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Abstract

The current document describes the research conducted during the

internship at the Heudiasyc laboratory at the University of

Technology of Compiègne (UTC) from the 27th of February 2023 to

the 31th of July 2023, and then at Università di Genova until today.

During the internship the problem of neural network verification

through Mixed Integer Linear Programming and Constraint

Programming and the topic of neural network falsification through

sampling have been explored. The report is organized as follows. At

first, the research context of the problem is detailed. Then, a

formulation is proposed for each method. Finally, some results are

gathered and discussed.
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Chapter 1

Scientific Background

Summary

In this chapter the problem of the verification of neural networks is introduced.

This chapter aims at explaining the reasons behind the research, providing a

background on the current state of the art neural network verification tools.

1.1 Introduction

In the last few years, neural networks have found a wide range of applications

across various industries and domains, also due to advancements in hardware,

software frameworks, and the availability of large datasets, and, as a result they

have become one of the most popular machine learning models. However, due to

their ”black box” nature, it is not easy to understand what they do exactly and

it has been discovered that sometimes they are very sensitive to slight changes in

the input data. This has serious implications on the use of neural networks, as

they are now used in safety critical domains, such as autonomous driving systems.
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1.1 Introduction

1.1.1 Neural Network Verification

Neural network verification is a process aimed at ensuring the correctness and

reliability of neural network models. It uses mathematical and formal methods

to analyze the behavior of a neural network and verify that it adheres to certain

safety and correctness properties, which usually involve checking for the robust-

ness of the considered model to changes in the input. The goal of this process

is to provide guarantees that the model will behave as expected under certain

defined conditions and inputs. To this end, bounds on the input and output are

defined and the verification process results in either the satisfiability or unsatisfia-

bility of the conditions, allowing to know whether a particular region of the input

space is safe or unsafe. Usually, conditions on the output are given in such a way

that they define the unsafe region, while conditions on the input are bounds to

an area whose safety we want to deternime. Conditions on the input are called

pre-conditions, while conditions on the output are called post-conditions.

However, it is a challenging task due to the complexity of neural network

architectures, the high number of parameters, and the non-linear behavior in-

troduced by activation functions. As a result, this field is still an active area of

research, and the methods and tools for neural network verification are always

trying to improve its efficiency.

1.1.2 Background and related works

The problem has been tackled using several methods, such as SMT solving [Katz

et al., 2017], approximation methods [Weng et al., 2018], abstract interpretation

[Singh et al., 2019] and mixed integer linear programming [Tjeng et al., 2019].

Each of these methods has its limitations, either in terms of scalability, that

is to say, its efficiency declines rapidly as the network dimension increases, or in

terms of precision. Each method is affected differently by these limitations, as
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1.1 Introduction

reported in Singh et al. [2019].

In general, neural network verification methods can be divided into complete

and incomplete methods [Tjeng et al., 2019]. The difference is that incomplete

methods employ several techniques which enable them to be more efficient, at the

cost of not being able to verify with certainty that all points in the input region

are correctly classified. Such techniques include, for example, discretization of

the search space and layer-by-layer approximations of the bounds.

Mixed Integer Linear Programming is one of the most explored complete meth-

ods among all, and consequently, it has been treated quite in detail in the liter-

ature. The general idea of this method is to encode the network into a mixed

integer linear problem together with the constraints on the input and output.

Challenges of this method include the encoding of the non linear activation func-

tions which are present in every neuron of the network. However, the ReLU

function, the most popular activation function, defined as ReLU(x) = max(x, 0),

is piecewise linear, thus admitting a MILP encoding, although it requires the

introduction of binary variables and a big M, as shown in Tjeng et al. [2019] for

example.

Every state of the art network verification tool using a MILP encoding has al-

ways tried to bring further optimization in the efficiency of the method, in various

forms. [Tjeng et al., 2019] define a presolve step, consisting in finding the bounds

of the input of ReLU functions in the network. This step is carried out through

two methods, one involving interval arithmetic, the other linear programming.

[Botoeva et al., 2020] developed a dependency analysis procedure, which is run

in conjunction with the MILP solver, and is aimed at introducing additional con-

straints between outputs of neurons. Neurons are classified as active, inactive or

neither, depending on their output: a neuron with input x is said to be active

if ReLU(x) = x always and is said to be inactive instead if ReLU(x) = 0. A
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1.1 Introduction

dependency between two neurons means that if one is in a certain state, active or

inactive, then the other is always found in another. Dependencies can be found

between layers of the network (inter-layer dependencies) or in the same layer

(intra-layer dependencies).

Linear programming has also been used as part of other methods which do

not encode the entire problem with a MILP formulation, but only steps of the

verification algorithm. An example of this is found in Henriksen and Lomuscio

[2021], where the authors present an algorithm which is based on relaxing the

ReLU function and Linear Programming is used in the search phase of their

algorithm.

On the other hand, constraint programming has never been tried as a method

to verify neural networks. It provides some advantages when compared to MILP,

such as the flexibility in the choice of the activation function in the network, as

it is not bound by the choice of a piecewise linear function.

4



Chapter 2

Model Encoding

Summary

In this chapter some formal definitions of the neural network verification problem

are given and two models are proposed.

2.1 Definitions

2.1.1 Neural Networks

In the following report, only feedforward fully connected neural networks are

considered, that is to say the output of a layer only affects its successors and not

the input of that same layer, and they are only composed by fully connected and

functional layers. The two types of layers are defined as follows:

• Fully connected layer: it is a linear mapping f(·;W, b) : Rm → Rn such

that, if x ∈ Rm is its input, f(x) = Wx+ b, where W ∈ Rn×m is called the

weight matrix of the layer, and b ∈ Rn is the bias vector of the layer.

• Functional layer: it is a mapping f : Rn → Rn such that, if x ∈ Rn is its
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2.1 Definitions

input, f(x) = (σ(x1), . . . , σ(xn)), where σ : R→ R is a nonlinear function,

called activation function.

Two of the most widespread activation functions are the logistic function, de-

fined as σ(r) = 1
1+e−r and the ReLU (Rectified Linear Unit) function, defined as

ReLU(r) = max(r, 0). The ReLU function is the most popular, but the logistic

function is also sometimes used.

Thus fully connected neural networks can be defined as follows: they are a

mapping f : Rm → Rn, m the size of the input and n that of the output, such

that, if x ∈ Rm is its input, f(x) = fp(fp−1(. . . f1(x) . . .)), where p ∈ N is the

number of layers of the network, and every fi, i ∈ [1, p] is one of the two mappings

defined above.

Two tasks for which neural networks are trained are classification and regres-

sion. Given a network f : Rm → Rn, classification of an input x is assigning to it

one of n labels. An input is classified in class l ∈ [1, n] if fl(x) > fi(x), i ∈ [1, n]\l.

The task of regression instead concerns the approximation of a functional map-

ping from Rm to Rn.

2.1.2 Verification

Given a neural network f : Rm → Rn the task of verification is that of algorith-

mically verifying whether, given some conditions on the input, other conditions

on the output are satisfied. The input domain of the network f is assumed to be

bounded, and consequently the output is too [Demarchi and Guidotti, 2022].

Our verification problem is thus defined as follows: given p ∈ N bounded sets

X1, . . . , Xp and s ∈ N bounded sets Y1, . . . , Yp we want to check whether the

following

∀x ∈
p⋃
i=1

Xi.f(x) ∈
s⋃
i=1

Yi

6



2.2 Mixed Integer Linear Programming

is true. All models detailed further will consider p = 1.

2.2 Mixed Integer Linear Programming

In the following sections, a method to express the neural network verification

problem as solving a Mixed Integer Linear Programming (MILP) problem will be

detailed, based on Tjeng et al. [2019]. In order to provide a fairer comparison,

the MILP model is not optimized in any way.

2.2.1 First formulation

Given a neural network f : Rm → Rn, the requirement for modeling the verifi-

cation problem with MILP is that f must be the composition of piecewise linear

functions. That is the reason this formulation is limited to networks using the

ReLU activation function. As stated before, we consider only a feedforward fully

connected neural network, so every layer in the network is either a ReLU layer,

which is piecewise linear, or a fully connected layer which is a linear transforma-

tion.

The model proposed by Tjeng et al. [2019] is tailored to networks trained for

classification, so this first base model proposition is too. However, it will become

apparent that this is not sufficiently general.

We define X as the region in the input domain corresponding to all allowable

perturbations of a certain input x∗. X must be expressed as a union of polyhedra

for the problem to be expressed through MILP.

µ ∈ [1, n] represents all the possible labels of an input.

λ(x∗) is the true label of x∗ and takes integer values in the interval [1, n].

The neural network is robust to perturbations on x∗ if the predicted probability,

which is represented by the output of the network for a certain input, of the true
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label λ(x∗) exceeds that of every other label for all perturbations. Equivalently,

the network is robust to perturbations on x∗ if the following equation is unfeasible

x ∈ X ∧
(
fλ(x∗)(x) < max

µ∈[1,n]\{λ(x∗)}
fµ(x)

)

A distance metric d(x, x∗) measuring perceptual similarity between inputs could

also be defined and introduced as a cost function. However, this is reasonable

only for networks trained for classification, since for those trained for regression

we are not interested in defining a point and its allowable perturbation region,

rather we define directly a possible input region; moreover, it is not part of our

definition of the verification problem.

Thus the problem formulation is the following feasibility problem:

min 0

subject to fλ(x∗)(x) ≤ max
µ∈[1,n]\{λ(x∗)}

fµ(x)

x ∈ X

In other words, what is found is whether an input in the allowable perturbations

is classified incorrectly.

The current general formulation is not linear, but everything can be linearized

by introducing new variables and/or constraints.

The constraint enforcing the incorrectness of the label is not necessarily written

with a max function in the formulation: it can be written as a disjunction of

inequalities, as it still means that an input is classified incorrectly.

8



2.2 Mixed Integer Linear Programming

∨
µ∈[1,n]\{λ(x∗)}

fλ(x∗)(x) ≤ fµ(x)

They can be linearized by introducing n − 1 binary variables and n big M con-

straints as shown here

fλ(x∗)(x) ≤ fµ(x) +M(1− δµ), ∀µ ∈ [1, n] \ {λ(x∗)}

∑
µ∈[1,n]\{λ(x∗)}

δµ ≥ 1

δµ ∈ {0, 1}

The function f will be composed by ReLUs, which can be linearized by introduc-

ing a binary variable a, which is equal to 0 if the ReLU will be inactive and 1

otherwise, and the following set of constraints, where y is the value representing

the output of the ReLU and x its input:

y ≤ x+M(1− a)

y ≥ x

y ≤Ma

y ≥ 0

It can be seen that if a = 0, then y = 0, and if a = 1, then y = x.

9



2.2 Mixed Integer Linear Programming

2.2.2 Generalized formulation

As stated before, the previous formulation only works if the network is trained

for a classification task. Sometimes networks are trained for other purposes:

for example, controlling a system. In such cases, the architecture of a network

does not change, but the interpretation of the output layer does: it is not the

indication of confidence in a certain class anymore, it is now something else, for

example, the suggestion of an action to take among others to refer to the previous

control example. As a consequence, we may not be interested only in what is the

maximum value of the output, but we may be interested in verifying whether

the maximum is not a certain output or a set of outputs, or even whether the

outputs respect some other property, on a problem per problem basis. Thus, the

previously proposed optimisation problem must be generalized and becomes a

feasibility problem, since we don’t intend to find any distance. The new problem

will still work for classification networks, provided the right property is given.

The property on the output is usually specified as an unsafe property, which

means that if the problem admits a solution, the property is not verified.

The mathematical formulation of the problem is the following:

min 0

subject to
∨
i∈[1,r]

(f(x) ∈ Yi)

x ∈ X

where x ∈ Rm is the input of the network and f(x) ∈ Rn the output, X is a

polytope and every Yi is a convex subset of Rn defined by the intersection of

closed half-spaces and r is the number of these subsets.

10



2.3 Constraint Programming

X is the region of the input for which we want to verify a property on the output.

In general, the property on the output is expressed as a disjunction of various

constraints, that can be linearized by introducing a binary variable for every Yi,

which we will call δi. We also define hi as the number of half-spaces defining Yi.

n∑
j=1

ckjfj(x) ≤ bk +M(1− δi), ∀k ∈ [1, hi],∀i ∈ [1, n]

r∑
i=1

δi ≥ 1

δi ∈ {0, 1}

The nonlinearity introduced by the ReLU function is tackled as described

before.

2.3 Constraint Programming

The following section is aimed at giving an understanding of constraint pro-

gramming and at explaining its application to the problem of neural network

verification.

2.3.1 Basic concepts

From [Apt, 2003] and [Bessière, 2006] here are some basic definitions.

We consider a sequence of variables X := x1, . . . , xk k > 0 and their domains

D1, . . . , Dk. Domains can be sets of integer or real numbers, boolean values or

even symbolic values.
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2.3 Constraint Programming

A constraint on X is defined as a subset of the Cartesian product of the domains

of the variables in the sequence x1, . . . , xk.

A domain expression is a construct in the form x ∈ D, where x is a variable and

D its domain.

A constraint satisfaction problem (CSP) is a sequence of variables X together

with a set of constraints. We write it as ⟨C;DE⟩, where C is the set of constraints

and DE is the set of all the domain expressions of the variables.

A constraint C on the variables X(C) = (xi1 , . . . , xik) is said to be satisfied by

a tuple (d1, . . . , dn) ∈ D1 × . . . × Dn, given a CSP ⟨C;DE⟩ where DE = {x1 ∈

D1, . . . , xn ∈ Dn}, when (di1 , . . . , din) ∈ C.

A constraint satisfaction problem ⟨C;DE⟩ is said to have a solution if a tuple

(d1, . . . , dn) ∈ D1 × . . .×Dn such that it satisfies all constraints in C exists. The

tuple is the solution to the problem. A CSP is called consistent if it has a solu-

tion, otherwise it is called inconsistent.

Given a sequence of variables X = x1, . . . , xn with their corresponding domains

D1, . . . , Dn and a subsequence Y = (xi1 , . . . , xik) the projection of a tuple d =

(d1, . . . , dn) ∈ D1× . . .×Dn is the sequence (di1 , . . . , din), and is denoted by d[Y ].

Given a CSP ⟨C;DE⟩ with variables x1, . . . , xn, an instantiation I on a subset

Y = {x1, . . . , xk} of the variables is an assignment of the values v1, . . . , vk to them.

An instantiation I on Y is valid if I[xi] ∈ Di,∀xi ∈ Y . An instantiation I on Y is

locally consistent if it is valid and I[X(C)] satisfies all C ∈ C s.t. X(C) ⊆ Y .

A locally consistent instantiation on all the variables of a CSP is one of its solu-

tions.

12



2.3 Constraint Programming

2.3.2 Constraint Propagation

In order to solve a CSP, a constraint solver employs a search algorithm, for

example a backtracking search, to assign a value to all the variables, until an

instantiation is found; they may do so by trying to extend a partial instantiation

to a global one. However, exploring the entire search space is a very expensive

task, so the concept of constraint propagation is introduced.

Constraint propagation is a fundamental technique used to narrow down the

domains of variables by exploiting the relationships and restrictions defined by

constraints. It’s a way to deduce new information about variable assignments

from the constraints, thus reducing the search space and finding solutions more

efficiently.

Constraint propagation algorithms generally aim at achieving local consis-

tency. A definition of local consistency is reported verbatim from Bessière [2006]:

”a local consistency is a property that characterizes some necessary conditions

on values (or instantiations) to belong to solutions. A local consistency prop-

erty (denoted by P ) is defined regardless of the domains or constraints that will

be present in the network. A network is P -consistent if and only if it satisfies

the property P”. One such local consistency is arc consistency. As defined in

Apt [2003], let us consider a binary constraint C on the variables x and y, with

domains respectively Dx and Dy. C ⊆ Dx ×Dy is arc consistent if:

• ∀a ∈ Dx,∃b ∈ Dy s.t. (a, b) ∈ C.

• ∀b ∈ Dy,∃a ∈ Dx s.t. (a, b) ∈ C.

A CSP is arc consistent if all its binary constraint are arc consistent. If a CSP is

reduced to an equivalent arc consistent one, that is to say an arc consitent CSP

with the same set of solutions, the search space can be greatly reduced, and for

certain classes of problems, the CSP is also consistent.

13



2.3 Constraint Programming

Now we introduce a framework [Apt, 2003] which will allow us to define

domain reduction rules in order to achieve arc consistency. We consider two

CSPs, ϕ = ⟨C;DE⟩ and ψ = ⟨C′;DE′⟩, where DE = x1 ∈ D1, . . . , xn ∈ Dn

and DE′ = x′1 ∈ D′
1, . . . , x

′
n ∈ D′

n. We introduce proof rules representing the

transformation of a CSP in the form

ϕ

ψ

. The aim is reducing a CSP to another equivalent CSP. A domain reduction rule

is a proof rule ϕ
ψ
where D′

i ⊆ Di, ∀i ∈ [1, n]. A rule R applied on ϕ which results

in ψ is said to be a relevant application of R to ϕ if ψ is different from ϕ. If a

rule R cannot be applied on ϕ or a relevant application of R on ϕ does not exist,

ϕ is said to be closed under the applications of R.

Arc consistency can be expressed in terms of domain reduction rules [Apt,

2003]. Given the following rules and a constraint C on the variables x and y:

R1

⟨C;x ∈ Dx, y ∈ Dy⟩
⟨C;x ∈ D′

x, y ∈ Dy⟩

R2

⟨C;x ∈ Dx, y ∈ Dy⟩
⟨C;x ∈ Dx, y ∈ D′

y⟩

where D′
x = {a ∈ Dx, ∃b ∈ Dy s.t. (a, b) ∈ C} and D′

y = {b ∈ Dy, ∃a ∈

Dx s.t. (a, b) ∈ C}. A CSP is arc consistent if it closed under the application

of R1 and R2. Since these rules preserve equivalence, by repeatedly applying

these rules to any problem, any problem can be transformed into an equivalent

arc consistent one [Apt, 2003].

14



2.3 Constraint Programming

2.3.3 Neural Network Verification as a CSP

In this section we define two domain reduction rules for the ReLU function and

formulate the problem of neural network verification as a CSP.

2.3.3.1 ReLU as a domain reduction rule

Let us consider the CSP ⟨ReLU(x, y);x ∈ [a, b], y ∈ [c, d]⟩, where a, b, c, d ∈

R, c ≥ 0 and y = ReLU(x). The ReLU domain reduction rules are:

⟨ReLU(x, y);x ∈ [a, b], y ∈ [c, d]⟩
⟨ReLU(x, y);x ∈ [a, b], y ∈ [max(a, c, 0),min(b, d)]⟩

⟨ReLU(x, y);x ∈ [a, b], y ∈ [c, d]⟩
⟨ReLU(x, y);x ∈ [e,min(b, d)], y ∈ [c, d]⟩

, e =

c, if c > 0 and c > a

a, otherwise

2.3.3.2 CSP formulation

Given a feedforward neural network f : Rm → Rn and a property to verify, which

means we have bounds on the input x and the output y that may be written as

x ∈ X ⊆ Rm and y ∈ Y ⊆ Rn, we want to model the verification problem as a

CSP. In order to be able to compare the two models, X and Y in practice will

be assumed to be unions of polytopes, and the activation function of the layers

of the network will be the ReLU function.

The variables of the problem are defined as follows:

• the m components of the input xi ∈ R, i ∈ [1,m].

• the n components of the output yi ∈ R, i ∈ [1, n].

• each component of a hidden layer which is the result of the vector multipli-

cation of the fully connected layers zij ∈ R, i ∈ [1, l], j ∈ [1, ci], where l is

15



2.4 Falsification

the number of fully connected layers in the network and ci is the number

of neurons in the layer i.

• each output of the activation function tij ∈ [0,∞], i ∈ [1, r], j ∈ [1, ci],

where r is the number of ReLU layers in the network and ci is the number

of neurons in the layer i.

A remark is that r does not always equal l, as often neural networks do not have

a functional layer as the output layer; in such case r = l − 1.

The constraints of the problem are:

• the Cx and Cy representing the linear bounds on the input and output,

respectively.

• the Cz tying together the output of the vector multiplication and its inputs;

given an output zij and inputs zkh, h ∈ [1, ck], with k = i − 1; they are in

the form zij = (Wizk + bi)j, where Wi is the weight matrix of the layer i

and bi is its bias. For k = 0, zk = x.

• the Ct which are the binary ReLU constraints, tying input and output of

the activation function.

• the Co constraints, which tie together the output of the network y and the

output of the last layer, zl or tr depending on the network; they are in the

form yj = zl or yj = tr with j ∈ [1, n].

2.4 Falsification

Neural Network falsification is a complementary approach to verification that

aims to find scenarios where a neural network model fails to meet its intended

specifications or makes incorrect predictions. While verification aims to prove

16



2.4 Falsification

the correctness of a neural network under certain conditions, falsification seeks

to identify situations where the model behaves unexpectedly or incorrectly. The

process of neural network falsification involves systematically generating test cases

or input data that push the boundaries of the model’s capabilities, potentially

exposing weaknesses, vulnerabilities, or inaccuracies in its behavior. These test

cases are designed to trigger failure modes or edge cases that may not have been

adequately addressed during the model’s development or testing phases.

To this end, we propose a method to determine whether a neural network

satisfies the conditions on the output of a given property by finding at least an

input of the network satisfying both the conditions on the input and the output.

Such input, if it exists, is called a counterexample.

2.4.1 Sampling algorithm

In this section we will propose an algorithm to find a counterexample based on a

uniform sampling on the input region defined by the conditions on the input of

the property which we want to verify.

First, we generate samples to obtain a uniform distribution over our sampling

space, then, we need to check whether a counterexample has been found. In

order to arrive at this objective, we need to calculate the output of each sample

by applying the neural network function and see if it belongs to the unsafe region

defined by the conditions on the output of the property.

The algorithm, based on the Hit and Run sampler described in Smith [1996],

will now be described. Our objective is obtaining a uniform distribution over the

set S ⊆ Rn, which represents the pre-conditions on the n-dimensional input of

the neural network f , and verifying whether any of the outputs of the samples is

in the unsafe region U .

The algorithm is composed of the following steps:
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2.4 Falsification

1. Generate a starting point x0 ∈ S.

2. Generate a random direction d in D ⊆ Rn.

3. Generate a random point x1 in the set L = S ∩ {x|x = x0 + λd, λ ∈ R}.

4. If the number of samples is the desired number, stop, otherwise repeat steps

2 and 3.

5. For each sample xi, check whether f(xi) ∈ U .

6. If f(xi) ∈ U , then the property is unsafe and the algorithm stops.

If no output belongs to the unsafe region, we may not deduce that the property

is safe, since we may simply lack a sample whose output belongs to it.

As shown in Smith [1996], this algorithms generates a distribution of samples

which converges to a uniform distribution, which means that, with enough sam-

ples, it can be approximated to one. The implementation of the algorithm makes

the assumption that the pre-conditions of the property can be represented by a

hyperrectangle, which means that each input of the network is bounded by two

real numbers. This however, is not a relevant restriction, as most properties are

encoded in this way.
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2.4 Falsification

(a) Choice of the starting point (b) Choice of the random direction

(c) Generation of the L set (d) Choice of λ and the next point

Figure 2.1: Visual representation of the steps of the algorithm.
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2.4 Falsification

Data: The network f , the number N of n-dimensional samples to
generate and two vectors lower and upper representing their
bounds, and the set U of unsafe outputs.

Result: True if the property is falsified, False otherwise.
samples← new V ector[N ];
sampleoutputs← new V ector[N ];
startingpoint← new V ector[n];
startingpoint← RandomUniformVector(lower, upper, n);
samples[0]← startingpoint;
sampleoutputs[0]← f(startingpoint);
for i← 1 to N − 1 do

v ← RandomUniformVector(lower, upper, n);
v ← v

VectorNorm(v)
;

λmax ← new V ector[n];
λmin ← new V ector[n];
for i← 0 to n− 1 do

λmax[i]← upper[i]−startingpoint[i]
v[i]

;

λmin[i]← lower[i]−startingpoint[i]
v[i]

;

end
λ← RandomUniformNumber(max(λmin),min(λmax));
startingpoint← startingpoint+ λv;
samples[i]← startingpoint;
sampleoutputs[i]← f(startingpoint);

end
for i← 0 to N − 1 do

if BelongsToSet(sampleoutputs[i], U) then
return True;

end

end
return False;

Algorithm 1: Pseudocode of the sampling algorithm
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Chapter 3

3.1 Implementation

The models previously presented have been implemented in the pyNeVer Python

library, an open source project for the learning and verification of neural networks

and other machine learning models, by the researchers working at the Department

of Informatics, Bioengineering, Robotics and Systems Engineering (DIBRIS) of

the University of Genoa. The library handled the parsing of the neural networks,

which are provided as input to the programs in the ONNX format, and of the

properties to verify, provide in the VNN-LIB format. The MILP model, it has

been implemented using the IBM CPLEX Optimizer Python API, while the con-

straint programming one has been implemented in C++ using the IBM ILOG CP

Optimizer; in this last case, the parsing of the network is handled by pyNeVer, an

then the C++ function is called in the Python code by using a binding library,

pybind11.

3.1.1 MILP and CP comparison

To compare the two models, they were tested on 20 different neural network

trained on a dataset concerning the arm of a humanoid robot named James. As

described in Pulina and Tacchella [2012], James is a torso composed by a head, a
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3.1 Implementation

left arm and a hand, each with respectively 7, 7 and 8 degrees of freedom. James

uses a neural network to estimate internal forces in the arm in order to estimate

measure external forces, which require the subtraction of the internal forces from

sensor readings. Internal forces in James’s arm are estimated considering angular

positions and velocities of two shoulder and two elbow joints; these are the 8

inputs of the network. The outputs are the corresponding values of internal

forces and torques, 6 values.

The 20 network each have a different number of neurons (16, 32, 64 and 128)

and hidden layers (from 1 ro 5). The tests were conducted on 36 local robustness

properties.

MILP 1 2 3 4 5
16 10.53762 10.77175 11.03901 11.20042 11.94238
32 11.368274 11.29198 14.42265 85.48617 16.19434
64 12.10045 18.10646 25.42662 132.79223 172.07932
128 14.00589 43.85542 216.17484 235.42857 265.00034

Table 3.1: Average time to verify each network using MILP. Unit: 10−3 seconds.

CP 1 2 3 4 5
16 13.92459 13.57841 15.69175 16.21007 4831.13050
32 13.35287 15.82646 20.53093 23.34165 24.94311
64 15.98238 8465.96407 32.19246 15167.81926 23567.52109
128 14190.54722 54.35848 3426.19323 46697.54147 99522.97973

Table 3.2: Average time to verify each network using CP. Unit: 10−3 seconds.

In 3.1 we are able to observe that, when using MILP, as the networks get

deeper, the time required to solve them increases substantially. This is apparent

when comparing the 128x2 and the 64x4 network, which have the same number

of binary variables. This is due to the bounds of the polytope constructed by the

program, whose bounds get more complex as the network deepens.

The data in 3.2 are not averaged on 36 properties, but only on 18: this is

because, in the case the property was not verified, meaning there was no solution
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to be found, the program timed out (after 20 minutes). This is not surprising, as

the search phase of constraint programming solvers is slow.

Also, it can be noticed that the Constraint Programming solver scales much

worse than the MILP with the dimension of the network.

The MILP problem, while obtaining better results in terms of time, is subject

to a problem: the choice of a correct big M , especially in deeper networks. Due

to the technical limitation of the finite representation of floating point numbers,

the big M cannot be chosen to be too big as it will cause the multiplication of

itself and a binary variable approximated to 0 to yield a result different from 0.

However, due to the nature of neural networks, the choice is not obvious, since

sometimes even a big M of 3 or 4 orders of magnitude greater than the data is

not enough.

3.1.2 Sampling Results

Sample Points Accuracy Average Time
100 60.0% 0.01465
1000 60.0% 0.03581
5000 80.0% 0.16805
10000 80.0% 0.33724
100000 100.0% 3.33776

Table 3.3: Time and accuracy of the sampling algorithm on the Cartpole network.
Unit: seconds.

The tests were conducted on three reinforcement learning networks, called

Cartpole, LunarLander and Dubins Rejoin.

Tables 3.3, 3.4 and 3.5 report the results of running the sampling algorithm on

multiple unsafe properties for each of the networks. They are the median results

of the experiment run over 50 different random seeds.
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Sample Points Accuracy Average Time
100 98.75% 0.00743
1000 98.75% 0.03741
5000 100.0% 0.17313
10000 100.0% 0.34424
100000 100.0% 3.45316

Table 3.4: Time and accuracy of the sampling algorithm on the Lunar Lander
network. Unit: seconds.

Sample Points Accuracy Average Time
100 11.11% 0.01021
1000 33.33% 0.04469
5000 38.89% 0.20327
10000 38.89% 0.40673
100000 55.56% 4.19081

Table 3.5: Time and accuracy of the sampling algorithm on the DubinsRejoin
network. Unit: seconds.

The columns represent, respectively, the number of sample inputs, the accu-

racy, defined as the percentage of correctly identified unsafe properties, and the

time spent running the algorithm averaged on the number of properties. We can

observe that as the number of samples increases, the accuracy increases accord-

ingly, as there is less of a chance that a sample is not in the unsafe region. A

visual representation of this phenomenon can be observed in Figures 3.1 and 3.2.

This dependency of accuracy on the size of the sample space is also seen in the

difference in accuracy between the networks, as we can see the Dubins Rejoin

network performs the worst, since its sample space is much larger than that of

the other two networks.
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3.1 Implementation

Figure 3.1: The yellow region represents the region defined by the pre-conditions,
while the red one is the unsafe region defined by the post-conditions. If we were
to run the algorithm with this number of samples, the property would not be
falsified.

Figure 3.2: We can see that with enough samples the property will be declared
unsafe.
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3.2 Conclusion and future work

3.2 Conclusion and future work

The experiments show that Constraint Programming, unfortunately, despite be-

ing able to tackle a non piece-wise linear activation function and not being subject

to the choice of the bigM , yields a worse performance than Mixed Integer Linear

Programming as it is.

However, maybe a global constraint between the layers of the network may be

introduced, in order to enhance the performance of the constraint propagation.

In case the constraint propagation reaches fast enough time, it may be used as a

starting point for another solving method instead of a generic search phase, as it

will probably yield better results.

Concerning sampling, while on its own lacks the capacity to confirm the safety

of a network, it may still be used to enhance other verification methods. We may,

for instance, consider the closest points to a bound and perform a search from

there or maybe consider the convex hull of said points and perform a verification

procedure on this newfound region. Also, we may be able to optimize the sam-

pling procedure by developing an algorithm which better approximates a uniform

distribution of input samples by needing less samples, or also by only sampling on

the boundary of the hyperrectangle defined by the pre-conditions of the property

to be verified.
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