that the maximal
minors are not a SAGBI basis of G(3, 6).

needsPackage ” SubalgebraBases ”

w 1 = {1}
w 2 = {0 ,0 , 0 , 0 , 0 , 0 , 0 , 1}
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w 3 = {0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1}
w 4 = {0 ,0 ,0 ,1}
w 5 = {0 ,0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1}
w 6 = {0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1}

−− we cons t ruc t the polynomial r i ng endowed with the
monomial order g iven by the 9x9 matrix whose the
f i r s t n ine rows are the w i

R = QQ[ X {1 , 1} . . X {3 ,6} , MonomialOrder =>{Weights =>
w 1 , Weights => w 2 , Weights => w 3 , Weights => w 4 ,

Weights => w 5 , Weights => w 6 , Lex } ]

−− we cons t ruc t the 3x6 matrix o f inde te rminate s X and
check i f the 3−minors are a SAGBI b a s i s

M = transpose ( gener i cMatr ix (R, X {1 ,1} , 6 ,3 ) )
I = minors (3 ,M)
L = f l a t t e n e n t r i e s ( gens I )
isSAGBI L
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