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Oh, I got plenty of time 

Oh, you got light in your eyes 

And you're standing here beside me 

I love the passing of time 

Never for money, always for love 

Cover up and say goodnight, say goodnight 

 

 

Ai miei genitori. 
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Abstract 

Resting state EEG in patients with disorders of consciousness (DOC) is characterized by an increase 

of power in the delta frequency band and a concurrent decrease in the alpha range, equivalent to a 

weakening or disappearance of the alpha peak. Prolongation of Intrinsic Neural Timescales (INTs) is 

also associated with DOCs. Together, this raises the question whether the decreased alpha peak relates 

to the prolonged INTs and, importantly, how that can be used for diagnosing the state of consciousness 

in DOC individuals. Analyzing resting state EEG recordings from both healthy subjects and DOC 

patients, we measure INTs through autocorrelation window (ACW) and develop novel measures to 

quantify the weakening of the alpha peak. First, we replicate previous findings of prolonged ACW in 

DOC patients. We then identify significantly lower alpha peak measures in DOC compared to controls. 

Interestingly, spectral peaks shift from the alpha to the theta range in several DOC subjects while 

such change is absent in healthy controls. Next, our study reveals a close relationship between ACW 

and alpha peak in both healthy and DOC subjects, a correlation that holds for theta peaks in DOC. 

Further, the prolonged ACW correlates with the state of consciousness, as quantified by the Coma 

Recovery Scale-Revised (CRS-R), and mediates the relationship between theta peak and CRS-R. 

Finally, through split analyses and machine learning, we show that ACW and alpha peak measures 

conjointly distinguish healthy controls and DOC patients with high accuracy (95.5%). In conclusion, 

we demonstrate that the prolongation of ACW, together with spectral peak measures, holds promise 

to serve as additional EEG biomarkers for diagnosing the state of consciousness in DOC subjects. 
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Introduction 

The diagnosis of disorders of consciousness (DOC) remains an ongoing challenge for both clinicians 

and researchers alike, particularly regarding differential diagnosis between minimally conscious state 

(MCS) and unresponsive wakefulness state (UWS), also known as vegetative state (VS). In recent 

decades, neurobehavioral assessment tools such as the Coma Recovery Scale–Revised (CRS-R)1,2 

have represented a significant improvement over diagnosis by clinical consensus3 allowing for 
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quantitative and standardized diagnosis. Extending such behavioral assessment, recent research has 

focused on identifying more objective and reproducible neurobiological markers through the use of 

neuroimaging. 

Among these approaches, EEG has gained attention due to its economic feasibility and potential for 

bedside use. Several EEG markers, such as the perturbational complexity index (PCI) and other 

measures of informational complexity,4–9 evoked potentials10,11 and spectral analysis12–15 have shown 

promising results. However, clinical usage of these markers for differential diagnosis remains an 

ongoing challenge.  

Research on spectral analysis has revealed that the alpha frequency range (7.5 – 13 Hz) exhibits a 

decrease in power in DOC patients.9,12,16,17 Recent machine learning studies have further confirmed 

the importance of alpha, as well as the theta and delta bands, as key electrophysiological markers in 

classifying DOC patients and discriminating between MCS and UWS/VS.9,16 Typically, the alpha 

band exhibits a peak in power among healthy subjects.18,19 However, the exact quantification of the 

alpha peak including its decrease in power in DOC individuals and its potential relation to the state 

of consciousness remains an open issue. Addressing this gap in our knowledge constitutes the primary 

goal of our paper. 

Extending beyond spectral measures, recent studies have focused on Intrinsic Neural Timescales 

(INTs), the timescales at which single neurons and/or neural populations process incoming 

information.20–22 INTs, measured through the autocorrelation window (ACW), are abnormally 

prolonged in states of decreased consciousness, such as sleep, anesthesia, and DOC.23,24 This prompts 

the question of whether the prolongation of ACW in DOC patients could relate to the weakening or 

disappearance of their alpha peak, and whether the two conjointly modulate the state of consciousness.  

The primary goal of our EEG study was to investigate and quantify the changes in the alpha peak as 

well as how they relate to INTs, measured through ACW, in both healthy controls and DOC patients. 

To quantify the weakening or disappearance of the alpha peak in DOC we introduced novel measures 

by utilizing peak analysis. Additionally, we aimed at replicating previous results of a prolonged ACW 

in DOC.12,23,24 Given previous findings, we hypothesized that DOC subjects would show a 

prolongation of ACW alongside a significant reduction in the novel alpha peak measures. The second 

specific aim involved establishing a relationship between alpha peak measures, ACW and the state of 

consciousness, as measured by CRS-R. We anticipated negative correlations between alpha peak 

measures and ACW, both of which are expected to relate to the level of consciousness (CRS-R). The 

third specific aim probed whether our measures enable the prediction of the state of consciousness, 

as tested through split analyses and machine learning. Building on our previous work,12,23,24 we 
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hypothesized that ACW, particularly in its relation to alpha peak measures, might carry potential for 

accurately classifying patients based on the state of consciousness, as measured by CRS-R.   

 In this study, we analyzed resting state EEG recordings obtained from eighty-eight DOC patients and 

twenty-five recordings from twenty-five healthy controls, focusing on three frontal (i.e. Fz, F1, F2) 

and three occipital electrodes (i.e. Oz, O1, O2). Our initial emphasis was on the alpha peak and its 

disappearance in DOC subjects. To address this issue, we developed novel measures to quantify the 

alpha peak itself, conducting a peak analysis on the power-spectral density (PSD) derived from the 

EEG signals, identifying five peak-related measures – power, power ratio, prominence, width and 

frequency. To avoid restricting our analysis to the alpha range, we also incorporated two non-peak 

measures, maximum power and minimum mower. These measures explore the delta and gamma 

frequency ranges, respectively, taking into account the inverse exponential trend of the PSD. For 

clarity, we refer to the peak-related measures as “peak measures” while both peak-related and non-

peak-related measures combined as “spectral measures”. Over the same electrodes, we also measured 

Intrinsic Neural Timescales using the autocorrelation function (ACF). Following established methods, 

we represented INTs via the autocorrelation window (ACW),23–28 which in EEG and MEG studies is 

defined as the first point where the autocorrelation value reaches a specified threshold.23,24,26,27 

Our first finding highlights the scarcity of alpha peaks (7.5 – 13 Hz) in DOC patients compared to 

controls (7 and 13 alpha peaks, respectively for frontal and occipital in DOC patients, and 22 both for 

frontal and occipital in healthy controls), with DOC individuals displaying more peaks in the theta 

frequency range (3 – 7.5 Hz). This finding converges with results observed in MCS subjects29 and 

also in the PSDs obtained in healthy subjects under ketamine.6,30,31 We then compared spectral 

measures between controls and the subset of DOC patients exhibiting alpha peaks and found that 

healthy subjects have higher values in all measures, except maximum power (higher in DOC patients) 

and width (no significant differences). Shifting our focus to INTs, we found prolonged ACW in DOC 

subjects compared to controls, a result consistent with prior research.23,24 We then linked INTs to the 

alpha peak, finding robust correlations between spectral measures and ACW, in both healthy 

individuals and patients with disorders of consciousness. Correlations between ACW and spectral 

measures persisted in DOC patients displaying theta peaks. Further, we aimed at establishing a 

relationship between both neural measures with the level of consciousness in DOC, as measured with 

the Coma Recovery Scale-Revised. We observed that ACW correlates negatively with CRS-R and 

identified two significant mediation models with ACW mediating the impact of peak measures on the 

CRS-R in DOC subjects with theta peak. Finally, we conducted split analyses and machine learning, 

showing the potential utility of ACW conjointly with spectral measures derived from peak analysis 

as additional diagnostic biomarkers in assessing the state of consciousness.
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Figure 1 - Roadmap.  

We commenced by examining the prevalence of alpha peaks in healthy controls compared to DOC individuals. Employing peak analysis, we 

demonstrate the weakening and disappearance of the alpha peak in DOC patients, along with its shift to the theta range. Building on the replicated 

finding of prolonged INTs in DOC subjects, we establish strong correlations between our peak measures and ACW – correlations that hold for patients 

displaying theta peaks. The relationship between ACW, peak measurements and the state of consciousness (as assessed by CRS-R) is intricate: we 

identify negative correlations between ACW and CRS-R, with mediation analysis suggesting that INTs take on a mediating role between theta peak 

and CRS-R. Finally, split analyses hint at the possibility of using ACW and our peak measures as markers for the state of consciousness: a Support 

Vector Machine (SVM) model achieves high accuracy in classifying healthy controls vs. DOC. 
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Methods and Materials 

Participants 

Ninety-five resting state EEG recordings (MCS = 47; UWS = 48) were obtained from eighty-eight 

patients with disorders of consciousness (mean age = 46.91 ± 15.82; sex-ratio = 2.38; etiology: stroke 

= 44; anoxia = 6; TBI = 38). On admission patients were assessed by trained clinicians with the 

Glasgow Coma Scale (GCS).32 Further evaluation was obtained with the JFK Coma Recovery Scale–

Revised (CRS-R)1 immediately preceding the recording session. The recording session lasted for a 

minimum of 5 minutes and employed a 256-channel system (GES 300, Electrical Geodesics, Inc., 

USA). Before starting the recording, examiners performed the Arousal Facilitation Protocol1 to 

induce wakefulness. No sedative agents were administered 24 hours prior to recording. Possible 

sources of electronic noise were reduced, and participants wore soundproof earmuffs (3 M Company) 

to attenuate environmental noise.  

For the control sample, 25 healthy participants (age 24.56 ± 0.71 years; M/F sex-ratio = 0.94) 

underwent a similar procedure: a 5-minute resting-state recording session utilizing the same EEG 

recording system (GES 300, Electrical Geodesics, Inc., USA). Controls were asked to lay in bed and 

keep their eyes open: this was done to mimic the recording experience of DOC patients as much as 

possible. EEG data was re-referenced online to Cz and acquired at a sampling rate of 1000 Hz, while 

keeping impedance of all electrodes below 20 KΩ. 

Ethics statement 

Before participation, informed written consent was obtained from all participants (or from their 

caregivers). The study was approved by the Ethical Committee of the Huashan Hospital of Fudan 

University (approval number HIRB-2014–281) and conducted in accordance with the Declaration of 

Helsinki guidelines. 

Pre-processing 

First, data was down sampled to 250 Hz. Then, a band-pass finite impulse response (FIR) filter 

between 0.5 and 40 Hz (Hamming window) was applied. Noisy channels were identified and 

excluded from further analysis through a semiautomatic procedure.  

Criteria for rejection of noisy channels were the following: flatline channels (channels showing no 

activity for more than 5 seconds), highly correlating channels (threshold set at 0.8), low-frequency 

drifts, noisy channels and short-timed bursts not related to neural activity (threshold at SD = 5 for 
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data portions relative to baseline). Removed channels were then interpolated with a spherical method 

and channel activity was re-referenced to the common average reference. Finally, all recordings were 

clipped to a length of exactly 5 minutes. Artifacts (i.e. eye movements, muscular noise, and heart 

activity) were removed through independent component analysis (ICA). 33  

Electrode selection 

For our research we focused on three frontal electrodes (i.e. Fz, F1, F2) and three occipital electrodes 

(i.e. Oz, O1, O2), selected based on the key role played by these regions in DOC, as evidenced by 

consistent differences between MCS and UWS/VS.34 Specifically, alpha band power in the frontal as 

well as in occipital regions has proven to be higher in MCS compared to UWS/VS17,35,36 while delta 

power was found to be higher in UWS/VS over the same areas.17,35,36 Therefore, both spectral and 

ACW measurements were calculated separately for these six electrodes and averaged among the 

frontal and occipital electrodes, respectively.  

Spectral analysis 

The Power Spectral Density (PSD) describes the power for each frequency component of a signal. To 

estimate the PSD, the Welch method was used. The method splits the EEG timeseries into windows 

(3 seconds, for our study) with a certain degree of overlap between them (50%, for our study) and 

computes a Fast Fourier Transform (FFT) for each window. It then calculates the absolute value of 

Fourier coefficients for each frequency, and a Hamming window is applied to all segments. Finally, 

the PSD is estimated by averaging across all individual periodograms. 

This procedure was performed for the selected electrodes (i.e. three frontal: Fz, F1, F2; three occipital: 

Oz, O1, O2), and PSDs were averaged across frontal and occipital electrodes for each subject, 

obtaining two PSDs: one frontal and one occipital. The Y-axis was set to logarithmic scale (base 10), 

and further analysis was performed on such values.  
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Figure 2 – From EEG to Auto-Correlation Function and Power Spectral Density. 

Starting from an EEG signal (a) we measure Intrinsic Neural Timescales (INTs) using the Autocorrelation Function (b) and obtain the Power 

Spectral Density (PSD) via a Fast Fourier Transform (c). Panel (c) illustrates the measures we acquired through peak analysis.
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Peak analysis 

For peak analysis, the MATLAB function “findpeaks” (Signal Processing Toolbox) was used. The 

function identifies local maxima and returns its X and Y coordinates, as well as the peak’s width and 

prominence. This function has found widespread use, with studies ranging from X-ray photoelectron 

spectroscopy,37 to gait analysis in patients with Parkinson’s disease38 and has already been applied to 

EEG spectral analysis.39,40  

Peak and non-peak measures are defined as follows: 

‘Power’: the local maxima itself (i.e. Y-coordinate). Power is therefore the ‘tip’ of the peak (i.e. the 

highest point): the word ‘peak’ should then be intended as representing the region of the PSD 

encompassing a power, a width, a prominence, and a frequency. 

‘Frequency’: the corresponding X-coordinate of the local maxima (i.e. the Power). 

‘Prominence’: prominence (or ‘relative height’) is defined as the difference between the height of the 

peak and its highest minimum. To visualize this measure, the following example is used, taken from 

the MATLAB documentation. Picture tracing a horizontal line through the highest point of the peak, 

to the left and to the right of it, until the line either reaches the endpoint of the signal or crosses the 

signal at the slope of a higher peak. Then, calculate the minimum point in these two segments (to the 

left and to the right of the peak). The greater between the two values is the highest minimum and is 

used for the calculation of the prominence.  

‘Width’: width is computed as the distance between the peak’s left and right points where its 

descending slopes intersect with a horizontal reference line. This reference line is set, by default, to 

be at a height equal to the middle point of the prominence.   

‘Maximum Power’: the maximum power value in the PSD.  

‘Minimum Power’: the minimum power value in the PSD.  

‘Power Ratio’: the ratio between power and maximum power.  

For simplicity, we will refer to all seven measures as “spectral measures” and to the peak-related 

measures as “peak measures”. Further details on how the findpeaks function was used are described 

in the Supplementary material.  

A ‘theta peak’ was defined as a peak having its frequency in the 3-7.5 Hz range; an ‘alpha peak’ was 

defined as a peak having its frequency in the 7.5-13Hz range. When multiple peaks were found, the 

peak with greater prominence was selected and subsequently used for analysis. If the function could 
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not identify any peaks, then the PSD was counted as ‘no peak’ (or ‘flat’). Peak and non-peak measures 

can be visualized in Figure 2C. 

Intrinsic Neural Timescales – ACW-50, ACW-e-1, ACW-0 

The Auto-Correlation Function (ACF) estimates the correlation between a signal and a copy of itself, 

delayed in time. The Auto-Correlation Window (ACW) marks the first lag of ACF where the value 

of autocorrelation reaches a desired threshold. These values serve as an estimation of how quickly a 

signal decorrelates with itself.  

For ACW-50, ACW e-1, and ACW-0, time lag thresholds were set, respectively, at 0.5, e-1 and 0. 

Determining the appropriate time lag for autocorrelation of EEG timeseries is a complex task. 

Previous studies have utilized both ACW-506,23,25 and the more novel ACW-0.24,25 For our study, we 

included these measures and added ACW-e-1, which has been proposed in the past.41  

Calculations were computed for the selected electrodes (i.e. three frontal: Fz, F1, F2; three occipital: 

Oz, O1, O2) and averaged for frontal and occipital electrodes respectively, obtaining one value for 

frontal electrodes, and one value for occipital electrodes, for each of the three ACW thresholds, 

respectively.  

Statistical analysis 

For differences in rates of rates of presence or absence of peak between controls and DOC patients, 

a Chi-Squared test was performed.  

For all samples, before proceeding with further analysis, a Shapiro-Wilk test for normality was 

performed: for differences between spectral measures in controls and DOC patients parametric 

(independent t test) and non-parametric (Mann-Whitney U test) statistical tests were performed 

accordingly.  

For correlations between spectral measures and ACW, no specific assumptions of linear or non-linear 

relationships between the variables were made. Therefore, Pearson or Spearman correlation 

coefficients were estimated according to the normality of sample distributions. An identical procedure 

was followed for figures in Supplementary material. Significance level was set to 0.05 and p values 

were adjusted for multiple comparisons with the Benjamini-Hochberg correction where appropriate. 

For all correlations involving CRS-R, given the variable’s ordinal nature, only Spearman’s coefficient 

was calculated. Mediation analysis was performed with a bootstrap method (n = 5000) after standard 

scaling. Importantly, the exogenous variable CRS-R was treated as ordinal in the model.  
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For differences in the rates of presence or absence of peak after the triple-split, a Chi-Squared test 

was used. For the median split results an independent T-test (for power ratio and power) and a Mann-

Whitney U test (CRS-R) were utilized.  

It is essential to highlight that the frontal and occipital groups did not always consist of identical 

subjects. In some instances, a subject exhibited a peak in the frontal region without a corresponding 

peak in the occipital region, and vice versa. The reader should infer that the frontal and occipital 

groups comprise distinct sets of subjects, unless expressly indicated otherwise.  

Machine learning 

For the machine learning analysis, we employed a Support Vector Machine (SVM), due to its 

robustness in high-dimensional data and its effectiveness in dealing with non-linear decision 

boundaries.43 The analysis used the Matlab ‘fitcecoc’ function, which implements Error-Correcting 

Output Codes (ECOC) for multiclass classification.44,45 The function trains a classifier using SVMs 

with a one-against-one (OvO) coding design. The OvO approach constructs N×(N−1)/2 binary SVM 

models, where N represents the number of classes in the dataset, ensuring effective classification 

across multiple classes.44 The SVM model was trained on the training dataset along with its 

corresponding class labels. Throughout the training process, the model optimized the 

hyperparameters and determined the optimal decision boundary to maximize classification accuracy.  

To evaluate the generalization performance of the SVM model and mitigate overfitting, we employed 

10-fold cross-validation.  

The performance of the trained SVM model was assessed using accuracy, precision, recall, F1-score, 

and confusion matrix analysis. Additionally, receiver operating characteristic (ROC) curves and area 

under the curve (AUC) values were computed to assess the model’s discriminative ability across 

different thresholds. The average performance across all folds was then calculated to provide a robust 

estimate of the model’s effectiveness in classifying unseen data. 

Software 

Pre-processing, ICA, peak analysis, spectral analysis, ACW extraction and machine learning were 

performed on the MATLAB software (The MathWorks, 2023b) and the EEGLAB toolbox. Statistical 

tests were performed on Python (3.11.5), using the SciPy package, except the mediation model, which 

was carried out on R (4.1.3) using the lavaan package.42 
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Data availability 

The data used in this article is sensitive and abides by specific privacy regulations. Custom scripts 

used in this study are available upon reasonable request. Relevant code to replicate our analysis is 

available at http://www.georgnorthoff.com/code. 

Results 

Alpha and theta peaks in controls and DOC 

The occurrence of a power peak in the alpha frequency range (7.5-13 Hz) is a common observation 

in the PSD of healthy subjects.46 We started by determining whether we could replicate this finding 

in our control group (n = 25). Most subjects (frontal = 22; occipital = 22) exhibited a distinct peak in 

the frequency range between 7.5 and 13 Hz, with only 3 frontal channels subjects and 3 different 

occipital channels subjects not displaying any kind of peak.  

Conversely, DOC patients show a decrease in alpha power and a shift to lower frequency bands, such 

as theta and delta.12 We examined whether this pattern was reflected in our dataset and reproducible 

with our methodology. A Chi-Squared test compared controls and DOC patients on the observed 

occurrences of alpha peaks, theta peaks and no peaks (Table 1). Results proved to be statistically 

significant for both frontal, X2 (2, N = 120) = 70.42, p < .001, and occipital electrodes, X2 (2, N = 120) 

= 53.21, p < .001. Alpha peaks were significantly more prevalent in the control group compared to 

the DOC, which, in contrast, showed a higher incidence of theta peaks and ‘flat’ PSDs.  

Table 1. Frontal electrodes: F1, FZ, F2. Occipital Electrodes: O1, OZ, O2 

 

We then sought to determine whether our alpha peak measures would exhibit differences between 

controls and the few DOC patients who showed alpha peaks. We conducted Mann-Whitney U and 

independent t tests on 22 controls and 7 DOC for frontal electrodes, and 22 controls and 13 DOC for 

occipital electrodes. Overall, we found strong differences across six of our seven measures. 

Specifically, controls displayed higher power, power ratio, frequency, prominence and minimum 

http://www/
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power, while maximum power was higher in DOC, and width showed no statistically significant 

differences among the two groups. Results are summarized in Fig. 4.  

 

Figure 3 – Variations in Power Spectral Density. 

 Four distinct PSDs are displayed: a clear peak in the alpha range is visible for the healthy 

control (utmost left plot), which sees a considerable decrease in power, prominence and frequency in 

DOC patients (middle left plot), shifting to the theta range (middle right) or disappearing entirely 

(utmost right plot).  

 

Figure 4 – Alpha spectral measures in controls and DOC patients. 

 Through peak analysis we identify seven spectral measures, five directly related to the alpha 

peak and two non-peak related. Controls exhibit higher values across almost all measures, except for 

width (showing no statistically significant differences) and maximum power (higher in DOC patients). 

Ns: p ≥ 0.05; *: 0.01 < p < 0.05; **:  0.001 < p < 0.01; ***:  0.0001 < p < 0.001; ****: p ≤ 0.0001. 

Autocorrelation window (ACW) in controls and DOC 

ACW has been previously demonstrated to be prolonged in disorders of consciousness.23,24 In this 

study, we replicate this finding by comparing the entire control group (n = 25) with the entire DOC 

group (n = 95) and extend it to different novel ACW measures (i.e. ACW-0, ACW e-1 and ACW-50). 

Mann-Whitney U tests demonstrated high statistical significance (p < 0.001). Figure 5b displays the 

results. 
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Figure 5. – ACW, controls and DOC. 

Patients with disorders of consciousness exhibit prolonged ACW: this difference is clearly 

visible when comparing two Autocorrelation Functions side by side (a). In our study we replicate this 

finding and extend it to ACW-e-1 (b). *: 0.01 < p < 0.05; **:  0.001 < p < 0.01; ***:  0.0001 < p < 

0.001; ****: p ≤ 0.0001. 

Relationship between INTs and alpha peak 

Given the observed differences of both INTs and alpha peaks in our DOC subjects, we focused on the 

potential link between the two.  
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Controls  

We performed Pearson’s and Spearman’s correlations between ACW and spectral measures. Controls 

(frontal = 22, occipital = 22) displayed strong negative correlations for power and power ratio, while 

maximum power showed very strong positive correlations with ACW, reaching high levels of 

statistical significance. Among the other measures, prominence, width and minimum power showed 

weak to moderate negative correlations, without reaching statistical significance. For frequency, 

correlation coefficients were positive, but the level for statistical significance was not achieved.   

DOC 

We then conducted the same analysis on DOC subjects who displayed alpha peaks (frontal = 7; 

occipital = 13) and, afterwards, on those with a theta peak (frontal = 23; occipital = 27).  

Overall, results appeared similar to the ones for controls, displaying moderate to strong negative 

correlations for power, power ratio, and very strong correlations for maximum power. Interestingly, 

correlation coefficients for prominence and width were positive, while controls had shown negative 

correlations for these measures. Frequency displayed weak to moderate correlations (e.g. r = 0.58 for 

ACW-0, in frontal electrodes), but none having p value < .05. 

When shifting our focus on DOC patients displaying theta peaks (frontal = 23, occipital = 27), results 

closely resembled those described for alpha peak in DOC patients and controls, revealing strong and 

very strong negative correlations for power and power ratio, and positive correlations for maximum 

power, with prominence, width and frequency failing to reach statistical significance. Interestingly, 

correlation coefficients for prominence and width were negative, similar to controls but in contrast to 

alpha peak DOC subjects.  

In summary, our results reveal strong negative correlations with ACW for power and power ratio and 

nearly perfect positive correlations for maximum power. Prominence, width, frequency and minimum 

power displayed weak to moderate correlations but did not reach significance level. Full results are 

presented in Figure 6.  
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Figure 6 – Correlations between ACW and alpha spectral measures in controls and DOC. 

ACW and alpha peak hold a strong relationship, especially for power, power patio and 

maximum power, which exhibit very strong correlations. These correlations are present both in 

healthy controls (a) and in DOC individuals (b).  *: 0.01 < p < 0.05; **:  0.001 < p < 0.01; ***:  p < 

0.001. 

INTs as mediator between theta peak and the state of consciousness 

Next, our inquiry turned to the possible relationship between INTs and the state of consciousness as 

measured by the Coma Recovery Scale-Revised (CRS-R). Two significant negative correlations were 

found between ACW and CRS-R in DOC patients displaying theta peaks (frontal = 23, occipital = 

27): ACW-e-1 (r = -0.46, p = .025) and ACW-0 (r = -0.46, p = .025) for occipital electrodes. However, 

no significant correlations were found in alpha peak DOC patients (frontal = 7, occipital = 13) or 

across the entire DOC group (n = 95). When turning our focus to potential links between spectral 

measures and CRS-R no significant correlations surfaced (Fig. 7A). 

We contemplated the possibility of a link between the three elements and considering the above 

findings, we posited that ACW could serve as a mediator, with peak measurements acting as 

independent variables and CRS-R as the outcome. Given the low sample size of alpha peak patients, 

mediation models were attempted only for DOC subjects who displayed theta peaks. The variables 

used for the models were selected based on the correlational findings described above: ACW-e-1 and 
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ACW-50 had demonstrated significant correlations with CRS-R, while power, power ratio and 

maximum power had shown the strongest links to ACW. Two significant models were identified for 

occipital electrodes (n = 27), while no such results were found for frontal electrodes (n = 23). It is 

essential to approach these mediation results with caution due to the cross-sectional nature of the data 

and the low sample size.47 

Figure 7b summarizes the results. The predictor variable for the first model was power, while ACW-

e-1 served as the mediator. This model revealed an indirect effect of power on CRS-R (ab = 0.5, p 

= .006). The second model, using power ratio as the independent variable and ACW-e-1 as the 

mediator, also demonstrated an indirect effect of ab = 0.66, p = .0012. 

Taken together, our findings indicate negative correlations between ACW and CRS-R in patients 

displaying theta peaks. Additionally, we identified two significant mediation models for theta peak 

subjects, where power or power ratio served as independent variables, ACW-e-1 acted as mediator 

and CRS-R as the outcome.  

 

 

Figure 7 – Mediation analysis. 
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Our mediation analysis starts from observing strong correlations between ACW and peak 

measures (Fig. 6) and correlations between ACW and CRS-R, which in turn, are absent between peak 

and CRS-R (a). The mediation models (b) hint at ACW possibly serving as mediators between peak 

and CRS-R. Panel c displays the strong correlation between power ratio and ACW, with CRS-R 

showing a weak tendency to decrease as ACW increases. 

INTs and peak measures sort according to the state of consciousness 

Next, we aimed at classifying individual DOC patients into groups based on spectral measures and 

INTs. Initially, we sought to determine whether DOC patients with a spectral peak (frontal = 30; 

occipital = 40) exhibited differences in ACW compared to those without peaks (frontal = 65; occipital 

= 55). We categorized patients into two groups based on peak presence or absence and employed 

Mann Whitney U and independent t tests. Significant differences were identified for all three ACW 

measures, albeit exclusively in occipital electrodes. On average, patients with a theta peak displayed 

shorter ACW values, with the most significant difference being ACW-50 in occipital electrodes: 

median ACW-50 values in subjects with a peak and without a peak were 0.083 s and 0.059 s, 

respectively, (Mann-Whitney U = 743, p = .022; see Supplementary Figure 1).  

Next, we split DOC subjects (n = 95) into three equal parts based on their ACW, identifying a group 

with low ACW, a group with intermediate ACW and a group with high ACW (see Fig. 8A). We then 

counted the presence and absence of peaks in each group. On average, patients with a longer ACW 

(i.e. ACWs in the top quantile) had fewer peaks (alpha or theta) across all ACW measures, except for 

ACW-0 in frontal electrodes, where the peak count was lowest for the middle quantile and 

intermediate for the top quantile. A Chi Squared test yielded only one significant result: ACW-0 in 

the occipital group, X2 (2, N = 95) = 10.9, p = .013.  

We additionally performed a median split analysis, which included DOC patients exhibiting a peak 

(alpha or theta) in occipital electrodes (n = 40). The median split was performed based on ACW-e-1, 

and variables that had shown statistically significant results in the mediation model (power, power 

ratio and CRS-R) were separated according to the split. Independent t tests revealed that subjects in 

the top ACW quantile (power: M = -3.48, SD = 0.23), displayed lower power than subjects in the 

bottom quantile (M =-3.18m SD = 0.26), t(38) = 3.89, p <.001. Similarly, for power ratio: top quantile 

(M = 0.66, STD = 0.064) and bottom quantile (M = 0.82, STD = 0.092) displayed statistically 

significant differences, with the top quantile having a lower power ratio, t(38) = 3.89, p <.001. CRS-

R also exhibited significant differences between the top quantile (median = 5) and the bottom quantile 

(median = 7), Mann-Whitney U = 284, p = .022. In contrast to median splits based on ACW, no 

statistically significant differences for CRS-R were found when attempting splits based on power or 
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power ratio (Fig. 8B). This suggests a special role of ACW in sorting and distinguishing individual 

DOC patients with respect to their state of consciousness.  

 

Figure 8 – ACW splits. 

The link between ACW and spectral peaks in DOC subjects extends from the weakening to 

the disappearance of all spectral peaks: patients in the top quantile for ACW length possess, on 

average, a lower chance of displaying a spectral peak (a). ACW allows segregation of peak measures 

and CRS-R (b). Ns: p ≥ 0.05; *: 0.01 < p < 0.05; **:  0.001 < p < 0.01; ***:  0.0001 < p < 0.001; 

****: p ≤ 0.0001. 

Taken together, we show that DOC patients who exhibit a spectral peak (either in the alpha or theta 

frequency ranges) tend to have a shorter ACW. Secondly, DOC subjects with a prolonged ACW less 

commonly exhibit spectral peaks. Thirdly, DOC individuals with longer ACW-e-1 tend to have lower 

CRS-R scores. In summary, we provide compelling evidence for a link between ACW, spectral peaks 
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and the state of consciousness, with ACW potentially serving as a central component in this intricate 

relationship. 

Alpha peak and INTs for classifying the state of consciousness 

Next, we aimed at exploring whether the conjoint use of ACW and spectral measures would allow 

the classification of subjects based on their state of consciousness. Employing an SVM model, our 

objective was to classify subjects into two categories initially (controls and DOCs), followed by three 

categories (controls, MCS and UWS). For this analysis, we aggregated data obtained from both 

frontal and occipital channels. Only datapoints related to alpha peaks were utilized, given that no 

healthy subjects presented theta peaks. Consequently, the dataset comprised 44 healthy controls (22 

frontal and 22 occipital) and 20 DOC subjects (7 frontal and 13 occipital). Three models were 

employed for each classification task: one utilizing only alpha peak features, a second using solely 

ACW features and finally, one combining both alpha and ACW features.  

 

Table 2 – Results for Healthy-DOC classification problem across 10 folds. 

The alpha peak – ACW SVM model displays high performance in classifying controls and 

DOC. 

For our initial classification task (Controls vs. DOC), all models demonstrated high accuracy (see 

Table 2). Specifically, the alpha peak-only model achieved 93.57% (± 8.33%) accuracy, the ACW-

only model achieved 90.48% (± 11.39%) accuracy, while the combined alpha peak and ACW model 

attained the highest accuracy of the three (95.48 ± 7.31%). Similarly, precision, recall, F1 score, and 

AUC yielded very high values. For our second classification task (Controls vs. MCS vs. UWS), 

accuracy witnessed a notable drop across all three models: the alpha peak-only model achieved 

77.62% (± 9.47%) accuracy, the ACW-only model attained the highest accuracy (79.52% ± 13.05%), 

while the conjoint model achieved 78.33% ± 12.57% accuracy. Overall, precision, recall, F1 score, 

and AUC remained high, ranging from 90 to 95% (see Supplementary Table 1 for complete results). 

It is worth noting, though, that these metrics are largely influenced by the number of true positives. 

Indeed, as depicted in Supplementary Figure 5, the combined alpha peak-ACW model achieved 

nearly perfect classification of healthy subjects into their respective category (misclassifying only 3 

out of 44 healthy individuals out as MCS, and thus resulting in a high true positive rate). However, 
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the model encountered difficulty in distinguishing between MCS and UWS, correctly classifying only 

6 out of 15 MCS and 3 out 5 UWS subjects, leading to higher misclassification rates. 

In summary, our machine learning analysis demonstrates that alpha peak spectral measures and ACW 

are effective in discriminating between healthy controls and DOC individuals. However, their utility 

in distinguishing between MCS and UWS remains limited. 

Discussion 

In the present study, we tackle one of the most consistent observations in the resting state EEG of 

patients with disorders of consciousness: the decrease in power in the alpha range compared to healthy 

controls. We approach this finding as a weakening or disappearance of the alpha peak and exploit it 

for the clinical diagnosis of the state of consciousness in DOC subjects. We perform a peak analysis 

on the PSD and measure INTs (probed through ACW) from EEG signals obtained from twenty-five 

healthy controls and eight-eight DOC patients. 

Quantifying the weakening of the alpha peak in DOC 

A decrease in resting-state power in the alpha band consistent with a decrease in the state of 

consciousness has already been reported.9,12,16,17 We extended this finding by employing peak-

analysis aimed at specifically quantifying not only the decline in power, but also the weakening of 

the alpha peak in its characteristics (i.e. peak-related measures). Alpha peak measures show 

significant decreases in DOC individuals across almost all measures in both frontal and occipital 

electrodes, with the only exception being maximum power (which shows an increase in DOC subjects) 

and width. Additionally, we note the shifting of the alpha peak to the theta band in several DOC 

individuals. This phenomenon has been reported in MCS subjects29 and has also been observed in 

healthy subjects under the influence of ketamine.6,30,31 Importantly, patients administered with 

ketamine report dream-like experiences upon emergence from anesthesia48 indicating the presence of 

consciousness and opening up the question of whether patients in MCS could share a similar 

experience. Further research should aim to replicate these findings and explore whether a peak in 

power in the theta band could potentially serve as an indirect correlate of a reduced/altered, yet present, 

state of consciousness.   

Regarding maximum power, multiple studies have linked high amplitude of delta waves to states of 

reduced or loss of consciousness, such as deep sleep23,49,50 and anesthesia.23,49,51 Further, an increase 

in delta power has been demonstrated as a consistent finding in patients with disorders of 

consciousness.9,12,14,16,17,23 While “maximum power” in our measurement of alpha or theta peak does 

not necessarily correspond to the maximum power in the delta band itself, it is worth noting that the 
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PSD for EEG signals generally exhibits an inverse exponential trend, placing maximum power almost 

invariably in the delta range. With this limitation in mind and considering the different methodology 

employed in our study, we indirectly replicate the finding of increased delta power in DOC patients. 

Prolongation of INTs mediates the impact of theta peak on the level of 

consciousness 

First, we replicate the finding of prolonged INTs in DOC patients with respect to control 

individuals.23,24,49 Our study replicates and extends previous results through the inclusion of ACW-e-

1 and adds to the growing body of literature on INTs and their relation to consciousness, neurological 

and mental disorders.52–57  

The negative correlations between our peak measures and ACW indicate that the weakening of both 

alpha and theta peak is strongly related to prolongation of the INTs. Moreover, controls and patients 

with absence of a spectral peak exhibit a longer ACW (see Supplementary Figures 2 and 3), which 

further extends the relation between spectral peaks and INTs along the continuum from the weakening 

of alpha and theta peaks to their disappearance. These results appear robust, with correlations 

applying both to controls and DOC patients.  

In our study, we find weak-to-moderate correlations between ACW and CRS-R in occipital electrodes 

for subjects displaying a theta peak (n = 27). , The mediation analysis pointed at the possible 

explanation of INTs as mediator in the relationship between theta peaks and the level of consciousness 

(i.e. CRS-R).  

On a related note, previous research has found that some healthy subjects may demonstrate low 

amplitude or no alpha peak, a phenotype known as Low-Voltage EEG (LVEEG).58 LVEEG has an 

elusive definition, with some studies defining it as a low voltage across the whole frequency 

spectrum59 and others restricting their definition specifically to the alpha band.60 Bazanova and 

colleagues58 report a prevalence ranging between 3 and 13% in healthy adults, in line with our 

findings (i.e. 12%). Given our correlational findings, we suggest, albeit tentatively, that LVEEG may 

be related to longer INTs in these healthy subjects. However, this remains to be further tested in the 

future. 

Peak analysis and INTs as potential markers for the state of 

consciousness 

The correlations observed between ACW and CRS-R, coupled with our mediation analysis findings, 

suggest the possibility of utilizing our spectral measures and ACW as markers for the state of 

consciousness. This possibility was first explored through split analyses, demonstrating that the 
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conjoined ACW and peak measures yielded good discrimination between controls and DOC. This, in 

turn, guided our machine learning analyses, which demonstrated high accuracy (95.5%) for the 

combined alpha peak-ACW model in discriminating controls from DOC subjects, indicating that the 

weakening, shifting to the theta range and, ultimately, the disappearance of the alpha peak might 

possess important information for assessing the state of consciousness.  

While further research is needed, the use of peak analysis and ACW could potentially serve as a 

relatively straightforward method for clinicians to obtain a preliminary assessment of a patient’s 

consciousness state through a quick glance at a PSD or at an Autocorrelation Function (ACF) graph. 

Indeed, the pronounced differences in our measures between controls and DOC individuals are readily 

apparent upon visual inspection (e.g., see Figure 3 for a comparison of PSDs between healthy controls 

and DOC patients, and Figure 5A for two ACF graphs depicting healthy and DOC individuals). 

However, our machine learning results suggest that our measures currently lack the precision required 

for a more fine-grained clinical distinction of the state of consciousness, such as discriminating 

between MCS and UWS.  

However, as demonstrated in previous machine learning studies,9,16 optimal outcomes in classifying 

subjects based on their state of consciousness are achieved when combining EEG markers of diverse 

natures: each marker serving a unique role, with some excelling in discriminating controls and UWS, 

while others in distinguishing between MCS and UWS, and so forth. For instance, ACW and Peak 

analysis measures, by effectively differentiating healthy individuals from DOC, may aid in bridging 

the gap between behavior and consciousness by identifying cases of Cognitive Motor Dissociation 

(CMD).61–63 Further validation is needed to determine whether more fine-grained measures of ACW 

and spectral peak analysis could allow for an accurate distinction between MCS and UWS.  

Limitations 

Important limitations regarded  the sample size, which for most of our analyses was low (especially 

for mediation analysis, which requires longitudinal data and large sample sizes to obtain reliable 

results),47 a direct consequence of the fact that most DOC patients did not show any spectral peaks in 

the frequency bands of interest. Indeed, our approach through peak analysis here exhibits its greatest 

weakness, that is, not being applicable to all participants.  

Additionally, multiple factors are known to influence alpha band amplitude, such as, for example, 

cerebral blood flow (with power increasing as blood flow increases).66 Importantly, suppression of 

the alpha band waves is obtained upon eye-opening, a phenomenon known as the Berger effect.67 

Indeed, these possible confounding factors were not accounted for in our research, with half of our 

patients being affected by stroke (and therefore likely having significantly impaired or altered cerebral 
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blood flow) and whether DOC patients had their eyes opened or closed at the moment of recording 

was not documented.  

Furthermore, research on quantitative EEG undermines the idea of alpha power being specifically 

linked to the state of consciousness. Some studies have found a decreased relative alpha power in 

subjects with mild traumatic brain injury (the second most common cause of DOC in our dataset),68 

while a lower relative alpha power appears to be a key prognostic marker in stroke patients69 (stroke 

being the leading cause of DOC in our dataset). A recent study conducted by Colombo and 

colleagues15 has found that a decrease in alpha power could discriminate exclusively between anoxia 

and non-anoxia DOC individuals, but not between conscious and unconscious subjects. The authors 

concluded that alpha power suppression might indicate widespread cortical damage, rather than 

carrying specific information about the state of consciousness. Indeed, the studies referenced in this 

paragraph, along with recent research,70 highlight the crucial role of etiology in Disorders of 

Consciousness, identifying it as a major confounding factor in the search for markers for 

consciousness.  

Finally, our study, like many others investigating markers for the state of consciousness, measures the 

validity of its proposed markers using the CRS-R as benchmark – the same scale that researchers seek 

to overcome. This presents a complex epistemological challenge71 that we acknowledge, although we 

do not intend to tackle.  

Conclusion 

Building upon existing literature, we emphasize the connection between the decrease in power within 

the alpha band and the level or state of consciousness—a relationship that remains to be fully 

understood. Through peak analysis, we developed novel measures to quantify and measure the alpha 

peak itself, and showed its weakening, shift to theta peak, and/or complete disappearance in the 

resting state EEG of patients with DOC. This was accompanied by prolongation of INTs, as measured 

through ACW, which correlates with standardized behavioral assessment of consciousness (i.e. CRS-

R) in DOC subjects. Mediation analysis hinted at the possibility of ACW mediating the relationship 

of alpha/theta peak with the level of consciousness. Finally, through data sorting with split analyses 

and machine learning, we demonstrate that the conjoint measures of both alpha peak and INTs can 

effectively differentiate controls and DOC individuals with high accuracy. In conclusion, we 

highlight the intricate relationship between alpha/theta peaks, ACW and the state of consciousness 

(i.e. CRS-R) which, tentatively, lays the groundwork for future research aimed at exploring these 

measures as potential clinical biomarkers of the level or state of consciousness. 
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Supplementary material 

Modulating peak analysis 

To modulate the analysis, the “findpeaks” function provides the option to apply various thresholds to 

exclude undesired peaks from the output. One such threshold is the ‘minimum peak width’, which 

can be set to exclude peaks with widths below the specified threshold from the function’s output. The 

only thresholds used in our analysis were: minimum distance between peaks (set to 0.4 in our study) 

and minimum peak prominence (set to 0.1 in our study). The values just noted, and the values obtained 

for the spectral measures previously described, are expressed as units of X and Y coordinates, 

respectively. As an example, a peak whose width ranges from x1 = 9 to x2 = 11 will have a width of 

|x2| – |x1|= 2; a peak whose power is y1 = -3.2 and highest minimum is y2 = -3.7 (in logarithmic scale) 

will have a prominence of |y2| – |y1| = 0.5. Units for the X-axis measures (i.e. width and frequency) 

are therefore expressed in Hz, whereas units for the Y-axis measures (power, prominence, maximum 

mower, and minimum power) are in the unit of power.  
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We additionally note that the analysis was performed on the PSD with power set to logarithmic scale 

in base 10, a commonly used way to visualize power spectral graphs. The function returns the PSD 

graph with the identified peaks annotated, and all graphs (both frontal and occipital) were visually 

inspected. 

Supplementary figures 

 

Supplementary figure 1 – Correlations between ACW and alpha spectral measures. 

Correlations between ACW and alpha spectral measures (both in controls and in DOC) are 

present in theta peak DOC individuals too.  
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Supplementary figure 2 – ACW in patients with and without a peak. 

DOC patients with a peak appear to have a shorter ACW, on average. However, only occipital 

electrodes reveal statistically significant differences. 

 

Supplementary figure 3 – ACW in healthy controls with and without a peak. 

Similarly to DOC patients, controls without a peak appear to exhibit a longer ACW. Given the 

scarce number of subjects without a peak in the control group (frontal = 3, occipital = 3) results should 

be interpreted with caution.  

 

 

Supplementary table 1 – Results for healthy-MCS-UWS classification problem across 10 

folds. 

The table presents the results for our second classification problem, utilizing the combined 

alpha peak – ACW SVM model. Overall, we notice a sharp decrease in accuracy, while other 

measures of performance remain high – likely a correlate of a high accuracy in classifying healthy 

controls. 
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Supplementary figure 4 – Confusion Matrix for the combined alpha peak-ACW SVM model, 

classifying Healthy Controls vs. DOC subjects.  
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Supplementary figure 5 – Confusion matrix for healthy-MCS-UWS classification problem. 

The alpha peak-ACW SVM model correctly identifies healthy controls with extremely high 

accuracy. However, spectral measures and ACW do not appear to hold relevant information for 

distinguishing between MCS and UWS.  
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