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1-Introduction 

Coastlines are highly dynamic and changing environments that show large 

temporal and spatial variability in response to the action of different and complex 

coastal processes essentially linked to waves, currents, sea level and winds. 

Buitrago et al.1 define Coastal Hazard as “any process (natural or anthropogenic) 

that can cause loss or harm to life, property, services or heritage placed in its 

path.” According to Bevacqua et al.2 coastal vulnerability is “a spatial concept 

that identifies people and places that are susceptible to disturbance resulting from 

coastal hazard”. Natural hazards in coastal areas have been rising dramatically 

in recent years due to increasing human presence and sudden climate change3, 

such as flooding, rising sea levels, and increased frequency and intensity of 

storms. Knowledge of long-term wave and wind characteristics is a key aspect 

to guarantee coastal environment safety and protection and facilitate all marine 

activities3.  

The characterization of wave climate requires long-term time series of wave 

parameters at a particular location. These time series are usually obtained 

through wave propagation models capable of simulating the transformations 

undergone by wave motion in transfer from deep water to shallow water4. Wave 

predictions in deep waters have experienced significant developments during the 

last few decades and the skill of the state-of-the-art models has been shown to 

be generally good. However, the predictions are very sensitive to the wind fields 

used as has been demonstrated by previous studies5. Nowadays, the quality of 

the wind fields over the oceans is generally good, but for the enclosed basins, 

where the surface winds are affected by the presence of land, the skill of the wind 

models decreases6.  Wave hindcasts in climate research and coastal engineering 

have multiplied in recent years7, becoming one of the most powerful means of 

reconstructing the time series of the main parameters describing wave 

characteristics in coastal areas.  

These hindcast databases have the advantage of providing good spatial 

resolution7 and allowing the reconstruction of continuous time series with 

homogenous forcing8 that cover a very long period (even more than 40 years)7. 
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However, the process is fraught with certain problems that can be summarized 

in the three points below: 

• They can show quality problems.  

• The accuracy of the description of wave properties is low in shallow 

water as the spatial resolution is too limited.  

• Interaction with bathymetry generates wave transformations that are 

generally not considered by models.  

The main technique used to estimate the value of wave parameters near the coast 

is "wave downscaling". Wave downscaling can be defined as the process of 

refining and detailing wave data from a coarse resolution scale (e.g., global data) 

to a higher, localized resolution scale (e.g., regional, or coastal data). This 

process aims to retrieve accurate wave conditions in specific areas, such as 

coastal zones. 

There are three main approaches for processing downscaling: 

1. Statistical downscaling: it uses statistical and mathematical techniques 

(e.g.,) to adjust low resolution data to a better resolution9. 

2. Dynamical downscaling: it requires the implementation of a wave 

propagation model to simulate the transformation processes that waves 

undergo while approaching the coast (e.g. reflection, bottom friction, 

shoaling diffraction, breaking) from deep water to shallow water7. 

3. Hybrid downscaling: it involves integrating the previous two approaches. 

When performing a wave downscaling, it is necessary to find a compromise 

between adequate spatial resolution and sustainable computational impact10; 

choosing one type of downscaling over another significantly affects the latter. 

Final outcome of a wave downscaling is the time series reconstruction of the 

wave parameters. Long (i.e. for several decades) continuous hourly time series 

without gaps are needed to characterize the mean and extreme wave conditions 

and its climate variations. The resulting wave time series from simulations 

require however comparison against recorded values from in situ measurements 

(e.g. bouys). This procedure is named data validation. 
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When using hybrid or statistical wave downscaling approaches, the time series 

reconstruction can be achieved through different mathematical techniques. Two 

main types of techniques used for this reconstruction are: 

• The application of mathematical equations that allow to reconstruct the 

complete dataset through regression methods, such as interpolation 

functions. One multivariate technique belonging to this group is the 

Radial Basis Function (RBF). 

• The implementation of machine learning techniques involving the use of 

Artificial Neural Networks (ANN). The introduction of a limited number 

of inputs within the neural model enables the reconstruction of the time 

series through activation functions solved into the structure. 

 

 

1.1-Work aims 

The main objective of this work is to investigate the use of the artificial 

intelligence (neuronal networks) in hybrid wave downscaling techniques. To this 

end, the author of this study has the following secondary objectives: 

• To learn and understand the physical processes associated with wave 

generation and propagation. 

• To apply a hybrid downscaling technique to a coastal study area, which 

combines numerical modeling with mathematical techniques. 

• To investigate the use of machine learning techniques to optimize hybrid 

wave downscaling to obtain continuous time series at target coastal 

locations. 

 

1.2-Software used 

The present work was performed entirely using the support of MATLAB 

software. MATLAB is a programming platform design specifically for engineers 

and scientists. It uses a matrix-based language allowing the most natural 

expression of computational mathematics. This software allows to analyze data, 

develop algorithms, and create models. For this work, the software was used to 

implement statistical analysis, to manage and generate data, and to obtain graphs 
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and plots.  In addition, the capabilities of some characteristic toolboxes, such as 

the Machine Learning Toolbox, were exploited for the creation and the 

implementation of neural networks. 

 

1.3-Framework of the study area 

The study area is the Andalusian coastal stretch, between the Almeria harbor and 

the promontory of Cabo de Gata, in Spain (Figure 1).  

 

 

 

Figure 1- Study area. The location of the two buoys used for validation, Almeria (red 

placeholder) and Cabo de Gata (blue placeholder), is also displayed. Figure obtained 

from Google Earth. 

1.3.1-The Mediterranean Sea 
 

The Mediterranean Sea is characterized by a steady increase in coastal 

vulnerability, due to a steep rise in extreme weather events, that result in a surge 

of humans’ loss, and human-induced settlement pressure. It is therefore very 

important to know how the evolution of these phenomena modifies the 

vulnerability and coastal risk11 and the impact it has on marine activities12.  
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The western part of the Mediterranean is typified by intense socio-economic 

activity and concentration of marine traffic, partly because it is a connecting zone 

between the Atlantic Ocean, the Red Sea and the Black Sea12. 

All the aspects highlighted so far testify to the fundamental importance of a 

correct and precise analysis of the marine dynamics in this basin. 

Currently, several studies have assessed the spatial and temporal trends of key 

marine parameters in the Mediterranean Sea. The impact of waves on coastal 

areas or infrastructure is not only connected to the energetic properties of the 

wave motion, but also to the persistence of certain conditions12.  

 

1.3.2-The Andalusian Coast 
 

In the Mediterranean basin, the development of economic activities close to the 

coast has particularly characterized the Spanish coastal area near the Costa del 

Sol, generating a significant increase in the number of people and property 

subjected to wave action and more generally to all those natural phenomena 

related to ongoing climate change13.  

In order to protect human and commercial activities near the coast, it is therefore 

essential to carry out studies that include an accurate characterization of the 

coastal environment14. 

The Andalusian area is tectonically controlled by the Betic Range, a mountain 

system located in southern Spain; the mountains in this chain also reach 

significant altitudes near the coast, and this aspect markedly influences the 

climate and coastal orography. 

Rivers and streams flow through the study area, which, thanks to the input of 

sediment, promote the generation of small floodplains near the coast15.  

However, the regulatory plans of these basins have led to the construction of 

structures such as dams and reservoirs resulting in the limitation of fluvial 

sediment supply to the coasts and aggravation of erosion problems16.  

Regarding the grain-size characteristics of the beaches, the Andalusian coast is 

quite heterogeneous: the provinces of Cadiz, Malaga, and Granada are 

characterized by medium/coarse-grained sands and intermediate to reflexive 
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morpho-dynamic regimes15. These regimes are characteristic of beaches that 

have coarse-sized pebbles and reflect much of the energy of incoming waves14. 

Meanwhile, the Almeria area has beaches composed of quartz-rich fine-grained 

sands that exhibit dissipative morpho-dynamic regimes, characterized by the 

presence of bars and good stability of the beach morphology17.  

Beaches in this area are frequently interrupted by the presence of pocket beaches, 

small beaches located within two headlands (natural or artificial) that have an 

important influence on littoral dynamics.17 

In terms of tidal characteristics, the Andalusian coast has a purely microtidal 

environment, with tidal ranges generally less than 20 cm.15  

Storm events are frequent, especially in the season from November to March. 

The Gibraltar area is mainly affected by storms coming from the east, while the 

Malaga and Almeria area is affected by both easterly and western storms.14  

The main coastal drift, related to the characteristics of the wind and the dominant 

sea in terms of direction and intensity, has an east-west trend.14 

The Andalusian coast has been affected in recent decades by an important 

industrial and tourist development, with recreational tourism activities (about 

41% of the coastal land concerned), commercial/port (2.5%) and industrial 

(2.3%). Areas characterized by significant natural development are also common 

(4.7%), while among the activities of the marine environment, the importance of 

fishing (0.9%) should be emphasized.15 This intense development of nearshore 

activities and services results in a steady development of studies related to the 

prediction of marine parameters in the coastal environment. 

 

1.4-Thesis outline 

In the second chapter, an overview of the main wave parameters analyzed in this 

study is provided and the wave propagation characteristics offshore the coastal 

study area will be described. 

The third chapter describes the data used in this study. 

In the fourth chapter, the methodology used to develop a high-resolution wave 

downscaling of the main wave parameters is described, focusing on the 
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techniques used to reduce data dimensionality and the techniques used for the 

time-series reconstruction at the target points. 

In the fifth chapter, the results obtained using the previously described approach 

will be presented. Both reconstruction techniques will be compared with the data 

measured by buoys to assess which methodology is more appropriate. 

Finally, in the last chapter, conclusions are presented, highlighting the strengths 

of the methodology and possible future developments of the work. 
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2-Wave climate  

Wave climate is the long-term statistical description of waves in a particular 

region or location. It encompasses the frequency, intensity, and characteristics of 

waves observed over an extended period, typically spanning several years or 

decades. Wave climate provides valuable information about the typical wave 

conditions experienced in a given area, including seasonal variations, extreme 

events, and trends over time. 

 

According to Holthuijsen (2008)18, a wave is the «profile of the surface elevation 

between two successive downward zero-crossings of the elevation (zero = mean 

of surface elevations)» while the surface elevation is «the instantaneous 

elevation of the sea surface (i.e., at any one moment in time) relative to some 

reference level ». A scheme of these definitions is shown in Figure 2. 

The description of the main parameters related to wind-waves requires an 

assumption: for relatively limited time intervals (e.g., 1 hour), or sea states, the 

wave motion can be studied considering it statistically stationary18. By adopting 

this assumption, the wave field can be described by integrated wave parameters, 

which represent an average value of the main wave characteristics (e.g., 

significant wave height, mean period, mean direction for the wave height, period, 

and direction, respectively).  

 

Figure 2-Definition of wave and elevation surface in a time record (source: 

Holthuijsen, 2008) 
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To accurately describe ocean waves, it is necessary to introduce the concept of 

wave spectrum. 

The wave spectrum is a mathematical representation of the energy distribution 

of ocean waves as a function of their frequency (or period) and direction. The 

most accurate representation of the energy associated with the wave spectrum is 

that provided by the variance density equation, which describes the wave 

spectrum by considering the variation of its amplitude spectrum: 

𝐸(𝑓) = lim
∆𝑓→0

1

𝛥𝑓
𝐸{

1

2
⍶2} 

 

(1) 

 

The wave spectrum provides a theoretical basis for understanding and predicting 

the sea state. A sea state refers to the prevailing conditions of the ocean surface 

at a specific location and time, encompassing various parameters that describe 

the behavior of waves. It is determined by factors such as wind speed, duration, 

and direction, as well as the interaction between waves, currents, and the ocean 

floor. Sea state parameters include significant wave height and wave period, 

 

 

 

2.1-Wave spectral parameters: wave height and wave period  

 

Spectral parameters are derived from the spectral moments of the wave 

spectrum. 

The parameter that most immediately describes wave motion characteristics is 

the wave height (H), «the vertical distance between the highest and the lowest 

surface elevation in a wave»18. In a wave record with N waves, the mean wave 

height 𝐻̅ is then readily defined as: 

 

𝐻̅ =
1

𝑁
∑ 𝐻𝑖

𝑁

𝑖=1

 

 

(2) 
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where i is a single wave within the wave record. 

The significant wave height (HS) is frequently used instead of the individual 

wave height as it gives integrated information on the waves reaching the coast 

over a sea state. The HS, from a spectral point of view, is a statistical measure of 

wave height within the spectrum. HS is calculated from the first spectral moment, 

Hm0, defined as the square root of the second moment of the wave spectrum.: 

𝐻𝑠 = 4√Hm0 

 
(3) 

where HS is the significant wave height and Hm0 is the zeroth spectral moment. 

Hm0 is calculated from the energy distribution within the wave spectrum by the 

following formula: 

𝐻𝑚0 = ∑ 𝐸𝑖

𝑁

𝑖=1

 

 

(4) 

where Ei is the energy associated with each frequency band in the wave 

spectrum, N is the total number of frequency bands in the spectrum. 

 

The wave period is defined as «the interval between one zero-down crossing and 

the next».18  

The mean period of a sea state can be obtained through the following equation: 

 

𝑇0 =
1

𝑁
∑ 𝑇0,𝑗

𝑁

𝑗=1

 

 

(5) 

where i is a single wave within the wave record. 

From a spectral point of view the wave period can be described as follows. 

The peak period (Tp) is typically obtained from the spectral peak frequency, 

which corresponds to the frequency with the maximum energy in the spectrum. 

The mean wave period (Tm02) can be derived from the second spectral moment, 

representing a measure of the central tendency of wave periods: 

 

𝑇𝑚02 =
∑ 𝑇𝑖𝐸𝑖

2𝑁
𝑖=0

∑ 𝐸𝑖
2𝑁

𝑖=1

 (6) 
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Where Ti represents the period of each wave component in the spectrum, Ei the 

energy associated with each wave component and N is the total number of wave 

components.  

 

 

2.2-Wave propagation 

In the context of coastal engineering studies, it is essential to understand the 

mechanisms that govern wave propagation in deep and surface waters. 

Particularly, the changes the wave undergoes in its motion toward the coast as it 

interacts with the bathymetry are of great importance. 

As the movement toward the coast progresses, the wave profile tends to become 

steeper with an increase in wave amplitude and a decrease in length. Then, wave 

breaking occurs, with dissipation of the energy transported by the wave19.  

The basis in the field of wave propagation is the linear theory18, which can be 

applied to describe wave propagation in both oceanic and coastal environments. 

Linearity implies that there is no interaction between the waves during their 

motion, and the main assumption for applying the theory is that the waves exhibit 

a small amplitude relative to the wavelength and depth of the water18. Water is 

considered as an ideal fluid, whose movement is controlled only by the earth's 

gravitational force; this assumption allows water to be identified as an 

incompressible fluid with constant density and no viscosity.18  

There are two equations that govern the linear theory: a mass balance equation 

and a momentum balance equation. 

The continuity equation is derived from the mass balance equation: 

 

𝜕𝑢𝑥

𝜕𝑥
+

𝜕𝑢𝑦

𝜕𝑦
+

𝜕𝑢𝑧

𝜕𝑧
= 0 

 

(7) 

This is a linear equation expressed in terms of the velocities of water particles 

ux, uy and uz. 
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The moment balance equation for the three main directions is represented as 

follows: 

𝜕𝑢𝑥

𝜕𝑡
= −

1

𝜌

𝜕𝑝

𝜕𝑥
 

 

(8) 

𝜕𝑢𝑦

𝜕𝑡
= −

1

𝜌

𝜕𝑝

𝜕𝑦
 

 

(9) 

𝜕𝑢𝑧

𝜕𝑡
= −

1

𝜌

𝜕𝑝

𝜕𝑧
− 𝑔 

 

(10) 

 

In the z-direction the term g appears as the volume weight of water acts in that 

direction. 

Wave propagation is closely related to the wind action in open sea. This action 

is a very complex phenomenon that can be represented by a three-dimensional 

vector that varies randomly in time and space. 

To understand the influence of wind in wave formation and propagation, it is 

necessary to introduce the concept of fetch. Fetch is defined as the distance 

across which the wind can blow in a constant and uniform direction across the 

sea surface without encountering obstacles. The greater the fetch, the higher and 

more energetic the waves generated will be.18 

When waves approach the shoreline their main characteristics, such as amplitude 

and direction, undergo changes related to the fact that the depth is limited. 

Various phenomena develop in shallow waters: 

• Shoaling: a phenomenon that causes a change in the direction of wave 

propagation due to a change in group velocity, i.e., the propagation speed 

of a wave train18. 

• Refraction: modification that generates a change in the direction of wave 

propagation, mainly due to depth-induced changes in the phase velocity 

along the wave crest18. 

• Diffraction: a phenomenon similar to refraction, which is, however, 

generated by the presence of obstacles such as islands and headlands18. 
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• Reflection: modification that causes a partial return of wave energy 

toward the point where it originated. The triggering of this phenomenon 

is because the wave may encounter obstacles such as rocky headlands, 

defense works, and changes in the topographic features of the seabed 

during its path18. 

The most complex phenomenon to describe, however, is wave breaking. There 

are several types of breaking, which can be estimated through the Iribarren 

number (or surf similarity parameter, ε)18: 

 

𝜀 = 𝑡𝑎𝑛𝛼/√𝐻/𝐿∞ 

 
(11) 

 

By calculating this parameter in deep water: 

 

𝜀0 = 𝑡𝑎𝑛𝛼/√𝐻∞/𝐿∞ 

 
(12) 

with H∞ representing the wave height in deep water and 𝐿∞ = g𝑇/2𝜋, the 

following types of breaks are identified: 

• Spilling: if ε0 < 0.5 

• Plunging: if 0.5 < ε0 >3.3 

• Collapsing or surging: ε0 > 3.3 

The Iribarren number influences not only the breaking mechanism but also the 

way wave reflection occurs and the run-up of the wave on the beach (i.e., the 

maximum vertical distance the wave reaches on the beach). 

The breaking process causes a limitation of wave height in surface waters; this 

aspect has heavy implications in the assessment of HS with consequent impacts 

in the design of coastal defense works. 
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3-Data  

In this chapter, the databases employed for the study are described. Section 3.1 

provides information about the wind data, while section 3.2 describes wave data 

from observations (3.2.1) and hindcast (3.2.2). Finally, section 3.3 details the 

bathymetric information used. 

 

3.1 Wind Data 

The main forcing force driving the formation of wave motion is wind. Wind-

generated waves are formed when the wind blows over the surface of the water 

and transfers kinetic energy to the water. 

In recent years, the number of measured observations of wind and atmospheric 

pressure at sea level has increased significantly over the North Atlantic European 

coast and shelf. However, measurements from in-situ instruments, although the 

most reliable, lack the spatial resolution necessary to undertake global and 

regional scale studies. Since the 1980s, satellite data provide good spatial 

coverage, but with discontinuous temporal measurements. Given these 

problems, the use of data from calibrated global atmospheric numerical models 

has become very popular, as it provides a spatially and temporally consistent set 

of atmospheric variables over a long period. 

One of the most recent global reanalysis products is ERA-5, developed by the 

European Centre for Medium-term Climate Prediction Facility (ECMWF), with 

hourly temporal resolution and spatial resolution of 0.25º20. The wind fields from 

ERA5 are used in this study as input forcings or the numerical wave modelling. 

The ERA5 reanalysis product has been validated against in-situ records. It has 

been used in multiple studies, showing, for example, its skill to reproduce 

weather types21 and its skill to model wind power more accurately than previous 

models, such as MERRA-222. 

Like any reanalysis database, ERA5 combines observational data with coupled 

models of the climate subsystems through the process of data assimilation. It 

uses the IFS Cycle 41r2 4D-Var data assimilation system and currently covers 

the period from 1979 to the present.  
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3.2-Wave Data 
 

To develop this study, it has been used two sources of wave  data: those measured 

in situ from bouy gauges, and those obtained through wave models from 

numerical simulations (hindcast). 

 

3.2.1) In situ measurements 
 

Instrumental wave measurements provide valuable information on the behavior 

of the waves. The in-situ records provide local information that require specific 

quality control, often providing data for periods of time that are too short to carry 

out a rigorous climate study (for which at least three decades of information are 

recommended to characterize natural climate variability).  

In this work, the observational data have been used to validate the wave 

dynamics databases used as boundary conditions in the downscaling process, 

and to validate the databases generated. Regarding the latter, the comparison 

with in-situ records allows for validation of the generated databases, both for the 

mean values and different magnitudes of each variable, including a validation of 

extreme events.  

The buoys of Almeria and Cabo de Gata have been used in this work to validate 

the data. The former is located within the harbor of Almeria, while the latter is 

close to a promontory. More details about the characteristics of the buoys are 

given in the table below (Table 1). Additionally, the map in Figure 3 shows their 

location along the Andalusian coast. 

 

Buoy Coordinates 
(°) 

[Lon-Lat] 

Code BuoyNet Observed period Depth 
(m) 

Almeria 2.48W-

36.83N 

1537 REDCOS 27/7/2000-

6/9/2006 

15 

Cabo 

de Gata 

2.20W-

36.71N 

1518 REDCOS 10/4/91-

6/5/2012 

35 

 

Table 1-Buoy characteristics 
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Figure 3-Buoy position along the Andalusian coastline. The bathymetry of the area is 

also shown. 

 

3.2.2) Hindcast wave data 
 

In recent years, wind wave hindcasts have become the most widely used tool for 

obtaining marine weather/climate information to be exploited in coastal areas23.  

Hindcasting is a technique that uses models to retrospectively simulate past 

marine conditions. 

To develop the nearshore downscaling, a wave dataset to be used as boundary 

conditions is required. Since the size of nearshore downscaling grid is frequently 

small for computational purposes, the waves reaching the coast are likely not 
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generated within the grid. Thus, waves are introduced in the contour of the grid 

from a regional wave hindcast database (ROW database, Figure 4). 

 

Figure 4-Domains of the wave hindcast ROW, with 1 km horizontal resolution. 

 

ROW is a set of historical wave reconstructions with 1 km of resolution 

developed at IHCantabria, which is produced through a dynamic wave 

downscaling of the global Global Ocean Waves (GOW) product also developed 

at the same institution. The particular ROW product covering the Andalusian 

coast spans for the historical period 01/1985-12/2019 with hourly resolution. 

This database was generated using the SWAN (Simulating WAves Nearshore) 

numerical model on a grid with a spatial resolution of 1 km covering the entire 

Andalusian coastal area. 

 

3.3-Bathymetry  

To generate the domains, bathymetric and shoreline information from different 

sources has been integrated. It is summarized below: 

• DTM 1st coverage (2008-2015) with 5 m grid pitch from the IGN.  

• Bathymetric data from the eco-cartographic studies of the Spanish 

Ministry for Ecological Transition and Demographic Challenge 

(MITERD) for the coastline province of Almería and Granada (2008-

2009). 

• EMODnet (2020) in those areas where no ecocartes were available, such 

as the province of Huelva and offshore areas. The link is made through a 
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coastline generated from the IGN coastline in natural areas and the IGN 

municipal boundary in anthropic areas, always anthropic environments, 

always supported by the National Plan of Aerial Orthophotography 

(PNOA) of the most up to date. 

 

The work was carried out considering the bathymetry information referenced to 

the Alicante Mean Sea Level (AMSL), which is the zero of the eco-cards and 

coastline.  
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4-Methods 

This chapter presents the downscaling methodology used in this work, with 

particular focus on the reconstruction approach used to obtain the time series at 

the target points. Section 4.1 describes the numerical wave propagation setup 

(subsection 4.1.1) and the case selection process (subsection 4.1.2.).  Section 4.2 

describes the approaches to reconstruct of time series using RBF (4.2.1) and 

ANN (4.2.2). Section 4.3 presents a description of the data validation process, 

analyzing some representative error metrics. 

 

4.1-Hybrid downscaling Approach 

The generation of a high-resolution coastal wave database (hereinafter DOW, 

Downscaling Ocean Waves) using a hybrid downscaling methodology allows to 

significantly reduce the computational effort with respect to a dynamic 

downscaling (for example, a wave hindcast using SWAN propagations for a long 

historical period). The approach defined as DOW has been developed by 

IHCantabria7  and applied in multiple projects for the last decade. 

The DOW database analyzed here covers the period 1985-2019 on the coast 

reaching 100 meters of spatial resolution. 

Figure 5 shows the DOW development methodology. The process will be fully 

explained in the next sections. 
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Figure 5-DOW development methodology. 

 

 

 

4.1.1-Selection of Cases: data standardization, dimensionality 
reduction (PCA) and clustering (MDA) 

 

The hybrid approach is based on simulating a limited number of sea states 

independently, so that the full time series can be reconstructed through 

interpolation afterwards. Simulation cases have been chosen using the maximum 

dissimilarity algorithm (MDA) clustering algorithm.  

Wave and wind data are considered as input variables to perform the clustering. 

The points in which wind and wave data are obtained from ERA5 wind fields 

and ROW database, respectively, are shown in Figure 7. In particular, the wave 

variables considered to conduct the classification are HS, Tp, Tm02, Dir.; the wind 

variables considered are E(v) and N(v), representing the wind speed along the 

east-west and north-south directions, respectively. 

As mentioned in Chapter 4.1 the selection based on these variables leads to 

different problems in data processing, which can be summarized as follows: 



 

27 

 

• The variables involved may have very different ranges of variation, 

which may consequently result in different weights of the variables 

during clustering. 

• The number of variables involved in the process is too large to be 

managed in the clustering process. 

• Hindcast data simulations returns very good spatial resolution but at the 

same time requires unsustainable computational effort. 

 

The first problem is solved applying a data standardization technique that allows 

to homogenize all variables involved, rescaling to a null mean and a standard 

deviation of 1. This is achieved following the formula below: 

 

𝑍 =
𝑥 − 𝑋

𝜎
 

 

 

(13) 

where Z is the rescaled value, x is the value of the variable in a specified point, 

X is the mean of the values of the variable, and σ is the standard deviation. 

 

The dimensionality reduction of variables is performed using the PCA. This 

technique allows to eliminate redundant information with a minimum loss of 

data, compress and transform it to a new space. Each PC represent a certain 

percentage of variability and the first PC represent the most variance. 

 
𝜎𝑡 = 𝜎𝑃𝐶1 + 𝜎𝑃𝐶2 + 𝜎𝑃𝐶3 + ⋯ + 𝜎𝑃𝐶𝑁 

 

 

𝜎𝑃𝐶1 > 𝜎𝑃𝐶2 > 𝜎𝑃𝐶3 > ⋯ > 𝜎𝑃𝐶𝑁 

 

 

(14) 

The goal of PCA is to find the minimum number of components that will 

guarantee a given variance of the total data. 

The original data can be expressed as a linear combination of PCs and EOFs 

(Empirical Orthogonal Function)7, a useful function to identify dominant modes 

of temporal and spatial variation in the data: 
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𝑋(𝑥, 𝑡𝑖) = 𝐸𝑂𝐹1(𝑥) × 𝑃𝐶1(𝑥) + 𝐸𝑂𝐹2(𝑥) × 𝑃𝐶2(𝑥) + ⋯

+ 𝐸𝑂𝐹𝑑(𝑥) × 𝑃𝐶𝑑(𝑥) 

 

(15) 

Obviously, the variance is more accurately described as the number of PCs 

considered increases, but the aim of this application is to select a limited number 

of components that ensure a certain percentage of variability. To estimate the 

appropriate number of PCs, the root mean square error (RMSE) of the offshore 

wave and wind condition is performed, progressively increasing the number of 

PCs and explained variance7.  

At the end of this process, it became clear that 99% of the variability of the data 

in the analysis performed is accurately described by 16 components. The 

components thus identified are representative of the 16 points used as forcings 

for the SWAN model during the DOW (Figure 6). 

 

 

 

Figure 6-SWAN model input point distribution; the 16 points representing the wave 

forcing (obtained via PCA) and the 2 representing the wind forcing (obtained from the 

ERA-5 model) for DOW. 

 

 

The last problem is solved by applying a data clustering algorithm (Maximum 

Dissimilarity Algorithm, MDA) at the points identified by PCA (Figure 7) to 
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identify a subset of temporal data that is representative of the maximum 

dissimilarity within a given database 19.  

MDA is a hierarchical-agglomerative clustering method. Hierarchical-

agglomerative methods are clustering algorithms that initially consider each 

point in the data set as an individual cluster. They then progressively join the 

closest clusters together to create a hierarchical cluster structure. This technique 

allows us to identify from a sample of M data, the subset of N data that explain 

the highest variability of the total set. 

 

The goal of the MDA is to minimize the redundancy between the selected data. 

In this work it was chosen to select 500 representative cases. The case from 

among the 306792 with the highest HS is chosen as the starting data for 

clustering, to keep within the data processed by SWAN the value that is thought 

to produce the greatest damage in the studied stretch of coastline.  

The algorithm next identifies within the cases the one that is most dissimilar to 

the previously identified; in this case dissimilarity is assessed not only based on 

the characteristics of HS but also in relation to the other wave variables (e.g., 

wave period, wave direction, ecc.) and wind.  

Mathematically, the most dissimilar case compared to the previous one is 

calculated through an equation that allows us to obtain the Euclidean distance 

between the selected case and all the others: 

 

𝐷𝑖 = ∑‖𝑥𝑖 − 𝑥𝑗‖; 𝑗 = 1, … . , 𝑁 

𝑁−1

𝑗=1

 

 

(16) 

Where N is the number of cases chosen as representative (500 in this work). 

The most dissimilar case will be the one that presents the greatest distance 

compared to the first case. 

The newly selected case becomes the current, and the process continues 

iteratively until the required 500 cases are identified. Then the set will be 

representative of a wide range of possible situations. 

The 500 cases identified through the application of the MDA to the wave and 

wind fields represented in the PCA are then numerically simulated with SWAN 



 

30 

 

(Section 4.1.1) to obtain information on the main marine variables of interest at 

a very high resolution (about 100 m) within the reference mesh. The target 

domain for this work is M0184 (Figure 7). 

 

 

Figure 7-Position of external domain (ROW) and internal domain (DOW, 100 m of 

resolution) 

4.1.2-Numerical Wave Propagation Setup (SWAN) 
 

SWAN is a third-generation spectral model developed by NOAA/NCEP. Third-

generation wave models can simulate a wide range of wave conditions and are 

used in various applications, including weather forecasting, coastal engineering, 

maritime operations, and oceanography. They are an essential tool for 

understanding and predicting ocean wave behavior, ensuring safety at sea, and 

making informed decisions related to coastal and offshore activities. 

SWAN is based on the solution of the phase-averaged wave action equation. This 

equation allows to correctly simulate the processes of refraction, scattering, 

dissipation with the bottom, dissipation by white capping, break-up, non-linear 

interactions, wind wave generation at regional scales and diffraction. The use of 

implicit schemes for solving the equations and the inclusion of specific terms for 

shallow water make it the most suitable tool for high-resolution coastal wave 

propagation. 

The model is based on the following equation24:  

 
𝜕

𝜕𝑡
𝑁 × +

𝜕

𝜕𝑥
𝑐𝑥𝑁 +

𝜕

𝜕𝑦
𝑐𝑦𝑁 +

𝜕

𝜕𝜎
𝑐𝜎𝑁 +

𝜕

𝜕𝜃
𝑐𝜃𝑁 =

𝑆

𝜎
   

(17) 
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Where N (σ, θ; x, y, t) is the wave action density that is a function of frequency 

σ, direction θ, horizontal coordinate x, y, and time t24. The first three terms on 

the left describe the propagation and evolution of N over time and in the two 

horizontal directions9. The fourth term is representative of the shift in frequency 

induced by changes in current and depth. The fifth quantifies the refraction 

phenomenon induced24. S, on the other hand, is representative of the effects of 

generation, dissipation, and non-linear wave-wave interaction24: 

 

𝑆 = 𝑆𝑖𝑛 + 𝑆𝑛𝑙3 + 𝑆𝑛𝑙4 + 𝑆𝑑𝑠,𝑤 + 𝑆𝑑𝑠,𝑏 + 𝑆𝑑𝑠,𝑏𝑟 

   
 

(18) 

Sin represents the wind input, which is considered the main factor in the 

equation9. Snl3 and Snl4 are parameters that consider the non-linear interactions 

that characterize wave motion in deep and surface water, respectively. The last 

three parameters are instead representative of the phenomena of white capping, 

bottom roughness and depth-induced wave breaking. 

The SWAN version 41.20 was implemented in its stationary mode and sensitivity 

analyses were performed to find the best configuration of the numerical model. 

The data used by the model in the runs have been full-spectrum data, discretized 

in 48 directions and at 40 frequencies ranging from 1.5 Hz to 0.0324Hz, thus 

ensuring that all variability was captured. Parameters associated with breakdown 

dissipation (BREAK=0.73), dissipation by whitecapping (WCAP=2.36E-05) 

and bottom friction (FRIC=0.038) are configured for the specific analysis area. 

The rest of the parameters were configured following the recommended default 

values. 

 

4.2-Reconstruction of time series  

The following subsections present in detail the methods of time series 

reconstruction by interpolation functions such as the RBF (4.2.1) and ANN 

(4.2.2). 
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4.2.1-Radial Basis Function 
 

An RBF is a function whose value depends on the radial distance from a central 

point. This function is often used in various contexts, including interpolation, 

function approximation, and machine learning. 

To reconstruct the time series of waves during the historical period (1985 - 2019) 

in the proximity of the Andalusian coast, non-linear interpolation techniques 

based on RBFs are used, applying the methodology described in Camus et al., 

2011. This scheme is very advantageous when dealing with sparse and 

multivariate data19.  

The methodology is based on the calculation of an RBF approximation function, 

formed by a linear combination of symmetric radial functions, centered at the 

points given by the propagated cases (where the function at these points results 

in the exact value of the propagated parameter). In total, as many RBF 

approximation functions will be calculated as many wave parameters have been 

used.  

More in detail, through the application of an approximation function obtained by 

a weighted sum of radially symmetric basic functions at the 500 points derived 

from the MDA algorithm, the implementation of the RBF function is carried out: 

 

𝑅𝐵𝐹(𝑥) = 𝑝(𝑥) + ∑ 𝑎𝑗𝜙(||𝑥 − 𝑥𝑗||)

𝑀

𝑗=1

 

 

(19) 

Where ϕ is the RBF, p(x) is a monomial basis formed by a number of monomials 

of degree one equal to the size of the data and a monomial of degree zero, being  

𝑏 = {𝑏0, 𝑏1, … , 𝑏𝑛}  the coefficient of these monomials. M is the number of 

cases selected with MDA and xj is the associated real-valued function for every 

case 𝑓𝑖 = 𝑓(𝑥𝑗), 𝑗 = 1, … , 𝑀. Finally, aj and b are the RBF and monomial 

coefficient respectively.19 

The goal of the RBF application is therefore the reconstruction of the time series 

for all parameters of interest at any point within the mesh using an interpolation 

function. 
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The calculation process of the function begins with the normalization of all 

variables considered. At this point, each deep-water sea state is defined through 

the expression 𝐷𝑗 = {𝐻𝑖, 𝑇𝑖, 𝛳𝑖, 𝑊𝑖 , 𝛽𝑖}; 1, … , 𝑁, and each selected case is 

expressed using the function 𝐷𝑗 = {𝐻𝑗
𝐷 , 𝑇𝑗

𝐷 , 𝛳𝑗
𝐷 , 𝑊𝑗

𝐷 , 𝛽𝑗
𝐷}; 𝑗 = 1, … , 𝑀 The 

interpolation function will be calculated as follows: 

 

𝑅𝐵𝐹(𝑋𝑖) = 𝑝(𝑋𝑖) + ∑ 𝑎𝑗𝜙(||𝑋𝑖 − 𝐷𝑗||)

𝑀

𝑗=

 (20) 

 

With 𝑝𝑋𝑖 = 𝑏0 + 𝑏1𝐻1 + 𝑏2𝑇1 + 𝑏3𝛳1 + 𝑏4𝑊𝑖 + 𝑏5𝛽𝑖 and ϕ is a Gaussian 

function defining the shape parameter c: 

 

𝜙 (||𝑋𝑖 − 𝐷𝑗||) = exp (−
||𝑋𝑖 − 𝐷𝑗||

2

2𝑐2
) 

 

(21) 

Finally, the time series are transferred from deep to surface water at the point of 

interest by using the following functions: 

 

𝐻𝑠𝑝,𝑖 = 𝑅𝐵𝐹𝐻({𝐷𝑗𝐻𝑠𝑝,𝑗(𝑗 = 1, … , 𝑀)}, 𝑋𝑖); 𝑖 = 1, … , 𝑁 (22) 

 

𝑇𝑚𝑝,𝑖 = 𝑅𝐵𝐹𝑇({𝐷𝑗𝑇𝑚𝑝,𝑖(𝑗 = 1, … , 𝑀)}, 𝑋𝑖); 𝑖 = 1, … , 𝑁 

 

(23) 

𝛳𝑥𝑝,𝑖 = 𝑅𝐵𝐹𝛳𝑥
({𝐷𝑗𝛳𝑥𝑝,𝑖(𝑗 = 1, … , 𝑀)}, 𝑋𝑖); 𝑖 = 1, … , 𝑁 

 
(24) 

𝛳𝑦𝑝,𝑖 = 𝑅𝐵𝐹𝛳𝑦
({𝐷𝑗𝛳𝑦𝑝,𝑖(𝑗 = 1, … , 𝑀)}, 𝑋𝑖); 𝑖 = 1, … , 𝑁 

 
(25) 

 

The result is the reconstructed time series at a specific location in shallow water: 

 

𝑋𝑝,𝑖
∗ = {𝐻𝑠𝑝,𝑖𝑇𝑚𝑝,𝑖, 𝛳𝑚𝑝,𝑖}; 𝑖 = 1, … , 𝑁 (26) 
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The time series reconstruction using RBF is carried out at the points represented 

by the Almeria and Cabo de Gata buoys (Figure 3). Unfortunately, the two buoys 

under consideration do not have records of wave direction, so that only the 

significant wave height (HS), peak period (Tp), and average period (Tm02) will 

be considered. 

After reconstructing the time series for the parameters of interest, it was decided 

to derive scatter plots representative of the comparison between the data obtained 

using the RBF and the data measured from the buoys.  

 

4.2.2-Artificial Neural Networks 
 

In recent years, the development of sophisticated machine learning systems has 

made it possible to test an alternative method for reconstructing time series. 

In particular, ANNs are widely used, as they are capable of studying the non-

linear behavior that characterizes wave motion when the transformation 

phenomena involving it occur upon reaching shallow water25. 
Browne et. all, have defined the ANNs as “a flexible learning architecture which 

rely on the presentation of input and target data, rather than a theoretical model, 

for the estimation of an underlying physical relationship”. 
The development of these systems is modeled based on the characteristics of the 

human brain26. Precisely because of their similarity to biological neural 

networks, they do not need to be pre-programmed to perform a given task as 

their functioning is based on adaptive learning27.  
ANN are networks formed by groups of individual elements, called neurons, 

which operate in parallel and are organized in level, called layers. Any neuron 

receives an input, processes it and produces an output28. 

Neural networks typically have three layers: 

• Input layer: the input layer receives as input raw data representing the 

force variables of the neural model. These data undergo a transformation, 

which will be analyzed in more detail later, and are then transported into 

the hidden layer through the connection between these two layers29.  
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• Hidden layer: the main calculations are implemented and the different 

dependencies between the variables are extracted in this layer29. 

Essentially, hidden layers play a crucial role in enabling neural networks 

to model complex relationships in data, making it possible to process 

information and generate output. 
• Output layer: this is the layer that yields the value of the interest 

variable29. In summary, the output layer is crucial for generating the 

results that are usable by the network based on its learning capabilities 

and the requirements of the specific problem. Thoughtful design of this 

layer is essential for achieving optimal performance in addressing the 

given problem. 

The neural network used in this work belongs to the category of feedforward 

networks. These neural networks have a simple structure and are defined as 

'unidirectional' because the data flow cross through the network without loops or 

feedback (Figure 8).  

 

 

 

Figure 8-Feedforward neural network structure. 

 

However, there are several critical aspects in managing and training a neural 

network with these characteristics: 

• Data set partitioning: in the context of neural networks, it is common 

practice to divide the input data into three different subsets, represented 

by the training set, the test set and the validation set.  
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The training set is the portion of the dataset used to train the neural 

network; the network tries to capture relationships in the training data to 

minimize errors so that it generalizes well to new similar data. 

The validation set is used during training to evaluate the network 

performance on data that were not used for training. This set is important 

to monitor the network's behavior on previously unanalyzed data and to 

prevent overfitting. Overfitting is a phenomenon in which a machine 

learning model fits the training data too well but does not generalize 

correctly to new inputs. In other words, the model learns the details and 

noise present in the training data to the point that its ability to make 

accurate predictions on unobserved data diminishes. 

The test set is used at the end of the training process, after the network 

has been fully trained. This set represents completely new data, which 

the network has never seen before. The goal is to evaluate the network's 

performance on new data to make sure that the model generalizes well 

and is not too specific to the training data. The results of the test set 

provide an estimate of the model's effectiveness. 

In this work, the outputs of the 500 cases simulated using SWAN model 

were divided as follows: 70% of the data was used for training while the 

remaining 30% was split equally between validation and test sets.  

The division of the 500-input data into the three sets just described is 

done randomly, so that each time the network is processed, the data 

processing and the results obtained are different. This has implications 

for the stability of the model, but it ensures that the network is better able 

to adapt to different inputs. 

• Weights initialization: Once the partitioning of the dataset is done, the 

initialization of connection weights between the various neurons takes 

place. These are parameters that are learned by the network during 

training and influence the performance of the model. In the present work, 

the method of initializing the weights used is the Ngueyen-Widrow 

method. This is a process that involves initialization to ensure that the 

active region of each neuron is causally but uniformly distributed within 
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the input space of the layer; this aspect is crucial to ensure that each 

neuron is sensitive to different inputs in a uniform manner, preventing 

some neurons from over-specializing on specific patterns during the 

initial training phase. 

• Activation/transfer function: Activation functions are used to introduce 

nonlinearities into neural networks. This aspect allows the network to 

learn complex relationships in the data, enabling it to fit more intricate 

patterns that are thus adaptable to more data. In a nutshell, the activation 

function defines the output of a neuron relative to the weighted sum of 

its inputs. 

In this thesis, the activation function used is the hyperbolic tangent 

function. In addition to introducing as mentioned nonlinearity, the 

function returns output data that are in a range between -1 and 1; this 

limited range allows for greater stability of the neural model. 

• Optimization algorithm: Optimization algorithms are methods used to 

update the weights of the neural network during the training period. 

The main objective of an optimization algorithm is to limit the cost 

function. This function is representative of the discrepancy between the 

values obtained by the neural model and the values to which one would 

like the model to approach, in this case the measured parameters. 

Limiting the cost function through the optimization algorithm should 

therefore return results progressively closer to those measured as the 

model's training progresses, thus minimizing error. 

The optimization algorithm used in this work is the Levenberg-

Marquardt algorithm. It acts progressively on the weights connecting the 

various neurons allow progressive minimization of the error. 

A relevant aspect to consider when training a neural network is the model 

stability. To pursue this, in addition to working on the parameters described 

above, the structural characteristics of the network in terms of the number of 

neurons, layers and iterations must also be considered. In fact, these 

characteristics have an important influence on the results obtained from the 

model; a very simple model, characterized by a few neurons, layers and 
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iterations, may lead to inaccurate prediction of the parameters of interest while 

a more complex model could lead to overfitting issues, also increasing the 

computational time required to process the network.  

 

The stability of the model is then related to how the input data are treated. 

Previously it was seen that the input data were divided into the training, test, and 

validation sets randomly. This provides the network with good adaptability to 

different input data from each other by preventing it from being too specific and 

unable to adapt to the input of new data. At the same time, however, instability 

tends to be generated because the partitioning of the input data into the network 

is different each time the network is processed. 

 

All scatter plots and time series presented in Chapter 5.2 results from the 

iteration giving the minimum test error. The test error is a measure of the model 

adaptability to new training data so minimizing it is indicative of a model that 

provides better stability and increased performance. 

 

4.3-Validation against in-situ data 

Several error metrics have been calculated for evaluating the performance of the 

reconstruction against buoy data. The error metrics considered are: 

• BIAS, that represents the discrepancy between the average value 

predicted by the model and the actual value of the parameter: 

𝐵𝐼𝐴𝑆 =
∑ (𝑦𝑖 − 𝑥𝑖)2𝑛

𝑖=1

𝑛
 

 

(27) 

 

• RMSE (Root Mean Square Error), a measure of the dispersion of model 

predictions from actual values. It is calculated by taking the square root 

of the mean of the squares of the differences between predicted and actual 

values. In essence, it provides an estimate of the standard deviation of 

the model errors. A lower RMSE indicates greater accuracy of the model 

in its predictions. 
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𝑅𝑀𝑆𝐸 = √
1

𝑛
∑(𝑥𝑖 − 𝑦𝑖)2

𝑛

𝑖=1

 (28) 

 

• SI (Scatter Index), which is indicative of the dispersion of the data 

concerning a given regression line. A lower value indicates less 

dispersion of the data around the regression line while a higher value 

indicates greater dispersion resulting in a less accurate fit of the model 

used to the data. 

𝑆𝐼 =
𝑅𝑀𝑆𝐸

𝑥̅𝑖
 

 

(29) 

 

• CORR (Correlation Coefficient), which measures the strength and 

direction of the linear relationship between two variables. It takes values 

between -1 and 1, where 1 indicates perfect positive correlation, -1 

indicates perfect negative correlation and 0 indicates no linear 

correlation. 

𝐶𝑂𝑅𝑅 =
∑ (𝑥𝑖 − 𝑥̅)𝑛

𝑖=1 (𝑦𝑖 − ӯ)

√∑ (𝑥𝑖 − 𝑥̅)2𝑛
𝑖=1 √∑ (𝑦𝑖 − ӯ)2𝑛

𝑖=1

 

 

(30) 

 

• R2 (Determination Coefficient), a statistical measure that represents the 

proportion of variance in the data dependent on the independent variable 

in the regression model. In other words, R2 indicates how well variations 

in the dependent variable can be explained by variations in the 

independent variable. An R2 closer to 1 indicates a good fit of the model 

to the data, while an R2 closer to 0 indicates a worse fit. 

𝑅2 = 1 −
∑ (𝑦𝑖 − ŷ𝑖)2𝑛

𝑖=1

∑ (𝑦𝑖
𝑛
𝑖=1 − ӯ)2

 

 

(31) 
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5) Results 

This chapter reports the results obtained from the previously described analyses. 

Section 5.1 presents the results of RBF reconstruction, while section 5.2 reports 

those obtained through ANN reconstruction. Section 5.3 compares the results 

obtained from the two different reconstruction methods. 

 

5.1) RBF reconstruction 

Below are reported the scatter plots obtained by performing a reconstruction of 

the HS (Figure 9), Tm02 (Figure 10), and Tp (Figure 11) parameters through 

RBFs for the two buoys under analysis.  The scatter plots show the pairs of 

hourly data values (colored according to their probability of occurrence) and the 

percentiles of the distribution (black and red diamonds). In the graphs are also 

shown information on key error metrics (see Chapter 4.3) 

 

 

Figure 9-Comparison of HS estimated parameter using the DOW-RBF approach for 

the buoys of Almeria (left) and Gabo de Gata (right) 
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Figure 10- Comparison of Tm02 estimated parameter using the DOW-RBF approach 

for the buoys of Almeria (left) and Gabo de Gata (right). 

 

 

Figure 11- Comparison of Tp estimated parameter using the DOW-RBF approach for 

the buoys of Almeria (left) and Gabo de Gata (right). 

 

It can be seen from the plots that the HS for the Cabo de Gata buoy is the most 

accurately reconstructed parameter, while the model struggles to return an 

adequate representation of Tm02 for the Cabo de Gata buoy and both parameters 

for the Almeria buoy. 

According to these results, the subsequent investigations will focus on the HS 

parameter. 

 

Scatter plot in Figure 12 shows the comparison between the HS data obtained 

from the reconstruction through the RBF and the data measured from the Cabo 

de Gata buoy. 



 

42 

 

 

 

Figure 12- HS scatter plot obtained using DOW-RBF approach for the buoy of Cabo 

de Gata buoy. 

 

The reconstruction through the RBF tends to underestimate the values measured 

from the buoy. Many of the data, especially for the higher wave height values, 

are on the right-hand side of the graph. This indicates that the reconstruction 

returns lower wave height values than those measured by the instrument. 

Figure 13 shows the entire time series for the period 1991-2012, the period for 

which the Cabo de Gata buoy data are available. 
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Figure 13-Comparisons between the time series measured from the Cabo de Gata 

buoy (red line) and that reconstructed at the same point with the DOW-RBF (black 

line) during the period 1991-2012 for the HS parameter. 

 

In conformity with the previous analysis, it is evident from the graphs that the 

wave height data reconstructed through the RBF method are generally lower than 

those measured from the buoy. This is particularly evident for the higher HS 

values. 

For example, the maximum wave height value measured by the instrument 

during the above period in the year 2008 is about 4.8 meters. The same value 

obtained through RBF reconstruction is about 3.3 meters.  

 

5.2) ANN reconstruction 

The reconstruction through ANN aims to reduce the discrepancies with respect 

to the data measured by the buoy encountered with the RBF method.  

Initially, we chose to process the network with multiple combinations of neurons, 

layers, and number of iterations to see how the model fits to the input data (Table 

2).  
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Table 2- Combinations of neurons, layers, and iterations used. 

 

The number of iterations used in this first phase of analysis is quite low and has 

been set at 5, so as not to burden the analyses too much from a computational 

time point of view, particularly with regard to more complex neural networks. 

From the network processing, it can be seen that the reconstruction algorithm 

has difficulties to fit the Almeria buoy, as already seen in the analysis performed 

with the RBF (Figures 9-10-11), especially regarding the mean period, but also 

with regard to the wave height. Two examples are shown for both variables in 

Figure 14, using a simple neural network consisting of 2 neurons and 2 layers 

and a more complex one consisting of 8 neurons and 4 layers (Figure 15). 

 

 

Figure 14- Scatter plot of the HS and Tm02 parameters estimated using the DOW-ANN 

approach (2 neurons, 2 layers) for the Almeria buoy. 

 

Neurons Layers Iterations 

2 1

4 2

6 3

8 4

5ANN
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Figure 15- Scatter plot of the HS and the Tm02 parameters estimated using the DOW-

ANN approach (8 neurons, 4 layers) for the Almeria buoy. 

Reconstructing the time series at the Almeria buoy is complex due to the 

characteristics of the area in which the buoy is located. The instrument is located 

within the port of Almeria. Marine dynamics near areas such as harbors are 

complex due to phenomena that modify wave properties, especially for the wave 

period. Indeed, reflection phenomena are triggered within ports that models fail 

to interpret correctly. As proof of this, the data obtained from the reconstruction 

performed in the vicinity of the Cabo de Gata buoy, which geographically is not 

very far from that of Almeria, agree much better to those measured by the 

instrumentation. To demonstrate this, scatter plots obtained near the Cabo de 

Gata buoy are shown below. The same combinations of neurons and layers seen 

previously are shown, i.e., 2 neurons and 2 layers (Figure 16) and 8 neurons and 

4 layers (Figure 17). 
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Figure 16- Scatter plot of the HS and the Tm02 parameters estimated using the DOW-

ANN approach (2 neurons, 2 layers) for the Cabo de Gata buoy. 

 

 

Figure 17- Scatter plot of the HS and the Tm02 parameters estimated using the DOW-

ANN approach (8 neurons, 4 layers) for the Cabo de Gata buoy. 

 

The reconstruction through ANN confirmed the results obtained with RBFs, 

showing that the most accurately reconstructed parameter is the HS for the Cabo 

de Gata buoy. Thus, as it was the case for the RBF (Chapter 5.1), the ANN 

analysis will focus on the HS.  

Once defined the target location and variable (HS in Cabo de Gata) multiple ANN 

were tested with the combinations of neurons and layers seen before, but with a 

variable number of iterations in order to evaluate the impact of these three 

parameters on the results. After processing the network several times, it was seen 

that an increase in the number of neurons and layers does not correspond to more 
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reliable estimates for the parameter of interest. Some scatter plots related to the 

HS parameter for the Cabo de Gata buoy are given as examples (Figures 18-21). 

 

 

Figure 18-HS scatter plot obtained using the DOW-ANN approach (2 neurons, 1 layer 

with 80 iterations) for the Cabo de Gata buoy. 
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Figure 19- HS scatter plot obtained using the DOW-ANN approach (4 neurons, 3 layer 

with 20 iterations) for the Cabo de Gata buoy. 

 

 

Figure 20- HS scatter plot obtained using the DOW-ANN approach (6 neurons, 2 layer 

with 40 iterations) for the Cabo de Gata buoy. 
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Figure 21- HS scatter plot obtained using the DOW-ANN approach (8 neurons, 4 

layers with 160 iterations) for the Cabo de Gata buoy. 

 

As the number of neurons and layers increases, the network tends to return less 

satisfactory results, suggesting overfitting issues.  

The number of iterations, which is representative of the number of times the 

training algorithm crosses the entire dataset during the learning process, 

markedly influences the stability of the model. During each iteration, the neural 

network updates its parameters (weights and bias) to progressively limit the 

difference between the returned predictions and the measured values. The 

appropriate number of iterations is closely related to factors such as the 

complexity of the problem, the dimensionality of the data that are part of the 

training set, the structural characteristics of the neural network, and the 

optimization algorithm used. 

To evaluate the most appropriate number of iterations for the case study, it was 

decided to analyze the minimum test error in relation to the number of iterations 

for each combination of neurons and layers. (Figure 22). 

As seen earlier, test error is a parameter that returns important information about 

the stability of the neural model.  
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Figure 22- Minimum test error related to the number of iterations for each 

combination of neurons and layers. 

 

From Figure 22, it can be seen that the error tends to stabilize sharply around 

120 iterations. Moreover, this confirms that for the same number of iterations the 

networks minimizing the test error are the simplest ones (low number of neurons 

and layers).  

Considering this, we chose to study the simplest networks in more detail, and 

more specifically those that had a number of neurons equal to two. To prove their 

stability, the network was processed several times. Figure 23 shows the results 

from one of the network processing as an example. 
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Figure 23- HS scatter plots obtained using the DOW-ANN approach (2 neurons and a 

number of layers ranging from 1 to 4, with 120 iterations) for the Cabo de Gata buoy. 

 

It was therefore decided to use a neural network consisting of 2 neurons and 1 

layer with 120 iterations. Again, the network was tested several times to evaluate 

its stability. Figure 24 shows the scatter plots obtained from this analysis, 

performed 8 times. 
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Figure 24- HS scatter plots obtained using the DOW-ANN approach (2 neurons, 1 

layer with 120 iterations) for the Cabo de Gata buoy (8 tests). 
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The complete time series of the HS parameter related to the last scatter plot in 

the previous figure is shown in Figure 25. 

 

 

Figure 25- Comparison between the time series measured from the Cabo de Gato buoy 

(red line) and that reconstructed at the same point with DOW-ANN (black line) during 

the period 1991-2012 for the HS parameter (8° test). 

By analyzing the plots obtained and the error metrics introduced in the Chapter 

4.2, it can be seen that the neural model has acquired good stability through the 

use of the structure formed by 2 neurons, 1 layer, and a number of iterations 

equal to 120 (Table 3). 

 

 

Table 3- Error metrics of each DOW-ANN test (2 neurons, 1 layer, 120 iterations). 

 

 

ANN BIAS RMSE SI CORR R2

Test 1 0.022 0.220 0.305 0.91 0.853

Test 2 0.017 0.218 0.302 0.91 0.856

Test 3 0.005 0.216 0.299 0.91 0.859

Test 4 0.016 0.216 0.299 0.91 0.859

Test 5 0.017 0.216 0.299 0.92 0.858

Test 6 0.013 0.212 0.294 0.92 0.862

Test 7 0.014 0.216 0.299 0.91 0.859

Test 8 0.014 0.214 0.296 0.92 0.861
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With regard to HS, the reconstruction with ANN, as it was seen for RBFs, tends 

to underestimate the values measured by the buoy (Figure 24). Looking at the 

maximum HS value measured from the Cabo de Gata buoy, the reconstruction 

using ANN returns a value approximately equal to 3.7 m. 

 

5.3) Reconstruction skill comparison 

A very important aspect of the results obtained with reconstruction using ANN 

is the better accuracy regarding the most extreme values with respect to the 

reconstruction using RBFs. Indeed, all the tests performed with ANN return 

better results in comparison with the reconstruction pursued with the RBF. It can 

be seen from the scatter plots in Figure 26 how the highest values of HS are closer 

to the datum recorded by the buoy in the reconstruction performed with ANN 

than that obtained by employing RBFs. The scatter plot for the ANN 

reconstruction shown in the Figure 26 is referring to last test shown in Figure 24. 

 

 

Figure 26- HS scatter plot obtained using the DOW-RBF approach (left) and the 

DOW-ANN approach (left) for the Cabo de Gata buoy. 

The comparison of the two scatter plots obtained with the RBF and ANN 

reconstruction techniques allows for a more immediate visualization of the 

difference between the maximum estimated HS value and the maximum value 

measured by the buoy. In fact, the first method returns a value approximately 

equal to 3.3 m, the second approximately equal to 3.7 m. Although this may seem 

a small difference, it may be critical for the design of coastal defense works. 
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As seen already in the comparison of the two-time series reconstruction methods 

performed earlier, the ANN seems to return more accurate estimates of extreme 

wave height conditions, i.e. potentially more destructive events.  

Therefore, it was decided to perform an analysis that considers only the higher 

quantiles of the HS parameter. This test was performed using the results obtained 

from the last experiment conducted with the neural network chosen for this study 

(last scatter plot in Figure 24). 

Three tests were performed, considering Hs values measured from the Cabo de 

Gata buoy above quantile 80, 90 and 90, respectively. The 99 was not selected 

because the number of data used would have been very limited, not ensuring 

adequate statistical variability. 

The analysis on the highest quantiles pursues the goal of confirming the 

improvement obtained from reconstructions carried out with ANN compared 

with those obtained derived from the use of RBF, making the difference in 

reconstructing extreme values more easily describable and representable.  

Below are the scatter plots for both methods used in this study, in the framework 

of the analysis at quantile 80 (Figure 27), 90 (Figure 28), and 95 (Figure 29). 

 

 

Figure 27- HS scatter plot at quantile 80 obtained using the DOW-RBF approach (left) 

and the DOW-ANN approach (right) for the Cabo de Gata buoy. 
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Figure 28- HS scatter plot at quantile 90 obtained using the DOW-RBF approach (left) 

and the DOW-ANN approach (right) for the Cabo de Gata buoy. 

 

 

Figure 29- HS scatter plot at quantile 95 obtained using the DOW-RBF approach (left) 

and the DOW-ANN approach (right) for the Cabo de Gata buoy. 

Results show clear differences between the outcomes from reconstruction 

through ANN and RBF. This can be appreciated both visually, but also through 

the analysis of the main error metrics calculated.  

In particular, the discrepancy between the BIAS values obtained with the two 

reconstruction techniques is quite stark and allows us to understand how, 

especially in the analysis of extreme values, the reconstruction by means of ANN 

gives values significantly closer to those measured by the buoy (Table 4). 
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Table 4- BIAS values at quantiles 80, 90 and 95 obtained using the DOW-RBF (left 

column) and the DOW-ANN approach (right column). 

 

As a further confirmation, we also note that by focusing the analysis on 

progressively higher quantiles, the difference in the BIAS value between the 

results obtained applying the two reconstruction methods is higher. 

The RMSE also shows an interesting trend in values. As can be seen from Table 

5, for higher quantiles the ANN tends to give results that are more comparable 

to those measured by the buoy. 

 

 

Table 5- RMSE values at quantiles 80, 90 and 95 obtained using the DOW-RBF (left 

column) and the DOW-ANN approach (right column). 

Regarding SI, it shows a downward trend for higher quantiles in the 

reconstruction with ANN, while it is relatively stable in the reconstruction with 

RBF (Table 6). This testifies that for higher quantiles the data returned by ANN 

shows less dispersion than that of RBF. 

 

 

Table 6- SI values at quantiles 80, 90 and 95 obtained using the DOW-RBF (left 

column) and the DOW-ANN approach (right column). 

 

RMSE RBF ANN

Quantile 80 0.312 0.326

Quantile 90 0.370 0.358

Quantile 95 0.442 0.388

SI RBF ANN

Quantile 80 0.195 0.204

Quantile 90 0.188 0.182

Quantile 95 0.191 0.168
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With regard to the other error metrics (CORR and R2), there are no particular 

differences between one reconstruction method and another. 

 

Another interesting aspect when comparing the two methodologies presented is 

the computational time required to perform the reconstruction.  

The RBF method takes about 40 seconds to process. The implementation of the 

neural network with the characteristics selected for this specific work (2 neurons, 

1 layer, 120 iterations) enabled the reconstruction of the time series in 

approximately 37 seconds (always referring to the test chosen for the previous 

analysis). The computational times used to perform each of the two 

reconstructions are shown in Table 7. 

 

 

Table 7-Time comparison between RBF and ANN approaches. 
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6) Conclusions 

This work demonstrates the applicability of two techniques to reconstruct wave 

hourly time series, RBF and ANN, to obtain high-resolution wave parameters at 

the coast. 

The application of the RBF has shown how difficult it is to get an appropriate 

description of wave parameters in areas characterized by complex morphologies 

(such as, for example, the port area of Almeria), as wave modification 

phenomena are not properly simulated by wave propagation models.  

The implementation of machine learning techniques for the reconstruction of 

wave time series resulted in more accurate estimates of the HS parameter for the 

Cabo de Gata buoy, with respect to RBF technique. Although the data obtained 

through both techniques show a general underestimation compared to the 

measurements taken from the buoy, the use of the ANN resulted in more similar 

values to those measured by the instrument. This aspect has important 

implications in the design of coastal defense works and the protection of 

structures located near the seashore. 

The ANN selected in this work, consisting of 2 neurons, 1 layer and 120 

iterations proved to be stable each time it was processed. Further testing and 

more specific analysis could lead to an even more accurate estimation of the 

wave parameters of interest and a progressive limitation of the computational 

time spent processing the network.  

It was chosen to intervene only in the structural features of the network (number 

of neurons, layers, and iterations), while no changes were made in other aspects 

that may still have some bearing on the stability and accuracy of the network. 

These include, for example, the breakdown of the input data, the initialization of 

the weights, the activation function, and the optimization algorithms used.  

The processing times of the two reconstruction techniques are comparable, 

although that employed by RBF is stable in that the reconstruction is always 

done in the same way, while that of ANN varies between about 35 and 50 

seconds in the 8 times the network chosen for the case study was processed. This 

variability is due to the way the partitioning of the input data takes place, which 

is different each time the reconstruction is performed. 
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The analysis performed on the most extreme values, of maximum interest in the 

engineering design context, suggests that ANN are more adequate than the RBF 

for reconstructing high values of the HS parameter. This finding confirms again 

what was seen previously; once network stability issues are resolved, the 

application of machine learning techniques to reconstruct time series of marine 

parameters can provide a more accurate coastal wave time series. 
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