
Università degli Studi di Genova

Scuola di Scienze Matematiche, Fisiche e Naturali
Corso di Laurea Magistrale in Fisica

Thesis for the Master’s Degree in Physics

Efficiency and stability of a collisional quantum
battery in the presence of anharmonicity

Supervisors:
Prof. Dario Ferraro
Prof. Fabio Cavaliere
Co-supervisor:
Prof. Paolo Solinas

Candidate:
Nicolò Massa
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Introduction

Quantum technologies have witnessed outbreaking progresses in the last decades, both
from the theoretical and experimental point of view, which led to the development of a
very active cross-disciplinary field of research. This field can be divided into four main
domains [1]: quantum computation [2, 3], which aims at exploiting quantum effects to
speed up algorithms such as number factorization and search in a database; quantum
simulation, which emulates less-accessible quantum systems through more accessible and
controllable ones [4]; quantum communication, aimed at increasing the security and effi-
ciency of data transmission processes [5, 6]; and quantum sensing, where the sensitivity of
coherent quantum systems with respect to external perturbations is used in order to in-
crease the accuracy of physical measurements also for metrological applications [7]. Within
this broad panorama, quantum batteries have gained more and more relevance during the
last decade.

Generally speaking, a battery is a device created in order to store and release energy
on demand. The ordinary batteries which allow the functioning of everyday life devices
are the so called electro-chemical batteries, which typically store chemical energy and re-
lease it in the form of electric energy [8]. Quantum batteries can be seen as the quantum
counter parts of such devices: they consist in quantum multi-level systems whose energy
is increased by populating their excited states, through a charging process which involves
the coupling with one or many other quantum systems, playing the role of chargers.
The concept of a quantum battery was firstly introduced in 2013 by R. Alicki and M.
Fannes [9]. Inspired by the development of the field of quantum thermodynamics of meso-
scopic and nanoscopic systems [10], they showed that entanglement and quantum collective
effects can lead to advantages in terms of work extraction. Starting from this seminal idea,
many other works dealt with the extension of thermodynamics rules to arbitrary quantum
systems and with the possibility of exploiting quantum effects in order to improve their
performances as energy storage devices [11, 12, 13].

Since then, various different models of quantum batteries have been proposed, based
on quantum harmonic oscillators [14, 15], three-levels systems [16, 17] but, mainly, two-
level systems [14, 18, 19]. The reason for the prevalence of two-level systems is that they
are the fundamental unit of quantum computation, and they have been realized in various
platforms such as trapped ions [20], semiconductor quantum dots [21] and superconduct-
ing circuits [22]. Chargers employed within the above works can be both external classical
fields [17, 23, 24] or quantum systems, such as photons trapped in a cavity [14, 25, 26] or
other two-level systems [14].
Although a great part of theoretical works considered superconducting qubits, the first
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experimental realization of a quantum battery, reported in [27], employed fluorescent
molecules. Here, molecules effectively behaved as two-level systems and were inserted
into a cavity acting as a charger. This was the first experimental work addressing the
power produced by quantum batteries and its results were in agreement with the theoret-
ical predictions reported in [25].
This work has been followed by new experimental proposals based on superconducting
qubits [28] and quantum dots [29], triggering further interest in the topic.

Recently, the attention has shifted to the so-called collisional quantum batteries, whose
charging is realized through the sequential interaction with a collection of quantum sys-
tems individually interacting with the battery [30, 31, 32, 33]. Among these, a prominent
role is played by multi-level batteries, usually quantum harmonic oscillators, that are
charged through sequential interactions with a collection of two-level systems whose state
is suitably engineered. The name given to these devices derives from the fact that they
are based on the collisional models introduced for the study of dissipation in open quan-
tum systems, where the environment is decomposed into a collection of elementary units
that interact with the system under examination, leading for example to thermalization
phenomena [10, 34]. The fundamental difference lies in the fact that, in the context of
quantum batteries, these interaction processes actively contribute to the net transfer of
energy from the chargers to the battery.

In this context the present master thesis aims at studying theoretically the effects of the
anharmonicity on a multi-level collisional quantum battery, characterizing its efficiency and
stability, exploring the possibility of extracting the stored energy and comparing coherent
and incoherent charging protocols. From an experimental point of view the anharmonic-
ity is one of the relevant features of a particular superconducting circuit, the so called
transmon [22]. This makes this analysis very relevant in view of future implementations
of these device.
In Chapter 1 we introduce the most relevant physical platforms employed in the field
of quantum technologies, which reveal to be the most suitable also for the realization of
quantum batteries. After setting the notation providing a brief theoretical background on
such systems, we introduce the concept of quantum batteries and the figures of merit rele-
vant for our purposes. Chapter 2 deals with the theoretical framework of open quantum
systems, comparing the master equation approach with the collisional one and providing
an example of the latter, which will be the starting point for Chapter 3. Here, in fact,
we will retrace and extend the study done in [32, 33] about the possibility of employing a
Micromaser as a quantum battery. This system consists in a cavity, employed as an energy
storage device, which sequentially interacts with a stream of two-level systems, playing
the role of chargers.
The striking feature of this model is that, on the one hand, incoherent chargers allow to
store energy in the system only for precisely fine-tuned values of the the system-ancilla
coupling whereas, on the other hand, coherent chargers make the stored energy stable
with respect to coupling deviations from such values. In order to reproduce these results
on coherent and incoherent charging protocols, we will provide both analytical and nu-
merical arguments. Furthermore, we will show original results for regimes of previously
unexplored coherences. Chapter 4 is the core of the original part of this thesis, where
we will analyze the possibility of realizing an anharmonic collisional quantum battery,
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characterizing its stability and providing original numerical results about the storage and
extraction of energy.
As stated above, the platform we will consider consists of a superconducting circuit in the
transmon regime, playing the role of the battery, charged through the sequential interac-
tion with a collection of identical two-level systems.
The numerical approach performed to solve such collisional dynamics highlights relevant
differences between the coherent charging protocol and the incoherent one. In the first
case, in fact, we will show that it is possible to store a significant amount of energy in
the battery and to extract it almost entirely whereas, in the second case, these relevant
features are almost completely lost. Thus, similarly to the harmonic collisional quantum
batteries studied in literature, quantum coherences at the level of the ancillae lead to
advantages in terms of collisional charging performances also in the case of the transmon.
These advantages, however, reveal to be far more dramatic in the transmon case than in
the Micromaser case. The former, in fact, needs quantum coherences at the level of the
ancillae for both the storage and extraction of energy whereas the latter allows to store a
significant, although instable, amount of energy also using an incoherent protocol.
Numerical simulations have been performed employing QuTiP (Quantum Toolbox in
Python) [35] and its tools for matrix calculations and Master Equations solving. Technical
details for the code implementation have been discussed in the Appendix.
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Chapter 1

Introduction to quantum batteries

This Chapter sets the background needed to study quantum batteries. In Section 1.1 we
introduce the topic of quantum batteries. Section 1.2 surveys the most important physical
platforms for quantum computation and information, which are expected to be the most
promising testbeds for the implementation of quantum batteries. After this, in Section 1.3
we will introduce the theoretical tools required to describe such systems setting a general
notation for the rest of the thesis. At last, in Sec. 1.4 we will introduce quantum batteries,
focusing on their most important figures of merit and, in Sec. 1.5, we will provide examples
of simple quantum battery models.

1.1 Road towards quantum batteries

The problem of realizing efficient devices for the storage and release of energy is one
of the most important challenges of our society. Most common devices for such pur-
poses are electrochemical batteries [8], whose origin dates back to the Eighteenth and
Nineteenth centuries, when their functioning principles were firstly studied and the first
electrochemical cells were realized. These devices revealed to be very versatile, spreading
in all technological fields. The recent increasing demand for energy storage devices able
to handle great power densities has been only partially satisfied by realizing new classes
of electrochemical supercapacitor electrodes [36].
For these reasons it is worth, on the one hand, improving already existing devices, for
example considering innovative materials [37] and, on the other, investigating new classes
of batteries based on principles which are different from electrochemical ones.
The trend towards miniaturization of devices emerged during the last decades, as well as
the development of the field of quantum technologies have led to an increasing interest
in the topic of energy transfer between quantum systems and the unavoidable trade-offs
associated to such transfer, studied by the so called quantum thermodynamics [11, 38, 39].
It is well known, in fact, that the large applicability of thermodynamics and the validity
of its laws are related to the fact that it does not take into account microscopic details.
In principle, then, thermodynamical laws and bounds for systems at the micro and nano
scales could be different from the ones we are used to at the macroscopic level, converging
to them only in the macroscopic limit [11, 19, 38, 39, 40].
It is in this context that the interest on quantum batteries arose. These are devices which
aim at outperforming their classical counterparts in terms of several figures of merit, by
exploiting purely-quantum features such as entanglement and quantum coherences.
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Introduction to quantum batteries

The first work dealing with quantum batteries [9], in fact, tried to characterize the amount
of extractable work from a system used to store energy temporarily.
The importance of the study of quantum batteries, however, goes beyond the realization
of devices, since they can also impact other branches of quantum technologies such as
quantum information processing, in order, for example, to evaluate the energetic cost of
qubit operations [41, 42].

1.2 Platforms for quantum batteries

The theoretical models and physical platforms considered in the field of quantum batter-
ies have been previously extensively studied for both quantum computation and quantum
information purposes. The aim of this Section is to provide an insight on such platforms
and their experimental realization.
Since two-level systems (TLS) are at the basis of qubits, the fundamental unit of quantum
computation [10, 43], and of the simplest models of quantum batteries [18], we describe
here how they can be realized and what are the main environmental effects on such imple-
mentations. At last, we will briefly describe physical realizations of cavities and resonators,
fundamental systems in the field of quantum computation, employed for example in the
readout processes of qubits, as well as in the field of quantum batteries, where they can
be used both as batteries and chargers.

1.2.1 Two-level systems platforms

A two-level system is the simplest possible quantum system, characterized by a two dimen-
sional Hilbert space. Its quantum states are therefore given by all the possible quantum
superpositions of two independent states in this space. Practical implementations of two-
level systems can be divided into two main categories, whether they are based on natural
or artificial systems.
On the one hand, since nature provides equal copies of them, natural systems such as
neutral atoms and ions are suitable for the realization of qubits arrays. Furthermore, they
can be isolated from the external environment more easily than artificial systems such as
superconducting circuits or semiconducting quantum dots [20]. However, they also present
disadvantages such as the fact that their parameters are not tunable, together with tech-
nical difficulties in coupling them.
On the other hand, artificial platforms have the advantage of custom-designed features,
which allows tunability of parameters such as energy levels spacings. Furthermore, they
are easier to put in connection, since they can be wired together in a chip [44]. Disad-
vantages for this kind of platforms are, for example, issues in building equal copies and in
isolating them from noise sources.

At the operational level, other differences may arise, regarding for example the best
working conditions in terms of temperature (nK-µK for neutral atoms, µK-mK for ions
and superconducting qubits and K for quantum dots [20]).
In order to isolate two levels out of their multi-level structures, all these systems must
present anharmonicity of the energy spectra. In other words, the transition frequency
between the two states forming the desired qubit must be sufficiently different from the
other transition frequencies. If this is not the case, performing operations on the qubit
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Introduction to quantum batteries

could cause non-zero populations of other levels, and the system could not be treated as
a qubit anymore [45, 46].
In the following we will briefly discuss some examples before introducing the supercon-
ducting qubits in the next subsection.

Trapped ions Since atoms and ions are characterized by an anharmonic energy levels
structure they are natural candidates for the realization of qubits. Ions are of greater util-
ity with respect to neutral atoms since, thanks to their charge, they are easier to confine
through time dependent electromagnetic traps and also easier to couple in order to realize
two qubits gates [20, 43].
Their long-lived internal energy levels are used to encode quantum information and can
be excited through laser radiation [20].
For quantum computation purposes they must be trapped and cooled to very low tem-
peratures in order to allow the confinement [43]. This can be realized combining constant
and alternating electric fields, an example being the so called Paul trap, where the ion
is subjected to a saddle potential with rotating confinement direction (see Fig. 1.1(a)),
which effectively leads to a well of the form

V (x, y, x) =
1

2
m
(
ωxx

2 + ωyy
2 + ωzz

2
)
, (1.2.1)

shown in Fig. 1.1(b). Provided that the frequencies are tuned so that ωx ≈ ωy ≫ ωz

(a) (b)

Figure 1.1: Mechanical analogous of a Paul trap: (a) Rotation of a saddle potential confining a
particle; (b) Effective potential experienced by the particle. Images taken from [47]

the ion motion develops approximately only along the z direction, and is characterized
by vibrational modes which are typical of a harmonic oscillator [43]. Thus, the need to
cool down ions derives from the fact that, in order to manipulate their internal degrees
of freedom, they must be in their vibrational ground state. This condition is satisfied
provided that the temperature regime is such that kBT ≪ ℏωz. This can be realized
through cooling techniques such as laser Doppler cooling [43]. This consists in inserting
the ion between two laser beams with opposite directionality and frequencies just below
the resonance condition with the vibrational frequency of the ion. When the ion moves
oppositely to the direction of one of these laser beams, it sees a greater frequency of the
incoming photons, which now is closer to the resonance condition. This enhances the
absorption of the photon which, in turn, transfers its momentum to the ion, slowing it
down and cooling it. This happens independently from the direction of motion of the ion
due to the presence of the two opposite beams.
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Introduction to quantum batteries

Once the ion has been cooled, the qubit is obtained by isolating two levels out of the ion
internal energy levels structure.
Lasing techniques are also a powerful instrument for the readout of this kind of systems
[20].

Quantum dots Quantum dots can be realized as microscopic to nano-scale semiconduc-
tor structures where electrons are confined in all three dimensions [48], leading to atom-like
discrete energy levels. This kind of devices can be realized through growth techniques or
electrode gates over a two dimensional electron gas (2DEG). Their main advantages are
the possibility of engineering them properly in order to have control on system parameters,
together with their operational temperature reaching the Kelvin scale [20]. Furthermore,
arrays of quantum dots can be realized both through growth techniques [48] and through
multiple gating over a 2DEG [49] (see Fig. 1.2), which is a relevant fact for scalability
purposes.
One of the most relevant works considering the employment of quantum dots as qubits
has been proposed by D. Loss and D. P. DiVincenzo in [21]. Here, the implementation of
a universal set of one- and two-qubits gates for quantum computation is discussed. The
idea is to use single-electron dots as qubits, where the two levels are given by the two spin
states of the electron. This choice is motivated by the fact that spin degrees of freedom
of an electron in a single electron quantum dot are weakly coupled with the environment,
leading to long decoherence times (see Sec. 1.2.3) [21]. Encoding the qubit in the TLS
formed by the spin of the electron allow to perform single qubit operations by applying
an external magnetic field [21] or by properly engineering the gate used to create the dot
structure [50].

(a) (b)

Figure 1.2: (a) Scanning Electron Microscope image of a two dot structure created through the
action of gate electrodes (grey components). (b) Schematic representation of the electrodes needed
to control the system: Vg1, Vg2, Vg3 are side gates used to control the excess charge on each dot;
n1, n2 represent the number of excess electrons in the two dots; Vp1, Vp2, Vp3 are point contact gates
used to control both the dot-lead and dot-dot conductances. Images taken from [50].

Considering a multiple-dot structure, two-qubits gates can be realized by electrical gating
of the tunneling barrier between two neighboring quantum dots. A well-established tech-
nique in order to realize such structures is the so called split-gate technique shown in Fig.
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Introduction to quantum batteries

1.2 [50]. Here, electrons are confined in the two central regions (dots) through gates with
different roles: side gates, such as Vg1, Vg2, Vg3 in Fig. 1.2(b), control the excess charge on
each dot whereas point contact gates, such as Vp1, Vp2, Vp3, allow to control the dot-lead
and dot-dot conductances. The idea behind this is that, when the tunneling barrier is
high enough, no tunneling occurs and the qubit states are held stably without evolution
in time, whereas if it is properly decreased, tunneling may happen, and the spins of the
single electron dots will be subjected to a Heisenberg coupling which allows the realization
of two qubits operations [21].
The energy balance of a dot coupled with an external electromagnetic field in view of a
possible quantum battery implementation has also been studied recently [29].

1.2.2 Superconducting qubits

Given their importance in this thesis, we dedicate to superconducting qubits a separate
section. They are solid-state electrical circuits based on superconducting materials and
employing Josephson junctions. This has the twofold advantage of avoiding dissipation
and providing non linearity and, consequently, anharmonicity [45]. Since they can be
easily integrated with other solid-state circuits [45] they are appealing for readout and
scalability purposes [3]. For these reasons, such devices are usually employed in the field
of quantum computation, quantum information processing and circuit Quantum Electro-
dynamics (circuit QED) [51, 52].
Different possible implementations of superconducting qubits have been proposed in litera-
ture. They can be divided in charge qubits, flux qubits, phase qubits [52] and the transmon
qubits [22, 52] depending on the circuit implementation and working conditions. Here, we
will only focus on charge and transmon qubits. A detailed description of the other classes
of superconducting qubits can be found in [45, 52, 53]. Before entering into the detailed
analysis of these circuits, as a warm up, in the following we will briefly describe a simple
but instructive electrical circuit in the quantum regime, namely the LC circuit.

LC circuit It constitutes the simplest example of a circuit which, under proper condi-
tions, displays a quantum behaviour. It can be described as an inductor L connected with
a capacitor C, with all metal parts made of a superconducting material [45]. This allows
to get rid of resistive contributions for temperature below the superconducting critical
temperature of the material.
Such a device, represented in Fig. 1.3(a), can be seen as the lumped element version of
a superconducting cavity or a transmission line resonator [51]. At sufficiently low tem-
peratures, it exhibits quantum features such as a harmonic energy level structure with
frequency given by

ωr =
1√
LC

. (1.2.2)

This feature makes this system a remarkable example of mesoscopic quantum system: it
presents a quantum behaviour with parameters linked to engineered quantities, as ex-
pressed in Eq. (1.2.2). A detailed theoretical description of its quantum Hamiltonian will
be carried out in Sec. 1.3. Such circuits can be realized using planar components with
size of about 100 µm (see Fig. 1.3(b)) and with typical L ≈ 10 nH and C ≈ 1 pF [45]
leading to ωr ≈ 10 GHz.
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(a) (b)

Figure 1.3: (a): Lumped elements scheme for an LC circuit. Here, L denotes the inductance of
the circuit whereas C its capacitance. Image taken from [45]. (b): Laser microscope image of the
lumped-element LC oscillator inductively coupled to a coplanar transmission line (on the right).
Image taken and adapted from [54]

In order to employ the LC circuit in more complicated geometries for quantum com-
putation purposes, one needs to ensure that it maintains superconducting features in the
regime where qubits need to be employed. Usual applications take place at temperatures
around T ≈ 1− 10 mK and qubit state measurements are performed using pulses of fre-
quencies on the order of 10 − 20 GHz. Employing a suitable superconducting material
with critical temperature above T and no dissipative effects for frequencies considered
above ensures the possibility of employing this circuit for quantum computation purposes.
An example of a suitable material is aluminium: its critical temperature is TC ≈ 1.1
K and the frequency at which dissipation due to the breaking of Cooper pairs occurs
is ωdiss = 100 GHz, values which are sufficiently far from the qubits scales anticipated
above. Such values of the LC circuits parameters, for which we refer to [45], allow these
systems to present characteristic impedance values which make them easy to couple with
other superconducting circuits [45].
The possibility of realizing harmonic level structures through the use of superconducting
circuits, however, is not useful in order to realize artificial atoms. It is, in fact, impossible
to isolate only two levels out of a harmonic structure [45, 52]. For this reason, a source of
non linearity is needed.

Josephson junction The need for the introduction of such a new element derives from
the fact that, for an integrated circuit to be employed as qubit, no dissipation nor linearity
is acceptable: the first is linked to the loss of quantum coherence whereas the latter to
harmonicity of energy spectra as stated above. The problem of dissipation can be over-
come by employing superconducting materials with suitable critical temperature, whereas
non-linearity can be achieved by employing Josephson junctions. Introduced for the first
time by B.D. Josephson [57, 58], these are non dissipative and non linear circuit elements
which can be used at low temperature.
The structure of a Josephson junction is shown in Fig. 1.4(a): it is formed by two su-
perconducting materials separated by a thin insulating layer, usually an oxide layer with
typical width scale of 1 nm. The functioning of this device is based on Cooper pairs
tunneling through the barrier [55].
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(a) (b)

Figure 1.4: (a): circuital scheme of a Josephson junction. Image taken from [55]. (b): super-
conducting qubit (inner loop) inserted into a 2-junction SQUID (external loop) which works as a
readout device. Image taken from [56].

Here, we limit ourselves to introduce relevant equations and parameters for Josephson
junctions. At the typical frequencies and temperatures of qubit operations it behaves as a
non linear inductor L(JJ) with an associated capacitance C(JJ) due to the superconducting
(SC) electrodes. It is interesting to study its constitutive equations, namely

IJ(t) = ICSin[φ(t)] (1.2.3)

∂φ(t)

∂t
=

2π

ϕ0
V (t) (1.2.4)

which are usually referred to as Josephson equations [55, 59]. Here we introduced the
critical current of the junction IC , which depends on the SC material and the size of the
junction, the gauge invariant phase difference φ across the junction, the applied voltage
V (t), and the superconducting flux quantum ϕ0 =

h
2e ≈ 2.07×10−15 Wb. It can be shown

[60] that the inductance of such a junction and its inductive energy are given by

L(JJ) =

(
∂IJ
∂t

)−1

V (t) =
1

Cos(φ(t))

ϕ0
2πIC

(1.2.5)

and

EJL =

∫ t

0
I(t′)V (t′)dt′ = E(JJ)(1− Cos(φ(t))) (1.2.6)

respectively. Here

E(JJ) =
ϕ0
2π
IC (1.2.7)

represents the energy scale of the inductive contribution. On the other hand the capacitive
energy is given by

EC =
Q2

2C(JJ)
(1.2.8)

where Q is the charge of the junction, namely the charge of the Cooper pairs which
undergo the tunneling process between the two superconducting materials forming the
junction [55]. Typically C(JJ) ≈ 1 pF [60].
Two Josephson junctions can be connected in parallel through a superconducting loop in
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order to realize the so called SQUIDs (Superconducting Quantum Interference Devices)
[45, 60]. These are important not only for the realization of qubits, but also for their
readout processes, due to their sensitivity to small magnetic fields. As shown in [53, 56]
they can be combined in circuital schemes which, coupled with the superconducting qubit,
are able to measure its state. Fig 1.4(b) displays an example of this situation: a 3-junction
superconducting qubit is inserted into a SQUID [56] which performs the readout of the
qubit by measuring the magnetic flux through it.
Assuming the junctions to be identical, the capacitive energy of a SQUID is of the same
form of Eq. (1.2.8) with a total capacitance CJ = 2C(JJ). For what concerns its inductive
Josephson energy, it can be evaluated by inserting in Eq. (1.2.6) the expression for the
total superconducting current flowing in a SQUID loop composed by two superconducting
electrodes A and B connected through two identical Josephson Junctions, 1 and 2 (see
Fig. 1.5).

Figure 1.5: Schematic representation of a SQUID loop: two superconducting electrodes (light grey)
are connected through two Josephson junctions (dark grey).

The total superconducting current is thus given by [55, 61]

IJ = IC(Sin(φ2,A − φ2,B) + Sin(φ1,A − φ1,B)) =

= IC(Sin(∆φ2) + Sin(∆φ1)).
(1.2.9)

In the presence of an external magnetic field, in fact, φ is not homogeneous in a supercon-
ducting electrode. It is possible to show that for a given superconducting electrode the
following relation holds [55]

∇⃗φ(r⃗) = 2π

ϕ0
A⃗(r⃗) (1.2.10)

with A⃗(r⃗) the vector potential and r⃗ the position considered in the electrode. This allows
us to write

φ2,A − φ1,A =
2π

ϕ0

∫ 2

1
A⃗(r⃗) · dr⃗ (1.2.11)

φ1,B − φ2,B =
2π

ϕ0

∫ 1

2
A⃗(r⃗) · dr⃗. (1.2.12)
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Rewriting Eq. (1.2.9) as

IJ = 2ICSin

(
∆φ2 +∆φ1

2

)
Cos

(
∆φ2 −∆φ1

2

)
(1.2.13)

and using Eqs. (1.2.11) and (1.2.12) one obtains

IJ = ImaxSin

(
∆φ2 +∆φ1

2

)
(1.2.14)

with

Imax = 2ICCos

(
πϕ

ϕ0

)
. (1.2.15)

Here, ϕ stands for the external magnetic flux through the SQUID ring. Comparing Eq.
(1.2.14) with Eq. (1.2.3) we see that the Josephson current of a SQUID has the same form
of the Josephson current of a junction provided that we redefine

φ =
∆φ2 +∆φ1

2
(1.2.16)

IC = Imax (1.2.17)

Inserting Eq. (1.2.14) for the superconducting current of the SQUID in Eq. (1.2.6) allows
us to evaluate its Josephson energy as [55, 60]

EJL = EJ(1− Cos(φ)) (1.2.18)

with φ given by Eq. (1.2.16) and

EJ = 2E(JJ)Cos

(
πϕ

ϕ0

)
, (1.2.19)

which can be tuned changing the magnetic field through the SQUID.

Josephson qubits Usual implementations of such devices in the field of quantum bits
requires the introduction of a gate potential Vg coupled with the system considered through
a gate capacitance Cg. Therefore, relevant parameters for the characterization of these
devices are

EJ =
ϕ0IC
2π

(1.2.20)

EC =
e2

2Ctot
(1.2.21)

with Ctot = Cg + CJ .
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(a) (b)

Figure 1.6: (a): circuital scheme of a Cooper Pair Box (CPB). (b): circuital scheme of a transmon
qubit: a SQUID shunted by a large capacitance CB . Images taken from [60].

In Fig. 1.6 two examples of such platforms are shown. The circuit shown in Fig. 1.6(a)
is the so called charge qubit. Here, a superconducting electrode (island) is connected to a
superconducting reservoir through an intermediate device (the grey region) which can be
both a Josephson junction or a SQUID. The tunneling of Cooper pairs towards the island
may occur as response to the gate voltage. In its working regime, namely EJ ≪ EC ,
this system allows to isolate a two-level system thanks to its anharmonicity. The main
problem of this device is its sensitivity to the gate voltage fluctuations. For this reason
it is worth exploring the opposite regime EJ ≫ EC . It can be achieved by connecting
a SQUID in parallel with a large capacitance CB whose role is to reduce EC in order
to reduce charge fluctuations related to the gate voltage. This kind of circuit is usually
referred to as transmon qubit, which is depicted in Fig. 1.6(b). Typical values which allow
suitable anharmonicity and stability with respect to gate fluctuations are within the range
20 ≲ EJ

EC
≪ 5× 104 [60].

We conclude this introductory section on superconducting circuits by observing that, given
their operational temperatures in the interval T ≈ µK ÷ 10mK [20], it is possible, as an
initial approximation, to neglect contributions due to thermal excitations.

1.2.3 Decoherence

The coupling between a qubit and an external environment causes detrimental effects on
the functionality of the device and must be taken into account in order to properly analyze
physical implementations of two-level systems.
For the theoretical treatment of the problem of a quantum system coupled with an ex-
ternal environment we refer the reader to Chapter 2. For now, we only carry out a brief
description of the main Decoherence effects affecting qubits.
The term Decoherence refers to the class of phenomena caused by the uncontrolled in-
teraction between a quantum system and its environment. This may cause stochastic
fluctuations in physical parameters which can lead to loss of quantum information and
loss of stability of the qubit features. The main effects which can be observed in a qubit
are known as Relaxation and Dephasing [43, 52].
Relaxation phenomena are due to the spontaneous loss of energy of the qubit, whereas the
dephasing is due to the random change of the qubit phase due to the environment. The
decoherence time T1 is defined as the time scale over which the qubit returns to its ground
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state due to relaxation, whereas the dephasing time T2 is the time scale over which the
qubit phase coherence is lost.
In order to minimize the effects of such processes, it would be desirable to act on the
system with characteristic operation times top much shorter than T1 and T2.
Typical values of these times are:

• trapped ions: T1, T2 ≈ 1÷ 10 s [20];

• quantum dots: T1, T2 ≈ 10 ms [21];

• charge qubits: T1 ≈ 10−2 ÷ 10−1 µs, T2 ≈ 10−2 µs [62];

• transmon qubits: T1, T2 ≈ 100 µs [62].

These are much greater than the duration of pulses typically used to control these systems.
In particular, superconducting qubits such as transmons display sufficiently long coherence
times for quantum computation purposes even though they show much shorter decoherence
times than systems such as trapped ions. This is because the range of their operation time
is 1÷ 10 ns, much shorter than the corresponding values for T1 and T2 displayed above, a
fact that guarantees the possibility of realizing a great number of operations on the qubit
before loosing quantum coherence.

1.2.4 Cavities and resonators

The integration of superconducting qubits into more complex circuits for readout and
scalability purposes usually requires elements such as cavities and resonant circuits. We
have already introduced their simplest example, namely the LC circuit, composed by only
two distinct circuital elements.
However, it is possible to realize more sophisticated versions of a resonant circuit based on
distributed circuital elements. These are built differently with respect to lumped circuit
elements (inductances, capacitances) but show similar effective inductive or capacitive
behaviour. Distributed versions of resonant circuits are known as transmission lines or
waveguide resonators [51]. Their most simple planar scheme is represented in Fig. 1.7.

A central superconducting electrode of width w is separated from two ground supercon-
ducting electrodes of the same material by a distance s. This structure supports the
formation of transverse electromagnetic modes with a set of frequencies {ωm}. In order
to use these devices to manipulate qubits we need to enter the quantum regime for such
modes, operating at temperatures such that ℏω0 ≫ kBT , with ω0 being the lowest fre-
quency mode. As already discussed above, for typical frequencies of qubit manipulations,
namely ω0 ≈ 1÷ 10 GHz, the temperature scale needed is 1÷ 10 mK, within reach for a
cryogenic apparatus and far below the critical temperatures of materials usually employed,
such as niobium and aluminium [51].
It can be shown that a capacitive coupling between the single mode of a resonator and a
transmon [22, 63] or charge qubit [60] can be realized and that controlling the quantum
electromagnetic field of the resonator allows to perform qubit operations.
Such devices are also promising platforms for the realization of quantum batteries or charg-
ers, given their harmonic modes structure [14, 33].
We will explore these last two points more in detail in Sec. 1.3.3 and Sec. 1.5.2.
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Figure 1.7: Schematic layout of a coplanar waveguide resonator. Here w is the width of the central
superconducting electrode, s is the separation between this and the lateral electrodes and d is the
longitudinal length of the waveguide resonator. Image taken from [51].

1.3 Setting the quantum mechanical framework

Now that we have introduced significant platforms for our purposes and before proceed-
ing further towards the characterization of quantum batteries, it is worth recalling the
mathematical tools needed in order to describe such systems.

1.3.1 Two-level systems

In this Section we theoretically analyze two-level systems which are the building blocks
of most of the models describing quantum devices and, in particular, batteries. They
are quantum systems with a two dimensional Hilbert’s space HTLS and their simplest
description can be carried out considering the following basis for the Hermitian operators
acting on such systems {

I ≡ σ̂0, σ̂x, σ̂y, σ̂z
}

(1.3.1)

where I is the identity operator and σ̂x, σ̂y, σ̂z are the Pauli’s operators. This implies that
every Hermitian operator acting on HTLS can be written as

Ô = O0I+ d⃗O · σ⃗ (1.3.2)

with d⃗O formed by three real components and σ⃗ = (σ̂x, σ̂y, σ̂z). The most common choice
for the two dimensional basis describing the TLS corresponds to the basis of eigenvectors
of σ̂z which can be represented in a spinorial notation by

|+⟩ =
(
1
0

)
|−⟩ =

(
0
1

)
. (1.3.3)

This leads to the following representation of Pauli’s operators

σ̂x =

(
0 1
1 0

)
σ̂y =

(
0 −i
i 0

)
σ̂z =

(
1 0
0 −1

)
. (1.3.4)
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It is straightforward to observe that these are traceless, Hermitian operators with eigen-
values ±1. They also satisfy the following commutation and anticommutation relations

[σ̂i, σ̂j ] ≡ σ̂iσ̂j − σ̂j σ̂i = 2iϵijkσ̂k (1.3.5)

{σ̂i, σ̂j} ≡ σ̂iσ̂j + σ̂j σ̂i = 2δijI. (1.3.6)

Denoting with ∆ the energy difference between the two states of the system and assuming
ℏ = 1 (which will be implicit hereafter) the Hamiltonian describing it can be expressed as

ĤTLS =
∆

2
σ̂z. (1.3.7)

The state of a TLS can be given by every possible quantum superposition of |+⟩ and |−⟩
which, in its most general and normalized form can be written as

|ψ⟩ = Cos

(
θ

2

)
|+⟩+ Sin

(
θ

2

)
eiϕ |−⟩ (1.3.8)

with θ ∈ [0, π] and ϕ ∈ [0, 2π]. This equation defines a mapping between the TLS pure
states and the surface of a 3D sphere referred to as Bloch sphere (see Fig. 1.8). Thus,
each state of a TLS corresponds to a point on the Bloch sphere. A complete description
of a TLS taking into account also mixed states can be carried out by studying its density
matrix [64]. Denoting it as ρ̂, it is a hermitian, positive and unit trace operator which
must also satisfy det{ρ̂} ≥ 0 and Tr

{
ρ̂2
}
≤ 1. If the state is pure, then det{ρ̂} = 0 and

Tr
{
ρ̂2
}
= 1.

We observe that the most general form of a TLS density matrix satisfying the above
condition can be written in the form of Eq. (1.3.2) as [64]

ρ̂ =
1

2

(
I+ d⃗ρ · σ⃗

)
. (1.3.9)

It is straightforward to show [64] that the purity conditions det{ρ̂} = 0 and Tr
{
ρ̂2
}
= 1

hold if and only if |d⃗ρ| = 1. Given a pure state of the form in Eq. (1.3.8) the corresponding
density matrix is given by

ρ̂ = |ψ⟩ ⟨ψ| =

 Cos2
(
θ
2

)
e−iϕSin

(
θ
2

)
Cos

(
θ
2

)
eiϕSin

(
θ
2

)
Cos

(
θ
2

)
Sin2

(
θ
2

)
 (1.3.10)

=
1

2

 1 + Cos(θ)
(
Cos(ϕ)− iSin(ϕ)

)
Sin(θ)(

Cos(ϕ) + iSin(ϕ)
)
Sin(θ) 1− Cos(θ)



=
1

2

[
I+ Sin(θ)Cos(ϕ)σ̂x + Sin(θ)Sin(ϕ)σ̂y +Cos(θ)σ̂z

]
.

This last expression confirms what anticipated: the vector d⃗ρ representing a pure state

density matrix is such that |d⃗ρ| = 1. On the contrary, mixed states satisfy |d⃗ρ| < 1.
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Figure 1.8: Picture of the Bloch sphere: a pure state (red arrow) is represented together with the
two angles θ and ϕ which identify it. Mixed states are represented by points internal to the sphere.
Image taken from [60].

Before proceeding further, it is worth studying the time evolution of a TLS described by
a time-independent Hamiltonian of the form of Eq. (1.3.2), namely

Ĥ = A⃗ · σ⃗. (1.3.11)

Moreover, consistently to Eq. (1.3.7), we will fix

Az =
∆

2
. (1.3.12)

The first two components of A⃗ can be interpreted as an external field. The time evolution
of this system is ruled by the following unitary operator in Schrödinger’s picture [64]

|ψ(t)⟩ = Û(t, 0) |ψ(0)⟩ (1.3.13)

Û(t, 0) = e−itA⃗·σ⃗. (1.3.14)

We now define the unit vector n⃗ such that A⃗ = An⃗ with A =
√
A2

x +A2
y +A2

z so that the

unitary operator defined in Eq. (1.3.14) becomes [65]

Û(t, 0) = e−itAn⃗·σ⃗ = Cos(At)I− iSin(At)n⃗ · σ⃗. (1.3.15)

In the σ̂z basis it reads

Û(t, 0) =

Cos(At)− iSin(At) ∆
2A −iSin(At)Ax−iAy

A

iSin(At)
Ax+iAy

A Cos(At) + iSin(At) ∆
2A

 . (1.3.16)

Thus, starting from Eq. (1.3.8) the evolved state at a time t is

|ψ(t)⟩ =

Cos(At)− iSin(At) ∆
2A −iSin(At)Ax−iAy

A

iSin(At)
Ax+iAy

A Cos(At) + iSin(At) ∆
2A

 Cos θ2

eiϕSin θ
2

 . (1.3.17)

Since the evolution operator is given by a unitary matrix, the norm of the state is preserved,
as it can be verified.
One interesting feature of this model is that it shows a non zero transition probability
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between |−⟩ and |+⟩. This can be seen by computing the probability P+(t) of finding the
system in the state |+⟩ at a time t, assuming as an initial state |ψ(0)⟩ = |−⟩. In this case
the evolved state is given by

|ψ(t)⟩ =

 −iSin(At)Ax−iAy

A

Cos(At) + iSin(At) ∆
2A

 (1.3.18)

= −iSin(At)Ax − iAy

A
|+⟩+

(
Cos(At) + iSin(At)

∆

2A

)
|−⟩

which immediately leads to the following transition probability

P+(t) = |⟨+|ψ(t)⟩|2 =
A2

x +A2
y

∆2

4 +A2
x +A2

y

Sin2(At). (1.3.19)

These oscillations in the transition probabilities are usually referred to as Rabi’s Oscillations
[64].

1.3.2 Harmonic systems

We describe here the quantization of harmonic systems such as the LC oscillator and the
transmission lines introduced in Sec. 1.2.2 and 1.2.4 respectively.

Quantum LC circuit We consider here the LC circuit shown in Fig. 1.3. Denoting
with V and I respectively the voltage applied to the capacitor and the current flowing in
the circuit we can write the classical energy of the circuit as

Ecl = EC + EL =
CV 2

2
+
LI2

2
=
Q2

2C
+

Φ2

2L
(1.3.20)

where, in the last equality, we used the relations Q = CV for the charge of the capacitance
and Φ = LI for the magnetic flux through the circuit. Defining ωr =

1√
LC

we obtain

Ecl =
Q2

2C
+
Cω2

rΦ
2

2
(1.3.21)

which has the same form of the energy of a classical Harmonic oscillator with mass m ≡
C, conjugate variables X ≡ Φ and P ≡ Q and frequency ωr. Its quantization can be
performed introducing of two Hermitian operators Q̂ and Φ̂ as quantum conjugate variables
satisfying [

Φ̂, Q̂
]
= iI. (1.3.22)

Thus, the quantum Hamiltonian reads

Ĥ =
Q̂2

2C
+
Cω2

r Φ̂
2

2
. (1.3.23)
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We now rewrite this by introducing the annihilation and creation operators, â and â†,
defined by the following relations

Q̂ = i

√
ωrC

2
(â† − â) (1.3.24)

Φ̂ =

√
1

2ωrC
(â+ â†) (1.3.25)

and which satisfy [
â, â†

]
= I. (1.3.26)

Performing this substitution we obtain a standard quantum harmonic oscillator Hamilto-
nian [65]

Ĥ = ωr

(
â†â+

I
2

)
. (1.3.27)

This Hamiltonian describes the LC circuit in the quantum regime. We recall that this can
be achieved at proper operational conditions already discussed in Sec. 1.2.2. The operator

N̂ = â†â (1.3.28)

is the usual Number operator [65]. Denoting with {|n⟩}, n ∈ N its eigenbasis such that
N̂ |n⟩ = n |n⟩, we recall that

â |n⟩ =
√
n |n− 1⟩ (1.3.29)

â† |n⟩ =
√
n+ 1 |n+ 1⟩ (1.3.30)

Ĥ |n⟩ = ωr

(
n+

1

2

)
|n⟩ ≡ En |n⟩ . (1.3.31)

with n ≥ 0.

Transmission lines Distributed resonant circuits can be quantized following a similar
procedure [51]: after modeling them as series of lumped circuital elements, one proceeds
to decompose them as the sum of contributions corresponding to different electromagnetic
modes. Therefore, the quantization of this system results in a collection of quantum
harmonic oscillators with frequencies {ωm}, with the index m ∈ N denoting the considered
mode, and Hamiltonian

Ĥ =
∑
m

ωm

(
â†mâm +

I
2

)
. (1.3.32)

1.3.3 Superconducting Circuits

After having discussed the quantization of an LC circuit we theoretically analyze here the
possibility of realizing a qubit by employing superconducting circuits, discussing how an
effective two-level system Hamiltonian can be derived in various regimes.
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Figure 1.9: Scheme of a SQUID shunted by a gate capacitance Cg connected to a gate voltage Vg.
Here, Φc represents an external magnetic flux through the SQUID, CJ its capacitance and EJ its
inductive energy scale. Image taken from [60].

SQUID Hamiltonian Let us consider the circuital configuration in Fig. 1.9.
From now on, we will denote with EJ and CJ the SQUID inductive energy and Josephson
capacitance which are linked to the single junction parameters E(JJ) and C(JJ) through

CJ = 2C
(JJ)
J (1.3.33)

EJ = 2E(JJ)Cos

(
πϕc
ϕ0

)
(1.3.34)

as discussed in Sec. 1.2.2. Recalling Eq. (1.2.18) for the inductance energy of a SQUID,
its classical Hamiltonian is given by [51, 60]

Hcl =
(Q−Qg)

2

2Ctot
− EJCos(φ) (1.3.35)

where Q is the charge of the Cooper pairs in the Junctions, φ is the Gauge invariant phase
difference between the two superconducting electrodes of the SQUID and Qg = CgVg is the
charge of the gate capacitance which is used to control the global charge of the junction.
Since the capacitive energy is due to the excess of Cooper’s pairs in the junctions, we can
write Q = 2eN introducing the number of pairs N ∈ (−∞,+∞). Defining EC = e2

2Ctot

Eq. (1.3.35) can be rewritten as

Hcl = 4EC(N −Ng)
2 − EJCos(φ). (1.3.36)

Treating N and φ as conjugate variables this Hamiltonian can be quantized by introducing
their corresponding Hermitian operators N̂ and φ̂ with the following requirement [22, 60][

φ̂, N̂
]
= iI. (1.3.37)

Thus, the quantum Hamiltonian of the considered circuit reads

Ĥ = 4EC(N̂ −Ng)
2 − EJCos(φ̂). (1.3.38)

It can be exactly diagonalized in the φ̂ eigenbasis in terms of Mathieu’s special functions
and its eigenvalues are given in terms of Mathieu’s characteristic values as functions of
the Ng and EJ

EC
parameters [22, 45]. The first energy levels are represented as functions of
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Ng for different values of the parameters in Fig 1.10.
From these figures the anharmonicity of the system clearly emerges. The most striking
feature of the energy levels is their dependence from Ng at EJ ≈ EC , which makes the
system unstable with respect of fluctuations due to the gate potential. This, however,
becomes irrelevant if one increases the ratio EJ

EC
, leading to the progressive flattening of

the energy levels as shown in Figs. 1.10(b-d). In the following we analyze the two opposite
regimes EC ≫ EJ and EC ≪ EJ .

(a) EJ
EC

= 1 (b) EJ
EC

= 10

(c) EJ
EC

= 25 (d) EJ
EC

= 50

Figure 1.10: Plots of Em for m = 0, 1, 2, 3 in units of E01 = minNg (E1 − E0) for different ratios of
the inductive and capacitive energy scales EJ/EC .

Charge qubit The circuital implementation which allows to work in the EC ≫ EJ

regime (charge regime) was shown in Fig. 1.6a: a superconducting island small enough to
have a small capacitance (suitable for the realization of the charge regime) is separated
from another superconducting electrode by a tunneling component such as a Josephson
junction or a SQUID, the latter being the case we consider here. In the presence of a gate
voltage Vg, Cooper pairs may tunnel into the island. For this reason this system is usually
referred to as Cooper pair box (CPB). Writing Eq. (1.3.38) as

Ĥ = EC

[
4(N̂ −Ng)

2 − EJ

EC
Cos(φ̂)

]
. (1.3.39)

and given the predominant role of the capacitive component, this regime can be analyzed
using perturbation theory, with perturbation parameter EJ

EC
, unperturbed Hamiltonian

given by

Ĥ
(0)
CPB = 4EC

(
N̂ −Ng

)2
=

+∞∑
N=−∞

4EC(N −Ng)
2 |N⟩⟨N | . (1.3.40)
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and perturbation Hamiltonian

Ĥtun = −EJCos(φ̂) = −EJ

2

+∞∑
N=−∞

|N⟩⟨N + 1|+ |N + 1⟩⟨N | . (1.3.41)

In the second equality of the last equations we expressed both Hamiltonians in terms of
the eigenbasis of N̂ , namely the set {|N⟩} such that N̂ |N⟩ = N |N⟩ with N ∈ Z, which
constitutes the unperturbed Hamiltonian eigenbasis. The unperturbed energy levels {EN},
are given by

EN = 4EC(N −Ng)
2 (1.3.42)

which is degenerate when

Ng =
1

2
+N. (1.3.43)

For this reason, around these points, we can resort to the degenerate perturbation theory
[65]. Since the following relation holds [52, 60]

Cos(φ̂) =
1

2

+∞∑
N=−∞

|N⟩⟨N + 1|+ |N + 1⟩⟨N | (1.3.44)

the level |N⟩ is coupled with the two neighboring levels |N ± 1⟩. In order to consider the
effects of this perturbation we are going to focus on the subspace {|N⟩ , |N + 1⟩} near the
degeneracy point, namely setting

Ng =
1

2
+N +∆g (1.3.45)

with ∆g sufficiently small. The reason for this choice of Ng will be clearer at the end of
the derivation.
We will treat these degenerate states as if they were decoupled from every other state [52,
60]. This approximation can be made more rigorous by going into the interaction picture
where it is possible to demonstrate that the neglected terms contribute only at higher
perturbative orders [60].
The restriction of the complete Hamiltonian to the above two dimensional space takes the
form

Ĥ(N) = 4EC∆g

(
|N⟩⟨N | − |N + 1⟩⟨N + 1|

)
+ 4EC

(
1

4
+ ∆2

g

)
− EJ

2

(
|N⟩⟨N + 1|+ |N + 1⟩⟨N |

)
.

(1.3.46)

The operators in the first and third term of this expression can be represented into the
subspace considered as (

1 0
0 −1

)
≡ σ(N)

z (1.3.47)(
0 1
1 0

)
≡ σ(N)

x (1.3.48)
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so that, dropping the second term proportional to the identity, we have

Ĥ(N) =

4EC∆g −EJ
2

−EJ
2 −4EC∆g

 . (1.3.49)

Its eigenvalues and eigenvectors are given by

|±⟩(N) =
|N + 1⟩ ∓ |N⟩√

2
(1.3.50)

E
(N)
± = ±EJ

2

√
1 +

16E2
C∆

2
g

E2
J

. (1.3.51)

This shows that this system can be approximated as a two-level system with |+⟩(N) and

|−⟩(N) as excited state and ground state respectively, provided that Eq. (1.3.45) holds
[60]. Before clarifying what ”sufficiently small” means for ∆g we can observe that:

• if ∆g = 0, that is, at the degeneracy condition of Eq. (1.3.43) a gap ∆E = EJ is
opened between the two originally degenerate states due to the perturbation (see
Fig. 1.11);

• if
16E2

C∆2
g

E2
J

≪ 1, a gap is opened which is independent from the gate offset charge up

to o(∆2
g), namely ∆E = EJ + o(∆2

g);

• if
16E2

C∆2
g

E2
J

≫ 1 the gap is given by ∆E = 2EC∆g, which is the same result obtained

in the unperturbed case with Ng always given by Eq. (1.3.45).

For what observed in the first two points, the gap of the resulting qubit is almost insensitive
to gate fluctuations of Ng provided that one operates near ∆g = 0. For this reason, Ng

values expressed in Eq. (1.3.42) are usually referred to as sweet spots.
All considered, ∆g can be seen as the width of the perturbative effects region, since the

perturbation has no effect on the energy gap if
16E2

C∆2
g

E2
J

>> 1. It is in this sense, therefore,

that it is sufficient to study the perturbative regime near Ng = N + 1
2 as expressed by Eq.

(1.3.45).

Transmon qubit Since it is not always possible to work near sweet spots, it would be
of great interest to build a gate-charge insensitive qubit. This can be realized as shown
in Fig. 1.6(b), where a SQUID is shunted by an additional large capacitance CB and
connected with a gate capacitance of the same magnitude. The role of such capacitances
is to strongly reduce the charging energy according to

EC =
e2

2C(JJ) + Cg + CB
(1.3.52)

in order to access the so called transmon regime EC ≪ EJ . The transmon Hamiltonian
has therefore the same form of that in Eq. (1.3.38), but with EC defined by Eq. (1.3.52).
As shown in Fig. 1.10(d), the gate dependence of the first energy levels is lost already
at EJ

EC
= 50. By further increasing this value the number of levels independent from Ng
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Figure 1.11: Left plot: energy levels of |N⟩ for EJ = 0 as functions of Ng. They show a degeneracy
at Ng = (1 + 2N)/2. Right plot: same quantities for EJ ̸= 0: two distinct energy levels can be
identified: E0 (black) and E1 (red). Their energy difference at Ng = (1 + 2N)/2 is ≈ EJ . Image
taken from [60].

increases. This is a very important property since it leads to transition frequencies which
are unaffected from the gate fluctuations, so that there is no need to force the system to
a particular gate regime. This flattening behaviour is evident also by explicit study of the
transmon eigenvalues Em(Ng): they have the same form of the CPB eigenvalues, the only
difference being the expression of EC . As shown in Fig. 1.10, when EJ

EC
≳ 1, they present

an oscillating structure with period δNg = 1 with the amplitude of the oscillations which
decreases when EJ

EC
is increased. For this reason, if EJ

EC
≫ 1 it is possible to approximate

each level Em as the sum of its intermediate value Em(Ng = 1/4) plus an oscillating term
leading to the following expression [22, 60]

Em(Ng) ≈ Em

(
Ng =

1

4

)
− ϵm

2
Cos(2πNg). (1.3.53)

Here, the charge dispersion ϵm is defined as [22]

ϵm(Ng) ≡ Em

(
Ng =

1

2

)
− Em(Ng = 0) ≈ (−1)mEC

24m+5

m!

√
2

π

(
EJ

2EC

)m
2
+ 3

4

e−
√

8EJ/EC .

(1.3.54)
This clarifies that the flattening of the levels in the transmon regime is due to the last
exponential factor.
In order to better understand the physics behind the transmon regime we can proceed
by Taylor expanding the Cos(φ̂) term in the transmon Hamiltonian for small values of φ̂,
namely

Ĥtr = 4EC(N̂ −Ng)
2 − EJCos(φ̂) =

≈ 4EC(N̂ −Ng)
2 +

1

2
EJ φ̂

2 − EJ

24
φ̂4.

(1.3.55)

This expansion is motivated by the fact that we are considering a system formally anal-
ogous to a particle in a cosine well potential which is predominant with respect to the
kinetic energy. Thus, it seems reasonable to approximate the well up to the fourth order,
since we expect the system to be bound near the bottom of the well [22].
Furthermore, we can eliminate terms depending on Ng since their contributions to the
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energy levels are negligible [22, 60] so that we obtain

Ĥtr ≈ 4ECN̂
2 +

1

2
EJ φ̂

2 − EJ

24
φ̂4. (1.3.56)

This has the form of a Duffing non linear oscillator Hamiltonian [60] which is composed
by a harmonic oscillator part

Ĥ(0) = 4ECN̂
2 +

1

2
EJ φ̂

2 (1.3.57)

and a perturbation

Ĥ(1) = −EJ

24
φ̂4. (1.3.58)

We can therefore write N̂ and φ̂ in terms of the annihilation and creation operators b̂ and
b̂† of a harmonic oscillator

N̂ =
i

2

(
EJ

2EC

) 1
4(
b̂† − b̂

)
=
i

4

√
ωp

EC

(
b̂† − b̂

)
(1.3.59)

φ̂ =

(
2EC

EJ

) 1
4(
b̂† + b̂

)
= 2

√
EC

ωp

(
b̂† + b̂

)
, (1.3.60)

where we introduced the Josephson plasma frequency

ωp =
√

8EJEC . (1.3.61)

Eqs. (1.3.59) and (1.3.60) ensure that, given the usual commutation relation
[
b̂, b̂†

]
= I,

N̂ and φ̂ satisfy [
φ̂, N̂

]
= iI. (1.3.62)

According to this we are left with

Ĥtr = ωp

(
b̂†b̂+

1

2

)
− EC

12

(
b̂† + b̂

)4
(1.3.63)

Since EC ≪ EJ we can apply a perturbative approach, starting from the unperturbed
energy levels of Ĥ(0)

E(0)
m = ωp

(
m+

1

2

)
(1.3.64)

and computing the first order corrections of these non degenerate levels as

E(0)
m = −⟨m|EC

12

(
b̂† + b̂

)4
|m⟩

= −ECm− 1

2
ECm(m− 1)− EC

4
.

(1.3.65)

Neglecting terms independent from m through the redefinition of the ground state energy
we are left with the following expression of the transmon energies at the lowest perturbative
order

Em = (ωp − EC)m− 1

2
ECm(m− 1) (1.3.66)
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which leads to the following energy gaps

∆Em+1,m = Em+1 − Em = (ωp − EC)− ECm. (1.3.67)

This gives a perturbative estimate of the anharmonicity of the system, since it clearly
shows that each gap is smaller than the subsequent gap by a quantity EC , leading to a
relative anharmonicity

αr =

√
EC

8EJ
. (1.3.68)

Thanks to this feature it is possible to isolate a two-level system.
Two opposite tendencies emerge from the study of a transmon qubit: if, on the one hand,
increasing EC/EJ leads to a greater anharmonicity which is necessary to realize a qubit,
on the other hand, increasing EJ/EC causes stability with respect to gate fluctuations.
For this reason, an intermediate regime is required which can be estimated as follows [22]:
the smallest energy scale which need to be accessible experimentally is ∆E1,0αr. Thus
the minimum pulse duration in order to have full coherent control of the system can be
estimated as

τp,min ≈ 1

∆E1,0αr
. (1.3.69)

This quantity must remain small with respect to decoherence and dephasing times T1 and
T2 which are of the order of a few hundreds of nanoseconds, so that reasonably we must
have τp,min ≈ 10ns. This corresponds to a maximal anharmonicity of the order αr ≈ 1/600
which implies EJ/EC ⪅ 5× 104.
Considering results shown in Fig. 1.10 for the flattening of transmon levels, the usual
working regime of transmons is indeed [22]

20 ≲
EJ

EC
≲ 5× 104. (1.3.70)

Transmon coupled to a resonator We discuss here a possible implementation of a
transmon qubit coupled to a resonator, realized by capacitively coupling the qubit with a
single mode of a transmission line [44, 63], as depicted in Fig. 1.12.
Supposing that there is only one relevant mode of the resonator which contributes to the
coupling, the full Hamiltonian of such circuit is given by [63]

Ĥ = Ĥtr + Ĥr + Ĥint (1.3.71)

with

Ĥtr = 4EC(N̂ −Ng)
2 − EJCos(φ̂) (1.3.72)

Ĥr = ωrâ
†â (1.3.73)

Ĥint = gN̂
(
â† + â

)
(1.3.74)

where Eq. (1.3.72) is the full Hamiltonian of the transmon and â†, â are the ladder
operators of the resonant mode defined in Sec 1.3.2. The coupling strength g is determined
by circuital elements as

g =
2eCg

Ctot

√
ωr

2Cr
(1.3.75)
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Figure 1.12: Lumped elements scheme for a transmon qubit coupled through a capacitance Cg to
a resonator with inductance and capacitance Lr and Cr respectively. The transmon is realized by
shunting a SQUID (crossed box) with a large capacitance CB . EJ and EC denote respectively the
inductive and capacitive energy scales of the qubit. Image taken from [63].

with Ctot = Cg + CJ + CB and ωr = 1/
√
LrCr (see Sec. 1.3.2).

The possibility of coupling the qubit with a single mode of the transmission line depends
on the relative position of these two devices: the qubit circuit must be realized as near as
possible to one of the antinodes (Fig. 1.13) of the electromagnetic mode responsible for
the coupling, so that its effect can be maximized.

Figure 1.13: Position of the qubit inside the transmission line in order to realize the maximal
coupling with a single mode of the electromagnetic field. Image taken from [60]

This circuital scheme is at the basis of Circuit QED [51, 60] and allows the physical
implementation of schemes such that discussed in Chapter 3.

1.4 Quantum batteries: generalities and figures of merit

The simplest scheme of a quantum battery is represented by a quantum system for the
storage of energy which interacts with another system acting as a charger, which can be
both an external classical drive and another quantum system [14]. Typically, the dynamics
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of a battery can be divided into two main steps:

• charging of the battery, which consists in the interaction with the charger, aimed
at transfering energy to the battery;

• work extraction, where the charged battery is coupled to suitably engineered sys-
tems in order to extract the amount of energy needed.

Many different setup have been proposed in literature, such as two-level system charged
by other two-level systems [14], three-level systems charged via an external classical drive
[17] and so on.
There have also been proposals for more complex structures of the battery, such as the so
called collective quantum batteries, where the energy is stored in a collection of cells [25],
but also the collisional ones, where the charging process is performed through sequential
interactions with a collection of systems [34]. These will be the main subjects of investi-
gation in the following of the thesis.
The ultimate end of all these works is to show that a quantum advantage can be achieved,
both in the charging and discharging processes, due to purely quantum features such as
quantum coherences [30] or entanglement, which was the first feature analyzed in this
context in the pioneering work by Alicki and Fannes [9].
In the following, we will introduce some key figures of merit for the description of the
performances of a battery.

1.4.1 General model of a quantum battery

We start by describing the simplest structure composed by only the battery system S
and the charger C. Since more complex structures can be seen as generalizations of this
simple model to the case of multiple-cells batteries and multiple chargers ones, it is worth
starting the analysis by the single-battery and single-charger case. Denoting with ĤS

and ĤC respectively the battery and charger Hamiltonian, the global Hamiltonian of the
charging process is given by

Ĥ(t) = ĤS ⊗ IC + IS ⊗ ĤC + ĤSC(t). (1.4.1)

This equation clarifies that ĤS and ĤC act on the battery and charger Hilbert’s spaces
HS and HC , whereas the interaction term ĤSC(t) acts on the tensor product of the two
spaces. For simplicity we drop the tensor products so that

Ĥ(t) = ĤS + ĤC + ĤSC(t) ≡ Ĥ0 + ĤSC(t) (1.4.2)

where the last expression is only useful to collect the free Hamiltonians. The time evolution
of the global system can be formally studied by keeping track of the evolution of its

initial state |ψ(0)⟩ under the action of the unitary operator Û = T
{
e−i

∫ t
0 Ĥ(t′)dt′

}
[64].

For a complete description of batteries, however, it is worth to recall the density matrix
formalism.
According to this formalism, a quantum system can be described by a so called density
operator ρ̂ such that:

• if the system, at a given time instant, is described by a pure state |ψ⟩ its density
matrix will be given by the projector onto this state

ρ̂ = |ψ⟩⟨ψ| ; (1.4.3)
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• if the state of the system, at a given time, consists in a statistical mixture of a set
of quantum states {|ψi⟩} with probabilities {pi}, then the it will be given by

ρ̂ =
∑
i

pi |ψi⟩⟨ψi| . (1.4.4)

It is straightforward to show [64] that this operator is Hermitian, positive and has unit
trace. Furthermore, in the pure case it satisfies the following properties

ρ̂2 = ρ̂ (1.4.5)

P = Tr{ρ̂}2 = 1. (1.4.6)

The quantity introduced above as P is the so called purity of the state and distinguishes
pure states, namely state with P = 1, from mixed ones, with P < 1.
This formalism allows to describe the system in a more general way, taking into account
also the presence of mixed states. The time evolution of the density operator is ruled by
the von Neumann equation [65]

dρ̂(t)

dt
= −i

[
Ĥ(t), ρ̂(t)

]
. (1.4.7)

If ρ̂(t) is the global density matrix considering the battery and the charger altogether, the
battery is described by the reduced density operator obtained by tracing out the charger
degrees of freedom [43]

ρ̂S(t) = TrC{ρ̂(t)}. (1.4.8)

1.4.2 Charging process figures of merit

The charging process of a quantum battery can be characterized by different figures of
merit such as stored energy, energy fluctuations and charging power [13]. Here, we only
deal with those which will be relevant for our study on collisional quantum batteries.

Average stored energy Denoting the initial density matrix of the battery as ρ̂S(0)
and supposing a charging process ruled by the Hamiltonian in Eq. (1.4.2), the average
stored energy is given by

ES(t) = TrS

{
ĤS ρ̂S(t)

}
− TrS

{
ĤS ρ̂S(0)

}
. (1.4.9)

where ρ̂S(t) is the reduced density matrix of the battery at time t.

Energy fluctuations For the stability of the charging process it is important that the
stored energy reaches a stationary value. If this is not the case, a great accuracy is
required in controlling the charging time and in switching off the charging mechanism
in order to reach the target energy value. For this reason one may be interested in
studying fluctuations of various kind [13]. As an example, one can consider the so called
Σ fluctuations: given the variance of the battery Hamiltonian

∆E2(t) = Tr
{
Ĥ2

S ρ̂S(t)
}
− Tr

{
ĤS ρ̂S(t)

}2
(1.4.10)

they are defined as its variation in time

Σ(t) = |∆E(t)−∆E(0)|. (1.4.11)
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Maximal energy For batteries with a finite number of discrete energy levels accessible
in their operating regime the average stored energy is limited from above by the higher
level of the battery spectrum Emax before eventually entering the continuum. This is the
case of the transmon battery which will be the core of this work. Reaching a situation of
complete charging, namely E(t) = Emax, can be very delicate, since it is difficult to drive
the system to Emax without spreading in the continuum.

In our work, we are going to analyze the stored energy and purity of the achieved
state. For what concerns fluctuations, we will limit to qualitative considerations. Since
the charging process of the batteries we are going to analyze is collisional, we postpone
considerations on the charging dynamics to Chapter 2.

1.4.3 Energy extraction

Once the battery has been charged, it is important to characterize the extractable work
via unitary operations performed on it. In studying the work extraction problem we will
refer to [66]: we study the evolution of the density matrix of the battery ρ̂S under the
action of a discharging Hamiltonian Ĥ(t). The energy variation of the system due to such
a discharging process is given by

∆E =

∫ τf

τi

d

dt

(
Tr

{
ρ̂S(t)Ĥ(t)

}
dt

)
. (1.4.12)

where (τi, τf ) is the time interval of the discharging process. Defining

W =

∫ τf

τi

Tr

{
ρ̂S(t)

d

dt
H(t)

}
(1.4.13)

Q =

∫ τf

τi

Tr

{
d

dt
ρ̂S(t)H(t)

}
(1.4.14)

as respectively the work and heat of the process we obtain the relation [66]

∆E =W +Q (1.4.15)

which corresponds to the First Law of thermodynamics [66, 67]. An interesting case is
given by a discharging Hamiltonian of the form

Ĥ(t) = ĤS + Ĥdis(t) (1.4.16)

Ĥdis(t) = (θ(t− τi)− θ(t− τf ))V̂ (t) (1.4.17)

where θ(t) is the Heaviside step function. This kind of Hamiltonian, which vanishes out
of the time interval (τi, τf ), is usually called cyclic.
In the case of unitary evolution ruled by the Hamiltonian in Eq. (1.4.16) it is straightfor-
ward to show that Q = 0 [38] so that the work extracted in the process is

Wext = −W = Tr{ρ̂S(τi)HS} − Tr{ρ̂S(τf )HS} = E(τi)− E(τf ). (1.4.18)

Here, E(τi) represents the energy stored before the discharging, whereas E(τf ) stands for
the amount of energy which remains trapped in the battery. For applications, it is im-
portant to study the possibility of extracting the maximum amount of energy via unitary
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operations acting on the battery. Thermodynamics, in fact, states that, if a macroscopic
system out of equilibrium is connected to energy extraction systems, the maximum ex-
tractable energy is determined by its energy and entropy. This bound, however, is usually
not reachable for microscopic quantum systems. From this fact derives the need to study
the following figure of merit.

Ergotropy It describes the maximal amount of energy extractable via unitary opera-
tions performed over the quantum battery. Starting from Eq. (1.4.18) and writing the
density matrix of the system at the end of the extraction process as ρ̂S(τf ) = U ρ̂S(τi)U

†,
ergotropy can be defined as [66]

E = TrS

{
ρ̂S(τi)ĤS

}
− min

U∈SU(d)
TrS

{
U ρ̂S(τi)U

†ĤS

}
(1.4.19)

where d is the dimension of the battery Hilbert’s space, and U is the unitary operation
responsible for the discharging process. The last term of the above equation, namely

Ef,min ≡ min
U∈SU(d)

TrS

{
U ρ̂S(τi)U

†ĤS

}
(1.4.20)

represents the minimum amount of energy remaining in the battery after the discharging.
Here, minimization has to be intended with respect to all possible unitary operations act-
ing on the battery. Also, it is fundamental to observe that this is the minimum remaining
energy for a given state ρ̂S(τi). Changing the state which undergoes the discharging will
change this value.
In order to analyze ergotropy, we can introduce a particular class of states with no
unitarily-extractable energy, called passive states. It can be shown that, given the fol-
lowing diagonal form of the battery Hamiltonian

ĤS =
d∑

j=1

Ej |Ej⟩⟨Ej | , with Ej ≤ Ej+1 (1.4.21)

and if the charged battery state is given by

ρ̂S(τi) =

d∑
j=1

pj |pj⟩⟨pj | , (1.4.22)

with {pj} denoting the eigenvalues of ρ̂S(τi) in non-increasing-energy order, there exists a
unique passive state σ̂ρS unitarily connected to it, which has the form

σ̂ρS =

d∑
j=1

pj |Ej⟩⟨Ej | with pj ≥ pj+1. (1.4.23)

This state is such that its energy corresponds to the minimum of Ef [66], namely

Ef,min = TrS

{
σ̂ρSĤS

}
=

d∑
j=1

pjEj . (1.4.24)
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This leads to the following expression for the ergotropy [66]

E = TrS{ρ̂S(τi)HS} − TrS{σ̂ρSHS} =

=

d∑
j,k

pjEk

(
|⟨pj |Ek⟩|2 − δj,k

)
.

(1.4.25)

This quantity is related to the purity of the battery. Indeed, supposing that the state of
the battery is pure, namely, ρ̂S(τi) = |ψ⟩⟨ψ|, implies that it can be written in the form of
Eq. (1.4.22) setting

pj = δj,1 (1.4.26)

|p1⟩ = |ψ⟩ (1.4.27)

Inserting Eq. (1.4.26) coefficients in Eq. (1.4.24) we obtain Ef,min = E1 which is the
ground state energy of the system.
Thus, a pure battery state maximizes the ergotropy since it is not possible to extract more
energy in any other case.

1.5 Examples of quantum batteries models

In this section we analyze some simple examples of quantum batteries models which can
be solved exactly [14]. These can be seen as the building blocks of more sophisticated
models used to describe collisional and collective quantum batteries [25, 33].

1.5.1 Energy transfer between two-level systems

The first example we analyze is the case of two two-level systems: S (the battery) and C
(the charger). The global Hamiltonian is of the form of Eq. (1.4.2), with

ĤS =
∆

2
σ̂(S)z (1.5.1)

ĤC =
∆

2
σ̂(C)
z (1.5.2)

ĤSC ≡ gσ̂(S)x σ̂(C)
x = g

(
σ̂
(S)
+ + σ̂

(S)
−

)(
σ̂
(C)
+ + σ̂

(C)
−

)
(1.5.3)

where the respective σ̂± operators are defined as

σ̂± =
1

2
(σ̂x ± σ̂y) → σ± = |±⟩⟨∓| . (1.5.4)

The last expression is written in terms of the σ̂z eigenstates. Since we are focusing on
energy transfers between the charger and the battery for an initial state of the form

|ψ(0)⟩ = |−⟩S |+⟩C ≡ |−,+⟩ (1.5.5)

we can neglect the action of terms of the form σ̂
(C)
− σ̂

(S)
− and σ̂

(C)
+ σ̂

(S)
+ . The evolved state

is thus given by [14]

|ψ(t)⟩ = e−i∆t(Cos(gt) |−,+⟩ − iSin(gt) |−,+⟩) (1.5.6)
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so that evaluating the stored energy as defined in Eq. (1.4.9) leads to

ES(t) = ∆Sin2(gt). (1.5.7)

This implies that the maximum amount of energy transferable from the charger to the
battery is Emax = ∆ which can be obtained after a time

τ =
π

2g
. (1.5.8)

At this time, the evolved state of the battery is pure, and the ergotropy is maximized,
equaling the stored energy.

1.5.2 Two-level systems charged by a harmonic oscillator

The Hamiltonian we consider here is composed by the following three terms

ĤS =
∆

2
σ̂z (1.5.9)

ĤC = ωC â
†â (1.5.10)

ĤSC ≡ g
(
â† + â

)
σ̂x = g

(
â† + â

)
(σ̂+ + σ̂−) (1.5.11)

As already discussed in Sec. 1.3.2, the term in Eq. (1.5.10) describes a quantum resonant
circuit, whereas Eq. (1.5.9) is the Hamiltonian of a two-level system, which can be im-
plemented as discussed in Sec. 1.3.3. The coupling Hamiltonian in Eq. (1.5.11) can be
practically realized by a capacitive coupling of a superconducting qubit with a resonant
LC oscillator [44].

Figure 1.14: Schematic representation of a TLS battery where a single TLS with energy separation
∆ is coupled to a single-mode photonic cavity of frequency ωC . Image taken from [68]

A conventional approach to solve this Hamiltonian in the resonant case ∆ ≈ ωC and for
g ≪ ωC consists in performing the rotating wave approximation (RWA) [46] which allows
to neglect the counter rotating terms â†σ̂+ and âσ̂− leading to

ĤJC =
∆

2
σ̂z + ωC â

†â+ g
(
â†σ̂− + âσ̂+

)
(1.5.12)
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usually referred to as the Jaynes-Cummings (JC) Hamiltonian [46].
It provides an accurate description of the complete system provided that g ≲ 0.1ωC holds.
It is worth observing that[

Ĥ0, ĤSC

]
= g

(
â†σ̂− + âσ̂+

)
(ωC −∆) (1.5.13)

where Ĥ0 = ĤS + ĤC . This implies that if the resonance condition ∆ = ωC holds, the
number of excitations of the system S+C is conserved during the interaction [14, 46]. This
is the ultimate reason for the simplification of the problem. Projecting the Hamiltonian
on the orthonormal basis tensor product between the Fock basis of the oscillator and the
spin basis of the qubit, namely the set {|m,±⟩} with m ∈ N, this symmetry allows us to
focus only on a two dimensional subspace, chosen as {|m− 1,+⟩ , |m,−⟩}. We obtain then

ĤJC =

(
m− 1

2

)
∆ g

√
m

g
√
m

(
m− 1

2

)
∆

 . (1.5.14)

We begin by studying the following initial condition

|ψ(0)⟩ = |m,−⟩ (1.5.15)

that is, the battery is empty and the charger is prepared in a Fock state |m⟩.
In order to do so, we need to compute the evolved state |ψ(t)⟩ = e−iĤJCt |ψ(0)⟩. We must
perform the diagonalization of Eq. (1.5.7) leading to its eigenvalues

E1,2 = ∆

(
m− 1

2

)
± g

√
m (1.5.16)

and eigenvectors

|ψ1,2⟩ =
1√
2
(|m− 1,+⟩ ± |m,−⟩). (1.5.17)

Decomposing |ψ(0)⟩ in terms of such eigenvectors we obtain the following expression for
the evolved global state [14]

|ψ(t)⟩ = Cos(g
√
mt) |m,−⟩ − iSin(g

√
mt) |m− 1,−⟩ (1.5.18)

with corresponding density matrix

ρ̂ =

 Sin2(g
√
mt) − i

2Sin(2g
√
mt)

i
2Sin(2g

√
mt) Cos2(g

√
mt)

 . (1.5.19)

This leads to the following expression for the energy stored in the battery

ES(t) = ∆Sin2
(
g
√
mt

)
(1.5.20)

which enables us to compute the stored energy when the charger is initialized in a Fock
state |m⟩. In this case, it can be noticed that the maximum amount of energy stored in
the system Emax corresponds to a energy quantum ∆ and is reached at

τ =
π

2g
√
m
. (1.5.21)
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Introduction to quantum batteries

Comparing this with the previous charging via TLS, the same amount of maximal energy
can be stored, but now in a time window reduced by a factor 1√

m
. Thus, from the initial

m excitations, only one can be transferred, whereas the others act as catalyzers of the
process [14].
Let us suppose now that the charger is initialized in an arbitrary state ρ̂C(0) with an initial
energy EC(0) = K∆. Then, the above procedure can be generalized by decomposing its
density matrix in the Fock basis. The generalization of Eq. (1.5.20) yields [14]

ES(t) = ∆
∑
m

p(K)
m Sin2

(
g
√
mt

)
(1.5.22)

where p
(K)
m are ρ̂C(0) diagonal elements subject to∑

m

mp(K)
m = K. (1.5.23)

Eq. (1.5.22) clearly shows that Emax ≤ ∆ for arbitrary inputs, with Fock states providing
optimal performances.

1.5.3 Charging a harmonic oscillator via TLS: towards the Micromaser

It is also possible to invert the preceding model, considering the charging of a harmonic
oscillator, initialized in |ψ(0)⟩ = |m− 1,+⟩, employing a two-level system, considered
again in the resonant limit ωC = ∆. The Hamiltonian describing the full process is the
same of Eq. (1.5.5). By performing the same analysis we obtain the following expression
of the evolved density matrix of the global system in the {|m− 1,+⟩ , |m,−⟩} subspace

ρ̂ =

 Cos2(g
√
mt) − i

2Sin(2g
√
mt)

i
2Sin(2g

√
mt) Sin2(g

√
mt)

 (1.5.24)

A direct computation of the stored energy as defined in Eq. (1.4.9) leads to the same
expression obtained in Eq. (1.5.13). As well as that case, the maximum amount of stored
energy is a single excitation ∆. However, given the oscillator multi-level structure it would
be of great interest to realize charging setups able to store a greater amount of energy. A
possibility is given by the repeated interactions schemes, where a single battery (e.g. the
oscillator) is charged via multiple chargers (e.g. qubits). The theoretical background for
this approach will be discussed in the next Chapter, while a quantum battery charged in
this way, namely the Micromaser quantum battery, will be analyzed in Chapter 3.
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Chapter 2

Open quantum systems

Quantum batteries constitute an example of open quantum systems, namely of quantum-
mechanical systems exchanging energy with their surroundings. In order to properly
characterize them, it is therefore of primary importance to become familiar with the study
of the reduced dynamics of systems coupled with an external environment, that is, the
dynamics of the reduced density matrix obtained by tracing out environmental degrees of
freedom from the density matrix of the whole system. The external environment can be
either a charger providing energy to the battery or a dissipative environment, which can
also cause a class of phenomena usually referred to as Decoherence [67].

Figure 2.1: Schematic representation of the open quantum system dynamics. The system S is
coupled with an external environment B which, in general, represents everything which can be
coupled with the system. As will be clarified later, HS , HB and HSB respectively represent the
system, bath and interaction Hamiltonians.

In order to study the dynamics of an open quantum system it is possible to use different
approaches. The most conventional one consists in deriving time evolution equations for
the reduced density matrix, usually referred to as Master Equations [10, 67], which can be
written in different forms depending on the assumptions made in their derivation. In recent
years, however, significant relevance was gained in literature by the so called Collision
Models [34]. Here, the bath is described as a collection of simple quantum constituents
called ancillae

(
usually two-level systems or quantum harmonic oscillators

)
which interact

individually and sequentially with the system. Therefore, the system interacts at first
with the first ancilla, then with the second one and so on. A great variety of collision
models has been proposed: they can be non Markovian or Markovian

(
whether memory

effects between two subsequent interactions are considered or not
)
[34], homogeneous

(
if
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Open quantum systems

all ancillae are considered to be equal
)
or inhomogeneous

(
if they are all different

)
[34].

In this chapter we will compare these two methods focusing on Markovian processes.
First of all, following the approach of [67], we will introduce the concept of quantum
dynamical semigroup for the description of the dynamics of Markovian processes, obtaining
the most general form of its generator. Then we will derive the most general Markovian
master equation by means of a microscopic derivation. In the end, in Sec. (2.2) we will
change perspective, analyzing quantum collision models, discussing their general features
and studying the paradigmatic example of the Micromaser [32, 34]. Before ending the
Chapter, we will show that collision models give rise to a discrete Lindblad master equation
if we consider the limit of short collision times.

2.1 Master equations for Markovian processes

In general, given a quantum mechanical system described by its density matrix ρ̂(t) and
its generally time dependent Hamiltonian Ĥ(t), its time evolution is described by the
Liouville-Von Neumann equation [65]

dρ̂(t)

dt
= −i

[
Ĥ(t), ρ̂(t)

]
. (2.1.1)

If we denote the density matrix at an initial time to as ρ̂(to), the evolved density matrix
of the system can be written in terms of a unitary evolution operator as

ρ̂(t) = Û(t, to)ρ̂(to)Û
†(t, to) (2.1.2)

with
Û(t, to) = T̂

{
e−i

∫ t
to

Ĥ(t′)dt′}. (2.1.3)

The operator T̂ introduced above is the so called time ordering operator, which orders
products of time-dependent operators such that their time-arguments increase from right
to left [65].
This description is carried out in the Schrödinger picture for the quantum time evolution of
a system, in which the time dependence is encoded in quantum states. Since we will often
apply the methods studied in this chapter to systems whose Hamiltonians can be written
as the sum of a time independent Hamiltonian Ĥ0 and an explicitly time dependent part
Ĥ1(t), namely

Ĥ(t) = Ĥ0 + Ĥ1(t) (2.1.4)

it is convenient for us to move to the interaction picture. Density matrices and operators in
this picture at a given time t can be obtained starting from their Schrödinger counterparts
as follows

ρ̃(t) = Ũ(t, t0)ρ̂(t0)Ũ
†(t, t0) (2.1.5)

Ã(t) = Û †
0(t, t0)Â(t)Û0(t, t0) (2.1.6)

where U0 represents the free Hamiltonian evolution operator

Û0(t, t0) = e−iĤ0(t−t0) (2.1.7)

and Ũ is given by [65]

Ũ(t, t0) = Û †
0(t, t0)Û(t, t0). (2.1.8)
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From now on we will use Ã to denote the interaction picture form of a generic operator
Â, dropping the ”ˆ” in order to simplify notations.
It is straightforward to show [65] that Ũ is linked to H̃1(t) through the following relation

∂Ũ(t, t0)

∂t
= −iH̃1(t)Ũ(t, t0) (2.1.9)

which leads to the interaction picture Liouville− V on Neumann equation

dρ̃(t)

dt
= −i

[
H̃1(t), ρ̃(t)

]
. (2.1.10)

This equation represents the starting point of the derivations we are going to perform in
the following.
In fact, as anticipated, we are going to study the time evolution of the density matrix of
a system S coupled with an external environment B. Therefore, the global Hamiltonian
will be the sum of the free Hamiltonians of the system and of the bath, ĤS and ĤB

respectively, together with a time-dependent coupling ĤSB(t), leading to

Ĥ(t) = ĤS + ĤB + ĤSB(t). (2.1.11)

In this case ρ̂(t) represents the density matrix of the composite system. Since the global
Hamiltonian in Eq. (2.1.11) is of the same form of that in Eq. (2.1.4) provided that we
identify ĤS + ĤB as Ĥ0 and ĤSB(t) as Ĥ1(t), the dynamics of the global system in the
interaction picture can be described by inserting the time dependent coupling ĤSB(t) in
Eq. (2.1.10). Since the reduced density matrix of the system S can be obtained by tracing
over bath degrees of freedom, its dynamics is ruled by [67]

dρ̃S(t)

dt
= −iTrB

{[
H̃SB(t), ρ̃(t)

]}
. (2.1.12)

Solving this equation in a completely general and exact way reveals to be impossible [67].
To proceed further we need to make some simplifier assumptions, which will be discussed
in the following sections.

2.1.1 Quantum dynamical semigroup and Lindblad master equations

Following the approach developed in [67], we will at first consider the assumption of
short bath correlation times in order to formulate the reduced dynamics of the system
by means of the so called quantum dynamical semigroup and to obtain the most general
form of a Markovian Master Equation, known as Lindblad Master Equation. For the sake
of simplicity we will limit our treatment to cases where the Hamiltonian of the system
is time independent. We start our discussion by specifying the initial condition for the
global system, supposing the initial state at t = 0 to be separated as

ρ̂(0) = ρ̂S(0)⊗ ρ̂B (2.1.13)

where ρ̂B represents a reference environmental state. It is usually assumed as a thermal
state at fixed temperature

ρ̂B =
e−βĤB

Z
(2.1.14)

Z = TrB
{
e−βĤB

}
. (2.1.15)
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All along this section we will work in Schrödinger picture. We can then write the evolved
density matrix ρ̂S(t) by means of a dynamical map M(t) acting on density matrices at a
given time, and such that

ρ̂S(t) = TrB
{
Û(t, 0)ρ̂S(0)⊗ ρ̂BÛ

†(t, 0)
}
≡ M(t)ρ̂S(0). (2.1.16)

The dynamical maps
{
M(t) : t ≥ 0

}
constitute a set of superoperators, namely operators

acting on the space of quantum operators acting on the quantum system considered, which
is also known as Lioville space. We will drop the ”ˆ” from the superoperators to distinguish
them from operators acting on quantum states. Dynamical maps describe therefore the
time evolution of the system and they can be characterized by spectrally decomposing the
environment density matrix as

ρ̂B =
∑
α

λα |α⟩⟨α| (2.1.17)

which, together with Eq. (2.1.16), leads to the following decomposition

M(t)ρ̂S(0) =
∑
α,β

Wαβ(t)ρ̂S(0)W
†
αβ(t) (2.1.18)

Wαβ(t) =
√
λα ⟨α|Û(t, 0)|β⟩ . (2.1.19)

The new operators Wαβ(t) act on the open system Hilbert space and satisfy the following
relation ∑

α,β

W †
αβ(t)Wαβ(t) = ÎS (2.1.20)

which in turn causes M(t) to be completely positive and trace preserving [67], features of
utmost importance in order to describe physical processes.
Until now, we only re-elaborated the problem without making any progress. What we will
do in this section is to suppose that the set of dynamical maps introduced above satisfies
the following semigroup property

M(t1)M(t2) = M(t1 + t2), ∀t ≥ 0. (2.1.21)

This assumption can be made provided that the characteristic time scale of the free evolu-
tion of the system S is much greater than the decay time of bath correlation functions. In
this way, memory effects can be neglected and one expects the dynamics to be Markovian
[67]. Therefore, the semigroup property introduced above represents a way to formalize
the Markovianity of the dynamics. As anticipated, we will further discuss the physical
conditions for Markovianity in Sec. 2.1.2. For the moment, however, our focus will be
devoted to studying the effects of Eq. (2.1.21).
A set of superoperators

{
M(t) : t ≥ 0

}
satisfying Eq. (2.1.21) will be referred to as

quantum dynamical semigroup. It is possible to show that there exists a superoperator L
usually referred to as semigroup generator, such that the action of the dynamical map at
any given time t can be written as

M(t) = eLt (2.1.22)

which, upon derivation with respect of time, leads to the so called Markovian quantum
master equation

dρ̂S(t)

dt
= Lρ̂S(t). (2.1.23)
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In this expression, which represents the generalization of the Liouville- Von Neumann
equation to the case of open quantum systems, every detail on the dynamics of the system
is hidden in the superoperator L. It is worth noting that this superoperator has no
explicit time dependence thanks to the assumption of time independent Hamiltonian. The
generalization of our treatment to the time dependent case can be found in [67]. As we
will see in Section (2.1.2) its most general form can be derived starting from the knowledge
of the coupling Hamiltonian ĤSB. Before doing this, however, we briefly discuss how to
derive the general form of the generator starting from its definition in Eq. (2.1.22).
To simplify the discussion we only focus on the case of finite Hilbert space dimension for
the system S, namely dimHS = N . In this case, the Liouville space of Wαβ(t) operators
is a complex space with dimension N2. We can then choose a basis of operators for this
space, which we denote as Fi with i ∈

{
1, ..., N2

}
, such that they are orthonormal with

respect to the following scalar product

(Fi, Fj) := TrS
{
F †
i Fj

}
= δij . (2.1.24)

One of this basis operators is usually chosen to be proportional to the identity, namely
FN2 = IS/N

1
2 so that the other basis operators are traceless.

Decomposing each Wαβ operator over this basis and inserting these decompositions in Eq.
(2.1.18) one gets to the following expression for the action of M(t) on the system density
matrix

M(t)ρ̂S(t) =

N2∑
i,j=1

cij(t)Fiρ̂S(t)F
†
j (2.1.25)

where the coefficients cij form an Hermitian and positive matrix [67] and are given by

cij(t) =
∑
α,β

(Fi,Wαβ(t))(Fj ,Wαβ(t))
∗. (2.1.26)

We can now rewrite Eq. (2.1.23) as

Lρ̂S(t) = lim
ϵ→0

M(ϵ)ρ̂S(t)− ρ̂S(t)

ϵ
=

= lim
ϵ→0

{
1√
N

N2−1∑
i=1

(
ciN2(ϵ)

ϵ
Fiρ̂S(t) +

cN2i(ϵ)

ϵ
ρ̂S(t)F

†
i

)

+
1

N

cN2N2(ϵ)−N

ϵ
ρ̂S(t) +

N2−1∑
i,j=1

cij(ϵ)

ϵ
Fiρ̂S(t)F

†
j

}
.

(2.1.27)

Defining

aN2N2 = lim
ϵ→0

cN2N2(ϵ)−N

ϵ
(2.1.28)

aiN2 = lim
ϵ→0

ciN2(ϵ)

ϵ
, i = 1, ..., N2 − 1 (2.1.29)

aij = lim
ϵ→0

cij(ϵ)

ϵ
, i, j = 1, ..., N2 − 1 (2.1.30)
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which form an Hermitian and positive matrix and applying these definitions to Eq. (2.1.27)
it is possible to show [67] that the action of the generator can be rewritten as

Lρ̂S(t) = −i[K, ρ̂S(t)] + {G, ρ̂S(t)}+
N2−1∑
i,j=1

aijFiρ̂S(t)F
†
j . (2.1.31)

Here, K is an Hermitian operator given by [67]

K =
1

2i
(F † − F ) (2.1.32)

F =
1√
N

N2−1∑
i=1

aiN2Fi. (2.1.33)

whereas G is given by

G =
aN2N2

2N
IS +

1

2

(
F † + F

)
. (2.1.34)

This definition of G turns out to be equivalent to

G = −1

2

N2−1∑
i,j=1

aijF
†
j Fi (2.1.35)

thanks to the trace preserving property of the dynamical semigroup [67], leading to

Lρ̂S(t) = −i[K, ρ̂S(t)] +
N2−1∑
i,j=1

aij

{
Fiρ̂S(t)F

†
j − 1

2

{
F †
j Fi, ρ̂S(t)

}}
. (2.1.36)

The matrix a can be diagonalized by means of a unitary transformation u as

uau† =


γ1 0 · · · 0
0 γ2 · · · 0
...

...
. . .

...
0 0 · · · γN2−1

 . (2.1.37)

This unitary operator defines the following change of basis in the Liouville space

Fi =
N2−1∑
j=1

uijAj (2.1.38)

which enables us to rewrite Eq. (2.1.36) as

Lρ̂S(t) = −i[K, ρ̂S(t)] +
N2−1∑
j=1

γj

{
Aj ρ̂S(t)A

†
j −

1

2

{
A†

jAj , ρ̂S(t)
}}

(2.1.39)

which is the most general generator we were looking for. We will show in the following the
connection between non negative quantities

{
γj
}
and environmental correlation functions.

The operators
{
Aj

}
are usually referred to as Lindblad operators and Eq. (2.1.39) is

usually called the Lindblad Master Equation [69, 67].
The mathematical proof of the fact that Eq. (2.1.39) represents the most general generator
of a quantum dynamical semigroup was first given by Gorini, Kossakowski and Sudarshan
[70] for finite-dimensional Hilbert spaces and then extended by Lindblad [69] to cases
where the index j runs over a countable yet unbounded set.
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2.1.2 Microscopic derivation

As anticipated, in this section we derive the most general form of the dynamical semigroup
generator by directly studying the time evolution of the global system described by ρ̂ given
its full Hamiltonian

Ĥ(t) = ĤS + ĤB + ĤSB(t). (2.1.40)

Since this derivation is easily performed in the interaction picture, our starting point is
Eq. (2.1.10), which can be applied to our problem by substituting H̃1(t) with H̃SB(t).
Upon integration in time, this leads to

ρ̃(t) = ρ̃(0)− i

∫ t

0
dt′

[
H̃SB(t

′), ρ̃(t′)
]
. (2.1.41)

Inserting it back into Eq. (2.1.12) one gets to

dρ̃S(t)

dt
= −iTrB

{[
H̃SB(t), ρ(0)

]}
−
∫ t

0
dt′TrB

{[
H̃SB(t),

[
H̃SB(t

′), ρ̃(t′)
]]}

. (2.1.42)

It is worth observing that it is always possible to re-define H̃SB in such a way that the
first term in right-hand side of Eq. (2.1.42) is zero, and this is the case we will consider
henceforth [67].
Note that the equation obtained still contains the global density matrix ρ̂. In order to
eliminate it from the integral, we will have to perform some approximations, starting from
the so called Born approximation [67], which assumes a weak system-bath coupling in
order to neglect the effects of the system dynamics on the external bath. This allows us
to consider a global density matrix at a given time t of the form

ρ̂(t) ≈ ρ̂S(t)⊗ ρ̂B, ∀t. (2.1.43)

We underline the fact that this condition still allows to consider the effects of environmental
excitations. Inserting it back into Eq. (2.1.42) we are led to

dρ̃S
dt

= −
∫ t

0
dt′TrB

{[
H̃SB(t),

[
H̃SB(t

′), ρ̃S(t
′)⊗ ρ̃B

]]}
. (2.1.44)

It is easy to observe that this equation is not yet local in time.
To proceed further, we suppose the coupling Hamiltonian to be time independent and
write its Schrödinger’s picture form in terms of a basis of operators

{
σ̂i
}
acting on the

system which couple to a set of environment operators
{
B̂i

}
in the following way

ĤSB =
N2−1∑
i=1

σ̂i ⊗ B̂i (2.1.45)

where again we denote with N the dimension of the system Hilbert’s space. Inserting this
in Eq. (2.1.44) we obtain

dρ̃S
dt

= −
∫ t

0
dt′

∑
i,j

TrB

{[
σ̃i(t)⊗ B̃i(t),

[
σ̃j(t

′)⊗ B̃j(t
′), ρ̃S(t

′)⊗ ρ̃B

]]}
. (2.1.46)
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We then introduce the bath correlation functions as

Cij(t, t
′) = TrB

{
B̃†

i (t)B̃j(t
′)ρ̃B

}
(2.1.47)

and assume the environment state ρ̂B to be stationary, that is
[
ρ̂B, ĤB

]
= 0. This

guarantees the homogeneity of environmental correlation functions

Cij(t, t
′) = Cij(t− t′) (2.1.48)

and allows us to rewrite Eq. (2.1.46) as

dρ̃S
dt

= −
∫ t

0
dt′

∑
i,j

[
Cij(t− t′)

{
σ̃i(t)σ̃j(t

′)ρ̃S(t
′)− σ̃j(t

′)ρ̃S(t
′)σ̃i(t)

}
+Cji(t

′ − t)
{
ρ̃S(t

′)σ̃i(t
′)σ̃j(t)− σ̃j(t)ρ̃S(t

′)σ̃i(t
′)
}]
.

(2.1.49)

In order to obtain a master equation which is both local in time and Markovian, we need to
perform the second approximation, known as Markov’s approximation which we can split
into two steps. Firstly, one needs to substitute ρ̃S(t

′) with ρ̃S(t). This is accurate provided
that environmental correlation functions Ckl(t− t′) are peaked around τ = t− t′ = 0 and
the width τB of their peaks is much shorter than the typical time scale of the open system.
The second part of Markov’s approximation consists in extending the integral up to infin-
ity, which is consistent with the assumption made above. Since, due to these assumptions,
time scales smaller than τB are not resolved, the resultant dynamics is coarse grained in
time.
To sum up this first part of the derivation we observe that Born and Markov’s approxi-
mations led us to the following Markovian Master Equation

dρ̃S
dt

= −
∫ +∞

0
dτ

∑
i,j

[
Cij(τ)

{
σ̃i(t)σ̃j(t− τ)ρ̃S(t)− σ̃j(t− τ)ρ̃S(t)σ̃i(t)

}
+ h.c.

]
(2.1.50)

but are not sufficient to obtain the most general form of the generator L which we have
derived at the end of Section (2.1.1). In order to re-obtain a similar expression we need
to perform the so called secular approximation. Before doing so, we go through few cal-
culations to simplify the interaction picture expressions of

{
σ̂i
}
operators, writing them

in terms of ĤS eigenoperators. To simplify our discussion, we assume a discrete spectrum{
ϵ
}
. Denoting as

{
Π̂(ϵ)

}
the set of projectors onto the corresponding eigenspaces, we can

define the following operators

σ̂i(ω) =
∑

ϵ−ϵ′=ω

Π̂(ϵ′)σ̂iΠ̂(ϵ) (2.1.51)

which satisfy the properties [67][
ĤS , σ̂i(w)

]
= −ωσ̂i(ω) (2.1.52)[

ĤS , σ̂
†
i (w)

]
= ωσ̂†i (ω) (2.1.53)

σ̂†i (ω) = σ̂i(−ω) (2.1.54)∑
ω

σ̂i(ω) =
∑
ω

σ̂†i (ω) = σ̂i. (2.1.55)
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The last equation allows us to write the interaction Hamiltonian as

ĤSB =
∑
i,ω

σ̂i(ω)⊗ B̂i =
∑
i,ω

σ̂†i (w)⊗ B̂†
i . (2.1.56)

whereas Eqs. (2.1.52)-(2.1.54) allows us to write the σ̂i operators in interaction picture as
[67]

σ̃i(t) =
∑
ω

e−iωtσ̂i(ω) =
∑
ω

eiωtσ̂†i (ω). (2.1.57)

We can use these relations to rewrite the terms appearing in the right-hand side of Eq.
(2.1.50) as follows

σ̃j(t− τ) =
∑
ω

e−iω(t−τ)σ̂j(ω) (2.1.58)

σ̃i(t) =
∑
ω′

eiω
′tσ̂†i (ω

′) (2.1.59)

which leads to

dρ̃S(t)

dt
=

∑
i,j,ωω′

ei(ω
′−ω)tΓij(ω)

[
σ̂j(ω)ρ̃S(t)σ̂

†
i (ω

′)− σ̂†i (ω
′)σ̂j(ω)ρ̃S(t)

]
+ h.c. (2.1.60)

provided that we define the Fourier transform

Γij(ω) ≡
∫ +∞

0
dτeiωτCij(τ) (2.1.61)

of the two point environmental correlation function.
Both Eq. (2.1.50) and Eq. (2.1.60) clarify the fact that environmental correlation functions
play a significant role in the study of the dynamics of the open system and the latter
equation will help us to state the secular approximation in a clear way. In order to do so,
let us consider the characteristic time scale τS of the free evolution of the system S. This
can be estimated as the inverse of the typical value of the frequency difference between
two distinct and non degenerate states of the system, namely

τS ≈ 1

|ω − ω′|
. (2.1.62)

If τS is much greater than the relaxation time of the open system τR, we can neglect non
secular terms in Eq. (2.1.60), i.e. terms with ω ̸= ω′, given the fact that their oscillations
are much faster than the appreciable variations of ρS . This leaves us with the following
equation

dρ̃S(t)

dt
=

∑
i,j,ω

{
Γij(ω)

(
σ̂j(ω)ρ̃S(t)σ̂

†
i (ω)− σ̂†i (ω)σ̂j(ω)ρ̃S(t)

)
+ h.c.

}
. (2.1.63)

Few more algebraic steps must be performed in order to recover the most general form
of the dynamical semigroup generator. We begin by the following decomposition of the
Fourier transforms Γij(ω)

Γij(ω) =
1

2
aij(ω) + iΣij(ω) (2.1.64)
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where

Σij(ω) =
1

2i
(Γij(ω)− Γ∗

ij(ω)) (2.1.65)

aij(ω) = Γij(ω) + Γ∗
ij(ω) =

∫ +∞

−∞
eiωtCij(τ). (2.1.66)

This reparameterization of environmental Fourier-transformed correlation functions leads
us to the following form of the interaction picture Master Equation, which we can write
as

dρ̃S(t)

dt
= −i

[
ĤLS , ρ̃S(t)

]
+D[ρ̃S(t)]. (2.1.67)

provided that we define the Lamb shift Hamiltonian ĤLS as

ĤLS =
∑
ω,i,j

Σij(ω)σ̂
†
i (w)σ̂j(ω) (2.1.68)

and the dissipative term as

D[ρ̃S(t)] =
∑
ω,i,j

aij(ω)

(
σ̂j(ω)ρ̃S(t)σ̂

†
i (ω)−

1

2

{
σ̂†i (ω)σ̂j(ω), ρ̃S(t)

})
. (2.1.69)

Thus, the microscopic derivation performed in this section led us to Eq. (2.1.67) which
resembles Eq. (2.1.36). It can also be expressed in a Lindblad form by diagonalizing the
positive [67] aij(ω) matrices defined in Eq. (2.1.66) through the following transformation

uau† =


γ1(ω) 0 · · · 0
0 γ2(ω) · · · 0
...

...
. . .

...
0 0 · · · γN2−1(ω)

 . (2.1.70)

which defines the following change of basis in the Liouville space of the system

σ̂i(ω) =

N2−1∑
j=1

uijÂj(ω). (2.1.71)

Inserting this in Eq. (2.1.69) we obtain the following form of the dissipator

D[ρ̃S(t)] =
∑
ω,j

γj(ω)

(
Âj(ω)ρ̃S(t)Â

†
j(ω)−

1

2

{
Â†

j(ω)Âj(ω), ρ̃S(t)
})

. (2.1.72)

Before concluding this section, we focus on some relevant observations. First of all, we
observe that the Lamb shift Hamiltonian contributes to the dynamics by renormalizing the
unperturbed energy levels of the systems. Moreover, we underline that in order to move
back to Schrödinger picture, we only need to insert the free Hamiltonian of the system in
the commutator in Eq. (2.1.67), obtaining

dρ̂S(t)

dt
= −i

[
ĤS + ĤLS , ρ̂S(t)

]
+D[ρ̂S(t)]. (2.1.73)
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Recalling the corresponding equation obtained in Section (2.1.1)

dρ̂S(t)

dt
= −i[K, ρ̂S(t)] +

N2−1∑
j=1

γj

{
Aj ρ̂S(t)A

†
j −

1

2

{
A†

jAj , ρ̂S(t)
}}

(2.1.74)

it is easy to observe that it is of the same form of Eq. (2.1.73) withD defined in Eq. (2.1.72)
provided that we identify K with ĤS + ĤLS and introduce a spectral decomposition of
operators Âj , as done in order to obtain Eq. (2.1.72).

2.2 Collision models

As anticipated, in this section we will consider another way to treat open quantum systems
known as collision models. In recent years, they have progressively gained more and more
importance in the description of energy exchange between a quantum system and a bath,
whose role can be played by an environment, which causes energy dissipation, but also
by a charger, with opposite effects [10, 33]. The latter option has recently become very
popular in literature, spreading in the field of quantum batteries [30, 31, 32, 33].
The key point of collision models consists in modeling the bath as a large collection of
quantum subsystems described by a set of density matrices

{
ηn

}
, which interact sequen-

tially with the system, and are labelled by an integer index denoting the position of the
ancilla in the interaction sequence (see Fig. 2.1).

Figure 2.2: Scheme for the sequence of interactions involving the system, with initial density matrix
ρ0, and a single ancilla: S interacts at first with the first ancilla (described with the density matrix
η1) then with the second (described with η2) and so on. Each ancilla interacts with S only once.
Image taken from [34].

We will now derive some properties of collision models and, at the end of the section,
we will compare them with the previously derived master equation descriptions. A more
detailed discussion of the model can be found in Ref. [34].

2.2.1 Discrete-time evolution: quantum maps

As well as the approach discussed in the previous section, our goal is to study the evolution
of the system density matrix. To do so, also in this case we will have to study the
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evolution of the complete system and then trace over environmental degrees of freedom.
Since our aim is to focus mainly on Markovian collision models, we now make two further
assumptions which will simplify our treatment and which are essential to guarantee the
Markovianity of the collision model. They consist in considering non interacting and
initially uncorrelated ancillae, each of which couples only once with the system. Before
starting, we point out that, from now on, the argument n of the reduced density matrix
of the system ρ̂S(n) will denote the interaction with the n− th ancilla.
All considered, we can start building the global density matrix as

ρ̂SB(0) = ρ̂S(0)⊗ η̂1...⊗ η̂N (2.2.1)

with

• ρ̂S(0) the initial state of the system

• N the total number of ancillae which corresponds to the total number of collisions
taking place in the sequence.

Our aim is to study the time evolution of the system density matrix ρ̂S . To do so, we will
study the evolution of ρ̂SB, and then trace over the DOFs of the ancillae.
The Hamiltonian governing the n− th step of this process consists in the sum of the free
Hamiltonian of the system and of the ancilla, ĤS and Ĥn respectively, together with their
interaction term V̂Sn. Thus, considering

Ĥ = ĤS + Ĥn + V̂Sn (2.2.2)

the time evolution of the density matrix ρ̂S(n− 1)⊗ η̂n is ruled by the following unitary
operator in Schrödinger’s picture

Ûn = e−i(ĤS+Ĥn+V̂Sn)∆t (2.2.3)

where ∆t is the duration of the single collision. For the sake of simplicity we have assumed
this time equal for each of the collisions considered, as well as small compared to the
characteristic time scales of the systems, in order to drop any time dependence in Ĥ and
simplify the time integral in the exponential defining the general evolution operator. These
assumptions can however be relaxed [34].
Since we supposed non interacting ancillae, the first step of the collision model brings to 1

ρ̂SB(1) = Û1ρ̂SB(0)Û
†
1 =

(
Û1ρ̂S(0)⊗ η̂1Û

†
1

)
⊗ η̂2...⊗ η̂N . (2.2.4)

Iterating this procedure leads to the following expression for the global density matrix
after n collisions:

ρ̂SB(n) =
(
Ûn...

(
Û1ρ̂S(0)⊗ η̂1Û

†
1

)
...η̂nÛ

†
n

)
⊗ η̂n+1...⊗ η̂N . (2.2.5)

Now we would like to trace over bath degrees of freedom. This can be done observing that
contributions coming from different ancillae can be separated as

ρ̂S(n) = Trn
{
Ûn...Tr1

{
Û1ρ̂S(0)⊗ η̂1Û

†
1

}
...η̂nÛ

†
n

}
⊗ Trn+1

{
η̂n+1

}
...⊗ TrN

{
η̂N

}
(2.2.6)

1We will denote with ρ̂S(n) the system density matrix at t = n∆t
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where last traces are trivially equal to 1 since they consist in tracing density matrices.
It is possible to rewrite Eq. (2.2.6) in order to properly highlight the Markovianity of
the interaction process. To do so, we define a quantum map Mn which connects two
subsequent steps of the system density matrix discrete evolution, namely

ρ̂S(n) = Mn

[
ρ̂S(n− 1)

]
(2.2.7)

which reduces, in our case, to

ρ̂S(n) = Mn

[
ρ̂S(n− 1)

]
= Trn

{
Ûnρ̂S(n− 1)⊗ η̂nÛ

†
n

}
. (2.2.8)

Until now we have considered the general case of inhomogeneous collision model, where
both the initial state and the interaction potential change from one ancilla to another,
causing the presence of the subscript n in the definition of the quantum map. Inserting
this last one in Eq (2.3.6) we are left with the following form

ρ̂S(n) = Mn

[
...M1

[
ρ̂S(0)

]]
(2.2.9)

which consist in successive application of the quantum maps. Since, at every step, the
only input needed by the quantum map is the previous step density matrix, this process
is clearly Markovian, thanks to all the assumptions made at the beginning of the section.
If one makes the assumption of homogeneous collision model, steps are all equal and the
evolution reduces to the repeated application of the same map M.

2.2.2 An example: Micromaser quantum map

In order to better clarify what discussed in the previous subsection, here we provide
an example of a system which is suitable for a collision model description, namely the
Micromaser [10]. The calculations we are about to perform will be useful for a better
understanding of chapter three, where we will analyze how a Micromaser can be used to
realize a quantum battery [33].
The Micromaser is a model where photons trapped into a resonant cavity interact with a
stream of qubits and exchange energy with them. An ideal physical realization is shown
in Fig. 2.3.
Ideally, it is possible to realize a sequence of interactions satisfying the Markovianity
conditions: all one needs to do is to prepare uncorrelated qubits and send them to the
cavity at a rate r = 1

τ such that τ > ∆t, where again ∆t denotes the duration of the
interaction, which can be controlled through fine-tuning of the velocity of atoms flying in
the cavity.
In the following, we will assume that all these precautions have been taken into account,
and treat the interaction process as Markovian.
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Figure 2.3: (a)Scheme of an ideal experimental Micromaser setup. Here, a flow of atoms with a
selected velocity enters a cavity of length L. Controlling the velocity allows to tune the interaction
duration ∆t (b) Graphical representation of relevant time scales involved in the problem: the
duration of each interaction ∆t must be shorter than the time interval separating the emission of
two subsequent atoms τ . Picture taken from [34].

We begin our calculations from the definition of the mode-qubit Hamiltonian, supposed
of the form

Ĥ = ĤS + Ĥn + V̂Sn (2.2.10)

where

ĤS = ωcâ
†â (2.2.11)

Ĥn =
∆

2
σ̂z,n (2.2.12)

V̂Sn = g(â† + â)(σ̂−,n + σ̂+,n) (2.2.13)

respectively represent the Hamiltonian of the cavity mode considered (see Sec. 1.3.2), the
Hamiltonian of the TLS ancilla and the coupling between these two systems [46] which is
supposed to be identical for each ancilla.
It is easier to move to the interaction picture with respect to ĤS + Ĥn, so that the
interaction term becomes

ṼSn = g
(
â†σ̂+e

i(∆+ωc)t + â†σ̂−e
i(ωc−∆)t + âσ̂+e

i(∆−ωc)t + â†σ̂+e
−i(∆+ωc)t

)
. (2.2.14)

We focus now on the resonant case ∆ = ωc, which leads to

ṼSn = g
(
â†σ̂+e

2iωct + â†σ̂− + âσ̂+ + â†σ̂+e
−2iωct

)
. (2.2.15)

Despite moving to interaction picture, we are left with a time evolution problem which
is not exactly solvable and needs to be handled numerically. However, a possible way
out is represented by the Rotating wave approximation (RWA) which, as discussed in Sec.
(1.5.2), consists in neglecting oscillating terms in Eq. (2.3.15) since their contribution
reveals to be negligible for small values of the ratio g

ωc
.

Thus, performing this approximation leads to reliable results only in the weak coupling
regime g ≪ ωc, but they can be extended to the strong coupling regime g ∼ ωc via
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external modulation of cavity and qubit frequencies, as shown in [71]. This leaves us with
the Jaynes-Cummings (JC) interaction Hamiltonian

ṼSn = g
(
âσ̂+ + â†σ̂−

)
. (2.2.16)

Due to the fact that Eq. (2.3.16) is now time independent, the evolution operator in
interaction picture can be written as

Ũn = e−iṼSn∆t. (2.2.17)

In order to characterize the time evolution of the system, the first thing we need to do
is to diagonalize VSn. Projecting this operator on the complete system orthonormal basis
obtained with a tensor product between the Fock basis of the oscillator and the spin
basis of the qubit, namely the set

{
|m,±⟩

}
, it is straightforward to obtain the following

block-diagonal form:

ṼSn =



... 0 0 0

0
0 g

√
m+ 1

g
√
m+ 1 0

0 0

0 0
0 g

√
m

g
√
m 0

0

0 0 0 ...

 . (2.2.18)

This matrix is clearly infinite-dimensional due to the infinite dimension of the oscillator
Fock space. Its block-diagonal structure is a consequence of the conservation of the number
of excitations associated to the RWA Hamiltonian and makes the diagonalization simpler,
since it is sufficient to focus on a single two-dimensional subspace, like that spanned by{
|m− 1, 1⟩ , |m, 0⟩

}
, obtaining

ṼSn =

(
0 g

√
m

g
√
m 0

)
. (2.2.19)

Given its eigenvalues
Λ1,2 = ±g

√
m (2.2.20)

and eigenvectors

|ψ1,2⟩ =
1√
2
(|m− 1,+⟩ ± |m,−⟩) (2.2.21)

respectively, we can write, in this subspace, the time evolution operator in Eq. (2.2.17) as

Ũn = e−ig∆t
√
m |ψ1⟩⟨ψ1|+ eig∆t

√
m |ψ2⟩⟨ψ2| . (2.2.22)

In order to regain the complete structure of the full Hilbert space, we sum over the integer
index m. Doing this, and using Eq. (2.2.21) we arrive, after a bit of algebra, to:

Ũn = |+⟩⟨+|n
{ ∞∑

m=0

|m⟩⟨m|Cos(g∆t
√
m+ 1)

}
+

+ |−⟩⟨−|n
{ ∞∑

m=1

|m⟩⟨m|Cos(g∆t
√
m)

}
+

−i |+⟩⟨−|n
{ ∞∑

m=0

|m⟩⟨m+ 1|Sin(g∆t
√
m+ 1)

}
+

−i |−⟩⟨+|n
{ ∞∑

m=1

|m+ 1⟩⟨m| Sin(g∆t
√
m+ 1)

}
.

(2.2.23)
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Therefore the interaction picture evolution operator is given by the sum of four terms, each
of which can be factorized as the tensor product of a qubit part and a quantum oscillator
one. Defining N̂ as the oscillator number operator, it is straightforward to demonstrate
that the following relations hold

∞∑
m=0

|m⟩⟨m|Cos(g∆t
√
m+ 1) = Cos(g∆t

√
N̂ + Î) := B̂ (2.2.24)

∞∑
m=1

|m⟩⟨m|Cos(g∆t
√
m) = Cos(g∆t

√
N̂) := Ĉ. (2.2.25)

Similarly, the last two terms in Eq. (2.3.23) can be rewritten defining a new operator Ŝ
such that

Ŝ :=
Sin(g∆t

√
N̂ + Î)√

N̂ + Î
(2.2.26)

which leads to

∞∑
m=0

|m⟩⟨m+ 1|Sin(g∆t
√
m+ 1) = Ŝâ (2.2.27)

∞∑
m=0

|m+ 1⟩⟨m|Sin(g∆t
√
m+ 1) = â†Ŝ. (2.2.28)

All these definitions lead to the following expression for the evolution operator

Ũn = B̂ |+⟩⟨+|n + Ĉ |−⟩⟨−|n − i
{
Ŝâ |+⟩⟨−|n + â†Ŝ |−⟩⟨+|n

}
(2.2.29)

which we will use to construct the collision model quantum map.
In an homogeneous collision model, we can define the ancilla density matrix as

η̂n = q |−⟩⟨−|n + (1− q) |+⟩⟨+|n + c
√
q(1− q)(|−⟩⟨+|n + |+⟩⟨−|n) (2.2.30)

with q controlling the qubit ground state occupation and c the degree of coherence of the
qubit.
In order to obtain the quantum map we need now to evaluate

ρ̃S(n) = Trn
{
Ũn(ρ̃S(n− 1)⊗ η̂)Ũ †

n

}
. (2.2.31)

Thus, using the expression for Un given by Eq. (2.2.29) and the definition of η̂n the result
yields

ρ̃S(n) = Trn

{
|+⟩⟨+|n

[
(1− q)B̂ρ̃S(n− 1)B̂ + qŜâρ̃S(n− 1)â†Ŝ+

+ ic
√
q(1− q)

(
B̂ρ̃S(n− 1)â†Ŝ − Ŝâρ̃S(n− 1)B̂

)]
+

+ |−⟩⟨−|n
[
qĈρ̃S(n− 1)Ĉ + (1− q)â†Ŝρ̃S(n− 1)Ŝâ+

+ ic
√
q(1− q)

(
Ĉρ̃S(n− 1)Ŝâ− â†Ŝρ̃S(n− 1)Ĉ

)]
+ . . .

}
(2.2.32)
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where the ellipsis stands for the off diagonal terms of the qubit density matrix. These
terms do not contribute to the partial trace defining ρS(n) and can therefore be neglected.
Performing this last trace one gets to

ρ̃S(n) = (1− q)

{
B̂ρ̃S(n− 1)B̂ + â†Ŝρ̃S(n− 1)Ŝâ

}
+

+q

{
Ĉρ̃S(n− 1)Ĉ + Ŝâρ̃S(n− 1)â†Ŝ

}
+

+ic
√
q(1− q)

{
Ĉρ̃S(n− 1)Ŝâ− â†Ŝρ̃S(n− 1)Ĉ+

+ B̂ρ̃S(n− 1)â†Ŝ − Ŝâρ̃S(n− 1)B̂

}
.

(2.2.33)

This last equation, as we will see in chapter three, is the fundamental ingredient to perform
numerical simulations for the evolution of the state of a Micromaser charged via sequential
interactions with a stream of qubits.

2.2.3 The short collision time limit

In order to compare the collisional approach with the methods discussed in Section (2.1),
it is useful to study the small collision time limit of the discrete collision models. In order
to simplify the notation we restrict ourselves to homogeneous collision models. Thus, our
starting point is the homogeneous version of Eq. (2.2.8), namely

ρ̂S(n) = Trn
{
Û(ρ̂S(n− 1)⊗ η̂)Û †}. (2.2.34)

Working in interaction picture we recall Eq. (2.2.14) for the unitary evolution operator Û
as

Ũ = e−i∆tṼSn . (2.2.35)

We will also assume the system-ancilla coupling Hamiltonian to be of the form

ṼSn =
∑
j

σ̃j ⊗ B̃j (2.2.36)

in analogy to what done in Eq. (2.1.45). If ∆t is much smaller compared to the charac-
teristic time scales of the system we can expand Eq. (2.2.34) in the interaction picture
as

Ũ ρ̃S(n− 1)⊗ ηŨ † = ρ̃S(n− 1)− i∆tTrn
{[
ṼSn, ρ̃S(n− 1)⊗ η̂

]}
+

− ∆t2

2
Trn

{[
ṼSn,

[
ṼSn, ρ̃S(n− 1)

]
⊗ η̂

]}
.

(2.2.37)

Due to the assumption made in Eq. (2.2.36), the first order commutator appearing in the
above equation can be rearranged as follows

Trn
{[
ṼSn, ρ̃S(n− 1)⊗ η̂

]}
=

[
Trn

{
ṼSn ⊗ η̂

}
, ρ̃S(n− 1)

]
. (2.2.38)
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If we expand the second order commutator in Eq. (2.2.37) and divide by ∆t we obtain

∆ρ̃S(n)

∆t
= −i

[
Trn

{
ṼSn ⊗ η̂

}
, ρ̃S(n− 1)

]
+

+∆tTrn

{
ṼSn(ρ̃S(n− 1)⊗ η̂)ṼSn − 1

2

{
ṼSn, ρ̃S(n− 1)⊗ η̂

}}
.

(2.2.39)

As shown in [34], performing a spectral decomposition of the ancilla density matrix

η̂ =
∑
α

pα |α⟩⟨α| (2.2.40)

and defining the following set of operators

Lα,β =
√
pα∆t ⟨β|ṼSn|α⟩ (2.2.41)

leads to the following form for Eq. (2.2.36)

∆ρ̃S(n)

∆t
= −i

[
Trn

{
ṼSn ⊗ η̂

}
, ρ̃S(n− 1)

]
+

+
∑
α,β

Lα,β ρ̃S(n− 1)L†
α,β − 1

2

{
L†
α,βLα,β, ρ̃S(n− 1)

}
.

(2.2.42)

This equation can be seen as the discretized version of Eq. (2.1.67), provided that we
define

ĤLS = Trn
{
ṼSn ⊗ η̂

}
(2.2.43)

D[ρ̃S(t)] =
∑
α,β

Lα,β ρ̃S(n− 1)L†
α,β − 1

2

{
L†
α,βLα,β, ρ̃S(n− 1)

}
. (2.2.44)

So far, we have not carried out the proper continuous time limit, considering a finite and
small ∆t such that the time evolution operator could be replaced by its second order
expansion. However, if the total evolution time of the system is much greater than ∆t, it
is possible to apply a coarse graining procedure which consists in replacing the discretized
time with a continuous variable, namely

tn = n∆t→ t. (2.2.45)

In doing so, all functions depending on the step number n become continuous evolving
functions. The price to be paid is that the new approach will not provide us with any
useful information on the dynamics of the system at time scales smaller than ∆t.
Coarse graining procedure allows us not to perform the rigorous limit ∆t → 0 which is
a delicate step since, as expressed in Eqs. (2.3.41)-(2.3.42), it would make the dissipa-
tive terms to disappear. One possible way out would consists in performing this limit
together with the introduction of a diverging coupling strength so that Lα,β Lindblad op-
erators remain finite. This procedure is very delicate since it may cause other non-physical
behaviours, as shown in [34].
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2.2.4 Towards collisional quantum batteries

As seen in this section, collision models represent a valid alternative to continuous time
approaches in the description of open quantum systems. Along the entire section we have
considered quantum systems coupled with a bath B. Usually, the role of B is played by
an external environment which causes dissipative phenomena, but nothing prevents from
employing these models in situations where B causes opposite effects. As we will see in the
following, this is the case of collisional quantum batteries, whose charging protocol can be
described by a collision model where the bath B acts as a charger. Obviously, collision
models could be used also in hybrid situations, where a system interacts both with a
charger and with an environment, both described by a collection of quantum systems. An
example of this situation can be found in [32].
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Chapter 3

Harmonic collisional quantum
batteries: the Micromaser

In this chapter we will consider in more details one of the most relevant examples of
collisional quantum batteries, known as the Micromaser, already introduced briefly in
Sec. 2.2.2. Although this system has been extensively studied both at the theoretical
and experimental level [72, 73] and many works, focused on the creation of Micromaser
pure states, have been proposed [73, 74], the majority of them is based on assumptions
such as weak or highly fine-tuned values of the coupling, which are incompatible with
the possibility of building a fast-charging and stable battery. It is possible to show [32,
33], however, that assuming a Jaynes-Cummings (JC) collision model with a stream of
coherent qubits as a charger leads to an interesting behaviour of the system in terms of

• stored energy and purity, since the charging process drives the system towards
an highly-excited and almost pure steady state;

• stability with respect to coupling fluctuations and small losses of coherence of charg-
ing qubits.

The upsaid features are due to the so called trapping dynamics of the JC collision model.
This consists in the fact that the system is driven towards an almost pure steady state,
localized in a finite-size region of the cavity Hilbert space, provided that the coupling
interaction is properly fine-tuned [32, 33, 73]. This trapping condition can be achieved
both in the coherent and incoherent case, leading to different kind of steady states. What
makes the coherent protocol more promising is its stability with respect to deviations of
the coupling from fine-tuned values, whereas in the incoherent case [32], such deviations
break of the trapping dynamics.
We will use here results from Sec. 2.2.2 as the starting point and will retrace the work
done in [32, 33].
In the first section we will focus on the main analytical features of incoherent [32] and
coherent [73, 74] collisional charging of an harmonic oscillator, above all the possibility of
building excited and almost pure steady states under proper conditions.
Subsequently we will numerically retrace the work done in [32, 33]. After analyzing the
presence of trapping states in the incoherent case and showing their instability with respect
to the breaking of the trapping condition discussed above, we will proceed further by
gradually increasing quantum coherences until reaching the fully-coherent protocol. In
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doing so, we will go beyond existing literature, since intermediate coherences have not yet
been investigated. For each of the regimes studied we will show results for the stored energy
and state purity of the battery, also analyzing its density matrix to properly visualize
trapping states.
At the end of the chapter we will discuss the stability of the obtained results with respect
to the introduction of counter rotating terms in the coupling Hamiltonian.

3.1 Micromaser dynamics

Before starting, we recall Eq. (2.2.30) for the quantum map of the Micromaser homoge-
neous collision model in the JC limit, given by

ρ̃S(n) = (1− q)

{
B̂ρ̃S(n− 1)B̂ + â†Ŝρ̃S(n− 1)Ŝâ

}
+

+q

{
Ĉρ̃S(n− 1)Ĉ + Ŝâρ̃S(n− 1)â†Ŝ

}
+

+ic
√
q(1− q)

{
Ĉρ̃S(n− 1)Ŝâ− â†Ŝρ̃S(n− 1)Ĉ+

+ B̂ρ̃S(n− 1)â†Ŝ − Ŝâρ̃S(n− 1)B̂

}
(3.1.1)

where ρ̃S(n), with n ≥ 1 denoting the current step, is the reduced Micromaser density
matrix, whereas c and q respectively represent the degree of coherence and the ground
state population of each ancilla (see Sec. 2.2.2). B̂, Ĉ, Ŝ were defined in Eqs. (2.2.21)-
(2.2.23) as functions of both the number operator of the cavity N̂ and θ, which is given
by the product of the system-ancilla coupling with the single interaction duration, namely
θ = g∆t.
This form of the quantum map was derived using the RWA [46]. Although neglecting
counter rotating terms strongly reduces the dimension of the Hilbert’s space and reveals to
be crucial in order to simplify the interaction picture evolution operator used to derive Eq.
(3.1.1), its validity is limited to the weak coupling regime g ≪ ωc of the resonant interaction
between the system and each ancilla [46]. This makes it substantially incompatible with
the fast charging of a battery [33]. Thus, a desirable situation would be to have a system
described by a Jaynes-Cummings Hamiltonian also in the ultrastrong coupling regime
(USC) 0.1 ≲ g

ωc
≲ 1. As already mentioned in Section (2.2.2), this can be accomplished via

an external modulation of the cavity and qubits frequencies [71]. Following the approach
developed in [32, 33], we will assume this modulation has been performed and push our
numerical analysis up to USC, postponing considerations on the relevance of counter
rotating terms to Sec. 3.2.3.

3.1.1 Incoherent charging protocol

In this case, c = 0, thus Eq. (3.1.1) reads

ρ̃S(n) = (1− q)
{
Ĉρ̃S(n− 1)Ĉ + â†Ŝρ̃S(n− 1)Ŝâ

}
+

+q
{
B̂ρ̃S(n− 1)B̂ + Ŝâρ̃S(n− 1)â†Ŝ

}
.

(3.1.2)
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We now focus on the k–th diagonal element

ρ̃S,k(n) ≡ ⟨k|ρ̃S(n)|k⟩ (3.1.3)

where |k⟩ represents the k–th cavity eigenstate. Considering the action of the operators
B̂, Ĉ and Ŝ on the number states we can rewrite Eq. (3.1.3) as

ρ̃S,k(n+ 1) = r2k+1(θ)

[
qρ̃S,k+1(n)− (1− q)ρ̃S,k(n)

]
+

+r2k(θ)

[
(1− q)ρ̃S,k−1(n)− qρ̃S,k(n)

]
+ ρ̃S,k(n),

(3.1.4)

where
rk(θ) ≡ Sin(θ

√
k). (3.1.5)

This equation clarifies the reason behind the choice of focusing only on the populations of
the cavity density matrix, since it implies that populations at a given step n only depend
on preceding populations, with no off-diagonal term contributing to the process.
The dynamics described by this equation turns out to be peculiar for appropriate values
of θ given by

θft =
π√
l

→ rl(θft) = 0 (3.1.6)

with l a positive integer. We start discussing this point by further simplifying the dynam-
ics, assuming ancillae to be completely excited, that is, setting q = 0 in Eq. (3.1.4). Since
we are looking for steady states we must solve the equation

r2k+1(θ)ρ̃S,k(n)− r2k(θ)ρ̃S,k−1(n) = 0. (3.1.7)

The striking consequence of setting θ = θft is that this steady state condition is satisfied
by a state ρstatS such that [32]

ρstatS,k = δk,l−1. (3.1.8)

Thus, by properly fine-tuning the coupling and the duration of the interaction, a collisional
charging process with completely excited and incoherent qubits drives the system towards
the number state |l − 1⟩. This property is known as trapping.
As anticipated in Sec. 1.4, purity is strictly connected to ergotropy, since a pure state of the
battery optimizes the amount of extractable work. Given the importance of this feature
in view of realizing stable quantum batteries, it would be desirable to obtain something
similar also in more general situations, where q ̸= 0 and c ̸= 0 and also where the coupling
is not fine tuned.
We now try to extend these considerations to the q ̸= 0 case, postponing the coherent
protocol to the following subsection. We can study this case starting from Eq. (3.1.4). If
q ̸= 0 the stationary state condition takes the form

r2k+1(θ)
[
qρ̃S,k+1(n)− (1− q)ρ̃S,k(n)

]
+ r2k(θ)

[
(1− q)ρ̃S,k−1(n)− qρ̃S,k(n)

]
= 0. (3.1.9)

As pointed out in [32], using again Eq. (3.1.6) for the value of θ the solution of this
equation takes the form

ρstatS,k =

{
Rkf(R) if k < l

0 if k ≥ l
(3.1.10)
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where

f(R) =
R− 1

Rl+1 − 1
(3.1.11)

R =
1− q

q
. (3.1.12)

This implies that the trapping dynamics is preserved, since the non-zero steady state pop-
ulations are confined in a part of the system density matrix with 0 ≤ k < l, but modified,
since the state is no longer a number state.
For what concerns purity, given the fact that the Micromaser density matrix in the inco-
herent case is diagonal, it can be evaluated as

P(n) = TrS
{
ρ̃2S(n)

}
=

∑
k

ρ̃2S,k(n). (3.1.13)

Using the stationary state defined in Eq. (3.1.10) we are left with [32]

P stat =
R− 1

R+ 1

(R2)l+1 − 1

(Rl+1 − 1)2
. (3.1.14)

To get a sense of its values, we can consider the fact that, for sufficiently large R, it can
be approximated as

P stat ≈ R− 1

R+ 1
= 1− 2q. (3.1.15)

This implies that, if the charging qubits are not completely excited, the purity of the
steady state lowers, causing the ergotropy to lower in turn.
What remains to be considered is the case of non fine-tuned values for the coupling g. In
such a situation, the steady state equation does not admit a trapping solution. As we will
see in Sec. 3.2.1, a numerical approach shows that this has relevant consequences in terms
of storage and stability of the battery.
To summarize, an incoherent collision model drives the system towards a trapping steady
state only if the coupling is fine tuned as expressed in Eq. (3.1.6). The resulting trapping
state is pure only if q = 0 whereas, if q ̸= 0, its purity decreases.

3.1.2 Coherent charging protocol

Now it is time to re-introduce quantum coherent ancillae in the Micromaser collision
charging process. In order to study the resulting dynamics, we will follow the approach of
[73, 74].
In order to simplify the treatment, we momentarily leave aside the study of the Micromaser
density matrix and begin analyzing the following state for the oscillator-ancilla composite
system at the beginning of the n–th step of the collision model

|ψi(n)⟩ =
∑
k

λk |k⟩ ⊗ (
√

1− q |+⟩n +
√
q |−⟩n) (3.1.16)

written in terms of the number basis {|k⟩} and the ancilla basis {|±⟩n}. The n–th step of
the model is governed, in the interaction picture, by the unitary operator defined in Eq.
(2.2.26)

Ũn = B̂ |+⟩⟨+|n + Ĉ |−⟩⟨−|n − i
{
Ŝâ |+⟩⟨−|n + â†Ŝ |−⟩⟨+|n

}
.
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This leads to the following form of the system-ancilla state at the end of the n–th step
[73]

|ψf (n)⟩ = |f+⟩ ⊗ |+⟩n + |f−⟩ ⊗ |−⟩n (3.1.17)

where

|f+⟩ =
∑
k

λk
{√

1− qCos
(
θ
√
k + 1

)
|k⟩ − i

√
q Sin

(
θ
√
k
)
|k − 1⟩

}
(3.1.18)

|f−⟩ =
∑
k

λk
{√

qCos
(
θ
√
k
)
|k⟩ − i

√
1− q Sin

(
θ
√
k + 1

)
|k + 1⟩

}
. (3.1.19)

Thus, if, at a given step of the collision model, the state |k⟩ is populated then the two states
|k + 1⟩ and |k − 1⟩ will be populated at the subsequent step, with respective populations
given by Sin2(θ

√
k + 1) and Sin2(θ

√
k). Now it is time to define a particular state |kp⟩

such that √
kp + 1θ = pπ (3.1.20)

with p a positive integer. Under the above condition the population of |kp + 1⟩ at the
subsequent step is zero and we will we will call it an upward trapping state. Analogously
if √

kpθ = pπ (3.1.21)

we will call it a downward trapping state, since now the non-populated state is |kp − 1⟩. A
direct consequence of these definitions is that a upward trapping state is always followed
by a downward trapping state. This has very important consequences on the system dy-
namics: let us suppose that, given a value of the coupling θp, there exist two integers p, kp
which satisfy Eq. (3.1.21). Then, the system states space will be separated by |kp⟩ into
dynamically disconnected sections, one with k ≤ kp and the other with k > kp.
As shown in [73] it is possible to set up a self-consistency argument in order to demonstrate
the possibility of building an almost pure steady state in one of these disconnected blocks.
We only report the following recursive relations between the populations of the harmonic
oscillator in such a steady state. One must have, ∀ k < kp,

ρstatS,k =
1− q

q
Cot2

(
π

2
√
kp

√
k

)
ρstatS,k−1. (3.1.22)

This formula will be useful in the following section, where numerical results will show that,
although the coherent charging protocol has better performances in terms of stability for
a given value the coupling, the stored energy is lower than the one in the incoherent case.
The reason for this is the difference between populations of the coherent and incoherent
protocol steady state. Indeed, while in the first case the cotangent factors in Eqs. (3.1.22)
suppress populations of states with k near kp, this does not happen in the incoherent one.

3.2 Charging up the Micromaser

In this section we will show results of the numerical simulations carried out to study
the Micromaser collision model, at first concentrating only on the resonant JC evolution,
which was studied analytically above. For this case we will assume that the quantum map
describing the process is the one obtained in Sec. 2.2.2. This will be evaluated numerically
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step by step by employing methods provided by the QuTiP library [35].
Subsequently, we introduce the effects of counter rotating terms. Since their presence do
not allow to solve exactly the dynamics of the system, we will resort to approximated
methods of the same library. Further details on the numerical implementation can be
found in the Appendix.
The relevant parameters for the numerical calculations are: q and c, pure real numbers
respectively representing the population of the ground state of each ancilla and their degree
of coherence, both assumed the same at each step; θ = g∆t, with ∆t the duration of each
interaction of the collision model, since the operators in the quantum map of Eq. (2.2.30)
depend on its value. Without loss of generality, we will assume ∆t as our reference time
unit, so that other physical quantities will be rescaled accordingly.
In all simulations we will consider an initially completely discharged Micromaser (empty
battery) with density matrix

ρ̃S(0) = |0⟩⟨0| . (3.2.1)

3.2.1 Incoherent protocol

We begin our numerical analysis with the study of the fully-incoherent collision model.
As seen in Sec. 3.1.1 the expected trapping steady state will be diagonal on the basis of
eigenvectors of the Micromaser, its purity will depend on q values and it will be destroyed
by deviations of the coupling with respect to fine-tuned values.
We will show this for fine tuned coupling values of the form given by Eq. (3.1.6), with
l = 12 and l = 39, comparing results for each of these with results obtained for a cor-
responding non-fine tuned value. For all simulations of the incoherent protocol we will
assume c = 0 and q = 0.25, independently of the considered coupling.

Figure 3.1: Populations of the Micromaser state after 10000 collisions: comparison between g = π√
12

(fine-tuned) and g = 0.992 π√
12

(non fine-tuned) assuming c = 0, q = 0.25, ∆t = 1. Here, k denotes

the k–th diagonal element of the density matrix taken into account (same notation as that employed
in Sec. 3.1.1).
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We begin by showing the breaking of the trapping condition through plots of the popula-
tions of the system density matrix, since the incoherent dynamics only affects its diagonal
elements. In Fig. 3.1 we show the populations of ρstatS,k for two selected values of the
coupling. As we expected, in the fine-tuned case g = π√

12
the system is trapped within a

region of the cavity Hilbert’s space with k ≤ 11, whereas this trapping condition is broken
for the non fine-tuned case g = 0.992 π√

12
, since the steady state populations are no more

localized and the finite-size computational Hilbert’s space is almost saturated.
After displaying trap states and their breaking, it is worth discussing the consequences of
these facts. We will analyze the stored energy and purity as functions of the number of
completed steps of the collision model, namely

E(n) = Tr
{
HS ρ̃S(n)

}
(3.2.2)

P (n) = Tr
{
ρ̃2S(n)

}
. (3.2.3)

Results shown in Figs. 3.2 and 3.3 for the stored energy and purities with q = 0.25 confirm
what we anticipated: non fine-tuned values of the coupling drive a Micromaser charged by
incoherent ancillae to steady states which are not pure nor stable with respect to coupling
deviations. It is worth observing that the asymptotic value of the purity is in agreement
with the theoretical prediction of Eq. (3.1.15), namely P ≈ 1 − 2q = 0.5 for q = 0.25.
We can thus conclude that the incoherent charging protocol do not allow the coupling to
slightly move away from fine-tuned values.

Figure 3.2: Energy stored in the Micromaser as a function of the number of collision model steps
n (in units of the Micromaser frequency ωc) assuming q = 0.25, c = 0: comparison between
g = π√

12
(fine-tuned, solid), g = 0.992 π√

12
(non fine-tuned, dashed) and g = π√

39
(fine-tuned,

solid), g = 0.994 π√
39

(non fine-tuned, dashed).
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Figure 3.3: Purity of the Micromaser state as a function of the number of collision model steps
n assuming q = 0.25, c = 0: comparison between g = π√

12
(fine-tuned, solid), g = 0.992 π√

12
(non

fine-tuned, dashed) and g = π√
39

(fine-tuned, solid) g = 0.994 π√
39

(non fine-tuned, dashed).

3.2.2 Effects of increasing quantum coherences

The theoretical description of the Micromaser dynamics performed in Sec 3.1 suggests
that adding quantum coherences to ancillae density matrices could cause:

• smaller values of stored energy, due to cotangent factors in the evolved steady state
populations as expressed in Eq. (3.1.22);

• better performances in terms of purity (and ergotropy) of the evolved Micromaser
state, also for q ̸= 0.

As anticipated, these points have already been discussed in [33, 32], both analytically and
numerically, for the c = 1 case. Here, we will increase quantum coherences, exploring
intermediate regimes which have not yet been considered in literature. Eventually, we will
also show results for the fully-coherent protocol.
We will analyze the effects of the presence of quantum coherences comparing both the
stored energy and purity of the Micromaser for only two values of the coupling, namely
gft = π√

12
and gnft = 0.992 π√

12
, and studying the collision model behaviour varying c.

At first we analyze the stored energy, shown in Fig. 3.4. It can be easily observed that
relevant differences between the fine-tuned and non fine-tuned protocols still arise if c
remains below c = 0.5. In this regime, the non fine-tuned protocols are not suitable for
the realization of a quantum battery, since stored energy does not reach a stable value but
indefinitely increases. This is an undesired feature when studying the Micromaser, since it
drives the system to high energy states where anharmonicity effects may emerge. Effects
of the presence of anharmonicity on the battery performances are postponed to Chapter
4.
It is worth observing, however, that the accordance between fine-tuned and non fine-tuned
protocols increases by increasing quantum coherences. For what concerns purity, we still
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expect a similar drift in the non fine-tuned case below c = 0.5.

Figure 3.4: Energy stored in the Micromaser as a function of the number of collision model steps
n (in units of the Micromaser frequency ωc). For each value of c (see legend for more details) we
compare g = π√

12
(fine-tuned, solid) and g = 0.992 π√

12
(non fine-tuned, dashed) assuming q = 0.25.

Figure 3.5: Purity of the Micromaser state as a function of the number of collision model steps
n. For each value of c (see legend for more details) we compare g = π√

12
(fine-tuned, solid) and

g = 0.992 π√
12

(non fine-tuned, dashed) assuming q = 0.25.

Numerical results for purity are shown in Fig. 3.5. and confirm what we expected,
since they show: the progressive stabilization of results with respect to slight deviations
from fine-tuned values, but only for c > 0.5; an increasing steady state purity in corre-
spondence with the increasing of coherences. Since simulations of intermediate regimes
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suggest that moving towards the fully-coherent protocol could lead to stabilization with
respect to slight deviations from fine-tune couplings we now try to investigate this regime.
In Sec. 3.1 we stated that the coherent charging protocol of a Micromaser drives the sys-
tem towards an almost pure and excited steady state. The striking feature of a coherent
charging protocol, pointed out for the first time in [33], is that the same performances in
terms of energy and purity of the steady state can be reached also if the coupling is not
perfectly fine-tuned. In this case, in fact, it was shown that although the trapping con-
dition is slightly broken, the breaking is not relevant enough to modify the stored energy
and purity of the battery with respect to the one obtained in the fine-tuned case. For all
simulations of the coherent protocol we will assume c = 1 and q = 0.25 independently from
the pair considered. We start the comparison between the fine-tuned and non fine-tuned
case by showing the breaking of the trapping condition caused by non fine-tuned values of
the coupling. We observe that, in the fine tuned case (Fig. 3.6(a)) the evolved Micromaser
density matrix is populated only within a block of size l = 11. This is what we expected
since, as explained in Section 3.1.2, choosing gft =

π√
12

leads to the separation of the state

space of the Micromaser into two dynamically disconnected blocks, one formed by Micro-
maser states |k⟩ with k < 12 and another with the remaining states. Thus, initializing the
system in the first block (Eq. (3.2.1)) constrains the dynamics in the trap shown in Fig.
3.6(a). On the other hand, Fig. 3.6(b) shows, for g = 0.992 π√

12
, a slight breaking of the

perfectly trapped dynamics of the fine-tuned case. It is worth noting, however, that the
vast majority of the populations remain localized in the same block of the fine-tuned case,
while a very small portion of spectral density ”leaks” into a region at higher Micromaser
states.

(a) g = π√
12

(b) g = 0.992 π√
12

Figure 3.6: Density plot showing the absolute values of Micromaser density matrix elements after
10000 collisions of a JC collision model for q = 0.25, c = 1, ∆t = 1. Comparison between (a)
g = π√

12
(fine-tuned) and (b) g = 0.992 π√

12
(non fine-tuned).

The trapping dynamics has interesting consequences in terms of the energy stored in
the battery and its purity. We start discussing this point by analyzing the stored energy,
which is shown as a function of the number n of completed steps of the collision model in
Fig. 3.7 for different values of g.
Comparing results for fine-tuned values of the coupling (continuous curves) with non-fine
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Figure 3.7: Energy stored in the Micromaser as a function of the number of collision model steps
n (in units of the Micromaser frequency ωc) assuming q = 0.25, c = 1: comparison between
g = π√

12
(fine-tuned, solid), g = 0.992 π√

12
(non fine-tuned, dashed) and g = π√

39
(fine-tuned,

solid), g = 0.994 π√
39

(non fine-tuned, dashed).

tuned values results (dashed curves), the most striking feature to observe is that there is
no relevant difference in terms of stored energy, as pointed out in [33]. This is a direct
consequence of what observed in Fig. 3.6(b) about populations of the density matrix:
relevant populations remain localized in the original trap, whereas populations arising out
of this block reveal to be negligible.
Another interesting aspect emerges if one confronts two different fine-tuned values: the
smaller one drives the system towards an higher stored energy. This is not surprising
since, as seen both analytically (Section 3.1.2) and numerically (Fig. 3.6), the fine-tuned
coupling and the size of the trapping block are inversely proportional. Two other inter-
esting features emerge from these figures. The first is the fact that the coherent protocol
reveals to be faster at reaching stability. Indeed, the incoherent one, which we analyzed in
Sec. 3.2.1 took hundreds of collision in order to reach stable values of energy and purity,
whereas the coherent protocol analyzed here takes tens, one hundred at most. Secondly,
the steady state energy results to be smaller than the one obtained in the incoherent case.
This is in agreement with what seen at the end of Sec. 3.1.2, where we anticipated the fact
that cotangent factors appearing in the coherent case steady state populations suppress
high energy populations.
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Figure 3.8: Purity of the Micromaser state as a function of the number of collision model steps
assuming q = 0.25, c = 1: comparison between g = π√

12
(fine-tuned, solid), g = 0.992 π√

12
(non

fine-tuned, dashed) and g = π√
39

(fine-tuned, solid) g = 0.994 π√
39

(non fine-tuned, dashed).

The absence of relevant differences between fine-tuned and non fine-tuned protocols
in the coherent case can be noticed also by studying the purity of the Micromaser state,
which we show in Fig. 3.8 as a function of the number n of completed steps of the col-
lision model. As anticipated, the difference, in terms of purity, between fine-tuned and
non fine-tuned case is almost imperceptible, and in both cases the evolved state of the
Micromaser is approximately pure already after one hundred collisions, in accordance with
results shown in [33]. This implies that the amount of extractable work from the battery
is maximized in both cases.

To summarize, in this Section we showed numerical results for the stored energy and
purity of a Micromaser quantum battery in presence of increasing coherences of the an-
cillae, until reaching the fully-coherent regime, whose results are in agreement with those
shown in [33] and with the theoretical description carried out in Sec. 3.1.2.

3.2.3 Beyond the JC model

We have already mentioned that the possibility to extend the RWA, leading to JC Hamilto-
nian, towards the USC regime can be achieved by performing a proper external modulation
of qubit and cavity frequencies [71]. Nonetheless, it is important to analyze the stability
of the properties discussed above also in presence of counter rotating terms, in absence of
modulation. Thus, we studied again the Micromaser time evolution in the interaction pic-
ture, this time without performing RWA, with the system-ancilla interaction Hamiltonian
given by the following expression defined in Eq. (2.2.12)

ṼSn = g
(
a†σ+e

2iωct + a†σ− + aσ+ + a†σ+e
−2iωct

)
. (3.2.4)

If, in previous Sections, we were able to obtain an analytical expression for the quantum
map, this is not the case for the collision model employing ṼSn in Eq. (3.2.4), due to the
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presence of counter rotating terms. For this reason, simulations in the presence of counter
rotating terms must be performed by using a full numerical approach which carries out
every system-ancilla interaction in an approximated way. The solver we used in our im-
plementation is QuTiP mesolve. Further details on the implemented code can be found
in Appendix.
The most important thing to underline before proceeding further is that we have checked
that employing this solver with a Jaynes-Cummings Hamiltonian leads to the same results
obtained throughout the previous Sections of this Chapter, where we performed numerical
computation of the exact quantum map in Eq. (3.1.1) without relying on approximated
methods. In Fig. 3.9 we show the comparison between results obtained in the regimes
g
ωc

= 0.1 and g
ωc
> 0.1.

Figure 3.9: Energy stored in the Micromaser as a function of the number of collision model steps
(in units of the Micromaser frequency ωc) assuming q = 0.25, c = 1: comparison between JC
evolution and complete interaction evolution for different values of g and g

ωc
, with g chosen as a

non fine-tuned value (for the coherent protocol there is no relevant difference between fine-tuned
and non fine-tuned values).

We see that for g
ωc
> 0.1 all typical features of the dynamics in the JC regime are lost. On

the other hand, if g
ωc

= 0.1, we see that the presence of qualitative differences between JC
and complete dynamics crucially depends on the value of g: if g = 0.994 π

39 , the presence
of counter rotating terms cause a deviation from JC dynamics, which appears after 104

collisions, whereas if g = 0.992 π
12 (blue lines), there is no qualitative difference on the

dynamics, but only a quantitative one at the level of the stored energy. We also analyzed
values of g

ωc
below 0.1, showing that no relevant differences due to counter rotating terms

emerges below 0.05, confirming the results claimed in [33]. Thus, we conclude that the
RWA leads to reliable results only if g

ωc
< 0.1.

While below g
ωc

= 0.05 it coincides with the full interaction dynamics, the interval
0.05 ≤ g

ωc
≤ 0.1 is more insidious, since the RWA validity depends also on the value

of g.
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3.3 Conclusions

Comparing numerical results shown in the second Section of this Chapter with the the-
oretical treatment of Sec. 3.1, we can conclude that they are in agreement and can be
summarized in the following steps:

• coherent charging protocol stabilizes the charging of the battery with respect to
coupling deviations from fine-tuned values and allows the creation of almost pure
steady state independently from the populations q of the ancillae involved in the
charging;

• incoherent charging protocol exhibits instability with respect to the above cou-
pling deviations, although being more effective in the fine-tuned case, where it is
able to store a greater amount of energy.

Furthermore, numerical results exhibit stability with respect to the introduction of counter
rotating terms which we neglected in the simulations performed to obtain the above results,
provided that we limit ourselves to regimes where g

ωc
< 0.1.
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Chapter 4

The transmon as a quantum
battery: anharmonicity at work

In this Chapter we present original results concerning the collisional charging of a transmon
quantum battery, together with a discussion on the extractable energy once the charging
is complete. Using a transmon platform provides us with a multi-level structure which,
compared to harmonic batteries, allows us to study the effects of anharmonicity on the
battery charging.
After introducing the collisional model for the transmon in Sec. 4.1, we discuss in Sec. 4.2
the most subtle numerical issues for simulating this kind of model. Finally, in Sec. 4.3,
we show original results for the transmon stored energy, purity and ergotropy, comparing
the coherent and incoherent charging protocols.

4.1 Collision model set up

The collisional model we are going to study consists in a transmon battery S which se-
quentially interacts with a set of chargers modeled as two-level systems (ancillae). As
done in previous Chapters, we will focus on Markovian processes, assuming these charging
units to be non interacting and initially uncorrelated, together with the assumption that
each of them interacts only once with the system (see Sec. 2.2.1). We will denote with
{η̂n}, n ∈ N, the set of density matrices describing the ancillae and with ρ̂S(n) the battery
reduced density matrix after the interaction with n ancillae. As anticipated in Sec. 2.2.1,
the evolution of the system is determined step by step by a quantum map

ρ̂S(n) =Mn[ρ̂S(n− 1)] (with n ≥ 1) (4.1.1)

which allows to compute the density matrix at the end of the n–th step starting from the
one at the end of the previous one. Such dynamics can be determined once the Hamiltonian
of the n–th step and an initial condition have been specified. To this end, as done before
in Chapter 3, we will employ the same initial condition for each ancilla as used for the
Micromaser (see Eq. (2.2.27)), namely

η̂n = q |−⟩⟨−|n + (1− q) |+⟩⟨+|n + c
√
q(1− q)(|−⟩⟨+|n + |+⟩⟨−|n), (4.1.2)

with c and q respectively their degree of coherence and ground state population. In
order to guarantee the homogeneity of the collision model, also the Hamiltonian must be
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independent from the step considered. According to this we will assume it of the form

Ĥ(t) = ĤS + Ĥn + V̂S,n (4.1.3)

with

ĤS = 4EC(N̂ −Ng)
2 − EJCos(φ̂) (4.1.4)

Ĥn =
∆

2
σ̂z,n (4.1.5)

V̂S,n = gN̂(σ̂+,n + σ̂−,n) (4.1.6)

which respectively represent the transmon free Hamiltonian derived in Sec. 1.3.3, the
n–th ancilla free Hamiltonian and the corresponding interaction term. The latter can be
realized by capacitively coupling two superconducting circuits in the transmon regime [44],
with the one playing the role of the ancilla described as a TLS. This is accurate provided
that its anharmonicity is sufficiently high to allow to choose two of its eigenstates as these
of an effective TLS, essentially decoupled from the others.
No parameter depends from the step index n, as required before. For what concerns the
initial condition of the battery, we will assume it to be starting in its ground state.
Differently from what done in Sec. 2.2.2, the quantum map associated to the Hamiltonian
in Eq. (4.1.3) cannot be solved exactly. To proceed, we thus employ a numerical approach.
See Sec. 4.2 for details.

4.1.1 Free transmon Hamiltonian

In order to have a better insight on the physics of the transmon, we present here some
features obtained with the approximated approach introduced in Sec. 1.3.3 for the trans-
mon limit EJ ≫ EC of the Hamiltonian in Eq. (4.1.4). This reveals to be useful to
choose suitable parameters for the numerical simulations, which, however, will be carried
out using the non-approximated Hamiltonian of Eq. (4.1.4). To this end, we rewrite it in
terms of its eigenvalues and eigenvectors

ĤS =
+∞∑
m=0

Em |Em⟩⟨Em| (4.1.7)

where Em can be approximated, in the transmon limit EJ ≫ EC , by Eq. (1.3.66) as

Em ≈ (ωp − EC)m− 1

2
ECm(m− 1) (4.1.8)

with ωp =
√
8EJEC . This implies that the energy gap between two levels is smaller than

the preceding energy gap by a quantity EC (see Sec. 1.3.3). This leads to a relative
anharmonicity of the system given by Eq. (1.3.68) as

αr ≈
EC

ωp − EC
≈

√
EC

8EJ
. (4.1.9)

The ratio EJ/EC also determines the number N th
b of bound eigenstates within the cosine

well in Eq. (4.1.4), namely states with |Em| < EJ . Since this is a finite well it allows, in
fact, only a finite number of bound states, which are localized in the φ coordinate.

72



The transmon as a quantum battery: anharmonicity at work

(a) (b)

Figure 4.1: (a) Eigenvalues Ek of the transmon for EJ/EC = 30 as functions of φ in units of
EJ (black dotted lines). On top of each line, the absolute square of the corresponding Mathieu
eigenfunction is shown (see Sec. 1.3.3). The blue line represents the cosine well. The energy bands
from (b) are reported with gray. (b) Eigenvalues Ek of the transmon for EJ/EC = 30 as functions
of Ng in units of EJ (black solid lines) compared with the duffing oscillator levels (dashed red)
and the EJ = 0 levels (dashed blue). The charge dispersion of the highest levels leads to energy
bands denoted with grey. Image taken from [63].

Outside the well, on the contrary, states are no more localized in the φ coordinate as
shown in Fig. 4.1(a).
This figure confirms what anticipated in Sec. 1.3.3 for the flattening of the transmon
eigenvalues. However, it also shows that when the eigenvalues exceed the well they become
sensitive to Ng variations, leading to a band-like energy structure (see Fig. 4.1(b)).
The number of bound states N th

b can be estimated by requiring ENth
b −1 ≈ EJ leading to

[63]

N th
b ≈

√
EJ

EC
. (4.1.10)

The apex th (theoretical) is used to distinguish this value, estimated within the transmon
approximation, by the effective number of bound states Nb which emerges from simula-
tions, which will be discussed in Sec. 4.2.1 .
As we will see, the effective number of bound states Nb is usually smaller than this pre-
diction. Eq. (4.1.10), however, allows us to adopt a guideline in choosing the values of
EJ and EC in our simulations: in order to have a significant number of trapped and
charge-insensitive states we must choose EJ/EC ≫ 1 but, at the same time, exceeding
in this direction would imply too small anharmonicities (see Eq. (4.1.9)), whose effects
are the object of this thesis. Thus, always remaining in the transmon working regime
20 ≲ EJ/EC ≪ 5× 104 (see Sec. 1.3.3), these two aspects need to be balanced.

4.1.2 Transmon-ancilla interaction

For numerical convenience, the simulations of the transmon battery will be carried out in
the interaction picture. To proceed further, it is useful to rewrite Eq. (4.1.6) in terms of
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the free Hamiltonian eigenvectors as

V̂S,n = g

 +∞∑
m,l=0

Nlm |El⟩⟨Em|

(σ̂+,n + σ̂−,n) (4.1.11)

with
Nlm = ⟨El|N̂ |Em⟩ . (4.1.12)

This simplifies the interaction picture expression ṼS,n for the coupling Hamiltonian since∣∣∣Ẽm

〉
= eiĤSt |Em⟩ = eiEmt |Em⟩ (4.1.13)

so that

ṼS,n = g

 +∞∑
m,l=0

Nlme
i(El−Em)t |El⟩⟨Em|

(
σ̂+,ne

i∆t + σ̂−,ne
−i∆t

)
=

= g

 +∞∑
m,l:l≥m

Nlme
i(δEl,m+∆)t |El⟩⟨Em| σ̂+,n +

+∞∑
m,l:l≥m

Nlme
i(δEl,m−∆)t |El⟩⟨Em| σ̂−,n

+

+g

 +∞∑
m,l:l<m

Nlme
i(−δEm,l+∆)t |El⟩⟨Em| σ̂+,n +

+∞∑
m,l:l<m

Nlme
i(−δEm,l−∆)t |El⟩⟨Em| σ̂−,n


(4.1.14)

where we have defined
δEl,m = El − Em. (4.1.15)

Provided that Nlm ̸= 0, the corresponding projector in Eq. (4.1.14) causes a jump from the
levelm to the level l of the transmon. In analogy with the approach used for the oscillating
terms in the oscillator-ancilla interaction Hamiltonian considered in the Micromaser case
(see Sec. 2.2.2 and Chapter 3), we can perform the rotating wave approximation neglecting
fastly oscillating terms in the weak coupling regime. There is, however, a fundamental
difference between this case and the oscillator-TLS one: here, anharmonicity causes the
presence of many different transition frequencies δEl,m whereas, in the latter case, there
is only one frequency associated to the system. This fact forces us to carefully reconsider
the weak coupling regime to determine terms that can be neglected. Numerical issues on
this point are discussed in Sec. 4.2.2.

4.2 Numerical details

Once the theoretical model has been introduced, we now focus on the numerical aspects.
While performing calculations, we dealt with two main problems:

• The stability of results with respect to the type and size of the basis used to represent
quantum operators;

• The presence of the counter rotating terms discussed in Sec. 4.1.2, which cause the
simulations to be highly time-consuming.

In the following we will discuss the solutions adopted to overcome these issues. Further
details on the code layout are shown in the Appendix.
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4.2.1 Stabilization of the transmon eigenproblem

To numerically evaluate the eigenvalues and eigenvectors of the transmon battery, one
needs to choose a basis over which the system is represented in order to perform calcula-
tions. To this end, we explored two possibilities:

• The eigenbasis of a harmonic oscillator. This choice is consistent with the idea that
the transmon Hamiltonian can be approximated by a Duffing oscillator

Ĥtr ≈ 4ECN̂
2 + EJ φ̂

2

2 − EJ φ̂
4

24 (see Sec. 1.3.3);

• The eigenbasis of the operator N̂ appearing in the transmon Hamiltonian.

The eigenbasis of N̂ revealed to be the most suitable. Another important aspect is that, as
for the harmonic oscillator, the transmon is a infinite dimensional system and its Hilbert
space needs to be truncated to a finite numerical size D. The optimal numerical basis and
D must be chosen in order to obtain:

• Bound states which are stable with respect to variations of D;

• Optimization of execution times of the single transmon-ancilla interaction.

In order to determine the best D we required that the number of stable eigenvalues Nst(D)
with respect to variations of D satisfied the following condition

Nb < Nst(D). (4.2.1)

In order to estimate Nst(D), we started from a given numerical size D and, after fixing EC

and EJ , we diagonalized the transmon Hamiltonian of Eq. (4.1.4). Then, we increased D
by five units, diagonalized again the transmon Hamiltonian and deemed stable eigenvalues
as those with a relative energy variation smaller than 10% . We repeated this procedure
until satisfying Eq. (4.2.1).

αr/10
−3 D N th

b Nb Nst(D)

5.9 91 60 54 67

6.9 81 50 46 47

8.8 61 40 36 45

10.2 51 34 31 35

11.8 41 30 27 32

Table 4.1: Study of the stability of the exact diagonalization for each value of the anharmonicity αr

considered in this thesis. N th
b is the estimated number of bound states, whereas Nb is the effective

number of bound states emerging from simulations. Nst(D) is the number of stable eigenvalues
varying the numerical size D.

Table 4.1 shows results for the stability analysis for all the considered values of an-
harmonicity. As anticipated, we observe that Nb, the number of transmon eigenstates
with |Em| < EJ , is always smaller compared with the approximated estimate N th

b of Eq.
(4.1.10).
Comparing the fourth and fifth column we can observe that all the numerical sizes chosen
do guarantee the stability as required by Eq. (4.2.1).
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4.2.2 Neglecting counter rotating terms in transmon-ancilla interaction

The expression for the interaction Hamiltonian of Eq. (4.1.14) can be consistently simpli-
fied by neglecting counter rotating (CR) terms. This can be done in different ways. The
first possibility consists in adapting ∆ depending on the considered step: initializing the
battery in its ground state, the first ancilla is initialized at ∆ = E1−E0, that is, resonant
with the energy transition between the excited state and the ground state; then, all oscil-
lating terms are neglected; finally, fine tuning of the system-ancilla interaction duration
allows to drive the system to the first excited state. Repeating this procedure n times
allows to create a pure state, namely the level |En⟩. However, this approach, inspired by
what done in [75], requires a great technological effort, since it calls for extremely finely
tunable ancillae.
For these reasons, we focused on a second approach where all the ancillae are initialized
with the same gap ∆ = E1 − E0 and a frequency cutoff is introduced in the interaction
term. We started from simulations employing the complete ṼS,n in Eq. (4.1.14) and grad-
ually neglected CR terms with frequencies δEl,m > kωp, with k < Nb. In analogy with
the RWA performed to obtain the JC Hamiltonian, we expect the counter rotating terms
to be irrelevant in the weak coupling regime, which here we identify as g ≪ ωp in order
to guarantee that g ≪ |δEl,m| = |El − Em| ∀ l,m. Here, {El} is the numerically exact
spectrum of the Hamiltonian in Eq. (4.1.4).
Starting from k = 30 and gradually reducing it, we observed that all counter rotat-
ing terms with δEl,m > 2ωp can be safely neglected for all coupling values examined
(0.01 ≲ g/ωp ≲ 0.03) without affecting the figures of merit of interest, namely the stored
energy and purity as functions of the number of collisional steps. The presence of high
frequency terms, in fact, do not cause variations of the above quantities up to numerical
accuracy.

4.3 Results

In this section we show results for the collisional charging of a transmon. The regimes of
parameters we tested in this work include the values of αr listed in Tab. 4.1 and weak
couplings 0.01 ≲ g

ωp
≲ 0.03.

The reason for not choosing smaller coupling values is that they usually require a great
number of collisions in order to reach the asymptotic value of the stored energy and long
execution times for the numerical calculations, so that we decided to focus on couplings
which could guarantee a faster charging. The study of smaller coupling regimes, however,
constitutes a possible future development of this work. On the contrary, as I will show
in the following, increasing the coupling value drives the system towards stationary states
with a small stored energy, in such a way that it progressively goes below a threshold
value, chosen as E ≈ 2∆, which make these cases of no interest for our purposes.
Motivated by the results of the previous Chapter, we will mainly focus on the case of
coherent ancillae. In particular, we will discuss both the stored energy and purity of the
coherent charging protocol (Sec. 4.3.1), the energy extraction processes (Sec. 4.3.2) and
finally focus on the effects of removing quantum coherences (Sec. 4.3.3). The results
obtained are summarized in Sec. 4.3.4.
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4.3.1 Charging the transmon

Here we will show results for:

• the stored energy E(n) as a function of the collision model steps reported either
in units of the battery maximum capacity Emax, namely the maximum amount of
energy which can be stored in the bound states of the system, or in units of EC ,
which has been taken equal for all anharmonicities considered;

• the purity of the battery P (n) as a function of the collision model steps, which will
be relevant when dicussing the extractability of the stored energy (see Sec. 1.4.3).

The need for the study of E(n)/Emax derives from the fact that different values of EJ and
EC , that means, different values of anharmonicities, correspond to different numbers of
states trapped in the potential well of the transmon (see Table 4.1) and a different maximal
energy Emax which can be stored in the battery. Fig. 4.2(a) compares E(n)/Emax for
different anharmonicities with a fixed coupling g/ωp = 0.01.

(a) (b)

Figure 4.2: Stored energy in units of Emax (panel (a)) and EC (panel(b)) as a function of the
collision model steps n assuming c = 1, q = 0.25. Comparison between different anharmonicities
αr = 5.9× 10−3 (red), 6.9× 10−3 (cyan), 8.8× 10−3 (green) for g

ωp
= 0.01.

We observe that all αr values considered allow to store a non negligible energy. The
most striking features are: the increasing of E(n)/Emax when the anharmonicity is pro-
gressively increased; the fact that its stabilization is much slower, namely requires more
collisions, for high anharmonicities than for the small ones. The first point does not allow
us to conclude that the stored energy increases with the anharmonicity, given the depen-
dence of Emax from αr shown in Fig. 4.3.
If, on the other hand, one is interested in studying the amount of stored energy not caring
about the maximum capacity, then results for different values of the anharmonicity can
be shown in units of the common energy scale EC .
This is shown in Fig. 4.2(b). We see that, in this case with g/ωp = 0.01, the stored energy
increases for increasing αr.
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Figure 4.3: Behaviour of Emax (in units of the capacitive energy scale EC) as a function of αr.

Figure 4.4: Purity of the transmon as a function of the number of collision model steps n assuming
q = 0.25, c = 1. Comparison between different anharmonicities αr = 5.9× 10−3 (red), 6.9× 10−3

(cyan), 8.8× 10−3 (green) for g
ωp

= 0.01.

Another interesting feature of the coherent collisional charging is the progressive degra-
dation of the purity by increasing αr, shown in Fig. 4.4. The two smallest anharmonicities
considered guarantee a high purity of the evolved steady state, such that 0.9 ≲ P ≲ 1,
whereas the highest value presents a smaller P .

One can also analyze what happens when the coupling changes. For this reason, we
show the same quantities for the case of a stronger coupling g/ωp = 0.018 starting from
the stored energy, which is shown in Fig. 4.5(a) in units of Emax.
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(a) (b)

Figure 4.5: Stored energy in units of Emax (panel (a)) and EC (panel(b)) as a function of the
collision model steps n assuming c = 1, q = 0.25. Comparison between different αr = 8.8 × 10−3

(green), 10.2× 10−3 (blue), 11.8× 10−3 (purple) for g
ωp

= 0.018.

We notice some similarities with the previous case, such as the increasing E(n)/Emax

and charging time when the anharmonicity is increased. Inspecting E(n)/EC , shown in
Fig. 4.5(b), however, exhibits a relevant difference with respect to the case of smaller
coupling that was shown in Fig. 4.2(b): the stored energy does not increase for increasing
anharmonicities. This confirms that in order to study the stored energy as a function of αr

it is not sufficient to rely on E(n)/Emax, due to the dependence of Emax from αr, shown
in Fig. 4.3.
The purity, shown in Fig. 4.6, has a similar behaviour with respect to the one in Fig. 4.4.

Figure 4.6: Purity of the transmon as a function of the number of collision model steps n assuming
q = 0.25, c = 1. Comparison between different anharmonicities αr = 8.8×10−3 (green), 10.2×10−3

(blue), 11.8× 10−3 (purple) for g
ωp

= 0.018.
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The values of αr discussed in Figs. 4.5 and 4.6 are different from those discussed in
Figs. 4.2 and 4.4. The reason for this is that, for fixed αr, the stored energy decreases
with the increasing of the coupling, so that for αr = 5.9 × 10−3 and αr = 6.9 × 10−3 the
energy stabilizes below E = 2∆ when g/ωp is increased up to 0.018. Therefore, these two
values loose relevance for the realization of a quantum battery.
To support this last observation we show E(n) in Fig. 4.7 for two different anharmonicities
and for different values of the coupling.

(a) (b)

Figure 4.7: Stored energy in units of Emax (panel (a)) and EC (panel(b)) as a function of the
collision model steps n assuming c = 1, q = 0.25. Comparison between different anharmonicities
αr, namely αr = 8.8×10−3 (green) and αr = 11.8×10−3 (purple) for g

ωp
= 0.018 (solid), g

ωp
= 0.020

(dashed) and g
ωp

= 0.022 (dotted).

This shows that, for both the anharmonicities, increasing the coupling causes a de-
creasing of both E(n)/Emax and E(n)/EC and of the number of collisions needed to reach
stability.
Another interesting feature is the presence of peaks of the stored energy before the stabi-
lization: these would represent the best performances obtained with this device, so that
it could be relevant and non-trivial to further investigate the charging transient regime,
in order to hit the maximum value of the stored energy. This, however, is not an easy
task, since one should be able to stop the collisional charging process at the exact number
of collisions corresponding to this maximum. Usually, in fact, the user does not know
the exact position of this maximum a priori, and may need to be sure of the stabilization
before stopping the charging. For these reasons, we focus our attention to properties after
the stabilization of the stored energies. A more detailed study of the transient regime,
however, provides a natural future development of this work.
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To summarize, two different behaviours of E(n)/Emax emerge in the asymptotic limit
of large n:

• increasing when the anharmonicity is increased at fixed g/ωp;

• decreasing when the coupling is increased at fixed αr.

From this point of view, however, the increasing when the anharmonicity is changed from
αr = 8.8× 10−3 (purple) to αr = 11.8× 10−3 (green) is more relevant than the decreasing
caused by the coupling variations considered, as clearly emerges from Fig. 4.8.

Figure 4.8: Asymptotic stored energy E(n̄) in units of EC as a function of g
ωp

assuming c = 1, q =

0.25. Comparison between different anharmonicities αr = 8.8×10−3 (green) and αr = 11.8×10−3

(purple). Here, n̄ = 10000.

The fact that the stored energy decreases while increasing the coupling occurred also in
the case of the Micromaser (see Sec. 3.2). This was ascribable to the fact that increasing
the fine-tuned coupling value caused a smaller size of the corresponding trapping state
(see Sec. 3.1 and 3.2). The main difference between the Micromaser and the transmon
case regards the fact that, while in the former case there is a correspondence between
fine-tuned values of the coupling and the size of the trapping states, this structure of
fine-tuned values is lost in the latter.
However, it is possible to observe that the evolved stationary states of the transmon take a
form which reminds the Micromaser trapping states. Examples for this are shown in Fig.
4.9, where the evolved density matrix ρ̂S(n̄) of the transmon is shown when n̄ = 10000
for a fixed value of the anharmonicity, namely αr = 8.8 × 10−3, and for different values
of the coupling, in order to show that increasing it from g/ωp = 0.022 (panel (a)) to
g/ωp = 0.028 (panel (b)) causes the shrinking of the populated region towards lowest
energy states. These two values of the coupling have been chosen to magnify the effect.
For what concerns the more gradual variations of the coupling considered in Fig. 4.7 we
observed this shrinking to be more gradual as well.
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(a) (b)

Figure 4.9: Density plots |ρ̂S(n̄)|2 for αr = 11.8× 10−3 assuming c = 1 and q = 0.25. Comparison
between: (a) g

ωp
= 0.022 and (b) g

ωp
= 0.028. Here n̄ = 10000.

On the other hand, another factor that could cause the shrinking of such trap-like
states is reducing the anharmonicity with fixed coupling. This is shown in Fig. 4.10 for
the same coupling of Fig. 4.9(a) and smaller anharmonicity αr = 8.8× 10−3.

Figure 4.10: Density plot |ρ̂S(n̄)|2 for αr = 8.8 × 10−3 assuming c = 1, q = 0.25 and g
ωp

= 0.022.

Here n̄ = 10000.

Comparing Fig. 4.9(a) with Fig. 4.10 highlights that the size of the trap-like state
increases with the anharmonicity.
This structure of the evolved density matrix explains the reason behind energy variations
discussed above: at high couplings or low anharmonicities the shrinking of the trap-like
states causes low stored energies.

For the sake of completeness we analyze the behaviour of the purity of the battery
when the coupling is changed. Fig. 4.11 shows the purity for the same couplings and
anharmonicities used in Fig. 4.7, confirming that appreciable variations can be seen both
by changing the coupling and the anharmonicity: increasing the coupling causes the in-
creasing of the purity of the evolved state whereas increasing the anharmonicity causes an
opposite and more evident effect.
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(a) (b)

Figure 4.11: (a) Purity as a function of the collision model steps n assuming c = 1, q = 0.25.
Comparison between different values of αr, namely αr = 8.8× 10−3 (green) and αr = 11.8× 10−3

(purple) for g
ωp

= 0.018 (solid), g
ωp

= 0.020 (dashed) and g
ωp

= 0.022 (dotted). (b) Asymptotic

purity P (n̄) for parameters of panel (a) as a function of g
ωp

, for n̄ = 10000.

The points discussed until now cannot be extended to arbitrarily high anharmonicities.
This is linked to the decreasing of the number of bound states within the well when αr

is increased and to the corresponding increasing of the size of trap-like state, which we
pointed out when comparing Fig. 4.9(a) and Fig. 4.10. These two effects cause the
saturation of the space of bound states used in simulations, so that relevant populations
of the density matrix arise also in states out of the well. Since our purpose is to store
energy in the battery by populating its bound excited eigenstates, we focused our analysis
on the anharmonicities values shown in Table 4.1 without increasing it further.

4.3.2 Extractable energy

In this section we show results for the ergotropy, which we defined in Sec. 1.4.3 as the
maximum amount of unitarily extractable energy. Our purpose here is to study it as a
function of the number of completed steps n of the collisional charging, namely to study

E(n) = TrS

{
ρ̂S(n)ĤS

}
− min

Û∈SU(d)
TrS

{
Û ρ̂S(n)Û

†ĤS

}
(4.3.1)

with n ≥ 1, where Û is the unitary operator associated to a discharging Hamiltonian (see
Sec. 1.4.3). According to the general recipe discussed in Sec. 1.4.3, it is necessary to
diagonalize ρ̃S(n) in such a way that

ρ̃S(n) =

D∑
j=1

pj(n) |pj(n)⟩⟨pj(n)| (4.3.2)
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at any given step and evaluate the ergotropy as expressed in Eq. (1.4.26)

E(n) =
D∑

j,k=1

pj(n)Ek

(
| ⟨pj(n)|Ek⟩ |2 − δj,k

)
. (4.3.3)

Since the purpose of this section is to compare the ergotropy with the stored energy, we
will limit to report these quantities in units of Emax.
Fig. 4.12(a) shows this comparison for the same anharmonicities shown in Fig. 4.2 for
g
ωp

= 0.01, whereas Fig.4.12(b) shows the ratio

ξ(n) =
E(n)
E(n)

(4.3.4)

for the same parameters values.

(a) (b)

Figure 4.12: (a) Comparison between the stored energy E(n) (solid) and ergotropy E(n) (dotted)
in units of Emax for αr = 5.9× 10−3 (red), αr = 6.9× 10−3 (cyan), αr = 8.8× 10−3 (green). (b)
Plots for the ratio ξ(n) for the same anharmonicities. Both are shown as functions of the number
of collision model steps n and assuming q = 0.25, c = 1 and g

ωp
= 0.01.

Interestingly, almost all the stored energy can be extracted through unitary operations
on the system. There is, however, an intriguing relationship linking the ergotropy to the
purity. To show this, let us compare the results of Fig. 4.12(b) with the purity shown in
Fig. 4.4. As can be seen, for αr = 5.9 × 10−3 and αr = 6.9 × 10−3 the solid and dotted
lines are almost superposed, whereas this is not the case of αr = 8.8 × 10−3, where the
difference between E(n) and E(n), though not dramatic, is visible. This is linked to the
fact, anticipated at the end of Sec. 1.4.3, that ergotropy and purity are related quanti-
ties: the value of αr, among the three considered here, which presents the most evident
difference between E(n) and E(n) is the same which shows the smallest purity in Fig. 4.4.
This confirms that the more the state of the battery is pure, the higher is the extractable
energy.
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These points imply that increasing the anharmonicity causes slightly worse performances
in terms of energy extraction, which are however not very relevant given the fact that the
fraction of extractable energy is always greater than 95%, as emerges from Fig. 4.12.

A similar behaviour can be found increasing the coupling, as can be seen in Figs.
4.13(a) and (b), which respectively show, for g/ωp = 0.018, the stored energy together
with the ergotropy and ξ(n) .

(a) (b)

Figure 4.13: (a) Comparison between the stored energy E(n) (solid) and ergotropy E(n) (dotted)
in units of Emax for αr = 8.8× 10−3 (green), αr = 10.2× 10−3 (blue), αr = 11.8× 10−3 (purple).
(b) Plots for the ratio ξ(n) for the same anharmonicities. Both are shown as functions of the
number of collision model steps n and assuming q = 0.25, c = 1 and g

ωp
= 0.018.

Since the stored energy decreases if the coupling increases, as seen in Fig. 4.7, it is
interesting to analyze also whether the ergotropy itself decreases with the increasing of
the coupling. To this end Fig. 4.14 shows ξ(n) varying g/ωp for two different values of
the anharmonicity αr = 8.8× 10−3 (green) and αr = 11.8× 10−3 (purple).
This shows that, even though the stored energy varies appreciably with the coupling (see
Fig. 4.7), the fraction of extractable energy ξ(n) remains almost unaffected, and this is
true for both the αr values examined. Similar results can be observed for all coupling
values up to g

ωp
= 0.03 but with a smaller amount of stored energy.

Furthermore, ξ(n) exhibits its maximum value, where ξ ≈ 1, in correspondence with the
position of the peaks shown in Fig. 4.7 which, as already discussed, could be interesting
when studying the transient charging regime.
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Figure 4.14: Plots of ξ(n) shown as a function of the number of collision model steps n. Comparison
between g

ωp
= 0.018 (solid), 0.020 (dashed) 0.022 (dotted) for αr = 8.8 × 10−3 (green) and αr =

11.8× 10−3 (purple) assuming q = 0.25, c = 1

We can conclude, as expected, that the decreasing of the stored energy causes the
ergotropy to lower in turn, with their ratio remaining almost unchanged. This figure also
confirms the relationship between purity and ergotropy already discussed: ξ(n) is indeed
slight smaller for αr = 11.8× 10−3 (purple) than for αr = 8.8× 10−3 (green), consistently
with what happens for the purity. Ergotropy variations, however, are not as evident as
the corresponding purity variations.

4.3.3 Quantum advantage

We compare here the coherent and incoherent charging protocol, obtained by initializing
each ancilla in the state in Eq. (4.1.2) respectively with c = 1 and c = 0. Here, the stored
energy is only discussed in units of Emax. Fig. 4.15 shows the comparison in terms of
stored energy (Fig. 4.15(a)) and purity (Fig. 4.15(b)) for g/ωp = 0.01 and the correspond-
ing anharmonicities already discussed in Figs. 4.2, 4.4 and 4.12.
Two striking features emerge from these plots: the amount of stored energy in the inco-
herent protocol is almost irrelevant compared with that of the coherent protocol, and this
is valid for each of the anharmonicities considered; moreover the purity in the incoherent
case stabilizes far below that of the coherent one, reaching P ≈ 0.5 independently from
αr. Fig. 4.16 shows similar results for g/ωp = 0.018.
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(a) (b)

Figure 4.15: (a) Stored energy E(n) in units of Emax: comparison between the coherent charging
protocol (c = 1, solid) and the incoherent one (c = 0, dashed) for αr = 5.9 × 10−3 (red), αr =
6.9 × 10−3 (cyan), αr = 8.8 × 10−3 (green). (b) Analogous plots for the purity P (n). Both are
shown as functions of the number of collision model steps n and assuming q = 0.25 and g

ωp
= 0.01.

(a) (b)

Figure 4.16: (a) Stored energy E(n) in units of Emax: comparison between the coherent charging
protocol (c = 1, solid) and the incoherent one (c = 0, dashed) for αr = 8.8 × 10−3 (green),
αr = 10.2 × 10−3 (blue), αr = 11.8 × 10−3 (purple). (b) Analogous plots for the purity P (n).
Both are shown as functions of the number of collision model steps n and assuming q = 0.25 and
g
ωp

= 0.018.
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This marks a very significant difference with respect to the Micromaser case, where
a significant amount of energy could be stored in the battery also in the incoherent case
which, however, revealed to be instable with respect to coupling deviations.
These results not only point out the supremacy, in terms of stored energy, of the coherent
charging protocol but also suggest that the very small amount of stored energy of the in-
coherent protocol cannot be entirely extracted, given the purity behaviour shown in Figs.
4.15(b) and 4.16(b). To confirm this, in Fig. 4.17 we show ξ(n) defined in Eq. (4.3.4) for
the incoherent protocol.

(a) (b)

Figure 4.17: ξ(n) as a function of the number of collision model steps n assuming c = 0, q = 0.25
for: (a) g/ωp = 0.01, comparing αr = 5.9× 10−3 (red), 6.9× 10−3 (cyan), 8.8× 10−3 (green). (b)
g/ωp = 0.018, comparing αr = 8.8× 10−3 (green), 10.2× 10−3 (blue), 11.8× 10−3 (purple).

From these figures it is clear that only a small fraction ξ(n) ≲ 5% of the stored energy
can be extracted in the incoherent case. Since the amount of stored energy is also very
small, as shown in Figs. 4.15 and 4.16, we can conclude that the incoherent protocol is
outperformed by its coherent counter part. This can be made clearer by showing plots for

χ(n) =
E(i)(n)

E(c)(n)
(4.3.5)

where E(i)(n) and E(c)(n) respectively denote the incoherent and coherent ergotropy at a
given step n.
This is shown in Fig. 4.18, confirming what anticipated: the coherent charging protocol
outmatches the incoherent one in terms of energy which can be extracted from the battery.
Indeed, for all considered cases, we have that after the stabilization χ(n) ≲ 0.5%.
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(a) (b)

Figure 4.18: Plots for χ(n) as a function of the number of collision model steps n assuming q = 0.25
for: (a) g/ωp = 0.01, comparing αr = 5.9× 10−3 (red), 6.9× 10−3 (cyan), 8.8× 10−3 (green). (b)
g/ωp = 0.018, comparing αr = 8.8× 10−3 (green), 10.2× 10−3 (blue), 11.8× 10−3 (purple).

The discussed supremacy of the coherent protocol is preserved when the coupling
changes. This is evident in Fig. 4.19, where χ is shown as a function of n for multiple
couplings and two anharmonicities αr = 11.8×10−3 and αr = 8.8×10−3, From this figure
it is clear that changing the coupling is not effective in order to improve the incoherent
protocol performances. This confirms that the supremacy of the coherent protocol in
terms of stored energy (Figs. 4.15 and 4.16) and the small ergotropy of the incoherent one
(Fig. 4.17) are preserved for all coupling values considered.

(a) (b)

Figure 4.19: Plots for χ(n) as a function of the number of collision model steps n, assuming
q = 0.25. Comparison between g/ωp = 0.018 (solid), 0.020 (dashed), 0.022 (dotted) for: (a)
αr = 11.8× 10−3, (b) αr = 8.8× 10−3.
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4.3.4 Conclusions

The analysis carried out in this section suggests that a superconducting circuit in the
transmon configuration is a promising platform to realize a collisional quantum battery
characterized by excellent performances for both the storage and the extractability of
energy. More in detail, we have observed, for the coherent charging protocol, that:

• a significant amount of energy can be stored in the system for anharmonicities such
that 5.9 × 10−3 ≲ αr ≲ 1.18 × 10−2, provided that a suitable coupling regime is
chosen for each anharmonicity;

• increasing the anharmonicity at fixed coupling causes the increasing of the fraction
of stored energy compared to the maximum capacity of the battery Emax and also of
the number of collisions needed for the stabilization, accompanied by the decreasing
of the purity of the battery quantum state;

• the decreasing of Emax with respect to αr, however, does not allow to state that
the absolute value of the stored energy increases with the anharmonicity (see Fig.
4.5(b));

• despite the decrasing of the purity discussed above, the extractability of the stored
energy remains very close to saturation, as pointed out by the high values of the
ergotropy-energy ratio, always greater than 95%;

• the amount of stored energy and the purity may also depend on the specific value
of the coupling, which is related to the size of the trap-like states appearing in the
eveolved density matrix of the transmon. This affects the stored energy and purity
stabilization value.

The above points, therefore, clarify that a significant amount of energy can be stored in
the transmon also in the presence of anharmonicity, provided that a suitable coupling
regime is chosen.

These relevant properties, however, are almost completely lost in the incoherent pro-
tocol. In this case a very small amount of energy can be stored in the system and, out of
this, only a even smaller fraction can be extracted. This is confirmed by the small values
of the ratio between the extractable energy of the incoherent and coherent case, which is
always smaller than 0.5% after the stabilization.
These results seems to confirm that quantum coherences play a crucial role in enhancing
and stabilizing the collisional charging of a anharmonic multi-level battery, though in a
different way if compared with their role in the Micromaser case. As shown in Chapter
3, in fact, their role was to stabilize the stored energy with respect to coupling changes,
but a significant amount of energy could also be stored in the Micromaser anyway. Here,
their contribution is far more crucial, since they are fundamental in order to guarantee a
relevant energy storage and extraction.
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Conclusions and perspectives

This thesis fits in the context of quantum batteries, namely of quantum mechanical sys-
tems aimed at storing energy leveraging on their quantum features to outperform their
classical counterparts. In particular, this work focused on a class of quantum batteries,
known as collisional quantum batteries.

As shown in Chapter 2, collisional models constitute a possible approach to the study
of open quantum systems, namely of systems interacting with an environment modeled as
a collection of simple quantum systems, which can exchange energy with the system [10,
34]. The aim of collisional quantum batteries is to prove that, by properly engineering a
sequence of interactions between the battery and a collection of simple quantum systems
acting as chargers, it is possible to store energy in the battery in a profitable way.
To this end, various models of collisional quantum batteries have been proposed, such as
a cavity charged by repeated interactions with a stream of two-level systems [31, 32, 33],
proving them to be excellent testbeds for the role played by quantum features such as
entanglement and quantum coherences in the enhancement of energy transfers between
quantum systems [15, 31].

The aim of this thesis is to analyze the effects of the anharmonicity in multi-level
collisional quantum batteries, characterizing both the charging and energy extraction pro-
cesses and comparing the coherent and incoherent charging protocols, all going beyond
existing literature.

To this end, we started studying the harmonic case focusing on one of the most signifi-
cant model proposed, the aforementioned Micromaser [32, 33]. We reproduced the results
of these works on the advantages of employing coherent chargers, consisting of two level
systems charging up a cavity, compared with the incoherent case. The collisional dynamics
of a cavity with a collection of incoherent two-level systems allows to store a significant
amount of energy only for a set of fine-tuned values of the cavity-ancilla coupling. This
energy, however, reveals to be instable with respect to slight deviations of the coupling
from such values, so that the incoherent charging protocol of a Micromaser is not suitable
for the realization of a stable battery. This problem reveals to be solvable by introducing
quantum coherences in the chargers, which prove to act as stabilizers with respect to slight
deviations from fine-tuned values. In reproducing such results, we also considered inter-
mediate regimes of quantum coherences which were not explored in literature, showing
the gradual stabilization (with respect to coupling deviations from fine tuned values) of
the energy, obtained by gradually increasing quantum coherences.
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After doing so, we moved to anharmonic systems playing the role of the battery, fo-
cusing on a superconducting circuit in the transmon regime, which allowed us to explore
significantly anharmonic systems (see Sec. 4.1.1). To characterize this battery we stud-
ied its stored energy and its purity, together with the ergotropy, which is the maximal
amount of energy extractable from the system through unitary operations. The numer-
ical approach we performed allows us to show that a significant amount of energy can
be stored in the system in the weak coupling regime in the coherent charging protocol
case. Furthermore, almost the totality of this energy reveals to be extractable, with the
ratio between the ergotropy and the stored energy never going below 95% after the stored
energy stabilization.
Such noteworthy properties of charging and extraction processes, however, are destroyed
by removing quantum coherences. Results for the incoherent charging protocol show, in
fact, that a small amount of energy can be stored in the system and that an even smaller
quantity of stored energy can be extracted from it.
This certifies the supremacy of the coherent charging protocol, in an even more evident
way than in the Micromaser case: in the transmon case, quantum coherences are no more
acting only as stabilizers, but constitute the fundamental ingredient for both the storage
and extraction of energy.

Possible future developments inspired by this work could be focused on a more detailed
study of the transient regime before the stabilization of the stored energy. This could be
done, for example, by analyzing the possibility of hitting the peak values of the stored
energy shown in Sec. 4.3.1 or, alternately, studying figures of merit which have been not
characterized in this work such as the charging power.

However, if, as done in this work, one focuses on the asymptotic value of the stored
energy for a large number of collisions, many aspects could be investigated further, both on
the enhancement of the collisional charging and on the study of dissipative environmental
effects, which we have not considered in this work. For what concerns the first point, it
could be realized, for example, through a more detailed study of the energy balance of
the global system. This may include the optimization of the energy transfers from the
ancillae to the battery through the optimization of the model parameters and a wider
scanning of the parameter space. A preliminary analysis in this direction, in fact, showed
that a significant amount of energy remains in the ancillae after their interaction with the
battery, so that it could be worth trying to extract it. Also, another noteworthy figure of
merit is the energetic cost of switching-on and off the system ancilla interaction as much
times as required for the stabilization of the battery.
For what concerns dissipative environmental effects, one could add a dissipative term
to the quantum map ruling the single collision, as done in [32] for the study of a lossy
Micromaser quantum battery or, otherwise, set up a second collision model, different from
the charging one, for the dissipative interaction between the system and the environment.
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Appendix: collision models
simulations

We provide here a rough scheme of the most relevant parts of the code structure for the
simulations of a collision model, which have been realized using tools provided by QuTiP
(quantum Toolbox in Python) for matrix calculations and Master Equations solving [35].
We begin by the initialization of the simulation: the parameters and the Hamiltonian of
both the battery (transmon, in this case) and the ancillae must be specified.

1 import numpy as np

2 from qutip import *

3 import time

4 import math

5

6 # INPUT AND RELEVANT PARAMETERS CALCULATIONS:

7 i = complex (0,1)

8 INPUTS = np.loadtxt(’transmon.txt’,usecols = 1)

9 E_J = INPUTS [0] #Josephson energy

10 E_C = INPUTS [1] #Capacitive energy

11 tr_size = int(INPUTS [2]) #transmon numerical size

12 delta_t = INPUTS [3] #Single interaction duration

13 q = INPUTS [4] #Ancillae ground state occupation

14 c = INPUTS [5] #Ancillae degree of coherence

15 collisions = int(INPUTS [6]) #Total number of collisions

16 tr_initial_state = int(INPUTS [7]) #Initial state: e.g. gnd: 0

17 up_lim_jumps = int(INPUTS [8]) #Upper limit for the counter

rotating frequencies

18 Lambda = E_C/E_J #Anharmonicity

19 w_p = np.sqrt (8* E_C*E_J) #Zeroth order frequency

20 g = 2*w_p /100 #Coupling strength

21

22 # TRANSMON HAMILTONIAN AND EXACT DIAGONALIZATION:

23 #Charge term of the transmon hamiltonian

24 N_square = np.diag (4*E_C*(np.arange(-tr_size , tr_size + 1)**

2))

25 N = Qobj(np.diag(np.arange(-tr_size , tr_size + 1)))

26 #Phase term in the N basis

27 M = 0.5* E_J*(np.diag(-np.ones (2* tr_size), 1) + np.diag(-np.

ones (2* tr_size), -1))
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28 H_tr = Qobj(N_square+M)

29 #Diagonalization of the transmon Hamiltonian

30 tr_eigenvalues , tr_eigenstates = H_tr.eigenstates ()

31

32 # ANCILLA FREE HAMILTONIAN:

33 up = basis (2,0)

34 down = basis (2,1)

35 D = tr_eigenvalues[tr_initial_state +1]- tr_eigenvalues[

tr_initial_state] #Energy gap of the ancilla

36 H_qb = 0.5*D*sigmaz ()

37 #\sigma_ - operator for the ancilla

38 sm = down*up.dag()

39

40 # FREE HAMILTONIANS:

41 # in order to perform calculations , all matrices involved

must have the suitable sizes

42 H_0_tr = tensor(H_tr ,qeye (2))

43 H_0_qb = tensor(qeye(tr_size),H_qb)

This can be extended to the Micromaser case by substituting the code for the trans-
mon Hamiltonian with the oscillator Hamiltonian in terms of the annihilation operator as
follows

1 a = destroy(osc_size)

2 H_ho = w_osc*a.dag()*a

and by inserting the oscillator and ancilla frequencies w osc and D and the size osc size
among the input parameters.
Then, a single collision of the model can be carried out by employing the mesolve method
to solve the quantum map as defined in Sec. 2.2.
The only inputs needed by the quantum map function are the battery and ancilla density
matrices at the beginning of the collision. This can be implemented as follows.

52 def quantum_map(dm_init ,dm_ancilla):

53 dm0 = tensor(dm_init , dm_ancilla) # global initial state

54 duration_single_int = delta_t # duration of the

collision

55 steps_single_int = 100 # output sampling times

56 t_single_int = np.linspace(0, duration_single_int ,

steps_single_int)

57 H_args = g

58 results = mesolve(V,dm0 ,t_single_int ,[],[], H_args)

59 dm_tot_ev = results.states[len(t_single_int) -1] #final

state

60 dm_tot_herm = (dm_tot_ev+dm_tot_ev.dag())*0.5

61 return dm_tot_herm

Focusing on the mesolve method, four inputs are required in the case of the evolution
of a closed system (in this case, the system composed by the battery and the ancilla).
From left to right: the interaction potential between the two systems V ; an initial density
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matrix dm0 given by the tensor product of the battery and ancilla initial conditions; an
array with times for the evaluation of the output; the arguments H args needed for the
implementation of V (which depends from the system considered). The output consists in
an array of density matrices evaluated at each value of the time in the input time array.
Now, this structure needs to be iterated for the total number of collisions needed. To this
end one can define the following function which, for each collision, carries out the single
interaction through quantum map.

62 def CM(dm_initial , dm_ancilla , collisions , g):

63 times = np.zeros(collisions)

64 energies = np.zeros(collisions)

65 purities = np.zeros(collisions)

66 ergotropies = np.zeros(collisions)

67 energies [0] = E_initial

68 times [0] = 0

69 purities [0] = p_initial

70 ergotropies [0] = E_initial

71 for k in range(1, collisions , 1):

72

73 #collision and evaluation of energy and purity

74 dm_tot_herm = quantum_map(dm_initial ,dm_ancilla)

75 dm_ev = dm_tot_herm.ptrace (0)

#system evolved reduced density matrix

76 dm_herm = (dm_ev+dm_ev.dag())*0.5

#hermitianization of the reduced density matrix

77 Hrho = (H_tr*dm_herm +(H_tr*dm_herm).dag())*0.5

78 energy = Hrho.tr()

#energy of the system

79 purity = (dm_herm*dm_herm).tr()

#purity of the system

80

81 #evaluation of the ergotropy (Sec. 1.4.2)

82 dm_herm_eigenvalues , dm_herm_eigenstates = dm_herm.

eigenstates ()

83 sorted_indices = np.argsort(dm_herm_eigenvalues)[:: -1]

84 dm_eigenvalues_sorted = dm_herm_eigenvalues[

sorted_indices]

85 dm_eigenstates_sorted = dm_herm_eigenstates[

sorted_indices]

86 en_fin_min = 0

87 for i in range(0,len(tr_eigenvalues) ,1):

88 en_fin_min = en_fin_min + dm_eigenvalues_sorted[i

]* tr_eigenvalues[i]

89 ergotropy = energy - en_fin_min

90

91 times[k] = k

92 energy[k] = energy

93 purity[k] = purity
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94 ergotropies[k] = ergotropy

95 #updating the system density matrix for the next step

96 dm_initial = dm_herm

97 #This is the suitable point to extract some feedback

results while the simulation progresses

98

99 return times ,energies ,purities ,ergotropies ,dm_herm
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[41] A. Auffèves. “Quantum Technologies Need a Quantum Energy Initiative”. In: PRX
Quantum 3, 020101 (2022).

[42] J. Stevens et al. “Energetics of a Single Qubit Gate”. In: Physical Review Letters
129, 110601 (2022).

[43] M. Le Bellac. A Short Introduction to Quantum Information and Quantum Compu-
tation. Cambridge University Press, 2006.

[44] P. Krantz et al. “A quantum engineer’s guide to superconducting qubits”. In: Applied
Physics Reviews 6 (2019).

[45] M. H. Devoret, A. Wallraff, and J. M. Martinis. Superconducting Qubits: A Short
Review. 2004. arXiv: cond-mat/0411174 [cond-mat.mes-hall].

[46] W.P. Schleich. Quantum Optics in Phase Space. Wiley, 2011.

[47] G. Wendin and V. S. Shumeiko. Experiments with single photons emitted by single
atoms. 2019. doi: 10.13140/RG.2.2.33220.17288.

[48] J. H. Davies. The Physics of Low-dimensional Semiconductors: An Introduction.
Cambridge University Press, 1997.

[49] Y. V. Nazarov and Y. M. Blanter. Quantum Transport: Introduction to Nanoscience.
Cambridge University Press, 2009.

[50] C. Livermore et al. “The Coulomb Blockade in Coupled Quantum Dots”. In: Science
274,1332-1335 (1996).

[51] A. Blais et al. “Circuit quantum electrodynamics”. In: Reviews of Modern Physics
93, 025005 (2021).

[52] N. K. Langford. Circuit QED - Lecture Notes. 2013. arXiv: 1310.1897 [quant-

ph].

[53] A. F. Kockum and F. Nori. Fundamentals and Frontiers of the Josephson Effect.
Springer International Publishing, 2019.

[54] F. Yoshihara et al. “Superconducting qubit–oscillator circuit beyond the ultrastrong-
coupling regime”. In: Nature Physics 13,44–47 (2016).

[55] G. Grosso and G.P. Parravicini. Solid State Physics. Elsevier Science, 2000.

[56] G. Wendin and V. S. Shumeiko. Superconducting Quantum Circuits, Qubits and
Computing. 2005. arXiv: cond-mat/0508729 [cond-mat.supr-con].

[57] B. D. Josephson. “The discovery of tunnelling supercurrents”. In: Review of Modern
Physics 46, 251-254 (1974).

[58] B.D. Josephson. “Possible new effects in superconductive tunnelling”. In: Physics
Letters 1, 251-253 (1962).

99



BIBLIOGRAPHY

[59] A. Barone and G. Paternò. Physics and Applications of the Josephson Effect. Wiley,
1997.

[60] S. Olivares. Lecture notes on Quantum Computing. 2015. url: http://solivarescq.
ariel.ctu.unimi.it.

[61] R. P. Feynman, R. B. Leighton, and M. Sands. The Feynman lectures on physics:
The Definitive Edition (Vol. 3). Pearson, 2009.

[62] M. Kjaergaard et al. “Superconducting Qubits: Current State of Play”. In: Annual
Review of Condensed Matter Physics 11, 369–395 (2020).
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