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Abstract

The goal of the thesis is to approach safe reinforcement learning by

learning (unsafely) a policy as a neural network and then verifying

it. Beginning with motivations and objectives the transition from

tabular methods to neural networks, specifically Convolutional Neural

Networks and Actor-Critic architecture, is highlighted, with a focus

on the architectural elegance and the introduction of Soft Actor-Critic

(SAC).

The thesis then delves into practical implementations through tools

and frameworks like Open AI Gym, PyTorch, TensorFlow, and the

Never2 Tool. The Never2 Tool’s architectural design, installation

process, and procedures for building models, defining properties, and

handling models through a command-line interface are outlined. The

tool’s functionalities extend to training networks, verification strate-

gies, and output visualization.

Experimental results in the Classic control environment are detailed,

evaluating different methods and neural network approaches. The

network verification process is emphasized, ensuring the robustness of

the tool. The thesis concludes by contributing a detailed perspective

on RL, combining theoretical foundations with practical applications,

and paving the way for future advancements in RL research and real-

world implementations.
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Chapter 1

Introduction

Machine Learning (ML), a pivotal branch of artificial intelligence, is dedicated

to developing models and algorithms capable of learning from data, continuously

refining their performance.At its core, ML’s intrinsic ability to learn from expe-

rience allows it to iteratively enhance understanding as it encounters more data.

This introduction explores fundamental ML concepts, including supervised and

unsupervised learning, delving into the intricate workflow and key terminologies

like features and labels. The aim is to shed light on ML’s transformative potential

across industries while acknowledging real-world challenges.

Reinforcement Learning (RL) is a distinct facet of ML, introducing a different

paradigm where an agent learns through interaction with an environment. Unlike

supervised and unsupervised learning, RL involves an agent making sequential

decisions to maximize cumulative rewards. This approach is particularly powerful

in dynamic and complex scenarios.In finance, RL can optimize algorithmic trading

strategies by learning from market feedback. Healthcare applications involve

personalized treatment plans, where RL tailors interventions based on patient

responses. Marketing strategies benefit from RL’s ability to adapt to changing

consumer behaviors, optimizing advertisement campaigns for maximum impact.
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1.1 Motivations

Figure 1.1: Machine Learning is subset of Artificial Intelligence

The transformative impact of ML and RL is evident in diverse sectors. RL

optimizes trading strategies. Healthcare embraces ML for diagnostics and drug

discovery, with RL personalizing treatment plans. Marketing leverages ML for

personalized recommendations, and RL adapts strategies based on evolving con-

sumer preferences. While ML showcases its power to revolutionize industries,

RL introduces a dynamic element by enabling agents to learn optimal behaviors

through trial and error. This journey into ML and RL illuminates their combined

potential, emphasizing responsible deployment to navigate challenges and fully

harness the benefits of these transformative technologies.

1.1 Motivations

Reinforcement Learning (RL) based on neural networks has demonstrated re-

markable success in various applications, from playing games to controlling com-

plex systems. However, a significant challenge arises when these RL models pro-

duce policies that may exhibit unsafe behaviors in real-world scenarios. Ensuring

the safety and reliability of RL-based systems becomes paramount, prompting

the need for verification methods to identify and rectify potential risks.

Neural networks, the backbone of many RL models, are highly flexible and

can learn complex relationships from data. Yet, this flexibility also poses a risk of

learning unsafe policies that might lead to unintended consequences. In safety-

critical domains like autonomous vehicles, robotics, or healthcare, the conse-
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1.1 Motivations

quences of unsafe policies could be severe. Verification methods offer a systematic

approach to addressing these safety concerns. These methods involve assessing

the RL model’s behavior against predefined safety specifications or constraints.

By formally analyzing the model’s decision-making processes, verification tech-

niques aim to identify situations where the learned policy may deviate from safe

behavior.

One approach to verification involves leveraging formal methods such as model

checking, where the RL model’s behavior is systematically verified against a set

of safety properties. This process helps identify potential vulnerabilities or ar-

eas where the model may fail to adhere to safety specifications. Additionally,

incorporating human feedback and domain knowledge into the training process

can act as a form of verification. By combining RL with techniques like imita-

tion learning, where the model learns from human demonstrations, the training

process can be guided to prioritize safe and desirable behaviors.

In the pursuit of safe RL, researchers are actively exploring the integration

of verification methods into the training pipeline. This includes developing tech-

niques to certify safety properties during the learning process, and providing

assurances that the resulting policies align with predefined safety criteria. Ulti-

mately, addressing safety concerns in RL-based neural networks requires a multi-

disciplinary approach that combines advances in machine learning, formal meth-

ods, and domain-specific knowledge. By integrating verification methods into

the development cycle, researchers aim to enhance the reliability and safety of

RL models, enhancing their responsible deployment in critical real-world appli-

cations.
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1.2 Research Objectives

1.2 Research Objectives

The intersection of reinforcement learning (RL), PyTorch, and specialized con-

trol tools such as Never2 in a new era of transformative development in artificial

intelligence (AI). It provides a comprehensive framework for understanding de-

velopment and challenges. and ensuring the security of neural networks. This ap-

proach leverages the dynamic computer graphics capabilities of PyTorch, formal

verification techniques built into Never2, and interactive interfaces for property

specifications.

Reinforcement learning, a central part of this paradigm, has gained signifi-

cant traction due to its ability to train agents with the environment through trial

and error, resulting in decision-making skills spanning applications from games

to robotics. RL algorithms such as deep Q networks (DQN) and political gra-

dient methods have shown significant achievements in forming the backbone of

intelligent systems that can adapt and learn from their experiences.

Neural networks, the basis of many modern AI applications, introduce a layer

of complexity and nonlinearity, especially in the context of deep learning, which

involves several hidden layers. These networks, inspired by the human brain, have

proven to be very effective in tasks such as image recognition, natural language

processing and learning. However, the transparency of deep neural networks

presents challenges to understand their decision-making processes, which requires

the development of tools and methods for verification and transparency.

PyTorch, an open source deep learning framework, emerged in this landscape.

Known for its dynamic computation graph and user-friendly interface, PyTorch

facilitates the implementation of complex neural network architectures. Its flex-

ibility has made it the best choice for researchers and professionals involved in

developing cutting-edge AI applications. PyTorch’s seamless integration with re-

inforcement learning algorithms has simplified the process of building and testing
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1.3 Contribution of the Thesis

RL models, enabling rapid prototyping and iterative development.

Never2, a dedicated neural network tool, plays a critical role in addressing

growing concerns about the reliability and security of neural networks. In this

context, verification requires that neural network models conform to certain prop-

erties, constraints, or security guidelines. Never2 uses formal verification methods

to mathematically prove the correctness of these models and provides a robust

platform for verifying user-defined properties. Its interactive interface allows users

to visualize the verification process, explore counterexamples, and gain insight

into the decision limits of the neural network. Importantly, Never2 is designed

to seamlessly integrate with PyTorch, simplifying the verification process and

making it more widely accessible to researchers and practitioners.

The integration of these components has far-reaching effects in various fields.

In safety-critical applications such as autonomous vehicles and healthcare, the

ability to formally verify neural network models becomes paramount to ensure the

reliability and ethical operation of AI systems. The convergence of reinforcement

learning, PyTorch, and neural network Tools, exemplified by Never2, represents

an important step forward in the field of artificial intelligence. This integrated

approach not only meets the challenges of developing and understanding complex

neural networks but also lays the foundation for building reliable and transparent

AI systems.

1.3 Contribution of the Thesis

Create RL-based UAV control policies: We intend to construct Neural Networks

(NNs) that can autonomously execute control tasks required for UAVs using RL

algorithms such as Proximal Policy Optimization (PPO) and Deep Determinis-

tic Policy Gradients (DDPG). These responsibilities include navigation, obstacle
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avoidance, and trajectory optimization. The emphasis is on using RL’s learning

capabilities to adapt to diverse and dynamic settings, giving UAVs the agility

required for real-world applications.

Evaluating Robustness in Simulation and Real-World Scenarios: The trained

NNs will be empirically tested in both simulated and real-world settings. Sim-

ulations provide a controlled environment for preliminary evaluations, allowing

us to examine the performance of learned control strategies under a variety of

scenarios. Following that, real UAVs will be used to test the robustness of these

strategies in complicated and dynamic circumstances. The purpose of this empir-

ical evaluation is to identify potential obstacles, strengths, and flaws of learned

control strategies when applied to actual UAVs.

Integrate Formal Verification Approaches: To evaluate and verify the trained

NNs, we will use cutting-edge NN verification approaches, including methodolo-

gies pioneered in our lab. Formal verification is a methodical way to find potential

flaws, vulnerabilities, or violations of control policy safety restrictions. The goal

is to improve the reliability of UAV control systems by proactively addressing

these concerns. Formal verification will provide an additional degree of confi-

dence by confirming that control rules correspond to stated specifications and

safety standards.

This work has important implications for the development and deployment

of UAVs in real-world situations. The goal is to contribute to the creation of a

reliable and robust UAV control system by integrating RL methods, empirical

tests, and formal verification. This work mainly focuses on the growing need for

special and safe technologies, especially in applications where mistakes have high

consequences.

6



Chapter 2

Reinforcement Learning

Reinforcement Learning (RL) has emerged as a vibrant field in machine learning,

propelled by recent strides in deep learning (DL), which paved the way for the

evolution of deep reinforcement learning. Positioned as the third paradigm in

machine learning, alongside supervised and unsupervised learning, RL introduces

a novel approach to decision-making problems. The core concept revolves around

the agent, the central figure in RL, engaging in a continuous cycle of trial and

error. Within this dynamic, the agent discerns valuable decisions from penalizing

ones by leveraging information derived from a reward signal, mirroring the trial-

and-error process inherent in human and animal behavior.

To comprehend the current state-of-the-art in RL, this chapter embarks on

a journey through the theoretical Knowledge of traditional RL, establishing the

notation used. It then seamlessly transitions towards the realm of deep RL,

providing an introductory exploration into deep learning fundamentals. The dis-

cussion delves into essential algorithms, with a keen focus on those integral to the

thesis project. The ultimate section aims to paint a vivid picture of the contem-

porary landscape of deep RL as applied to autonomous systems and real-world

robotic tasks, setting the stage for the subsequent exploration.
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2.1 Fundamentals of Reinforcement Learning

Before delving into the thesis results, it is paramount to grasp the intricacies

of this paradigm. The fusion of RL with deep learning not only enhances function

approximation but also reshapes the landscape of decision-making processes. This

synthesis captures the essence of learning through sequential experimentation,

enriching the agent’s ability to navigate complex environments. As we unravel

the chapters that follow, the convergence of RL and deep learning unfolds as a

potent force, driving innovation in autonomous systems and real-world robotic

applications.

2.1 Fundamentals of Reinforcement Learning

Reinforcement Learning (RL) is a paradigm in machine learning where an agent

learns to make decisions by interacting with an environment. The agent is the

central entity in this framework, responsible for decision-making. This could man-

ifest as a physical robot, a software algorithm, or any system with the capability

to take actions within a given environment. Understanding the components of

RL and the relationship between the agent, environment, actions, and rewards is

essential to grasp the dynamics of this learning approach. The agent’s [1]primary

objective is to maximize its cumulative reward over time by learning a strategy

or policy that maps environmental states to actions. States represent the cur-

rent situation or configuration of the environment, actions are the decisions made

by the agent, and rewards provide feedback on the desirability of those actions.

The environment is the external system with which the agent interacts, and it

responds to the actions taken by the agent by transitioning to new states and

providing corresponding rewards.

8



2.1 Fundamentals of Reinforcement Learning

Figure 2.1: Overview of the different components in the Reinforcement Learning

2.1.1 Core Components of Reinforcement Learning:

Agent : The agent encapsulates the decision-making entity within the RL sys-

tem. It can take various forms, from a physical robot navigating a real-world en-

vironment to a software algorithm playing a game. The agent’s decision-making

process is guided by a policy, a mapping from states to actions. The goal is to

learn the optimal policy to improve and maximize the cumulative reward.

Environment: The environment is the external context in which the agent

operates. It could be a physical space, a simulated world, or any system that the

agent interacts with. The environment has a state, which represents the current

situation. The agent’s actions influence the environment, causing it to transition

to new states

Actions:Actions are the decisions or moves made by the agent within the

environment. The set of possible actions is defined by the task at hand and the

capabilities of the agent. The agent’s goal is to learn a policy that selects actions

leading to favorable outcomes, i.e., actions that result in high cumulative rewards.

Rewards:Rewards are numerical values that provide feedback to the agent

about the desirability of its actions. The agent’s main goal is to improve and

maximize the cumulative reward over time. Positive rewards encourage the agent

to repeat actions that lead to favorable outcomes, while negative rewards or

punishments discourage undesirable actions.

9



2.1 Fundamentals of Reinforcement Learning

Figure 2.2: Interaction loop between Agent and Environment.

2.1.2 The Markov Decision Problem

A Markov Decision Problem (MDP) is a formal mathematical framework for

modeling decision-making problems involving uncertainty over time. It is charac-

terized by a set of states, actions, transition probabilities, rewards, and a discount

factor. In addition to these components, MDPs involve the concepts of policies,

models, and value functions, which play crucial roles in finding optimal strategies

for decision-making.

1. Policies: A policy in the context of an MDP is a strategy or a rule that

defines the agent’s behavior. It maps states to actions, specifying the action the

agent should take in each possible state. Policies can be deterministic, prescribing

a single action for each state, or stochastic, providing a probability distribution

over actions. The goal is to find an optimal policy that maximizes the expected

cumulative reward over time.

2. Models: The transition model, often denoted by P P, describes the dy-

namics of the MDP. It defines the probabilities of transitioning from one state to

another based on the agent’s actions. In a Markovian setting, the future state

depends only on the current state and action, not on the history of events leading

to that state. The transition model is a fundamental component for predicting

the evolution of the system and is crucial for planning under uncertainty.

3. Value Functions: Value functions are central to solving MDPs and evalu-

ating the desirability of different states and actions. There are two main types

10



2.1 Fundamentals of Reinforcement Learning

of value functions:The state value function represents the expected cumulative

reward starting from a given state and following a particular policy. It quantifies

the desirability of being in a particular state under a specific policy. The action

value function, also known as the Q-function, represents the expected cumulative

reward starting from a given state, taking a specific action, and then following a

particular policy. It evaluates the desirability of taking a particular action in a

specific state under a given policy.

2.1.3 Bellman Equations

The recursive relationships between state values play a crucial role in under-

standing the dynamics of Markov Decision Processes (MDPs). These equations

capture the dependence of a state’s value on the values of its successor states.

The Bellman equations, depicted in (2.1) further emphasize this by indicating

that the next state is sampled from the environment.

V (s) = maxa(R(s, a) + V (s′)) (2.1)

State(s): current state where the agent is in the environment. Next State(s’):

After taking action(a) at state(s) the agent reaches s’. Value(V): Numeric rep-

resentation of a state which helps the agent to find its path.V(s) here means the

value of the state s. Reward(R): treat which the agent gets after performing an

action(a). R(s): reward for being in the state s.R(s,a): reward for being in the

state and performing an action a .R(s,a,s’): reward for being in a state s, taking

an action a and ending up in s’ textbfExample Good reward can be +1, Bad

reward can be -1, No reward can be 0.

The essence of value functions lies in their ability to establish a partial ordering

among policies. Specifically, for policies and ’, if V is greater than or equal to V’

11



2.2 Convolutional Neural Networks

for every state in the state space S, then is considered better than or equal to ’,

denoted as ’. This ordering sets the stage for the sanity theorem, which posits

that for any MDP, there exists an optimal policy, denoted as , surpassing or equal

to all other policies, i.e., for any policy . Moreover, all optimal policies share

the achievement of the optimal state-value function and the optimal action-value

function.

Despite the significance of the Bellman optimality equation in characterizing

optimal policies, its solution is non-linear, lacking a closed-form expression. .

These iterative approaches provide computational tools to converge towards the

optimal policy and value functions, offering a practical means to navigate the

challenges posed by the non-linearity of the Bellman optimality equation

Policy Iteration is a key DP strategy aimed at discovering the optimal policy

by directly manipulating the starting policy. However, before embarking on this

process, a thorough evaluation of the current policy is essential. This evaluation

follows an iterative procedure, as outlined in algorithm A.1, where the parameter

defines the accuracy of the evaluation. A lower value indicates a more precise

evaluation.

2.2 Convolutional Neural Networks

Reinforcement learning strategies designed for systems with well-defined states

and actions often rely on lookup tables. In this paradigm, the state-value function

V and action-value function Q have entries for each state and state-action pair,

respectively. However, this approach faces significant challenges when scaling

up to large Markov Decision Processes (MDPs). Issues related to memory con-

straints, slow individual state learning, and the impracticality of linear lookups

in continuous action and state spaces become apparent.

12



2.2 Convolutional Neural Networks

Figure 2.3: Scientific Diagram of Neural Network

.

In the contemporary landscape of research, neural networks have emerged

as the most intuitive option for function approximation. Their widespread use

is driven by their ability to reduce training time for high-dimensional systems

and their efficient memory utilization. This integration serves as a crucial bridge

between traditional reinforcement learning methods and recent advancements in

deep learning theory. The enthusiasm surrounding deep learning over the last

decade has established neural networks as fundamental tools for developing deep

reinforcement learning (Deep RL), yielding remarkable results.

DeepMind’s seminal papers mark a pivotal step toward Deep RL and general

artificial intelligence. These contributions demonstrate the broad applicability

of AI across various environments. Given the focus of this work on model-free

algorithms, the ensuing section explores the state-of-the-art theories underpinning

the Deep RL framework. Additionally, it provides an overview of deep learning,

culminating in the presentation of two deep actor-critic algorithms employed in

the thesis experiments: Deep Deterministic Policy Gradient (DDPG) and Soft

Actor-Critic (SAC). This comprehensive exploration encapsulates the evolution

from tabular methods to the pivotal role of neural networks in contemporary

reinforcement learning landscapes.

Convolutional Neural Networks

Sensory reception, a fundamental aspect of how humans and animals react to

13



2.2 Convolutional Neural Networks

changes, involves the use of sensors that process input data and respond to specific

stimuli. This concept serves as inspiration for the architecture of Convolutional

Neural Networks (CNNs), designed to efficiently handle significant input data,

particularly finding applications in computer vision.

A notable representation of CNN [2]architecture is LeNet-5, showcased in

Figure 2.4 on the following page. LeNet-5 is adept at recognizing digits in images,

making it a quintessential example of a standard convolutional neural network.

This architecture typically comprises a sequence of convolutional layers followed

by a subsampling pooling layer. In the convolutional stack’s culmination, the

values map into the final hidden layers of the network, ultimately computing the

low-dimensional output. These final layers often consist of fully-connected layers.

The key strength of CNNs lies in their ability to hierarchically learn features

from input data. It is conceivable that the initial layers focus on learning low-

level features, such as edges and textures, from the input data. As one progresses

through the network, the subsequent layers then combine these low-level features

to form more abstract and high-level representations. This hierarchical feature

learning makes CNNs particularly effective in tasks like image recognition.

The convolutional layers in a CNN perform the vital task of convolving fil-

ters or kernels over the input data. This operation helps detect local patterns,

allowing the network to recognize features in various spatial locations. The sub-

sampling pooling layer contributes to spatial invariance, enhancing the network’s

robustness to translations and distortions in the input data.

In summary, Convolutional Neural Networks draw inspiration from sensory

reception systems, leveraging a hierarchical architecture to efficiently process sub-

stantial input data. The example of LeNet-5 demonstrates the standard structure

of a CNN, emphasizing the role of convolutional and pooling layers in learning

hierarchical features. This understanding of CNNs underscores their significance,

14



2.3 Soft Actor Critic(SAC)

Figure 2.4: Schematic Diagram of Convolutional Neural Networks

especially in the realm of computer vision applications, where they excel in tasks

such as image recognition

.

2.3 Soft Actor Critic(SAC)

Soft Actor-Critic (SAC) innovatively combines the off-policy actor-critic setup

with a stochastic policy, creating a link between stochastic policy optimization

and DDPG-style approaches. This proves especially valuable in scenarios with

continuous action spaces[6], showcasing SAC’s model-free capabilities. Unlike

DDPG, SAC addresses the challenges associated with stabilizing and tuning hy-

perparameters, providing a robust alternative.

DDPG’s Achilles’ heel lies in the interplay between the deterministic actor

network[3] and the Q-function, resulting in instability and sensitivity to tuning.

The learned Q-function tends to overestimate Q-values, leading to policy break-

down by exploiting errors in the Q-function. SAC mitigates this by adopting

Clipped Double-Q Learning, a technique also employed by Twin Delayed DDPG

(TD3). SAC employs two Q-functions, using the smaller Q-value to formulate
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2.3 Soft Actor Critic(SAC)

Figure 2.5: Schematic Diagram of Soft Actor-Critic extensive Reward Function

targets in the Bellman error loss functions, enhancing stability.

Entropy regularization is another standout feature of SAC. The policy is

trained to optimize a trade-off between expected return and entropy, a mea-

sure of policy randomness. This characteristic directly addresses the exploration-

exploitation trade-off, where increased entropy facilitates more exploration, ac-

celerating learning while preventing premature convergence to local optima.

In SAC, five neural networks come into play: the local stochastic policy net-

work with parameter , two local Q-Networks with parameters 1 and 2, and two

target Q-Networks with parameters 1 and 2. The behavior mirrors that of DDPG

target networks, updating through the algorithm’s specified equations. This en-

semble of networks contributes to SAC’s effectiveness in handling complex rein-

forcement learning tasks.

Entropy-regularized reinforcement learning introduces the concept of entropy,

which quantifies the average rate at which a stochastic data source produces

information. In simpler terms, entropy measures the randomness of a random

variable. The formula for calculating the entropy (H) of a random variable x

with probability mass or density function P is given by eq. (2.2):

H(P ) = ExP [logP (x)] (2.2)
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2.3 Soft Actor Critic(SAC)

This equation captures the essence of entropy as a measure of information

content, emphasizing that low-probability events convey more information than

high-probability ones.In the context of reinforcement learning (RL), entropy reg-

ularization modifies the standard RL objective by incorporating entropy[7]. The

agent receives a bonus reward at each time step proportional to the entropy of the

policy at that timestep.Entropy regularization aligns with the overarching goal

of reinforcement learning to discover optimal policies in uncertain environments.

In the Soft Actor-Critic (SAC) algorithm, Q-functions are learned through

Mean Squared Bellman Error (MSBE) minimization. The update involves a

target value network, utilizing the Bellman Equations. These parameters are

determined as an exponentially moving average of the soft Q-function parameters.

The optimization involves stochastic gradients.

Learning a policy through KL-Divergence minimization is a common strategy

in reinforcement learning. This approach aims to update the policy parame-

ters in a way that improves performance while ensuring that the changes are

not too drastic. By introducing a KL-Divergence constraint between the new

and old policies, algorithms like Trust Region Policy Optimization (TRPO) and

Proximal Policy Optimization (PPO) strike a balance between policy updates for

performance improvement and stability during learning.

Soft Actor-Critic (SAC) is an alternative approach in reinforcement learning.

SAC differs by maximizing not only the expected reward but also the entropy of

the policy. This encourages the policy to be more exploratory, providing a bet-

ter trade-off between exploration and exploitation. Unlike traditional methods,

SAC doesn’t explicitly use KL-Divergence constraints, offering a more flexible and

efficient learning process. SAC has shown success in continuous control tasks, ad-

dressing challenges like sample efficiency and robustness in various environments.

17



Chapter 3

Tools and Frameworks

This chapter describes into the pivotal tools and frameworks employed in the

development of the thesis project, aimed at advancing the field of reinforcement

learning. The journey begins with the Open AI Gym toolkit[8] a fundamen-

tal component for developing and comparing reinforcement learning algorithms.

Open AI Gym provides a standardized environment for testing and benchmark-

ing various algorithms, allowing for a systematic evaluation of performance across

different scenarios. Its role in the thesis project is critical, as it sets the stage

for experimentation and analysis, providing a consistent platform to measure the

efficacy of the developed algorithms.

Moving forward, the exploration delves into the PyTorch framework, a pow-

erful deep-learning library that has gained immense popularity in both research

and industry. PyTorch’s dynamic computational graph and intuitive interface

make it an ideal choice for implementing complex neural network architectures, a

necessity when dealing with reinforcement learning tasks. The chapter highlights

the significance of PyTorch in enabling the seamless integration of neural net-

works into the project and improvizes the development of sophisticated models

that can learn and adapt in dynamic environments.
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The narrative then extends to TensorFlow, another prominent deep-learning

framework that has played a pivotal role in shaping the landscape of artificial

intelligence. TensorFlow’s strengths lie in its scalability and flexibility, making

it suitable for a wide range of applications. In the context of the thesis project,

TensorFlow complements PyTorch by providing an alternative framework for ex-

perimentation and comparison. The chapter sheds light on the unique features

of TensorFlow that contribute to the project’s overarching goals.

As the exploration reaches its zenith, attention is directed towards PyTorch

Networks, a specialized extension of PyTorch designed for reinforcement learning

tasks. This framework goes beyond the standard capabilities of PyTorch, offer-

ing tailored functionalities that cater specifically to the nuances of reinforcement

learning algorithms. The chapter underscores the importance of PyTorch Net-

works in fine-tuning models and optimizing their performance within the context

of reinforcement learning challenges.

To gauge the effectiveness and efficiency of the developed algorithms, the

Never2 Tool emerges as a key element in the concluding sections of the chapter.

This measurement tool provides quantitative insights into the performance met-

rics of the reinforcement learning models, allowing for a meticulous evaluation of

their learning capabilities and adaptability. The chapter culminates with a com-

prehensive discussion on the insights derived from the Never2 Tool, providing a

holistic view of the impact and contributions made by the implemented tools and

frameworks in advancing the field of reinforcement learning.

In essence, this chapter serves as a roadmap through the intricacies of the

selected tools and frameworks, highlighting their individual significance and col-

lective synergy in shaping the trajectory of the thesis project. Each component

contributes to the overarching goal of advancing reinforcement learning, laying

the groundwork for innovative solutions, and pushing the boundaries of what is
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achievable in this dynamic and evolving field.

3.1 Environments

Open AI Gym, introduced in 2016 during its public beta, has evolved into one

of the most influential toolkits and frameworks in the realm of reinforcement

learning. This discussion explores the motivations behind the creation of Open

AI Gym, delving into the challenges within the reinforcement learning landscape

and how the framework addresses them.

Reinforcement Learning Landscape and Challenges:

Reinforcement learning, a subset of machine learning, is dedicated to the

study of decision-making and motor control. Researchers aim to understand how

an agent can learn and improve to achieve specific goals in complex, often un-

known environments[9]. Its broad applicability, ranging from robotics to business

decisions and financial trading, has made reinforcement learning an attractive

area for both academia and industry.

However, the progress in reinforcement learning faced hurdles, primarily due

to the absence of robust benchmarks. Unlike supervised learning, which flour-

ished with datasets like ImageNet, reinforcement learning lacked equivalent stan-

dardized benchmarks. Additionally, the lack of standardization in the design of

environments presented a challenge. Minor differences in problem definitions, re-

ward functions, or action spaces could significantly impact the difficulty of tasks,

impeding reproducibility and hindering the comparison of results across different

studies.

Motivations for open AI Gym: The need to address these challenges was

the driving force behind the development of Open AI Gym. The framework aimed

to provide a solution to the dearth of benchmarks and the lack of standardization

20



3.1 Environments

Figure 3.1: Open AI gym Environments

in reinforcement learning experiments. It envisioned a platform that would serve

as a standardized interface for environments, allowing researchers and develop-

ers to focus on the core of reinforcement learning agent design without being

constrained by predefined interfaces.

In reinforcement learning, the key components are the agent and the envi-

ronment. Open AI Gym made a strategic choice to emphasize the abstraction

of environments rather than agents. Instead of imposing pre-defined agent inter-

faces, the framework provides a standard environment interface. This decision

empowers developers to design agents independently, fostering creativity and in-

novation in the core aspects of reinforcement learning.

The significance of this approach lies in the versatility it affords. Agents imple-

mented with Open AI Gym can seamlessly interact with any environment within

the framework, promoting adaptability and ease of experimentation. Developers

can tailor environments to suit specific experiments, enabling personalized testing

scenarios that cater to the unique requirements of diverse research endeavors.

Open AI Gym encompasses various environments categorized into distinct

types:
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Algorithms: This category focuses on tasks involving the imitation of compu-

tations, such as copying or reversing symbols from an input tape. Task difficulty

can be adjusted by varying the sequence length.

Atari: Emulating the Atari 2600 video games, this section of environments

relies on the Arcade Learning Environment (ALE). It provides over 100 environ-

ments offering observations in the form of raw pixel images or RAM.

Box2D: Tasks in this group involve continuous control in a simple 2D simula-

tor, featuring challenges like BipedalWalker, CarRacing, and LunarLander.

Classic Control: Derived from control theory, this class includes problems

widely used in classic reinforcement learning literature. Examples include bal-

ancing a pole on a cart or swinging up a pendulum.

MuJoCo: This collection introduces continuous control tasks within a fast

physics 3D simulator, known as MuJoCo. It serves as a valuable resource for

research and development in robotics, biomechanics, graphics, and animation.

Robotics: Open AI Gym’s Robotics category presents eight environments

with more complex manipulation tasks than MuJoCo. Notable examples include

Fetch, a robotic arm for object manipulation, and ShadowHand, a robotic hand

for intricate object manipulation.

These environments collectively offer a rich and diverse set of challenges for

reinforcement learning algorithms, spanning various domains and complexities

Interface functions

ExploringOpen AI Gym, it is essential to focus on the most crucial interface

func- tions that the agent will exploit to interact with the environment. The

functions which constitute the skeleton of anOpen AI Gym environment are the

following:

• def step(self, action): through this function, the agent can communi- cate

the action it wants to take. The input data depends on the type and number of
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variables in the actions space (e.g. discrete or continuous). As will be discussed

in section 3.1 on the following page, the values returned by this function repre-

sent the environment state after the manipulation caused by the agent action.

Thanks to these data, the agent will be able to select the next action following

the reinforcement learning loop.

• def reset(self): during the episode, internal variables of the environment

changes, influenced by the action taken previously. This function allows the agent

to restart the initial situation of the environment. This procedure is particularly

helpful when an episode finishes and the agent has to restart the next learning

episode in a brand new copy of the environment.

• def render(self, mode=’human’, close=False): this function is mainly used

in simulated environments. It enables the visual rendering (if available) of the

environment.

• def close(self): the final function to close the environment after the end

of all experiments and episodes.

3.2 Pytorch

PyTorch, an open-source machine learning and deep learning library developed

by Facebook’s AI Research Lab, was released to the public in October 2016. It

aims to provide an intuitive and straightforward framework for artificial intelli-

gence projects, with a particular focus on computer vision and natural language

processing.

Developed using Python, C++, and CUDA, PyTorch leverages CUDA-enabled

GPUs for general-purpose processing. While the primary interface is in Python,

there is also a C++ interface, showcasing the versatility of the library. The

components of PyTorch include:
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3.2 Pytorch

Figure 3.2: Pytorch workflow

torch: A tensor library with robust GPU support, implementing interfaces

similar to NumPy. It includes data structures for multi-dimensional tensors and

mathematical operations, offering utilities for efficient serialization of tensors and

arbitrary types.

torch.autograd: A tape-based automatic differentiation library supporting

every differentiable operation on tensors available in torch.

torch.jit: A compilation stack that uses TorchScript to create serializable and

optimizable models from PyTorch code. This allows training in PyTorch using

Python and exporting the model to production environments where Python might

be less advantageous for performance reasons.

torch.nn: A neural networks library compatible with autograd and designed

for flexibility. torch.multiprocessing: Based on the Python multiprocessing li-

brary, it implements memory sharing of torch tensors across processes.

torch.utils: Contains utility functions to better exploit the features of Py-

Torch.

PyTorch provides a NumPy-like experience for interacting and manipulating

data structures suitable for GPU computation, known as Tensors[10]. Tensors

can be used on both CPU and GPU, accelerating computations with functions

explicitly designed for scientific computation needs. Unlike frameworks that are

primarily complex C++ bindings, PyTorch prioritizes Python, providing a nat-
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ural user experience. The design emphasizes intuitiveness and linearity, making

PyTorch synchronous for improved debugging experiences. Developers aimed to

create a product that is easy to use, and this intention is reflected in the library’s

design.

One distinctive feature of PyTorch is its tape-based automatic differentiation,

offering a single way to build neural networks. While other frameworks like Ten-

sorFlow or Theano utilize a static approach in graph creation, PyTorch employs

Tape-Based Autograd. This approach, based on reverse-mode automatic differ-

entiation, allows users to change the network structure dynamically without lag

or overhead. It relies on the properties of the chain rule, making it possible to

calculate derivatives efficiently.

PyTorch’s commitment to providing a user-friendly, flexible, and efficient deep

learning platform has made it a popular choice in the machine learning commu-

nity. Its seamless integration with Python and emphasis on dynamic computation

graph creation set it apart from other frameworks, contributing to its widespread

adoption in both research and industrial applications

3.3 Tensorflow

TensorFlow is a powerful open-source machine learning library extensively used

in reinforcement learning (RL), a paradigm where an agent learns by interacting

with an environment to maximize cumulative rewards. TensorFlow’s flexibility

and efficiency make it well-suited for building and training neural networks, a key

component in many RL algorithms.

In RL, TensorFlow is employed to define and train agents, which are typically

neural network models. Using TensorFlow’s high-level API, Keras, users can con-

struct and optimize complex neural networks that represent an agent’s policy or
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3.3 Tensorflow

Figure 3.3: Tensor flow Key features

value function. The policy is a strategy guiding the agent’s decisions based on

observed states, and the value function estimates the expected cumulative reward

for a given state-action pair. Training RL agents involves iterative interactions

with the environment. TensorFlow facilitates this process by providing optimiza-

tion algorithms and tools for efficient neural network training. Experience replay,

a technique enhancing training stability, is also supported by TensorFlow.

Integration with Open AI Gym, a popular RL toolkit is seamless. TensorFlow

users can use Open AI Gym environments to simulate and test various RL algo-

rithms. Tensor Board, a visualization tool integrated with TensorFlow, assists in

monitoring training progress, evaluating performance, and diagnosing issues in

real time.

A common RL example using TensorFlow is the implementation of a deep

Q-network (DQN). TensorFlow’s model-building capabilities, optimization al-

gorithms, and gradient computation simplify the DQN training process. In a

typical DQN implementation, a neural network approximates the Q-values, rep-

resenting the expected cumulative rewards for state-action pairs [11]. Training
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involves adjusting the network’s parameters to minimize the difference between

predicted and target Q-values.TensorFlow’s model-saving functionality enables

users to store trained models, facilitating deployment for decision-making in real

or simulated environments. This feature is crucial for practical applications where

RL models transition from training to serving stages.

3.4 Comparision between Tensorflow and Py-

torch

In the post-deep learning era, the development of neural network architectures

and frameworks has become a focal point for many companies. Two prominent

frameworks, TensorFlow by Google and PyTorch by Facebook, have emerged as

leaders in this field. Despite serving the same purpose, implementing a neu-

ral network in these frameworks can yield different results due to the inherent

distinctions in their training processes and underlying technologies.

One significant difference lies in the construction of computational graphs, an

abstraction representing the computation process. TensorFlow adopts a static

approach, defining computational graphs before code execution, allowing for par-

allelism and driving scheduling. This method communicates with the external

world via tensors, which are later substituted by input data during runtime.

In contrast, PyTorch employs a dynamic computational graph, constructed in-

crementally at runtime without placeholders. This flexibility supports on-the-

fly changes to the computational graph, making PyTorch more adaptable and

Pythonic.

Distributed training and data parallelism are crucial features, with PyTorch

offering native support for asynchronous execution from Python, potentially im-

proving performance. TensorFlow, while also supporting these capabilities, re-
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quires more developer effort to fine-tune computations for specific devices. Al-

though both frameworks provide opportunities for distributed training, PyTorch

requires less effort for seamless integration.

Visualization tools play a vital role in machine learning research, and here

TensorFlow leverages TensorBoard, offering extensive features for visualizing and

tracking the training process. PyTorch, on the other hand, relies on Visdom, de-

veloped by Facebook researchers, which provides minimalistic features compared

to TensorBoard. However, TensorBoard can be used with PyTorch through the

TensorBoardX library, bridging the gap in visualization capabilities.

In terms of production deployment, TensorFlow shines with TensorFlow Serv-

ing, a framework that facilitates REST Client API usage for deploying trained

models. PyTorch has made strides in deployment, but it currently lacks a dedi-

cated framework for web deployment. Developers must resort to Flask or Django

as backend servers to create the necessary environment for model exploitation .

TensorFlow and PyTorch are popular open-source deep learning frameworks.

TensorFlow is developed by Google and is known for its scalability, deployment

capabilities, and extensive community support. PyTorch, developed by Face-

book, is praised for its dynamic computation graph, simplicity, and intuitive de-

bugging. TensorFlow’s static graph facilitates optimization, while PyTorch’s dy-

namic graph offers flexibility during model development. TensorFlow has strong

integration with TensorFlow Lite for mobile and TensorFlow.js for web applica-

tions. PyTorch’s eager execution simplifies debugging and experimentation Both

frameworks provide a rich ecosystem, but the choice often depends on personal

preferences, project requirements, and the development style.Both frameworks

contribute to a rich ecosystem, offering tools and libraries that support a wide

range of deep learning tasks both powerful tools at their disposal to bring their

innovative ideas to fruition in the dynamic field of deep learning.
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Chapter 4

Learning and Verification with

NeVer2

NeVer2 stands as a versatile tool, combining a graphical user interface (GUI) with

a command-line interface (CLI) to facilitate the seamless creation, training, and

validation of neural networks. This innovative platform streamlines the complex

process of managing neural networks within a unified environment, providing

users with an integrated solution for their machine-learning endeavors. More-

over [12] NeVer2 extends its functionality to encompass the verification of Very

Deep Neural Network Library (VNN-LIB) properties on Open Neural Network

Exchange (ONNX) models, offering a command-line interface for users who prefer

a more streamlined and efficient approach.

One of NeVer2’s distinguishing features lies in its commitment to user-friendly

implementation. The tool is designed to be accessible to users at varying levels of

expertise, ensuring that the complexities of deep learning are made more manage-

able. This commitment is exemplified through the incorporation of the pyNeVer

API, providing a solid and extensible framework that underpins the tool’s seam-

less functionality.
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NeVer2’s proficiency extends across the entire lifecycle of neural network de-

velopment, emphasizing a holistic approach to model refinement. Its support for

dynamic computational graphs, reminiscent of the PyTorch philosophy, is a key

feature that sets it apart. This dynamic nature empowers users to make real-time

adjustments to the computational graph, offering unparalleled flexibility during

runtime. For projects requiring on-the-fly modifications to the neural network

architecture, NeVer2 emerges as a flexible and adaptive solution.

The tool’s prowess is further showcased in its adept handling of distributed

training, a critical component of large-scale deep learning endeavors. NeVer2

leverages PyTorch’s capabilities to streamline the complexities associated with

asynchronous execution from Python. This capability not only enhances perfor-

mance but also ensures scalability in scenarios where significant computational

resources are required. The seamless integration of distributed training capabili-

ties underscores NeVer2’s commitment to providing users with a comprehensive

and efficient neural network development environment.

In the realm of neural network verification, NeVer2 excels by providing a

command-line interface (CLI) for validating Very Deep Neural Network Library

(VNN-LIB) properties on Open Neural Network Exchange (ONNX) models. This

versatile CLI allows users to execute verification procedures outlined in Satisfi-

ability Modulo Theories (SMT) files on specified neural networks in the ONNX

format. This dual-interface approach caters to diverse user preferences, allow-

ing for both graphical and command-line interactions, depending on the user’s

workflow and requirements.

The heart of NeVer2’s verification capabilities lies in its diverse range of strate-

gies. Users can opt for the ’complete’ strategy, leveraging the exact algorithm

suitable for small-sized networks. Alternatively, the ’approximate’ strategy em-

ploys an over-approximate algorithm, balancing accuracy and computational ef-
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ficiency. The ’mixed1’ and ’mixed2’ strategies introduce a nuanced approach,

refining one or two neurons per layer, respectively. This adaptability ensures

that users can tailor the verification process to the specific characteristics and re-

quirements of their neural network, striking an optimal balance between precision

and computational resources.

NeVer2 stands as a comprehensive and adaptable tool that seamlessly in-

tegrates into the Python ecosystem. Its user-friendly design, support for dy-

namic computational graphs, and adept handling of distributed training make it

a valuable asset for both researchers and practitioners in the field of deep learn-

ing. Whether through its graphical user interface or command-line capabilities,

NeVer2 caters to diverse user preferences, ensuring a flexible and efficient neural

network development environment. As the landscape of machine learning con-

tinues to evolve, NeVer2 remains at the forefront, empowering users with the

tools they need to navigate the complexities of neural network development with

confidence and ease.

NeVer2 emerges as a robust and flexible tool that addresses various facets of

neural network development and verification. Its integration with the pyNeVer

API, dynamic computational graph support, and emphasis on verification tech-

niques position it as a valuable asset for researchers and practitioners. The tool’s

commitment to user-friendly implementation, distributed training support, and

visualization capabilities contributes to its versatility

4.1 Installation

The installation process for NeVer2 involves setting up the required packages and

dependencies to enable seamless operation of the neural network tool. NeVer2

relies on two main components: the pyNeVer API and the PyQt6 framework.

31



4.1 Installation

These can be easily installed using the Python package manager, PIP.

To initiate the installation, execute the following command in your terminal

or command prompt:

pip install pynever PyQt6

This command fetches and installs the pyNeVer API and PyQt6 framework,

ensuring that NeVer2 has the essential components to function properly.Once

the packages are successfully installed, NeVer2 can be launched from the root

directory using the following command:

python NeVer2/never2.py

This command activates NeVer2, allowing users to access the graphical user in-

terface (GUI) and leverage its capabilities for neural network development, train-

ing, and verification.

ARM BASED MAC OS

For users on ARM-based Mac OS, additional considerations come into play

due to compatibility issues with the default Python distribution for ARM plat-

forms. To address this, it is recommended to install miniforge for arm64 (Ap-

ple Silicon), a distribution that is compatible with the architecture.Creating a

Python virtual environment is the next step in the ARM-based Mac OS installa-

tion process. This involves using Conda, a package manager, to set up a specific

environment named ’myenv’ with Python version 3.9.5:

conda create -n myenv python=3.9.5

conda activate myenv

This ensures that the subsequent installations are specific to the newly created

environment. The next step involves installing additional dependencies for Ten-

sorFlow using Conda:
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conda install -c apple tensorflow-deps

pip install tensorflow-macos tensorflow-metal

pip install pynever PyQt6

Now, NeVer2 is ready to be executed on an ARM-based Mac OS with the following

command

python NeVer2/never2.py

It’s important to note that each time NeVer2 is to be run, the Conda environment

must be activated using:

conda activate myenv

This ensures that NeVer2 operates within the specific environment with the cor-

rect dependencies, providing a smooth and consistent experience for users on

ARM-based Mac OS. In summary, the installation process for NeVer2 involves

acquiring the necessary packages, addressing compatibility concerns on specific

platforms, and setting up an isolated environment to ensure a reliable and efficient

operation of the neural network tool

4.2 Software Architecture

The Never2 Tool design is depicted in Figure 4.1 using a UML class diagram,

focusing on its fundamental structure rather than a comprehensive Software Ar-

chitecture overview. The internal representation of neural networks is managed

by pyNeVer, a [13]Python API offering learning and verification capabilities. The

core component is the Project class, encapsulating functionalities for network de-

sign, interaction with pyNeVer, and procedures for opening and saving neural

network files.
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Figure 4.1: UML Diagram of Never2 Tool

For the graphical interface, [14]PyQt’s Graphics View framework is employed.

This framework facilitates the creation and interaction with 2D graphical items,

supporting zooming and rotation. The event propagation architecture and Binary

Space Partitioning (BSP) tree enable real-time visualization of large scenes. The

GraphicsScene class is used for creating or destroying objects and setting global

parameters, while the Scene class serves as a container for all application objects.

Concrete instances of the abstract class Block are displayed in the scene.

The LayerBlock represents network layers, the FunctionalBlock defines input

and output, and the PropertyBlock represents VNN-LIB properties. The Block

classes are designed to support multiple inputs and outputs, allowing future exten-

sions to accommodate architectures beyond feed-forward neural networks, such

as ResNets and recurrent neural networks.

NeVer2 the tool enables direct import of neural network models in ONNX

or PyTorch formats for visualization, property addition, or conversion.The flex-

ibility and extensibility of Never2 are highlighted, emphasizing its adaptability

to evolving neural network architectures and file formats. The graphical inter-

face of NeVer2 facilitates the creation of custom model conversion for various file

formats, expanding the tool’s capabilities and supporting additional benchmarks.
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4.3 Procedure

In NeVer2 building a neural network involves creating layers and defining in-

put/output using the LayerBlock and Functional Block classes. The network is

exported to PyTorch for training. Upon completion, it’s re-imported into Never2,

demonstrating the tool’s bidirectional capability. This allows users to seamlessly

transition between NeVer2 and PyTorch for design and training, reinforcing the

tool’s versatility in supporting diverse workflows.

4.3.1 Building the model

The initial screen of Never2 showcases two Functional Blocks, enabling users to

define network input and corresponding labels. Sequentially, the first fully con-

nected layer with 24 neurons, followed by a ReLU activation, is defined within

the tool. To maintain order, each layer is added and updated individually, incor-

porating the input block to specify dimensions. The Save button on each block

facilitates parameter updates, ensuring configuration accuracy.

For user convenience, the Restore defaults option resets values to default set-

tings without overwriting, enhancing flexibility in experimentation. This side-

by-side interface design streamlines the process of constructing neural networks

within NeVer2, providing a user-friendly experience. The automatic sequential

addition of layers aligns with default settings, allowing users to progressively build

and refine their network architecture. This step-by-step approach, coupled with

intuitive controls, exemplifies NeVer2 commitment to simplicity and precision in

network design for applications like the ACC scenario.

Activation layers(ReLU)

Rectified Linear Unit, or ReLU, is a widely used activation function in artificial

neural networks, playing a crucial role in introducing non-linearity to the model’s
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Figure 4.2: Interface of Never2 Tool after adding defining Properties

decision-making process. It operates on an input x, producing an output f(x)

defined as the maximum of zero and the input itself, expressed as f(x) = max(0,

x).One of the primary reasons for ReLU’s[15] popularity is its simplicity and

efficiency. By allowing positive inputs to pass through unchanged and setting

negative inputs to zero, ReLU aids in the model’s ability to learn complex patterns

in the data. This simplicity also contributes to faster convergence during the

training process, as the linearity of the function eases gradient computation.

ReLU effectively addresses the vanishing gradient problem encountered in tra-

ditional activation functions like sigmoid or hyperbolic tangent. During backprop-

agation, gradients can diminish as they are propagated through layers, hindering

the learning process. ReLU’s derivative is either zero or one, preventing the

vanishing gradient issue and facilitating more effective learning in deep networks.

However, ReLU is not without challenges. One notable issue is the ”dying

ReLU” problem, where neurons can become inactive during training and cease to

update their weights. If a large gradient flows through a ReLU unit, it can cause

the weights to update in such a way that the unit will always output zero. This

can limit the model’s capacity to learn and adapt.

36



4.3 Procedure

Figure 4.3: ReLU Neural network architecture

ReLU allows a small, non-zero gradient when the input is negative, ensur-

ing that even neurons with negative inputs can contribute to the learning pro-

cess.ReLU is a foundational activation function in deep learning, offering sim-

plicity, efficient computation, and mitigation of the vanishing gradient problem.

While it has challenges like the dying ReLU problem, researchers have introduced

variations to enhance its performance and adaptability in training deep neural

networks.

4.3.2 Defining the Property

In the finalization phase of configuring a neural network, a pivotal step involves

defining VNN-LIB properties related to both input and output. Drawing guid-

ance from the description provided in [16], the emphasis is on bounding input

variables. Within this context, the OutBounds description recommends two dis-

tinctive approaches: Polyhedral Properties and Generic SMT Properties.

Polyhedral Property:

This approach leverages the property selector in the input block, offering a

controlled and efficient environment for bounding variables without the need for
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Figure 4.4: sample Diagram of Defining Polyhedral Property

manually crafting SMT (Satisfiability Modulo Theory) statements. The Polyhe-

dral Property method streamlines the process, allowing users to set constraints

on input variables within a well-defined and controlled framework. As depicted in

the figure, this property configuration aligns with the values outlined in Section

3.2, ensuring a harmonious integration of input bounding mechanisms.

SMT Property:

Conversely, the Generic SMT Properties approach involves the direct crafting

of SMT expressions. While providing more flexibility, this method demands a

deeper understanding of SMT syntax. Unlike the automated nature of Polyhe-

dral Properties, SMT Properties require explicit SMT statements for bounding

variables. This approach allows for a more intricate and customized specification

of constraints, affording users finer control over the bounding configurations.

In the Polyhedral Property method, the emphasis is on a user-friendly in-

terface, minimizing the need for users to delve into the complexities of SMT

expressions directly. Instead, the property selector in the input block becomes
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4.3 Procedure

Figure 4.5: Sample Diagram of Defining smt property

the conduit for bounding variable constraints. This approach simplifies the user

experience while maintaining robust bounding mechanisms for input variables.

4.3.3 Load and Save Models

NeVer2 simplifies the integration of neural networks into its framework by sup-

porting direct loading of models in ONNX and PyTorch formats. It also stream-

lines the linking of properties to networks when they share identical input and

output identifiers, enhancing its utility for VNNCOMP benchmark creation.To

generate a VNNCOMP-compatible benchmark using NeVer2, users import a neu-

ral network model in ONNX or PyTorch format, ensuring compatibility. Subse-

quently, users link a property to the imported network, verifying alignment in

input and output identifiers.

Once the neural network and its corresponding property are integrated in

NeVer2, users create benchmark files easily. In the menu, selecting ”Save as...”

with the VNN-LIB entry results in two distinct files: a .onnx file representing the

neural network model and a .smt2 file encapsulating the defined property. This
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structured process streamlines benchmark creation, ensuring compatibility with

VNNCOMP standards. NeVer2, with its capacity to seamlessly link properties

to networks and export in standardized file formats, serves as a versatile tool for

researchers participating in VNNCOMP or working within the VNN-LIB frame-

work. Its commitment to simplifying the bench-marking process underscores

NeVer2’s significance in the realm of neural network verification.

4.3.4 Command-line interface

NeVer2 Tool offers command-line functionality through the options check model

and -convert model, extending its capabilities beyond the graphical interface.

These command-line features empower users to efficiently incorporate NeVer2’s

functionalities into automated workflows or scripts. The -check option facilitates

the quick validation of an ONNX model’s compliance with the VNN-LIB stan-

dard. Users can easily determine whether a given ONNX model adheres to the

specifications outlined by VNN-LIB, streamlining the validation process through

the command line.

Similarly the convert option enables the transformation of PyTorch models

to the ONNX[17] format using NeVer2, contingent upon the compatibility of

operators with the VNN-LIB standard. This command-line functionality ensures

a seamless conversion process, provided the necessary operators are supported.

These command-line options enhance NeVer2 Tool’s versatility, allowing users to

integrate its features into automated processes. Whether validating compliance or

converting between model formats, the command-line interface provides a flexible

means of leveraging NeVer2 Tool’s capabilities for neural network analysis and

verification in a programmatic fashion.

python pynever.py complete single -s /Users/surendrakumarreddypolaka
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4.4 Training the Network

/Desktop/Thesis/NeVer2-main/dqn_network.onnx > /Users

/surendrakumarreddypolaka/Desktop/Thesis/NeVer2-main/output1.smt2

4.4 Training the Network

Upon completing the network construction, the next step involves training. Nav-

igate to the menu bar and select ”Learn...” -¿ ”Train” to access the training

window. In this interface, users can choose the dataset and configure various

learning parameters.

NeVer2 provides default access to both MNIST and fMNIST datasets due

to their widespread popularity. If these datasets are not already present, they

will be downloaded and stored in the NeVer2 working directory upon the first

selection. The inclusion of such widely used datasets ensures user convenience

and accessibility.

For the training process, NeVer2 [14]offers a pre-defined dataset transform

tailored for both convolutional and linear MNIST and fMNIST networks. This

transformation consists of 2 or 3 steps: pilToTensor and Normalize(1, 0.5) are

common to both cases, and an additional Flatten transform is included exclusively

for the linear MNIST network. These transformations are crucial for preparing

the data in a format suitable for training the neural network.

In summary, NeVer2 simplifies the training process by providing a user-friendly

interface for dataset selection and learning parameter configuration. The avail-

ability of default datasets, along with pre-defined transformations optimized for

various network architectures, enhances the efficiency and accessibility of the

training workflow within the NeVer2 tool.For efficient training in NeVer2, users

can fine-tune learning parameters through a user-friendly interface:
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4.4 Training the Network

Figure 4.6: sample diagram of parameters how to train the Network

Optimizer:Select the ”Adam” optimizer, an acclaimed gradient-based op-

timization algorithm known for its effectiveness. Users can further customize

related parameters once the optimizer is chosen.

Learning Rate Scheduler:Currently, NeVer2 supports the ”ReduceLROn-

Plateau” learning rate scheduler. This scheduler adjusts the learning rate when a

plateau in model performance is detected, providing adaptability during training.

Loss Function:Choose between ”Cross Entropy” and ”MSE Loss” based on

the neural network’s structure. This selection influences the calculation of the

error during training.

Precision Metric: Select either ”Inaccuracy” or ”MSE Loss” to define the

precision metric, guiding the evaluation of the model’s performance during train-

ing.

Epochs: Define the number of training epochs, representing the iterations

through the entire dataset during training.

Validation Percentage: Set a value between 0 and 1 to indicate the per-
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centage of the dataset allocated for validation purposes.

Training and Validation Batch Size: Define the dimensions of training

and validation batches, influencing the granularity of data processed during each

iteration.

CUDA: Enable this option to leverage NVidia GPU architecture for acceler-

ated computation, optimizing training speed.

Train Patience (Optional): Specify the number of epochs with no loss

decrease before triggering early stopping in the training process.

Checkpoints Root (Optional): Designate the directory for storing training

strategy checkpoints. The default location is the NeVer2 working directory.

Verbosity Level (Optional): Set the frequency of log prints during training,

controlling the level of detail displayed. The default is set to print logs after each

training batch.

These configurable parameters empower users to tailor the training process

to their specific needs, balancing customization and user-friendly design within

the NeVer2 environment.But in this Thesis we mainly focus on Verification tool

rather than training the Network.

4.5 Verification Strategy

NeVer2 is a versatile tool designed to simplify the neural network development

process. It features a user-friendly GUI that streamlines building, training, and

verifying neural networks within a unified environment. The graphical interface

offers an intuitive platform for users to navigate the complexities of machine

learning seamlessly.

In addition to the GUI, NeVer2 caters to advanced users by providing a

Command-Line Interface (CLI). This allows for efficient verification of VNN-LIB
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properties on ONNX models without the need for the graphical interface. Users

can execute commands like ”python NeVer2/never2.py” to verify specific proper-

ties specified in SMT files on ONNX networks. This CLI functionality enhances

flexibility, enabling users to interact with NeVer2 in a more streamlined manner,

especially when dealing with specific verification tasks.

python NeVer2/never2.py -verify <property>.smt2

<network>.onnx [complete | approximate | mixed1 | mixed2]

verification procedure for the property specified in the SMT file on the network

specified in the ONNX file. The verification strategy is one among the following:

. complete: uses the exact algorithm (for small-sized networks)

. approximate: uses the over-approximate algorithm

. mixed1: uses the mixed algorithm refining 1 neuron per layer

. mixed2: uses the mixed algorithm refining 2 neurons per layer

4.6 Output Visualization

In the highlighted example ( fig 4.7) special attention is directed towards the final

layer of the neural network within NeVer2, underscoring its pivotal role in the

computation that yields the ultimate output. This emphasis on the concluding

layer is a testament to the platform’s commitment to transparency and user

understanding. NeVer2 excels in presenting the output visually, with a dedicated

output block providing users with a comprehensive view of the entire network’s

architecture and its functional progression.

The intuitive interface of NeVer2 plays a crucial role in facilitating a user-

friendly experience. It allows users to navigate and manipulate the neural net-

work’s structure with clarity, enabling a clear visualization of each layer. This
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4.6 Output Visualization

Figure 4.7: Output Visualization to verify the Network

streamlined process significantly enhances users’ ability to comprehend the intri-

cacies inherent in each layer, fostering a deeper understanding of the network’s

computational flow.The platform’s user-centric design is particularly beneficial for

both novice and experienced users. NeVer2 serves as a powerful tool for efficiently

designing and analyzing neural networks within a visually accessible environment.

The seamless integration of Rectified Linear Unit (ReLU) networks, along with

the ability to adjust properties of polyhedral and Satisfiability Modulo Theories

(SMT) properties, offers a level of flexibility and customization to meet specific

requirements.

Moreover, the interconnected nature of ReLU networks with fully connected

layers in output visualization demonstrates the platform’s comprehensive ap-

proach to neural network design. NeVer2 provides a cohesive environment where

users can not only set up ReLU networks but also fine-tune properties related

to polyhedral and SMT. This holistic approach ensures that users, regardless of

their expertise level, can engage in a thorough exploration of neural network de-

sign, promoting both efficiency and understanding. NeVer2 stands as a robust

and adaptable platform that prioritizes user comprehension through its intuitive

interface and comprehensive output visualization.
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Chapter 5

Case Study

This section delves into the application of classic control reinforcement learning

algorithms on two widely recognized problems, Mountain Car and Pendulum.

These problems serve as benchmarks to assess the performance of three distinct

types of algorithms: Basic Q-learning, Q-learning with a neural network, and

Q-learning with a neural network implemented using the PyTorch framework.

The emphasis is on measuring the output of the system through various metrics

and employing the Never2 Tool to verify the network’s satisfaction of specified

conditions.

The first algorithm, Basic Q-learning[19], operates on a tabular Q-value ap-

proach. In this traditional method, the agent maintains a table to store Q-values

for different state-action pairs. The algorithm iteratively updates these values

based on rewards received, aiming to learn an optimal policy. The primary ad-

vantage of Basic Q-learning lies in its simplicity and ease of implementation,

making it an essential baseline for comparison.

The second approach involves enhancing Q-learning with a neural network.

Here, the Q-values are represented by the output of a neural network, allowing

for a more flexible and scalable approximation of the optimal policy. By uti-
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lizing neural networks, the algorithm can handle high-dimensional state spaces

more efficiently, overcoming limitations associated with tabular methods. The

implementation of this enhanced Q-learning involves training a neural network

to approximate the Q-values, with the network learning to generalize across dif-

ferent states.PyTorch, a popular deep learning framework, is chosen for the neural

network implementation. PyTorch’s dynamic computation graph and extensive

library of operations make it well-suited for reinforcement learning tasks. The in-

tegration of PyTorch into the Q-learning algorithm adds a layer of sophistication,

facilitating the use of neural networks for more complex control problems.

To evaluate the performance of these algorithms, experiments are conducted

on two classic control problems: Mountain Car and Pendulum. These envi-

ronments provide challenging scenarios that test the adaptability and learning

capabilities of the implemented algorithms. Metrics such as convergence speed,

exploration efficiency, and overall task completion are measured to quantify the

success of each algorithm in solving the control problems.

In addition to these metrics, the section introduces the Never2 Tool, a ver-

ification tool designed to assess whether the neural network satisfies specified

conditions. Verification is crucial in reinforcement learning applications, espe-

cially in safety-critical environments. The Never2 Tool provides an additional

layer of analysis, allowing researchers to validate the correctness and robustness

of the learned policies.

The integration of Never2 into the experimental framework offers a compre-

hensive evaluation process. This tool verifies whether the learned policies adhere

to predefined constraints, ensuring that the neural network’s outputs align with

safety and performance specifications. This step is particularly important when

deploying reinforcement learning models in real-world applications where safety

and reliability are paramount.
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The experimental results section provides a thorough investigation into the

performance of classic control reinforcement learning algorithms on Mountain

Car and Pendulum problems. By comparing Basic Q-learning, Q-learning with

a neural network, and PyTorch-based Q-learning, researchers gain insights into

the strengths and limitations of each approach. The inclusion of the Never2 Tool

further enhances the experimental framework, offering a robust means of verifying

the network’s adherence to specified conditions. This comprehensive analysis

contributes to the broader understanding of reinforcement learning techniques in

classic control scenarios and reinforces the importance of verification in real-world

applications.

5.1 Software and Hardware Details

To conduct experiments leveraging the aforementioned specifications, a Mac-Book

Air serves as the primary computing platform. The Mac-OS operating system

provides a stable and user-friendly environment, fostering a seamless integration

with various software tools. The development environment is established through

Anaconda, offering a comprehensive suite of Python libraries and facilitating

streamlined code development, analysis, and visualization.

For machine learning endeavors, the Mac-Book Air is equipped with Python

3.9, PyTorch 1.10.0, and TensorFlow 2.10.0. These frameworks empower re-

searchers and developers to implement and train sophisticated machine learning

models, while Open AI Gym version 0.21.0 serves as a fundamental toolkit for

the development and evaluation of reinforcement learning algorithms
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Component Version/Details
Laptop Macbook Air

Operating system MacOS
Development Environment Ananconda

Open AI AI Gym v.0.21.0
Python v.3.9
Pytorch v.2.10.0

Tensorflow v.2.10.0

Table 5.1: Development Machine specifications

5.2 Classic control Environment

The ”MountainCar-v0” environment is a classic reinforcement learning prob-

lem included in the Open AIAI Gym toolkit. It represents a simplified two-

dimensional physics simulation in which an underpowered car is tasked with

reaching a flag located at the top of a hill.

Key Features of the Environment:

State Space: The state of the environment is defined by a two-dimensional

vector representing the car’s position and velocity. The position ranges from -1.2

to 0.6, indicating the car’s location along the x-axis. The velocity ranges from

-0.07 to 0.07, representing the car’s speed.

Action Space: The car has three possible discrete actions: accelerate to the

left, decelerate, or accelerate to the right. Actions are discrete and not continuous,

providing a limited set of choices for the agent.

Rewards: The agent receives a reward of -1 for each time step until it reaches

the flag at the top of the hill. The goal is to reach the flag with the minimal

number of time steps.

Termination Condition: The environment terminates when the car reaches

the flag at the top of the hill or when a predefined maximum number of time steps

is reached. Constraints: The car is underpowered, making it unable to reach the
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flag directly. Thus, the agent must learn a strategy to build enough momentum

by moving back and forth.

Difficulty: The challenge lies in mastering the timing and coordination of

actions to propel the car up the hill efficiently.

This environment is commonly used to test and develop reinforcement learning

algorithms, particularly those based on value iteration or policy gradients. Agents

learn to navigate the trade-off between short-term negative rewards and the long-

term goal of reaching the flag, showcasing the ability to solve problems with

sparse and delayed rewards. The ”MountainCar-v0” environment is a useful

benchmark for understanding exploration-exploitation trade-offs and learning to

solve complex tasks in reinforcement learning.

5.2.1 Experiments

This section encompasses a comprehensive evaluation of various reinforcement

learning approaches applied to the task, including Verified Basic, the Q-learning

Method[20], Q-learning Neural Network Method, and the PyTorch Method. Each

method undergoes rigorous verification to ensure accuracy and reliability in the

experimental setup.

The Verified Basic approach serves as a foundational benchmark, establishing

a baseline for comparison. Q-learning, a classical reinforcement learning tech-

nique, is then employed to iteratively optimize the agent’s decision-making strat-

egy based on the observed rewards in the environment. The Q-learning Neural

Network Method introduces a neural network to approximate the Q-function,

allowing for more complex representations and improved generalization.

Furthermore, the PyTorch Method incorporates the PyTorch deep learning

framework, leveraging its capabilities for building and training neural networks

efficiently. Each method is systematically measured to verify the efficacy of the
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proposed analysis and the network generated. The evaluation criteria include

factors such as convergence speed, learning stability, and overall performance

in reaching the predefined goal within the MountainCar-v0 environment. This

multifaceted analysis aims to provide insights into the strengths and limitations

of each method, contributing to a nuanced understanding of their effectiveness in

solving complex reinforcement learning problems

5.2.2 Basic Method

The presented code is an implementation of a reinforcement learning problem

using the Open AI Gym library, focusing on the MountainCar-v0 environment—a

classic challenge in the realm of reinforcement learning. Reinforcement learning

involves an agent interacting with an environment, learning to take actions that

lead to maximum cumulative reward over time. The main loop of the code is

executed for a total of 40 episodes, a common practice to observe the agent’s

learning behavior across multiple instances.

Within each episode, the environment is reset, initiating a new trial with

an initial state. The subsequent while loop runs until the episode is deemed

complete, indicated by the ”done” variable. During each iteration of the while

loop, the current state is rendered, providing a visual representation of the agent’s

interaction with the environment. The agent selects a random action from the

action space using the ”.sample()” method, a simplistic exploration strategy. The

environment is then queried for the next state, the reward obtained in the current

step, the termination signal (”done”), and additional information.

The total reward for the episode is updated by aggregating the rewards ob-

tained in each step. This cumulative reward metric is a key indicator of the

agent’s performance. The loop concludes by updating the current state to the

next state, preparing for the subsequent iteration.
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Figure 5.1: Basic Method output Results

This code serves as a foundational example, illustrating how to interact with

the MountainCar-v0 environment in Open AI Gym and implementing a basic

random policy for decision-making. It lays the groundwork for more advanced

exploration-exploitation strategies, reinforcement learning algorithms, and policy

optimization techniques that can be integrated to enhance the agent’s problem-

solving capabilities. Understanding and extending such code forms the basis for

delving into the fascinating field of reinforcement learning and its applications.

Figure 5.1 shows the result of training phase for the number of episodes.

Graphical Representation

The graphical representation reveals a significant stability concern in the re-

inforcement learning system, manifested by a persistent plateau in both Total

Reward (-200 per episode) and Average Reward Per Step. This stagnation im-

plies a notable challenge for the learning algorithm in adapting and enhancing

its performance. The sustained low total reward indicates the agent’s struggle

to achieve successful outcomes, while the unchanging average reward per step

reflects a lack of progress in the efficiency of the agent’s actions.
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To address this instability, a multifaceted strategy is essential. Firstly, an

advanced exploration-exploitation strategy is warranted, possibly incorporating

techniques like epsilon-greedy policies or state-of-the-art algorithms such as deep

reinforcement learning. Fine-tuning hyper parameters, including exploration-

exploitation ratios, is crucial to strike a balance that promotes efficient learning

without being overly exploratory.

Additionally, a comprehensive review of the reward function and environment

dynamics is imperative. Analyzing the impact of each component of the reward

structure and identifying potential issues can guide adjustments. Introducing

dynamic elements to the reward system or adapting it based on the agent’s per-

formance might enhance adaptability.

Monitoring metrics beyond the core rewards, such as the number of steps per

episode and the exploration-exploitation ratio, provides a more nuanced under-

standing of the learning dynamics. The inclusion of a 0.5 exploration-exploitation

ratio suggests a balanced approach, but further examination is needed to ensure

it aligns with the underlying dynamics of the environment.

Iterative refinement, involving adjustments to algorithmic components and

environment settings, is crucial. Incorporating visualization techniques, such as

learning curves and heatmaps, can offer insights into the evolving behavior of the

agent. The goal is to observe a positive trend in rewards, signifying improved

stability and performance in the reinforcement learning system. This continuous

improvement process is fundamental to overcoming the current instability and

achieving successful learning outcomes.
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Figure 5.2: The Graph Represents Total Reward and Average Reward Per Per
step to Per Episode

Figure 5.3: The Graph Represents Exploration and Exploitation Per Episode
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5.2.3 Q learning Method

The provided code implements the Q-learning algorithm to solve the MountainCar-

v0 environment within the Open AI Gym library. In this environment, the agent

controls an underpowered car aiming to ascend a steep mountain road. The agent

receives a reward of -1 at each time step until it successfully reaches the goal,

marked by a flag at the mountain’s summit. Additionally, the agent incurs a

penalty of -100 if it surpasses 200 steps without reaching the goal. Q-learning is

a model-free, off-policy reinforcement learning algorithm that learns the optimal

action-value function by iteratively updating Q-values for state-action pairs.

The Q-learning process begins with the initialization of the Q-table, a critical

component storing Q-values for each state-action pair. The table is initially

populated with random values. The algorithm then iteratively updates these Q-

values using the Bellman equation[18], which expresses the relationship between

the Q-value of a state-action pair and the Q-values of the subsequent state and

possible actions. The Q-value update follows the Q-learning rule, favoring the

action that maximizes the Q-value for the next state.

To balance exploration and exploitation, the code employs an epsilon-greedy

strategy for action selection. With probability epsilon, the agent selects a random

action, while with probability 1-epsilon, it chooses the action with the highest Q-

value. Additionally, the code incorporates a custom reward function, penalizing

the agent if it takes more than 200 steps to reach the goal.The discretization of

the state space into a 10 x 100 grid forms the basis for initializing the Q-table. A

function is defined to convert the continuous observation space of the environment

into discrete state indices.

The main training loop executes for a predefined number of episodes. Within

each episode, the agent interacts with the environment, updates Q-values based on

observed rewards, and iteratively refines its policy. The training loop terminates
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Figure 5.4: Q learning Output Results

when the agent successfully reaches the goal or exceeds the step limit.

Following the training phase, the code assesses the agent’s performance by

executing a single episode. The agent selects actions based on the highest Q-

values, offering insights into the learned policy. Additionally, the code measures

and stores several metrics during training, including the exploration-exploitation

ratio, the number of steps per episode, and the magnitude of Q-values. These

metrics facilitate a comprehensive evaluation of the learning process and provide

valuable insights into the agent’s behavior over episodes.

Graphical Representation

The graphical representation of the Q-learning algorithm’s performance in the

MountainCar-v0 environment provides valuable insights into the agent’s learning

progress. The figure illustrates key metrics such as the Total Reward per episode,

the Q-function per episode, and the cumulative number of episodes, offering a

comprehensive view of the algorithm’s convergence.

The Total Reward per episode is a crucial measure of the agent’s success in

achieving the task at hand—ascending the mountain road. A Total Reward of

zero indicates that the agent, on average, is neither receiving significant penalties

nor achieving substantial rewards in each episode. This implies that the agent

has found a balance between minimizing penalties, such as the -1 reward per time
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step, and maximizing positive rewards, such as reaching the goal.

The Q-function per episode represents the learned Q-values for state-action

pairs throughout the training process. Q-values reflect the expected cumulative

reward the agent anticipates by taking a particular action in a specific state. A

well-converged Q-function is indicative of the agent’s ability to estimate optimal

actions for each state, facilitating effective decision-making. Observing the Q-

function’s evolution across episodes helps assess the learning stability and the

agent’s adaptability to different states and actions.

The Q-learning parameters play a pivotal role in shaping the agent’s learning

behavior. The chosen values, such as alpha (learning rate), gamma (discount

factor), epsilon (exploration-exploitation ratio), and the total number of episodes

(num-episodes), significantly influence the convergence and efficiency of the al-

gorithm. Fine-tuning these parameters is often an iterative process, requiring

a balance between exploration to discover optimal actions and exploitation to

capitalize on learned knowledge.

The defined Q-values in the code, initialized with random values, undergo

iterative updates guided by the Q-learning rule. The learning process involves

updating the Q-values for state-action pairs based on observed rewards and the

agent’s estimation of the optimal actions. The Q-values gradually converge to

more accurate representations of the expected cumulative rewards, reflecting the

agent’s learning progress.

The cumulative number of episodes plotted up to 100 provides a temporal

perspective on the learning process. This metric allows the observer to track

the evolution of the agent’s performance over time, showcasing how the Total

Reward and Q-function develop with increasing experience. The figure’s limited

span to 100 episodes emphasizes a concise representation of the early learning

stages, capturing critical information about the algorithm’s initial convergence.
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Figure 5.5: Graph Represents Epsilon per Episode

Figure 5.6: Graph Represents Q-value Magnitude Per Episode

The graphical representation encapsulates the essence of the Q-learning algo-

rithm’s performance in MountainCar-v0, offering a visual narrative of the agent’s

learning journey. Through insightful depictions of Total Reward, Q-function, and

cumulative episode counts, observers gain a holistic understanding of the algo-

rithm’s dynamics in mastering the challenging task of ascending the mountain

road. . In just a glance, the graphical representation becomes a powerful tool for

comprehending the nuanced dynamics and efficiency of the Q-learning algorithm

in conquering the complexities of the MountainCar-v0 environment.
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5.2.4 Q learning Neural network

The provided code showcases the implementation of the Q-learning algorithm

using Deep Q-Networks (DQNs) for solving the MountainCar-v0 environment

within the Open AI Gym framework. The primary objective is to train an agent

to navigate a car up a hill, overcoming gravitational forces. The DQN model is

constructed using the Keras library, employing the Adam optimizer and a three-

layer neural network architecture with ReLU activation functions in the first two

layers and a linear activation function in the output layer. The mean squared

error (MSE) loss function is utilized for training, with target values calculated

based on the Bellman equation[19].

The agent employs an epsilon-greedy policy, initialized with epsilon set to 1.0

and gradually decayed to facilitate exploration during the early learning stages.

Experiences gained during interactions with the environment are stored in a mem-

ory buffer, and a random sample of these experiences is used to train the DQN

model in batches. The replay function incorporates advanced indexing to update

Q-values for taken actions and trains the model with the updated Q-values.

The agent’s performance is evaluated over 100 episodes, with scores recorded

and plotted to visualize the learning progress. Although the training process

may be time-consuming, the agent eventually learns to successfully navigate the

environment, reaching the hill’s summit within the maximum allowed steps. To

provide a benchmark, the code also includes a random policy function that im-

plements a baseline random agent. This agent selects actions randomly without

leveraging past experiences, offering a comparison point for assessing the efficacy

of the DQN-trained agent.

Additionally, a new training function is introduced in the code, enhancing the

original implementation with graphical representation of key metrics. These met-

rics include the total reward per episode, exploration-exploitation ratio, number
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of steps per episode, and epsilon decay per episode. By visualizing these metrics

using Matplotlib, the training dynamics of the agent become more transparent,

allowing for a comprehensive analysis of its learning behavior and performance

improvements over episodes. This combined code presents a holistic perspective

on the training process, evaluation metrics, and comparison with a random policy

strategy

Graphical Representation

The graphical representation of the Q-learning Neural Network for the MountainCar-

v0 environment offers a compelling narrative of the agent’s learning journey and

the convergence of the neural network to efficiently solve the task. Examining

the key components of the plot, including the ”Total Reward per Episode” and

”Epsilon Decay per Episode,” provides a nuanced understanding of the agent’s

progress.

The ”Total Reward per Episode” plot is a pivotal visualization that encap-

sulates the agent’s performance throughout the training process. The gradual

increase in total rewards over episodes signifies the agent’s ability to learn and

adapt its policy effectively. Initially, the agent explores the environment, and the

rewards might be low as it navigates the complexities of the task. However, as

the agent accumulates experience and refines its strategy, a noticeable upward

trend emerges in the plot. Specific episodes, such as 34, 38, 60, and 75, stand out

as milestones where the agent successfully achieves the final state, reaching the

top of the hill. These peaks in total rewards highlight critical moments in the

learning process, indicating when the agent consistently executes optimal actions

to accomplish the goal.

Simultaneously, the ”Epsilon Decay per Episode” plot reveals the evolution of

the exploration-exploitation trade-off. Epsilon represents the probability of the

agent taking a random action, fostering exploration in the early stages of training.
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As depicted in the plot, the epsilon value consistently reduces over episodes. This

reduction signifies the agent’s decreasing reliance on exploration, indicating a

transition towards exploitation. The agent becomes more confident in its learned

policy, relying less on random actions and more on its acquired knowledge to

maximize rewards. The correlation between the reduction in epsilon and the

increase in total rewards underscores the successful integration of exploration

and exploitation in the agent’s learning strategy.

The identified episodes where the agent reaches the final state align with cru-

cial points in the epsilon decay. As the agent learns a more optimal policy, it

requires less exploration, and the diminishing epsilon reflects this shift. The pos-

itive rewards obtained in later episodes further validate the effectiveness of the

Q-learning Neural Network. The agent not only learns to navigate the environ-

ment but also consistently achieves positive outcomes, demonstrating a robust

and adaptive policy.

Analyzing these graphical representations collectively unveils the success of

the Q-learning Neural Network in solving the MountainCar-v0 task. The agent’s

learning trajectory is characterized by a strategic balance between exploration and

exploitation, leading to a progressive increase in total rewards and, ultimately,

successful task completion. This narrative of learning progression is indicative

of the neural network’s ability to capture and adapt to the complexities of the

environment, showcasing the efficacy of Q-learning in training intelligent agents.

Fig 5.7 and fig 5.8 describe the total reward per episode and entire Q Learning

Neural Network.By the fig 5.7 and 5.8 we can depricate that there is a lot of

improvement from basic Method , Q learning and Q learning Neural Network

Method we have improved the agent reward.
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Figure 5.7: Q learning Neural Network Output specifications

Figure 5.8: Total reward per Episode
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5.2.5 Pytorch

The provided code implements a Deep Q-Network (DQN) to solve the MountainCar-

v0 environment from Open AI Gym using PyTorch. The DQN is a reinforcement

learning algorithm that employs a neural network to approximate the Q-values of

state-action pairs, enabling an agent to learn a policy for optimal decision-making.

The DQN class defines the neural network architecture with three fully con-

nected layers. The agent, represented by the DQNAgent class, utilizes an epsilon-

greedy strategy for action selection, balancing exploration and exploitation. The

agent’s experiences are stored in a replay memory, and the DQN model is trained

through a replay mechanism, updating its parameters to minimize the Mean

Squared Error (MSE) loss between predicted and target Q-values.

The training loop in the train-dqn function runs for a specified number of

episodes, where the agent interacts with the environment. The agent’s actions are

determined by the DQNmodel, and the environment renders the state transitions.

The reward function is customized to encourage the agent to reach the goal state

at the top of the hill. The agent’s experiences are stored in the replay memory,

and the replay function is called to train the DQN using a batch of random

samples from the memory.

The random-policy function demonstrates a random policy where the agent

takes random actions in the environment, serving as a baseline for compari-

son against the DQN’s learned policy.The main execution block initializes the

MountainCar-v0 environment, creates an instance of the DQNAgent, and trains

the agent using the train-dqn function. The training progress is visualized by

plotting the scores achieved in each episode.

This code leverages PyTorch to implement a DQN for solving the MountainCar-

v0 task, demonstrating the key components of a reinforcement learning system,

including neural network architecture, experience replay, and epsilon-greedy ex-
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5.2 Classic control Environment

ploration. The agent learns to navigate the environment and achieve the goal

state through iterative training episodes. The resulting plot provides insights

into the learning progress, showcasing the agent’s ability to accumulate rewards

over episodes.

Graphical Representation

The graphical representation serves as a dynamic illustration of the Q-learning

agent’s learning progress over episodes in the MountainCar-v0 environment. No-

tably, discernible peaks in the total reward per episode graph indicate stages

where the car successfully reaches the final state. This visual depiction offers a

clear correlation between the agent’s training episodes and its achievement of key

milestones.

The x-axis of the graph signifies the progression of episodes, providing a tem-

poral perspective on the agent’s learning journey. Concurrently, the y-axis illus-

trates the corresponding scores achieved by the agent during each episode, with

highlighted peaks denoting instances where the car conquers the challenging task

at hand.

By presenting this visual narrative, the representation imparts valuable in-

sights into the learning dynamics of the Q-learning agent. It serves as a com-

prehensive tool for understanding critical milestones, emphasizing the agent’s

evolving ability to navigate and triumph in the intricacies of the MountainCar-

v0 environment. The plotted graphs not only showcase the agent’s progress but

also underscore the effectiveness of its learning process in mastering the complex-

ities of the assigned task.The visual representation not only showcases the agent’s

journey toward success but also reveals the impact of the learning process on its

overall performance.
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Figure 5.9: total reward per episode using pytorch

5.3 Network Verfication

After Saving the trained network. The next step involves its training procedure,

such as the ”train-dqn” function, is a crucial step in the machine learning work-

flow. This allows you to store the learned parameters of the neural network,

enabling you to retrieve and reuse the model for further analysis or applications

without having to retrain it from scratch. There are various ways to save a trained

model, such as using serialization libraries like Pickle or using dedicated functions

provided by deep learning frameworks like TensorFlow or PyTorch.

Once the trained network is saved, the next step involves verifying the net-

work by adjusting parameters. This verification process is essential for fine-tuning

the model’s performance, ensuring it meets specific requirements, or adapting it

to different tasks.adjusting model parameters, like the weights and biases, can
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be done through techniques like transfer learning or fine-tuning. This involves

leveraging knowledge gained from a pre-trained model on a related task and

adapting it to the specific problem at hand. In summary, saving a trained net-

work facilitates reusability and further analysis. Verifying the network involves

adjusting both hyperparameters and model parameters to ensure optimal perfor-

mance, adaptability, and generalization across different scenarios. This iterative

process of saving, adjusting, and verifying is fundamental in the development and

optimization of neural networks for various applications.

working Procedure :-

To define a property for Polyhedral testing, begin by executing the neural

network with the original input to obtain the output tensor. Now, create the

property using NeVer2 by incorporating the input tensor, output tensor, and the

specified noise. For instance, if the input tensor is [-0.112, 1.648], corresponding

output [y0, y1, y2], and noise is 0.05. These constraints define a region around the

initial input that accounts for the noise. Similarly, for the output, compute y0 +-

0.05, y1 +- 0.05, and y2 +- 0.05, creating constraints for each output variable to

ensure they fall within the desired range. This process ensures that the property

reflects the expected behavior within the specified noise margin.

NeVer2 allows the generation of Polyhedral properties by defining constraints

on both input and output tensors, accounting for the noise introduced during

testing. This approach enables effective property testing that considers the vari-

ability in the neural network’s predictions within the given noise threshold.

The sample Property define in Never2 Tool looks like these

(declare-fun X_0 () Real)

(declare-fun X_1 () Real)

(declare-fun Y_0 () Real)

(declare-fun Y_1 () Real)
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(declare-fun Y_2 () Real)

(assert (<= X_0 -0.062))

(assert (>= X_0 -0.162))

(assert (<= X_1 1.698))

(assert (>= X_1 1.598))

(assert (<= Y_0 7.1))

(assert (>= Y_0 7.09))

(assert (<= Y_1 7.4))

(assert (>= Y_1 7.39))

(assert (<= Y_2 7.41))

(assert (>= Y_2 7.4))

The given code is written in the SMT-LIB language, a standard format for

specifying problems to Satisfiability Modulo Theories (SMT) solvers. These con-

straints restrict the possible values for the variables within specified intervals. The

utilization of SMT-LIB allows automated solvers to check whether a solution sat-

isfying these constraints exists, making it a powerful tool in formal verification

and validation processes, particularly in fields like formal methods and software

verification. The snippet likely represents a mathematical model or problem, and

the constraints define a feasible solution space for the specified variables

The presented tables, Table 5.2 and Table 5.3, encapsulate a comprehensive

verification analysis of a system’s properties under various conditions. Table

5.2 delineates specific properties, their corresponding inputs, introduced noise,

and the resultant output with added noise. Each row corresponds to a unique

property, offering insights into the system’s behavior across a range of scenarios.

For instance, Property 1 involves an input range of [-0.112, 1.648], subject to
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Property Input Noise Output + Noise
1 [-0.112 ,1.648] -0.05 [7.0932 , 7.3965 , 7.4057]
2 [-0.150 , 1.990] -0.1 [8.0111 , 8.3652 , 8.3680]
3 [-0.200 , 2.100] -0.08 [8.3080 , 8.6754 , 8.6768]
4 [-0.100 , 1.500] -0.20 [6.5198 , 6.8016 ,6.8141]
5 [-0.120 , 1.700] -0.30 [ 7.2886 ,7.5990 ,7.6071 ]
6 [ -0.090 ,1.900] -0.01 [ 7.8918 ,8.2367 ,8.2405]
7 [0.340 ,4.300] -0.150 [ 15.1875 ,16.0830,15.9817]
8 [-0.450,2.600] -1.00 [ 8.6262 , 9.0521 ,9.0470]

Table 5.2: Network output and Input Properties

Property Never2-time Never2-Result
1 31.0694557920001 True
2 14.018025041000328 False
3 28.960818666000705 True
4 29.27622454199991 False
5 28.96916683299969 True
6 28.785308958000314 True
7 28.735463166000045 False
8 12.010101417000442 False

Table 5.3: Never-2 output Results
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a noise of -0.05, yielding an output with added noise in the range [7.0932, 7.3965,

7.4057]. The subsequent properties follow a similar pattern, providing a detailed

examination of how the system responds to different inputs and noise levels.Table

5.3 emerges as a critical instrument for scrutinizing the verification outcomes of

specific properties within a defined set of conditions. Each row encapsulates es-

sential information, presenting a property alongside its numerical result and a

Boolean value denoting the success or failure of verification. Properties 1, 3, 5,

and 6 stand verified (True), attesting to their compliance with the specified con-

ditions. In contrast, Properties 2, 4, 7, and 8 remain unverified (False), signaling

a lack of alignment with the prescribed system requirements.

This tabular representation assumes paramount significance in domains where

system correctness is of utmost importance, such as formal methods, model check-

ing, and software verification[20]. The strategic alignment of input-output behav-

iors with verification results

The detailed analysis of these tables contributes profoundly to our under-

standing of the system’s behavior. Stakeholders in formal methods and software

verification benefit from the insights gleaned, utilizing the verification outcomes as

a benchmark for system integrity. The meticulous interplay of verification results

and observed behaviors ensures a holistic comprehension of the system, enabling

robust decision-making and guaranteeing reliability in real-world applications.

In essence, these tables serve as a cornerstone for system design and im-

plementation, providing a foundation for creating systems that not only meet

specified requirements but also demonstrate resilience and dependability under

varying conditions. The interweaving of verification outcomes and behavioral ob-

servations fosters a comprehensive understanding of system dynamics, crucial for

building systems that stand the test of real-world challenges.
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Chapter 6

Conclusions

The exploration of Reinforcement Learning (RL) fundamentals, from core compo-

nents to the evolution from tabular methods to neural networks, sets the founda-

tion for understanding complex problems. Bellman equations, dynamic program-

ming, and model-free/model-based approaches provide a comprehensive view of

RL techniques. The transition to neural networks, such as Convolutional Neural

Networks and the Actor-Critic architecture, highlights the architectural elegance

and sophistication in modern RL.

The introduction of Soft Actor Critic (SAC) emphasizes the need for flexibility

in learning policies, a crucial aspect in real-world applications where adaptability

is key. As RL methodologies advance, the integration of tools and frameworks be-

comes imperative. Open AI Gym, PyTorch, and TensorFlow are fundamental in

providing environments, libraries, and computational frameworks that facilitate

RL research and development.

The inclusion of Never2 Tool, showcases a practical implementation of RL. Its

architectural design, installation process, Software Architecture, and procedures

for building models, defining properties, and handling models through command-

line interface exemplify a comprehensive RL toolkit. The tool’s functionalities

extend to training networks, defining verification strategies, and visualizing out-
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puts.

In the experimental results section, the focus shifts to real-world applica-

tions through the evaluation of Mountain Car -v0 environment. The detailed

exploration of experiments, basic methods, Q learning approaches, and the use

of neural networks in Q learning provides insights into the tool’s effectiveness.

The comparison between PyTorch and TensorFlow underscores the significance

of choosing appropriate frameworks based on specific requirements.

The network verification process becomes a critical aspect of RL applications,

ensuring the reliability of trained models. As depicted in Table 5.2 and Table 5.3,

verification results showcase the success and failure of specific properties under

given conditions. The systematic approach to testing and verifying the network’s

behavior adds robustness to the tool.

In conclusion, the amalgamation of theoretical RL concepts, practical tool

implementation, and real-world experimentation provides a holistic understand-

ing of RL applications. The Never2 Too serves as a practical embodiment of

RL methodologies, demonstrating the versatility and adaptability required for

real-world scenarios. The verification strategies employed ensure the reliability

of the tool, crucial in applications where incorrect decisions can have significant

consequences.

Future work in RL could involve enhancing the tool’s capabilities, expanding

its applicability to diverse environments, and incorporating advancements in RL

research. Additionally, the integration of explainable AI (AI) techniques could

enhance interpretability, making RL models more transparent and trustworthy.

Overall, the field of RL continues to evolve, and future research could focus

on addressing challenges in scalability, robustness, and ethical considerations,

contributing to the widespread adoption of RL in real-world applications
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