Università degli Studi di Genova

Department of Naval, Electric, and Electronic Engineering and Telecommunications

Master's Degree in Yacht Design

A Python-Implemented Vortex-Lattice Approach for Propeller Optimisation

Author: Lisa Martinez

Supervisor: Simone Saettone, Asst. Professor at the Polytechnic University of Madrid
Tutor: Stefano Gaggero, Assoc. Professor at the University of Genoa
Date: March 2024
Location: Madrid, Spain

To my mother and my brother

Abstract

The aim of this study is to create a Python-based program utilizing the vortex lattice method to enhance the efficiency of marine propellers while achieving a specified thrust.
The optimization procedure consists of solving a variational problem where the torque applied to the propeller is minimized for a given propeller thrust. In classical theory, this problem is addressed through an integral formulation where the propeller is represented as a lifting line with a continuous distribution of circulation. Betz (1927) [1] and Lerbs (1952) [2] provided solutions for this problem, respectively, for propellers in open water and in a radially varying wake, establishing two optimal criteria. To tackle the problem, Munk's displacement theorem is applied, and the problem is linearized. The method employed in this study to solve the problem is based on the approach outlined by Kerwin et al. (1986) [3].
In this method, the approach involves discretizing the continuous distribution of circulation, which allows for a direct solution to the problem without relying on classical theory assumptions. Unlike Kerwin et al., who employed a lifting line model for the propeller, this study utilizes the vortex lattice method. This method enables the integration of the entire blade's impact into the optimization process. The vortex lattice method entails representing the propeller blade with a grid of quadrilateral panels, each with constant circulation. Consequently, horseshoe vortices are formed, following helical trajectories. According to Munk's displacement theorem, specifying the chordwise distribution of circulation is necessary to solve the variational problem. However, it is noted that the primary contribution to the propeller blade's forces comes from the vortex located along the trailing edge, which combines the two shed vortices into a horseshoe vortex. Indeed, in accordance with Munk's displacement theorem, the form of the chordwise distribution of circulation has only a small influence on the results. By incorporating the entire blade in the optimization process, this study aims to examine the impact of propeller geometry on the optimal circulation distribution, thus providing a comparison with Olsen's findings [4].
The study compared the performance of four propellers, each with systematically varied skew and skew-induced rake, from the David W. Taylor Naval Ship Research and Development Center (DTNSRDC) series against the findings of Olsen (2001) [4]. This comparison was found to be highly satisfactory, revealing a consistent trend in the results.
In conclusion, this study presents an approach to optimizing the distribution of circulation along a propeller blade, leveraging the vortex lattice method to extend beyond the confines of classical theory. This methodology facilitates a detailed integration of propeller blade geometry into the optimization process, offering a deeper insight into how propeller geometry influences performance. Importantly, the use of Python, a free and open-source programming language, underscores the study's commitment to accessibility and reproducibility. The Python code developed for this project will be made available in the appendix, allowing others to replicate, verify, and build upon this work without financial barriers. The findings align with and expand upon previous research (Mishima and Kinnas 1997 [36]), notably demonstrating efficiency improvements with increased skew.

Riassunto

L'obiettivo di questo studio è creare un programma basato su Python che utilizzi il metodo vortex-lattice per migliorare l'efficienza delle eliche marine, mirando a ottenere una spinta specifica.
La distribuzione ottimale della circolazione è determinata risolvendo un problema variazionale in cui la coppia dell'elica è minimizzata per una data spinta. Nella teoria classica, questo problema viene affrontato attraverso una formulazione integrale, in cui l'elica è rappresentata come una linea portante con una distribuzione continua di circolazione. Betz (1927) [1] e Lerbs (1952) [2] hanno fornito soluzioni per questo problema, rispettivamente, per eliche in acque libere e con un flusso sulla scia che varia radialmente, stabilendo due criteri ottimali. Per affrontare il problema, si applica il teorema di Munk, e il problema viene linearizzato. Il metodo impiegato in questo studio per risolvere il problema si basa sull'approccio delineato da Kerwin et al. (1986) [3].
In questo metodo, la distribuzione continua della circolazione è discretizzata, consentendo la soluzione diretta del problema senza dipendere dalle ipotesi della teoria classica. A differenza di Kerwin et al., che hanno utilizzato un modello a linea portante per l'elica, questo studio utilizza il metodo vortex-lattice, consentendo l'integrazione dell'intera pala nell'ottimizzazione. L'utilizzo del metodo vortex-lattice comporta la rappresentazione della pala dell'elica con una griglia di pannelli quadrilateri con circolazione costante, risultando in vortici a ferro di cavallo che seguono traiettorie elicoidali. Secondo il teorema di Munk, è necessario specificare la distribuzione di circolazione lungo la corda per risolvere il problema variazionale. Si osserva che il principale contributo alle forze sulla pala dell'elica, proviene dal vortice situato lungo il bordo d'uscita, dove i due vortici liberi si combinano in un vortice a ferro di cavallo. Infatti, in accordo con il teorema di spostamento di Munk, la forma della distribuzione di circolazione lungo la corda ha solo una piccola influenza sui risultati. Considerando l'intera pala nel processo di ottimizzazione, è possibile esaminare e confrontare l'impatto della geometria dell'elica sulla distribuzione ottimale della circolazione, con i risultati di Olsen [4].
Lo studio ha confrontato le prestazioni di quattro eliche, ciascuna con Skew e Rake indotti da Skew, sistematicamente variati, della serie di eliche David W. Taylor Naval Ship Research and Development Center (DTNSRDC), con i risultati di Olsen (2001) [4]. Il confronto è risultato molto soddisfacente e ha rivelato una tendenza coerente nei risultati.
In conclusione, questo studio presenta un approccio per ottimizzare la distribuzione della circolazione lungo una pala d'elica, sfruttando il metodo vortex-lattice, per andare oltre i limiti della teoria classica. Questa metodologia facilita l'integrazione dettagliata della geometria della pala dell'elica nel processo di ottimizzazione, offrendo una visione più approfondita di come la geometria dell'elica influenzi le prestazioni. L'uso di Python, un linguaggio di programmazione libero e gratuito, sottolinea l'impegno dello studio verso l'accessibilità e la riproducibilità. Il codice Python sviluppato per questo progetto sarà reso disponibile in appendice, consentendo ad altri di replicare, verificare e sviluppare questo lavoro senza barriere finanziarie. I risultati si allineano e ampliano le ricerche precedenti (Mishima e Kinnas 1997 [36]), dimostrando, in particolare, miglioramenti dell'efficienza con l'aumento dello Skew.

Acknowledgement

I would like to say few words for the people who accompanied me along this path and made this project possible.

First and foremost to Simone Saettone, not only for being an excellent Supervisor and Professor during my time in Madrid, but also for being a valuable guide. Your support, understanding, and knowledge-sharing have been invaluable assets that I will carry over with me into my future. Without your help this would not have been possible. Your teachings have illuminated my academic path, and at the end of this journey, I am certain that you are one of the most professional individuals I have had the luck to meet.

I extend my thanks to all the people I met at the Universidad Politécnica de Madrid for welcoming me and making me feel at home from the very beginning. I will never forget the kindness of each one of you, especially Javier, Ricardo, Gustavo, Wenzhe, and Gaia.

I am grateful to my entire family for supporting my dreams. A special thanks to my parents for their unwavering support, for standing by me, and for loving me unconditionally.
To my mother, thank you for being there during tough times, for always understanding my actions, and for loving me unconditionally.
To my father, thank you for providing me with the tools and for raising the woman I am today, you are the example of my life.
To my brother, Andrea, thank you for every moment we've shared together and for understanding my absence without ever making it a burden.
To my uncle Alessio, thank you for being there for me both physically and emotionally, you have always been my benchmark in discovering the world.

A special thank to Rodrigo, although words are not enough to express my gratitude towards you. You were the first to share the joys and difficulties of this journey with me, always by my side. Thank you for your unconditional sweetness and love, for holding my hand when I was scared, and for simply being in my life. I love you.

To my lifelong friends, Carla and Camilla, centuries may pass and galaxies may separate us, but our bond will remain unbreakable. You are life's precious gift, and with you, I am certain that I am never alone.

Thanks to my friends in Spezia, the city that hosted me for five long years. To Selene, for everything, for every moment we shared that I hold dear. To Billy, our souls are so similar, I spent my best moments during my university time while we were in the same flat. To Davide, for being there for me in difficult times, even though our friendship is relatively new, I know it will last long. To Stefano, for always making me feel at home, for the talks and advice. To Ilario, a lifelong friend, for being like me and for understanding me without a word, our connection goes beyond words.

Finally, I would like to thank all the people I met this year in Madrid, especially Pierpaolo. What we shared will bind us forever.

Contents

Abstract 3
Riassunto 4
Acknowledgement 5
1 Introduction 9
1.1 Investigating Adopted Strategies 10
1.2 Objective of the Thesis 11
2 Literature Review 12
2.1 Propeller Design 12
2.2 Lifting Line Theory 13
2.3 Lifting-Surface Method 14
2.4 Boundary Element Method 15
2.5 Computational Fluid Dynamics 16
2.6 Conclusion 17
3 Potential Flow Theory 18
3.1 Simplified Mathematical Models 18
3.2 Irrotational Flow 20
3.3 Kutta Condition 21
3.4 Bernoulli Equation 22
3.5 Lifting surface 23
3.6 Linearised Thin Wing Theory 24
3.7 Circulation 26
3.8 Distribution of Vortex 27
4 Optimisation Procedure 29
4.1 Introduction 29
4.2 Geometry 29
4.2.1 Propeller Geometry 29
4.2.2 Grid Generation 31
4.2.3 Horseshoe Vortex 32
4.3 Forces and Velocities Calculations 34
4.3.1 Force on the panel sides 34
4.3.2 Onset Flow 34
4.3.3 Induced velocities from the panels 35
4.3.4 Induced velocities from the horseshoe vortices 36
4.3.5 Total velocity 37
4.4 Weight Function 37
4.5 Wake Alignment 39
4.6 Thrust and Torque Calculation 40
4.7 Optimum Circulation Distribution 42
4.7.1 Skin Friction Drag 43
4.7.2 Variational Problem 43
4.7.3 Optimisation Procedure 45
5 Validation 47
5.1 Grid Study 48
5.1.1 Thrust Loading 49
5.2 Advance Ratio 50
5.3 Skew 51
5.4 Skew-Induced Rake 52
5.5 Skin Friction Drag 54
6 Conclusions 55
7 References 56
8 Code 58

List of Tables

Table 1 Results from Grid Study 49
Table 2 Results obtained by varying thrust coefficient, $C_{T h}=2$ 50
Table 3 Results obtained by varying Advance Ratio 50
Table 4 Results obtained by varying Skew 52
Table 5 Results obtained by varying Skew-induced Rake 53
Table 6 Variation of Skin Friction Drag Results 54
List of Figures
Figure 1 Simply connected region with a cut 21
Figure 2 Notation for two-dimensional section 24
Figure 3 Left: Camber line with angle of attack α. Right: Symmetric section with thickness τ 25
Figure 4 Vortex Distribution for flat plate 26
Figure 5 Coordinate system for the propeller 30
Figure 6 Velocity triangle for the propeller 31
Figure 7 Description of a panel and a trailer 32
Figure 8 Example of grid, trailers and direction of the circulation for the propeller 33
Figure 9 Description of the total circulation at the panel side 34
Figure 10 Application of the Biot-Savart law to a general vortex filament 35
Figure 11 Description of the parameters used in the application of Biot-Savart law 36
Figure 12 Parameters used to evaluate the induced velocity from a straight vortex 36
Figure 13 Description of total circulation at a panel side 38
Figure 14 Grid for DC4381 Propeller, No Skew-No skew-induced rake. $M_{s p} \times N_{c h}=$ 20×10 47
Figure 15 Grid for DC4497 Propeller, 36° Skew, No Skew-induced rake. $M_{s p} \times N_{c h}=$ 20×10 47
Figure 16 Grid for DC4382 Propeller, 36° Skew, Skew-induced rake. $M_{s p} \times N_{c h}=$ 20×10 47
Figure 17 Grid for DC4383 Propeller, 72° Skew, Skew-induced rake. $M_{s p} \times N_{c h}=$ 20×10 48
Figure 18 DC4381 $M_{s p} \times N_{c h}=5 \times 5$ 48
Figure $19 \quad \mathrm{DC} 4381 M_{s p} \times N_{c h}=20 \times 10$ 49
Figure 20 Comparison between results for the reference propeller, DC4381, the propeller with 36° skew and skew-induced rake, DC4382, and the propeller with 72° skew and skew-induced rake, DC4383. 51
Figure 21 Comparison between results for the reference propeller,DC4381, and the two propellers with 36° skew, DC4382 which has skew-induced rake and DC4497 which has no rake. $J=0.8$ 52
Figure 22 Comparison between results for the reference propeller, DC4381, and the two propellers with 36° skew, DC4382 which has skew-induced rake and DC4497 which has no rake. $J=1.0$. 53
Figure 23 Comparison between results for the reference propeller, DC4381, and the 36° skew, DC4497 which has no rake. 54

1 Introduction

Despite the challenges posed by various global crises in recent years, including economic downturns, geopolitical tension, and pandemics, a significant portion of global trade-exceeding two-thirds-continues to be conducted through maritime transport. This includes vital trade involving food, energy, and other essential commodities. Specifically, maritime transport accounts for 77% of European foreign trade and 35% of European trade [15]. As of beginning of 2023 , the total maritime fleet comprised of 105,500 vessels of at least 100 gross tonnage (GT), and offering a capacity of 2.3 billion deadweight tons (DWT), marking an increase of 70 million DWT compared to the preceding year.

Moreover, the volume of maritime trade has been on an upward trajectory, experiencing a 2.3% increase in 2023, with projections indicating a further growth rate of 2.1% over the coming five years. This trend not only highlights the critical role of maritime transport in enabling global trade but also brings to light the consequential rise in the average distance covered to transport goods.Such an expansion in maritime trade activities has precipitated a notable increase in carbon emissions, which, at the outset of 2023 , were observed to be 20% higher than figures recorded two decades prior [15]. This exacerbates the urgency of addressing the environmental impact associated with maritime trade.

Given the current pace of trade expansion and increasing demand, emissions are forecasted to escalate by 50% to 250% by the year 2050 , barring the implementation of effective mitigatory strategies. Presently, a staggering 98.8% [4] of the global shipping fleet is dependent on fossil fuels, with the combustion of marine fuel oil (HFO) releasing significant quantities of carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) into the atmosphere. It's worth noting that merchant vessels emit approximately 16.14 grams of CO 2 per kilometer for each ton of cargo transported, although it is observed that larger ships and cargoes generally achieve greater energy efficiency on a per-unit-load basis. This reality accentuates the pressing need to confront and mitigate the environmental consequences stemming from maritime trade, underscoring the urgency of action in this domain.

In response to growing environmental concerns, national and international organizations are stepping up to tackle the pollution caused by ships. At the 76th session of the Marine Environment Protection Committee (MEPC 76) in June 2021, changes were made to the International Convention for the Prevention of Pollution from Ships (MARPOL), which started being enforced at the end of 2022. The International Maritime Organization (IMO) is now requiring ships to adopt short-term actions to cut down on pollution [6]. The goal is to significantly lower emissions by 2050, aiming for a 40% reduction by 2030 compared to 2008 , and aiming even higher with a 70% reduction by 2050. [23].

To put these new rules into practice, ships must calculate two things: the Energy Efficiency Existing Ship Index (EEXI) and the Carbon Intensity Indicator (CII). This approach, which started in 2013 for new ships with the Energy Efficiency Design Index (EEDI), is now being applied to all ships. Specifically, ships that are 400 gross tonnage or larger must complete the EEXI calculation. This is a big move towards making ships more energy-efficient and reducing their impact on the environment.
The EEXI is represented by the amount of CO2 emitted per unit of traffic volume and is calculated based on fuel consumption and other ship characteristics [7]. On the other hand, the CII determines the annual reduction factor required to ensure a continuous improvement in the
operational intensity of carbon emissions from a ship.
Various strategies proposed by the International Maritime Organization (IMO) aim to improve the energy efficiency of maritime vessels. These include leveraging renewable energy for power generation, adopting alternative fuels like liquefied natural gas (LNG) to lower emissions, refining ship design and equipment for better operational efficiency, imposing power restrictions, providing shore-based electricity supply, and introducing supportive measures, such as improvements in land-based transport and logistics management.

It is important to highlight that by concentrating on the hydrodynamic performance of ships, which entails the optimization of propeller design, it is possible to significantly increase ship efficiency. This approach is not only in alignment with the EEXI and CII regulations but also emphasizes the potential for substantial improvements in maritime energy efficiency.

1.1 Investigating Adopted Strategies

Decarbonization strategies for ships focus on two main areas: improving energy efficiency, derived from technical modifications to the ship's structures and operational adjustements for better navigation, and adopting new-generation clean fuels, specifically hydrogen, liquefied natural gas (LNG) and ammonia. Research from the Norwegian University of Science and Technology [9] has confirmed that emissions can be significantly reduced through these approaches, identifying six key mitigation strategies with substantial potential for emission reduction: hull design improvements ($4-30 \%$), economies of scale and advancements in power and propulsion (2-45\%), optimizing speed ($1-60 \%$), adopting cleaner fuels such as LNG and ammonia ($25-84 \%$), exploring alternative energy sources (1-50\%), and improving weather routing and scheduling (0.1-48\%).

Within the power and propulsion strategies framework, a central approach to minimising emission in the maritime industry involves optimising propeller design [8]. This effort is integral to improving the efficiency of ship propulsion system [9], directly impacting fuel consumption and, consequently, emissions. Such optimisation is crucial for reducing the torque required while maintaining the same thrust, thereby increasing the propeller's efficiency. This approach directly addresses the need to enhance propeller performance by achieving grater propulsion efficiency with less energy cost. By optimising the design to minimise torque demands without compromising on thrust, ships can achieve smoother and more fuel-efficiency operations, significantly improving overall propeller and vessel efficiency.

1.2 Objective of the Thesis

As of the current date, the selection of codes available for marine propeller optimization, remains limited, with OpenProp, PROPAN, and Xfoil begin among the most notable. Despite their open-source status, their implementation in either MATLAB or Fortran requires either financial expenditure for a license or specialized programming expertise. This situation highlights the urgent need for the development of a new open-source code utilizing Python programming language. Such a development aims to offer a freely accessible and user-friendly alternative for the broader community, overcoming the limitations associated with proprietary platforms.

The choice to implement the method in Python is dictated by the fact that it is the most widely used programming language in the scientific field. This is because it is open to everyone and has a simple language that is easy to understand. Additionally, it has been developed over the years, providing a large library, manuals, and information developed by programmers. You can implement and automate many functions, and its extensive collection of libraries makes it usable across various fields.

2 Literature Review

2.1 Propeller Design

The design of propellers is a complex task that balances efficiency, power, and noise reduction, among other considerations. Primarily, there are three approaches to propeller design: the series approach, numerical methods, and experimental methods. Each has its advantages and is frequently used in combination with others to develop and refine propeller systems. The series approach utilizes data from previously tested propellers under various conditions to create new designs. It relies on systematic variations of essential propeller parameters such as diameter, pitch, blade number, and shape. Designers can consult charts or databases documenting the performance of different propeller geometries to select a design that closely meets their requirements. A renowned example is the Wageningen B-Series.
Numerical methods employ computational techniques to simulate the flow around propellers and predict their performance. Within the realm of numerical approaches for propeller design, two primary methods are significant: potential flow theory and Computational Fluid Dynamics (CFD). Potential flow theory simplifies the complex physics of fluid motion by assuming the fluid is inviscid and irrotational, effectively ignoring viscosity's effects. While this simplification reduces computational demands, it offers valuable insights into the flow field around propellers, particularly beneficial during the preliminary design phases for a broad exploration of the design space. CFD involves a range of computational techniques that solve the Navier-Stokes equations to simulate fluid flow with high fidelity. It captures complex flow phenomena, including turbulence, separation, and viscous effects, providing a detailed understanding of the flow around a propeller. However, the high computational cost of CFD, requiring more powerful computing resources and longer computation times, makes it less suitable for initial exploratory studies but invaluable for finalizing designs and conducting detailed performance analyses.
Experimental testing involves physically manufacturing a propeller and testing it in a controlled environment, such as towing tanks and cavitation tunnels. These tests yield essential data on the propeller's performance, including thrust, torque, and efficiency, along with insights into flow patterns, noise, and vibration levels. Experimental methods are often used to validate and refine designs derived from series or numerical simulations. Despite being expensive and time-consuming, experimental testing remains an indispensable part of the propeller design process, especially for final validation before production or for investigating new concepts.

Concentrating on potential flow theory, several key methodologies stand out. Among these, the lifting line model is particularly noteworthy for its simplicity in depicting propeller action. In this model, the intricate aerodynamic profiles of blade sections are elegantly replaced with a singular line vortex, providing a streamlined yet effective approach to understanding propeller dynamics. However, this simplification also serves as its primary limitation, as it fails to accurately capture three-dimensional flow effects and complex vortical patterns, especially near the blade tips. Moving on to the lifting surface model, this approach offers a more nuanced representation by considering the propeller blades as finite lifting surfaces. This method allows for a better approximation of the three-dimensional flow around the blades, capturing the essential aspects of blade geometry and its influence on performance. Despite its increased accuracy over the lifting line model, the lifting surface model is still hampered by its reliance on potential flow theory, which overlooks viscous effects and may not accurately predict performance in off-design conditions. [10].
Lastly, the boundary element method (BEM) represents a further advancement in modeling marine propellers. By discretizing the propeller blade and surrounding fluid domain into small elements, BEM can simulate the flow around the propeller with high fidelity, incorporating
both potential flow and viscous effects under certain formulations. This method is particularly effective in analyzing complex flow phenomena, such as cavitation and highly skewed flows. However, BEM's computational demand is significantly higher, requiring more sophisticated computational resources and longer processing times, which can be a considerable drawback for extensive parametric studies or real-time applications.
In summary, while each method has its pros and cons, the choice between the lifting line, lifting surface model, and boundary element method depends on the balance between computational efficiency and the level of detail required for accurate propeller performance prediction..

As mentioned previously, CFD provides detailed information about flow and pressure distributions, surpassing previous methods in its ability to capture complex fluid dynamics and interactions in marine propellers. Among the most commonly used solvers in CFD are the Reynolds-Averaged Navier-Stokes (RANS), Detached Eddy Simulation (DES), and Large Eddy Simulation (LES). These solvers offer different approaches to modeling turbulence, which is a key aspect in understanding the flow around marine propellers. In practice, fluid equations are substituted with discrete approximations at grid points, and the solution remains dependent on the spacing between grid points. Sometimes, the vortex lattice method or BEM method is coupled with a Reynolds-Averaged Navier-Stokes (RANS) method [11] , providing valuable information on the viscous and cavitation behavior of propellers in analytical cases. While CFD yields accurate results, its practical complexity and computational times make it challenging to implement automated optimization.

2.2 Lifting Line Theory

Betz (1919) [1] expanded upon Prandtl's lifting-line theory to establish the basis for determining the radial distribution of circulations [10]. In this theory, the lift generated by a wing or propeller blade results from the circulation development around the section, following the Kutta-Joukoski law (the flow separates from the trailing edge in a 'smooth' manner with a finite velocity value). Betz introduced a criterion for minimal energy loss, defining the concept of an optimum propeller. The optimum propeller develops a trailing vortex system, creating a rigid helicoidal surface that extends infinitely downstream from the blade. This surface must translate as a rigid entity in the downstream direction. While the Betz condition remains accurate for propellers operating in uniform flow, it begins to demonstrate limitations for heavily loaded propulsors.

Goldstein (1929) [24], solved the potential problem, following Prandtl's concept: the threedimensional problem can be solved by concentrating circulation around the blades on individual lifting lines, and the flow in each radial section could be considered two-dimensional if the velocity induced by the free flow alters the field in which they are located. The solution proved successful for aircraft. However, it was unsatisfactory for marine propellers, which are designed with low aspect ratios to mitigate cavitation phenomena. Additionally, the onset flow for propeller rotation is typically non-uniform. In the initial stages, corrections were made to adjust the camber of 2-D sections to accommodate the induced curvature of the flow. This curvature results from the velocity induced by the trailing vortex sheet, which is greater at the trailing edge than at the leading edge.

Seventeen years later, Cox (1961) [25], published precise results of these corrections, which were obtained using computers. In summary, analytical methods for practical applications were not available before the 1950s. In 1952 [2], Lerbs introduced changes by extending lifting line theory to include propellers with arbitrary radial distributions of circulation under both uniform and radially varying inflow conditions. Subsequently, in the 1960s, this procedure was computerized.

2.3 Lifting-Surface Method

Lerbs' method continues to be utilized for radial distribution in the initial stages of design. During this period, Eckhart and Morgan (1955) [26], developed a combination of Lerbs' liftingline theory and lifting-surface correction for camber and angle of attack, marking a significant advancement in lifting surface theory. As technology became more available, numerical methods for lifting surface evolved, including those developed by Kerwin (1961) and van Manen \& Bakker (1962) [11]. However, these methods were based on simplifying assumptions that became inadequate with technological advancements.

During the early stages of lifting surface analysis, linear theory was employed to simplify the problem. Linear theory assumes that the blade and wake can be projected onto stream surfaces formed by the undisturbed flow. This was necessary for the design process, where only a partial understanding of the blade surface geometry is initially available. Determining the radial distribution of pitch, as well as the chordwise and radial distribution of camber, becomes necessary, and for calculating their induced velocity, sources and vortices must be positioned. However, in reality, the resulting blade surfaces often deviate from the assumptions made in linear theory. Therefore, the procedure computes the total fluid velocity at a number of points on the surface and then adjusts the surface in such a way as to annul its normal component.

Two calculation methods for the lifting surface are PROPLS, developed by Brockett (1981) [27], which directly integrates the resulting singular integrals, and PBD-lO, developed by Kerwin [11], which employs a vortex-lattice procedure. In Kerwin's method, the process starts with assuming the pitch and camber, then calculating the total flow velocity. Afterward, the surface is adjusted, the process is repeated using the new reference surface until convergence is obtained. In the vortex lattice approach, continuous distributions of vortices and sources are substituted with a series of concentrated rectilinear elements. These elements have endpoints positioned along the average surface of the blade. Velocities are subsequently computed at control points strategically positioned between these elements. Therefore, proper placement of control points and lattice elements is crucial.Vortex lattice methods are typically highly robust and James (1972) [17] and Lan (1974) [18] both provided rigorous demonstrations of the convergence of vortex-lattice methods in two-dimensional flow. James specifically addressed scenarios with constant vortex spacing, confirming that placing the control point at three-fourths of the element length yields the correct solution.

Subsequent advancements in propeller design were pioneered by Tsakonas et al. (1983) [28], Lee (1978) [29], van Gent (1977) [30], and Greeley (1982)[31]. These methods diverged from traditional approaches by acknowledging that induced velocities might not always be negligible compared to the initial flow velocity. They allowed for deviations in the positions, of the blade and the wake, of the trailing vortex from the undisturbed flow surface. The primary objective
was to address the limitations of previous methods, particularly in their treatment of chord-wise lift, and to incorporate the effects of skew and rake into the analysis.

Lee and Kerwin et al. developed the vortex lattice code PUF-3 in its original form (1978) [29] then, Greeley and Kerwin expanded upon the existing approach by introducing a semi-empirical method aimed at forecasting the leading-edge separation point (1982). Greeley employed a program that utilizes a vortex lattice model for the blades, aligning with the design process outlined earlier. However, in this approach, each vortex element along the span is treated as an unknown and determined through collocation using an equal number of control points distributed across the blade. To model the strength of circulation/lift, a distribution of vortices is positioned on the mean surface of the blades. These vortices represent the circulation or lift generated by the blades. Additionally, to account for induced drag, several free trailing vortices are shed from each blade element.

Initially, the circulation distribution on the blades, and consequently in the wake, is determined based on an assumed wake geometry. This circulation distribution remains fixed while iteratively adjusting the position of the wake to align with the flow. This iterative process continues until convergence is achieved, indicating that the wake is accurately aligned with the flow. Once convergence is reached, the circulation distribution is recalculated based on the adjusted wake geometry, and the entire process is repeated. Iterations continue until the changes in the circulation distribution fall below a certain predefined tolerance level.

Brockett [27], calculates the induced velocities on the blades through one of direct numerical integrations. He assumes the blades to be thin, which allows the singularities distributed on both sides of the blades to collapse into a single surface. Additionally, he suggests defining the effective wake as the total velocity at any point in the fluid with a propeller in operation, subtracting the potential component of the propeller-induced velocity. This definition simplifies the propeller problem to determining the velocity potential in an unbounded fluid, satisfying the kinematic boundary condition on the propeller surface, along with kinematic and dynamic boundary conditions at the trailing edge and on the trailing vortex sheets behind the blades. However, he himself demonstrates the robustness of the convergence proofs of vortex-lattice methods in two-dimensional flow.

During recent years, development in studies on less conventional propeller designs and wake alignment has advanced. Leading figures in this area include Kerwin et al. (1986)[3], Andersen (1997)[32], developed the theory for tip-modified geometry, where the lifting line can be curved, in order to include the influence of skew and rake, and Jong (1991) [20]. Additionally, for investigations into energy coefficients and analyses under unsteady and off-design conditions, Caponetto (2000)[33], and Karim et al. (2001) [34], have made significant contributions.

2.4 Boundary Element Method

The boundary element method for propeller analysis has been developed in recent years to overcome two challenges of lifting surface analyses. The first relates to the occurrence of local errors near the leading edge, while the second concerns more widespread errors near the hub, where blades are closely spaced and relatively thick.

Although a local correction derived from Lighthill's work can address the first problem to some extent, the second problem persists. Boundary element methods, essentially panel methods, were initially introduced in the aircraft industry and later applied to propeller technology in the 1980s.
Hess and Valarezo (1985) [35], introduced an analysis method based on earlier work by Hess and Smith. Hoshino subsequently developed a surface panel method for hydrodynamic analysis of propellers operating in steady flow. These methods have achieved good agreement between theoretical and experimental results for blade pressure distributions and open water characteristics. Further advancements, such as those by Kinnas and colleagues at the University of Texas, Austin, have extended boundary element codes to solve for unsteady cavitating flow around propellers, considering non-axisymmetric inflow conditions and other factors such as mid-chord cavitation and unsteady tip vortex cavitation.

Additionally, efforts have been made to enhance slipstream flow prediction using iterative methods aligning the wake surface to local flow conditions. Within the framework of the MARIN-based Cooperative Research Ships organization, Vaz and Bosschers have developed a three-dimensional sheet cavitation model using a boundary element model of marine propellers. These developments aim to improve prediction accuracy under various conditions, including behind conditions and cavity volume variations influenced by non-cavitating propeller effects and viscous effects.

2.5 Computational Fluid Dynamics

During the past decade, significant advancements have been achieved in applying computational fluid dynamics (CFD) [13]. These advancements have enabled valuable insights into the viscous and cavitation behaviors of propellers, particularly in the analysis context. However, while progress has been made in using these methods for design purposes, widespread acceptance has not yet been attained. Various modeling approaches, including Reynolds Averaged Navier-Stokes (RANS) method, Large Eddy Simulation (LES), Detached Eddy Simulations (DES), and Direct Numerical Simulations (DNS), have been developed for analyzing flow around cavitating and non-cavitating propellers.

However, in practical propeller computations, computational efforts limit the application of many of these methods. RANS codes are favored due to their relatively lower computational times compared to other methods. Despite common features such as multi-grid acceleration and finite volume approximations, differences exist among practitioners in grid topology, cavitating flow modeling, and turbulence modeling.

2.6 Conclusion

The propeller optimization code employs the vortex-lattice approach. This method stands out for its computational efficiency, achieving significant savings in computational time during the design phase without compromising on accuracy. Over the years, the demonstrated functionality of the vortex lattice method has underscored its reliability in providing accurate approximations of propeller performance. Notably, it facilitates effective calculation of circulation on propeller blades, further highlighting its utility. The lifting line model was not selected because the vortex lattice method offers a superior capability to capture three-dimensional flow effects without significantly increasing computational time or complexity. Furthermore, the complexity of the Boundary Element Method (BEM) and the extensive computational demands of Computational Fluid Dynamics (CFD) rendered them unsuitable for the current project. Additionally, the prohibitive costs associated with physical model testing render such approaches impractical for the current project.

This study utilizes Kerwin's method (1986) [3] to establish the optimal distribution of circulation by minimizing torque for a given thrust through solving a variational problem. Essential to this approach is the incorporation of the entire blade's effect. Thrust and torque calculations for the propeller are executed using the vortex lattice method, accommodating nearly arbitrary propeller geometries. The method integrates a simple wake and blade alignment procedure akin to moderately loaded lifting lines, with thickness and hub effects omitted for simplicity. The study also considers skin friction drag. Providing input data such as propeller radius, hub radius, number of blades, chord length, skew, and rake distributions is required.

3 Potential Flow Theory

In fluid dynamics, the potential flow theory describes the velocity field of an inviscid, incompressible, and irrotational fluid as the gradient of a scalar function called potential, denoted as Φ :

$$
\begin{equation*}
\frac{\partial \Phi}{\partial x_{i}}=u_{i} \tag{1}
\end{equation*}
$$

This equation defines each component of the velocity in terms of the local spatial partial derivative, in the direction of the velocity component.

3.1 Simplified Mathematical Models

In fluid dynamics, the behavior of fluids is governed by various forces and moments, similar to how rigid bodies are governed. However, in fluids, these forces are distributed continuously throughout the fluid rather than acting at specific points. This means that the motion of fluid particles and the distribution of forces are described continuously, assuming that the individual molecules can be treated as part of a continuum. The three principal forces are inertial, gravitational, and viscous. Typically, gravitational forces are ignored, and the fluid can be considered inviscid with a high Reynolds number, because viscous effects are limited to the boundary layer. Consequently, external forces are primarily due to the lifting surface in the fluid

Before delving into describing fluid flows with the velocity potential, it's crucial to introduce two foundational principles: the equations for conservation of mass and for the conservation of momentum. In this discussion, simplified forms following Newman's approach will be utilized. [13]. The principle of conservation of mass, when applied to a continuum of fluids in motion, asserts that within a three-dimensional volume in space - modeled as a cube - where mass can flow through each face of this geometric element, mass cannot be created or destroyed over time but is conserved. Consequently, the net inflow into the volume, subtracted from the net outflow from the volume, equals the net change in mass within the volume.

$$
\begin{equation*}
\frac{\partial}{\partial t} \int_{V} \rho d V+\int_{S} \rho(\vec{u} \cdot \vec{n}) d S=0 \tag{2}
\end{equation*}
$$

$\frac{\partial}{\partial t}$ represents the partial derivative with respect to time t.
$\int_{V} \rho d V$ denotes the integral of mass density ρ over volume V.
$\int_{S} \rho(\vec{u} \cdot \vec{n}) d S$ represents the integral of the mass flux $\rho \vec{u}$ across the surface S with the normal vector \vec{n}.

Similarly, the conservation of momentum states that, the sum of all forces acting on the fluid volume, must equal the rate of change of momentum density of fluid particles.

$$
\begin{equation*}
\frac{\partial}{\partial t} \int_{V} \rho \vec{u} d V+\int_{S} \rho \vec{u}(\vec{u} \cdot \vec{n}) d S=\sum \vec{F} \tag{3}
\end{equation*}
$$

$\frac{\partial}{\partial t}$ represents the partial derivative with respect to time t.
$\int_{V} \rho \vec{u} d V$ denotes the integral of momentum density $\rho \vec{u}$ over volume V.
$\int_{S} \rho \vec{u}(\vec{u} \cdot \vec{n}) d S$ represents the integral of the momentum flux $\rho \vec{u}(\vec{u} \cdot \vec{n})$ across the surface S with the normal vector \vec{n}.
$\sum \vec{F}$ represents the sum of all external forces acting on the system, such a surface and body forces.
The mass and momentum equations are sufficient to describe fluid motion, but the use of a differential representation is more practical. However, these equations are quite complex, nonlinear, and interconnected, which makes solving them a challenge. Although empirical evidence supports the Navier-Stokes equations for describing Newtonian fluids (where viscosity stays constant regardless of flow velocity or stress), finding analytical solutions is often difficult. To make progress in fluid dynamics, simplifications are often applied to the equations by neglecting certain terms or assuming their values to be zero. However, these simplifications may introduce errors into the analysis. Despite this, using simplified equations is often justified because they are easier to compute compared to the full equations. In the following, situations where such simplifications can prove advantageous, will be discussed.

- Inviscid flow
- Irrotational flow
- Incompressible flow

In numerous applications, it's common to assume, that the fluid density remains constant. This assumption holds true not just for liquid flows, where compressibility can often be neglected, but also for gases when the Mach number is below 0.3. Incompressible flow refers to motion that doesn't involve expansion. Additionally, if the flow is isothermal, the viscosity remains constant as well.
The flow can be treated as inviscid, because in flows far from solid surfaces, viscosity effects are typically minimal. When viscous effects are completely neglected, essentially assuming the stress tensor reduces to zero, the Navier-Stokes equations simplify to the Euler equations. Since the fluid is considered non-viscous, it doesn't stick to walls, allowing for slip at solid boundaries. At high velocities, the Reynolds number is very high, and viscous and turbulence effects only become significant in a small region near the walls. By incorporating a frictional drag coefficient, the friction drag between the fluid and the body is accounted for. Using the Euler equations, flow motion can be predicted accurately.

The continuity equation for a steady incompressible and inviscid fluid becomes:

$$
\begin{equation*}
\nabla \cdot \vec{u}=\frac{\partial u_{x}}{\partial x}+\frac{\partial u_{y}}{\partial y}+\frac{\partial u_{z}}{\partial z}=0 \tag{4}
\end{equation*}
$$

and the momentum equations:

$$
\begin{equation*}
\nabla\left(\frac{p}{\rho}+\frac{1}{2}|\vec{u}|^{2}\right)-\vec{u} \times \vec{w}=\frac{\vec{F}}{\rho} \tag{5}
\end{equation*}
$$

where: $\nabla=\left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}\right)$ is the gradient operator.
$\vec{w}=\nabla \times \vec{u}$ is the vorticity.
p is the pressure.
F represents the external force exerted by the lifting surface in the fluid. The forces exerted
by the fluid on these surfaces, are equal in magnitude but opposite in direction, to the forces exerted by the surfaces on the fluid.

After these initial assumptions, the equations of motion become independent of time and rely solely on the Cartesian coordinates ($\mathrm{x}, \mathrm{y}, \mathrm{z}$). Additionally, the studied body is fully submerged, the fluid is water, and it is assumed that the wake behind the hull is steady and axi-symmetric.

3.2 Irrotational Flow

To further simplify these equations, let's start by narrowing down the range of fluid motions and introducing the concept of circulation. By applying Kelvin's theorem to two points P_{1} and P_{2} within a connected region of the fluid, connected by paths forming a closed and continuous loop C, the circulation, denoted as Γ, is defined as the integral of tangential velocity around this closed contour C. This circulation remains constant if the fluid is subjected to conservative forces.

$$
\begin{equation*}
\Gamma=\int_{C} \vec{u}_{i} d \vec{x}_{i} \tag{6}
\end{equation*}
$$

Thanks to Stokes's theorem, the circulation can be related to the vorticity vector. For a continuously differentiable vector \vec{u}, it holds that:

$$
\begin{equation*}
\int_{S}(\nabla \times \vec{u}) \cdot d S=\int_{C} \vec{u} \cdot d \vec{x} \tag{7}
\end{equation*}
$$

In a frame tied to the body, where the velocity remains steady, it only varies with position and stays constant infinitely far away. As a result, the vorticity w remains zero across all points in the flow field, that can be traced back to infinity through streamlines. This outcome is a direct implication of Kelvin's theorem, stating that the circulation measured along any closed material line, remains constant over time.

Consequently, any motion starting from a stable condition, will persist as irrotational over time. The absence of rotation in a potential flow, arises from the fact that the curl of a gradient is always zero, causing circulation to vanish. Since the flow starts from a state of rest, circulation should remain zero, indicating that the integrand must be zero as well. Thus, the fluid's motion is irrotational:

$$
\begin{equation*}
\nabla \times \vec{v}=0 \tag{8}
\end{equation*}
$$

This conclusion holds significant implications because an irrotational vector field can be represented as the gradient of a scalar function. This assertion is a consequence of Helmholtz's theorem in vector analysis, which states that any continuous and finite vector field can be expressed as the sum of the gradient of a scalar function Φ and the curl of a zero-divergence vector, this vector vanishes identically, if the original vector field is irrotational. Therefore, if the velocity field is irrotational, it can be simplified to just the gradient of the scalar function Φ, also known as the velocity potential.

This simplification greatly aids in analyzing and understanding fluid motion, as it reduces the complexity of the vector field representation to a scalar function.

$$
\begin{equation*}
\nabla \Phi=\vec{u} \tag{9}
\end{equation*}
$$

and inserting this in the continuity Equation (4), one obtains:

$$
\begin{equation*}
\nabla \cdot \vec{u}=\nabla \cdot \nabla \Phi=\nabla^{2} \Phi=0 \tag{10}
\end{equation*}
$$

The motion can now be described by Laplace's equation:

$$
\begin{equation*}
\nabla^{2} \phi=\frac{\partial^{2} \Phi}{\partial x^{2}}+\frac{\partial^{2} \Phi}{\partial y^{2}}+\frac{\partial^{2} \Phi}{\partial z^{2}}=0 \tag{11}
\end{equation*}
$$

- It is a partial differential equation.
- It is a linear equation (for which superposition of effects applies), and the elementary solutions/functions, which are continuous and derivable except possibly at some contour points, can be used to derive solutions of more complex problems
- It is solvable, like any differential equation, once the boundary conditions are provided
- Dirichlet Conditions: The value of the potential is imposed on the boundary.
- Neumann Conditions: The value of the normal derivative of the potential is imposed on the boundary of the domain.

3.3 Kutta Condition

The derivation of the Laplace equation is valid only for simply connected regions, where, the circulation (line integral) of velocity, along a closed curve is always zero (6). This also guarantees the uniqueness of the solution, except for an additive constant, that does not affect the velocity problem, as they are the derivatives of the potential, indifferent to constants. If the region is multiply connected, it can be made simply connected by "cutting" the region itself. However, the circulation calculated around a non-reducible curve, is no longer zero: its value is constant for any curve surrounding the body and is constant along the cut. The uniqueness of the solution

Figure 1: Simply connected region with a cut
to the potential problem, for regions made simply connected, is guaranteed if the intensity of this circulation is specified. To ensure the uniqueness of the solution, it is necessary to know the circulation and consider the nature of the physical phenomenon under study. Considering points 1 and 2 , boundary conditions must be applied due to the discontinuity of the potential on the boundary:

- The normal derivative of the potential in the wake must not only be constant but also zero.
- The potential jump in the wake remains constant.
- The pressure must be equal across the cut, as per the Kutta condition $P_{1}=P_{2}$.

3.4 Bernoulli Equation

The velocity is determined without requiring dynamic considerations; it simply needs to be kinematically compatible and respect the boundary conditions. The pressure is derived from the momentum equation, taking into account that the body force is conservative and can be expressed using a scalar function $E, \vec{F}=-\nabla E$. The Euler equation for incompressible and irrotational flow, with a conservative body force becomes:

$$
\begin{equation*}
\nabla\left(\frac{p+E}{\rho}+\frac{|\vec{u}|^{2}}{2}\right)=0 \tag{12}
\end{equation*}
$$

The terms in the brackets should be constant to satisfy the equations, and the equation often referred to as the Bernoulli equation is:

$$
\begin{equation*}
\left(\frac{p+E}{\rho}+\frac{|\vec{u}|^{2}}{2}\right)=C \tag{13}
\end{equation*}
$$

From the momentum conservation equation, the integrated form of Bernoulli's equation, allows the derivation of pressure given the knowledge of velocity, completing the solution. Time does not explicitly appear in the Laplace equation due to its nature, which assumes an infinite propagation velocity of disturbances, causing the flow field to adapt instantaneously to changes in boundary conditions. However, it's important to note that time does appear in the expression for pressure and in the velocity field.

At this point, it's important to remember, as mentioned, that the Laplace equation is linear. This implies that the boundary problem can be separated into a value problem, for the undisturbed onset flow $\phi_{\text {onset }}$ and for the perturbed flow ϕ. Then, these two values can be summed. The potential flow for the onset flow can now be expressed as:

$$
\begin{equation*}
\Phi_{\text {onset }}=\vec{U} \cdot \vec{x}=U_{0, x} x+U_{0, y} y+U_{0, z} z \tag{14}
\end{equation*}
$$

If the disturbance velocity of the body is small compared to the undisturbed flow, the equation can be linearised (Breslin and Andersen, 1994) [21]:

$$
\begin{equation*}
p_{\infty}-p=\rho U_{0} u_{x} \tag{15}
\end{equation*}
$$

Where u_{x} represents the axial component of disturbance velocity. Rewriting the equation in terms of pressure coefficient ΔC_{p}, it is formulated as follows :

$$
\begin{equation*}
\Delta C_{p}=\frac{p-p_{\infty}}{\frac{1}{2} \rho U_{0}^{2}} \approx 2 \frac{u_{x}}{U_{0}} \tag{16}
\end{equation*}
$$

3.5 Lifting surface

The importance of lifting surfaces in fluid mechanics, particularly in supporting aircraft, hydrofoil boats, and various control surfaces such as rudders and yacht sails, cannot be overstated. These surfaces are engineered to maneuver through the surrounding fluid at a slight angle of attack, thereby generating hydrodynamic lift forces. The aspect ratio, which measures the extent to which flow is influenced, by the three-dimensional nature of the surface, plays a crucial role. A high aspect ratio suggests flow that is largely independent of the transverse coordinate, while a lower aspect ratio indicates significant three-dimensional flow effects.

In the subsequent analysis, the scenario of a propeller operating under two-dimensional flow conditions is examined, where the boundary conditions imposed on the contour are applied. Two primary types of boundary conditions are addressed: a kinematic condition concerning the fluid velocity at the boundary and a dynamic condition related to the forces acting on the boundary. For a material boundary separating a fluid from another medium, the tangential velocity at the surface must remain continuous. Specifically, if the solid surface is stationary, the tangential velocity must be zero. In the case of an impermeable solid, it is assumed that there is no separation or interpenetration; thus, the normal velocities of the fluid and the boundary coincide. This is known as the kinematic condition or non-slip condition:

$$
\begin{equation*}
\nabla \Phi \cdot \vec{n}=0 \tag{17}
\end{equation*}
$$

Expanding upon the potential definition:

$$
\begin{equation*}
\frac{\partial \Phi}{\partial n}=-U_{0} \cdot \vec{n}=0 \tag{18}
\end{equation*}
$$

where:

- \vec{n} is the unit normal vector of the surface with direction from the surface into the fluid,
- U_{0} is the velocity for the undisturbed onset flow.

The Kutta condition ensures that the velocity at the trailing edge remains finite, thereby mathematically enforcing the assumption of smooth tangential flow:

$$
\begin{equation*}
\nabla \Phi<\infty \text { at trailing edge } \tag{19}
\end{equation*}
$$

The influence of the body diminishes as the distance from it increases, therefore the perturbation potential decreases from a finite value to zero at infinity:

$$
\begin{equation*}
\nabla \Phi \rightarrow 0 \text { at infinity } \tag{20}
\end{equation*}
$$

In the general scenario, the perturbation potential, adheres to boundary conditions suitable for slender bodies with small angles of attack. Airfoils exemplify such slender profiles where separation effects remain negligible, allowing us to employ thin wing theory.

3.6 Linearised Thin Wing Theory

The thin wing theory, originally formulated for flow around two-dimensional wing sections, assumes a purely two-dimensional flow in this context, confined to the x-z plane as depicted in Figure 2, as the name implies, the theory is specifically tailored for slender profiles, with the additional condition that the angle of attack remains small. An illustrative profile is presented in the Figure 3:

Figure 2: Notation for two-dimensional section
where $z_{u}(x)$ delineates the upper side of the profile, $z_{l}(x)$ denotes the lower side, and c represents the chord length.For the thin wing assumption to hold, both $z_{u}(x)$ and $z_{l}(x)$ should be significantly smaller than the chord length. Additionally, the slope of the profile, represented by $z_{u}^{\prime}(x)$ and $z_{l}^{\prime}(x)$, should be considerably less than one. If these conditions are fulfilled, the velocity boundary condition specified in Equation (18) can be linearised (Newman, 1978 [13]), thus simplifying the analysis:

$$
\begin{array}{ll}
\frac{\partial \phi}{\partial z}=-U z_{u}^{\prime}(x) \text { on } z=0_{+}, & -\frac{c}{2} \leq x \leq \frac{c}{2} \\
\frac{\partial \phi}{\partial z}=-U z_{l}^{\prime}(x) \text { on } z=0_{-}, & -\frac{c}{2} \leq x \leq \frac{c}{2} \tag{21}
\end{array}
$$

The singularities describing the foil in the linearised theory are located on the x-axis between $-\frac{c}{2} \leq x \leq \frac{c}{2}$. The question arises as to which singularities should be used to describe the profile. This can be determined by dividing the disturbance potential into even and odd components (Newman, 1978 [13]):

$$
\begin{array}{r}
\phi(x, z)=\phi_{e}(x, z)+\phi_{o}(x, z) \\
\phi_{e}(x, z)=\phi_{e}(x,-z)=\frac{1}{2}[\phi(x, z)+\phi(x,-z)] \tag{22}\\
\phi_{o}(x, z)=-\phi_{o}(x,-z)=\frac{1}{2}[\phi(x, z)-\phi(x,-z)]
\end{array}
$$

The boundary condition at $z=0 \mp$

$$
\begin{array}{ll}
\frac{\partial \phi_{e}}{\partial z}=\mp \frac{1}{2} U\left(z_{u}^{\prime}(x)-z_{l}^{\prime}(x)\right) & \text { on } z=0_{ \pm}, \tag{23}\\
\frac{\partial \phi_{o}}{\partial z}=-\frac{1}{2} U\left(z_{u}^{\prime}(x)+z_{l}^{\prime}(x)\right) & \text { on } z=0_{ \pm},
\end{array}
$$

Figure 3: Left: Camber line with angle of attack α. Right: Symmetric section with thickness τ
The operator $\frac{\partial}{\partial z}$ is odd, implying that $\frac{\partial \phi_{e}}{\partial z}$ is odd and $\frac{\partial \phi_{o}}{\partial z}$ is even, with respect to z. These even and odd potentials correspond to two distinct physical scenarios. The the odd potential as the potential of an asymmetric flow, passing an arc with zero thickness defined by the curve $z=\frac{1}{2} U\left(z_{u}(x)+z_{l}(x)\right)$, or the mean-camber line. Conversely, even potential as the potential for a symmetrical profile, having thickness $\tau=\left(z_{u}(x)-z_{l}(x)\right)$, at zero angle of attack. Both scenarios are depicted in Figure 3.

By decomposing the original problem into two parts, one representing thickness effects and the other representing camber and angle of attack effects, Each aspect can be addressed separately. Since the pressure distribution is symmetric in the thickness problem, there is no lift force or moment involved. Therefore, thickness does not directly influence lift and moment, but only affects practical considerations when modifications of the pressure distribution, influence separation or cavitation.

The boundary condition for the even potential, as described in Equation (23), reveals an asymmetric vertical velocity along the projection of the profile on the x -axis. This asymmetric velocity arises from a distribution of sources along the projection, as discussed in works such as Breslin and Andersen (1994 [21]). Conversely, the boundary condition for the odd potential, as stated in Equation (23), necessitates a symmetric vertical velocity along the projection. Such symmetry in velocity is achieved through a distribution of vortices, which are crucial for lift generation, as also outlined in Breslin and Andersen (1994 [21]).

This explanation serves as a valuable reference, illustrating how a thin and horizontal profile can be represented by a distribution of sources and vortices, along its projection on the x -axis. As previously mentioned, the thickness is disregarded, and the foil is substituted with a distribution of circulation.

3.7 Circulation

Let's center our analysis on the flow over the mean-camber line and the resultant lift force and moment. The vertical position of the mean-camber line can be conveniently defined as: $z=\frac{1}{2}\left(z_{u}(x)+z_{l}(x)\right)=\alpha x+z_{f}(x)$. This establishes the corresponding boundary condition on the cut as:

$$
\begin{equation*}
\frac{\partial \phi_{o}}{\partial z}=-U z^{\prime}(x)=-U\left(\alpha x+z_{f}^{\prime}(x)\right) \tag{24}
\end{equation*}
$$

The boundary condition can be divided into two contributions: one from the angle of attack α and another from the camber line, represented by z_{f}. It's necessary to know the distribution along the chord. The distribution of circulation related to the angle of attack corresponds to a distribution for a flat plate:

$$
\begin{equation*}
\gamma_{F P}(x)=2 U_{0} \alpha \sqrt{\frac{c}{2}+x} \frac{\text { for }}{\frac{c}{2}-x} \quad \frac{-c}{2} \leq x \leq \frac{c}{2} \tag{25}
\end{equation*}
$$

Figure 4: Vortex Distribution for flat plate
From the Equation (25), it's possible to note that the value of circulation is highly intense near the leading edge. As depicted in the Figure 4, the solution is not accurate at this point, but it is accurate for the rest of the profile. Therefore, it is usable.
Regarding the circulation distribution related to the camber line, it is determined by utilizing the linearized Bernoulli equation and a pressure distribution. The tangential velocity $u_{x}(x, z)$ on both sides of a planar distribution of circulation along the x -axis is given by (Breslin and Andersen [21]):

$$
\begin{equation*}
u_{x}\left(x, 0_{ \pm}\right)=\mp \frac{2}{\gamma(x)} \quad \text { for } \quad-\frac{c}{2} \leq x \leq \frac{c}{2} \tag{26}
\end{equation*}
$$

Inserting this in Equation (16) one has:

$$
\begin{equation*}
\gamma(x)=\frac{1}{2 U_{0}} \Delta C p(x) \tag{27}
\end{equation*}
$$

The circulation is known when $\Delta C_{p}(x)$ is defined. For this purpose, the NACA series is utilized: the specific pressure distribution should be suitable regarding separation and cavitation. The factor 'a' denotes the fraction of the chord, measured from the leading edge, over which the pressure remains constant. Towards the trailing edge, the pressure linearly decreases to zero, creating what is often termed a rooftop pressure distribution.
The circulation distribution for these mean lines is:

$$
\gamma_{R T}(x)= \begin{cases}\frac{(c / 2+x) U_{0}}{c\left(1-a^{2}\right)} C_{L, i} & \text { per }-\frac{c}{2} \leq x \leq \frac{c}{2}(1-2 a) \tag{28}\\ \frac{U_{0}}{1+a} C_{L, i} & \text { per } \frac{c}{2}(1-2 a) \leq x \leq \frac{c}{2}\end{cases}
$$

$C_{L, i}$ is the ideal lift coefficent. By combining the distributions of Equation (25) and Equation (28), the chordwise circulation distribution becomes known, for a profile characterized by an arbitrary rooftop pressure distribution and an arbitrary angle of attack, provided that the limits of the linear theory are respected. Having clarified the linearized thin-wing theory in two dimensions, it can be extended to the three-dimensional theory.

The three-dimensional flow varies also along spanwise direction, affecting circulation which depends on both chordwise and spanwise coordinates, with chordwise variations described by two-dimensional equations. Extending the linearized thin-wing theory to three dimensions is achievable, provided that the two-dimensional assumptions remain valid along the chord.

In steady two-dimensional flow, irrotationality is reached with an infinite vortex downstream of the propeller, compensating for propeller's chordwise circulation. For three-dimensional flow, this requirement is met by closed vortices with constant circulation. Therefore, in steady flow, when a body exhibits a circulation variation along its span, a vortex sheet forms behind it, merging the initially shed vortices with those created at the trailing edge. The circulation of this vortex sheet is given by $\frac{d \Gamma(y)}{d y}$, where $\Gamma(y)$ represents the total chordwise circulation at the spanwise coordinate y. As the vortex sheet is devoid of forces, it must move with the fluid, as per Helmholtz's theorem (a vortex line cannot start or end abruptly in a fluid).

Based on this theory, lifting surfaces such as propellers are modeled with vortex distributions on their surfaces and a wake vortex sheet. Despite the constraints, potential flow theory has been widely used and has proven reliable over time.

3.8 Distribution of Vortex

The method applied in this work divides the blade surface into a number of elements to describe the surface. The calculation is made using vortex segments distributed along the blade to represent its shape.
These vortex segments, form a gridwork that discretely represents the circulation distribution across the blade, by constructing blocks of constant strength vortices.
The wake of the propeller is modeled with a sheet of trailing vortices convected downstream with the mean flow.
Similar to the lifting line model, attention must be paid to how the trailing wake is modeled.
In determining the value of circulation, consideration must be given to the physical nature of the phenomena: the flow has to leave the trailing edge smoothly, satisfying Kutta's conditions:

- The vortex line cannot start or end abruptly,
- The vortex have to svanish into the flow,
- The velocity at trailng edge is finite.

$$
\begin{equation*}
\Gamma_{(\text {T.E. })}=0 \tag{29}
\end{equation*}
$$

The circulation at the trailing edge must be zero, meaning that the pressure must be zero on the trailing edge. In practice, this condition is satisfied when the local streamline and the wake are parallel, which means the strength of the wake is equal to the strength of the panel at the trailing edge. Therefore, the vortex elements cannot end up on the wing but must vanish into the flow, ensuring that no force acts on them.

To satisfy the solution, Helmholtz's theorems are required:

$$
\begin{equation*}
\vec{Q} \times \vec{\Gamma}_{\text {wake }}=0 \tag{30}
\end{equation*}
$$

- \vec{Q} is the local flow
- $\vec{\Gamma}_{\text {wake }}$ is the circulation of the horseshoe vortex

At any point of the wake, the free vortex must be parallel to the local flow, and to satisfy this condition:

- Each vortex has constant intensity,
- Each vortex can exist only as a closed (ring) line (infinite).

4 Optimisation Procedure

4.1 Introduction

The principle of lifting surfaces is applied to the design of modern propellers to achieve better lift-to-drag ratios. The objective of the optimization procedure is to determine the optimal radial distribution of circulation on the propeller, aiming to maximize efficiency, through the solution of a variational problem. By using this distribution of circulation, the corresponding pitch distribution is found. In other words, the goal is to design the propeller configuration that minimizes the power required to produce the desired thrust, thereby improving overall efficiency.

This methodology was initially developed by Prandtl and Betz in 1927 [1] for a single propeller operating in open water conditions, employing linear theory and a lifting line model with integral formulation. Betz identified the optimal circulation distribution, where the ratio between the pitch angle of the onset flow, and the pitch angle for the total inflow, remained constant.
Lerbs (1952) [2] further advanced the method by introducing a radially varying onset flow. In Lerbs' formulation, an induction factor was incorporated to calculate induced velocity from the trailing vortices, assumed with a helical shape. The shed vortices were aligned with the total flow at the lifting line, coinciding with the criteria established by Betz in the case of open water propellers.

Kerwin et al. (1986) [11], introduced a approach, that discretized the continuous distribution of circulation, allowing for the direct solution of the variational problem. Subsequently, Coney (1992 [12]) developed a vortex-lattice lifting line method, discretizing the continuous distribution of vortices along the lifting line. These advancements showcased significant advantages of the discrete model: linearization is not necessary, and it has the capability to handle theoretically unlimited complex propeller geometries.
In the current optimization procedure, a lifting-surface model is utilized, enabling the integration of the entire blade's effects into the optimization process. Consequently, the optimum distribution of loading is determined, followed by the calculation of the optimum distribution of pitch. For simplicity, the hub is neglected in the optimization procedure.

4.2 Geometry

4.2.1 Propeller Geometry

A brief explanation of the propeller blade geometry is appropriate at this point: the propeller is described in a Cartesian coordinate system which rotates with the propeller. The origin of the coordinate system is at the center of the propeller hub. The x -axis is positive upstream, the y -axis is positive to the port side and the z -axis completes the right-hand coordinate system, see Figure (5).

Consider a propeller comprised of Z identical, symmetrically arranged blades attached to a hub rotating at a constant angular velocity ω about the x-axis. The blade is formed starting with a mid-chord line defined parametrically by the radial distribution of the skew of the mid-chord line of the propeller $\phi_{m}(s)$, positive in the opposite direction of ϕ and rake $x_{m}(s)$. By advancing
a distance $\pm \frac{1}{2} t$ along a helix of pitch angle $\beta(s)$, one obtains the blade's leading and trailing edges. The reference surface of propeller blade is described in function of arc length parameter along midchord line s, and dimensionless chordwise parameter t, while $c(s)$ is the chord length.

For the cylindrical coordinate system the radius r is positive away from the origin and the angle ϕ is measured from the z -axis and is positive in the same direction as ω. The x-coordinate for the cylindrical coordinate system is the same as for the Cartesian system. The cylindrical system is also shown in Figure (5).
For the blade surface the description in the Cartesian coordinate system:

Figure 5: Coordinate system for the propeller

$$
\begin{aligned}
\phi(s, t) & =-\phi_{m}(s)+\frac{c(s)}{r_{m}(s)} \cos (\beta(s)) t \\
x(s, t) & =x_{m}+c(s) \sin (\beta(s)) t \\
y(s, t) & =-r_{m}(s) \sin (\phi(s, t)) \\
z(s, t) & =r_{m}(s) \cos (\phi(s, t))
\end{aligned}
$$

$$
\text { for } s_{\text {hub }}<s<s_{\text {tip }} \text { and }-\frac{1}{2}=t_{(\text {TrailingEdge })}<t<t_{(\text {LeadingEdge })}=\frac{1}{2}
$$

β is the fluid pitch angle, of the propeller:

$$
\begin{equation*}
\beta(s)=\tan ^{-1}\left(\frac{U_{0, x}(s)-u_{x}(s)}{\omega r_{m}(s)-u_{t}(s)-U_{0, t}(s)}\right) \tag{31}
\end{equation*}
$$

where:

- $U_{0, x}(s)$ is the x component of the onset flow,
- $u_{x}(s)$ is the total axial induced velocity,
- $r_{m}(s)$ is the radius for the propeller,
- $u_{t}(s)$ is the total tangential induced velocity,
- $U_{0, t}(s)$ is the tangential component of the onset flow.

Figure 6: Velocity triangle for the propeller

4.2.2 Grid Generation

As the continuous distribution of circulation is replaced with a discrete distribution, the blade surface, is divided into a number of quadrilateral panels and the trailing vortex sheet is therefore, reduced to a number of trailing horseshoe vortices.

The circulation is positive counterclockwise along the sides of each panel. To satisfy Kelvin's circulation theorem, the circulation along these sides remains constant. The corners of the panels, or grid points, are labeled from $P 1$ to $P 4$ in the direction of circulation. The vectors along the sides are denoted as $\overrightarrow{l_{1}}$ to $\overrightarrow{l_{4}}$, so the $\overrightarrow{l_{2}}$ representing the vector from $P 2$ to $P 3$.

Figure 7: Description of a panel and a trailer

The radial discretization of the propeller follows James (1972) [17]. It's worth noting that the outermost grid points at the tips are shifted inward by one-quarter interval:

$$
\begin{gather*}
s_{g p, i}=\frac{4 i-3}{4 M_{s p}+2}\left(s_{t i p}-s_{h u b}\right)+s_{h u b} \quad \text { for } i=1,2,3 \ldots, M_{s p}+1 \tag{32}\\
s_{c p, i}=\frac{1}{2}\left(s_{g p, i}+s_{g p, i+1}\right) \quad \text { for } i=1,2,3 \ldots, M_{s p} \tag{33}
\end{gather*}
$$

The cosine discretization in the chord-wise direction, following Lan's method [18], is as follows:

$$
\begin{gather*}
t_{g p, 1}=-\frac{1}{2} \quad \text { located at T.E. } \tag{34}\\
t_{g p, i}=-\frac{1}{2} \cos \left(\frac{\left(i-\frac{3}{2}\right) \pi}{N_{c h}}\right) \quad \text { for } i=2,3 \ldots, N_{c h}+1 \tag{35}\\
t_{c p, i}=\frac{1}{2}\left(t_{g p, i}+t_{g p, i+1}\right) \quad \text { for } i=1,2,3 \ldots, N_{c h} \tag{36}
\end{gather*}
$$

where $N_{c h}$ is the number of chord-wise panels, $M_{s p}$ is the number of span-wise panels, $g p$ refers to grid points, $c p$ refers to control points.

4.2.3 Horseshoe Vortex

As previously mentioned, the discretization process reduces the trailing vortex sheet to a finite number of horseshoe vortices, providing a simplified representation of the wing's vortex system. Each horseshoe vortex comprises two trailing wing-tip vortices, which extend infinitely downstream with the fluid flow, and a bound vortex, represented as a straight line positioned at the trailing edge. The wing-tip vortices contribute to the downwash component responsible for induced drag.

To satisfy the Kutta condition, the circulation of the horseshoe vortex equals the circulation of the adjacent trailing edge panel. For the propeller, it's assumed that the sides of the horseshoe, follow regular helices with constant pitch and radius.

Figure 8: Example of grid, trailers and direction of the circulation for the propeller

Consequently, the horseshoe vortex can be described by:

$$
\vec{x}= \begin{cases}x & -\infty<x<x_{(\text {T.E. })} \tag{37}\\ -r \sin \left(\frac{2 \pi}{P}\left(x-x_{(T . E .)}\right)+\phi_{(T . E .)}\right) & y_{\left(T . E_{(H u b)}\right)}<y<y_{\left(T . E_{(T i p)}\right)} \\ r \cos \left(\frac{2 \pi}{P}\left(x-x_{(T . E .)}\right)+\phi_{(T . E .)}\right) & r_{\left(T . E_{(H u b)}\right)}<r<r_{\left(T . E_{(T i p)}\right)}\end{cases}
$$

where:

- r is the radius of the grid points at the trailing edge,
- P is the pitch of the helix, which is equal to the pitch of the reference flow (see section 4.5): $P=2 \pi r \tan (\beta)$
- $\phi_{(T . E .)}$ is the phase angle of the helix,
- $x_{(T . E .)}$ is the x at the trailing edge.

4.3 Forces and Velocities Calculations

4.3.1 Force on the panel sides

The force on the panel sides is found by using the Kutta-Joukowski theorem:

$$
\begin{equation*}
\vec{F}_{\text {Side }}=\rho \vec{U}(\vec{x}) \times \vec{\Gamma}_{\text {Side }} \tag{38}
\end{equation*}
$$

where:

- $\vec{\Gamma}_{\text {Side }}$ is the total circulation of the panel side, which is the difference in circulation for the two adjacent panels (for the leading edge panel is equal to $\vec{\Gamma}_{\text {Panel }}$),
- $\vec{U}(\vec{x})$ is the total velocity at the midpoint of the panel side. $\vec{U}(\vec{x})=\vec{U}_{0}(\vec{x})+\vec{u}(\vec{x})$
where:
- $\vec{U}_{0}(\vec{x})$ is the onset flow at the midpoint of the side,
- $\vec{u}(\vec{x})$ is the total induced velocity at the midpoint of the side.

Figure 9: Description of the total circulation at the panel side

4.3.2 Onset Flow

The undisturbed flow is given in cylindrical coordinates, allowing for its rearrangement into Cartesian coordinates. It is assumed that the undisturbed flow depends solely on radial variation and is independent of longitudinal position; furthermore, it is assumed to be axi-symmetric. Therefore, the three Cartesian components can be expressed as follows:

$$
\begin{array}{r}
\vec{U}_{0}(\vec{x})=\left(-U_{0, x}(s),-U_{0, r}(s) \sin \phi-\left(U_{0, t}(s)-\omega r(s)\right) \cos \phi,\right. \\
\left.U_{0, r}(s) \cos \phi-\left(U_{0, t}(s)-\omega r(s)\right) \sin \phi\right) \tag{39}
\end{array}
$$

where:

- $U_{0, x}(s), U_{0, z}(s), U_{0, y}(s)$ are the wake velocities given in Cartesian coordinates,
- $U_{0, r}(s), U_{0, t}(s)$ are the wake velocities given in cylindrical coordinates,
- $\omega r(s)$ is the tangential velocity caused by the rotation of the propeller(included because the coordinate system is fixed to the blade).

4.3.3 Induced velocities from the panels

The induced velocity from the panels is determined by applying the Biot-Savart law. This law is a general result of potential theory and describes both electromagnetic fields and inviscid, incompressible flows. In general terms the law can be stated (see Figure 10) as the velocity $d u$ induced at a point x of radius R from a segment $d \varepsilon$ of a vortex filament of strength Γ given by:

$$
\begin{equation*}
d \vec{u}=\frac{\Gamma}{4 \pi} \frac{d \vec{\varepsilon} \times \vec{R}}{|\vec{R}|^{3}} \tag{40}
\end{equation*}
$$

Figure 10: Application of the Biot-Savart law to a general vortex filament

To rearrange the expression for calculating the velocity induced by a single panel at the point \vec{x}, it can be expressed as follows:

$$
\begin{equation*}
\vec{u}_{i}(\vec{x})=\frac{\Gamma_{i}}{4 \pi} \sum_{k=1}^{4} \int_{0}^{s_{k}} \frac{d \vec{\varepsilon} \times \vec{R}}{|\vec{R}|^{3}}=\Gamma_{i} q_{i}(\vec{x}) \tag{41}
\end{equation*}
$$

where Γ_{i} is the circulation of the panel, $d \vec{\varepsilon}$ is the length element along the panel side with the lenght $s_{k} . \vec{R}$ is the vector from the vortex element, q_{i} is defined as the velocity induced by the entire panel with a unit circulation. The numerical evaluation of the induced velocity involves the determination of the velocity induced by a unit circulation since at first the circulation is an unknown.

Considering that the panel sides are linear segments, the computational assessment of the induced velocity resulting from a panel side adheres to the methodology outlined by Olsen (2001) [4]:

$$
\vec{u}(\vec{x})=\frac{\Gamma}{4 \pi} \frac{\vec{a} \times \vec{c}}{|\vec{a} \times \vec{c}|} \frac{1}{d}[\cos \alpha+\cos \beta]=\frac{\Gamma}{4 \pi} \frac{\vec{a} \times \vec{c}}{|\vec{a} \times \vec{c}|} \frac{1}{d}\left[\frac{a-e}{b}+\frac{e}{c}\right]
$$

The vector $\frac{(a \times c)}{|a \times c|}$ corresponds to a unit vector giving the direction of the induced velocity.

Figure 11: Description of the parameters used in the application of Biot-Savart law

Figure 12: Parameters used to evaluate the induced velocity from a straight vortex
where:

- $a=|\vec{a}|=\sqrt{\left(x_{2}-x_{1}\right)+\left(y_{2}-y_{1}\right)+\left(z_{2}-z_{1}\right)}$,
- $b=\sqrt{\left(x_{2}-x\right)+\left(y_{2}-y\right)+\left(z_{2}-z\right)}$,
- $c=\sqrt{\left(x_{1}-x\right)+\left(y_{1}-y_{1}\right)+\left(z_{1}-z\right)}$,
- $d=\sqrt{\left(c^{2}-e^{2}\right)}$,
- $e=|\vec{e}|=\frac{a^{2}+c^{2}-b^{2}}{2 a}$

4.3.4 Induced velocities from the horseshoe vortices

The induced velocity from the horseshoe vortices is divided into two parts:

- Transition wake:
- Extends from the trailing edge of the propeller to four radii downstream.
- The regular helix is approximated by a series of straight line vortices.
- The induced velocity can be determined using the same method as for the panel sides.
- Ultimate wake:
- Includes the region from the end of the transition wake to infinitely downstream.
- The induced velocity in this region is calculated using the method developed by de Jong (1991) [20].

4.3.5 Total velocity

The total velocity at point \vec{x} is the sum of the onset flow and the induced velocity from the propeller itself:

$$
\begin{equation*}
\vec{U}(\vec{x})=\sum_{j=1}^{M_{s p}} \Gamma_{1+(j-1) N_{c h}} \sum_{i=1}^{N_{c h}} k_{i} \vec{q}_{i+(j-1) N_{c h}}(\vec{x})+\vec{U}_{0} \tag{42}
\end{equation*}
$$

where:

- j is the counter for the span-wise panels,
- i is the counter for the chord-wise panels,
- $\Gamma_{1+(j-1) N_{c h}}$ is the circulation for the panel at the trailing edge,
- k_{i} is the weight function,
- $\vec{q}_{i+(j-1) N_{c h}}$ is the induced velocity from the panel $i+(j-1) N_{c h}$ with a unit circulation. The induced velocities from the trailing vortices are included in $\vec{q}_{i+(j-1) N_{c h}}$
- \vec{U}_{0} is the onset flow.

4.4 Weight Function

Munk's displacement theorem states that the induced drag for a lifting surface depends solely on the total chord-wise circulation and not on the chord-wise distribution of the circulation. Hence, to specify the chord-wise distribution of circulation for the propeller, it becomes necessary to introduce the weight function. Essentially, the weight function establishes a relationship between the chord-wise panels to determine the chord-wise distribution of circulation for the propeller. For the propeller, the optimization problem is therefore simplified to finding the optimal distribution of total circulation for each chord-wise strip, which corresponds to the circulation of the horseshoe vortex.

In a discrete distribution of vortices, as depicted in Figure 13, the weight function is defined as follows:

$$
\begin{equation*}
\kappa_{n}=\frac{\Gamma_{n}}{\Gamma_{t o t}} \tag{43}
\end{equation*}
$$

The total circulation at grid point n, Γ_{n}, as shown in Figure 13, is the difference between the circulation of two adjacent panels. Meanwhile, the total circulation for the chordwise direction is given by: $\Gamma_{\text {tot }}=\int_{-c / 2}^{c / 2} \gamma(x), d x$, where γ represents the continuous distribution of circulation calculated earlier in Section 3.7, as a combination of the flat plate and rooftop distributions.

Figure 13: Description of total circulation at a panel side
For the discrete vortex, the cirulation can be approximated by:

$$
\begin{equation*}
\Gamma_{n}=c \int_{t_{c p, n-1}}^{t_{c p, n}} \gamma\left(t^{\prime}\right), t^{\prime} \approx \gamma\left(t_{g p, n}\right)\left(t_{c p, n}-t_{c p, n-1}\right) \tag{44}
\end{equation*}
$$

where $t_{c p, n}$ follows Lan (1974) [18], and represents the location of the control point, while $t_{g p, n}$ is described in Section 4.2.2.
The discrete circulation becomes:

$$
\begin{equation*}
\Gamma_{n} \approx \gamma\left(t_{g p, n}\right) C \sqrt{\left(\frac{1}{2}-t_{g p, n}\right)\left(\frac{1}{2}+t_{g p, n}\right)} \tag{45}
\end{equation*}
$$

where C is a constant. Then, it's possible to write the relationship between the weight function κ and the circulation on the chord-wise panels as follows:

$$
\left\{\begin{array}{l}
\kappa_{1}=0 \tag{46}\\
\kappa_{n}=\frac{\Gamma_{n-1}-\Gamma_{n}}{\Gamma_{t o t}} \quad \text { for } i=2,3 \ldots, N_{c h} \\
\kappa_{N_{C h+1}}=\frac{\Gamma_{N_{C h+1}}}{\Gamma_{\text {tot }}}
\end{array}\right.
$$

This results in the weight function for the circulation of the panels:

$$
\begin{equation*}
\kappa_{n}=\sum_{i=n+1}^{N_{C h+1}}\left((1-\nu) \kappa_{i}^{R T}+\nu \kappa_{i}^{F T}\right) \quad \text { for } i=1,2,3 \ldots, N_{c h} \tag{47}
\end{equation*}
$$

where:

- $\Gamma_{t o t}$ is the total circulation for the chord-wise distribution,
- $\kappa_{i}^{R T}$ is the weight function for the flat plate pressure distribution,
- $\kappa_{i}^{F T}$, is the weight function for the rooftop plate pressure distribution,
- ν is the ratio of the pressure distribution. In our case $\nu=0.5$.

4.5 Wake Alignment

The applied grid and wake alignment procedure assumes a constant pitch for the horseshoe vortices and disregards slipstream contraction. It also assumes that the blade and horseshoe vortices share the same pitch, determined by the total velocity at the midchord line of the blade. The pitch of the helix is based on the total velocity at the mid-chord line of the blade, which is located at $t=0$. Consequently, the pitch angle of both the grid and horseshoe vortices is:

$$
\begin{equation*}
\beta_{i}(s)=\tan ^{-1}\left(\frac{U_{0, x}(s)-u_{x}(s)}{\omega r_{m}-u_{t}(s)-U_{0, t}(s)}\right) \tag{48}
\end{equation*}
$$

where:

- $U_{0, x}(s)$ is the x component of the onset flow,
- $u_{x}(s)$ is the total axial induced velocity,
- ω is the angular velocity,
- r_{m} is the radius for the propeller,
- $u_{t}(s)$ is the total tangential induced velocity,
- $U_{0, t}(s)$ is the tangential component of the onset flow.

The applied alignment procedure corresponds to the wake alignment used in the moderately loaded lifting-line theory. However, unlike the lifting-line theory, the induced velocity from the bound vortices is included in the total induced velocity for the lifting-surface optimization. While it's assumed that the effects of these vortices are small, which holds true for a propeller without skew and rake, for a skewed propeller, this assumption becomes more questionable.

4.6 Thrust and Torque Calculation

As previously discussed, the forces on the propeller blades are found by the Kutta-Joukowski theorem. Therefore, the force on one side of the panel is calculated using the following expression:

$$
\begin{equation*}
\vec{F}_{\text {Side }}=\rho \vec{U}(\vec{x}) \times \vec{\Gamma}_{\text {Side }}=\rho \Gamma_{\text {Side }}\left(\vec{U}(\vec{x}) \times \vec{l}_{\text {Side }}\right) \tag{49}
\end{equation*}
$$

where:

- $\vec{U}(\vec{x})$ is the total velocity calculated at the midpoint of the panel side,
- $\vec{l}_{\text {Side }}$ is the vector for the side,
- $\vec{\Gamma}_{\text {Side }}$ is the total circulation on the side.

The moment generated by one side of the panel can be expressed ass:

$$
\begin{equation*}
\vec{M}_{\text {Side }}=\vec{r}(\vec{x}) \times \vec{F}_{\text {Side }} \tag{50}
\end{equation*}
$$

where:

- $\vec{r}(\vec{x})$ is the vector from the origin of the coordinate system to the midpoint of the side.

The total thrust, T, and torque Q, generated by the propeller are determined by summing the contributions from all the panel sides of all the blades. It's important to note that, due to the symmetric nature of the propeller and its operation under steady conditions, the forces generated by all the blades are identical. Therefore, the forces generated by the entire propeller can be calculated by multiplying the forces on one blade (the reference blade) by the number of blades Z.
Therefore, the thrust (x -component of the total force) is:

$$
\begin{align*}
T=F_{x}= & \rho Z \sum_{m=1}^{M_{s p}} \Gamma_{1+(m-1) N_{c h}}\left\{\sum _ { n = 1 } ^ { N _ { c h } } \kappa _ { n } \sum _ { k = 1 } ^ { 4 } \left[l_{z, n+(m-1) N_{c h, k}} U_{y}\left(\vec{x}_{n+(m-1) N_{c h, k}}\right)\right.\right. \\
& \left.-l_{y, n+(m-1) N_{c h, k}} U_{z}\left(\vec{x}_{n+(m-1) N_{c h, k}}\right)\right]-l_{z, 1+(m-1) N_{c h, 4}} U_{y}\left(\vec{x}_{1+(m-1) N_{c h, 4}}\right) \tag{51}\\
& \left.+l_{y, 1+(m-1) N_{c h, 4}} U_{z}\left(\vec{x}_{1+(m-1) N_{c h, 4}}\right)\right\}
\end{align*}
$$

where:

- l_{x} is the x-component of \vec{l},
- l_{y} is the y-component of \vec{l},
- l_{z} is the z-component of \vec{l},
- U_{x} is the x-component of the total velocity,
- U_{y} is the y -component of the total velocity,
- U_{z} is the z-component of the total velocity,
- m is the span-wise index,
- n is the chord-wise index,
- k is the side index.

For example, $\vec{x}_{n+(m-1) N_{c h, k}}$ is the coordinate for the midpoint of side k of the panel number $n+(m-1) N_{c h, k}$.

The torque Q is the negative x-component of the total moment:

$$
\begin{equation*}
Q=-M_{x}=-\sum_{i=1}^{\text {sides }}\left(y F_{z}-z F_{y}\right)=Q_{2}-Q_{1} \tag{52}
\end{equation*}
$$

where:

$$
\begin{align*}
& F_{y}=\rho Z \sum_{m=1}^{M_{s p}} \Gamma_{1+(m-1) N_{c h}}\left\{\sum _ { n = 1 } ^ { N _ { c h } } \kappa _ { n } \sum _ { k = 1 } ^ { 4 } \left[l_{x, n+(m-1) N_{c h, k}} U_{z}\left(\vec{x}_{n+(m-1) N_{c h, k}}\right)\right.\right. \\
& \left.-l_{z, n+(m-1) N_{c h, k}} U_{x}\left(\vec{x}_{n+(m-1) N_{c h, k}}\right)\right]-l_{x, 1+(m-1) N_{c h, 4}} U_{z}\left(\vec{x}_{1+(m-1) N_{c h, 4}}\right) \tag{53}\\
& \left.+l_{z, 1+(m-1) N_{c h, 4}} U_{x}\left(\vec{x}_{1+(m-1) N_{c h, 4}}\right)\right\} \\
& F_{z}=\rho Z \sum_{m=1}^{M_{s p}} \Gamma_{1+(m-1) N_{c h}}\left\{\sum _ { n = 1 } ^ { N _ { c h } } \kappa _ { n } \sum _ { k = 1 } ^ { 4 } \left[l_{y, n+(m-1) N_{c h, k}} U_{x}\left(\vec{x}_{n+(m-1) N_{c h, k}}\right)\right.\right. \\
& \left.-l_{x, n+(m-1) N_{c h, k}} U_{y}\left(\vec{x}_{n+(m-1) N_{c h, k}}\right)\right]-l_{y, 1+(m-1) N_{c h, 4}} U_{x}\left(\vec{x}_{1+(m-1) N_{c h, 4}}\right) \tag{54}\\
& \left.+l_{x, 1+(m-1) N_{c h, 4}} U_{y}\left(\vec{x}_{1+(m-1) N_{c h, 4}}\right)\right\} \\
& Q_{2}=z F_{y}=\rho Z_{P} \sum_{m=1}^{M_{s p}} \Gamma_{1+(m-1) N_{c h}}\left\{\sum _ { n = 1 } ^ { N _ { c h } } \kappa _ { n } \sum _ { k = 1 } ^ { 4 } z _ { n + (m - 1) N _ { c h , k } } \left[l_{x, n+(m-1) N_{c h, k}} U_{z}\left(\vec{x}_{n+(m-1) N_{c h, k}}\right)\right.\right. \\
& \left.-l_{z, n+(m-1) N_{c h, k}} U_{x}\left(\vec{x}_{n+(m-1) N_{c h, k}}\right)\right]+z_{1+(m-1) N_{c h, 4}}\left[-l_{x, 1+(m-1) N_{c h, 4}} U_{z}\left(\vec{x}_{1+(m-1) N_{c h, 4}}\right)\right. \\
& \left.\left.+l_{z, 1+(m-1) N_{c h, 4}} U_{x}\left(\vec{x}_{1+(m-1) N_{c h, 4}}\right)\right]\right\} \tag{56}
\end{align*}
$$

- F_{y} is the y-component of the force on side i,
- F_{z} is the z-component of the force on side i,
- Q_{1} and Q_{2} are introduced in order to make the expression above more readable.

The equations above satisfy the Kutta condition $\left(\Gamma_{(\text {T.E. })}=0\right)$. Let's consider, for example, Equation (47) and its last two components. This part of the equation is employed to eliminate the contribution of segments at the trailing edge to the thrust, which was previously calculated in the same equation:

$$
\begin{equation*}
l_{x, 1+(m-1) N_{c h, 4}} U_{z}\left(\vec{x}_{1+(m-1) N_{c h, 4}}\right)+l_{z, 1+(m-1) N_{c h, 4}} U_{x}\left(\vec{x}_{1+(m-1) N_{c h, 4}}\right) \tag{57}
\end{equation*}
$$

4.7 Optimum Circulation Distribution

As mentioned earlier, the objective of the optimization procedure is to determine the radial distribution of circulation on the propeller. This distribution allows the propeller to generate a specified thrust with minimal energy consumption. Consequently, minimizing the torque applied to the propeller becomes crucial. In essence, the objective is to achieve the highest efficiency for the propeller:

$$
\begin{equation*}
\eta=\frac{J}{2 \pi} \frac{K_{T}}{K_{Q}} \tag{58}
\end{equation*}
$$

where:
K_{T} is the thrust coefficient:

$$
\begin{equation*}
K_{T}=\frac{T_{r}}{\rho n^{2} D^{4}} \tag{59}
\end{equation*}
$$

K_{Q} is the torque coefficient:

$$
\begin{equation*}
K_{Q}=\frac{Q_{t}}{\rho n^{2} D^{5}} \tag{60}
\end{equation*}
$$

J is the advance number:

$$
\begin{equation*}
J=\frac{U_{a}}{n D} \tag{61}
\end{equation*}
$$

T_{r} is the required thrust of the propeller : $T_{r}=T_{t}-T_{v}$

- T_{t} is the total required thrust of the propeller
- T_{v} is the thrust owed to the skin friction drag of the propeller (negative).
U_{a} is the mean inflow to the propeller disc, ρ is the mass density of the water, n is the rate of revolution of the propeller, D is the propeller's diameter and Q_{t} is the total torque:

$$
\begin{equation*}
Q_{t}=\left(Q_{2}-Q_{1}\right)+Q_{v} \tag{62}
\end{equation*}
$$

where Q_{v} is the torque owed to the skin friction drag of the propeller (negative).

4.7.1 Skin Friction Drag

Skin friction drag is the portion of drag resulting from the friction between a fluid and the surface, of an object, moving through it. This drag arises within the boundary layer, due to the viscosity of the fluid. It is directly proportional to the surface area in contact with the fluid and increases with the square of the velocity. Additionally, it's important to note that form drag is disregarded in this context due to the vortex-lattice method's reliance on potential flow theory: The skin friction drag created by a panel of the propeller is:

$$
\begin{gather*}
d T_{v}=\frac{1}{2} \rho C_{f} A\left|V_{T}\right| V_{T} \tag{63}\\
d Q_{v}=\frac{1}{2} \rho C_{f} A\left|V_{T}\right|\left(y_{P} V_{T_{z}}-z_{P} V_{T_{y}}\right) \tag{64}
\end{gather*}
$$

where:

- $C_{f}=2 \cdot 0.004$ is the frictional drag coefficient for the two faces of the panel,
- A is the area of the panel,
- V_{T} is the total tangential velocity in the control point of the panel,
- y_{P} is the y -coordinate of the control point of the panel,
- z_{P} is the z-coordinate of the control point of the panel,
- $V_{T_{z}}$ is the z-coordinate of the tangential velocity in the control point of the panel,
- $V_{T_{y}}$ is the y-coordinate of the tangential velocity in the control point of the panel.

4.7.2 Variational Problem

The optimization procedure aims to determine the circulation distribution that enables the propeller to achieve a specified thrust while minimizing energy consumption. Therefore, the torque applied to the propeller should be minimized as well. This circulation distribution is obtained by solving a discrete variational problem, as outlined in Kerwin et al. (1986) [3].

The functional for this problem is given by:

$$
\begin{equation*}
H(\vec{\Gamma}, \lambda)=Q(\vec{\Gamma})+\lambda\left(T(\vec{\Gamma})-\left(T_{r}-T_{v}\right)\right) \tag{65}
\end{equation*}
$$

where:

- $\vec{\Gamma}$ is the sought distribution of circulation,
- λ is the Lagrange multiplier,

Since the circulation on the blade is determined by the weight function and the circulation of the trailing vortices, the number of unknown circulations corresponds to the number of radial panels $M_{s p}$. The optimum distribution is that which minimises the functional H. Thus, the distribution can be found by setting the partial derivatives of $H(\vec{\Gamma}, \lambda)$ with respect to $\vec{\Gamma}$ and λ equal to zero.

This gives the following system of equations:

$$
\left\{\begin{array}{l}
\frac{\partial H}{\partial \Gamma_{1+(m-1) N_{c h}}}=\frac{\partial Q}{\partial \Gamma_{1+(m-1) N_{c h}}}+\lambda \frac{\partial T}{\partial \Gamma_{1+(m-1) N_{c h}}}=0 \tag{66}\\
\frac{\partial H}{\partial \lambda}=T-\left(T_{r}-T_{v}\right)=0
\end{array}\right.
$$

The provided equations demonstrate that the optimization procedure is nonlinear. This nonlinearity arises due to the presence of products involving λ and $\vec{\Gamma}$, as well as the dependency of induced velocities on circulation. Therefore, the non-linear problem is linearised, which results in the following system of equations:

$$
\left\{\begin{array}{l}
\frac{\partial Q(\vec{\Gamma})}{\partial \Gamma_{1+(m-1) M_{s p}}}+\lambda^{t-1} \frac{\partial T(\vec{\Gamma})}{\partial \Gamma_{1+(m-1) M_{s p}}}+\lambda^{t} \frac{\partial T\left(U_{0}\right)}{\partial \Gamma_{1+(m-1) M_{s p}}}=-\frac{\partial Q\left(U_{0}\right)}{\partial \Gamma_{1+(m-1) M_{s p}}} \tag{67}\\
T(\vec{\Gamma})=\left(T_{r}-T_{v}\right)-T\left(U_{0}\right) \quad \text { for } m=1,2, \ldots M_{s p}
\end{array}\right.
$$

where:

- $Q(\vec{\Gamma})$ refers to the parts of Q that are functions of the circulation,
- $T(\vec{\Gamma})$ refers to the parts of T that are functions of the circulation,
- $Q\left(U_{0}\right)$ refers to the parts of Q that are functions of the onset flow,
- $T\left(U_{0}\right)$ refers to the parts of T that are functions of the onset flow,
- t is the value of the current iteration,
- $t-1$ is the value from the previous iteration.

The primary challenge in determining the circulation distribution stems from the direct and indirect dependencies of thrust and torque on circulation. For instance, considering the thrust generated by one side:

$$
\begin{equation*}
\vec{T}=\rho \vec{U}(\vec{\Gamma}) \times \vec{\Gamma} \tag{68}
\end{equation*}
$$

The equation above clearly illustrates the double dependence on circulation. Therefore, it becomes necessary to employ an iterative method for solving the variational problem in order to determine the radial distribution of circulation on the propeller.

As mentioned earlier, iterations are required to attain a solution to the problem. These iterations continue until the residual R^{t} falls below a certain limit.

$$
\begin{equation*}
R^{t}=\operatorname{Max}\left(\left|1-\frac{\Gamma_{1+(m-1) M_{s p}}^{(t)}}{\Gamma_{1+(m-1) M_{s p}}^{(t-1)}}\right|\right) \quad \text { for } m=1,2, \ldots M_{s p} \tag{69}
\end{equation*}
$$

4.7.3 Optimisation Procedure

First of all, input parameters have to be specified in order to begin the optimisation procedure. These include:

- main dimensions of the propeller (radius of the propeller, radius of the hub, number of blades, etc.),
- size of the grid (number of span-wise panels, number of chord-wise panels, etc.),
- geometry of the mid-chord line, which is specified through the distributions of radius, rake and skew. It is bear mentioning that these three parameters are function of the arc length parameter s,
- chord length distribution in order to construct the grid.
- design point (advance number, required thrust, etc.),
- onset flow,
- ratio between the flat plate and the rooftop distributions ν.

Given the initial input, the initial system of equations for the variational problem is constructed, according to Equation (67). Initially, the distribution of circulation is set to zero, and the Lagrange multiplier is set to -1 (Coney, 1992) [22]. The iteration for the variational problem continues until the residual, as described in Equation (69), falls below 10^{-5}, typically achieved in fewer than ten iterations. Once the variational problem has converged, the grid and the trailers are aligned according to Equation (48). Subsequently, the system of equations for the variational problem is updated with the new grid and wake geometry, and the variational problem is solved again. The alignment of the grid and the wake continues until the residual for the pitch distribution of the wake is less than 10^{-5} :

$$
\begin{equation*}
R_{\text {align }}^{t}=\operatorname{Max}\left(\left|1-\frac{P_{m}^{(t)}}{P_{m}^{(t-1)}}\right|\right) \quad \text { for } m=1,2, \ldots M_{s p}+1 \tag{70}
\end{equation*}
$$

The number of iterations required for the wake alignment to converge varies based on the propeller geometry and loading, but generally, convergence is slower than for the variational problem. Once the wake alignment has converged, the distribution of circulation is saved to a file, and the program terminates.
The flow chart below, clearly shows the optimisation procedure for the propeller:

It is crucial to obtain the optimal distribution of circulation without altering either the wake or the grid. This necessity arises from the fact that aligning the wake for each iteration of the optimization procedure results in a heavily tip-loaded propeller, as demonstrated by Kerwin (1986) [3]. Consequently, during the circulation optimization procedure, the induced velocities remain fixed, as they are solely functions of the propeller's geometry.

5 Validation

The validation process of the computer program utilized the DTNSRDC propeller series, with additional information on the series available in Kerwin and Lee's work (1978) [29]. Subsequently, the validation results were compared with findings from Olsen (2001) [4]. For this comparison, four propellers from the series were selected. While these propellers share identical radial distribution of circulation, expanded blade area, and thickness distribution, variations in skew were introduced among them. Consequently, differences in pitch were observed.
The main dimensions and design points for the propellers are as follows:

$$
\begin{equation*}
Z=5 ; R=3.0 m ; \rho=0.2 ; A_{E} / A_{0}=0.725 ; J=0.889 ; K_{T, D}=0.2055 ; C_{T h}=0.662 . \tag{71}
\end{equation*}
$$

Figure 14: Grid for DC4381 Propeller, No Skew-No skew-induced rake. $M_{s p} \times N_{c h}=20 \times 10$

Figure 15: Grid for DC4497 Propeller, 36° Skew, No Skew-induced rake. $M_{s p} \times N_{c h}=20 \times 10$

Figure 16: Grid for DC4382 Propeller, 36° Skew, Skew-induced rake. $M_{s p} \times N_{c h}=20 \times 10$

Figure 17: Grid for DC4383 Propeller, 72° Skew, Skew-induced rake. $M_{s p} \times N_{c h}=20 \times 10$
The design thrust coefficient, $K_{T, D}$, is approximated from Kerwin and Lee (1978) [29], which also provides detailed geometry information of the propellers. The radius is chosen.
The four propellers include one reference propeller, which has no skew or rake (see Figure 14). The other two are connected, so they both have the same skew, but only one of them has skew-induced rake (see Figures 16 and 15). The last one has both skew and skew-induced rake, and it is different from the other two due to the skew being 72° instead of 36° (see Figure 15).

5.1 Grid Study

Initially, a grid study was conducted to validate the results by varying the number of panels. This approach aimed to assess both the consistency of the results and the impact of grid refinement. The parameter was varied with configurations such as $M_{s p} \times N_{c h}=5 \times 5, \quad 20 \times 10, \quad 30 \times 20$. The grid study is done with the reference propeller, DC4381, and the linear theory is used. Hence, the grids of the propellers are aligned with the onset flow and the grid is not changed.

Figure 18: $\mathrm{DC} 4381 M_{s p} \times N_{c h}=5 \times 5$
The tables below shows the optimised torque coeffcient $10 K_{Q}$ for $D C 4381$:
The table above illustrates a relative difference of 2.11% between the Olsen value and the validation value. Additionally, it is observed that the absolute difference decreases as the number

Figure 19: DC4381 $M_{s p} \times N_{c h}=20 \times 10$
Table 1: Results from Grid Study

Grid cells	$10 K_{Q}$ (Olsen)	$10 K_{Q}$ (Validation)
5×5	0.3701	0.3587
20×10	0.3695	0.3611
30×20	0.3697	0.3619

of panels increases. From the grid study, it can be concluded that the number of grid points does not significantly impact the final outcome, but rather concerns the desired resolution of the solution. Furthermore, as the number of panels increases, the resulting values tend to converge.

5.1.1 Thrust Loading

The grid study involved varying the thrust coefficient to assess its agreement with Olsen's results, using a thrust coefficient of $C_{T h}=2.0$. However, due to the utilization of linear theory, the results for high thrust loads $\left(C_{T h}=2.0\right)$ may not be accurate, as the alignment of the trailers was not considered. Nonetheless, these findings provide insights into the method's performance, under high thrust conditions.

Conversely, the lowest thrust load ($C_{T h}=0.662$) is considered sufficiently low to justify the application of linear theory. Although slight differences may arise between results with and without wake alignment, these variances are assumed to be negligible for this thrust load. It's worth noting that the disparities between the two sets of results are minimal.

Table 2: Results obtained by varying thrust coefficient, $C_{T h}=2$

Grid cells	$10 K_{Q}$ (Olsen)	$10 K_{Q}$ (Validation)
5×5	0.2725	0.2428
20×10	0.2715	0.2602

5.2 Advance Ratio

At this point, the aim is to compare Olsen's optimization of the lifting surface with the program's optimization, by varying the advance number. For this purpose, the reference propeller, DC4381, was analyzed for a constant thrust loading and a range of advance numbers. Calculations were performed for a thrust loading of 0.662 and a uniform onset flow with a velocity of $10.0 \mathrm{~m} / \mathrm{s}$. The chordwise loading is half flat plate and half rooftop ($\nu=0.5$). The advance number was varied by changing the rotational speed of the propeller.

Table 3: Results obtained by varying Advance Ratio

J	$\mathbf{0 . 8}$	$\mathbf{1 . 0}$	$\mathbf{1 . 2}$
$n(\mathrm{rps})$	2.083	1.667	1.398
$w(\mathrm{rad} / \mathrm{sec})$	13.090	10.472	8.7266
K_{T}	0.16645	0.26008	0.37453
K_{Q} Olsen	0.02655	0.05371	0.09709
K_{Q} Validation	0.02600	0.05249	0.09484
η Olsen	0.79810	0.77074	0.73673
η Validation	0.81464	0.78822	0.75376

An increase in circulation occurs when the advance numbers increase (see Figures 21 and 23). This is expected, as the force on the blade is a function of speed and circulation (see Equation 38). Therefore, to maintain the same thrust, it is necessary for the circulation to increase, as the rotational speed decreases. Olsen provides an explanation of this phenomenon by examining the equations used and the force distribution on the lifting surface. In particular, he discusses the contribution of panels to thrust and torque, as well as their dependence on induced velocities and onset flow. He concludes that the circulation for optimizing the lifting surface load should be increasingly tip-loaded for decreasing advance numbers. For a better explanation, see Olsen [4].
As the advance numbers increase, there is an observed decrease in efficiency. This is attributed to the increasing relative magnitude of the axial velocity compared to the rotational velocity at higher advance numbers. Consequently, the torque also increases in relation to the thrust.

A grid consisting of 35 panels in the longitudinal direction and 20 panels in the chordwise direction was used, employing linear theory. The validation results were reported in Table (3). Also in this case, the differences in results are minimal.

5.3 Skew

For further comparison between Olsen's method and this program, the optimal distribution of circulation is considered. Figure (20) illustrates the circulation distributions for the propeller DC4381, as well as for two propellers with both skew and skew-induced rake, DC4382 and DC4383. From the figure, it is evident that the maximum value of circulation decreases with increasing skew. Hence, the shape of the propeller has a small but noticeable influence on the optimal distribution of circulation. Consequently, the efficiency of the skewed propeller is higher than that of the propeller without skew. Therefore, it can be concluded that the efficiency of the propeller is positively influenced by the increase in skew.
The design point used:

- $M_{s p} \times N_{c h}=35 * 20$
- $J=0.8$
- $U_{a}=10 \mathrm{~m} / \mathrm{s}$
- $C_{T h}=0.662$
- $K_{T}=0.1664$

Figure 20: Comparison between results for the reference propeller, DC4381, the propeller with 36° skew and skew-induced rake, DC4382, and the propeller with 72° skew and skew-induced rake, DC4383.

Table 4: Results obtained by varying Skew

J	0.8		
K_{T}	0.16645		
Propeller	4381	4382	4383
Skew	0°	36°	72°
Indu.-rake	no	yes	yes
K_{Q} (Olsen)	0.02655	0.02641	0.2623
K_{Q} (Validacion)	0.02600	0.02602	0.02595
η (Olsen)	0.79810	0.80252	0.80786
η (Validacion)	0.81464	0.81507	0.81642

5.4 Skew-Induced Rake

Figures (21) and (23) compare the results for the skewed propellers with and without skewinduced rake, alongside the results for the reference propeller. The data is provided for $J=0.8$ and $J=1.0$. The Figures and Tables (5), illustrate that the circulation distribution and efficiency for the propellers with and without skew-induced rake are nearly identical. These results align with Munk's displacement theorem.

Figure 21: Comparison between results for the reference propeller,DC4381, and the two propellers with 36° skew, DC4382 which has skew-induced rake and DC4497 which has no rake. $J=0.8$

Figure 22: Comparison between results for the reference propeller, DC4381, and the two propellers with 36° skew, DC4382 which has skew-induced rake and DC4497 which has no rake. $J=1.0$.

Table 5: Results obtained by varying Skew-induced Rake

J	0.8		
K_{T}	0.16645		
Propeller	4381	4382	4497
Skew	0°	36°	36°
Indu.-rake	no	yes	no
K_{Q} (Olsen)	0.02655	0.02641	0.02639
K_{Q} (Validation)	0.02600	0.02602	0.02598
η (Olsen)	0.79810	0.80252	0.80305
η (Validation)	0.81464	0.81507	0.81418

J	1		
K_{T}	0.26008		
Propeller	4381	4382	4497
Skew	0°	36°	36°
Indu.-rake	no	yes	no
K_{Q} (Olsen)	0.05371	0.05330	0.05324
K_{Q} (Validation)	0.05249	0.05236	0.05241
η (Olsen)	0.77074	0.77658	0.7743
η (Validation)	0.78822	0.79020	0.78948

5.5 Skin Friction Drag

The following analysis focuses on the influence of Skin Friction Drag. Two propellers were examined: the reference propeller, DC4381, and the propeller with skew but without induced rake, DC4497. The results clearly indicate that the inclusion of skin friction drag results in a more significant increase in torque and a decrease in efficiency. While potential flow theory provides a good representation of reality, incorporating a correction coefficient to account for the resistance generated in the boundary layer due to water viscosity brings our analysis closer to a more accurate depiction of reality.

Figure 23: Comparison between results for the reference propeller, DC4381, and the 36° skew, DC4497 which has no rake.

Table 6: Variation of Skin Friction Drag Results

Propeller	ω (rad/sec)	$10 K_{Q}$ (Inviscid)	$10 K_{Q}$ (Viscid)	η (Inviscid)	η (Viscid)
DC4381	1.875	0.0374	0.0420	0.8020	0.71499
DC4497	1.875	0.0373	0.04249	0.8045	0.70755

6 Conclusions

The outcome of this study demonstrates the successful development of a Python-based vortex lattice method to optimize propeller efficiency for a given thrust, proving its effectiveness across different grid resolutions and for various propeller loadings. Furthermore, the calculations indicate that the impact of the chordwise pressure distribution is negligible, in accordance with Munk's displacement theorem. Despite incorporating the entire blade into the optimization process, it becomes apparent that with the vortex-lattice method utilized, the majority of thrust and torque originate from the sides of the horseshoe vortices along the trailing edges, where the onset flow and induced velocities are fully incorporated. This observation is consistent with the principles outlined in Munk's theorem.
Comparison among the DTNSRDC propellers reveals variations in the distributions of circulation and torque. Notably, skew enhances efficiency, and further gains in efficiency can be achieved by eliminating skew-induced rake. Although the exact explanation behind this effect is not fully understood, some insights can be obtained by examining the combination of circulation distribution and total velocities at the trailing edge for different propellers. This comparison suggests a beneficial impact of skew on induced velocities at the trailing edge, resulting in higher efficiencies for skewed propellers. Further investigation is necessary to fully understand why propellers with skew demonstrate superior efficiency, although similar findings are documented in Mishima and Kinnas (1997) [36].
Furthermore, the calculations demonstrate that circulation and torque distributions are dependent on blade geometry. Additionally, incorporating the Skin Friction Drag coefficient separately in the calculation yields results closer to reality, accounting for a portion of drag neglected in potential flow theory.

7 References

[1] Betz, A. Prandtl, L.,Schraubenpropeller mit Geringstem Enegieverlust Goettnger Nachtrichten, pp. 193-217, March 1919
[2] H.W. Lerbs, Moderately loaded propellers with a finite number of blades and an arbitrary distribution of circulation, Trans. SNAME 60, 1952.
[3] J.E. Kerwin, W.B. Coney, C.-Y. Hsin, Optimum Circulation Distribution for Single and Multi-Component Propulsors, in Messalle, R. F. (editor), Proc. of Twenty-First American Towing Tank Conference, pp. 53-62, National Academy Press, Washington, D.C, 1986.
[4] A.S. Olsen Optimisation of Propellers Using the Vortex-Lattice Method. 2001.
[5] EEXI and CII - Ship carbon intensity and rating system, International Maritime Organization https://www.imo.org/en/MediaCentre/HotTopics/Pages/EEXI-CII-FAQ.aspx
[6] EEXI - Energy Efficiency Existing Ship Index DNV
[7] E.A. Bouman, E. Lindstad, A.I. Rialland, A.H. Strømman. State-of-the-art technologies, measures, and potential for reducing GHG emissions from shipping - A review Norwegian University of Science and Technology, 2017. https://www.sciencedirect.com/science/ article/pii/S1361920916307015\#t0005
[8] M. Issa, A. Ilinca, F. Martini, Ship Energy Efficiency and Maritime Sector Initiatives to Reduce Carbon Emissions. Institut Maritime du Québec à Rimouski, 2022.
[9] F. Vesting, Marine Propeller Optimisation - Strategy and Algorithm Development, CHALMERS UNIVERSITY OF TECHNOLOGY, 2015.
[10] W.B.Coney, A METHOD FOR THE DESIGN OF A CLASS OF optimum marine PROPULSORS, MASSACHUSETTS INSTITUTE OF TECHNOLOGY, 1989.
[11] J.E.KERWIN MARINE PROPELLERS Marine Annual Review of Fluid Mechanics. Vol. 18:367-403, January 1986.
[12] J. CARLTON MARINE PROPELLERS AND PROPULSIONS, Global Head of Marine Technology and Investigation, Lloyds Register, 2007.
[13] J.N. Newman, foreword by J. Grue. Marine Hydrodynamics, Massachusetts Institute of Technology, 40th anniversary edition, 2017.
[14] J. Katz, A. Plotktin Low-Speed Aerodynamics, Second Edition, Cambridge University, 2001.
[15] European Environment Agency, 2023. https://www.eea.europa.eu/highlights/ eu-maritime-transport-first-environmental
[16] Review of Maritime Transport 2023, UNCTAD, United Nations publication, 2023.
[17] R.M. James. On The Remarkable Accuracy Of The Vortex Lattice Method, Computer Methods in Applied Mechanics and Engineering, 1(1):5979, 1972.
[18] C.E. Lan. A Quasi-Vortex-Lattice Method in Thin Wing Theory, 1974.
[19] Towards a green and just transition, UNCTAD, United Nations publication, 2023.
[20] K. De Jong. On the Optimization and the Design of Ship Screw Propellers with and without End Plates. PhD thesis, 1991.
[21] J.P. Breslin, P.Andersen, Hydrodynamics of Ship Propellers, Cambridge Ocean Technology Series 3, Cambridge University Press, Cambridge, UK. 1994.
[22] W.B. Coney, Optimum Circulation Distributions for a Class of Marine Propulsors, Journal of Ship Research, 36(3):210-222. 1992.
[23] How much does the shipping industry contribute to global CO2 emissions?, SINAY, Maritime Data Solution, 2023. https://sinay.ai/en/ how-much-does-the-shipping-industry-contribute-to-global-co2-emissions/\#: ~:text=In\%202022\%2C\%20international\%20shipping\%20alone, contributor\%20to\% $20 \mathrm{global} \% 20$ carbon\%20pollution
[24] S. Goldstein, On the vortex theory of screw propellers, Technical report, St. John's College, Cambridge, January 1929.
[25] G.G. Cox, Corrections to the Camber of Constant Pitch Propellers, Quaarterly Transactions of the Royal Institution of Naval Architects, Vol. 103, pp. 27-243, 1961.
[26] M.K. Eckhardt, W.B. Morgan, A propeller design method Trans. SNAME, 63, 1955.
[27] T.E. Brockett, Lifting surface hydrodynamics for design of rotating blades, Propellers '81, Symp. SNAME, 1981.
[28] S. Tsakonas, W.R. Jacobs, P. Liao, Prediction of steady and unsteady loads and hydrodynamic forces on counter-rotating propellers J.Ship Res., 27, 1983.
[29] J.E. Kerwin, Chang-Sup Lee. Prediction of steady and unsteady marine propeller performance by numerical lifting-surface theory Trans.SNAME, Paper No.8, Annual Meeting, 1978.
[30] W. van Gent, On the Use of Lifting Surface Theory for Moderately and Heavily Loaded Ship Propellers NSMB Report No. 536, 1977.
[31] D.A. Greeley, J.E. Kerwin, Numerical methods for propeller design and analysis in steady flow, Trans. SNAME, 90, 1982
[32] P. Andersen, A Comparative Study of Conventional and Tip-Fin Propeller Performance, in Proc. Twenty-First Symposium on Naval Hydrodynamics, pp. 930-945, National Academy Press, Washington, D.C. 1997.
[33] M. Caponnetto, Optimisation and Design of Contra-Rotating Propellers, in Proc.Propeller/Shafting 2000 Symposium, pp. 3.1-3.9, SNAME, Jersey City, N.J. 2000.
[34] M. Karim, M. Ikehata, K. Suzuki, H. Kai, Application of Micro-Generic Algorithm ($\mu G A$) to the Optimal Design of Lifting Bodies, J. Kansai Soc. of Naval Architects, Japan, 235:1-8. 2001.
[35] J.L. Hess, W.O. Valarezo, Calculation of Steady Flow about Propellers by Means of a Surface Panel Method, AIAA, Paper No. 85, 1985.
[36] S. Mishima, S.A Kinnas, Application of a Numerical Optimization Technique to the Design of Cavitating Propellers in Nonuniform Flow, Journal of Ship Research, 41(2):93-107, 1997.

8 Code

```
Date: Q4 2023 - Q1 2024
Author: Lisa Martinez
Institution: Technical University of Madrid
Description: This is the main
def main ()
    from sources.propeller_geometry import propeller_geometry
    (ir_prop, ix_prop, iskew_prop, ichord_prop, ithick_prop) = propeller_geometry()
    rom sources.Grid_Generation_Propeller import Grid_Generation_Propeller
    (S_Distr_P, r_R_P, t_gp_P, s_gp_P, Grid_Points_P, Control_Points_P,
        N_Panel_P, N_Bound_Vortex_P, Horseshoe_P, Points_Trans_Wake_P
        )=Grid_Generation_Propeller()
    from sources.Weight_Function_Propeller_P import Weight_function_propeller
    Weight_P = Weight_function_propeller()
    from sources.Onset_Flow_Propeller_P import Onset_Flow_Propeller
    V_Onset_P = Onset_Flow_Propeller()
    from sources.Induced_Grid_Propeller_P import Induced_Grid_Propeller
    V_Grid_P = Induced_Grid_Propeller()
    from sources.Velocity_Total_No_Onset_Propeller_P import Velocity_Total_No_Onset_Propeller
    V_Ind_P, V_Tral_P = Velocity_Total_No_Onset_Propeller()
    from sources.System_Equations_Propeller_P import System_Equations_Propeller_P
    Gamma_TE_P_No_dim, R_Circ_P_R = System_Equations_Propeller_P()
    from sources.Advance_Ratio_P import Advance_Ratio_J
    Advance_ratio = Advance_Ratio_J()
    from sources.Skin_Friction_Drag_P import Skin_Friction_Drag
    T_fr_P, Q_fr_P = Skin_Friction_Drag()
    from sources.Efficiency_P import Efficiency
    Eff, K_T, K_Q = Efficiency()
    return Gamma_TE_P_No_dim
Gamma_TE_P_No_dim = main()
```

```
"""
Date: Q4 2023 - Q1 2024
Author: Lisa Martinez
Institution: Technical University of Madrid
Description: This subroutine is tasked with creating and solving the system of
equations for the propeller analysis. It aligns the wake of the propeller,
ensuring that the flow dynamics are accurately represented and optimized.
ens
import numpy as np
import sources.Variables as Var
from sources.Weight_Function_Propeller_P import Weight_function_propeller
from sources.Onset_Flow_Propeller_P import Onset_Flow_Propeller
from sources.Mid_Vect_Propeller_P import Mid_Vect_Propeller
from sources.Induced_Grid_Propeller_P import Induced_Grid_Propeller
from sources.Velocity_Total_No_Onset_Propeller_P import Velocity_Total_No_Onset_Propeller
from sources.Gamma_Initialization import Gamma_It
from sources.Propeller_Pitch import pitch
from sources.Velocity_Total_Propeller_P import Velocity_Total_Propeller
from sources.Align_Wake_Propeller_P import Align_Wake_Propeller
from sources.Skin_Friction_Drag_P import Skin_Friction_Drag
def System_Equations_Propeller_P():
    Weight_P = Weight_function_propeller()
    Gamma_TE_P = Gamma_It()
    V_Onset_P = Onset_Flow_Propeller()
    V_Ind_P, V_Tral_P = Velocity_Total_No_Onset_Propeller()
    Points_Trans_Wake_P = np.loadtxt("output/Propeller_Points_Trans_Wake.txt",
                                    skiprows= 1, usecols= (1,2,3))
    # DECLARATION OF VARIABLES
    matr_T = np.zeros((Var.Msp+1, Var.Msp+1))
    matr_Q1 = np.zeros((Var.Msp+1, Var.Msp+1))
    matr_Q2 = np.zeros((Var.Msp+1, Var.Msp+1))
    matrix = np.zeros((Var.Msp+1, Var.Msp+1))
    rhsQ = np.zeros((Var.Msp+1,2))
    #Right hand side of the equation system
    Right hand
    rhs = np.zeros((Var.Msp+1,1))
    T_fr_P = 0.0
    # Thrust - Skin friction drag - Propeller
    Tr_P = 0.0
```

```
R_Circ_P = np.zeros((Var.Msp)
# Radius where the circulation is calculated at the T.E
R_Circ_P_R = np.zeros((Var.Msp))
# Dimensionaless radius where the circulation is calculated at the T.E
pitch_0 = np.zeros((Var.Msp+1,1))
# INITIALIZATION
Cs_T_r = (Var.Tr_P)/Var.rho/float(Var.Z_Blade_P)
# Required thrust for each blade without rho (We don't use rho in the system)
iteration = 1
# InItIALIZATION VARIABLE GAmMA
Gamma_TE_P_No_dim = np.zeros((Var.Msp,1))
Distribution of circulation at the T.E. (Dimensionaless)
Gamma_Panel_P = np.zeros((Var.Msp*Var.Nch))
# Distribution of circulation on the blade
# ALIGNMENT LOOP
for j in range (Var.Msp+1):
    rhs[j,0] = 0.0
    rhsQ[j,0] = 0.0
    rhsQ [j,1] = 0.0
    for i in range (Var.Msp+1):
        matr_T[j,i] = 0.0
        matr_Q1[j,i] = 0.0
        matr Q2[j,i] = 0.0
        matrix[j,i] = 0.0
```

\# SYSTEM OF EQUATIONS - DOUBLE LOOP USED TO CALCULATE \&T(Uo), \&Q1 (Uo), \&Q2 (Uo)
\# This loop creates the system of equations ($m=1,2,3 \ldots$ Msp - Lines of the matrix)
for m in range(Var. Msp):
temp_T_0 = 0.0 \# Initialization of the temporary variable used to calculate \&T(Uo)
temp_Q1_0 = 0.0 \# Initialization of the temporary variable used to calculate \&Q1(Uo)
temp_Q2_0 = 0.0 \# Initialization of the temporary variable used to calculate \&Q2(Uo)
for n in range (Var.Nch): \# First loop used to calculate the first sum (Nch)
npln $=(\mathrm{n})+(\mathrm{m}) *$ Var.Nch $\quad \#$ Counter used to select the right panel
n_side = $4 \quad$ \# Number of sides for each panel
if $\mathrm{n}=0$:
n_side $=3$
\# If we are considering the T.E. panel, instead of removing
\# the value of the T.E. side, we skip it
temp_T_1 = 0.0 \# Initialization of the temporary variable used to calculate \&T
temp_Q_11 $=0.0$ \# Initialization of the temporary variable used to calculate \&Q1
temp_Q_22 $=0.0$ \# Initialization of the temporary variable used to calculate \&Q2
for 1 in range(n_side):
\# Second loop used to calculate the second sum (4)
xxn, xyn, xzn, xln,yln,zln = Mid_Vect_Propeller (npln, l)
\# This subroutine is used to calculate the midpoint
temp_T_1 = temp_T_1 + zln*V_Onset_P[npln,1,1] - yln*V_Onset_P[npln,1,2]
\# Temporary variable used to calculate \&T
temp_Q_11 = temp_Q_11 + xyn*yln*V_Onset_P[npln, 1,0$]$ - $x y n * x \ln * V_{-}$Onset_P[npln, 1,1$]$
\# Temporary variable used to calculate \&Q1
temp_Q_22 = temp_Q_22 + xzn*xln*V_Onset_P[npln,1,2] - xzn*zln*V_Onset_P[npln, 1,0$]$
\# Temporary variable used to calculate \&Q2
temp_T_0 $=$ temp_T_0 + Weight_P $[m, n] *$ temp_T_1
temp_Q1_0 = temp_Q1_0 + Weight_P[m,n] * temp_Q_11
temp_Q2_0 = temp_Q2_0 + Weight_P[m,n] * temp_Q_22
\# Temporary variable used to calculate T(Uo) (Nch Loop)
\# Temporary variable used to calculate Q1(Uo) (Nch Loop)
\# Temporary variable used to calculate Q2(Uo) (Nch Loop)
matr_T [m,Var.Msp] = temp_T_0 \# Value of \&T(Uo) in the right position in the matrix (Temporary matrix matr_T)
rhsQ $[m, 0]=-$ temp_Q1_0 \# Value of $\& Q 1(U 0)$ in the right position in the matrix (Temporary matrix rhs_ Q)
rhsQ[m, 1] = - temp_Q2_0 \# Value of \&Q2 (Uo) in the right position in the matrix (Temporary matrix rhs_Q)
\# Double loop used to calculate \&T(Gam),\&Q1(Gam), \&Q2(Gam)
\# Loop used to select the line of the equation
\# (We don't have the loop n because we already did that in Induced_Grid_Propeller)
for m in range (Var.Msp):
\# Loop used to select the spanwise layer that induces velocity (Columns of the matrix) - Msp SUM
for j in range (Var.Msp):
temp_T_Gam = 0.0 Initialization of the temporary variable used to calculate \&T(Gam)
temp_Q1_Gam = 0.0 \# Initialization of the temporary variable used to calculate \&T(Gam)
temp_Q2_Gam = 0.0 \# Initialization of the temporary variable used to calculate \&T(Gam)
\#Loop used to select where the point is located (chordwise) - First SUM Nch
for n in range(Var.Nch):
npln $=\mathrm{n}+(\mathrm{m}) *$ Var. Nch \#Panel where the point is located
temp_T_1 = 0.0 Initialization of the temporary variable used to calculate \&T
temp_Q_11 = 0.0 \# Initialization of the temporary variable used to calculate \&Q1
temp_Q_22 = 0.0 \# Initialization of the temporary variable used to calculate \&Q2
$n_{\text {_side }}=4 \quad \#$ If we are considering the T.E. panel,
if $n=0$: \# instead of removing the value of the T.E. side, we skip it
$n_{\text {_ }}$ side $=3$
for 1 in range (n_{-}side):

```
            xxn,xyn,xzn,xln,yln,zln = Mid_Vect_Propeller(npln,1)
            # This subroutine is used to calculate the midpoint
            temp_T_1 = temp_T_1 + zln*V_Ind_P[j,npln,l,1] - yln*V_Ind_P[j,npln,l,2]
            # Temporary variable used to calculate &T - Total thrust for that panel by j
            temp_Q_11 = temp_Q_11 + xyn*yln*V_Ind_P[j,npln,l,0]- xyn*xln*V_Ind_P[j,npln,l,1]
            # Temporary variable used to calculate &Q1 - Total torque 1 for that panel by j
            temp_Q_22 = temp_Q_22 + xzn*xln*V_Ind_P[j,npln,l,2]- xzn*zln*V_Ind_P[j,npln,l,0]
            # Temporary variable used to calculate &Q2 - Total torque 2 for that panel by j
    temp_T_Gam = temp_T_Gam + Weight_P[m,n] * temp_T_1
    temp_Q1_Gam = temp_Q1_Gam + Weight_P[m,n] * temp_Q_11
    temp_Q2_Gam = temp_Q2_Gam + Weight_P[m,n] * temp_Q_22
    # Temporary variable used to calculate Q1 (Nch Loop)
    # Temporary variable used to calculate Q2 (Nch Loop)
    # Temporary variable used to calculate T (Nch Loop)
for i in range (Var.Nch):
# Loop used to select where the point is located (chordwise)
# Second SUM Nch
    npli = i + (j)* Var.Nch
    temp_T_1 = 0.0
    temp_Q_11 = 0.0
    temp_Q_22 = 0.0
    # Initialization of the temporary variable used to calculate &T
    # Initialization of the temporary variable used to calculate &Q
    # Initialization of the temporary variable used to calculate &Q2
    n_side = 4
    if i == 0:
        n_side = 3
        # If we are considering the T.E. panel,
        # instead of removing the value of the T.E. side, we skip it
    for l in range(n_side):
    xxi,xyi,xzi,xli,yli,zli = Mid_Vect_Propeller(npli,l)
    # This subroutine is used to calculate the midpoint
        temp_T_1 = temp_T_1 + zli*V_Ind_P[m,npli,l,1]- yli*V_Ind_P[m,npli,l,2]
        # Temporary variable used to calculate &T
        temp_Q_11 = temp_Q_11 + xyi*yli*V_Ind_P[m,npli,l,0] - xyi*xli*V_Ind_P[m,npli,l,1]
        # Temporary variable used to calculate &Q1
        temp_Q_22 = temp_Q_22 + xzi*xli*V_Ind_P[m,npli,l,2]- xzi*zli*V_Ind_P[m,npli,l,0]
        # Temporary variable used to calculate &Q2
    temp_T_Gam = temp_T_Gam + Weight_P[j,i] * temp_T_1
    temp_Q1_Gam = temp_Q1_Gam + Weight_P[j,i] * temp_Q_11
    temp_Q2_Gam = temp_Q2_Gam + Weight_P[j,i] * temp_Q_22
    # Temporary variable used to calculate T (Nch Loop)
    # Temporary variable used to calculate Q1 (Nch Loop)
    # Temporary variable used to calculate Q2 (Nch Loop)
    matr_T[m,j] = temp_T_Gam
    matr_Q1[m,j] = temp_Q1_Gam
    matr_Q2[m,j] = temp_Q2_Gam
    # Value of &T(Gam) in the right position in the matrix (Temporary matrix matr_T)
    # Value of &Q1(Gam) in the right position in the matrix (Temporary matrix matr_T)
    # Value of &Q1(Gam) in the right position in the matrix (Temporary matrix matr_T)
# SYSTEM OF EQUATIONS - LOOP
V_Tot_P, V_Tot_No_Onset_P = Velocity_Total_Propeller ()
# It is used it in order to update V_Tot_P with the new values of gamma
# Loop for the T.E. panels (They don't have the weight function)
for m in range(Var.Msp):
    nplO = (m)*Var.Nch
    n_side = 3
    temp_T_Gam = 0.0
    for l in range(n_side):
        xxm,xym,xzm,xlm,ylm,zlm = Mid_Vect_Propeller(npl0,l)
            # This subroutine is used to calculate the midpoint
            temp_T_Gam = temp_T_Gam + zlm*V_Tot_P[npl0,1,1] - ylm*V_Tot_P[npl0,1,2]
            # Temporary variable used to calculate T (Nch Loop)
    matr_T[Var.Msp,m] = temp_T_Gam
    # Value of &T (T.E.) in the right position in the matrix (Temporary matrix matr_T)
    # Loop for the other panels (They don't have the weight function)
    for n in range(1, Var.Nch):
        npl1 = n + (m)*Var.Nch
        n_side = 4
        temp_T_2_Gam = 0.0
        # Loop for the other panels
        for l in range(n_side):
            xxm,xym,xzm,xlm,ylm,zlm = Mid_Vect_Propeller(npl1,l)
            temp_T_2_Gam = temp_T_2_Gam + zlm*V_Tot_P[npl1,1,1] - ylm*V_Tot_P[npl1,1,2]
            temp_T_2_Gam = temp_T_2_Gam + zlm*V_Tot_P[npl1,1,1]
            matr_T[Var.Msp,m] = matr_T[Var.Msp,m] + Weight_P[m,n]*temp_T_2_Gam
            # Value of &T in the right position in the matrix (Temporary matrix matr_T)
# CREATION OF THE matriX
```

 \# Loop used to select the side of the panel

\# Lagrange multiplier lambda t-1
for i in range (Var.Msp):
rhs[i,0] = rhsQ[i,0] - rhsQ[i,1]
\# rhs matrix
matrix[i,Var.Msp] = matr_T[i,Var.Msp] \# System of equation (Left Matrix)
matrix[Var.Msp,i] = matr_T[Var.Msp,i] \# System of equation (Left Matrix)
for j in range (Var.Msp):

\# System of equation (Left Matrix)
rhs [Var.Msp,0] = Cs_T_r + (abs(T_fr_P))/Var.rho
\# Total thrust required (Required + Skin Friction Drag Propeller)
matrix[Var.Msp,Var.Msp] $=0.0$
\# SOLVE THE System of equations
rhs = np.linalg.solve(matrix, rhs) \#it solves the system of equations
\#Computes the ""exact solution, x, of the well-determined, i.e.,
\# full rank, linear matrix equation $a x=b$.
\# CONVERGENS OF THE SYSTEM
es_o $=0.0$ check if the residual is below a certain small limit
for i in range(Var.Msp+1):
res_1 = abs(1-Gamma_TE_P[i]/rhs [i, 0])
if res_1 > res_0 res_0 = res_1
Gamma_TE_P[i] = rhs[i,0] \# New values of circulation
with open ("output/Propeller_Gamma_TE_P.txt","w") as file:
for i in range (Var.Msp+1):
file.write(f"\{Gamma_TE_P[i]:13.9f\}\n")
while (res_0 > Var.epsi):
V_Tot_P, V_Tot_No_Onset_P = Velocity_Total_Propeller ()
\# It is used it in order to update V_Tot_P with the new values of gamma
\# Loop for the T.E. panels (They don't have the weight function)
for m in range (Var.Msp):
$\mathrm{nplO}=(\mathrm{m}) *$ Var. Nch
n_side $=3$
temp_T_Gam $=0.0$
for 1 in range(n_side):
$\mathrm{xxm}, \mathrm{xym}, \mathrm{xzm}, \mathrm{xlm}, \mathrm{ylm}, \mathrm{zlm}=\mathrm{Mid}_{-} \operatorname{Vect}$ _Propeller (nplo, $)$
\# This subroutine is used to calculate the midpoint
temp_T_Gam $=$ temp_T_Gam + zlm*V_Tot_P[npl0,1,1] - ylm*V_Tot_P[npl0,1,2]
\# Temporary variable used to calculate T (Nch Loop)
matr_T[Var.Msp,m] = temp_T_Gam
\# Value of \&T (T.E.) in the right position in the matrix (Temporary matrix matr_T)
\# Loop for the other panels (They don't have the weight function)
for n in range(1, Var.Nch):
$\mathrm{npl1}=\mathrm{n}+(\mathrm{m}) * \operatorname{Var} . \mathrm{Nch}$
$n_{\text {_ }}$ side $=4$
temp_T_2_Gam $=0.0$
\# Loop for the other panels
for 1 in range(n_side):
xxm,xym,xzm,xlm,ylm,zlm = Mid_Vect_Propeller(npl1,1)
\# This subroutine is used to calculate the midpoint
temp_T_2_Gam = temp_T_2_Gam + zlm*V_Tot_P[npl1,l,1] - ylm*V_Tot_P[npl1, 1, 2] \# Temporary variable used to calculate T (Nch Loop)
matr_T[Var.Msp,m] = matr_T[Var.Msp,m] + Weight_P[m,n]*temp_T_2_Gam
\# Value of \&T in the right position in the matrix (Temporary matrix matr_T)
\# CREATION OF THE MATRIX
lamba_t_1 = Gamma_TE_P[Var.Msp]
\# Lagrange multiplier lambda t-1
for i in range (Var.Msp):
$\operatorname{rhs}[i, 0]=\operatorname{rhsQ}[i, 0]-\operatorname{rhsQ}[i, 1]$
\# rhs matrix
matrix[i,Var.Msp] = matr_T[i,Var.Msp] \# System of equation (Left Matrix) matrix[Var.Msp,i] = matr_T[Var.Msp,i] \# System of equation (Left Matrix)
for j in range (Var.Msp):
matrix[i,j] = matr_Q1[i,j] - matr_Q2[i,j] + lamba_t_1*matr_T[i,j]
\# System of equation (Left Matrix)
rhs [Var.Msp,0] = Cs_T_r + (abs(T_fr_P))/Var.rho
\# Total thrust required (Required + Skin Friction Drag Propeller)
matrix[Var.Msp,Var.Msp] = 0.0
\# SOLVE THE SYSTEM OF EQUATIONS
rhs = np.linalg.solve(matrix, rhs) \#it solves the system of equations
\#Computes the ""exact solution, x, of the well-determined, i.e.,
\# full rank, linear matrix equation $a x=b$.
\# CONVERGENS OF THE SYSTEM

```
    res_0 = 0.0
    # Loop used to check if the residual is below a certain small limit
    for i in range(Var.Msp+1):
        res_1 = abs (1-Gamma_TE_P[i]/ rhs[i,0])
        if res_1 > res_0:
        res_0 = res_1
        Gamma_TE_P[i] = rhs[i,0] # New values of circulation
with open ("output/Propeller_Gamma_TE_P.txt","w") as file:
    for i in range (Var.Msp+1):
        file.write(f"{Gamma_TE_P[i]:13.9f}\n")
print('Iteration Propeller Number: {}'.format(iteration), 'Circulation on the propeller at the TE:')
for i in range (Var.Msp+1)
    print (i,Gamma_TE_P[i])
for i in range (Var.Msp):
    j = (i)*Var.Nch
    xx,xy,xz,xl,yl,zl = Mid_Vect_Propeller(j,3)
    #This subroutine is used to calculate the midpoint px,py,pz
    R_Circ_P[i] = np.sqrt(xy*xy + xz*xz)
    R_Circ_P_R[i] = R_Circ_P[i]/Var.Rad_P
    Gamma_TE_P_No_dim[i] = (Gamma_TE_P[i]*100)/(np.pi*2*Var.Rad_P*Var.V_Ship)
with open("output/Propeller Gamma TE.txt","w") as file:
    file.write(" Gamma_Dim Gamma_No_Dim Radius\n")
    for i in range (Var.Msp): {:13 gf} gf}) format {Gmma TE P[i]}_Gamma TE p Nom[i]}
ith open ("output/Propeller_Gamma_TE_P.txt","w") as file:
    for i in range (Var.Msp+1):
        file.write(f"{Gamma_TE_P[i]}\n")
with open("output/Propeller_Print_Gamma_TE.txt","w") as file:
    for i in range(Var.Msp)
        file.write(f" {Gamma_TE_P_No_dim[i]}\n")
with open("output/Propeller_Print_Radius_TE.txt","w") as file:
    for i in range(Var.Msp)
        file.write(f"{R Circ_P R[i]}\n")
# DISTRIBUTION OF CIRCULATION AT THE REST OF THE BLADE
for i in range(Var Msp):
    npl_TE = i * Var.Nch
    Gamma_Panel_P[npl_TE] = Gamma_TE_P[i]
    for j in range (1,Var.Nch):
        npl = j + i * Var.Nch
        Gamma_Panel_P [npl] = Gamma_Panel_P[npl_TE] * Weight_P[i,j]
with open ("output/Propeller_Gamma_Blade.txt","w") as file
    file.write(" Panel
        Gamma\n")
    for i in range(Var.Msp*Var.Nch):
        file.write(f" {i:3d} {Gamma_Panel_P[i]:13.9f}\n")
# ALIGNMENT OF THE WAKE
pitch_0 = pitch()
Points_Trans_Wake_P, Grid_Points_P, Control_Points_P = Align_Wake_Propeller()
res_0 = 0.0
# Initialization of the residual
Loop used to check if the residual is below a certain small limi
or i in range(Var.Msp +1 )
    i_1 = i+i*(Var.N_P_L)
    res_1 = abs(1 - (Points_Trans_Wake_P[i_1,2] / pitch_0[i]))
if res_1 > res_0
    res_0 = res_1
hile(iteration < 15): # If the the residual is greater than epsi the loop starts again
    while (res_0 > Var.epsi):
        V_Onset_P = Onset_Flow_Propeller()
        V Grid_P = Induced_Grid_Propeller()
        V_Ind_P, V_Tral_P = Velocity_Total_No_Onset_Propeller()
        T_fr_P, Q_fr_P = Skin_Friction_Drag()
            iteration = iteration + 1
            for j in range (Var.Msp+1):
            rhs[j,0] = 0.0
            rhsQ[j,0] = 0.0
            rhsQ [j,1] = 0.0
            for i in range (Var.Msp+1)
                    matr_T[j,i] = 0.0
                    matr_Q1[j,i] = 0.0
                    matr Q2[j,i] = 0.0
                    matrix[j,i] = 0.0
            # SYSTEM OF EQUATIONS - DOUBLE LOOP USED TO CALCULATE &T(Uo),&Q1(Uo),&Q2(Uo)
            # This loop creates the system of equations (m = 1,2,3\ldots. Msp - Lines of the matrix)
            for m in range(Var.Msp)
            temp_T_0 = 0.0 # Initialization of the temporary variable used to calculate &T(Uo)
            temp_Q1_0=0.0 # Initialization of the temporary variable used to calculate &Q1(Uo)
            temp_Q2_0 = 0.0 # Initialization of the temporary variable used to calculate &Q2(Uo)
```

\# First loop used to calculate the first sum (Nch)
for n in range (Var.Nch):
npln $=(\mathrm{n})+(\mathrm{m}) * \operatorname{Var} . \mathrm{Nc}$
\# Counter used to select the right panel
n_{-}side $=4$
if $n=0$:
n_side $=3$
\# If we are considering the T.E. panel, instead of removing
\# the value of the T.E. side, we skip it
temp_T_1 $=0.0$
temp_Q_11 $=0.0$
temp_Q_11 $=0.0$
temp_Q_22 $=0.0$
temp_Q_22 $=0.0$
\# Initialization of the temporary variable used to calculate \&T
\# Initialization of the temporary variable used to calculate \&Q1
\# Initialization of the temporary variable used to calculate \&Q2
for 1 in range(n_side):
\# Second loop used to calculate the second sum (4)
xxn, xyn, xzn,xln,yln,zln = Mid_Vect_Propeller(npln, 1)
\# This subroutine is used to calculate the midpoint
temp_T_1 = temp_T_1 + zln*V_Onset_P[npln,1,1] - yln*V_Onset_P[npln,1,2]
\# Temporary variable used to calculate \&T
temp_Q_11 = temp_Q_11 + xyn*yln*V_Onset_P[npln, 1,0$]-x y n * x \ln * V_{-}$Onset_P[npln, 1,1$]$
\# Temporary variable used to calculate \&Q1
temp_Q_22 = temp_Q_22 + xzn*xln*V_Onset_P[npln, 1, 2] - xzn*zln*V_Onset_P[npln, 1,0$]$
\# Temporary variable used to calculate \&Q2
temp_T_0 $=$ temp_T_0 + Weight_P $[m, n] *$ temp_T_1
temp_Q1_0 $=$ temp_Q1_0 + Weight_P [m,n] * temp_Q_11
temp_Q2_0 $=$ temp_Q2_0 + Weight_P[m,n] * temp_Q_22
\# Temporary variable used to calculate T(Uo) (Nch Loop)
\# Temporary variable used to calculate Q1(Uo) (Nch Loop)
\# Temporary variable used to calculate Q2(Uo) (Nch Loop)
matr_T [m,Var.Msp] = temp_T_0 \# Value of \&T(Uo) in the right position in the matrix (Temporary matrix matr_T)
rhsQ[m,0] = - temp_Q1_0 \# Value of \&Q1 (Uo) in the right position in the matrix (Temporary matrix rhs_Q)
rhsQ[m,1] = - temp_Q2_0 \# Value of \&Q2(Uo) in the right position in the matrix (Temporary matrix rhs_Q)
\# Double loop used to calculate \&T(Gam), \&Q1(Gam), \&Q2(Gam)
\# Loop used to select the line of the equation
\# (We don't have the loop n because we already did that in Induced_Grid_Propeller)
for m in range(Var.Msp):
\# Loop used to select the spanwise layer that induces velocity (Columns of the matrix) - Msp SUM
for j in range (Var.Msp):
temp_T_Gam $=0.0$
temp_Q1_Gam $=0.0$
temp_Q2_Gam $=0.0$
\# Initialization of the temporary variable used to calculate \&T(Gam)
\# Initialization of the temporary variable used to calculate \&T(Gam)
\# Initialization of the temporary variable used to calculate \&T(Gam)
\#Loop used to select where the point is located (chordwise) - First SUM Nch
for n in range(Var.Nch):
$\mathrm{npln}=\mathrm{n}+(\mathrm{m}) * \operatorname{Var} . \mathrm{Nch}$
\#Panel where the point is located
temp_T_1 = 0.0
emp_Q_11 $=0.0$
temp_Q_22 $=0.0$
Initialization of the temporary variable used to calculate \&T
\# Initialization of the temporary variable used to calculate \&Q1
\# Initialization of the temporary variable used to calculate \&Q2
$\mathrm{n}_{\text {_ }}$ side $=4$
if $\mathrm{n}=0$:
$n_{\text {_side }}=3$
\# If we are considering the T.E. panel
\# instead of removing the value of the T.E. side, we skip it
for 1 in range (n_side):
\# Loop used to select the side of the panel
$x x n, x y n, x z n, x \ln , y l n, z l n=$ Mid_Vect_Propeller (npln, 1$)$
\# This subroutine is used to calculate the midpoint
temp_T_1 = temp_T-1 + zln*V_Ind_P[j,npln,1,1] - yln*V_Ind_P[j,npln,1,2]
\# Temporary variable used to calculate \&T -
\# Total thrust for that panel by j
temp_Q_11 = temp_Q_11 + xyn*yln*V_Ind_P[j,npln,l,0]-xyn*xln*V_Ind_P[j,npln,1,1]
\# Temporary variable used to calculate \&Q1
\# Total torque 1 for that panel by j
temp_Q_22 = temp_Q_22 + xzn*xln*V_Ind_P[j,npln,l,2]- xzn*zln*V_Ind_P[j,npln,l,0]
\# Temporary variable used to calculate \&Q2
\# Total torque 2 for that panel by j
temp_T_Gam $=$ temp_T_Gam + Weight_P[m,n] * temp_T_1
temp_Q1_Gam $=$ temp_ \mathbf{Q}_{1} Gam + Weight_P[m,n] $*$ temp_ $\mathbf{Q}_{-} 11$
emp_Q2_Gam $=$ temp_Q2_Gam + Weight_P $[m, n]$ * temp_Q_22
\# Temporary variable used to calculate Q1 (Nch Loop)
\# Temporary variable used to calculate Q2 (Nch Loop)
\# Temporary variable used to calculate T (Nch Loop)
for i in range (Var.Nch):

```
# Loop used to select where the point is located (chordwise
# Second SUM Nch
    npli = i + (j)* Var.Nch
    temp_T_1 = 0.0
    temp_Q_11 = 0.0
    temp_Q_22 = 0.0
    Initialization of the temporary variable used to calculate &T
    # Initialization of the temporary variable used to calculate &Q1
    # Initialization of the temporary variable used to calculate &Q2
    n_side = 4 # If we are considering the T.E. panel
        i == 0: # instead of removing the value of the T.E. side, we skip it
            n_side = 3
        for l in range(n_side)
            xxi,xyi,xzi,xli,yli,zli = Mid_Vect_Propeller(npli,l)
            # This subroutine is used to calculate the midpoint
            emp_T_1 = temp_T_1 + zli*V_Ind_P[m,npli,l,1]- yli*V_Ind_P[m,npli,1,2]
            Temporary variable used to calculate &I
            temp_Q_11 = temp_Q_11 + xyi*yli*V_Ind_P[m,npli,l,0] - xyi*xli*V_Ind_P[m,npli,l,1]
            #Temporary variable used to calculate &Q1
            temp_Q_22 = temp_Q_22 + xzi*xli*V_Ind_P[m,npli,l,2]- xzi*zli*V_Ind_P[m,npli,l,0]
            # Temporary variable used to calculate &Q2
    temp_T_Gam = temp_T_Gam + Weight_P[j,i] * temp_T_1
    temp_Q1_Gam = temp_Q1_Gam + Weight_P[j,i] * temp_Q_11
    temp_Q2_Gam = temp_Q2_Gam + Weight_P[j,i] * temp_Q_22
    # Temporary variable used to calculate T (Nch Loop)
    # Temporary variable used to calculate Q1 (Nch Loop)
    # Temporary variable used to calculate Q2 (Nch Loop)
matr_T[m,j] = temp_T_Gam
matr_Q1[m,j] = temp_Q1_Gam
matr_Q2[m,j] = temp_Q2_Gam
# Value of &T(Gam) in the right position in the matrix (Temporary matrix matr_T)
# Value of &Q1(Gam) in the right position in the matrix (Temporary matrix matr_T)
# Value of &Q2(Gam) in the right position in the matrix (Temporary matrix matr_T)
# SYSTEM OF EQUATIONS - LOOP
V_Tot_P, V_Tot_No_Onset_P = Velocity_Total_Propeller ()
# It is used it in order to update V_Tot_P with the new values of gamma
# Loop for the T.E. panels (They don't have the weight function)
for m in range(Var.Msp)
    nplo = (m)*Var.Nch
    n_side = 3
    temp_T_Gam = 0.0
    for l in range(n_side):
        xxm,xym,xzm,xlm,ylm,zlm = Mid_Vect_Propeller(npl0,l)
        # This subroutine is used to calculate the midpoint
        temp_T_Gam = temp_T_Gam + zlm*V_Tot_P[npl0,l,1] - ylm*V_Tot_P[npl0,l,2]
        # Temporary variable used to calculate T (Nch Loop)
    # Value of &T (T.E.) in the right position in the matrix (Temporary matrix matr_T)
    # Loop for the other panels (They don't have the weight function)
    for n in range(1, Var.Nch)
        npl1 = n + (m)*Var.Nch
        n_side = 4
        temp_T_2_Gam = 0.0
        # Loop for the other panels
        for l in range(n_side)
            xxm,xym,xzm,xlm,ylm,zlm = Mid_Vect_Propeller(npl1,1)
            # This subroutine is used to calculate the midpoint
            temp_T_2_Gam = temp_T_2_Gam + zlm*V_Tot_P[npl1,1,1] - ylm*V_Tot_P[npl1,1,2]
            # Temporary variable used to calculate T (Nch Loop)
            matr_T[Var.Msp,m] = matr_T[Var.Msp,m] + Weight_P[m,n]*temp_T_2_Gam
            # Value of &T in the right position in the matrix (Temporary matrix matr_T)
# CREATION OF THE MATRIX
lamba_t_1 = Gamma_TE_P[Var.Msp] # Lagrange multiplier lambda t-1
for i in range (Var.Msp):
    rhs[i,0] = rhsQ[i,0] - rhsQ[i,1] # rhs matrix
    matrix[i,Var.Msp] = matr_T[i,Var.Msp] # System of equation (Left Matrix)
    matrix[Var.Msp,i] = matr_T[Var.Msp,i] # System of equation (Left Matrix)
    for j in range (Var.Msp):
        matrix[i,j] = matr_Q1[i,j] - matr_Q2[i,j] + lamba_t_1*matr_T[i,j]
        # System of equation (Left Matrix)
rhs[Var.Msp,0] = Cs_T_r + (abs(T_fr_P))/Var.rho
# Total thrust required (Required + Skin Friction Drag Propeller)
matrix[Var.Msp,Var.Msp] = 0.0
# SYSTEM OF EQUATIONS - LOOP
rhs = np.linalg.solve(matrix, rhs) #it solves the system of equations
#Computes the ""exact solution, }x\mathrm{ , of the well-determined, i.e.,
# full rank, linear matrix equation ax = b
```

\# COnvergens of the system

```
res_0 = 0.0
# Loop used to check if the residual is below a certain small limit
```

for i in range(Var.Msp+1)
res_1 = abs(1-Gamma_TE_P[i]/rhs[i,0])
if res_1 > res_0:
res_0 = res_1
Gamma_TE_P[i] = rhs[i,0] \# New values of circulation
with open ("output/Propeller_Gamma_TE_P.txt","w") as file:
for i in range (Var.Msp+1)
file.write(f"\{Gamma_TE_P[i]:13.9f\}\n")
while (res_0 > Var.epsi):
V_{-}Tot_P, V_{-}Tot_No_Onset_P $=$Velocity_Total_Propeller ()
\# It is used it in order to update V_{-}Tot_P with the new values of gamma
\# Loop for the T.E. panels (They don't have the weight function)
for m in range(Var.Msp):
npl0 $=(\mathrm{m}) *$ Var. Nch
$n_{\text {_side }}=3$
temp_T_Gam $=0.0$
for 1 in range(n_side)
xxm,xym,xzm,xlm,ylm,zlm = Mid_Vect_Propeller(npl0,l)
\# This subroutine is used to calculate the midpoint
temp_T_Gam $=$ temp_T_Gam + zlm*V_Tot_P[npl0,l,1] - ylm*V_Tot_P[nplo,l,2]
\# Temporary variable used to calculate T (Nch Loop)
matr_T[Var.Msp, m$]=$ temp_T_Gam
\# Value of \&T (T.E.) in the right position in the matrix (Temporary matrix matr_T)
\# Loop for the other panels (They don't have the weight function)
for n in range(1, Var.Nch)
npl1 $=\mathrm{n}+(\mathrm{m}) * \operatorname{Var} . \mathrm{Nch}$
n_side $=4$
temp_T_2_Gam = 0.0
\# Loop for the other panels
for 1 in range(n_side):
xxm,xym,xzm,xlm,ylm,zlm = Mid_Vect_Propeller(npl1,l)
\# This subroutine is used to calculate the midpoint
emp T 2 Gam $=$ temp T 2 Gam $+z l m * V$ Tot $P[n p l 1,1,1]$ - ylm*V Tot_P[npl1, 1,2$]$
temp_T_2_Gam = temp_T_2_Gam + zlm*V_Tot_P (npl1, 1,1$]$
atr $\mathrm{T}[$ Var. Msp, m$]=$ matr_T[Var.Msp, m$]+$ Weight_P $[\mathrm{m}, \mathrm{n}] *$ temp T 2 Gam
\# Value of $\& T$ in the right position in the matrix (Temporary matrix matr_T)
\# CREATION OF THE MATRIX
lamba_t_1 = Gamma_TE_P[Var.Msp]
\# Lagrange multiplier lambda t-1
for i in range (Var.Msp):
rhs[i,0] $=\operatorname{rhsQ}[i, 0]-\operatorname{rhsQ}[i, 1]$
\# rhs matrix
matrix[i,Var.Msp] = matr_T[i,Var.Msp] \# System of equation (Left Matrix)
matrix[Var.Msp,i] = matr_T[Var.Msp,i] \# System of equation (Left Matrix)
for j in range (Var.Msp):

\# System of equation (Left Matrix)
rhs [Var. Msp, 0] = Cs_T_r + (abs (T_fr_P))/Var.rho
\# Total thrust required (Required + Skin Friction Drag Propeller)
matrix[Var.Msp,Var.Msp] $=0.0$
\# SOLVE THE System of equations
rhs = np.linalg.solve(matrix, rhs) \#it solves the system of equations
\#Computes the ""exact solution, x, of the well-determined, i.e.,
\# full rank, linear matrix equation $a x=b$.
\# CONVERGENS OF THE SYSTEM
res_0 = 0.0
\# Loop used to check if the residual is below a certain small limit
for i in range(Var.Msp+1)
res_1 $=$ abs(1-Gamma_TE_P[i]/rhs[i,0])
if res_1 > res_0:
res_0 = res_1
Gamma_TE_P[i] = rhs[i,0] \# New values of circulation
with open ("output/Propeller_Gamma_TE_P.txt","w") as file:
for i in range (Var.Msp+1):
file.write(f"\{Gamma_TE_P[i]:13.9f\}\n")
print('Iteration Propeller Number: \{\}'.format(iteration), 'Circulation on the propeller at the TE:')
for i in range (Var.Msp+1):
print (i,Gamma_TE_P[i])
for i in range (Var.Msp):
$\mathrm{j}=(\mathrm{i}) * \operatorname{Var} . \mathrm{Nch}$
$\mathrm{xx}, \mathrm{xy}, \mathrm{xz}, \mathrm{xl}, \mathrm{yl}, \mathrm{zl}=$ Mid_Vect_Propeller (j, 3)
\#This subroutine is used to calculate the midpoint $p x, p y, p z$
R_Circ_P[i] = np.sqrt(xy*xy + xz*xz)
R_Circ_P_R[i] = R_Circ_P[i]/Var.Rad_P

```
762
```

Date: Q4 2023 - Q1 2024
Author: Lisa Martinez
Institution: Technical University of Madrid
Description: This subroutine calculates the advance ratio
"""
import sources.Variables as Var
import numpy as np
def Advance_Ratio_J():
r_R_P,X_P,Skew_P,Chord_P,Thick_P = np.loadtxt("input/grid.txt", unpack=True)
U_O_P, U_R_P, U_T_P = np.loadtxt("input/onset.txt", unpack=True)
\# \# Number of intervals (It is used to find the "step length" for the composite Simpson's rule)
\# = N_0mber of approximation values of the integral for the composite Simpson's rule
= (Var.Rad P - Var.R_Hub P)/n_0 \# "step length"
r_tmp = Var.R_Hub_P \# Initial value for the radius r
Ua_tmp = 0 \# Initialization of the approximation of the integral
j = 1 \# First value of j
for i in range(n_1+1): \# Simpson's rule used in order to solve the integral
j=-j \#It used to have 2 or 4 in the composite Simpson's rule
Simpson = 3 + float(j) \# This value is 2 or 4
if(i == 0 or i == n_1): \# This if is used to have 1 as coefficient if we are considering the first
Simpson = 1 \# or the last value of the integral
Ux_tmp = np.interp(r_tmp,r_R_P,U_O_P)
\# Linear interpolation used to find the value of the axial velocity
Ua_tmp = Ua_tmp + (Ux_tmp * r_tmp) * Simpson
\# Composite Simpson's rule
r_tmp = r_tmp + h
\# Advance velocity
U_adv = 2 * h * Ua_tmp /(3*(Var.Rad_P**2 - Var.R_Hub_P**2))
\# Advance ratio

```
```

Advance_ratio = (U_adv * np.pi) / (Var.Omega * Var.Rad_P)
Wake fraction
w_eff = 1 - U_adv/Var.V_Ship
if (w_eff < 1.0 - 10):
w_eff = 0
Open the file for writing
with open("output/Propeller_Hydrodynamic_Characteristics.txt", "w") as file
\# Write the header line
file.write("{:2s}{:16s}{:4s}{:13s}{:4s}{:13s}\n".format("", "Advance velocity", "", "Advance ratio", "", "Wake fraction"))
file.write("{:3s}{:13.9f}{:5s}{:13.9f}{:4s}{:13.9f}\n".format("", U_adv, "", Advance_ratio, "", w_eff))
return Advance ratio

```
Advance_ratio \(=\) Advance_Ratio_J ()
```

Date: 04 2023 - Q1 202
Author: Lisa Martinez
Institution: Technical University of Madrid
Description: This subroutine contains a subroutine designed for optimizing
propeller flow through the generation of a new grid. It calculates induced
velocities at control points on mid-chord panels to determine a new beta
angle. This is crucial for the calculation of a new pitch, necessary for
grid generation. Pitch is interpolated at control points, with both blades

```
and trailers sharing the same pitch
and
import sources.Variables as Var
import numpy as np
from sources.Weight_Function_Propeller_P import Weight_function_propeller
from sources. Induced_Grid_Propeller_P import Induced_Grid_Propeller
from sources.Panel_Induced_Velocity_Propeller_Align import Panel_Induced_Velocity_Propeller_Align
from sources.Trailing_Vortices_Propeller_P import Trailing_Vortices_Propeller
def Align_Wake_Propeller()
    Grid_Points_P = np.zeros (((Var.Msp + 1) * (Var.Nch + 1), 3))
    ontrol_Points_P = np.zeros(((Var.Msp) * (Var.Nch), 3))
    Radius_cp_P = np.zeros((Var.Msp + 1))
    \(r_{-} R_{-} P, X_{-} P, S k w_{-} P, C h o r d \_P, T h i c k \_P=n p . l o a d t x t(" i n p u t / g r i d . t x t ", ~ u n p a c k=~ T r u e) ~\)
    U_O_P, U_R_P, U_T_P = np.loadtxt("input/onset.txt", unpack=True)
    Gamma_TE_P = np.loadtxt("output/Propeller_Gamma_TE_P.txt")
    Control_Points_P = np.loadtxt('output/Propeller_Control_Points.txt')
    t_gp_P = np.loadtxt("output/Propeller_t_gp.txt", skiprows = 1)
    \(t_{\text {_ }}\) cp_P \(=\) np.loadtxt("output/Propeller_t_cp.txt", skiprows = 1)
    s_gp_P = np.loadtxt("output/Propeller_s_gp.txt", skiprows = 1)
    \(s_{-} p_{-} P=n p\).loadtxt("output/Propeller_s_cp.txt", skiprows = 1)
    Weight_P \(=\) Weight_function_propeller ()
    \(N_{-}\)Bound_Vortex_P = np.loadtxt("output/Propeller_N_Bound_Vortex.txt", dtype= 'int')
    N_Bound_Vortex_P = N_Bound_Vortex_P.reshape((Var.Msp+1, 1))
    data_matrix = np.loadtxt("output/Propeller_Grid_Points_geom.txt")
    Radius_gp_P = data_matrix[:, 0]
    hord_P_gp = data_matrix[:, 1]
    Rake_P_gp = data_matrix[:, 2]
    Skew_P_gp = data_matrix[:, 3]
    data_matrix = np.loadtxt("output/Propeller_Control_Points_geom.txt")
    Chord_P_cp = data_matrix \([:, 0]\)
    Rake \(\bar{P}\) cp \(=\) data matrix \([: 1]\)
    kew- \(-c p=\operatorname{data} \operatorname{matrix}[: 1]\)
    \# Subroutine
    \(r_{\text {_ }} \mathrm{cp}=\mathrm{np} . z e r o s(V a r . M s p) \quad\) \# Radius in the control points of the propeller where the new pitch is computed
    tan_beta = np.zeros(Var.Msp)
    beta \(=\) np.zeros (Var.Msp)
    pitch_cp \(=n p \cdot z \operatorname{eros}(\) Var.Msp)
    pitch_gp = np.zeros(Var.Msp+1)
    in_b = np.zeros(Var.Msp + 1)
    cos_b \(=\) np.zeros(Var.Msp +1 )
    Theta_gp_P = np.zeros(Var.Nch + 1)
    Theta_cp_P = np.zeros(Var.Nch + 1)
    mid_point \(=(\) Var.Nch//2 + 1)
    Loop used to select the closest control points to the midchord line (Chordwise)
    for \(j\) in range (Var.Msp):
        mid_point_cp \(=(\) mid_point \(+j *\) Var.Nch) -1
        p_x_mdp \(=\) Control_Points_P[mid_point_cp, 0\(]\)
        \# X coordinate of the chosen control point of the propeller
        p_y_mdp \(=\) Control_Points_P[mid_point_cp, 1]
        \# Y coordinate of the chosen control point of the propeller
        \(\begin{array}{ll}\text { p_y_mdp }=\text { Control_Points_P[mid_point_cp,1] } \\ p_{-} z_{-} m d p & =\text { Control_Points_P[mid_point_cp,2] }\end{array} \quad\) \# Y coordinate of the chosen control point of the propeller
        \(r_{-} c p[j]=n p . s q r t\left(p_{-} y_{-} m d p * * 2+p_{-} z_{-} m d p * * 2\right)\)
        \# Radius for the chosen control point of the propeller
        \# VELOCITIES IN THE CONTROL POINTS FROM THE PANELS OF THE PROPELLER
        \# Initialization of the variable used to store the induced velocity
        \# from the panels of the propeller (x), (y), (z)
        \(u_{-} x_{-}\)panels \(=0\)
        _y_panels = 0
        u_ panels \(=0\)
    \# Loop used to select the spanwise level that induces velocity
    \# on the control points of the propeller
```

for n in range (Var.Msp):
\# Initialization of the variable used to calculate the induced
\# velocity from the panels of the propeller (x), (y), (z)
u_x_panels_0 = 0
u_y_panels_0 = 0
u_z_panels_0 = 0
\# Loop used to select the panel that induces velocit
\# on the control points of the propeller
for m in range (Var.Nch)
npl = m + n * Var.Nch
u_x_temp,u_y_temp,u_z_temp = Panel_Induced_Velocity_Propeller_Align(npl,0,0,p_x_mdp,p_y_mdp,p_z_mdp)
\# Induced velocity from the selected panel on
\# the chosen control point of the propeller - No bound vortex
u_x_panels_0 = u_x_panels_0 + Weight_P[n,m] * u_x_temp
\# Temporary variable used to calculate the induced velocity
\# from the panels of the propeller (x)
u_y_panels_0 = u_y_panels_0 + Weight_P[n,m] * u_y_temp
\# Temporary variable used to calculate the induced velocity
\# from the panels of the propeller (y
u_z_panels_0 = u_z_panels_0 + Weight_P[n,m] * u_z temp
\# Temporary variable used to calculate the induced velocity
\# from the panels of the propeller (z
u_x_panels = u_x_panels + Gamma_TE_P[n] * u_x_panels_0 \# Induced velocity from the panels of the propeller (x)
u_y_panels = u_y_panels + Gamma_TE_P[n] * u_y_panels_0 \# Induced velocity from the panels of the propeller (y)
u_z_panels = u_z_panels + Gamma_TE_P[n] * u_y_panels_0 (unels_0 \# Induced velocity from the panels of the propeller (y)

```
\# VELOCITIES IN THE CONTROL POINTS FROM THE HORSESHOE VORTEX OF THE PROPELLER
\# Initialization of the variable used to calculate the induced velocity
\# from the trailing vortices of the propeller (x)
u_y_trail = 0
F Initialization of the variable used to calculate the induced velocity
\# from the trailing vortices of the propeller (y)
\(u_{-} z_{-}\)trail \(=0\)
\# Initialization of the variable used to calculate the induced velocity
\# from the trailing vortices of the propeller (z)
u_x trail_1, u_y_trail_1, u_z_trail_1 = Trailing_Vortices_Propeller (0,p_x_mdp,p_y_mdp,p_z_mdp)
\# Induced velocity from the transition wake and from
\# the semi-infinite helicoidal vortex of the propeller (First)
for \(n\) in range (Var.Msp): \# Loop used to select the trailing vortex that induces velocity
    \(n_{1}=n+1 \quad \#\) on the control points of the propeller
    \(\mathrm{n}_{\mathrm{-}} 2=(\mathrm{n}+1) *(\operatorname{Var} . \mathrm{Nch}+1)\)
    \(u_{-} x_{-} t r a i l_{-} 2, u_{-} y_{-} t r a i l_{-} 2, u_{-} z_{-} t r a i l_{-} 2=T r a i l i n g \_V o r t i c e s \_P r o p e l l e r\left(n_{-} 1, p_{-} x_{-} m d p, p_{-} y_{-} m d p, p_{-} z_{-} m d p\right)\)
    \# Induced velocity from the transition wake and from the semi-infinite
    \# helicoidal vortex of the propeller (Second) selected of the propeller
    u_x_trail \(=u_{-} x_{-} t r a i l+G a m m a_{-} T E_{-} P[n]\) * (u_x_trail_1 - u_x_trail_2)
    \# Induced velocity from the horseshoe vortex of the propeller (x)
    \# No bound vortex
    u_y trail = u_y_trail + Gamma_TE_P[n] * (u_y trail_1 - u_y trail_2)
    \# Induced velocity from the horseshoe vortex of the propeller (y)
    \# No bound vortex
    \(u_{-} z_{-}\)trail \(=u_{-} z_{-}\)trail + Gamma_TE_P[n] * (u_z_trail_1 - u_z_trail_2)
    \# Induced velocity from the horseshoe vortex of the propeller (z)
    \# No bound vortex
    \(u_{\text {_ }}\) x_trail_1 = u_x_trail_2
    u_y_trail_1 = u_y_trail_2 \# For the next loop
    u_z_trail_1 = u_z_trail_2 \# For the next loop
\# TOTAL INDUCED VELOCITY
\(u_{-} x_{-} t o t=u_{-} x_{-} t r a i l+u_{-} x_{-} p a n e l s\) Total induced velocity on the propeller (x)
u_y_tot = u_y_trail + u_y_panels \# Total induced velocity on the propeller (y)
\(u_{-} z_{-} t o t=u_{-} z_{-} t r a i l+u_{-} z_{-}\)panels \# Total induced velocity on the propeller (z)
\# beta and pitch at the Control points
cos_theta \(=\) p_z_mdp / r_cp[j]
sin_theta \(=p_{-}\)y_mdp / r_cp \([j]\)
\(U_{-} T_{-} P_{-}\)tot \(=-u_{-} y_{-} t o t * \cos\) theta \(+u_{-} z_{-} t o t *\) sin_theta
\# Total tangential induced velocity in the control points of the propeller
\(U_{-} 0_{-} P\) beta \(=n p \cdot \operatorname{interp}\left(r_{-} c p[j], r_{-} R_{-} P, U_{-} O_{-} P\right) \quad \#\) Wake (Axial) in the control points (s)
\(U_{-} T_{-} P_{-}\)beta \(=n p \cdot \operatorname{interp}\left(r_{-} c p[j], r_{-} R_{-} P, U_{-} T_{-} P\right) \quad\) \# Wake (Tangential) in the control points (s)
tan_beta[j] = abs (-U_0_P_beta + u_x_tot)/(Var.Omega * r_cp[j] - U_T_P_tot - U_T_P_beta) \# New tangent beta
beta[j] \(=\) np.arctan(tan_beta[j])
pitch_cp[j] = tan_beta[j] * 2 * np.pi * r_cp[j]
with open("output/Propeller_Pitch_Control_Points.txt","w")as file:
    file.write(" Spanw. Radius Pitch/D\n")
    file.write(" Spanw. Rad

with open ("output/Propeller_Beta.txt","w") as file:
    file.write(" Radius Beta\n")
    for \(j\) in range (Var.Msp):
        file.write(" \{:13.9f\}\{:3s\}\{:13.9f\}\n".format(r_cp[j],"", np.arctan(tan_beta[j])))
```


Interpolation OF THE PITCH

if Var.Msp == 0:
pitch_cp[Var.Msp-1] = 0

This loop is used to find the values of the pitch in the grid points

of the propeller (No tip - No Hub)

for i in range (1,Var.Msp):
pitch_gp[i] = np.interp(s_gp_P[i],s_cp_P,pitch_cp)
pitch_gp[0] = (pitch_cp[1] - pitch_cp[0])/(s_cp_P[1]-s_cp_P[0])*(s_gp_P[0] - s_cp_P[0]) + pitch_cp[0] \# Pitch at the hub
pitch_gp[Var.Msp] = (pitch_cp[Var.Msp-1] - pitch_cp[Var.Msp-2])/(s_cp_P[Var.Msp-1] - s_cp_P[Var.Msp - 2] \# Pitch at the tip
)*(s_gp_P[Var.Msp] - s_cp_P[Var.Msp - 2])+ pitch_cp[Var.Msp - 2]
with open("output/Propeller_Pitch_Grid_Points.txt","w") as file:
file.write(" Spanw. Pitch\n")
for i in range (Var.Msp+1):
file.write(f" {i:3d}{pitch_gp[i]:13.9f}\n")

GRID POINTS MATRIX - CALCULATION OF BETA(S(R)),CHORD(S),SKEW(S) AND RAKE(S)

for i in range (Var.Msp+1):
pl = ((i+1)*(Var.Nch+1))-(Var.Nch+1)
\# Counter used to order the Grid Points Matrix
p_ref_gp = np.sqrt(pitch_gp[i]**2 + (2*np.pi*Radius_gp_P[i])**2)
\# Reference pitch (It has only a radial variation)
sin_b[i] = pitch_gp[i]/p_ref_gp
\# sin(beta)
cos_b[i] = 2*np.pi*Radius_gp_P[i]/p_ref_gp
\# cos(beta)
for j in range (Var.Nch+1):
npl = (j) + ipl \# Second counter to order the Grid Points Matrix
Theta_gp_P[j] = -Skew_P_gp[i] + (t_gp_P[j] * Chord_P_gp[i] * cos_b[i]) / Radius_gp_P[i]
\# X(s,t)
Grid_Points_P[npl, 0] = Rake_P_gp[i] + Chord_P_gp[i] * sin_b[i] * t_gp_P[j]
\# Y(s,t)
Grid_Points_P[npl, 1] = - Radius_gp_P[i] * np.sin(Theta_gp_P[j])
\# Z(s,t)
Grid_Points_P[npl, 2] = Radius_gp_P[i] * np.cos(Theta_gp_P[j])
with open('output/Propeller_Grid_Points.txt', 'w') as file:
for i in range((Var.Nch + 1) * (Var.Msp + 1)):
file.write(f" {Grid_Points_P[i, 0]:.9f} {Grid_Points_P[i, 1]:.9f} {Grid_Points_P[i, 2]:.9f}\n")
\# GRID CONTROL POINTS MATRIX - CALCULATION OF BETA(S(R)),CHORD(S),SKEW(S) AND RAKE(S)
for i in range (Var.Msp): \# Counter used to order the Grid Control Points Matrix
ipl = ((i+1)*(Var.Nch))-(Var.Nch)
Radius_cp_P[i] = 0.5 * (Radius_gp_P[i] + Radius_gp_P[i+1])
p_ref_gp = np.sqrt(pitch_cp[i]**2 + (2*np.pi*Radius_cp_P[i])**2) \# Reference pitch (It has only a radial variation)
sin_b[i] = pitch_cp[i]/p_ref_gp \# sin(beta)
cos_b[i] = 2*np.pi*Radius_cp_P[i]/p_ref_gp \# cos(beta)
for j in range (Var.Nch): \# t Loop
npl = (j) + ipl \# Second counter to order the Grid Points Matrix
Theta_cp_P[j] = - Skew_P_cp[i] + (t_cp_P[j] * Chord_P_cp[i] * cos_b[i]) / Radius_cp_P[i]
\# X(s,t)
Control_Points_P[npl, 0] = Rake_P_cp[i] + Chord_P_cp[i] * sin_b[i] * t_cp_P[j]
\# Y(s,t)
Control_Points_P[npl, 1] = - Radius_cp_P[i] * np.sin(Theta_cp_P[j])
\# Z(s,t)
Control_Points_P[npl, 2] = Radius_cp_P[i] * np.cos(Theta_cp_P[j])
with open('output/Propeller_Control_Points.txt', 'w') as file:
for i in range((Var.Nch) * (Var.Msp)):
file.write(f"{Control_Points_P[i, 0]:13.9f} {Control_Points_P[i, 1]:13.9f} {Control_Points_P[i, 2]:13.9f}\n")

CREATION OF THE TRANSITION WAKE (STRAIGHT LINE VORTICES)

Points_Trans_Wake_P = np.zeros((((Var.N_P_L+1)*(Var.Msp+1)),3))
for i in range(Var.Msp+1)
i_1 = i+i*(Var.N_P_L)
x_trans_wake = Grid_Points_P[N_Bound_Vortex_P[i,0],0] \# X value for the first point of the transition wake - T.E.
y_trans_wake = Grid_Points_P[N_Bound_Vortex_P[i,0],1] \# Y value for the first point of the transition wake - T.E
z_trans_wake = Grid_Points_P[N_Bound_Vortex_P[i,0],2] \# Z value for the first point of the transition wake - T.E.
pitch_trans_wake = pitch_gp[i] \# Pitch at the T.E. (It has only a radial variation)
r_trans_wake = np.sqrt(y_trans_wake**2 + z_trans_wake**2) \# Radius at the T.E.
Points_Trans_Wake_P[i_1,0] = x_trans_wake \# Grid points for the transition wake (x) - T.E
Points_Trans_Wake_P[i_1,1] = r_trans_wake \# Grid points for the transition wake (radius) - T.E
Points_Trans_Wake_P[i_1,2] = pitch_trans_wake \# Grid points for the transition wake (pitch) - T.E
delta_trans_wake = (-4 * Var.Rad_P - x_trans_wake)/(Var.N_P_L) \# The transition wake goes four radii downstream
for j in range(Var.N_P_L): \# Loop used to divide the transition wake in N_P_L parts (N_P_L+1 points)
i_2 = (i_1) + j+1
\# Grid points for the transition wake
Points_Trans_Wake_P[i_2,0] = x_trans_wake + (j+1) * delta_trans_wake \# (x)

```
    file.write(f"{'Point':<8}{'x':<12}{'r':<20}{'p':<20}\n")
    for i in range(Var.Msp+1)
        file.write(f"{i:<5}{Points_Trans_Wake_P[i_1,0]:13.9f}{Points_Trans_Wake_P[i_1 , 1]:13.9f}"
                f"{Points_Trans_Wake_P[i_1,2]:13.9f}\n")
            for j in range(Var.N_P_L)
        i 2 = (i_1) + j+1
        file.write(f"{i:<5}{Points_Trans_Wake_P[i_2,0]:13.9f}{Points_Trans_Wake_P[i_2,1]:13.9f}"
                    f"{Points Trans_Wake_P[i_2, 2]:13.9f}\n")
return Points_Trans_Wake_P, Grid_Points_P, Control_Points_P
```

```
Date: 04 2023 - 01 2024
Author: Lisa Martinez
Author: Lisa Martinez 
Description: This subroutine calculates the area of a panel given its four
points
import numpy as np
def Area_Panel(x_1, y_1, z_1, x_2, y_2, z_2, x_3, y_3, z_3, x_4, y_4, z_4):
    s = 0
    b_1 = x_4 - x_1
    # X value of the first vector of the panel (Point 1 and Point 4)
    _2 = y_4 - y_1 # Y value of the first vector of the panel (Point 1 and Point 4)
    b_3 = z_4- z_1 # Z value of the first vector of the panel (Point 1 and Point 4)
    e_1 = x_3 - x_1 # First side (x)
    e_2 = y_3 - y_1 # First side (y)
    e_3 = z_3 - z_1 # First side (z)
    f_1 = x_2 - x_1 # Second side (x)
    f_2 = y_2 - y_1 # Second side (y)
    f_3 = z_2 - z_1 # Second side (z)
    s_11 = f_2*b_3 - f_3*b_2 # X component of the first cross product
    s_12 = b_1*f_3 - f_ 1*b_3 # Y component of the first cross product
    s_13 = f_ 1*b_2 - f_2*b_1 # Z component of the first cross product
    s_21 = b_2*e_3 - b_3*e_2 # X component of the second cross product
```



```
    s_22 = e_1*b_3 - b_1*e_3 % # % Y component of the second cross product
    s = 0.5*(np.sqrt(s_11**2 + s_12**2 + s_13**2) + np.sqrt(s_21**2 + s_22**2 + s_23**2)) #Area of the panel
    return (s)
```

```
"""
Date: Q4 2023 - Q1 2024
Author: Lisa Martinez
Institution: Technical University of Madrid
Description: This subroutine calculates the velocities Ux, Uy, Uz from a line
element (x1,y1,z1) to (x2,y2,z2) at the point (px,py,pz) using Biot-Savart's
law. The process applies to all blades of the propeller. Given the propeller's
symmetry, only the point on the reference blade is needed. The induced velocity
from the vortex is calculated with a unit circulation
"""
import numpy as np
def Biot_Savart_Propeller(I_z, x_1, y_1, z_1, x_2, y_2, z_2, px, py, pz):
    U_x, U_y, U_z = 0.0, 0.0, 0.0
    d_theta = (2*np.pi)/float(I_z) # Angle between the blades
    theta = 0.0
                                    # Angle for the first blade
    a_x = x_2 - x_1
    d_y = y_2 - y_1
    d_z = z_2 - z_1
    b_x = px - x_2
    c_x = px - x_1
    for i in range(I_z):
        cos_theta = np.cos(theta)
        sin_theta = np.sin(theta)
        a_y = d_y * cos_theta - d_z * sin_theta
        a_z = d_z * cos_theta + d_y * sin_theta
        b_y = py - y_2 * cos_theta + z_2 * sin_theta
        b_z = pz - z_2 * cos_theta - y_2 * sin_theta
```

```
c_y = py - y_1 * cos_theta + z_1 * sin_theta
c_z = pz - z_1 * cos_theta - y_1 * sin_theta
a_length = np.sqrt(a_x*a_x + a_y*a_y + a_z*a_z) # Lenght
b_length = np.sqrt(b_x*b_x + b_y*b_y + b_z*b_z) # Lenght b
c_length = np.sqrt(c_x*c_x + c_y*c_y + c_z*c_z) # Lenght
a_c = a_x*c_x + a_y*c_y + a_z*c_z # Dot product a.c (e)
a_b = a_x*b_x + a_y*b_y + a_z*b_z # Dot product a.b (c-e)
ac_x = a_y*c_z - a_z*c_y # X component of the cross product a^c
ac_y = a_z*c_x - a_x*c_z # Y component of the cross product a-d
ac_z = a_x*c_y - a_y*c_x # Z component of the cross product a^c
aclen2 = ac_x*ac_x + ac_y*ac_y + ac_z*ac_z
aclen = np.sqrt(aclen2) # Module of the cross product a^c
# This if is used to check the distance between the selected point and
# the side. If they are too close we have to skip it
if a_length != 0 and (aclen / a_length) > 1*10**(-5):
        cstac = a_c/c_length # e/c
        cstab = a_b/b_length # a-e / b
        cstv = 1.0 / (4.0 * np.pi * aclen2)
        cstv1 = cstv*cstac - cstv*cstab
    U_x = U_x + ac_x * cstv1 # Induced Velocity (x)
    U_y = U_y + ac_y * cstv1 # Induced Velocity (y)
    U_Z = U_z + ac_z * cstv1 # Induced Velocity (z)
theta = theta + d_theta
return (U_x, U_y, U_z)
```

```
Date: Q4 2023 - Q1 2024
Author: Lisa Martinez
Institution: Technical University of Madrid
Description: This subroutine calculates the Ci-function used in 'De_Jong' by
rational approximations.
"""
import numpy as np
def Ci(xbar):
    f = (xbar**8+38.027264*xbar**6+265.187033*xbar**4+335.677320*xbar**2+38.102495)/(
    xbar**8+40.021433*xbar**6+322.624911*xbar**4+570.236280*xbar**2+157.105423)/xbar
    g = (xbar**8+42.242855*xbar**6+302.757865*xbar**4+352.018498*xbar**2+21.821899)/(
    xbar **8+48.196927*xbar **6+482.485984*xbar**4+1114.978885*xbar**2+449.690326)/xbar**2
    Cires=f*np.sin(xbar) -g*np.cos(xbar)
    return(Cires)
```

```
**
Date: Q4 2023 - Q1 202
Author: Lisa Martinez
Institution: Technical University of Madrid
Description: This subroutine calculates the induced velocities Ux,Uy,Uz from a
semi infinitly vortex in the point px,py,pz. The calculations are made for 1
blade. The routine uses the helix radius r, pitch p and longitudinal starting
point x as input. The vortex starts at -infinity and stops at -x. The
calculations follows the procedure outlined by de Jong.
"""
import numpy as np
def De_Jong(x, r, p, phi, px, py, pz):
    from sources.Ci_P import Ci
    from sources.Si_P import si
    Ux = 0.0 # Initialization of the variable U_X
    Z = 0.0 # Initialization of the variable U Z
    # Constants
    pbar=2*np.pi/p
    xbar=pbar*x
    x2bar=2*xbar
    tld=pbar*px
    x2tld=2*xtld
    sum=xbar+xtld
    xsum2=2*xsum*xsu
    xsum3=1.5*xsum2*xsum
```

```
sum4=xsum2*xsum2
2sum=2*xsum
2sum2=2*x2sum*x2sum
x2sum3=1.5*x2sum2*x2sum
x2sum4=x2sum2*x2sum2
=r*r
py2=py*py
pz2=pz*pz
bar=r2+py2+pz
p2=pbar*pba
p3r2=p2*r2*pba
4r2=3*p3r2*pbar
5r2=p4r2*pbar
p2x2=p2/xsum2
p4rb=3*p2*p2*rbar/xsum4
xtld=np.cos(xtld)
sxtld=np.sin(xtld)
x2tld=np.cos(x2tld)
x2tld=np.sin(x2tld)
xbar=np.cos(xbar)
xbar=np.sin(xbar)
cx2bar=np.cos(x2bar)
x2bar=np.sin(x2bar)
xbar2=cxbar*cxbar
*)
cphi=np.cos(phi)
phi=np.sin(phi)
cphi2=cphi*cphi
sphi2=sphi*sphi
phi2=2*phi
c2phi=np.cos(phi2)
s2phi=np.sin(phi2)
Ci1 = Ci(xsum)
Ci2 = Ci(x2sum)
si1 = si(xsum)
si2 = si(x2sum)
cos11 = -cxtld*Ci1-sxtld*si1
cos112 = -cx2tld*Ci2-sx2tld*si2
sin11 = sxtld*Ci1-cxtld*si
sin112 = sx2tld*Ci2-cx2tld*si2
cos12 = cxbar/xsum-sin11
cos122 = cx2bar/x2sum-sin112
sin12 = sxbar/xsum+cos11
sin122 = sx2bar/x2sum+cos112
cos13 = cxbar/xsum2-0.5*sin12
cos132 = cx2bar/x2sum2-0.5*sin122
sin13 = sxbar/xsum2+0.5*cos12
sin132 = sx2bar/x2sum2+0.5*\operatorname{cos}122
os23 = cxbar2/xsum2-sin122
sin23 = sxbar2/xsum2+sin122
cos14 = cxbar/xsum3-sin13/3
cos142 = cx2bar/x2sum3-sin132/3
sin14 = sxbar/xsum3+\operatorname{cos 13/3}
sin142 = sx2bar/x2sum3+\operatorname{cos}132/3
cos24 = cxbar2/xsum3-4*sin132/3
sin24 = sxbar2/xsum3+4*sin132/3
cos15 = cxbar/xsum4-0.25*sin14
cos152 = cx2bar/x2sum4-0.25*sin142
in15 = sxbar/xsum4+0.25*\operatorname{cos14}
sin152 = sx2bar/x2sum4+0.25*\operatorname{cos}142
cos25 = cxbar2/xsum4-2*sin142
sin25 = sxbar2/xsum4+2*\operatorname{sin}142
# CALCULATION OF UX
p3 = p2*pbar
p4 = p3*pbar
p5 = p4*pbar
rbar3r = rbar+2*r2
c0 = -p5r2*rbar/xsum4/2+p3r2/xsum2
c1 = -p3*r*pz
c2 = -p3*r*py
c3 = 3*p5*r*pz*rbar3r/2
c4 = 3*p5*r*py*rbar3r/2
5 = -p5r2*pz2
6 = -p5r2*py2
c7 = -16*p5r2*py*pz
Jx}=(c0+(c1*\textrm{cphi}-\textrm{c}2*\textrm{sph}i)*\operatorname{cos}13+(c2*\textrm{cphi}+\textrm{c}1*\textrm{sphi})*\operatorname{sin}13+(c3*\textrm{cphi}-\textrm{c}4*\textrm{sphi})*\operatorname{cos}15+(c4*\textrm{cphi}+\textrm{c}3*\operatorname{sphi})*\textrm{sin}15 
        (c5*cphi2+c6*sphi2)*\operatorname{cos}25 + (c6*cphi2+c5*sphi2)*sin 25 + ((c5-c6)*8*s2phi+c7*c2phi)*sin152 - c7*s2phi*cos152)/4/np.pi
# CAlculation OF UY
```

```
139
d1 = p2*r
d2 = d1
d3 = -3*p4*r*rbar/2
d4 = 4*p4r2*pz
d5 = p4r2*py
d6 = -3*p4*r*py*pz
d7 = 8*p4r2*py
d8 = -3*p4*r*(py2+3*pz2+r2)/2
d9 = p4r2*pz
Uy = (d0+d1*cphi*cos13+d1*sphi*sin13+(d8*cphi-d6*sphi)*\operatorname{cos}15 + (d8*sphi+d6*cphi)*sin 15+0.25*d4*cphi*cphi*cos25 +
    0.25*d4*sphi*sphi*sin25 + (8*d5*c2phi+2*d4*s2phi)*sin152 - d7*s2phi*cos152-d1*sphi*cos12+d1*cphi*sin12
    d3*sphi*cos14 + d3*cphi*sin14+d5*sphi*sphi*cos24+d5*cphi*cphi*sin}24+(d4*c2phi-0.5*d7*s2phi)*sin142--
    d4*s2phi*\operatorname{cos}142)/4/np.pi
# CALCULATION OF UZ
e0 = p2*py/xsum2-1.5*p4*py*rbar/xsum4
e1 = p2*r
2 = -e1
3 = -3*p4*r*rbar/2
e4 = 4*p4r2*py
e5 = p4r2*pz
e6 = 3*p4*r*py*pz
e7 = 3*p4*r*(3*py2+pz2+r2)/2
e8 = -8*p4r2*pz
e9 = -p4r2*py
Uz = (e0+e1*cphi*\operatorname{cos}12+e1*sphi*sin12+e1*sphi*\operatorname{cos}13-e1*cphi*sin}13+e3*cphi*\operatorname{cos}14+e3*\operatorname{sph}i*\operatorname{sin}14
    (e4*c2phi-0.5*e8*s2phi)*sin142 - e4*s2phi*cos142+e5*cphi*cphi*cos24+e5*sphi*sphi*sin24 -
    e7*sphi*\operatorname{cos}15+e7*cphi*sin15+e6*cphi*\operatorname{cos}15+e6*sphi*sin15 - e8*s2phi*\operatorname{cos}152+
        (2*e4*s2phi+e8*c2phi)*sin152 + e9*sphi*sphi*\operatorname{cos}25+e9*cphi*cphi*sin}25)/4/np.p
return (Ux,Uy,Uz)
```

```
"""
Date: Q4 2023 - Q1 202
Author: Lisa Martinez
Institution: Technical University of Madrid
Description: This function computes the propeller efficiency.
```

import sources.Variables as Var
import numpy as np
from sources.Mid_Vect_Propeller_P import Mid_Vect_Propeller
from sources. Weight_Function_Propeller_P import Weight_function_propeller
from sources. Weight_Function_Propeller_P import Weight_func
from sources.Skin_Friction_Drag_P import Skin_Friction_Drag
from sources.Advance_Ratio_P import Advance_Ratio_J
def Efficiency():
I_P_Points_P = (Var. Msp*Var.Nch)
Panel, Gamma_Panel_P = np.loadtxt("output/Propeller_Gamma_Blade.txt",skiprows = 1,unpack= True)
T_fr_P, Q_fr_P = Skin_Friction_Drag()
Weight_P $=$ Weight_function_propeller $($
V_Tot_P = np.loadtxt("output/Propeller_Velocity_Total.txt", skiprows=2, usecols= (2, 3,4))
$V_{\text {_Tot_P }}=$ np. reshape (V Tot P, (I P Points P , 4, 3))
Advance_ratio $=$ Advance_Ratio_J()
\# THRUST AND TORQUE (WITHOUT SKIN FRICTION DRAG)
Thr $=0$
Tor $=0$
\# Initialization of the temporary variable used to calculate T
Tor_tot_P $=0$
Q1_tot $=0$ \# Initialization of the temporary variable used to calculate Q1
Q2_tot $=0$ \# Initialization of the temporary variable used to calculate Q2
for m in range (Var.Msp): \# Spanwise loop
npl_TE $=(\mathrm{m}-1) *$ Var. Nch
T_O = $0 \quad$ Initialization of the temporary variable used to calculate T
Q_10 = Initialization of the temporary variable used to calculate Q1
Q_20 = 0 Initialization of the temporary variable used to calculate Q2
for n in range (Var.Nch): \# Chordwise loop
npl $=n+(m-1) *$ Var. Nch
T- $00=0 \quad$ \# Initialization of the temporary variable used to calculate T
Q_100 = 0 Initialization of the temporary variable used to calculate Q1
Q_200 = 0 \# Initialization of the temporary variable used to calculate Q2
for k in range (4): \# Panel loop
xkx,xky, xkz, xlk,ylk,zlk = Mid_Vect_Propeller (npl,k)
\# This subroutine is used to calculate the characteristics of the side k panel npl
T_OO = T_00 + zlk*V_Tot_P[npl,k,1] - ylk*V_Tot_P[npl,k,2]
\# Thrust generated by side k panel npl without taking into account of the weight function
Q_100 = Q_100 + xky*ylk*V_Tot_P[npl,k,0] - xky*xlk*V_Tot_P[npl,k,1]
\#Torque Q1 generated by side k panel npl without taking into account of the weight function

```
    #TTM, \_200)
    #Torque Q2 generated by side k panel npl without taking into account of the weight function
T_0 = T_0 + Weight_P[m,n] * T_00
# Thrust generated by the panel npl taking into account of the weight function
Q_10 = Q_10 + Weight_P[m,n] * Q_100
# Torque Q1 generated by the panel npl taking into account of the weight function
Q_20 = Q_20 + Weight_P[m,n] * Q_200
# Torque Q2 generated by the panel npl taking into account of the weight function
xkx,xky,xkz,xlk,ylk,zlk = Mid_Vect_Propeller(npl_TE,3)
T_tot_P = T_tot_P + Gamma_Panel_P[npl_TE]*T_O - Gamma_Panel_P[npl_TE
]*zlk*V_Tot_P[npl_TE,3,1] + Gamma_Panel_P[npl_TE]*ylk*V_Tot_P[npl_TE,3,2] No thrust generated by T.E. side
Q1_tot = Q1_tot + Gamma_Panel_P[npl_TE]*Q_10 - Gamma_Panel_P[npl_TE
]*xky*ylk*V_Tot_P[npl_TE,3,0] + Gamma_Panel_P[npl_TE]*xky*xlk*V_Tot_P[npl_TE,3,1] # No torque generated by T.E. side
Q2_tot = Q2_tot + Gamma_Panel_P[npl_TE]*Q_20 - Gamma_Panel_P[npl_TE
]*xkz*xlk*V_Tot_P[npl_TE,3,2] + Gamma_Panel_P[npl_TE]*xkz*zlk*V_Tot_P[npl_TE,3,0] # No torque generated by T.E. side
# EFFICIENCY
Thr = Var.rho*float(Var.Z_Blade_P)*T_tot_P + T_fr_P*Var.Z_Blade_P # Total thrust given by the propeller
Tor = Var.rho*float(Var.Z_Blade_P)*Q1_tot - Var.rho*float(Var.Z_Blade_P)*Q2_tot + Q_fr_P*Var.Z_Blade_P
# Total torque given by the propeller
K_T = Thr / (Var.rho * (Var.Omega/(2*np.pi))**2 * (Var.Rad_P*2)**4) # Thrust coefficient
K_Q = Tor / (Var.rho * (Var.Omega/(2*np.pi))**2 * (Var.Rad_P*2)**5) # Torque coefficient
Eff = Advance_ratio * K_T / abs(2 * np.pi * K_Q) # Efficiency
C_th = Thr/(0.5*Var.rho*Var.V_Ship**2*np.pi*Var.Rad_P**2)
with open("output/Propeller_Efficiency.txt", mode='w') as file:
    file.write("Efficiency\n")
    file.write("{:13.9f}\n".format(Eff))
with open("output/Propeller_Forces.txt", mode='w') as file:
    file.write(" K_T K_Q T Q Cth\n")
    file.write("{:13.9f} {:13.9f} {:10.1f} {:10.1f} {:13.9f}\n".format(K_T, -K_Q, Thr, Tor, C_th))
return Eff, K_T, K_Q
Eff, K_T, K_Q = Efficiency()
```

```
Date: Q4 2023 - Q1 2024
Author: Lisa Martinez
Institution: Technical University of Madrid
Description: This section is dedicated to the initialization of the variable
Gamma_TE_P
"""
import numpy as np
import sources.Variables as Var
def Gamma_It():
    Gamma_TE_P = np.zeros((Var.Msp+1))
    for j in range(Var.Msp+1):
        Gamma_TE_P[j] = 0.0
    Gamma_TE_P[Var.Msp] = -1 # lambda (t-1) initial
    with open("output/Propeller_Gamma_TE_P.txt", "w") as file:
        for i in range(Var.Msp+1):
            file.write(f"{Gamma_TE_P[i]:13.9f}\n")
    return Gamma_TE_P
```

Gamma_TE_P = Gamma_It()

```
"""
Date: Q4 2023 - Q1 }202
Author: Lisa Martinez
Institution: Technical University of Madrid
Description: This subroutine is responsible for creating the initial grid for
the reference blade of the propeller, including Control Points & Grid Points.
Given the propeller's symmetry, generating the grid for the reference blade
alone suffices. Additionally, the subroutine undertakes the numbering of panels
and horseshoe vortices. Notably, the grid is aligned with the onset flow during
this phase.
this
import math
import numpy as np
import sources.Variables as Var
import pandas as pd
def Grid_Generation_Propeller():
```

```
r_R_P, X_P, Skew_P, Chord_P, Thick_P = np.loadtxt("input/grid.txt", unpack=True)
U_O_P, U_R_P, U_T_P = np.loadtxt("input/onset.txt", unpack=True)
""" MID-CHORD LINE """
Midchord_line_P = np.zeros((Var.N_Iter,3)) # Create Matrix 3xN_Iter
# Initial point (x, y, z)
Midchord_line_P[0,0] = 0.0 # s line (x) - It begins at the hub-center but the first point is at the top of the hub
Midchord_line_P[0,1] = 0.0 # s line (y) - It begins at the hub-center but the first point is at the top of the hub
Midchord_line_P[0,2] = r_R_P[0] # s line (z) assuming that r_R_P contain the initial z values
# Cartesian coordinates for the blade surface
for i in range(1, Var.N_Iter)
    Midchord_line_P[i, 0] = X_P[i] # x
    Midchord_line_P[i, 1] = -r_R_P[i] * math.sin(Skew_P[i]) #
    Midchord_line_P[i, 2] = r_R_P[i] * math.cos(Skew_P[i]) # z
s_tip = 0.0
S_Distr_P = [0.0] * Var.N_Iter
S_Distr_P[0] = math.sqrt(Midchord_line_P[0,1]**2 + Midchord_line_P[0,2]**2) # First value of the midchord line
s_Hub_P = S_Distr_P[0]
for i in range( Var.N_Iter - 1): # This loop is used to find the length of the s line
    b = abs(Midchord_line_P[i+1,1])-abs(Midchord_line_P[i,1]) # Y Distance
    c = abs(Midchord_line_P[i+1,2])-abs(Midchord_line_P[i,2]) #Z Distance
    Prov = math.sqrt(b**2+c**2)
    S_Distr_P[i+1] = S_Distr_P[i] + Prov # This is used to find the distribution of s, which is always costant
s_tip = S_Distr_P[Var.N_Iter-1]
data = np.column_stack([S_Distr_P, r_R_P])
np.savetxt("output/Propeller_S_Distr.txt", data, fmt=['%13.9f','%13.9f'], delimiter= ' ', header = ' S_Distr
""" t FUNCTION
t_gp_P=np.array([0.0]*(Var.Nch+1)) #Initialise the variable
for i in range(Var.Nch + 1):
    t_gp_P[0] = -0.5
    t_gp_P[i] = -0.5 * np.cos(float(i+1-1.5)*3.14159274/float(Var.Nch))
    # (t) Grid points (always the same - it depends on Nch) - Cosine
t_cp_P = np.array([0.0]*(Var.Nch),dtype=np.float64) #Initialise the variable
for i in range (Var.Nch):
    t_cp_P[i]= 0.5*(t_gp_P[i+1]+t_gp_P[i]) # (t) Control points (always the same - it depends on Nch) - Cosine
data_t = np.column_stack([t_gp_P])
np.savetxt("output/Propeller_t_gp.txt", data_t, fmt=['%13.9f'], delimiter= ' ', header = 't_gp')
data_t = np.column_stack([t_cp_P])
np.savetxt("output/Propeller_t_cp.txt", data_t, fmt=['%13.9f'], delimiter= ' ', header = 't_cp')
""" s FUNCTION
s_gp_P = np.array([0.0]*(Var.Msp+1),dtype=np.float64) # (s) Grid points (always the same - it depends on Msp)
for i in range(Var.Msp+1):
    aa = (i+1)*4.0 - 3.0 #Start with point after 0
    bb = 4.0*float(Var.Msp) + 2.0
    s_gp_P[i] = ((aa/bb)*(s_tip - s_Hub_P))+s_Hub_P
s_cp_P = np.array([0.0]*(Var.Msp),dtype=np.float64) # (s) Control points (always the same - it depends on Msp)
for i in range(0,Var.Msp):
    s_cp_P[i] = 0.5 * (s_gp_P[i] + s_gp_P[i+1])
data_s = np.column_stack([s_gp_P])
np.savetxt("output/Propeller_s_gp.txt", data_s, fmt=['%13.9f'], delimiter= ' ', header = 's_gp')
data_s = np.column_stack([s_cp_P])
np.savetxt("output/Propeller_s_cp.txt", data_s, fmt=['%13.9f'], delimiter= ' ', header = 's_cp')
""" GRID POINTS MATRIX - CALCULATION OF BETA(S),CHORD(S),SKEW(S) AND RAKE(S) """
#Initialise the variables
Radius_gp_P = np.zeros(Var.Msp + 1)
Chord_P_gp = np.zeros(Var.Msp + 1)
Rake_P_gp = np.zeros(Var.Msp + 1)
Skew_P_gp = np.zeros(Var.Msp + 1)
sin_b = np.zeros(Var.Msp + 1)
cos_b = np.zeros(Var.Msp + 1)
Grid_Points_P = np.zeros(((Var.Msp + 1) * (Var.Nch + 1), 3))
Theta_gp_P = np.zeros(Var.Nch + 1)
# S Loop
for i in range( Var.Msp +1):
    ipl = ((i+1) * (Var.Nch + 1)) - (Var.Nch + 1)
    Radius_gp_P[i] = np.interp(s_gp_P[i],S_Distr_P, r_R_P) # Value of the radius in the grid points (s)
    U_O_P_gp = np.interp(s_gp_P[i],S_Distr_P, U_0_P) # Wake (Axial) in the grid points (s)
    U_T_P_gp = np.interp(s_gp_P[i],S_Distr_P, U_T_P) # Wake (Tangential) in the grid points (s)
    Chord_P_gp[i] = np.interp(s_gp_P[i],S_Distr_P, Chord_P) # Value of the chord in the grid points (s)
    Rake_P_gp[i] = np.interp(s_gp_P[i],S_Distr_P, X_P) # Value of the rake in the grid points (s)
    Skew_P_gp[i] = np.interp(s_gp_P[i],S_Distr_P, Skew_P) # Value of the skew in the grid points (s)
    V_tang = Var.Omega * Radius_gp_P[i] - U_T_P_gp # Tangential velocity
    V_rel = np.sqrt(V_tang**2 + U_O_P_gp**2) # Tangential velocity
    sin_b[i] = U_O_P_gp / V_rel # # Sine (beta)
    cos_b[i] = V_tang / V_rel (ber m
    # t Loop
    for j in range(Var.Nch+1):
    npl = (j) + ipl # Second counter used to order the Grid Points Matrix
        npl = (j) + ipl # Second counter used to order the Grid Points Matrix 
```

NiN
Radius_cp_P $=$ np.zeros (Var.Msp +
Chord_P_cp = np.zeros(Var.Msp + 1)
Rake_P_cp = np.zeros(Var.Msp + 1)
Skew_P_cp = np.zeros(Var.Msp + 1)
Theta_cp_P = np.zeros(Var.Nch + 1)
Control_Points_P = np.zeros(((Var.Msp) * (Var.Nch), 3))
for i in range(Var.Msp):
Radius_cp_P[i] = 0.5*(Radius_gp_P[i]+Radius_gp_P[i+1]) \# Value of the radius in the control point (s)
$U_{-} O_{-} P _c p=n p . i n t e r p\left(s_{-} c p_{-} P[i], S_{-} D i s t r _P, U_{-} O_{-} P\right)$ \# Wake (Axial) in the control points (s)
$U_{-} T_{-} P_{-} c p=n p$.interp (s_cp_P[i], S_Distr_P, U_T_P) \#Wake (Tangential) in the control points (s)
ipl $=$ [0.0]
ipl $=((i+1) *($ Var.Nch $))-($ Var.Nch $) \quad$ \# Counter used to order the Control Points Matrix
Chord_P_cp [i] = np.interp(s_cp_P[i], S_Distr_P, Chord_P)
Rake_P_cp [i] = np.interp(s_cp-P[i], S_Distr_P, X_P)
Skew_P_cp [i] = np.interp(s_cp_P[i], S_Distr_P, Skew_P)
\# Value of the chord in the control point (s)
\# Value of the rake in the control point (s)
\# Value of the skew in the control point (s)
V_tang = Var.Omega * Radius_cp_P[i] - U_T_P_cp
rel = math sqrt(V tang**2 + U 0 P cp**2)
\# Relative velocity
$\cos b[i]=\mathrm{V}$ tang $/ \mathrm{V}$ rel
\#t loop
for j in range(Var.Nch):
npl $=j+(i p l)$ \# Second counter used to order the Control Points Matrix
Theta_cp_P[j] = -Skew_P_cp[i] + (t_cp_P[j] * Chord_P_cp[i] * cos_b[i]) / Radius_cp_P[i]
Control_Points_P[npl, 0$]=$ Rake_P_cp[i] + Chord_P_cp[i] * sin_b[i] * t_cp_P[j] \# X (s,t)
Control_Points_P[npl, 1] =-Radius_cp_P[i] * math.sin(Theta_cp_P[j]) \# Y(s,t)
Control_Points_P[npl, 2] = Radius_cp_P[i] * math. cos(Theta_cp_P[j]) \# Z(s,t)
with open('output/Propeller_Control_Points_Old.txt', 'w') as file:
for i in range ((Var.Nch) * (Var.Msp)):
file.write(f"\{Control_Points_P[i, 0]:.9f\} \{Control_Points_P[i, 1]:.9f\} \{Control_Points_P[i, 2]:.9f\}\n")
with open('output/Propeller_Control_Points.txt', 'w') as file:
for i in range((Var.Nch) * (Var.Msp)):
file.write(f"\{Control_Points_P[i, 0]:.9f\} \{Control_Points_P[i, 1]:.9f\} \{Control_Points_P[i, 2]:.9f\}\n")
with open('output/Propeller_Control_Points_geom.txt', 'w') as file:
for i in range ((Var. $M s p+1))$:
file.write(f"\{Chord_P_cp [i]:.9f\} \{Rake_P_cp [i]:.9f\} \{Skew_P_cp [i]:.9f\}\n")
""" NUMERATION OF THE PANEL AND THE SIDE """
N_{-}Panel_P = np.array $\left.([0,1, \operatorname{Var} . N c h+2, \operatorname{Var} . N c h+1]]\right) \quad$ \# Initialize the first panel
$\mathrm{t}=0$
for j in range(Var.Msp):
for i in range(1, Var.Nch):
$\mathrm{t}+=1$
$\mathrm{t} 2=\mathrm{t}-1$
N_Panel = N_Panel_P[t2] + 1
N_{-}Panel_P = np. append (N_Panel_P, [N_Panel], axis=0)
if j ! $=$ Var.Msp-1:
$t+=1$
$\mathrm{t} 1=\mathrm{t}$
N_Panel = N_Panel_P[t1] + 2
$N_{\text {_ Panel_P }}=$ np.append (N_Panel_P, [N_Panel], axis=0)
with open ("output/Propeller_Numeration_Panel.txt","w") as file:
for i in range((Var.Nch*Var.Msp)):
file.write(f"\{N_Panel_P[i, 0]:2d\} \{N_Panel_P[i, 1]:2d\} \{N_Panel_P[i, 2]:2d\} \{N_Panel_P[i, 3]:2d\}\n")
""" COORDINATES FOR THE BOUND VORTICES (T.E. SIDE) """
\# It is a matrix with the grid points at the T.E.
N_Bound_Vortex_P = np.zeros((Var.Msp + 1, 1), dtype=int)
for i in range (Var. Msp+1):
N_Bound_Vortex_P[i] = i+i*(Var.Nch)
np.savetxt("output/Propeller_N_Bound_Vortex.txt", N_Bound_Vortex_P, fmt="\%3d")
""" HORSESHOE VORTEX MATRIX """
Horseshoe_P = np.zeros (((Var.Msp), 4), dtype=int
for i in range(Var.Msp):

```
    Horseshoe_P[i,0] = i # This value is used to access to the N_Bound_Vortex_P
    Horseshoe_P[i,1] = i+
    Horseshoe_P[i,2] =((i-1)+1)*Var.Nch
    # Number of the T.E panel (0-5-10..)
    Horseshoe_P[i,3] = i # Number of the horseshoe vortex (0-1-2-3..)
with open("output/Propeller_Horseshoe.txt","w") as file:
    for i in range(Var.Msp)
        file.write(f" {Horseshoe_P[i,0]:2d} {Horseshoe_P[i,1]:2d} {Horseshoe_P[i,2]:2d} {Horseshoe_P[i,3]}\n")
""" COORDINATES FOR THE TRANSITION WAKE (STRAIGHT LINE VORTICES) """
# Initialize the variable
Points_Trans_Wake_P = np.zeros((((Var.N_P_L+1)*(Var.Msp+1)),3))
for i in range(Var.Msp+1)
    i_1 = i+i*(Var.N_P_L)
    x_trans_wake = Grid_Points_P[N_Bound_Vortex_P[i,0],0]
    y_trans_wake = Grid_Points_P[N_Bound_Vortex_P[i,0],1]
    z_trans_wake = Grid_Points_P[N_Bound_Vortex_P[i,0],2]
    # X value for the first point of the transition wake - T.E.
    # Y value for the first point of the transition wake - T.E
    r_trans_wake = np.sqrt(y_trans_wake**2 + z_trans_wake**2) # Radius at the T.E.
    U_O_P_trans_wake = np.interp(r_trans_wake, r_R_P, U_O_P) # Wake (Axial) in the transition wake (s)
    U_T_P_trans_wake = np.interp(r_trans_wake, r_R_P, U_T_P) # Wake (Tangential) in the transition wake (s)
    V_tang = Var.Omega*r_trans_wake - U_T_P_trans_wake # Tangential velocity
    pitch_trans_wake = (2*np.pi*r_trans_wake*U_O_P_trans_wake)/V_tang # Pitch at the T.E. (It has only a radial variation)
    Points_Trans_Wake_P[i_1,0] = x_trans_wake # Grid points for the transition wake (x) - T.E
    Points_Trans_Wake_P[i_1,1] = r_trans_wake # Grid points for the transition wake (radius) - T.E
    Points_Trans_Wake_P[i_1,2] = pitch_trans_wake # Grid points for the transition wake (pitch) - T.E -
    # It is costant everywhere (right now) because V_tang does not take into
    # account of the induced velocity (due the fact that we don't know it yet)
    delta_trans_wake = (-4 * Var.Rad_P - x_trans_wake)/(Var.N_P_L)
    # The transition wake goes four radii downstream
    # Loop used to divide the transition wake in N_P_L parts (N_P_L+1 points)
    for j in range(Var.N_P_L):
        i_2 = (i_1) + j+1
        # Grid points for the transition wake
        Points_Trans_Wake_P[i_2,0] = x_trans_wake + (j+1) * delta_trans_wake # (x)
        Points_Trans_Wake_P[i_2,1] = r_trans_wake # (radius)
        Points_Trans_Wake_P[i_2,2] = pitch_trans_wake # (pitch)
    with open("output/Propeller_Points_Trans_Wake_Old.txt", "w") as file:
    file.write(f"{'Point':<8}{'x':<12}{'r':<20}{'p':<20}\n")
    for i in range(Var.Msp+1):
        i_1 = i+i*(Var.N_P_L)
        file.write(f"{i:<5}{Points_Trans_Wake_P[i_1,0]:13.9f}{Points_Trans_Wake_P[i_1,1]:13.9f}"
            f"{Points_Trans_Wake_P[i_1,2]:13.9f}\n")
        for j in range(Var.N_P_L):
        i_2 = (i_1) + j+1
        file.write(f"{i:< < }{Points_Trans_Wake_P[i_2,0]:13.9f}{Points_Trans_Wake_P[i_2,1]:13.9f}""
                                    f"{Points_Trans_Wake_P[i_2,2]:13.9f}\n")
with open("output/Propeller_Points_Trans_Wake.txt", "w") as file:
    file.write(f"{'Point':<<8}{'x':<<12}{'r':<20}{'p'::<20}\n")
    for i in range(Var.Msp+1)
        i_1 = i+i*(Var.N_P_L)
        file.write(f"{i:<5}{Points_Trans_Wake_P[i_1,0]:13.9f}{Points_Trans_Wake_P[i_1 , 1]:13.9f}"
                f"{Points_Trans_Wake_P[i_1,2]:13.9f}\n")
            for j in range(Var.N_P_L):
                i_2 = (i_1) + j+1
                file.write(f"{i:<5}{Points_Trans_Wake_P[i_2,0]:13.9f}{Points_Trans_Wake_P[i_2,1]:13.9f}"
                    f"{Points_Trans_Wake_P[i_2,2]:13.9f}\n")
return(S_Distr_P, r_R_P, t_gp_P, s_gp_P, Grid_Points_P, Control_Points_P,
        N_Panel_P, N_Bound_Vortex_P, Horseshoe_P, Points_Trans_Wake_P)
```

(S_Distr_P, r_R_P, t_gp_P, s_gp_P, Grid_Points_P, Control_Points_P, N_Panel_P, N_Bound_Vortex_P, Horseshoe_P, Points_Trans_Wake_P
) =Grid_Generation_Propeller()

```
Date: Q4 2023 - Q1 2024
Author: Lisa Martinez
Institution: Technical University of Madrid
Description: This subroutine is tasked with creating the helix geometry.
"""
def Helix(x1, x2, y1, y2, dx):
    delx = x2 - x1
    a = (y2-y1-delx*dx)/delx/delx
    b = dx-2*a*x1
    c = y1 + a*x1*x1 - dx*x1
    return (a, b, c)
```

$1 \longdiv { n " n }$

```
Date: Q4 2023 - Q1 2024
Author: Lisa Martinez
Institution: Technical University of Madrid
Description: This subroutine computes the induced velocities in the midpoints
of the segments (coefficient) from the entire grid of the propeller.
import numpy as np
import sources.Variables as Var
from sources.Weight_Function_Propeller_P import Weight_function_propeller
from sources.Mid_Vect_Propeller_P import Mid_Vect_Propeller
from sources.Panel_Induced_Velocity_Propeller_P import Panel_Induced_Velocity_Propeller
def Induced_Grid_Propeller():
    Weight_P = Weight_function_propeller()
    I_P_Points_P = (Var.Msp*Var.Nch)
    V_Grid_P = np.zeros((Var.Msp,I_P_Points_P, 4,3)) # Induced velocity from the entire grid
    n_plaux = np.array(([0.0]*(Var.Msp)), dtype = int)
    npl = np.array(([0.0]*(Var.Msp)),dtype = int)
    for i in range (I_P_Points_P): # This loop selects the panel where the point px,py,pz is located
        for k in range (4): # This loop selects, inside the panel, the side where the point px,py,pz is located
            px,py,pz,v_px,v_py,v_pz = Mid_Vect_Propeller(i, k) # This subroutine is used to calculate the midpoint px,py,pz
            for j in range(Var.Msp):
            U_x = 0 # Initialization of the variable U_x
            U_y=0 # # Initialization of the variable U_y
            n_plaux = (Var.Nch)*(j)
                for h in range(Var.Nch): # This loop selects the panel (Chordwise) that induces velocity
                npl = h + n_plaux
                qx_pnl, qy_pnl, qz_pnl = Panel_Induced_Velocity_Propeller(npl,k,i,px,py,pz)
                U_x += Weight_P[j,h] * qx_pnl # Temporary induced velocity in the point px,py,pz
                U_y += Weight_P[j,h] * qy_pnl # due to the chordwise ring j (x),(y),(z)
                U_z += Weight_P[j,h] * qz_pnl
                    V_Grid_P [j,i,k,0] = U_x # Induced velocity in the point px,py,pz
                    V_Grid_P [j,i,k,1] = U_y # due to the chordwise ring j (x),(y),(z)
                    V_Grid_P [j,i,k,2] = U_z
    with open("output/Propeller_Velocity_Grid.txt", "w") as file:
        file.write("{:>5s} {:>8s} {:>2s} {:>15s} {:>15s} {:>2s}\n".format("Point","Spanwise","Ux","Uy","Uz", ""))
        file.write("{:>8s} {:>7s}\n".format("(Panel)", "(Side)"))
        for i in range(I_P_Points_P):
            for k in range(4):
                for j in range(Var.Msp):
                        data_format = "{:>2d} {:>4d} {:>4d} {:>13.9f} {:>13.9f} {:>13.9f}\n"
                        file.write(data_format.format(i, k, j, V_Grid_P[j, i, k, 0], V_Grid_P[j, i, k, 1], V_Grid_P[j, i , k, 2]))
    return V_Grid_P
V_Grid_P = Induced_Grid_Propeller()
```

```
Date: Q4 2023 - Q1 2024
Author: Lisa Martinez
Institution: Technical University of Madrid
Description: This subroutine calculates the midpoint coordinates
(mid_x,mid,mid_z) and the vector for the panel side
(vector_x,vector_y,vector_z) of the reference blade of the propeller
Parameters
- n_pnl: number of the panel
- n_side: number of the side
"""
import numpy as np
import sources.Variables as Var
def Mid_Vect_Propeller(n_pnl,n_side):
    Grid_Points_P = np.loadtxt("output/Propeller_Grid_Points.txt")
    N_Panel_P = np.loadtxt("output/Propeller_Numeration_Panel.txt",dtype='int')
    j1 = n_side
    j2 = (n_side+1)
    # Special case for n_side = 3
    if n_side == 3:
        j2 = 0
    mid_x = 0.5* (Grid_Points_P[N_Panel_P[n_pnl,j2],0] + Grid_Points_P[N_Panel_P[n_pnl,j1],0])
    mid_y = 0.5* (Grid_Points_P[N_Panel_P[n_pnl,j2],1] + Grid_Points_P[N_Panel_P[n_pnl,j1],1])
    mid_z = 0.5* (Grid_Points_P[N_Panel_P[n_pnl,j2],2] + Grid_Points_P[N_Panel_P[n_pnl,j1],2])
    vector_x = Grid_Points_P[N_Panel_P[n_pnl,j2],0] - Grid_Points_P[N_Panel_P[n_pnl,j1],0]
    vector_y = Grid_Points_P[N_Panel_P[n_pnl,j2],1] - Grid_Points_P[N_Panel_P[n_pnl,j1],1]
    vector_z = Grid_Points_P[N_Panel_P[n_pnl,j2],2] - Grid_Points_P[N_Panel_P[n_pnl,j1],2]
#Vector (y)
#Vector (z)
```

```
"""
Date: Q4 2023 - Q1 }20
Author: Lisa Martinez
Institution: Technical University of Madrid
Description: This subroutine calculates the normal vector for a panel
import numpy as np
def Normal_Vector(x_1, y_1, z_1, x_2, y_2, z_2, x_3, y_3, z_3, x_4, y_ 4, z_4):
    a_1 = x_2 - x_3
    # value of the first vector of the panel (Point 2 and Point 3)
    a_2 = y_2 - y_3
    # Y value of the first vector of the panel (Point 2 and Point 3)
    a_3 = z_2 - z_ 3
    # Z value of the first vector of the panel (Point 2 and Point 3)
    b_1 = x_4 - x_1
    # X value of the first vector of the panel (Point 1 and Point 4)
    b_2 = y_4 - y_1
    # Y value of the first vector of the panel (Point 1 and Point 4)
    Z value of the first vector of the panel (Point 1 and Point 4)
    x = a_2 * b_3 - a_3 * b_2 # X component of the cross product
    y = b_1 * a_3 - a_1 * b_3 # Y component of the cross product
    z = a_1 * b_2 - a_2 * b_1 # Z component of the cross product
    Norm = np.sqrt(x**2 + y**2 + z**2) # Norm of the vector
    vector_x = x / Norm # X component of the normal vector
    vector_y = y / Norm # Y component of the normal vector
    vector_z = z / Norm # Z component of the normal vector
    return (vector_x, vector_y, vector_z)
```

```
""
Date: Q4 2023 - Q1 }20
Author: Lisa Martinez
Institution: Technical University of Madrid
Description: This subroutine computes the onset flow at the midpoints of the
sides of the propeller. The onset flow is assumed to be axi-symmetric and
independent of the longitudinal position, meaning it has only a radial
variation
"""
import numpy as np
import sources.Variables as Var
from sources.Mid_Vect_Propeller_P import Mid_Vect_Propeller
def Onset_Flow_Propeller()
    I_P_Points_P = (Var.Msp*Var.Nch)
    r_R_P, X_P, Skew_P, Chord_P, Thick_P = np.loadtxt("input/grid.txt", unpack=True)
    U_O_P, U_R_P, U_T_P = np.loadtxt("input/onset.txt", unpack=True)
    U_O_P_Onset = np.zeros((Var.Msp * Var.Nch, 4, 3)) #Onset Flow (x) - Propeller
    U_T_P_Onset = np.zeros((Var.Msp * Var.Nch, 4, 3)) #Onset Flow (y) - Propeller
    U_R_P_Onset = np.zeros((Var.Msp * Var.Nch, 4, 3)) #Onset Flow (z) - Propeller
    V_Onset_P = np.zeros((Var.Msp * Var.Nch, 4, 3))
    for j in range(I_P_Points_P): # This loop selects the panel where the point px,py,pz is located
        for k in range (4): # This loop selects, inside the panel, the sides where the point px,py,pz is located
            xx, xy, xz, xl, yl, zl = Mid_Vect_Propeller(j, k)
            #This subroutine is used to calculate the midpoint px,py,pz
            r_sid = np.sqrt(xy*xy + xz*xz) # Radius of the points px,py,pz
                U_O_P_Onset= np.interp(r_sid,r_R_P,U_O_P) # Wake (Axial) in the midpoints (s)
                U_T_P_Onset= np.interp(r_sid,r_R_P,U_T_P) # Wake (Tangential) in the midpoints (s)
                U_R_P_Onset= np.interp(r_sid,r_R_P,U_R_P) # Wake (Radial) in the grid midpoints (s)
                V_Onset_P[j,k,0] = - U_O_P_Onset # Onset Flow (x
                V_Onset_P[j,k,1] = U_R_P_Onset*xy/r_sid - U_T_P_Onset*xz/r_sid + Var.Omega*xz # Onset Flow (y)
                V_Onset_P[j,k,2] = U_R_P_Onset*xz/r_sid + U_T_P_Onset*xy/r_sid - Var.Omega*xy # Onset Flow (z)
    with open("output/Propeller_Onset_Flow.txt", "w") as file:
        file.write("{:5s}{:>6s}{:12s}{:15s}\n".format("Point", "Ux", "Uy", "Uz"))
        file.write("{:<8s}{:<7s}\n".format("(Panel)", "(Side)"))
        for j in range(I_P_Points_P):
            for k in range(4)
                file.write("{:2d}{:4d}{:5s}{:13.9f}{:5s}{:13.9f}{:5s}{{:13.9f}\n".format(
                j, k, "", V_Onset_P[j, k, 0], "", V_Onset_P[j, k, 1], "", V_Onset_P[j, k, 2]))
    return V_Onset_P
V_Onset_P = Onset_Flow_Propeller()
```

```
Date: Q4 2023 - Q1 2024
Author: Lisa Martinez
Institution: Technical University of Madrid
Description: This subroutine calculates the induced velocities (coefficient)
from a panel in the point (px,py,pz) for all the blades of the propeller
without including the bound vortex.
Parameters:
- n_pnl : number of the panel that induces velocity in the point
    (px,py,pz)
    - mpnl : number of the panel that containes the point px,py,pz.
- msid : number of the side that containes the point px,py,pz.
import numpy as np
import sources.Variables as Var
from sources.Biot_Savart_Propeller_P import Biot_Savart_Propeller
def Panel_Induced_Velocity_Propeller_Align(n_pnl, msid, mpnl, px, py, pz):
    Grid_Points_P = np.loadtxt("output/Propeller_Grid_Points.txt")
    N_Panel_P = np.loadtxt("output/Propeller_Numeration_Panel.txt", dtype='int')
    # DEClaration of variables
    U_x = 0 # Initialization of the variable U_x
    U_y = 0 # Initialization of the variable U_y
    delta_theta = 2*np.pi/float(Var.Z_Blade_P)
    x_10 = Grid_Points_P[N_Panel_P[n_pnl,0],0] # X value for the first point of the chosen panel of the propelle
    y_10 = Grid_Points_P[N_Panel_P[n_pnl,0],1] # Y value for the first point of the chosen panel of the propeller
    z_10 = Grid_Points_P[N_Panel_P[n_pnl,0],2] # Z value for the first point of the chosen panel of the propeller
    #Loop for the number of blades
    for j in range (Var.Z_Blade_P):
        theta_blade = float(j*delta_theta)
        cos_theta = np.cos(theta_blade)
        sin_theta = np.sin(theta_blade)
        x_1 = x_10 # X value for the first point of the chosen panel of the chosen blade of the propeller
        y_1 = y_10*cos_theta - z_10*sin_theta
        # Y value for the first point of the chosen panel of the chosen blade of the propeller
        z_1 = z_10*cos_theta + y_10*sin_theta
        # Z value for the first point of the chosen panel of the chosen blade of the propeller
        4 sides of the panel
        for i in range(4):
            i_2 = i + 1 if i < 3 else 0
            x_2 = Grid_Points_P[N_Panel_P[n_pnl,i_2],0] # X value for the second point of the chosen panel
                # of the chosen blade of the propeller
            y_20 = Grid_Points_P[N_Panel_P[n_pnl,i_2],1] # Y value for the second point of the chosen panel
                # of the chosen blade of the propeller
                # Z value for the second point of the chosen panel
                # of the chosen blade of the propeller
            y_2 = y_20 * cos_theta - z_20 * sin_theta
            # Y value for the second point of the chosen panel of the chosen blade of the propeller
            z_2 = z_20 * cos_theta + y_20 * sin_theta
            # Z value for the second point of the chosen panel of the chosen blade of the propeller
            if i == 1:
            x_1, y_1, z_1 = x_2, y_2, z_-2
            continue
            if i == 3:
                x_1, y_1, z_1 = x_2, y_2, z_2
            continue
            else:
                U_x_0, U_y_0, U_z_0 = Biot_Savart_Propeller(1, x_1, y_1, z_1, x_2, y_2, z_2, px, py, pz)
                # Update induced velocities
            U_x = U_x + + U_ x_0
            U_y = U-y + U_y_0
            x_1, y_1, z_1 = x_2, y_2, z_2
    return(U_x, U_y, U_z)
```

```
"""
Date: Q4 2023 - Q1 2024
Author: Lisa Martinez
Institution: Technical University of Madrid
Description: This subroutine calculates the induced velocities (coefficient)
from a panel at the point (px,py,pz) for all blades of the propeller.
Parameters.
- n_pnl: Number of the panel inducing velocity at the point (px,py,pz)
- mpnl: Number of the panel containing the point (px,py,pz)
- msid: Number of the side containing the point (px,py,pz)
"""
```

```
from sources.Biot_Savart_Propeller_P import Biot_Savart_Propeller
import numpy as np
import sources.Variables as Var
def Panel_Induced_Velocity_Propeller(n_pnl, msid, mpnl, px, py, pz)
    Grid_Points_P = np.loadtxt("output/Propeller_Grid_Points.txt")
    N_Panel_P = np.loadtxt("output/Propeller_Numeration_Panel.txt", dtype='int')
    U_x, U_y, U_z = 0.0, 0.0, 0.0 # Initialization of the variable U_x, U_y, U_z
    delta_theta = 2*np.pi/float(Var.Z_Blade_P)
    x_10 = Grid_Points_P[N_Panel_P[n_pnl,0],0] # X value for the first point of the chosen panel of the propeller
    y_10 = Grid_Points_P[N_Panel_P[n_pnl,0],1] # Y value for the first point of the chosen panel of the propeller
    z_10 = Grid_Points_P[N_Panel_P[n_pnl,0],2] # Z value for the first point of the chosen panel of the propeller
    for j in range(Var.Z_Blade_P): #Loop for the number of blades
        theta_blade = (j) *delta_theta
        cos_theta = np.cos(theta_blade)
        sin_theta = np.sin(theta_blade)
        x_1 = x_10
        y_1 = y_10*cos_theta - z_10*sin_theta
        z_1 = z_10*cos_theta + y_10*sin_theta
        A X value for the first point of the chosen panel of the chosen blade of the propeller
        # Y value for the first point of the chosen panel of the chosen blade of the propeller
        # Z value for the first point of the chosen panel of the chosen blade of the propeller
        # 4 sides of the panel
        for i in range(4):
            i_2 = i + 1 if i< < else 0
            x_2 = Grid_Points_P[N_Panel_P[n_pnl,i_2],0]
            # X value for the second point of the chosen panel of the chosen blade of the propeller
            y_20 = Grid_Points_P[N_Panel_P[n_pnl,1_2],1]
            # Y value for the second point of the chosen panel of the chosen blade of the propeller
            z_20 = Grid_Points_P[N_Panel_P[n_Pnl,i_2],2]
            # Z value for the second point of the chosen panel of the chosen blade of the propeller
            y_2 = y_20 * cos_theta - z_20 * sin_theta
            # Y value for the second point of the chosen panel of the chosen blade of the propeller
            z_2 = z_20 * cos_theta + y_20 * sin_theta
            # Z value for the second point of the chosen panel of the chosen blade of the propeller
            if n_pnl == mpnl and (j == 0) and i == msid:
            x_1= x_2 # The second point becomes the first point (x)
            y_1 = y_2 # The second point becomes the first point (y)
                z_1 = z_2 # The second point becomes the first point (z)
            else:
                U_x_0, U_y_0, U_z_0 = Biot_Savart_Propeller(1, x_1, y_1, z_1, x_2, y_2, z_2, px, py, pz)
                # Induced velocity of that side of the panel of the propeller
                # (I_z = 1 because I have al ready created a loop)
                # Update induced velocity
            U_x = U_x + U_ U_ (0
            U_y = U_y + U_y_0
            U_z = U_z + U_U_\mp@subsup{_}{-}{\prime}0
            x_1 = x_2 # The second point becomes the first point (x)
            y_1 = y_2 # The second point becomes the first point (y)
            \mp@subsup{z}{-}{\prime}= = \mp@subsup{z}{-}{\prime2}
    return(U_x, U_y, U_z)
```

```
"""
Date: Q4 2023 - Q1 2024
Author: Lisa Martinez
Institution: Technical University of Madrid
Description: This subroutine is designed to open and process three specific
files containing data related to propeller characteristics, chord, and
velocities. It aims to facilitate the handling and analysis of aerodynamic
properties through these datasets.
import numpy as np
import pandas as pd
import sources.Variables as Var
from scipy.interpolate import CubicSpline
def propeller_geometry()
    # Read from exel as Data Frame
    data = pd.read_excel("input/geometry.xlsx", "geometry1", header=0)
    # Radius
    r_prop = data['Radius'].values
    # Cartesian coordinate
    x_prop = data['x'].values
    # Skew in Radians
    skew_prop = data['Skew (Rad)'].values
    # Chord
    chord_prop = data['Chord'].values
    # Thickness
    thick_prop = data['t'].values
```

```
Axial onset flow
O_prop = data['UO'].values
# Radial onset flow
ur_prop = data['Ur'].values
# Tangential onset flow
ut_prop = data['Ut'].values
# Linear interpolation for the Radius
ir_prop = np.linspace(r_prop [0], max(r_prop), num=Var.N_Iter
# Cubic spline interpolation for various properties along radial axis
# x coordinate, skew, chord, thickness, axial onset flow, radial onset
flow, tangential onset flow
interpolator_x = CubicSpline(r_prop, x_prop, axis=0
ix_prop = interpolator_x(ir_prop)
nterpolator_skew = CubicSpline(r_prop, skew_prop, axis=0)
iskew_prop = interpolator_skew(ir_prop)
interpolator_chord = CubicSpline(r_prop, chord_prop, axis=0)
ichord_prop = interpolator_chord(ir_prop)
nterpolator_thick = CubicSpline(r_prop, thick_prop, axis=0)
thick_prop = interpolator_thick(ir_prop)
nterpolator_u0 = CubicSpline(r_prop, u0_prop, axis=0)
iuO_prop = interpolator_u0(ir_prop)
interpolator_ur = CubicSpline(r_prop, ur_prop, axis=0)
ur_prop = interpolator_ur(ir_prop)
interpolator_ut = CubicSpline(r_prop, ut_prop, axis=0)
iut_prop = interpolator_ut(ir_prop)
# Define datasets
dataset = list(zip(ir_prop, ix_prop, iskew_prop, ichord_prop, ithick_prop))
dataset1 = list(zip(iu0_prop, iur_prop, iut_prop))
# Write dataset to 'grid.txt
with open('input/grid.txt', 'w') as fileID
    ormat = '{:10.5f} {:10.5f} {:10.5f} {:10.5f} {:10.5f}\n
    for row in dataset
        fileID.write(format.format(*row))
    # Write dataset1 to 'onset.txt
with open('input/onset.txt', 'w') as file:
    format = {{:10.5f} {:10.5f} {:10 5f}\n
    for row in dataset1:
                file.write(format.format(*row))
    # Write chord_prop to 'chord.txt'
    np.savetxt('input/chord.txt', chord_prop, fmt='%10.5f')
feturn ir_prop, ix_prop, iskew_prop, ichord_prop, ithick_prop
ir_prop, ix_prop, iskew_prop, ichord_prop, ithick_prop = propeller_geometry()
```

```
"""
Date: Q4 2023 - Q1 202
Author: Lisa Martinez
Institution: Technical University of Madrid
Description: This function saves the old propeller pitch to evaluate the
residual for the pitch distribution
import numpy as np
import sources.Variables as Var
pitch_0 = np.zeros((Var.Msp+1, 1))
def pitch():
    pitch_0 = np.zeros((Var.Msp+1,1))
    Points_Trans_Wake_P = np.loadtxt("output/Propeller_Points_Trans_Wake.txt", skiprows= 1, usecols= (1,2,3))
    for i in range (Var.Msp+1):
        -1+i*(Var.N_P_L)
    eturn pitch_0
```

```
Date: Q4 2023 - Q1 2024
Author: Lisa Martinez
Institution: Technical University of Madrid
Description: This subroutine calculates the Si-function used in 'De_Jong' by
rational approximations
"""
import numpy as np
def si(xbar):
```


$\mathrm{f}=(\mathrm{xbar} * * 8+38.027264 * \mathrm{xbar} * * 6+265.187033 * x \operatorname{bar} * * 4+335.677320 * x \operatorname{bar} * * 2+38.102495) /($
 xbar $* * 8+40.021433 *$ xbar $* * 6+322.624911 * x \operatorname{bar} * * 4+570.236280 *$ xbar $* * 2+157.105423) / \mathrm{xbar}$
 = (xbar**8+42.242855*xbar**6+302.757865*xbar**4+352.018498*xbar**2+21.821899) / (
 xbar $* * 8+48.196927 *$ xbar $* * 6+482.485984 *$ xbar $* * 4+1114.978885 *$ xbar $* * 2+449.690326) /$ xbar $* * 2$
 sires=-f*np.cos(xbar)-g*np.sin(xbar)
 return(sires)

```
Date: Q4 2023 - Q1 2024
Author: Lisa Martinez
Institution: Technical University of Madrid
Description: This subroutine computes the skin friction drag at control points
of the propeller.
```

"" "
import numpy as np
import sources.Variables as Var
from sources.Weight_Function_Propeller_P import Weight_function_propeller
from sources.Area_Panel_P import Area_Panel
from sources.Panel_Induced_Velocity_Propeller_P import Panel_Induced_Velocity_Propeller
from sources.Trailing_Vortices_Propeller_P import Trailing_Vortices_Propeller
from sources.Biot_Savart_Propeller_P import Biot_Savart_Propeller
from sources.Mid_Vect_Propeller_P import Mid_Vect_Propeller
from sources.Normal_Vector_P import Normal_Vector
def Skin_Friction_Drag():
I_P_Points_P = (Var.Msp*Var.Nch)
Weight_P = Weight_function_propeller()
\# DECLARATION OF VARIABLES
$V_{\text {_Tot_P }}=$ np.loadtxt("output/Propeller_Velocity_Total.txt", skiprows=2, usecols= (2, 3,4$)$)
V_Tot_P = np.reshape(V_Tot_P, (I_P_Points_P, 4, 3))
N_Panel_P = np.loadtxt("output/Propeller_Numeration_Panel.txt", dtype='int')
Grid_Points_P = np.loadtxt("output/Propeller_Grid_Points.txt")
Control_Points_P = np.loadtxt('output/Propeller_Control_Points.txt')
Radius, beta = np.loadtxt("output/Propeller_Beta.txt",skiprows = 1, unpack = True)
Gamma_TE_P = np.loadtxt("output/Propeller_Gamma_TE_P.txt")
Panel, Gamma_Panel_P = np.loadtxt("output/Propeller_Gamma_Blade.txt",skiprows = 1, unpack= True)
$r_{-} R_{-} P, X_{-} P, S k e w _P, C h o r d _P, T h i c k _P=n p . l o a d t x t(" i n p u t / g r i d . t x t ", u n p a c k=T r u e)$
U_O P, U_R_P, $U_{-} T_{-} P=$ np.loadtxt("input/onset.txt", unpack = True)
Sistr_P, r R $\mathrm{P}^{-}=$np.loadtxt ("output/Propeller S Distr, txt", skiprows= 1, unpack= True)
Points_Trans_Wake_P = np.loadtxt("output/Propeller_Points_Trans_Wake.txt",
skiprows $=1$, usecols $=(1,2,3)$)
radius_cp $=$ np.zeros $\left(\left(I_{-} P_{-}\right.\right.$Points_P))
s_ring $=$ np.zeros ((Var.Msp))
vector_panel $=n p \cdot z e r o s((3))$
tangentialDirection $=n p \cdot z e r o s((3))$
T_Skin_F $=0.0$
Q_Skin_F $=0.0$
vector_x = np.zeros((Var.Msp))
vector_y = np.zeros((Var.Msp))
vector_z = np.zeros((Var.Msp))
$r_{-} p_{-} a=n p \cdot z e r o s((V a r . M s p))$
cos_theta_c $=$ np.zeros $\left(\left(\operatorname{Var} . \mathrm{Msp}^{\prime}\right)\right)$
sin_theta_c $=$ np.zeros $\left(\left(\operatorname{Var}\right.\right.$. Msp $\left.\left.^{\prime}\right)\right)$
$u_{-} x_{-}$tot_a $=n p \cdot z e r o s\left(\left(\operatorname{Var} . M_{s p}\right)\right)$
$u_{-} y_{-}$tot_a $=$np.zeros $\left(\left(\operatorname{Var}\right.\right.$. Msp $\left.\left.^{\prime}\right)\right)$
z_{-}tot_a $=$np.zeros $(($Var.Msp $))$
u_tang_skin $=$ np.zeros $\left(\left(\operatorname{Var}\right.\right.$. Msp $\left.\left.^{\prime}\right)\right)$
__rel_skin $=$ np.zeros $((\operatorname{Var} . M s p))$
Coeff_Corr_Camber $=$ np.zeros $\left(\left(\operatorname{Var}\right.\right.$. Msp $\left.\left.^{\prime}\right)\right)$
Coeff_Corr_Alpha $=n p \cdot z \operatorname{cros}((\operatorname{Var} . M s p))$
Coeff_Corr_Thick = np.zeros((Var.Msp))
Thick_P_skin = np.zeros((Var.Msp))
Chord_P_skin = np.zeros((Var.Msp)
L_Ring = np.zeros((Var.Msp))
$L_{\text {_Ring_x }}=$ np.zeros((Var.Msp)
L_Ring_y = np.zeros((Var.Msp))
L_{-}Ring_z = np.zeros((Var.Msp))
C_L_Local $=$ np.zeros $($ (Var.Msp) $)$
Camber_Dimless = np.zeros((Var.Msp))
ideal_angle_attack = np.zeros((Var.Msp))
ngle_attack $=$ np.zeros((Var.Msp))
beta_temp_surface = np.zeros((Var.Msp)
pitch_cp_final_surface = np.zeros((Var.Msp))
T_Skin_f $=0.0$ \# Initialization of the variable used to calculate the viscous drag
Q_Skin_f = 0.0 \# Initialization of the variable used to calculate the viscous drag
s_tot $=0$
for j in range (Var.Msp):
s_r $=0$
for i in range(Var.Nch):
npl = i + (j) * Var.Nch
x_1 = Grid_Points_P[N_Panel_P[npl,0],0]
y_1 = Grid Points $P[N$ Panel $P[n p l$, $]$, $]$
$x_{-} 2=$ Grid_Points_P[N_Panel_P[npl, 1],0] \# X value of the edge number two of the panel j

```
    y_2 = Grid_Points_P[N_Panel_P[npl,1],1]
    z_2 = Grid_Points_P[N_Panel_P[npl,1],2]
    x_3 = Grid_Points_P[N_Panel_P[npl,3],0]
    y_3 = Grid_Points_P[N_Panel_P[npl,3],1]
    z_3 = Grid_Points_P[N_Panel_P[npl,3],2]
    x_4 = Grid_Points_P[N_Panel_P[npl,2],0]
    y_4 = Grid_Points_P[N_Panel_P[npl,2],1]
    \mp@subsup{z}{_}{\prime}4 = Grid_Points_P[N_Panel_P[npl,2],2]
    s_parz = Area_Panel (x_1,y_1, z_1, x_2,y_2,z_2,x_3,y_3,z_3,x_4,y_4,z_4)
    # Area of the panel where the control point is located
    s_r = s_r + s_parz
    s_ring [j] = s_r
    s_tot = s_tot + s_r
Ae = s_tot
Ao = np.pi * Var.Rad_P**2
AeAo = Ae/Ao * Var.Z_Blade_P
# SKIN FRICTION DRAG
# Loop used to select all the control points of the propeller
for j in range (I_P_Points_P):
    P_x_mdp = Control_Points_P[j,0]
    P_y_mdp = Control_Points_P[j,1]
    P_z_mdp = Control_Points_P[j,2]
    x_1 = Grid_Points_P[N_Panel_P[j,0],0] # X value of the edge number one of the panel j
    y_1 = Grid_Points_P[N_Panel_P[j,0],1] # Y value of the edge number one of the panel j
    z_1 = Grid_Points_P[N_Panel_P[j,0],2] # Z value of the edge number one of the panel j
x_2 = Grid_Points_P[N_Panel_P[j,1],0] # X value of the edge number two of the panel j
y_2 = Grid_Points_P[N_Panel_P[j,1],1] # Y value of the edge number two of the panel j
z_2 = Grid_Points_P[N_Panel_P[j,1],2] # Z value of the edge number two of the panel j
x_3 = Grid_Points_P[N_Panel_P[j,3],0] # X value of the edge number four of the panel
y_3 = Grid_Points_P[N_Panel_P[j,3],1] # Y value of the edge number four of the panel j
z_3 = Grid_Points_P[N_Panel_P[j,3],2] # Z value of the edge number four of the panel j
x_4 = Grid_Points_P[N_Panel_P[j,2],0] # X value of the edge number three of the panel j
y_4 = Grid_Points_P[N_Panel_P[j,2],1] # Y value of the edge number three of the panel j
z_4 = Grid_Points_P[N_Panel_P[j,2],2] # Z value of the edge number three of the panel j
radius_cp[j] = np.sqrt(p_y_mdp**2 + p_z_mdp**2) # Radius for the chosen control point of the propeller
cos_theta_c_skin = p_z_mdp/radius_cp[j]
sin_theta_c_skin = p_y_mdp/radius_cp[j]
# VELOCITIES IN THE CONTROL POINTS FROM THE ONSET FLOW
U_O_Onset = np.interp (radius_cp[j],r_R_P, U_O_P) # Wake (Axial) in the control points (s)
U_T_Onset = np.interp (radius_cp[j],r_R_P,U_T_P) # Wake (Tangential) in the control points (s)
U_R_Onset = np.interp (radius_cp[j],r_R_P,U_R_P) # Wake (Radial) in the control points (s)
u_x onset = - U_O_Onset # Onset Flow (x)
u_y_onset = U_ \___Onset*\mp@subsup{p}{-}{\prime}\mp@subsup{y}{-}{\primemdp/radius_cp[j] - U_T_Onset*p_z_mdp/radius_cp[j] + Var.Omega*p_z_mdp # Onset Flow (y)}
```



```
# VELOCITIES IN THE CONTROL POINTS FROM THE PANELS
_x_panels = 0
# Initialization of the variable used to store the induced velocity from the panels of the propeller (x)
u_y_panels = 0
# Initialization of the variable used to store the induced velocity from the panels of the propeller (y)
u_z_panels = 0
# Initialization of the variable used to store the induced velocity from the panels of the propeller (z)
# Loop used to select the spanwise level that induces velocity on the control points of the propeller
for n in range (Var.Msp):
    u_x_panels_0 = 0
    #Initialization of the variable used to calculate the induced velocity from the panels of the propeller (x)
    # Initialization of the variable used to calculate the induced velocity from the panels of the propeller (y)
    u_z_panels_0 = 0
    # Initialization of the variable used to calculate the induced velocity from the panels of the propeller (z)
    # Loop used to select the panel that induces velocity on the control points of the propeller
    for m in range (Var.Nch):
        npl =m + (n) * Var.Nch
        u_x_temp,u_y_temp,u_z_temp = Panel_Induced_Velocity_Propeller (npl,5,0,p_x_mdp,p_y_mdp,p_z_mdp)
        # Induced velocity from the selected panel on the chosen control point of the propeller
            u_x_panels_0 = u_x_panels_0 + Weight_P[n,m] * u_x_temp
            # Temporary variable used to calculate the induced velocity from the panels of the propeller (x)
            u_y_panels_0 = u_y_panels_0 + Weight_P[n,m] * u_y_temp
            # Temporary variable used to calculate the induced velocity from the panels of the propeller (y)
            u_z_panels_0 = u_z_panels_0 + Weight_P[n,m] * u_z_temp
            # Temporary variable used to calculate the induced velocity from the panels of the propeller (z)
```

 \(u_{-} x_{-} p a n e l s=u_{-} x_{-} p a n e l s+G a m m a_{-} T E_{-} P[n]\) * \(u_{-} x_{-} p a n e l s _0\) \# Induced velocity from the panels of the propeller (x)

\# VElocities in the control points from the horseshoe vortex

```
-x_trail =
# Initialization of the variable used to calculate the induced velocity from the trailing vortices of the propeller (x)
```

$u_{-} y_{-}$trail $=0$
\# Initialization of the variable used to calculate the velocity from the trailing vortices of the propeller (y)
$u_{-} z_{-}$trail $=0$
\# Initialization of the variable used to calculate the induced velocity from the trailing vortices of the propeller (z)
$x_{_} T_{-}$E_1 = Grid_Points_P[0,0] \# First point of the first trailing vortex of the propeller (x)
y_T_E_1 = Grid_Points_P [0,1] \# First point of the first trailing vortex of the propeller (y)
z_{-}T_E_1 = Grid_Points_P [0,2] \# First point of the first trailing vortex of the propeller (z)
$u_{-} x_{-} t r a i l _1, u_{-} y_{-} t r a i l_{-} 1, u_{-} z_{-} t r a i l _1=$ Trailing_Vortices_Propeller (0,p_x_mdp,p_y_mdp,p_z_mdp)
\# Induced velocity from the transition wake and from the semi-infinite helicoidal vortex of the propeller (First)
\# Loop used to select the trailing vortex that induces velocity on the control points of the propeller
for n in range (Var.Msp):
$\mathrm{n}_{-} 1=\mathrm{n}+1$
$\mathrm{n}_{-} 2=(\mathrm{n}+1) *(\operatorname{Var} . \mathrm{Nch}+1)$
u_x_trail_2, u_y_trail_2, $u_{-} z_{-} t r a i l _2 ~=~ T r a i l i n g _V o r t i c e s _P r o p e l l e r\left(n _1, p _x _m d p, p _y _m d p, p _z _m d p\right)$
\# Induced velocity from the transition wake and from the semi-infinite helicoidal vortex of the propeller (Second)
x_{-}T_E_2 = Grid_Points_P[n_2,0] \# Second point of the trailing vortex of the propeller (x)
y_T_E_2 = Grid_Points_P[n_2,1] \# Second point of the trailing vortex of the propeller (y)
$z_{-} T_{-} E_{-} 2=$ Grid_Points_P[n_2,2] \# Second point of the trailing vortex of the propeller (z)
U_x_s, U_y_s, U_z_s =
Biot_Savart_Propeller (Var. $Z_{-} B l_{\text {ade_ }} P_{\text {, }} x_{-} T_{-} E_{-} 1, y_{-} T_{-} E_{-} 1, z_{-} T_{-} E_{-} 1, x_{-} T_{-} E_{-} 2, y_{-} T_{-} E_{-} 2, z_{-} T_{-} E_{-} 2, p_{-} x_{-} m d p, p_{-} y_{-} m d p, p_{-} z_{-} m d p$)
\# Induced velocity from the bound vortex selected of the propeller
$u_{-} x_{-} t r a i l=u_{-} x_{-} t r a i l+G a m m a_{-} T E_{-} P[n] *\left(u_{-} x_{-} t r a i l_{-} 1-u_{-} x_{-} t r a i l_{-} 2+U_{-} x_{-} s\right)$
\# Induced velocity from the horseshoe vortex of the propeller (x)
$u_{-} y_{-} t r a i l=u_{-} y_{-} t r a i l+G a m m a_{-} T E_{-} P[n]$ (u_y_trail_1- u_y_trail_2 + U_y_s)
\# Induced velocity from the horseshoe vortex of the propeller (y)
$u_{-} z_{-} t r a i l=u_{-} z_{-} t r a i l+G a m m a_{-} T E_{-} P[n] *\left(u_{-} z_{-} t r a i 1_{-} 1-u_{-} z_{-} t r a i l l_{-}+U_{-} z_{-} s\right)$
\# Induced velocity from the horseshoe vortex of the propeller (z)
x_T_E_1 = x_T_E_2 \# For the next loop
y_T_E_1 = y_T_E_2 \# For the next loop
$z_{-} T _E_{-} 1=z_{-}$T_E_2 \# For the next loop
u_x_trail_1 = u_x_trail_2 \# For the next loop
u_y trail_1 = u_y_trail_2 \# For the next loop
u_z_trail_1 = u_z_trail_2 \# For the next loop
\# total Induced VElocity

$u_{-} y_{\text {_tot }}=u_{-}$y_onset + u_y_trail + u_y_panels \# Total induced velocity on the propeller (y)
$u_{-} z_{-}$tot $=u_{-} z_{-}$onset $+u_{-} z_{-} t r a i l+u_{-} z_{-} p a n e l s$ \# Total induced velocity on the propeller (z)
\# SKIN FRICTION DRAG
$s=$ Area_Panel ($\left.x_{-} 1, y_{-} 1, z_{-} 1, x_{-} 2, y_{-} 2, z_{-} 2, x_{-} 3, y_{-} 3, z_{-} 3, x_{-} 4, y_{-} 4, z_{-} 4\right)$
\# Area of the panel where the control point is located
point_x_2,point_y_2, point_z_2, vector_xx,vector_yy,vector_zz = Mid_Vect_Propeller(j, 1
\# This subroutine is used to calculate the midpoint of the panel side number 2
point_x_4,point_y_4,point_z_4,vector_xx,vector_yy,vector_zz = Mid_Vect_Propeller (j, 3)
\# This subroutine is used to calculate the midpoint of the panel side number 2
vector panel [0] = point_x_4 - point_x_2 \# Tangent vector to the panel (x)
vector_panel [1] = point_y_4 - point_y_2 \# Tangent vector to the panel (y)
vector_panel [2] = point_z_4-point_z_2 \quad \# Tangent vector to the panel (z)
vector_panel/= np.linalg.norm(vector_panel, ord=2) \# Unit tangent vector to the panel
tangentialDirection [0] $=0.0 \quad$ \# Tangent vector in yz plane
tangentialDirection [1] = cos_theta_c_skin \# Tangent vector in yz plane
tangentialDirection[2] = - sin_theta_c_skin \# Tangent vector in yz plane
tangentialDirection/= np.linalg.norm(tangentialDirection, ord = 2) \# Unit tangent vector in yz plane
V_tang = np.dot([u_x_tot, $\left.\left.u_{-} y _t o t, u_{_} z_{-} t o t\right], ~ v e c t o r_{-} p a n e l\right)$ Tangent velocity to the panel
dragInPanelDirection = Var.Skin_Coeff * 0.5 * Var.rho * (abs(V_tang)*V_tang) * s \# Tangent force to the panel
T_Skin_F = T_Skin_F + dragInPanelDirection * vector_panel[0] \# Skin friction drag (Thrust) - X force to the panel
Q_Skin_F = Q_Skin_F + dragInPanelDirection * np.dot(vector_panel, tangentialDirection) * radius_cp[j]
\# Skin friction drag (Torque) - X force to the panel
$T_{-} f r_{-} P=T_{-} S k i n_{-} F$
$Q_{-} f r_{-} P=-\bar{Q}_{-} S k i n_{-} F$
with open ("output/Propeller_Drag.txt", "w") as file:
file.write(" Drag T Drag Q Drag KT Drag KQ \n")
file.write(f"\{(Var.Z_Blade_P * T_fr_P):9.1f\} \{(Var.Z_Blade_P * Q_fr_P):9.1f\}

$\left.\left\{V a r . Z_{-} B l a d e _P ~ * ~ Q _f r _P /\left((V a r . O m e g a /(2 * n p . p i)) * * 2 * \operatorname{Var} . r h o *\left(V a r . R a d _P * 2\right) * * 5\right): 0.6 f\right\} \backslash n "\right)$
\# OPTIMIZATION PARAMETERS - OUTPUT
mid_point $=$ Var.Nch//2
\# Loop used to select the closest control points to the midchord line (Chordwise)
for j in range (Var.Msp)
mid_point_cp $=($ mid_point $)+(j) *$ Var.Nch
p_x_mdp $=$ Control_Points_P[mid_point_cp, 0$]$
p_y_mdp $=$ Control_Points_P[mid_point_cp,1]

```
P_z_mdp = Control_Points_P[mid_point_cp,2]
# X coordinate of the chosen control point of the propelle
# Y coordinate of the chosen control point of the propelle
# Z coordinate of the chosen control point of the propeller
_1 = Grid_Points_P[N_Panel_P[mid_point_cp,0],0]
y_1 = Grid_Points_P[N_Panel_P[mid_point_cp,0],1]
z_1 = Grid_Points_P[N Panel_P[mid point cp,0],2]
# X value of the edge number one of the panel
# Y value of the edge number one of the panel
# Z value of the edge number one of the panel
x_2 = Grid_Points_P[N_Panel_P[mid_point_cp,1],0]
y_2 = Grid_Points_P[N_Panel_P[mid_point_cp,1],1]
__2 = Grid_Points_P[N_Panel_P[mid_point_cP,1],2]
# X value of the edge number two of the panel
# Y value of the edge number two of the panel
# Z value of the edge number two of the panel
x_3 = Grid_Points_P[N_Panel_P[mid_point_cp,3],0]
y_3 = Grid_Points_P[N_Panel_P[mid_point_cp,3],1]
z_3 = Grid_Points_P[N_Panel_P[mid_point_cp,3],2]
# X value of the edge number four of the panel
# Y value of the edge number four of the panel
# Z value of the edge number four of the panel
_4 = Grid_Points_P[N_Panel_P[mid_point_cp,2],0]
y_4 = Grid_Points_P[N_Panel_P[mid_point_cp,2],1]
z_4 = Grid_Points_P[N_Panel_P[mid_point_cp,2],2]
# X value of the edge number three of the panel
# Y value of the edge number three of the panel
# Z value of the edge number three of the panel
vec_x,vec_y,vec_z = Normal_Vector (x_1,y_1, z_ 1, x_ 2, y_ 2, z_ 2, x_ 3, y_ 3, z_ 3, x_ 4, y_ 4, z_ 4)
# This subroutine calculates the normal vector for the chosen panel
vector_x[j] = vec_x # X component of the vector
vector_y[j] = vec_y # Y component of the vector
vector_z[j] = vec_z # Z component of the vector
r_cp_a[j] = np.sqrt(p_y_mdp**2 + p_z_mdp**2) # Radius for the chosen control point of the propeller
cos_theta_c[j] = p_z_mdp/r_cp_a[j]
sin_theta_c[j] = p_y_mdp/r_cp_a[j]
# ONSET
U_O_P_Onset = np.interp(r_cp_a[j],r_R_P,U_O_P) # Wake (Axial) in the midpoints (s)
U_T_P_Onset = np.interp(r_cp_a[j], r_R_P,U_T_P) # Wake (Tangential) in the midpoints (s)
U_R_P_Onset = np.interp(r_cp_a[j], r_R_P,U_R_P) # Wake (Radial) in the grid midpoints (s)
u_x_onset = - U_O_P_Onset # Onset Flow (x)
```



```
u_z_onset = U_R_P_Onset*\mp@subsup{p}{_}{\prime}z_mdp/r_cp_a[j] + U_T_P_Onset*p_y_mdp/r_cp_a[j] - Var.Omega*p_y_mdp # Onset Flow (z)
# VELOCITIES IN THE CONTROL POINTS FROM THE PANELS OF THE PROPELLER
# Initialization of the variable used to store the induced velocity from the panels of the propeller (x)
u_y panels = 0
# Initialization of the variable used to store the induced velocity from the panels of the propeller (y)
z panels = 0
# Initialization of the variable used to store the induced velocity from the panels of the propeller (z)
# Loop used to select the spanwise level that induces velocity on the control points of the propeller
for n in range (Var.Msp):
    u_x_panels_0 = 0
    # Initialization of the variable used to calculate the induced velocity from the panels of the propeller (x)
    u_y_panels_0 = 0
    # Initialization of the variable used to calculate the induced velocity from the panels of the propeller (y)
    u_z_panels_0 = 0
    # Initialization of the variable used to calculate the induced velocity from the panels of the propeller (z)
    # Loop used to select the panel that induces velocity on the control points of the propeller
    for m in range (Var.Nch):
        npl = m + (n) * Var.Nch
        u_x_temp,u_y_temp,u_z_temp = Panel_Induced_Velocity_Propeller(npl, 5,0,p_x_mdp,p_y_mdp,p_z_mdp)
        # Induced velocity from the selected panel on the chosen control point of the propeller
        u_x_panels_0 = u_x_panels_0 + Weight_P[n,m] * u_x_temp
        # Temporary variable used to calculate the induced velocity from the panels of the propeller (x)
        u_y_panels_0 = u_y_panels_0 + Weight_P[n,m] * u_y_temp
        # Temporary variable used to calculate the induced velocity from the panels of the propeller (y)
        u_z_panels_0 = u_z_panels_0 + Weight_P[n,m] * u_z_temp
        # Temporary variable used to calculate the induced velocity from the panels of the propeller (z)
```


u_y_panels = u_y_panels + Gamma_TE_P[n] * u_y_panels_0 \# Induced velocity from the panels of the propeller (y)
$u_{_} z_{-} p a n e l s=u_{_} z_{-} p a n e l s+G a m m a_{-} T E_{-} P[n]$ * u_z_panels_0 \# Induced velocity from the panels of the propeller (z)
\# VELOCITIES IN THE CONTROL POINTS FROM THE HORSESHOE VORTEX OF THE PROPELLER
(x_trail =
u_y_trail $=0 \quad 0$
Initialization of the variable used to calculate the induced velocity from the trailing vortices of the propeller (y)
$u^{\prime} z_{\text {_trail }}=0$
\# Initialization of the variable used to calculate the induced velocity from the trailing vortices of the propeller (z)
$x_{-} T_{-} E_{1}=$ Grid_Points_P[0,0] \# First point of the first trailing vortex of the propeller (x)
$y_{-} T_{-} E_{-} 1=$ Grid_Points_P [0,1] \# First point of the first trailing vortex of the propeller (y)
_ \# First point of the first trailing vortex of the propeller (z)
$u_{-} x_{-} t r a i l_{-} 1, u_{-} y_{-} t r a i l_{-} 1, u_{-} z_{-} t r a i l_{-} 1=$ Trailing_Vortices_Propeller (0, $\left.p_{-} x_{-} m d p, p_{-} y _m d p, p_{-} z_{-} m d p\right)$
\# Induced velocity from the transition wake and from the semi-infinite helicoidal vortex of the propeller (First)
\# Loop used to select the trailing vortex that induces velocity on the control points of the propeller
for n in range (Var.Msp):
$\mathrm{n}_{-} 1=\mathrm{n}+1$
$\mathrm{n}_{-} 2=(\mathrm{n}+1) *($ Var. $\mathrm{Nch}+1)$
$u_{_} x_{-}$trail_2, u_y_trail_2, u_z_trail_2 = Trailing_Vortices_Propeller(n_1,p_x_mdp,p_y_mdp,p_z_mdp)
\# Induced velocity from the transition wake and from the semi-infinite helicoidal vortex of the propeller (Second)
$x_{-} T _E _2$ = Grid_Points_P[n_2,0] \# Second point of the trailing vortex of the propeller (x)
y_T_E_2 = Grid_Points_P[n_2,1] \# Second point of the trailing vortex of the propeller (y)
$z_{-} T_{-} E_{-} 2=$ Grid_Points_P[n_2,2] \# Second point of the trailing vortex of the propeller (z)
$U_{-} x_{-} s, U_{-} y_{-} s, U_{-} z_{-} s=$ Biot_Savart_Propeller (Var. $Z_{-} B l a d e e_{-} P, x_{-} T_{-} E_{-} 1, y_{-} T_{-} E_{-} 1$,
$\left.z_{-} T_{-} E_{-} 1, x_{-} T_{-} E_{-} 2, y_{-} T_{-} E_{-} 2, z_{-} T_{-} E_{-} 2, p_{-} x_{-} m d p, p_{-} y_{-} m d p, p_{-} z_{-} m d p\right)$
\# Induced velocity from the bound vortex selected of the propeller
$u_{-} x_{_} t r a i l=u_{-} x_{-} t r a i l+G a m m a_{-} T E_{-} P[n]$ (u_x_trail_1 - u_x_trail_2 + U_x_s) \# Induced velocity from the horseshoe vortex of the propeller (x)
$u_{-} y_{-} t r a i l=u_{-} y_{-} t r a i l+G a m m a_{-} T E_{-} P[n] ~ * ~\left(u_{-} y _t r a i l _1-u_{-} y_{-} t r a i l _2+U_{-} y _s\right)$
\# Induced velocity from the horseshoe vortex of the propeller (y)
$u_{-} z_{-} t r a i l=u_{-} z_{-} t r a i l+G a m m a_{-} T E_{-} P[n]$ ($\left.u_{-} z_{-} t r a i l_{-} 1-u_{-} z_{-} t r a i l _2+U_{-} z_{-} s\right)$
\# Induced velocity from the horseshoe vortex of the propeller (z)
x_T_E_1 = x_T_E_2 \# For the next loop
y_T_E_1 = y_T_E_2 \quad \# For the next loop
z_{-}T_E_1 = z_{-}T_E_2 \# For the next loop
u_x_trail_1 = u_x_trail_2 \# For the next loop
u_y_trail_1 = u_y_trail_2 \quad \# For the next loop
$u_{\text {_ }}$ _trail_1 = $u_{-} z_{-}$trail_2 \quad F For the next loop
\# TOTAL INDUCED VELOCITY
$u_{-} x_{-} t o t _a[j]=u_{-} x _o n s e t+u_{-} x_{-} t r a i l+u_{-} x_{z} p a n e l s \quad$ \# Total induced velocity on the propeller (x)
$u_{-} y_{-} t o t-a[j]=u_{-} y _o n s e t+u_{-} y _t r a i l+u_{-} y _p a n e l s \quad$ \# Total induced velocity on the propeller (y)
$u_{_} z_{_} t o t _[j]=u_{-} z_{-} o n s e t+u_{_} z_{-} t r a i l+u_{z} z_{-} p a n e l s \quad$ \# Total induced velocity on the propeller (z)
$\left.u_{-} t a n g_{-} s k i n[j]=-u_{-} y_{-} t o t\right]_{-}[j]$ * cos_theta_c[j] + u_z_tot_a[j] * sin_theta_c[j]
\# Total tangential induced velocity in the control points of the propeller
$u_{-} r e l_{-} \operatorname{skin}[j]=$ np.sqrt ((u_x_tot_a[j]**2) + (u_tang_skin[j]**2))
\# THRUST FOR EACH STRIP
\# Spanwise loop
for m in range (Var.Msp):
npl_TE $=(\mathrm{m}) *$ Var. Nch
L_O_x = 0 \# Initialization of the temporary variable used to calculate the lift of the stator (x)
L_0_y = 0 \# Initialization of the temporary variable used to calculate the lift of the stator (y)
L_0_z = O Initialization of the temporary variable used to calculate the lift of the stator (z)
\# Chordwise loop
for n in range (Var.Nch):
$\mathrm{npl}=\mathrm{n}+(\mathrm{m}) *$ Var. Nch
L_00_x = 0 \# Initialization of the temporary variable used to calculate the lift of the stator (x) L_00_y = 0 \# Initialization of the temporary variable used to calculate the lift of the stator (y) L_00_z = 0 \# Initialization of the temporary variable used to calculate the lift of the stator (\mathbf{Z})
\# Panel loop
for k in range (4):
xkx, xky, xkz, xlk,ylk,zlk = Mid_Vect_Propeller (npl,k)
$L_{-} 00_{-} x=L_{-} 00_{-} x+z l k * V_{-} T o t_{-} P[n p l, k, 1]-y l k * V_{-} T o t_{-} P[n p l, k, 2] \quad$ \# Lift generated by side k panel npl (x)
L_00_y = L_00_y + xlk*V_Tot_P[npl,k,2] - zlk*V_Tot_P[npl,k,0] \# Lift generated by side k panel npl (y)
L_00_z = L_00_z - xlk*V_Tot_P[npl,k,1] + ylk*V_Tot_P[npl,k,0] \# Lift generated by side k panel npl (z)
$L_{-} 0_{-} x=L_{-} 0_{-} x+$ Weight_P[m,n] * L_00_x \# Lift generated by the panel npl (x)
$L_{-} 0_{-} y=L_{-} 0_{-} y+W e i g h t{ }_{-} P[m, n]$ * $L_{-} 00_{-} y \quad$ \# Lift generated by the panel npl (y)
L_O_z = L_O_z + Weight_P[m,n] * L_00_z \# Lift generated by the panel npl (z)
xkx, xky, xkz, xlk,ylk,zlk = Mid_Vect_Propeller (npl_TE, 3)
\# Lift (Ring) - x
L_{-}Ring_x $[m]=$ Gamma_Panel_P[npl_TE]*L_0_x - Gamma_Panel_P[

\# Lift (Ring) - y
L_Ring_y $^{2}[\mathrm{~m}]=$ Gamma_Panel_P[npl_TE]*L_0_y - Gamma_Panel_P $[$
npl_TE]*xlk*V_Tot_P[npl_TE, 3, 2$]+$ Gamma_Panel_P[npl_TE]*zlk*V_Tot_P[npl_TE, 3,0$]$ \# Lift (Ring) - z
L_{-}Ring_z $[m]=$ Gamma_Panel_P[npl_TE]*L_0_z + Gamma_Panel_P[
npl_TE]*xlk*V_Tot_P[npl_TE,3,1] - Gamma_Panel_P[npl_TE]*ylk*V_Tot_P[npl_TE, 3,0]
\# Total Lift of the ring m
L_{-}Ring [m] = L_Ring_x[m]*vector_x[m] + L_Ring_y[m]*vector_y[m] + L_Ring_z[m]*vector_z[m]
\# CORRECTION FACTORS
for m in range (Var.Msp):
Chord_P_skin [m] = np.interp (r_cp_a[m], S_Distr_P,Chord_P) \# Value of the chord
$\begin{array}{ll}\text { Chord_P_skin }[m]=n p . i n t e r p\left(r_{-} c p_{-} a[m], S_{-} \text {Distr_P,Chord_P) }\right. & \text { \# Value of the chord } \\ \text { Thick_P_skin }[m]=n p . i n t e r p\left(r_{-} c p_{-} a[m], S_{-} D i s t r _P, T h i c k k_{-} P\right) & \text { \# Value of the thickness }\end{array}$
Thick_0 $=\left(\right.$ Thick_P_skin[1]-Thick_P_skin[0])/($\left.r_{-} c_{-} a[1]-r_{-} c p_{-} a[0]\right) *\left(-r_{-} c p_{-} a[0]\right)+$ Thick_P_skin[0] \# Pitch at the hub
for m in range (Var.Msp):
Max_Skew $=$ max (Skew_P) $* 180 / n p \cdot$ pi


```
    b = 0.71 * np.sqrt(r_cp_a[m]/Var.Rad_P * np.tan(beta[m])) + 0.56 * (
    AeAo)**2 + (r_cp_a[m]/Var.Rad_P)*(5-Var.Z_Blade_P)/Var.Z_Blade_P + 0.46
    Coeff_Corr_Camber[m] = a + b
    Coeff_Corr_Thick[m] = 2*(5 + Var.Z_Blade_P)*Var.Z_Blade_P*Thick_0/(Var.Rad_P*2) * AeAo * (1-r_cp_a[m]/Var.Rad_P)**2
    = 1.2 * AeAo + 0.65 - 0.07*(2-np.pi*r_cp_a[m]/Var.Rad_P * np.tan(beta[m]))**3
    e = 55/np.sqrt(np.pi*r_cp_a[m]/Var.Rad_P * np.tan(beta[m]))*AeAo*(r_cp_a[
        m]/Var.Rad_P - 0.55)**4 + 1.2*r cp a[m]/Var.Rad_P*(5-Var.Z_Blade_P)/Var.Z_Blade_P
    f = 0.08 * Max_Skew * (1- 20 * abs((r_cp_a[m]/Var.Rad_P - 0.4)**3))
    Coeff_Corr_Alpha[m] = d + e + f
ith open("output/Propeller Correction Factors,tyt","w") as file:
    file.write(" K_Camber K_Thickness K_Alpha\n")
    for m in range(Var.Msp):
        mile.write(f" {Coeff_Corr_Camber[m]:7.4f} {Coeff_Corr_Thick[m]:7.4f} {Coeff_Corr_Alpha[m]:7.4f}\n")
for m in range (Var.Msp):
    C_LLocal[m] = abs(L_Ring[m])/(0.5*(u_rel_skin[m])**2*S_ring[m]) # Lift Coefficient
    Camber_Dimless[m] = (C_L_Local[m]*(1.0-Var.cny)) * 0.067 * Coeff_Corr_Camber[m] # / (1 - 0.83*Thick_P_skin[m]/Chord_P_skin[m])
    # value of the camber
    ideal_angle_attack[m]= 1.40*(C_L_Local[m]*(1.0-Var.cny))/(180.0)*np.pi # Ideal angle of attack - 2D
    angle_attack[m] = (C_L_Local[m]*Var.cny)/(np.pi*2.0) + ideal_angle_attack[m] # Angle of attack - 2D
    beta_temp_surface[m] = angle_attack[m]*Coeff_Corr_Alpha[m] + beta[m] + Coeff_Corr_Thick[m]/180*np.pi
    pitch_cp_final_surface[m] = np.tan(beta_temp_surface[m]) * 2.0 * np.pi * r_cp_a[m]
with open ("output/Propeller Lift Coefficient Local Parameters.txt","w") as file
    file.write(" C_L_Local Area Beta Angle of Attack f/c Ideal angle of attack Radius\n")
```



```
                file.write(f" {C_L_Local[m]:7.4f} {s_ring[m]:7.4f} {beta[m]:13.9f} {angle_attack[m]:13.9f}"
                f" {Camber_Dimless[m]:13.9f} {ideal_angle_attack[m]:13.9f} {r_cp_a[m]:13.9}\n")
with open ("output/Propeller_Pitch_Control_Points_Angle_Add.txt","w") as file:
    file.write(" Spanw. Radius Pitch/D\n")
    for j in range (Var.Msp):
        file.write(f" {j:3d} {r_cp_a[j]:13.9f} {(pitch_cp_final_surface[j]/(Var.Rad_P*2)):13.9f}\n")
return T_fr_P, Q_fr_P
T_fr_P,Q_fr_P = Skin_Friction_Drag()
```

```
Date: Q4 2023 - Q1 2024
Author: Lisa Martinez
Institution: Technical University of Madrid
Description: This subroutine calculates the induced velocities (coefficient)
from the transition wake and from the semi-infinite helicoidal vortex at a
single point for all propeller blades. Specifically, it addresses the selected
trailing vortex (n_tral_vortex) - options 1, 2, 3, 4 with Msp set to 3.
"""
import numpy as np
import sources.Variables as Var
from sources.De_Jong_P import De_Jong
from sources.Biot_Savart_Propeller_P import Biot_Savart_Propeller
from sources.Helix_P import Helix
def Trailing_Vortices_Propeller(n_tral_vortex, px, py, pz):
    Points_Trans_Wake_P = np.loadtxt("output/Propeller_Points_Trans_Wake.txt", skiprows= 1, usecols= (1,2,3))
    Grid_Points_\overline{P}= np.loadtxt("output/Propeller_Grid_Points.'txt")
    N_Bound_Vortex_P = np.loadtxt("output/Propeller_N_Bound_Vortex.txt",dtype= 'int')
    N_Bound_Vortex_P = N_Bound_Vortex_P.reshape((Var.Msp+1, 1))
    U_x = 0.0 # Initialization of the variable U_x
    U_y = 0.0 # Initialization of the variable U_V
    U_z = 0.0 # Initialization of the variable U_Z
    # INDUCED VELOCITIES FROM SEMI-INFINITE HELICOIDAL VORTEX
    pyy = py
    k_2 = (n_tral_vortex + n_tral_vortex * Var.N_P_L)+Var.N_P_L
    #k_2 is the location in Points_Trans_Wake_P for the last point of that trailing vortex
    _O = k 2 - Var.N P
    #k_O is the location in Points_Trans_Wake_P for the first point of that trailing vortex (T.E.)
    _2 = int(k_2)
    k_0 = int(k_0)
    n_tral_vortex = int (n_tral_vortex)
    x_1 = - Points_Trans_Wake_P[k_2,0]
    # First point for the semi-infinite helicoidal vortex (x) The - is because in infv the vortex starts at -infinity and stops at -x
    r_1 = Points_Trans_Wake_P[k_2,1] # First point for the semi-infinite helicoidal vortex (Radius)
    p_1 = Points_Trans_Wake_P[k_2,2] # First point for the semi-infinite helicoidal vortex (pitch)
    x_T_E = Points_Trans_Wake_P[k_0,0]
    __T_E = Points_Trans_Wake_P[k_0,1]
    T E = Points Trans Wake_P[k 0,2]
    delta_theta = 2*np.pi/float(Var.Z_Blade_P)
    for i in range(Var.Z_Blade_P):
```

```
y_T_E = Grid_Points_P[N_Bound_Vortex_P[n_tral_vortex, 0],1]
```

y_T_E = Grid_Points_P[N_Bound_Vortex_P[n_tral_vortex, 0],1]
theta = np.arcsin(- y_T_E / r_T_E) \# Theta for the T.E. poin
theta = np.arcsin(- y_T_E / r_T_E) \# Theta for the T.E. poin
xki = theta - 2*np.pi* x_T_E/p_T_E \# Phase angle phi
xki = theta - 2*np.pi* x_T_E/p_T_E \# Phase angle phi
U_xx, U_yy, U_zz = De_Jong (x_1,r_1,p_1,xki,px, pyy, pzz)
U_xx, U_yy, U_zz = De_Jong (x_1,r_1,p_1,xki,px, pyy, pzz)
\# This subroutine calculates the induced velocity for the ultimate wake that starts in x1,r1,z1 (De Jong) for the point
\# This subroutine calculates the induced velocity for the ultimate wake that starts in x1,r1,z1 (De Jong) for the point
px,pyy,pzz
px,pyy,pzz
U_x = U_x + U_xx
U_x = U_x + U_xx
U_y = U_y + U_yy
U_y = U_y + U_yy
U_z = U_z + U_zz
U_z = U_z + U_zz
theta_blade = (float(i+1)*delta_theta)\# This is the angle of the blade that induces velocity on the reference blade
theta_blade = (float(i+1)*delta_theta)\# This is the angle of the blade that induces velocity on the reference blade
if (theta_blade < np.pi):
if (theta_blade < np.pi):
pyy = py*np.cos(theta_blade) + pz*np.sin(theta_blade)
pyy = py*np.cos(theta_blade) + pz*np.sin(theta_blade)
pzz = pz*np.cos(theta_blade) - py*np.sin(theta_blade)
pzz = pz*np.cos(theta_blade) - py*np.sin(theta_blade)
\# In order to calculate the induced velocity in the point px,py,pz from the semi-infinite
\# In order to calculate the induced velocity in the point px,py,pz from the semi-infinite
\# helicoidal vortices we do not change the helix (which is always located on the reference blade),
\# helicoidal vortices we do not change the helix (which is always located on the reference blade),
\# but we change the location of the point and we keep costant the relative distance between the semi-infinite helicoidal
\# but we change the location of the point and we keep costant the relative distance between the semi-infinite helicoidal
vortex
vortex
\# and the point (the rotation depends on the location of the blade that induces velocity)
\# and the point (the rotation depends on the location of the blade that induces velocity)
else:
else:
pyy = py*np.cos(2*np.pi-theta_blade) - pz*np.sin(2*np.pi-theta_blade)
pyy = py*np.cos(2*np.pi-theta_blade) - pz*np.sin(2*np.pi-theta_blade)
pzz = pz*np.cos(2*np.pi-theta_blade) + py*np.sin(2*np.pi-theta_blade)
pzz = pz*np.cos(2*np.pi-theta_blade) + py*np.sin(2*np.pi-theta_blade)

IndUCED vELOCITIES FROM THE TRANSITION WAKE

IndUCED vELOCITIES FROM THE TRANSITION WAKE

d_r = 0.0
d_p}=0.
x_1 = Points_Trans_Wake_P[k_2,0]
for i in range(Var.N_P_L):
k2_i = k_2 - (i+1)
x_2 = Points_Trans_Wake_P[k2_i,0] \# Second point for the selected side of the transition wake (x)
r_2 = Points_Trans_Wake_P[k2_i,1] \# Second point for the selected side of the transition wake (radius)
p_2 = Points_Trans_Wake_P[k2_i,2] \# Second point for the selected side of the transition wake (pitch)
a_r,b_r,c_r = Helix(x_1,x_2,r_1,r_2,d_r) \# Calculates the coefficients a,b,c used in the polynomium
\# for the radius for that side of the transition wake
a_p,b_p,c_p = Helix(x_1, x_2,p_1,p_2,d_p) \# Calculates the coefficients a,b,c used in the polynomium
\# for the pitch for that side of the transition wake
delta_x = (x_2-x_1) / float(Var.sub_interv)
x_11 = x_1 \# First value of the element line (x) of the transition wake
r_11 = r_1 \# First value of the element line (radius) of the transition wake
p_11 = p_1 \# First value of the element line (pitch) of the transition wake
theta_1 = (xki + (2*np.pi) * x_11) / p_11 \# First value of the element line (theta) of the transition wake
y_11 = - r_11 * np.sin(theta_1) \# First value of the element line (y) of the transition wake
\# Theta is positive in the other direction (sin(-theta) = - sin(theta))
z_11 = r_11 * np.cos(theta_1) \# First value of the element line (z) of the transition wake
for j in range (Var.sub_interv):
x_12 = x_11 + delta_x \# Second value of the element line (x) of the transition wake
r_12 = a_r*(x_12**2) + b_r*x_12 + c_r \# Second value of the element line (radius) of the transition wake
p_12 = a_p*(x_12**2) + b_p*x_12 + c_p \# Second value of the element line (pitch) of the transition wake
theta_2 = xki + (2*np.pi) * x_12 / p_12 \# Second value of the element line (theta) of the transition wake
y_12 = - r_12 * np.sin(theta_2) \# Second value of the element line (y) of the transition wake
z_12 = r_12 * np.cos(theta_2) \# Second value of the element line (z) of the transition wake
U_x_w,U_y_w,U_z_w = Biot_Savart_Propeller (Var.Z_Blade_P, x_11,y_11, z_11,x_12,y_12,z_12,px,py,pz)
U_x = U_X + U_ U_W
U_y = U_y + U_ _ y_w
U_z = U_z + U_z_W
x_11 = x_12
y_11 = y_12
z_11 = z_12
x_1 = x_2
r_1 = r-2
p_1 = p_2
d_r = 2 * a_r * x_2 + b_r
d_p = 2 * a_p * x_2 + b_p
return (U_x, U_y, U_z)

```
```

Date: Q4 2023 - Q1 }20
Author: Lisa Martinez
Institution: Technical University of Madrid
Description: This module contains the fixed variables.

```
```


Density of water (kg/m^3)

rho = 1025

Velocity of the ship (m/s)

V_Ship = 12.8611

Convergence criteria

epsi = 0.0001

Number of subdivisions of the input values

N_Iter = 500

Total required thrust (N)

Tr = 3256000

Preserved total required thrust for calculations

Tr_P = Tr

Number of panels (spanwise)

Msp = 5

Number of panels (chordwise)

Nch = 5

Flat plate coefficient (0: pure rooftop, 0.5: half rooftop, 1: pure flat

plate)

cny = 0.5

Angular velocity (rad/s) - Propeller

Omega = 9.886

Radius (m) - Propeller

Rad_P = 4.5

Radius for the hub - Propeller

R_Hub_P = 0.189 * Rad_P
R_Hub_P = o. 189 * Rad_P

Number of bl

Z_Blade_P = 6

Skin friction dra

Skin_Coeff = 0.008

Number of straight line vortices (Transition Wake)

N_P_L = 5

Number of subintervals for each line of the transition wake

sub_interv = 60

```
```

"""
Date: Q4 2023 - Q1 2024
Author: Lisa Martinez
Institution: Technical University of Madrid
Description: This subroutine computes the induced velocities at the midpoints
of segments (coefficient) emanating from the horseshoe vortex across all blades
of the propeller. Furthermore, it calculates the total "velocity matrix" at
these midpoints, excluding the onset flow.
"""
import numpy as np
import sources.Variables as Var
from sources.Induced_Grid_Propeller_P import Induced_Grid_Propeller
from sources.Mid_Vect_Propeller_P import Mid_Vect_Propeller
from sources.Biot_Savart_Propeller_P import Biot_Savart_Propeller
from sources.Trailing_Vortices_Propeller_P import Trailing_Vortices_Propeller
def Velocity_Total_No_Onset_Propeller():
Horseshoe_P = np.loadtxt("output/Propeller_Horseshoe.txt", dtype='int')
Grid_Points_P = np.loadtxt("output/Propeller_Grid_Points.txt")
N_Bound_Vortex_P = np.loadtxt("output/Propeller_N_Bound_Vortex.txt", dtype='int')
N_Bound_Vortex_P = N_Bound_Vortex_P.reshape((Var.Msp+1, 1))
I_P_Points_P = (Var.Msp*Var.Nch)
V_Grid_P = Induced_Grid_Propeller()
V_Grid_P = Induced_Grid_Prope11er()
V_Tral_P = np.zeros((Var.Msp+1, I_P_Points_P, 4,3))
\# HORSESHOE vORTEX
for i in range (I_P_Points_P):
\# I used this loop in order to select the panel where the point xx, xy,xz is located
N_P_V = Horseshoe_P [0,0]
\# First point of the first trailing vortex selected (Segment)
for k in range (4)
\# I used this loop in order to select the side where the point xx,xy,xz
\#is located and to calculate the induced velocity
\# from the transition wake and from the semi-infinite helicoidal vortex for the selected trailing vortex (N_P_V)
xx, xy, xz,v_xx,v_xy,v_xz = Mid_Vect_Propeller(i,k) \# This subroutine is used to calculate the midpoint xx, xy, xz
U_x1,U_y1,U_z1 = Trailing_Vortices_Propeller (N_P_V,xx,xy,xz)
\# Induced velocity from the transition wake and from the semi-infinite helicoidal vortex (First)
V_Tral_P[0,i,k,0] = U_x1
V_Tral_P[0,i,k,1] = U_y1
V_Tral_P[0,i,k,2] = U_z1
x_1 = Grid_Points_P[N_Bound_Vortex_P[N_P_V,0],0] \# X coordinate of the second point of the segment of the first trailing
vortex
y_1 = Grid_Points_P[N_Bound_Vortex_P[N_P_V,0],1] \# Y coordinate of the second point of the segment of the first trailing
z_1 = Grid_Points_P[N_Bound_Vortex_P[N_P_V,0],2] \# Z coordinate of the second point of the segment of the first trailing
vortex
for j in range(Var.Msp): \# This loop is used to select the horseshoe vortex
j_2 = j+1

```
```

N_P_V_2 = Horseshoe_P[j,1] \# Second point of the trailing vortex selected (Segment)
x_2 = Grid_Points_P[N_Bound_Vortex_P[N_P_V_2,0],0] \# X coordinate of the second point of the segment of the trailing
y_2 = Grid_Points_P[N_Bound_Vortex_P[N_P_V_2,0],1] \# Y coordinate of the second point of the segment of the trailing vortex
z_2 = Grid_Points_P[N_Bound_Vortex_P[N_P_V_2,0],2] \# Z coordinate of the second point of the segment of the trailing
vortex
for k in range (4):
xx,xy, xz,v_xx,v_xy,v_xz= Mid_Vect_Propeller(i,k)
U_x2,U_y2,U_z2 = Trailing_Vortices_Propeller(N_P_V_2,xx,xy,xz)
\# Induced velocity from the transition wake and from the semi-infinite helicoidal vortex (Second)
U_xs,U_ys,U_zs = Biot_Savart_Propeller(Var. Z_Blade_P, x_1, y_1, z_ 1, x_ 2, y 2 , z_ 2 , xx , xy , xz
\# Induced velocity from the bound vortex selected
V_Tral_P[j,i,k,0] = V_Tral_P[j,i,k,0] - U_x2 + U_xs \# X velocity induced from the horseshoe vorte
V_Tral_P[j,i,k,1] = V_Tral_P[j,i,k,1] - U_y2 + U_ys \# Y velocity induced from the horseshoe vorte
V_Tral_P[j,i,k,2] = V_Tral_P[j,i,k,2] - U_z2 + U_zs \# Z velocity induced from the horseshoe vortex
V_Tral_P[j_2,i,k,0] = U_x2 \# I need this value for the next i loop (U_x2 will be U_x1 for the next horseshoe
vortex)
V_Tral_P[j_2,i,k,1] = U_y2 \# I need this value for the next i loop (U_y2 will be U_z1 for the next horseshoe
V_Tral_P[j_2,i,k,2] = U_z2 \# I need this value for the next i loop(U_y2 will be U_z1 for the next horseshoe
vortex)
x_1 = x_2 \# This is used in order to have the first point of the next bound vortex (x)
y_1 = y_2 \# This is used in order to have the first point of the next bound vortex (y)
z_1 = z_2 \# This is used in order to have the first point of the next bound vortex (z)

VELOCITY MATRIX

for j in range(Var.Msp):
for i in range(I_P_Points_P):
for k in range (4)
V_Ind_P[j,i,k,0] = V_Grid_P [j,i,k,0] + V_Tral_P[j,i,k,0] \# Total induced velocity without the onset flow (x)
V_Ind_P[j,i,k,1] = V_Grid_P [j,i,k,1] + V_Tral_P[j,i,k,1] \# Total induced velocity without the onset flow (y)
V_Ind_P[j,i,k,2] = V_Grid_P [j,i,k,2] + V_Tral_P[j,i,k,2]\# Total induced velocity without the onset flow (y)

Open the file for Propeller_Velocity_Total_No_Onset

with open("output/Propeller_Velocity_Total_No_Onset.txt", "w") as file:
file.write(" Point Spanwise Ux Uz\n")
file.write(" (Panel) (Side)\n")
for i in range(I_P_Points_P):
for k in range(4):
for j in range(Var.Msp):
file.write(f" {i:2d} {k:4d} {j:4d} {V_Ind_P[j, i, k, 0]:13.9f} {V_Ind_P[j, i, k, 1]:13.9f}
{V_Ind_P[j, i, k, 2]:13.9f}\n")

Open the file for Propeller_Velocity_Trailing_Vortices

with open("output/Propeller_Velocity_Trailing_Vortices.txt", "w") as file
file.write(" Point Spanwise Ux Uy Uz\n")
file.write("(Panel) (Side)\n")
for i in range(I_P_Points_P):
for k in range(4):

```

```

 {V_Tral_P[j, i, k, 2]:13.9f}\n")
 return V_Ind_P, V_Tral_P
 V_Ind_P, V_Tral_P = Velocity_Total_No_Onset_Propeller()

```
```

*

Date: Q4 2023 - Q1 2024
Author: Lisa Martinez
Institution: Technical University of Madrid
Description: This subroutine calculates the total velocities at the midpoints
of segments (Onset + Induced \& Onset) for the reference blade of the propeller.
from sources.Onset_Flow_Propeller_P import Onset_Flow_Propeller
from sources.Velocity_Total_No_Onset_Propeller_P import Velocity_Total_No_Onset_Propeller
import numpy as np
import sources.Variables as Var
def Velocity_Total_Propeller ()
Gamma_TE_P = np.loadtxt("output/Propeller_Gamma_TE_P.txt")
V_Ind_P, V_Tral_P = Velocity_Total_No_Onset_Propeller()
V_Onset_P = Onset_Flow_Propeller()
I_P_Points_P = (Var.Msp*Var.Nch)
V_Tot_No_Onset_P = np.zeros((I_P_Points_P,4,3))
V_Tot_P = np.zeros((I_P_Points_P,4,3))
for i in range (I_P_Points_P):
\# This loop in used to select the panel where the point px,py,pz is located on the propeller

```
```

 # This loop in used to select the side of the panel where the point px,py,pz is located on the propeller
 for k in range(4):
 u_x = V_Onset_P[i,k,0] # Temporary variable used to store the onset flow (x)
 u_z = V_Onset_P[i,k,2] # Temporary variable used to store the onset flow (z)
 u_xx = 0 # Initialization of the variable used to store the induced velocity
 u_yy = 0 # of the propeller without the onset flow (x)
 # # of the propeller without the onset flow (y)
 # of the propeller without the onset flow (z)
 # This loop is used to calculate the total velocity
 # at the midpoint of the panel of the propeller (Spanwise)
 for j in range (Var.Msp):
 u_x = u_x + Gamma_TE_P[j] * V_Ind_P[j,i,k,0]
 # Onset Flow + induced velocity in the panel i side k of the propeller (x)
 u_y = u_y + Gamma_TE_P[j] * V_Ind_P[j,i,k,1]
 # Onset Flow + induced velocity in the panel i side k of the propeller (y)
 u_z = u_z + Gamma_TE_P[j] * V_Ind_P[j,i,k,2]
 # Onset Flow + induced velocity in the panel i side k of the propeller (z)
 # Induced velocity in the panel i side k of the propeller
 u_xx = u_xx + Gamma_TE_P[j] * V_Ind_P[j,i,k,0]
 u_yy = u_yy + Gamma_TE_P[j] * V_Ind_P[j,i,k,1]
 u_zz = u_zz + Gamma_TE_P[j] * V_Ind_P[j,i,k,2]
 # Induced velocity of the propeller without the onset flow
 V_Tot_No_Onset_P[i,k,0] = u_xX
 V Tot_No_Onset_P[i,k,1] = u_yy
 V_Tot_No_Onset_P[i,k,2] = u_zz
 # Total induced velocity from the propeller in the panel i side k of the propeller
 V_Tot_P[i,k,0] = u_x
 V_Tot_P[i,k,1] = u_y
 V_Tot_P[i,k,2] = u_z

Open the file for Propeller_Velocity_Total_No_Onset

with open("output/Propeller_Velocity_Total_No_Onset_V.txt", "w") as file:
file.write(" Point Ux Uy Uz\n")
file.write("(Panel) (Side)\n")
for i in range(I_P_Points_P):
for k in range(4)
file.write(f" {i:2d} {k:4d} {V_Tot_No_Onset_P[i, k, O]:13.9f} {V_Tot_No_Onset_P[i, k, 1]:13.9f}
{V_Tot_No_Onset_P[i, k, 2]:13.9f}\n")

Open the file for Propeller_Velocity_Trailing_Vortices

with open("output/Propeller_Velocity_Total.txt", "ซ") as file:
file.write(" Point Ux Uy Uz\n")
file.write("(Panel) (Side)\n")
for i in range(I_P_Points_P):
for k in range(4):
file.write(f" {i:2d} {k:4d} {V_Tot_P[i,k,0]:13.9f} {V_Tot_P[i, k, 1]:13.9f} {V_Tot_P[i, k, 2]:13.9f}\n")
return (V_Tot_P, V_Tot_No_Onset_P)
V_Tot_P, V_Tot_No_Onset_P = Velocity_Total_Propeller()

```
```

Date: Q4 2023 - Q1 2024
Author: Lisa Martinez
Institution: Technical University of Madrid
Description: This subroutine computes the weight function for the propeller,
involving the declaration of variables and arrays.
"""
import numpy as np
import sources.Variables as Var
def Weight_function_propeller()
t_gp_P = np.loadtxt("output/Propeller_t_gp.txt", skiprows=1)
\# Rooftop parameter a
a_roof = 0.8
\# 2 / Pi
pi_inv = 2/np.pi
Domain limit of the distribution of circulation (rooftop)
t_rest = 0.5 - a_roof
First Denominator
__slop = 2/(1 - a_roof*a_roof)
\# Second Denominator
pcst = 2/(1 + a_roof)
\# Rooftop Coefficient
cny1 = 1 - Var.cny
GF_tot = [0.0] \# Weight equation's numerator
GF_tmp = np.array([0.0]*(Var.Nch)) \# Temporary Weight Function 2
GW = np.array([0.0]*(Var.Nch))
G_Faux =np.array([0.0]*(Var.Nch))

```
```

Weight_P = np.zeros((Var.Msp,Var.Nch))

```

Weight equation's numerato
for i in range(Var.Nch+1):
\(i_{-} 1=i-1\)
t_gp_P_1 = \(0.5+t_{-g p-P[i] \quad \text { \# Numerator - Flat plate distribution (gamma) }}\)
Gamma_fp =pi_inv * np.sqrt(t_gp_P_1/t_gp_P_2) * Var.cny \# Flat plate distribution (gamma)
Gamma_rt = pcst * cny1 \# Rooftop distribution (gamma)
if t_gp_P[i]<t_rest: \# Rooftop distribution (gamma)
Gamma_rt \(=t_{-}\)slop * t_gp_P_1 * cny1
Gamma_Tot = Var.cny*Gamma_fp + cny1*Gamma_rt \# This is the combination of flat plate distribution \# and rooftop distribution (gamma)

GF_tmp[i_1] \(=\) Gamma_Tot*np.sqrt(t_gp_P_1*t_gp_P_2)
GF_tot \(=\) GF_tot + GF_tmp[i_1] \# Weight equation's denominator
Loop for the weight function (circulation of the panels)
or 1 in range (Var.Nch-1,-1,-1)
G_Faux \(+=\) GF_tmp [i]/GF_tot
GW[i] = G_Faux[i]
Loop used to write the weight function for all the panels\# (it is the same for each spanwise level
for \(j\) in range (Var.Msp):
for i in range (Var.Nch): \# Weight Function - j = spanwise level - i = chordwise level - Propeller
with open("output/Propeller_Weight_Function.txt", "w") as file:
file.write("Panel Weight Function \(\backslash n\) ")
for i in range (Var.Nch)
file.write(f"\{i:3d\} \{Weight_P[0,i]:13.9f\}\n")
return (Weight_P)```

