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Notations

We will use the following notations:

Fq denotes the field with q elements, where q is a prime power.

If n is a positive integer, [n] denotes the set {1, 2, ..., n}.

If S is a subset of a vector space V , ⟨S⟩ denotes the subspace of V gener-
ated by S.

Likewise, if S is a subset of a commutative ring R, (S) denotes the ideal
of R generated by S.

If X is a set, its cardinality is denoted by |X| and its power set is denoted
by 2X .

If X and Y are sets, Y X denotes the set of functions X → Y . When
Y = k is a field, kX will be considered as a vector space with pointwise
addition and scalar multiplication.

Z+ denotes the set of (strictly) positive integers.

The projective space of dimension r over a field k will be denoted by Pr
k.

If A and B are sets, A\B denotes the set of elements of A which are not
in B.
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Introduction

The generalised Hamming weights of a linear code are a natural generalisation
of the notion of minimum distance, which have some applications in the context
of code-based cryptography, for example to type II wire-tap channels (see [3]).

We will see how to associate a matroid to each linear code and how the
notion of generalised Hamming weight naturally carries over to matroids. This
will allow us to use techniques from commutative algebra and matroid theory
to relate the generalised Hamming weights of a matroid to the Betti numbers
of its associated Stanley-Reisner rings, through a famous result of Johnsen and
Verdure [5].

Along the way, we will also see how to relate the Hamming weights of a
matroid to those of its dual, in a way that generalises a famous result of Wei
[3].

Finally, we notice that using Johnsen-Verdure’s theorem to calculate the
generalised Hamming weights of a code is very inefficient, and study a different
approach based on the theory of Gröbner bases, which is still an open area of
research [7].
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Chapter 1

Generalised Hamming
weights of linear codes

In this chapter we define and give some basic properties of the generalised
Hamming weights of a linear code.

We briefly recall a couple of fundamental definitions

Definition 1.1. Let q be a prime power, n a positive integer

i) An [n, k]-code over Fq is a k-dimensional subspace of Fn
q .

ii) If x ∈ Fn
q , its support is suppx = {i ∈ [n] : xi ̸= 0}.

iii) The weight of x is w(x) = |suppx|.

iv) If C is an [n, k]-code, its minimum distance is

d(C) = min{w(x) : x ∈ C\{0}}.

If d(C) = d, we say that C is an [n, k, d]-code.

v) A subcode of C is just a subspace of C.

We can generalise the notions of support and weight to all subset of Fn
q .

Definition 1.2. The support of S ⊆ Fn
q is

supp(S) = {i ∈ [n] : ∃x ∈ S s.t. xi ̸= 0}.

In other words, it is the set of indices i ∈ [n] such that at least one element of
S has non-zero i-th coordinate.

The weight of S, denoted by w(S), is the cardinality of its support:

w(S) = |supp(S)|.

Proposition 1.1. Let S, T ⊆ Fn
q , then

2



CHAPTER 1. GENERALISED HAMMINGWEIGHTS OF LINEAR CODES3

i) supp(S ∪ T ) = supp(S) ∪ supp(T ).

ii) If S ⊆ T then supp(S) ⊆ supp(T ).

iii) supp(⟨S⟩) = supp(S).

Proof. i) and ii) are straightforward and the inclusion supp(S) ⊆ supp(⟨S⟩)
follows from ii), so it remains to prove the opposite inclusion. Let i ∈ supp(⟨S⟩),
then there is some x ∈ ⟨S⟩ such that xi ̸= 0. There are also y1, .., yc ∈ S and
λ1, ..., λc ∈ Fq such that x = λ1y1 + ...+ λcyc, and we have that

xi = λ1y1i + ...+ λcyci ̸= 0

so there must be some j such that yji ̸= 0, otherwise, if they were all zero, xi
would also be zero. But yj ∈ S, therefore i ∈ supp(S).

As an immediate consequence, we have that, if x ∈ Fn
q , then w(x) = w(⟨x⟩).

But then we can express the minimum distance of a linear code C as

d(C) = min{w(D) : D is a 1-dimensional subcode of C}.

This might seem a bit convoluted, but it lands itself to the following general-
ization:

Definition 1.3. Let C be an [n, k]-code over Fq and let r ∈ [k]. The r-th
generalised Hamming weight of C is

dr(C) = min{w(D) : D is a k-dimensional subcode of C}.

Remark. dk(C) = w(C), which is the number of indices i ∈ [n] such that not
all elements of C have i-th coordinate equal to zero. Some authors work under
the assumption that dk(C) = n, which is not restrictive since, if dk(C) < n, this
means that some of the coordinates are effectively useless and we can remove
them. More precisely, we can obtain an equivalent code of length equal to dk(C)
by projecting onto the subspace of Fn

q generated by the elements of the canonical
basis which correspond to the indices in the support of C. We won’t work under
this assumption.

Remark. It is not hard to see that the generalised Hamming weights of a code
are invariant under code equivalence.

Proposition 1.2. Let C be an [n, k]-code, r ∈ [k].

i) d1(C) < d2(C) < ... < dk(C).

ii) Generalised singleton bound: dr(C) ≤ n− k + r.

Proof. To see i), let r ∈ [k − 1] and let D be an r + 1-dimensional subcode of
C such that w(D) = dr+1(C). Let i ∈ supp(D), D′ = {x ∈ D : xi = 0}. D′

is clearly a subcode of C and its dimension is r. To see this, let y1, ..., yc be
a basis of D′ and let z ∈ D such that zi = 1 (it exists because i ∈ supp(D)).
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Then y1, ..., yc, z is a basis for D since they are clearly linearly independent
and, if x ∈ D, we have that x = (x − xiz) + xiz, with x − xiz ∈ D′, therefore
they also generate D. But then c + 1 = r + 1, so c = dimD = r and so
dr(C) ≤ w(D′) < w(D) = dr+1(C).

ii) follows by observing that

n ≥ dk(C) ≥ dk−1(C) + 1 ≥ dk−2(C) + 2 ≥ ... ≥ dr(C) + k − r ∀r ∈ [k].

We say that an [n, k]-code C is r-MDS if equality holds in the generalised
singleton bound for dr(C), that is, if dr(C) = n − k + r. Notice that 1-MDS
codes are the usual MDS codes. Moreover, it is not hard to see that, if C is
r-MDS, then it is s-MDS for all s ≥ r.

We recall a couple more definitions.

Definition 1.4. Let C be an [n, k]-code over Fq.

i) A generator matrix for C is a k × n matrix over Fq whose rows generate
C.

ii) A parity-check matrix for C is a (n− k)× n matrix H over Fq such that

x ∈ C ⇐⇒ HxT = 0.

We shall see in the next result that the generalised Hamming weights of a
code only depend on the linear dependence relations between the columns of
any of its parity check matrices.

Proposition 1.3. Let C be an [n, k]-code with parity check matrix H, whose
columns we will denote by h1, ..., hn, and let l ∈ [n], r ∈ [k]. Then the following
are equivalent:

i) dr(C) ≤ l.

ii) There exists an r × n matrix X with entries in Fq such that HXT = 0,
with maximum rank and with at most l non zero columns.

iii) There exist a subset I ⊆ [n] such that |I| = l and |I|−dim⟨hi : i ∈ I⟩ ≥ r.

Proof. We first prove that i) holds if and only if ii) holds. By definition, dr(C) ≤
l ⇐⇒ there exists an r-dimensional subcode D of C such that w(D) ≤ l.

To see that i) =⇒ ii), let D be an r-dimensional subcode of C such that
w(D) ≤ l, also let x1, ..., xr be a basis of D and denote the jth coordinate of xi
by xij . Finally, let X be the r × n matrix with entries xij . Since xi ∈ C for all
i, we have that HXT = 0 and, since they are linearly independent, rkX = r.
Moreover, if I = suppD, every element of D has support contained in I, this
is true in particular for the xi, but this means that every column of X which
correspond to an index not in I is zero, so that X has at most l nonzero columns
since by hypothesis w(D) = |I| ≤ l.



CHAPTER 1. GENERALISED HAMMINGWEIGHTS OF LINEAR CODES5

ii) =⇒ i) is straightforward: just take D to be the subcode generated by
the rows of X.

Let’s now prove that ii) =⇒ iii). Let I ⊆ [n] such that |I| = l and the jth

column of X is zero for all j ̸∈ I. Let ϕ : FI
q → Fn−k

q , (ai)i∈I 7→
∑

i∈I aihi. If

x1, ..., xr are the rows of X, for all i ∈ [r] let yi be the element of FI
q defined

by yij = xij for all j ∈ I. Then, since all the columns of X not indexed by an
element of I are zero, y1, ..., yr are linearly independent. For the same reason,
ϕ(yi) = HxTi = 0 for all i ∈ [r]. Therefore, the yi are r linearly independent
elements of kerϕ. By the rank-nullity theorem we have

r ≤ dimkerϕ = l − dim Imϕ = |I| − dim⟨hi : i ∈ I⟩.

Finally, let’s prove that iii) =⇒ ii). Let ϕ : FI
q → Fn−k

q , (ai)i∈I 7→∑
i∈I aihi as before, then, again thanks to the rank-nullity theorem,

dimkerϕ = l − dim Imϕ = l − dim⟨hi : i ∈ I⟩ ≥ r.

Therefore there exist y1, ..., yr ∈ kerϕ that are linearly independent. Let x1, ..., xr ∈

Fn
q be defined by xij =

{
yj j ∈ I

0 j ̸∈ I
, then, if X is the r×n matrix with x1, ..., xr

as rows, X has maximum rank because the xi are linearly independent and
clearly HXT = 0.

Corollary 1.3.1. Let C be an [n, k]-code with parity-check matrix H and r ∈
[k]. Then

dr(C) = min{|I| : I ⊆ [n] and |I| − dim⟨hi : i ∈ I⟩ ≥ r},

where h1, ..., hn are the columns of H.



Chapter 2

Simplicial complexes and
matroids

In this chapter, we briefly recall some facts about simplicial complexes, matroids
and their Stanley-Reisner rings, which will be useful later on.

2.1 Simplicial complexes

Before we introduce matroids, we briefly introduce a more general mathematical
structure.

Definition 2.1. A simplicial complex is a pair K = (K,∆) where K is a finite
set and ∆ is a collection of subsets of K with the following properties:

i) ∅ ∈ ∆.

ii) If F ∈ ∆ and E ⊆ F then E ∈ ∆.

If K = (K,∆) is a simplicial complex,

1. K is called the ground set of K.

2. The elements of ∆ are called faces.

3. The dimension of a face F ∈ ∆ is dimF = |F | − 1.

4. The dimension of K is max{dimF : F ∈ ∆}.

5. The maximal elements of ∆ are called facets.

6. A subset of K that is not in ∆ is called a non-face.

Remark. One might think of a simplicial complex K in the following way: take
a point for each vertex of K, that is, for every x ∈ K such that {x} ∈ ∆. Then,
for every pair of distinct points x, y such that {x, y} ∈ ∆, connect x and y with
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a segment, then for every face of dimension 2, connect its three points with
a triangle and so on. The points which are not vertices are left out, so some
authors require that every point of the ground set is a vertex in the definition.
Besides this detail, this construction allows one to think of a simplicial complex
in a geometric way.

2.2 Matroids

Definition 2.2. A matroid is a simplicial complex M = (M, I) which satisfies
the following additional property (M is the ground set and I is the set of faces):

iii) For all σ, τ ∈ I such that |σ| < |τ |, there exists x ∈ τ\σ such that σ∪{x} ∈
I.

Some of the definitions we previously introduced for simplicial complexes
have different names in the context of matroids: if M = (M, I) is a matroid,

1. The elements of I are called independent sets.

2. The maximal elements of I are called bases.

3. A subset of M that is not independent is called dependent.

4. A minimal dependent subset of M is called a circuit.

Remark. This definition might seem a bit obscure at first, but it actually is an
abstraction of the notion of linear independence, as the next example shows.
That’s also why we use a different terminology in this context.

Example. Let V be a vector space, x1, ..., xn ∈ V . Let

M(x1, ..., xn) = ([n], I),

where I = {σ ⊆ [n] : the xi, with i ∈ σ, are linearly independent}. M(x1, ..., xn)
is clearly a simplicial complex. It is actually a matroid, this comes from the
following basic linear algebra fact: if v1, ..., vn, w1, ..., wm ∈ V , m > n, v1, ..., vn
are linearly independent and w1, ..., wm are also linearly independent, then there
is some i ∈ [m] such that v1, ..., vn, wi are linearly independent.

Definition 2.3. We call M(x1, ..., xn) the matroid associated to x1, ..., xn. If
the xi are the columns of a matrix H, we denote it by MH and we call it the
matroid associated to H.

The aforementioned linear algebra fact can be used to prove that two bases
of a finitely generated vector space have the same cardinality. There is an
analogous result for matroids:

Proposition 2.1. Any two bases of a matroid have the same cardinality.
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Proof. Let B1, B2 be two bases of a matroid M. Assume by contradiction that
they don’t have the same cardinality. Then one of them, let’s say B1, has more
elements than the other. But B1 and B2 are independent, therefore there exists
x ∈ B1\B2 such that B2∪{x} is independent, which contradicts the maximality
of B2.

Definition 2.4. Let M = (M, I) be a matroid.

• The rank of M, denoted by ρ(M), is the cardinality of any of its bases.

• If σ ⊆ M , let I|σ = {τ ∈ I : τ ⊆ σ}. Then M|σ = (σ, I|σ), which is
clearly a matroid, is called the restriction of M to σ.

• We also denote the rank of M|σ by ρ(σ). The function ρ that maps σ ⊆M
to ρ(σ) is called the rank function of M.

• The nullity of σ is n(σ) = |σ| − ρ(σ).

Remark. ρ(σ) is the cardinality of the largest independent set contained σ. In
particular, ρ(M) = dimM+ 1.

We defined matroids in terms of independent sets, but one can define ma-
troids in various equivalent ways. The next theorems say that we can define
a matroid by specifying its bases, its rank function, its nullity function or its
circuits. Their proof can be found in [1], with the exception of theorem 2.4
which follows in part from theorem 2.3.

Theorem 2.2. Let M be a matroid, B its set of bases, then

B1) B ̸= ∅.

B2) If B1, B2 ∈ B and B1 ̸= B2, then for all x1 ∈ B1\B2, there exists x2 ∈
B2\B1 such that (B1\{x1}) ∪ {x2} ∈ B.

Moreover, if B ⊆ 2M satisfies B1) and B2), there exist a unique matroid struc-
ture on M that has the elements of B as bases. It is obtained by declaring a
subset of M to be independent if and only if it is contained in an element of B.

Theorem 2.3. Let M be a matroid, ρ its rank function, then

R1) ρ(σ) ≤ |σ| for all σ ⊆M .

R2) If σ ⊆ τ ⊆M , then ρ(σ) ≤ ρ(τ).

R3) For all σ, τ ⊆M , ρ(σ ∪ τ) + ρ(σ ∩ τ) ≤ ρ(σ) + ρ(τ).

Moreover, if ρ : 2M → N is a function that satisfies R1), R2) and R3), there
is a unique matroid structure on M whose rank function is ρ, it is obtained by
declaring a subset σ of M to be indepenent if and only if ρ(σ) = |σ|.

Theorem 2.4. Let M be a matroid, n its nullity function, then

N1) n(σ) ≤ |σ| for all σ ⊆M .
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N2) If σ ⊆ τ ⊆M , then n(σ) ≤ n(τ).

N3) For all σ, τ ⊆M , n(σ ∪ τ) + n(σ ∩ τ) ≥ n(σ) + n(τ).

Moreover, if n : 2M → N is a function that satisfies N1), N2) and N3), there
is a unique matroid structure on M whose nullity function is n, it is obtained
by declaring a subset σ of M to be indepenent if and only if n(σ) = 0.

Theorem 2.5. Let M be a matroid, C its set of circuits, then

C1) ∅ ̸∈ C.

C2) If σ, τ ∈ C and σ ⊆ τ , then σ = τ .

C3) If σ, τ ∈ C and x ∈ σ∩τ , then there exists η ∈ C such that η ⊆ (σ∪τ)\{x}
(that is, (σ ∪ τ)\{x} is dependent).

Moreover, if C ⊆ 2M satisfies C1), C2) and C3), there exist a unique matroid
structure on M that has the elements of C as circuits. It is obtained by declaring
a subset of M to be independent if and only if it does not contain an element of
C as a subset.

2.3 Stanley-Reisner rings and their Betti num-
bers

Stanley-Reisner rings are a useful algebraic invariant that can be associated to
simplicial complexes and, in particular, to matroids.

Definition 2.5. Let K = (K,∆) be a simplicial complex, k a field. Let S = k[x]
be the polynomial ring in |K| indeterminates x = {xe : e ∈ K}. If F ⊆ K, let
xF =

∏
e∈F xe.

i) The Stanley-Reisner ideal of K is

IK = (xF : F ̸∈ ∆).

ii) The Stanley-Reisner ring associated to K is RK = S/IK.

Remark. IK is a monomial ideal with minimal set of generators

{xF : F is a minimal non-face of K}.

Notice that the monomial ideals in S = k[X1, ..., Xn] are precisely those
ideals which are homogeneous with respect to the canonical Zn grading of S,
that is, the Zn-grading S =

⊕
α∈Zn Sα, where Sα = k for all α ∈ Nn and Sα = 0

otherwise.
In particular, RK admits a minimal free resolution as a ZK-graded module

of the form

0 → Fp
∂p−→ ...

∂2−→ F1
∂1−→ F0

∂0−→ RK → 0,
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where each Fi is a free ZK-graded S-module, which can be written as

Fi =
⊕
α∈ZK

S(−α)βi,α

The resolution being minimal means that ker ∂i ⊆ mFi for all i, where m is the
maximal ideal (xe : e ∈ K).

We also have that p and the βi,α are independent of the choice of minimal
resolution:

• p is the projective dimension of RK: it is the minimal length of a ZK-
graded projective resolution of RK.

• For each i and for each α ∈ ZK , βi,α = dimk Tori(RK, k)α, where we see
k as an S-module by identifying it with the quotient S/m.

The βi,α are called the ZK-graded, or multi-graded, Betti numbers of K over
k and are denoted by βi,α(K, k).

We can also see S as a Z-graded algebra: S =
⊕

d∈Z Sd, where Sd is the space
of all homogeneous polynomials of degree d in S if d ≥ 0, and Sd = 0 otherwise.
Since monomials are homogeneous, we have that RK is also Z-graded and we
can define the Z-graded Betti numbers of K over k, denoted by βi,d(K, k) for
all d ∈ Z, in the same way by considering a minimal Z-graded resolution of RK.
However, notice that a minimal ZK-graded resolution of RK is also minimal as
a Z-graded resolution. The reason is that the unique ZK-homogeneous maximal
ideal of S is also its unique Z-homogeneous maximal ideal, which is m. Finally,
notice that, if α ∈ ZK and |α| =

∑
e∈K αe, S(−α), when seen as an Z-graded

S-module, is just S(−|α|). Therefore, for all i, we have

Fi =
⊕
α∈ZK

S(−α)βi,α(K,k) =
⊕
d∈Z

S(−d)
∑

|α|=d βi,α(K,k),

hence
βi,d(K, k) =

∑
|α|=d

βi,α(K, k)

for all i, d. Finally, we also have the global Betti numbers:

βi(K, k) :=
∑
d∈N

βi,d(K, k) =
∑

α∈NK

βi,α(K, k),

which are just the ranks of the free S−modules appearing in the minimal graded
resolution, disregarding their grading.

2.4 Simplicial Homology and Hochster’s theo-
rem

Let K = (K,∆) be a d-dimensional simplicial complex and let k be a field. For
all i ∈ N let Fi be the set of i-dimensional faces of K and let Vi be the free vector
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space on Fi, that is, its elements are formal k-linear combinations of elements
of Fi. Suppose that the elements of K are ordered by a total ordering ω (for
example, if K = [n] there is a canonical way to order the elements of K).

For all i ∈ N and for all F ∈ Fi, let ∂i,ω(F ) =
∑

x∈F εω,F (x)(F\{x}) ∈ Vi−1,
then extend ∂i,ω to Vi by linearity. One can prove that ∂i,ω ◦ ∂i+1,ω = 0 for all
i ∈ N, thus we obtain a complex of vector spaces

· · · → Vi
∂i,ω−−→ Vi−1 → · · · → V1

∂1,ω−−−→ V0 → 0.

This is called the (reduced) chain complex of K. Its homology in position i
is the vector space

H̃i(K, k) := ker ∂i,ω/Im∂i+1,ω.

Its dimension will be denoted by h̃i(K, k). We omitted ω in the notation because,
up to isomorphism, H̃i(K, k) does not depend on the choice of ω. A famous
result of Hochster (see [2]) relates the multi-graded Betti numbers of a simplicial
complex to the homology of its subcomplexes:

Theorem 2.6 (Hochster). Let K = (K,∆) be a simplicial complex and let
α ∈ ZK . Also, let E = {x ∈ K : αx ̸= 0} and let K|E be the simplicial complex
(E,∆E), where ∆E = {F ∩ E : F ∈ ∆} = {F ∈ ∆ : F ⊆ E}. Then

i) If α ̸∈ {0, 1}K then βi,α(K, k) = 0.

ii) If α ∈ {0, 1}K then

βi,α(K, k) = h̃|E|−i−1(K|E , k).

As a consequence, the multi-indices which can give non-zero Betti num-
bers are only the ones with values in {0, 1}, but we have a bijection 2K →
{0, 1}K , E 7→ 1E , where 1E is the function that sends i ∈ E to 1 and i ̸∈ E to
0. Thus, if E ⊆ K, we let βi,E(K, k) := βi,1E

(K, k).



Chapter 3

Generalised Hamming
weights of matroids

In this chapter, we define generalised Hamming weights in the context of ma-
troids, in a way that generalises the previous definition we gave in the context
of linear codes. In order to do so, we shall briefly see how to associate a matroid
to a linear code.

3.1 Matroids associated to linear codes

Let k be a field, V a vector space over k, v1, ..., vn ∈ V and

f : kn → V, x 7→
n∑

i=1

xivi.

Proposition 3.1. M(v1, ..., vn) is uniquely determined by ker f as a subspace
of kn. More precisely, we have that σ ⊆ [n] is dependent if and only if there
exists x ∈ ker f\{0} such that suppx ⊆ σ.

Proof. σ ⊆ [n] is dependent ⇐⇒ {vi : i ∈ σ} is a set of linearly dependent
vectors ⇐⇒ There are xi, with i ∈ σ, not all zero such that

∑
i∈σ xivi = 0

⇐⇒ There exists x ∈ ker f\{0} such that suppx ⊆ σ.

As a consequence, if C is a linear code, the matroid associated to a parity
check matrix H of C does not depend on the choice of H because C = ker f ,
where f : Fn

q → Fn−k
q , x 7→

∑n
i=1 xihi = HxT and h1, ..., hn are the columns of

H.

Definition 3.1. The matroid associated to a linear code C, denoted by MC , is
the matroid associated to any of its parity-check matrices.

Remark. If C is an [n, k]-code, ρ(MC) = n− k and n(MC) = k.

12



CHAPTER 3. GENERALISED HAMMING WEIGHTS OF MATROIDS 13

Example. Let C = H3(2) be the binary Hamming code with parameter 2. C is
a [7, 4]-code with parity check matrix

H =

0 0 0 1 1 1 1
0 1 1 0 0 1 1
1 0 1 0 1 0 1


The columns of H are all the non zero vectors in F3

2, denote them by h1, ..., h7.
Notice that any two columns of H are linearly independent.

We have that ρ(MC) = n− k = 3, so, in order to find all the bases of MC ,
we just need to find all the independent subsets of cardinality 3. Since linear
combinations over F2 are just sums, and since −1 = 1 in F2, the independent
subsets of MC with three elements are just all the subsets {i, j, k} such that
hi ̸= hj + hk.

Now, let’s try to find the rank function of MC . Any two columns of a
H are linearly independent, so every subset of [7] with two or less elements
is independent and therefore has rank equal to its cardinality. A subset of
cardinality 3 is dependent if and only if it is of the form {i, j, k} such that
hi = hj + hk, in which case it has rank 2, otherwise it has rank 3. Now, take
a subset σ ⊆ [7] such that |σ| ≥ 4 and take i, j ∈ σ such that i ̸= j. Since
hi ̸= hj , we have that hi + hj ̸= 0, therefore hi + hj = hk for some k because
the columns of H are all the nonzero vectors in F3

2, but then, since |σ| ≥ 4,
there certainly is some l ∈ σ such that l ̸= i, l ̸= j and l ̸= k, so hl ̸= hi + hj ,
therefore {i, j, l} ⊆ σ is independent and σ has rank 3. To summarize, we have
that

• The subsets of rank 0 and 1 are the empty set and the singletons respec-
tively.

• The subsets of rank 2 are those with two elements and those of the form
{i, j, k} such that hk ̸= hi + hj .

• The subsets of rank 3 are all the others, in particular all subsets of cardi-
nality at least 4 have rank 3.

3.2 Generalised Hamming weights of matroids

Recall that, if C is am [n, k]-code with parity check matrix H, the generalised
Hamming weights of C can be described as follows:

dr(C) = min{|I| : I ⊆ [n] and |I| − dim⟨hi : i ∈ I⟩ ≥ r} for all r = 1, ..., k

It is not hard to see that dim⟨hi : i ∈ I⟩ is the rank of I as a subset of the
matroid MC , therefore we have that

dr(C) = min{|σ| : σ ⊆ [n] and n(σ) ≥ r}.

Therefore we can generalise the definition to matroids as follows:
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Definition 3.2. Let M = (M, I) be a matroid, r ∈ Z+. If there exists σ ⊆ M
such that n(σ) ≥ r, we say that the rth generalised Hamming weight of M exists,
and define it as

dr(M) = min{|σ| : σ ⊆M, n(σ) ≥ r}.

Proposition 3.2. Let M = (M, I) be a matroid, r ∈ Z+.

i) dr(M) exists if and only if r ≤ n(M).

ii) dr(M) < dr+1(M) for all r.

iii) dr(M) = min{|σ| : σ ⊆M, n(σ) = r}.

Proof. Let’s prove i). First, suppose that dr(M) exists, that is, there exists
σ ⊆M such that n(σ) ≥ r, but then n(σ) ≥ s for all s ≤ r. Therefore, if dr(M)
exists, ds(M) also exists for all s ≤ r and dn(M)(M) clearly exists, therefore
dr(M) exists for all r ≤ n(M). If dr(M) existed for some r > n(M) then
there would be some σ ⊆M such that n(σ) ≥ r > n(M), but this is impossible
because of theorem 2.4.

Let’s now prove ii). That dr(M) ≤ dr+1(M) is clear, since, when we cal-
culate dr+1(M), the minimum is taken over a smaller set. Now, let σ ⊆ M
such that n(σ) ≥ r + 1 and let B be a basis of σ, x ∈ σ\B (which exists be-
cause |σ\B| = n(σ) > 0). It is clear, then, that B is a basis of σ\{x}, therefore
n(σ\{x}) = n(σ)−1 ≥ r. As a consequence, dr(M) ≤ dr+1(M)−1 < dr+1(M).

Finally, let’s prove iii). Suppose that {|σ| : σ ⊆ M, n(σ) ≥ r} attains
its minimum at τ ⊆ M . Suppose by contradiction that n(τ) > r. Then, if
B is a basis of τ and x ∈ τ\B, we have that n(τ\{x}) = n(τ) − 1 ≥ r, with
|τ\{x}| < |τ |, which contradicts the minimality of |τ |.

We refer to the increasing sequence d1(M), . . . , dn(M)(M) as the weight
hierarchy of M.

Example. Let r, n be positive integers with r ≤ n. The uniform matroid Ur,n

is the matroid that has [n] as its ground set and whose independent sets are
the subsets of [n] with cardinality less than or equal to r. One can easily check
that Ur,n is indeed a matroid. If σ ⊆ [n], the rank of σ is ρ(σ) = min{r, |σ|},
as if |σ| ≤ r then |σ| is independent, whereas if |σ| > r then any subset of σ of
cardinality r is a basis of σ. Thus we have that

n(σ) = |σ| −min{r, |σ|} = max{|σ| − r, 0}

Therefore, if k ≤ n(Ur,m) = n− r,

dk(Ur,m) = min{|σ| : σ ⊆ [n], max{|σ| − r, 0} = k}

= min{|σ| : σ ⊆ [n], |σ| = r + k} = r + k

Thus the weight hierarchy of Ur,n is r + 1, r + 2, . . . , n.

Example. Let C be the Hamming code H3(2). In the previous chapter, we found
the rank function of MC , so we can also easily find the nullity function:
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• The subsets of nullity 0 are the independent ones, i.e. the ones of cardi-
nality less than 3 and those of the form {i, j, k} such that hk ̸= hi + hj .

• The subsets of nullity 1 are those of the form {i, j, k} such that hk = hi+hj
and all the ones with 4 elements.

• The subsets of nullity 2, 3 and 4 are, respectively, those of cardinality 5,
6 and 7.

But then it immediately follows that the weight hierarchy of C is 3, 5, 6, 7. Notice
that d2(C) = 5 = 7− 4 + 2 = n− k + 2, so C is 2-MDS.

3.3 Generalised Hamming weights of Hamming
codes

In this section, we calculate the Hamming weights of all Hamming codes. In
order to do that, we will interpret the matroids associated to them in a more
geometric way. First of all, we briefly recall their definition.

Definition 3.3. Let r ∈ N, r ≥ 2. A q-ary code C is said to be a Hamming
code with defining parameter r if it has a parity check matrix whose columns
form a maximal subset of pairwise linearly independent vectors of Fr

q.

We also recall a couple of important properties:

i) A q-ary Hamming code with parameter r always exists: just take a code
with a parity check matrix whose columns form a full set of representatives
of the equivalence classes in Pr−1

Fq
(that is, each column belongs to only

one class and each class contains one of the columns).

ii) Any two q-ary Hamming codes with parameter r are equivalent, we thus
denote them by Hr(q).

iii) Hr(q) is a [ q
r−1
q−1 ,

qr−1
q−1 − r, 3]-code.

Now we define a class of matroid associated to finite projective spaces.

Definition 3.4. Let r ∈ Z+. The q-ary projective matroid of dimension r
is the matroid, which we denote by PM(r, q), with ground set Pr

Fq
and where

we declare σ ⊆ Pr
Fq

to be independent if and only if the smallest hyperplane of

Pr
Fq

containing σ has dimension equal to |σ| − 1, where a hyperplane of Pr
Fq

is

just the image under the natural projection π : Fr+1
q \{0} → Pr

Fq
, x 7→ [x] of a

nonzero subspace of Fr+1
q , and its dimension is one less than the dimension of

that subspace.

For example, any two distinct points of Pr
Fq

form an independent subset,
whereas three point that lie on the same line form a dependent subset.

Lemma 3.3. PM(q, r) is a matroid and it is isomorphic to MHr+1(q).
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Proof. Let H be a parity check matrix of Hr+1(q) such that its columns form
a maximal set of pairwise linearly independent vectors in Fr+1

q . Denote its

columns by h1, ..., hn and let ϕ : [n] → Pr
Fq
, i 7→ [hi], where n = qr+1−1

q−1 . Clearly,
ϕ is a bijection, moreover, it is not hard to see that σ ⊂ Pr

Fq
is independent if

and only if ϕ−1(σ) is an independent set of MHr+1(q). From this, both claims
follow.

The rank of a subset σ ⊆ Pr
Fq

is one plus the dimension of the smallest

hyperplane of Pr
Fq

containing σ. In particular, n(Pr
Fq
) = |Pr

Fq
| − ρ(Pr

Fq
)| =

qr+1−1
q−1 − (r + 1).

We are now going to rigorously calculate the Hamming weights of PR(r, q),
but, before we do that, we give a heuristic motivation as to why we should expect

them to be what they are. Let k = n(Pr
Fq
) = qr+1−1

q−1 − (r+ 1) and i ∈ [k]. Let’s
try to construct a subset σ with nullity i and with the least possible cardinality.
Let P,Q be two distinct points in Pr

Fq
, then {P,Q} is independent, so we need

to add at least i points. If we were to add a point not lying on the line joining
P and Q, then we would increase the cardinality of σ without increasing its
nullity. If instead we only add points on the line joining P and Q we increase
both the nullity and the cardinality of σ at the same rate, however we can only

do this until the line joining P and Q, which has cardinality q + 1 = q2−1
q−1 , gets

filled. So we can do this if i ≤ q2−1
q−1 − 2, otherwise at some point we need to

add at least one point R which is not on the line, then the best thing to do is

to fill the plane generated by P , Q and R, which has cardinality q3−1
q−1 , and we

can do this if i ≤ q3−1
q−1 − 3, otherwise we need to add a fourth point not on

the plane and so on. As a consequence, one would expect that di = i + s if
qs−1−1
q−1 − (s− 1) < i ≤ qs−1

q−1 − s, where di = di(PM(r, q)).

Before we continue, notice that the sequence
(

qn−1
q−1 − n

)
n∈Z+

is strictly

increasing. One can check this, for example, with the formula qn−1
q−1 = 1 + q +

q2 + ...+ qn−1.

Theorem 3.4. Let r ∈ Z+, i ∈
[
qr+1−1
q−1 − (r + 1)

]
, s ∈ Z+ such that

qs−1 − 1

q − 1
− (s− 1) < i ≤ qs − 1

q − 1
− s.

Then di(PM(r, q)) = i+ s.
Moreover, the Hamming weights of PM(r, q) are the elements of the com-

plement of { qs−1
q−1 + 1 : 0 ≤ s ≤ r} in

[
qr+1−1
q−1

]
.

Proof. Let mi = min{ρ(σ) : n(σ) = i}, then di(PM(r, q)) = mi + i and we
just need to prove that mi = s. If we take an independent subset σ ⊆ Pr

Fq

with cardinality s, then the smallest hyperplane containing σ has cardinality
n = qs−1

q−1 and, since i ≤ n− s, we can find i points in the hyperplane which are
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not contained in σ. If we add those points to σ, we obtain a subset with nullity
i and rank s, so mi ≤ s.

If s = 2, then we get that mi ≤ 2, but 2 is also the minimal rank of a
dependent subset of Pr

Fq
, therefore mi = 2, so we assume from now on that

s ≥ 3.
Assume, by contradiction, thatmi < s, then there exists σ ⊆ Pr

Fq
with nullity

i and such that ρ(σ) ≤ s− 1. In other words, σ is contained in a hyperplane H

of dimension s− 2, but then i = n(σ) ≤ n(H) = |H| − ρ(H) = qs−1−1
q−1 − (s− 1),

which is a contradiction.
The second claim follows from observing that the indices i such that qs−1−1

q−1 −
(s− 1) < i ≤ qs−1

q−1 − s give rise to the Hamming weights

qs−1 − 1

q − 1
+ 2,

qs−1 − 1

q − 1
+ 3, ...,

qs − 1

q − 1

If we put these together for all s, we get all the integers between 1 and qr+1−1
q−1 ,

except for the ones of the form qs−1
q−1 + 1, with 0 ≤ s ≤ r.

Corollary 3.4.1. The generalised Hamming weight of the Hamming code Hr(q)

are the elements in the complement of { qs−1
q−1 + 1 : 0 ≤ s ≤ r − 1} in

[
qr−1
q−1

]
.

Corollary 3.4.2. Hr(q) is
(

qr−1−1
q−1 − r + 2

)
-MDS and is not

(
qr−1−1
q−1 − r + 1

)
-

MDS.

Proof. The last integer in
[
qr−1
q−1

]
which is not a Hamming weight of Hr(q) is

qr−1−1
q−1 + 1, so qr−1−1

q−1 + 2 is a Hamming weight and the there are exactly r
positive integers before it which are not Hamming weights, therefore it is the(

qr−1−1
q−1 − r + 2

)th
one, but the singleton bound for this weight is

qr − 1

q − 1
−
(
qr − 1

q − 1
− r

)
+

(
qr−1 − 1

q − 1
− r + 2

)
=
qr−1 − 1

q − 1
+ 2

which proves that Hr(q) is
(

qr−1−1
q−1 − r + 2

)
-MDS.

The weight before this one is qr−1−1
q−1 and the same reasoning leads to the

fact that it is one less than its corresponding singleton bound.

Remark. The generalised Hamming weights of Hr(2) are the integers in [2r − 1]
which are not powers of 2.

Example. We previously calculated the weight Hierarchy of H3(2) to be 3,5,6,7,
which is also what we get when we remove the powers of 2 from the integers
between 1 and 7.



Chapter 4

Duality

Recall that, given an [n, k] code C over Fq, its dual is

C⊥ := {x ∈ Fn
q : x · y = 0 for all y ∈ C}

where x · y = x1y1 + ... + xnyn. C⊥ is an [n, n − k]-code, and one might be
interested in knowing its minimum distance in terms of some parameters of
C. There is indeed an interesting relationship, as stated by a famous result
of MacWilliams. Recall that the enumerator polynomial of C is defined as
AC(z) =

∑
x∈C z

w(x).

Theorem 4.1 (MacWilliams). Let C be an [n, k]-code over Fq, A its enumerator
polynomial and B the enumerator polynomial of C⊥. Then

B(z) =
1

|C|
(1 + (q − 1)z)nA

(
1− z

1 + (q − 1)z

)
.

If AC(z) =
∑n

i=0Aiz
i, the minimum distance of C is the minimum i > 0

such that Ai ̸= 0, so MacWilliams’ theorem allows one to calculate the minimum
distance of C⊥, provided that we know the enumerator polynomial of C.

One might ask if there is some relationship between the Generalised Ham-
ming weights of C and those of C⊥. The following theorem, due to Wei, gives
a nice relationship between the two:

Theorem 4.2 (Wei’s duality theorem). Let C be an [n, k] code, d1, ..., dk the
generalised Hamming weights of C, d⊥1 , ..., d

⊥
n−k the generalised Hamming weights

of C⊥, then

[n] = {n+ 1− d1, ..., n+ 1− dk} ⊎ {d⊥1 , ..., d⊥n−k}.

where A⊎B denotes the disjoint union of A and B. In other words, the weight
hierarcy of C⊥ is the sequence which forms the complement of the sequence
n+ 1− dk, ..., n+ 1− d1 in [n].

A direct proof, along with some examples, can be found in [3].

18



CHAPTER 4. DUALITY 19

Definition 4.1. Let r ∈ Z+, q be a prime power. The simplex code Sr(q) is the

dual of the Hamming code Hr(q). It is a
[
qr−1
q−1 , r

]
-code.

Corollary 4.2.1.

di(Sr(q)) = qr−1 + qr−2 + ...+ qr−i for all i ∈ [r].

Proof. By Corollary 3.4.1, the complement of the weight hierarchy of Hr(q) in[
qr−1
q−1

]
is
{

qs−1
q−1 + 1 : 0 ≤ s ≤ r − 1

}
, so, by Wei’s duality theorem, the gener-

alised Hamming weights of Sr(q) are those of the form

qr − 1

q − 1
+ 1− qs − 1

q − 1
− 1 = 1 + q + q2 + ...+ qr−1 − (1 + q + q2 − ...+ qs−1)

= qs + qs+1 + ...+ qr−1

If we put these in ascending order, the ith one is qr−1 + ...+ qr−i.

Example. Let C = ⟨(1, 1, ..., 1)⟩ be the repetition code of length n over Fq, which
is an [n, 1]-code. Its dual is the parity check code of length n, with generator
matrix 

1 0 . . . 0 −1
0 1 . . . 0 −1
...

...
. . .

...
...

0 0 . . . 1 −1


which is an [n, n− 1]-code. C has only one generalised Hamming weight, which
is its minimum distance d1 = n, therefore, by the previous theorem, the weight
hierarchy of C⊥ is 2, 3, ..., n.

In this chapter, we generalise Wei’s result to matroids, but first we need to
introduce the notion of dual matroid.

4.1 The dual of a matroid

LetM = (M, I) be a matroid, B its set of bases and B∗ := {σ ⊆M :M\σ ∈ B}.

Theorem 4.3. B∗ is a set of bases for a matroid structure on M .

We refer to [1] for a proof of this fact.

Definition 4.2. The dual matroid of M, denoted by M∗ is the matroid whose
ground set is M and whose set of bases is B∗.

We can also describe the independent sets, nullity function, rank function
and circuits of M∗.

Theorem 4.4. Let I∗, ρ∗, n∗, C∗ be, respectively, the independent sets, the
rank function, the nullity function and the circuits of M∗. Let also σ ⊆ M .
Then
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i) σ ∈ I∗ ⇐⇒ M\σ contains a basis of M.

ii) ρ∗(σ) = ρ(M\σ) + |σ| − ρ(M).

iii) n∗(σ) = n(M\σ) + |σ| − n(M).

iv) σ ∈ C∗ ⇐⇒ M\σ is maximal among the subsets of M which do not
contain a basis.

Remark. ρ∗(M) = n(M) and, analogously, n∗(M) = ρ(M).
Also, it is clear that M∗∗ = M.

A priori, it is not clear how this construction is related to the notion of dual
code. The following result is of key importance to this.

Theorem 4.5. Let C be an [n, k]-code over Fq, C
⊥ its dual, then

MC⊥ = (MC)
∗.

In order to prove this, the following definition will be useful.

Definition 4.3. Let M = (M, I) be a matroid. We say that σ ⊆M is spanning
if it contains a basis of M.

Remark. If M = M(v1, ..., vn) for some vectors v1, ..., vn in a vector space V ,
then σ ⊆ [n] is spanning if and only if ⟨v1, ..., vn⟩ = ⟨vi : i ∈ σ⟩.
Remark. Let M = (M, I) be a matroid, then σ ⊆ M is independent in M∗ if
and only if M\σ is spanning in M.

We need a couple of lemmas in order prove theorem 4.5.

Lemma 4.6. Let V be a vector space over a field k, ϕ1, ..., ϕn ∈ V ∗, where V ∗

denotes the dual of V . If ψ ∈ V ∗, then

ψ ∈ ⟨ϕ1, ..., ϕn⟩ ⇐⇒
n⋂

i=1

kerϕi ⊆ kerψ.

Proof. The ” =⇒ ” implication is clear since, if ψ =
∑

i λiϕi and if ϕi(x) = 0
for all i, then ψ(x) = 0.

We prove the opposite implication by induction on n. When n = 1, we have
kerϕ1 ⊆ kerψ. If ϕ1 = 0 then ψ = 0 and we are done, otherwise there exists
x ∈ V such that ϕ1(x) = 1. If y ∈ V , then ϕ1(y − ϕ1(y)x) = 0, therefore
y − ϕ1(y)x ∈ kerϕ1 ⊆ kerψ, so ψ(y) = ϕ1(y)ψ(x) for all y ∈ V .

If n > 1, let W = kerϕn, then

n−1⋂
i=1

ker(ϕi|W ) =

n−1⋂
i=1

kerϕi ∩W =

n⋂
i=1

kerϕi ∩W ⊆ kerψ ∩W = ker(ψ|W ).

By induction, there are λ1, ..., λn−1 ∈ k such that ψ|W =
∑n−1

i=1 λiϕi|W , but
this means that

W = kerϕn ⊆ ker

(
ψ −

n−1∑
i=1

λiϕi

)
.
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We are back to the case ”n = 1”, which we already proved, so there exist λn ∈ k
such that ψ −

∑n−1
i=1 λiϕi = λnϕn.

Lemma 4.7. Let V be a vector space over a field k, v1, ..., vn ∈ V and C =
{x ∈ kn :

∑n
i=1 xivi = 0}. Let also v∗i : C → k, x 7→ xi for all i ∈ [n]. Then

M(v1, ..., vn)
∗ = M(v∗1 , ..., v

∗
n).

Proof. Let σ ⊆ [n]. If σ is an independent set of M(v1, ..., vn)
∗ then, by defi-

nition, [n]\σ is a spanning set of M(v1, ..., vn), so, for all i ∈ σ, we have that
vi ∈ ⟨vj : j ∈ [n]\σ⟩. This implies that for all i ∈ σ there is some x ∈ kn such
that suppx ⊆ [n]\σ and x− ei ∈ C, where ei is the vector of kn whose entries
are all zero, except for the ith entry which is equal to 1. This is because there
are xj , with j ∈ [n]\σ, such that vi =

∑
j∈[n]\σ xjvj .

Let’s prove that σ is an independent set of M(v∗1 , ..., v
∗
n). Let λi ∈ k for all

i ∈ σ such that
∑

i∈σ λiv
∗
i = 0. If j ∈ σ, then there is some x ∈ kn such that

x− ej ∈ C and suppx ⊆ [n]\σ, so

0 =
∑
i∈σ

λiv
∗
i (x− ej) =

∑
i∈σ

λi(xi − δij) = −
∑
i∈σ

λiδij = −λj

where we have used that, since suppx ⊆ [n]\σ, xi = 0 for all i ∈ σ. Since j is
arbitrary, this means that the λj are all zero and it follows that the v∗j , with
j ∈ σ, are linearly independent.

Let’s now assume that σ is an independent set of M(v∗1 , ..., v
∗
n) and let’s

prove that σ is also an independent set of M(v1, ..., vn)
∗, or, equivalently, that

[n]\σ is a spanning set of M(v1, ..., vn). Let j ∈ σ, then v∗j ̸∈ ⟨v∗i : i ∈ σ\{j}⟩.
By lemma 4.6, we have that ⋂

i∈σ\{j}

ker v∗i ̸⊆ ker v∗j

so there exists x ∈ C such that v∗i (x) = xi = 0 for all i ∈ σ\{j} and v∗j (x) =
xj ̸= 0. More succintly, there is x ∈ C such that j ∈ suppx ⊆ [n]\σ ∪ {j}. But
then,

n∑
i=1

xivi = xjvj +
∑

i∈[n]\σ

xivi = 0.

Dividing by xj and isolating vj , this implies that vj ∈ ⟨vi : i ∈ [n]\σ⟩. Since
this is true for all j ∈ σ, this means that [n]\σ is a spanning set of M(v1, ..., vn),
which is what we wanted to prove.

Remark. We say that a matroid is k-representable if it is isomorphic to one
of the form M(v1, ..., vn), for some vectors v1, ..., vn belonging to some vector
space V over k. The previous lemma implies that the dual of a k-representable
matroid is k-representable.
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Proof of theorem 4.5. LetH be a parity-check matrix of C and denote its columns
by h1, ..., hn. By lemma 4.7, M∗

C = M(h1, ..., hn)
∗ = M(h∗1, ..., h

∗
n), where

h∗i : C → Fq, x 7→ xi. By proposition 3.1, M(h∗1, ..., h
∗
n) is uniquely determined

by ker f , where f : Fn
q → C∗, x 7→

∑n
i=1 xih

∗
i . But

f(x) = 0 ⇐⇒
n∑

i=1

xih
∗
i = 0 ⇐⇒

n∑
i=1

xih
∗
i (y) = 0 for all y ∈ C

⇐⇒
n∑

i=1

xiyi = x · y = 0 for all y ∈ C ⇐⇒ x ∈ C⊥

Therefore ker f = C⊥ and M∗
C = M(h∗1, ..., h

∗
n) = MC⊥ .

4.2 Wei duality for matroids

Wei’s duality theorem has a strightforward generalisation to matroids.

Theorem 4.8 (Wei duality for matroids). Let M be a matroid with nullity k
and cardinality n, d1, ..., dk its generalised Hamming weights and d∗1, ..., d

∗
n−k the

generalised Hamming weights of its dual. Then

[n] = {d1, ..., dk} ⊎ {n+ 1− d∗1, ..., n+ 1− d∗n−k}.

Proof. Let S = {d1, ..., dk}, T = {n + 1 − d∗1, ..., n + 1 − d∗n−k}. Since |S| = k
and |T | = n − k, we just need to prove that S and T are disjoint. Assume, by
contradiction, that they aren’t disjoint, then there exist indices i, j such that
di = n + 1 − d∗j . Let σ ⊆ M such that |σ| = di and n(σ) ≥ i. If τ = M\σ,
we have that |τ | = n − |σ| = n − di = d∗j − 1 < d∗j , so n

∗(τ) ≤ j − 1 because
otherwise we would have a set with nullity at least j, but with cardinality less
than dj(M∗).

By theorem 4.4,

j − 1 ≥ n∗(τ) = n(M\τ) + |τ | − n(M)

= n(σ) + |M | − |σ| − n(M) ≥ i+ n− di − k.

Since the double dual of a matroid is the matroid itself, the roles of i and j
in what we said before can be interchanged and we also get

i− 1 ≥ j + n− d∗j − n∗(M) = j + n− d∗j − ρ(M)

= j + n− d∗j − n+ k = j − d∗j + k.

Putting all this together, we get

j − 1 ≥ i+ n− di − k ≥ j − d∗j + k + 1 + n− di − k

= j − (di + d∗j ) + n+ 1 = j − (n+ 1) + n+ 1 = j.

which is a contradiction.
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Example. The weight hierarchy of Ur,n is r + 1, r + 2, ..., n. If we apply Wei
duality for matroids to calculate the weight hierarchy of U∗

r,n, we get n − r +
1, n− r + 2, ..., n. This is no surprise: a subset σ of [n] is a spanning subset for
Ur,n if and only if |σ| ≥ r, so |σ| is independent for U∗

r,n if and only if |[n]\σ| ≥ r,
but this is true if and only if |σ| ≤ n− r, so U∗

r,n = Un−r,n.



Chapter 5

Hamming weights and Betti
numbers

Our next goal is to describe the generalised Hamming weights of a matroid
through its Z-graded Betti numbers. In order to do so, we first have to reinter-
pret the nullity of a subset of a matroid as a way to count the non-redundant
circuits contained in it. Most of the following results come from [5].

5.1 Non-redundancy of circuits

Throughout this section, let M = (M, I) be a matroid and C its set of circuits.

Definition 5.1. Let X be a set and Σ ⊆ 2X . We say that Σ is non-redundant,
if for all τ ∈ Σ ⋃

σ∈Σ\{τ}

σ ⊊
⋃
σ∈Σ

σ.

In other words, Σ is non-redundant if, when taking the union of its elements,
we can’t exclude any of them if we don’t want to get a smaller set.

Notice that Σ is non-redundant if and only if for each σ ∈ Σ we can always
find x ∈ σ such that x ̸∈ τ for all τ ∈ Σ\{σ}.

We are particularly interested in sets of non-redundant circuits in a matroid.

Remark. If σ ⊆ M then C ⊆ σ is a circuit of M if and only if it is a circuit
of M|σ. In other words, the circuits of M|σ are precisely the circuits of M
contained in σ.

Definition 5.2. The degree of non-redundancy of M is

deg(M) = max{|Σ| : Σ ⊆ C and Σ is non-redundant}.

In other words, it is the maximal number of non-redundant circuits contained in
M . If σ ⊆ M , we denote deg(M|σ) by deg(σ), which, by the previous remark,
is also the maximal number of non-redundant circuits of M contained in σ.

24
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We shall prove, after a couple of lemmas, that deg(σ) = n(σ) for all σ ⊆M .

Lemma 5.1. Let Σ ⊆ C be non-redundant, τ =
⋃

σ∈Σ σ. Then n(τ) ≥ |Σ|.

Proof. Let’s prove this by induction on s = |Σ|. If s = 1, the τ is itself a circuit.
If we remove any element from τ we get, by definition, an independent set, and
τ itself is dependent, so ρ(τ) = |τ | − 1 and therefore n(τ) = 1.

Now, let s > 1, and assume that the claim is true for s − 1. Let σ0 ∈ Σ,
Σ0 = Σ\{σ0} and τ0 =

⋃
σ∈Σ0

σ. Then, by induction and N3),

n(τ) = n(τ0 ∪ σ0) ≥ n(τ0) + n(σ0)− n(τ0 ∩ σ0) ≥ s− n(τ0 ∩ σ0)

Let x ∈ σ0 such that x ̸∈ σ for all σ ∈ Σ0, which exists because Σ is non-
redundant. In other words, x ∈ σ0\τ0, but then τ0 ∩ σ0 ⊆ σ0\{x}, which,
since σ0 is a circuit, implies that τ0 ∩ σ0 is independent and therefore that
n(σ0 ∩ τ0) = 0.

Corollary 5.1.1. deg(M) ≤ n(M).

Proof. Let Σ be a set of non-redundant circuits of M with maximal cardinality,
so that |Σ| = deg(M). Then, by N1) and the previous lemma,

n(M) ≥ n

(⋃
σ∈Σ

σ

)
≥ |Σ| = deg(M)

The following proposition is a strengthening of the third defining axiom for
the circuits of a matroid.

Proposition 5.2. Let σ, τ be distinct circuits, x ∈ σ ∩ τ , y ∈ σ\τ . Then there
exists a circuit ρ such that

y ∈ ρ ⊆ (σ ∪ τ)\{x}.

Proof. Let’s prove this by induction on n = |σ ∪ τ |.
The starting point of the induction has to be n = 3, as if n ≤ 2 then, by

C2), it is not hard to see that σ and τ would have to be disjoint.
When n = 3, by C2) and the other hypotheses, we must have σ = {a, b}, τ =

{a, c}, therefore x = a, y = b. If ρ ⊆ (σ ∪ τ)\{x} = {b, c} is a circuit, we can’t
have ρ = {b} or ρ = {c} because of C2), so the only possibility is ρ = {a, b},
which contains y = b.

Assume now that n > 3 and that the claim is true for m < n. Let ρ be a
circuit such that ρ ⊆ (σ ∪ τ)\{x}. If y ∈ ρ we are done, so let’s assume y ̸∈ ρ.

By C2), since ρ ̸= σ, there exists z ∈ ρ\σ ⊆ τ . So z ∈ ρ ∩ τ and x ∈ τ\ρ.
Also, note that y ̸∈ ρ∪ τ , so |ρ∪ τ | < |σ ∪ τ | = n, but then, by induction, there
exists a circuit η such that x ∈ η ⊆ (ρ ∪ τ)\{z}.
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Now, we have that y ̸∈ η, since y ̸∈ τ and y ̸∈ ρ, so y ∈ σ\η. We also have
that x ∈ η ∩ σ and that |σ ∪ η| < n, since z ̸∈ η and z ̸∈ σ. Therefore, by
induction, there exists a circuit ζ such that y ∈ ζ ⊆ (σ ∪ η)\{x}

But η ⊆ ρ ∪ τ ⊆ σ ∪ τ , so the proof is complete.

Lemma 5.3. Let Σ be a maximal set of non-redundant circuits. Then⋃
σ∈Σ

σ =
⋃
σ∈C

σ.

Proof. Let τ =
⋃

σ∈Σ σ and assume by contradiction that there is a circuit ρ
such that ρ ̸⊆ τ , so there exists x ∈ ρ\τ .

For each σ ∈ Σ, let xσ ∈ σ such that xσ ̸∈ σ′ for all σ′ ∈ Σ\{σ}.
The set of circuits that contain x is non-empty by hypothesis. If γ is a

circuit that contains x and xσ for some σ ∈ Σ, then γ ̸= σ, x ∈ γ\σ and
xσ ∈ σ ∩ γ, therefore, by the previous proposition, there exists a circuit γ′ such
that x ∈ γ′ ⊆ (γ ∪ σ)\{xσ}.

In other words, if we have a circuit that contains x and some xσ, we can
alway find a circuit that contains x and that does not contain xσ. Therefore, by
applying this enough times to ρ, we can find a circuit σ0 such that x ∈ σ0 and
xσ ̸∈ σ0 for all σ ∈ Σ, but this means that Σ ∪ {σ0} is non-redundant, which
contradicts its maximality.

Theorem 5.4. n(σ) = deg(σ) for all σ ⊆M.

Proof. Let σ ⊆ M . It remains to prove that deg(σ) ≥ n(σ). It is enough to
prove that there exist n(σ) non-redundant circuits contained in σ.

If n(σ) = 0 then σ is independent and it doesn’t contain any circuit. If
n(σ) = 1, then σ = τ∪{x} with τ independent and x ̸∈ τ , but then σ can contain
at most one circuit, since if there were two distinct circuits γ, γ′ contained in σ,
both would have to contain x but then, by C2), γ ∪ γ′\{x} ⊆ τ would have to
be dependent. Therefore the lemma is true if n(σ) = 0 or n(σ) = 1.

Assume by contradiction that the theorem doesn’t hold for all σ ⊆ M , and
let σ ⊆ M be minimal for inclusion such that the theorem doesn’t hold for σ.
By the previous remarks, n(σ) ≥ 2, so σ is dependent and we can find a circuit
τ ⊆ σ. Let x ∈ τ , σ′ = σ\{x}. Since σ is minimal, the lemma holds for σ′, so
there exist n(σ′) non-redundant circuits contained in σ′.

Now, n(σ′) is the smallest number of elements we have to remove from σ′ in
order to get an independent subset, and likewise for σ, so, since σ′ is obtained
from σ by removing an element, we have that n(σ) ≤ n(σ′)+1, or, equivalently,
that n(σ′) ≥ n(σ)− 1.

Therefore we can find at least n(σ) − 1 non-redundant circuits in σ′, and
therefore in σ. Denote them by τ1, ..., τn(σ)−1. Moreover,

x ∈ τ\
n(σ)−1⋃
i=1

τi,
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so the τi don’t cover all of the circuits of σ, but then lemma 5.3 implies that
there is a circuit τn(σ) contained in σ such that τ1, ..., τn(σ) are non-redundant,
which is a contradiction.

5.2 Generalised Hamming weights and Betti num-
bers

In this section, we use the previous results to prove that the Z-graded betti
numbers of a matroid completely determine its weight hierarchy. In order to
do that, we need Hochster’s theorem along with the following result, which
describes the homology of matroids. For a proof, see [4].

Theorem 5.5. Let M be a matroid and k be a field, then

h̃i(M, k) =

{
0 i ̸= ρ(M)− 1

(−1)ρ(M)−1χ(M) i = ρ(M)− 1

where χ(M) is the Euler characteristic of M, which can be defined in general
for a simplicial complex K as

χ(K) =
∑
i≥0

(−1)i−1fi(K)

where fi(K) denotes the number of faces of K that have cardinality i.

An immediate consequence of this theorem is that h̃i(M, k) does not depend
on the field k. By relating these numbers with the Betti numbers of M, through
Hochster’s theorem, we shall soon see that they also do not depend on the choice
of k.

Remark. In the literature, the fi are frequently defined for i ≥ 0 as the number
of i-dimensional faces, that is, the number of faces of cardinality i+ 1 and the
Euler characteristic is defined as

∑
i≥0(−1)ifi. This is 1 more than the Euler

characteristic as we defined it because we also count the empty set, which is the
only face of cardinality 0.

Definition 5.3. Let M = (M, I) be a matroid, e ∈M . We say that

i) e is a loop if is not contained in any basis of M.

ii) e is an isthmus if it is contained in every basis of M.

Remark. e is an isthmus of M if and only if it is a loop of M∗.

Proposition 5.6. Let M be a matroid. Then χ(M) = 0 if and only if M has
an isthmus.
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We omit the proof since it’s a bit long and outside of our scope, but the
fact that, if M has an ishmus, then χ(M) = 0 is true in general for simplicial
complexes: if a simplicial complex has a vertex which is contained in every facet,
then its Euler characteristic is zero.

One can expect this, since, if one looks at the complex geometrically, it fol-
lows that one can contract every facet to the common vertex and so the complex
is ”contractible”, so we should expect its Euler characteristic, as we defined it,
to be zero (one less than the standard definition). The reverse implication is not
true for simplicial complexes in general, but it turns out to be true for matroids.

Lemma 5.7. Let M = (M, I) be a matroid, e ∈M , then

e is an isthmus ⇐⇒ e is not contained in any circuit.

Proof. First, assume that e is an isthmus and suppose, by contradiction, that
it was contained in a circuit σ, then σ\{e} would be independent and therefore
contained in some basis τ , which would also contain e, but then σ ⊆ τ which is
a contradiction since σ is dependent and τ is independent.

Now assume that e is not contained in any circuit and let τ be a basis. If
τ did not contain e, τ ∪ {e} would be dependent and would therefore contain a
circuit σ, which would necessarily have to contain e, but this isn’t possible since
e is contained in no circuit.

Now, let M = (M, I) be a matroid, Ni = {σ ⊆M : n(σ) = i}.

Theorem 5.8. Let k be a field, σ ⊆M , then

βi,σ(M, k) =

{
0 i ̸= n(σ)

(−1)ρ(σ)−1χ(M|σ) i = n(σ)

Moreover,

βi,σ(M, k) ̸= 0 ⇐⇒ n(σ) = i and σ is minimal in Ni.

Proof. Let us denote βi,σ(M, k) simply by βi,σ for brevity.
From Hochster’s theorem and theorem 5.5, we have that

βi,σ = h̃|σ|−i−1(M|σ, k) =

{
0 |σ| − i− 1 ̸= ρ(σ)− 1

(−1)ρ(σ)−1χ(M|σ) |σ| − i− 1 = ρ(σ)− 1

and the first part is proved, since |σ| − i− 1 = ρ(σ)− 1 ⇐⇒ i = n(σ).
As a consequence, we have that

βi,σ ̸= 0 ⇐⇒ n(σ) = i and χ(M|σ) ̸= 0

From proposition 5.6 and lemma 5.7, it follows that a matroid has zero Euler
characteristic if and only if it is not the union of its circuits, therefore βi,σ ̸= 0
if and only if n(σ) = i and σ is the union of the circuits contained in it. It thus
remains to prove that this is true if and only if σ is minimal in Ni.
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Assume that n(σ) = i and that σ is the union of the circuits contained in
it, let τ ∈ Ni such that τ ⊆ σ. From theorem 5.4, we can find i non-redundant
circuits τ1, ..., τi in τ , and therefore in σ as well, but, since n(σ) = deg(σ) = i, it
follows that τ1, ..., τi form a maximal set of non-redundant circuits in σ. From
lemma 5.3,

σ =
⋃

γ∈Cσ

γ =

i⋃
j=1

τi ⊆ τ

where Cσ denotes the set of circuits contained in σ.
Now assume that σ is minimal in Ni, let τ1, ..., τi be a maximal set of non-

redundant circuits contained in σ and let τ =
⋃i

j=1 τj . By lemma 5.3, τ is the
union of all circuits contained in σ and by theorem 5.4 we also have that τ ∈ Ni,
but τ ⊆ σ and σ is minimal in Ni, so σ = τ and the proof is complete.

Corollary 5.8.1. The multigraded, Z-graded and global Betti numbers of a
matroid do not depend on the field over which they are calculated.

In light of this, we will denote the multigraded, Z-graded and global Betti
numbers of a matroid M by βi,σ(M), βi,j(M) and βi(M) respectively.

We are now able to express the generalised Hamming weights of a matroid
in terms of its Z-graded Betti numbers. This result was proved by Johnsen and
Verdure in [5].

Theorem 5.9 (Johnsen-Verdure). Let M = (M, I) be a matroid, i ∈ [n(M)],
then

di(M) = min{d ∈ N : βi,d(M) ̸= 0}.

Proof. Let m denote the quantity on the right hand side of the equation. Let
σ ∈ Ni such that |σ| = di(M), then σ is minimal and βi,σ(M) ̸= 0 by the
previous theorem, but then βi,|σ|(M) =

∑
|τ |=|σ| βi,τ (M) > 0, therefore |σ| =

di(M) ≥ m.
We have that βi,m(M) =

∑
|σ|=m βi,σ(M) ̸= 0, so there exists σ ⊆ M such

that |σ| = m and βi,σ(M) ̸= 0, but then, by the previous theorem, σ is minimal
in Ni, in particular di(M) ≤ |σ| = m.

Remark. In order to calculate the Betti numbers of a simplicial complex, one
needs to know the minimal generators of its Stanley-Reisner ideal, which cor-
respond to its minimal non-faces. In the case of a matroid, this amounts to
knowing its circuits. If the matroid is associated to a linear code C, its circuits
are the minimal supports of the non-zero codewords in C.

Example. Let C be the binary code with generator matrix

G =

1 0 0 0 0 1
0 1 1 0 1 0
0 0 0 1 1 1


Its set of codewords with minimal support is
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S = {100001, 011010, 000111, 111100, 011101},

therefore, its Stanley-Reisner ideal is

I = (x1x6, x1x2x5, x4x5x6, x1x2x3x4, x2x3x4x6).

If one computes a minimal resolution of R/I, where R = k[x1, x2, x3, x4, x5, x6],
one gets the following Betti diagram

0 1 2 3
0 1 0 0 0
1 0 1 0 0
2 0 3 2 0
3 0 2 7 4

where the entry indexed by the ith row and the jth column corresponds to βj,i+j ,
as it is customary to do since it is well known that the Betti numbers βi,j with
j < i are zero. Therefore, by theorem 5.9, we have d1(C) = 2, d2(C) = 4 and
d3(C) = 6.

While very interesting from a theoretical perspecrive, there are two main
practical issues with this approach:

1. In order to use theorem 5.9, one needs to know all the minimal supports
of the non-zero elements of C, which, for long codes, can be quite big.

2. One also needs to calculate the free resolution of a monomial ideal with a
big number of generators, which is quite expensive from a computational
perspective.

In the next chapter we introduce a technique, based on Gröbner bases, which
allows us to get some informations on the Hamming weights of a binary codes
without having to find all the minimal supports.



Chapter 6

Test sets for binary codes

In this chapter, we introduce the notion of test set, which will allow us to bound
the Hamming weights of a binary code by calculating the Betti numbers of a
monomial ideal which is smaller than the Stanley-Reisner ideal, and thus more
computationally manageable. We will also discuss when this bound is attained,
along with some open problems. From now on, we restrict our attention on
binary codes, though some of the results and definitions that we discuss have
been generalised to q-ary codes, for example see [6].

6.1 The ideal associated to a binary code

From now on, let k be a field. We begin by introducing some notation.

Definition 6.1. Let n ∈ Z+, I ⊆ [n] and a ∈ Fn
2 . If X1, ..., Xn are the variables

of the polynomial ring k[X1, ..., Xn], we define

• XI =
∏

i∈I Xi.

• Xa =
∏n

i=1X
ai
i , where, with abuse of notation, we identify the classes of

0 and 1 in F2 with the non negative integers 0 and 1.

Remark. If a ∈ Fn
2 , then X

a = Xsupp a, in particular, X0 = 1. Also notice that,
for a and b in Fn

2 , supp(a + b) = supp a△ supp b, where the triangle denotes
the symmetric difference: for two sets A and B, their symmetric difference is
A△B = (A ∪B)\(A ∩B).

Moreover, notice that, if I and J are disjoint, then XI∪J = XIXJ .

Definition 6.2. Let C be a binary code of length n. The ideal associated to C
over k is

I(C) =
(
Xa −Xb : a, b ∈ Fn

2 , a+ b ∈ C
)
+
(
X2

i − 1 : i ∈ [n]
)
.

Remark. In a sense, the ideal I(C) captures the relationships between the el-
ements of the group Fn

2/C in a polynomial setting: the binomials X2
i − 1 are

31
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there because every element should have order 2, and the binomials Xa − Xb

are there because, if a+b = a−b ∈ C, then a and b represent the same elements
in the quotient.

Notice that, if J = (X2
i − 1 : i ∈ [n]) and a, b ∈ Fn

2 , then Xa+b ≡ XaXb

mod J .

The next proposition shows how to present I(C) with a smaller set of gen-
erators.

Proposition 6.1. Let C be an [n, k]-code and w1, ..., wk the rows of a generator
matrix of C, then

I(C) = (Xwi − 1 : i ∈ [k]) + (X2
i − 1 : i ∈ [n]).

Proof. Let K be the ideal on the right hand side and let J = (X2
i − 1 : i ∈ [n])

as before. It is clear that K ⊆ I(C), so it only remains to prove the reverse
inclusion. Let a, b ∈ Fn

2 such that a+ b ∈ C and let’s prove that Xa −Xb ∈ K.
Since both ideals contain J , we can perform all our calculations modulo J . We
have that

Xa −Xb ≡ Xa(Xb)2 −Xb ≡ (Xa+b − 1)Xb mod J,

so it suffices to prove that Xa+b − 1 ∈ K, but a + b ∈ C = ⟨w1, ..., wk⟩, so
a + b =

∑
i∈S wi for some subset S ⊆ [n] (that’s because linear combinations

over F2 are just sums). But then

Xa+b − 1 ≡ X
∑

i∈S wi − 1 ≡
∏
i∈S

Xwi − 1 mod J.

Let S = {i1, ..., il} and mj = Xwij , then∏
i∈S

Xwi − 1 = m1...ml − 1

= m1...ml −m1...ml−1 +m1...ml−1 − ...+m1m2 −m1 +m1 − 1

= m1...ml−1(ml − 1) +m1...ml−2(ml−1 − 1) + ...+m1 − 1 ∈ J,

because mj − 1 = Xwij − 1 ∈ J for all j.

6.2 A quick review of Gröbner bases

For this section, let S = k[X1, ..., Xn] be fixed. We give a quick summary of
term orders, multivariate polynomial division and Gröbner bases.

Definition 6.3. A term order on S is an order relation ≤ on the set of mono-
mials of S which satisfies the following properties

i) ≤ is total, that is, given two monomials m1 and m2, then m1 ≤ m2 or
m2 ≤ m1.
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ii) If m1,m2 and m3 are monomials and m1 ≤ m2, then m1m3 ≤ m2m3.

iii) If m1,m2 are monomials and m1|m2, then m1 ≤ m2.

We say that ≤ is degree-compatible if m1 ≤ m2 =⇒ degm1 ≤ degm2.

A term order ≤ also satisfies the following properties which, given i) and ii),
are both equivalent to iii):

iv) ≤ is a well order, that is, every nonempty subset of monomials has a
minimum with respect to ≤.

v) 1 < Xi for all i ∈ [n].

Remark. If ≤ is a degree-compatible term order and degm1 < degm2, then
m1 < m2 since, if this wasn’t the case, we would have m2 ≤ m1 which implies
degm2 ≤ degm1.

Example. The most intuitive term order on S is probably the lexicographic
order, abbreviated as LEX:

Xα ≤LEX Xβ if and only if they are equal or, if i is the smallest index such
that αi ̸= βi, then αi < βi, for example X1X2X

2
3 <LEX X1X

2
2 <LEX X2

1 . One
can think of LEX as the way words are ordered in the dictionary. LEX is not
degree-compatible, as the example we just made shows.

We also have the degree-lexicographic order, abbreviated DEGLEX, where
Xα ≤DLEX Xβ if and only if degXα < degXβ or degXα = degXβ and
Xα ≤LEX Xβ . DEGLEX is clearly degree-compatible.

A useful non-example is the reverse-lexicographic order (REVLEX):
Xα ≤RLEX Xβ if and only if αn > βn or αn = βn and αn−1 > βn−1 or
αn = βn, αn−1 = βn−1 and αn−2 > βn−2 and so on. Basically, the ”bigger”
monomials are the ones that have ”less” indeterminates with big indices, for
example X1X3 <RLEX X2

2 . This order relation satisfies i) and ii), but not iii)
as, for example, X1 <RLEX 1.

Finally, we have the degree-reverse-lexicographic order (DEGREVLEX):
Xα ≤DRL Xβ if and only if degXα < degXβ or degXα = degXβ and
Xα ≤RLEX Xβ . This is a term-order and, although a bit counterintuitive,
it turns out to be more efficient than LEX and DEGLEX.

Definition 6.4. Let f ∈ S\{0}, ≤ a term order on S, I ⊆ S an ideal.

i) The support of f is the set of monomials of S which appear in f with a
non-zero coefficient.

ii) The leading term of f is the biggest monomial, with respect to ≤, in the
support of f . It is denoted by LT≤(f).

iii) The leading coefficient of f , dentoed by LC≤(f) is the coefficient of LT≤(f)
in f .

iv) The initial ideal of I is the monomial ideal, denoted by LT≤(I), which is
generated by the leading terms of the elements of I.
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If I = (f1, ..., fc) is an ideal of S, one might hope that
LT≤(I) = (LT≤(f1), ...,LT≤(fc)). This is not always the case, for example, let
I = (X + Y,X +2Y ) ⊆ Q[X,Y ] and let ≤ be any term order such that X > Y ,
then LT≤(X+Y ) = LT≤(X+2Y ) = X, so (LT≤(X+Y ),LT≤(X+2Y )) = (X),
but actually I = (X,Y ), so LT≤(I) = (X,Y ).

Definition 6.5. Let I be an ideal of S, ≤ a term order on S. A Gröbner basis of
I, with respect to ≤, is a subset G ⊆ I\{0} such that LT≤(I) = (LT≤(g) : g ∈ G).
We say that G is reduced if

i) LC≤(g) = 1 for all g ∈ G.

ii) LT≤(g) ̸ | LT≤(h) for all g, h ∈ G such that g ̸= h.

iii) For all g ∈ G, LT≤(g) is the only monomial in LT≤(I) which is also in
the support of g.

Given a term order on S, every ideal I of S has a finite Gröbner basis.
Moreover, it has a unique reduced Gröbner basis (which is finite as well). It can
be found algorithmically, starting from a finite set of generators of I, through
a process called Buchberger’s algorithm, which is based on a generalisation of
polynomial division to multivariate polynomials.

Remark. A reduced Gröbner basis of an ideal I can always be obtained form
a Gröbner basis G′ in the following way: take h1, ..., hc ∈ G′ such that their
leading terms form a minimal set of generators for LT≤(I), and make them
monic by dividing them by their leading coefficient. For each i, if there is some
monomial m in the support of hi, other than the leading term, which is also
in LT≤(I), then LT≤(hj)|m, so we can subtract some multiple of hj from hi in
order to remove m from the support of hi. This only alters the monomials in
the support of hi smaller than m, so we can repeat this process over and over
until supphi ∩ LT≤(I) = {LT≤(hi)}.

In particular, we have that f ∈ I is in the reduced Gröbner basis of I if and
only if it is monic, LT≤(f) is a minimal generator of LT≤(I) and all the other
monomials appearing f are not in LT≤(I).

Definition 6.6. Let f, g1, ..., gc ∈ S, ≤ a term order on S. A multivariate
polynomial division of f by g1, ..., gc, with respect to ≤, is an expression of the
form

f =

c∑
i=1

qigi + r

such that

i) For all i, either qi = 0 or qi ̸= 0 and LT≤(qigi) ≤ LT≤(f).

ii) Either r = 0 or r ̸= 0 and LT≤(r) is not divisible by LT≤(gi) for any i.

We call r the remainder of the division.
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Multivariate polynomial division can always be carried out algorithmically,
like ordinary polynomial division: we divide the leading term of f by the leading
term of g1, then we multiply the result by g1 and we subtract it from f , we them
continue until the leading term of f is not divisible by the leading term of g1.
Then we do the same thing with g2, g3 and so on. The result, however, is
usually not unique, as we would expect since polynomial rings in more than one
variable are not principal ideal domains.

We now briefly describe Buchberger’s algorithm, for a fixed term order ≤ on
S = k[X1, ..., Xn].

Definition 6.7. Given g1, ..., gc ∈ S\{0}, the S-polynomials associated to
g1, ..., gc are

Sij(g) =
mj

mij
gi −

mi

mij
gj ;

where mi = LT≤(gi), mij = gcd(mi,mj) and g denotes the list g1, ..., gc.

Theorem 6.2 (Buchberger’s criterion). Let g1, ..., gc ∈ S, I = (g1, ..., gc). The
following are equivalent:

i) g1, ..., gc is a Gröbner basis for I.

ii) For all i < j, every multivariate polynomial division of Sij(g) by g1, ..., gc
gives a zero remainder.

iii) For all i < j there exist a multivariate polynomial division of Sij(g) by
g1, ..., gc with zero remainder.

We now describe Buchberger’s algorithm applied to an ideal I of S generated
by the list of polynomials g = g1, ..., gc:

1. Divide all the S-polynomials associated to g by g1, ..., gc.

2. If all the remainders are zero, then g1, ..., gc is a Gröbner basis of I and
we are done. Otherwise, as soon a non zero remainder r is found, add it
to the list g and repeat step 1.

The algorithm has to eventually stop, since, whenever we find a non zero
remainder, we increase the ideal (LT≤(g) : g ∈ g), but S is noetherian.

The utility of Gröbner bases is that, through multivariate polynomial di-
vision, they give ways to algorithmically solve a lot of commutative algebra
problems in the setting of polynomial rings. For example, given an ideal I gen-
erated by polynomials g1, ..., gc and f ∈ S, we can test whether or not f ∈ I:
use Buchberger algorithm to find a Gröbner basis h1, ...hd of I and perform a
multivariate polynomial division of f by h1, ..., hd, then f ∈ I if and only if the
remainder is zero.
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6.3 The reduced Gröbner basis of the ideal as-
sociated to a code

We now turn our attention back to binary codes. For the remainder of this
chapter, fix a binary [n, k]-code C and a degree-compatible term order ≤ on
S = k[X1, ..., Xn]. Denote by G≤(C) the unique reduced Gröbner basis of I(C)
with respect to ≤.

Remark. Let a, b ∈ Fn
2 . Then X

a−Xb ∈ I(C) ⇐⇒ a+ b ∈ C. One direction is
clear and follows from the definition, the other is a bit more delicate to prove.
One way is to identify S/I(C) with the group algebra of Fn

2/C.

Proposition 6.3. G≤(C) = {Xu1 −Xv1 , ..., Xuc −Xvc} ∪ {X2
i − 1 : i ∈ S} for

some u1, ..., uc, v1, ..., vc ∈ Fn
2 , S ⊆ [n]. Moreover, for all i ∈ [c] :

i) suppui ∩ supp vi = ∅.

ii) Xui > Xvi .

iii) ui + vi ∈ C.

iv) w(vi) ≤ w(ui).

Proof. Recall that a generating set for I(C) is {Xwi − 1 : i ∈ [k]} ∪ {X2
j − 1 :

j ∈ [n]}. Let’s calculate the S-polynomials:

• A direct computation shows that the S-polynomial associated to Xwi −1,
Xwj − 1 is of the form Xa −Xb for some a, b ∈ Fn

2 .

• The S-polynomial associated to X2
i − 1, X2

j − 1 is X2
j −X2

i = X2
j − 1 −

(X2
i − 1), so we can exclude it since it gives zero remainder.

• The S-polynomial associated to Xwi − 1, X2
j − 1 is either X2

j − Xwi if
j ̸∈ suppwi, in which case it gives a zero remainder and we can exclude
it, or Xwi−ej −Xj if j ∈ suppwi, where ej = (0, ..., 0, 1, 0, ..., 0), with the
1 in the jth position.

In any case, we either get a polynomial which we can exclude or a binomial of
the form Xa −Xb, with a, b ∈ Fn

2 . It is not hard to see that the remainder of a
multivariate polynomial division of a binomial by a list of binomials is again a
binomial and, since we also have the X2

i −1 in the list of binomials by which we
divide, we must end up with binomials of the form Xa−Xb such that a, b ∈ Fn

2 ,
since, as long as some monomial in the support is not square-free, we can divide
it by some X2

j − 1.
So we proved that we can always find a Gröbner basis of the form G′ =

{Xu1 −Xv1 , ..., Xuc −Xvc}∪{X2
i −1 : i ∈ [n]} for some u1, ..., uc, v1, ..., vc ∈ Fn

2

and property iii) has to be satisfied because of the previous remark. Another
remark in the previous section explained how to get a reduced Gröbner basis
from any Gröbner basis. It is not hard to see that, when applying it to G′, we
still get a set of square-free binomials along with some of the X2

i − 1.
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Property ii) has to be satisfied because a reduced Gröbner basis, by defi-
nition, only contains monic polynomials, and iv) follows from the fact that ≤
is degree-compatible, so it remains to prove i). Let i ∈ [c], then we can ex-
press ui, vi as ui = u′i + a and vi = v′i + a such that suppu′i ∩ supp v′i = ∅ and

supp a = suppui∩ supp vi. But then u
′
i+v

′
i = ui+vi ∈ C, so Xu′

i −Xv′
i ∈ I(C)

so, since G≤(C) is a Gröbner basis, there exists some j such that Xuj |Xu′
i |Xui .

Since G≤(C) is reduced, we must have i = j, so Xu′
i = Xui and u′i = ui, but

then a = 0, so supp a = suppui ∩ supp vi = ∅.

Remark. Some binomials of the form X2
i − 1 can be left out, but this only

happens if either a binomial of the form Xi −Xj , with Xi > Xj , or Xi − 1 ends
up in the Gröbner basis.

Example. Let C be the [5, 3] binary code with generator matrix1 0 0 0 0 1
0 1 1 0 1 0
0 0 0 1 1 1


By proposition 6.1, a set of generators of I(C) is

X2X3X4 − 1, X1X2X5 − 1, X1X4X5 − 1,

X2
1 − 1, X2

2 − 1, X2
3 − 1, X2

4 − 1, X2
5 − 1, X2

6 − 1.

Starting from this, one can calculate the reduced Gröbner basis of C with
respect to DEGREVLEX and it turns out to have 14 elements.

The following result is of key importance.

Theorem 6.4. Let Xu −Xv ∈ G≤(C)\{X2
i − 1 : i ∈ [n]}, then u+ v ∈ C is a

codeword with minimal support. Moreover, there exists Xa−Xb ∈ G≤(C)\{X2
i −

1 : i ∈ [n]} such that w(a+ b) = d1(C).

Proof. Let a ∈ C\{0} such that supp a ⊆ supp(u + v) = suppu ⊎ supp v.
Let b, c ∈ Fn

2 such that supp b ⊆ suppu, supp c ⊆ supp v and a = b + c (if
S = suppu ∩ supp a and T = supp v ∩ supp a, then b is the element of Fn

2 that
has ones in the entries indexed by S and all zeroes elsewhere, and likewise for
c).

But then, Xb−Xc ∈ I(C), so, since G≤(C) is a Gröbner basis and since both
Xb and Xc are square-free monomials, there exists Xs−Xt ∈ G≤(C)\{X2

i −1 :
i ∈ [n]} such that Xs divides the leading term of Xb−Xc, which is either Xb or
Xc. However, if it were Xc, we would have Xs|Xc|Xv, so Xv ∈ LT≤(I(C)), but
this is impossible because G≤(C) is reduced. Therefore, Xs|Xb|Xu, but then,
again because G≤(C) is reduced, we must have Xs −Xt = Xu −Xv.

As a consequence, Xu = Xb, so b = u and Xb−Xc−(Xu−Xv) = Xv−Xc ∈
I(C). If this weren’t zero, its leading term, would be Xv, since clearly Xc|Xv,
but this would imply that Xv ∈ LT≤(I(C)), which cannot be the case because
the Gröbner basis is reduced. Therefore Xb −Xc = Xu −Xv and so a = u+ v.
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We have proved the firs part, now we have to prove that there is a binomial
Xu−Xv in the reduced Gröbner basis such that w(u+v) = d, where d = d1(C).
Let a ∈ C such that w(a) = d, and let b, c ∈ Fn

2 be such that a = b + c, with
w(b) = ⌊d

2⌋ + 1. Then Xb −Xc ∈ I(C), so LT≤(X
b −Xc) = Xb ∈ LT≤(I(C))

and there is some Xu − Xv ∈ G≤(C)\{X2
i − 1 : i ∈ [n]} such that Xu|Xb, in

particular suppu ⊆ supp b (we have LT≤(X
b − Xc) = Xb because degXb =

w(b) > w(c) = deg(Xc) and ≤ is degree-compatible).
Let a′ = a+ u+ v = b+ u+ c+ v ∈ C. If a′ = 0 then u+ v = a and we are

done, so assume that a′ ̸= 0.
Notice that, since supp(b+ u) = supp b\ suppu, we have w(b+ u) = w(b)−

w(u). We also have the following chain of inequalities:

w(a′) = w(a+ u+ v) ≤ w(b+ u) + w(c+ v) ≤ w(b+ u) + w(c) + w(v)

= w(b)− w(u) + w(c) + w(v) ≤ w(b) + w(c) = w(a) = d.

But a′ ∈ C\{0}, so all the inequalities above must be equalities. In particular,
the last inequality being an equality implies w(v) = w(u).

If b = u then w(v) = w(u) > w(c) and a′ = c+v ∈ C\{0}, soXv−Xc ∈ I(C)
which implies that LT≤(X

v−Xc) = Xv ∈ LT≤(I(C)), which is impossible since
the Gröbner basis is reduced, therefore b ̸= u. More precisely, suppu ⊊ supp b,
hence w(u) < w(b). But then we have

w(u+ v) = w(u) + w(v) = 2w(u) ≤ 2(w(b)− 1) = 2

⌊
d

2

⌋
≤ d.

Since u+ v ∈ C\{0} we must have w(u+ v) = d.

Motivated by this result, we give the following

Definition 6.8. The G≤-test set of C is the set of elements of C of the form
u + v such that Xu −Xv ∈ G≤(C)\{X2

i − 1 : i ∈ [n]}. We will denote this set
by T≤(C).

Example. We continue with the previous example, where we have a code C with
generator matrix 1 0 0 0 0 1

0 1 1 0 1 0
0 0 0 1 1 1


We already mentioned that G≤(C) has 14 elements. The G≤-test set of C is

T≤(C) = {100001, 011010, 000111, 011101}

whereas the set of all codewords of minimal supports also contains 100110 and
111100.

In the following example, the difference between the T≤(C) and the set of
all the minimal codewords is much more prominent:
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Example. Let C be the [14, 9]-code with generator matrix

G =



1 1 0 1 0 0 0 0 0 1 0 0 0 0
1 1 1 1 0 1 0 0 1 1 0 0 0 1
0 0 1 0 0 1 1 1 1 1 0 1 1 0
1 1 0 1 1 1 0 0 1 1 0 0 0 1
0 1 1 1 1 0 0 1 0 0 1 0 1 1
0 0 1 1 0 1 1 0 1 0 0 1 0 1
0 0 1 0 1 1 1 0 1 1 1 0 1 0
0 1 0 1 1 0 1 0 1 1 0 1 1 0
1 1 1 1 1 1 0 1 0 0 0 0 1 0


and let ≤ be DEGREVLEX. The Stanley-Reisner ideal of the matroid associated
to C is minimally generated by 147 monomials, whereas the T≤(C) only has 24
elements.

We remarked at the end of chapter 4 that, in order to get the generalised
Hamming weights of C from a minimal graded free resolution of its associated
matroid, one needs to know all the minimal supports of the nonzero elements of
C, but we just showed that, in the binary case, in order to get the first Hamming
weight it’s enough to look at the G≤-test set.

Our hope is that the same is true for the higher weights, that is, if J is the
monomial ideal generated by the monomials of the form Xa such that a is in
the G≤ test set of C, we hope that

di(C) = min{j : βij(S/J) ̸= 0}.

Unluckily, this is not always the case. For example, it might happen that
S/J has projective dimension strictly less than the projective dimension of S/I,
which is k, in which case the minimum on the right hand side of the equation
doesn’t even make sense for i greater than the projective dimension of S/J .

Example. Let C be the [10, 7]-binary code with generator matrix

G =



1 0 0 0 1 0 0 1 1 1
1 1 1 1 0 1 1 1 1 1
1 0 0 1 0 1 1 0 0 0
0 0 1 1 1 0 1 0 0 1
1 0 1 0 0 1 1 0 0 1
0 0 1 1 0 1 1 1 0 0
0 0 1 1 0 0 0 1 1 1


Let I be the Stanley-Reisner ideal of MC and J be the ideal generated by the
Xa, with a ∈ T≤(C), where we take ≤ to be DEGREVLEX. The Betti table for
S/I is:

0 1 2 3 4 5 6 7
0 1 0 0 0 0 0 0 0
1 0 4 0 0 0 0 0 0
2 0 18 48 32 7 0 0 0
3 0 20 214 637 874 637 242 38
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As a consequence, by theorem 5.9, the weight hierarchy of C is (2,4,5,6,8,9,10).
On the other hand, the Betti table for S/J is

0 1 2 3 4 5 6
0 1 0 0 0 0 0 0
1 0 4 0 0 0 0 0
2 0 4 14 5 0 0 0
3 0 2 23 56 48 17 2

from which we would get the weight hierarchy (2,4,5,7,8,9), which does not
coincide with the weight hierarchy of C.

Example. For the [14, 9]-code we described before, one can show that we can
actually recover the Hamming weight from the G≤-test set.

6.4 Test sets and Hamming weights

For the remainder of this section, let J be the monomial ideal generated by
the monomials of the form Xa, with a in T≤(C). The following theorem shows
that what we hope was an equality is at least an inequality that bounds the
generalised Hamming weights of C from above. The following results come
from [7].

Theorem 6.5. Let p be the projective dimension of S/J , then p ≤ k and, for
all i ≤ p,

di(C) ≤ min{j : βij(S/J) ̸= 0}.

Proof. This follows from the fact that the minimal generators of J are a subset
of the minimal generators of I, and that’s because all the codewords in T≤(C)
have minimal support.

Corollary 6.5.1.
d1(C) = min{j : βij(S/J) ̸= 0}

Proof. β1j(S/J) is the number of minimal generators of J of degree j, and we
know, by theorem 6.4, that there is a codeword a in the G≤-test set of C whose
weight is d1(C), but then Xa is a minimal generator of J of degree d1(C), so
that d1(C) ≥ min{j : β1j(S/J) ̸= 0}, and thanks to theorem 6.5 we know that
the opposite inequality holds as well.

For the remainder of this section, our goal is to prove that equality holds in
theorem 6.5 when i = 2. In order to do that, we need a couple of results.

Lemma 6.6. Let A,B be finite sets such that |A ∩B| > |A|
2 , then

i) |A\B| < |A|
2

ii) |A△B| < |B|
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Proof. A = (A\B) ⊎ (A ∩ B), so |A| = |A\B| + |A ∩ B| < |A\B| + |A|
2 and

i) follows. Furthermore, A△B = (A\B) ⊎ (B\A), so |A△B| < |A|
2 + |B\A| <

|A ∩B|+ |B\A| = |B|.

Now, define A, a1 and a2 as follows:

1. A = {a ∈ C : ∃b ∈ C s.t. d2(C) = w(⟨a, b⟩)}.

2. a1 ∈ A is such that Xa1 = min≤{Xa : a ∈ A}.

3. a2 ∈ A is such that Xa2 = min≤{Xa : a ∈ A and d2(C) = w(⟨a, a1⟩)}.

Recall that ≤ is a degree-compatible term order on S. In other words, A is
the set of codewords contained in a 2-dimensional subcode of minimal weight, a1
is the smallest element of A w.r.t. the order relation a ≤ b ⇐⇒ Xa ≤ Xb and
a2 is the smallest elements that generates a 2-dimensional subcode of minimal
weight with a1.

Remark. Xa1 ≤ Xa2 ≤ Xa1+a2 , so, since ≤ is degree-compatible, we have
w(a1) ≤ w(a2) ≤ w(a1 + a2). If I1 = supp a1 and I2 = supp a2, then we have
|I1| ≤ |I2| ≤ |I1△I2|. Thanks to lemma 6.6, it follows that

|I1 ∩ I2| ≤
|I1|
2

≤ |I2|
2
.

We are going to prove that we can find a1 and a2 in T≤(C), from which the
main result regarding d2(C) will follow.

Proposition 6.7. a1 ∈ T≤(C).

Proof. Let a1 = u + v, with suppu ∩ supp v = ∅ and w(u) = ⌈w(a1)
2 ⌉. In

particular, w(u) ≥ w(v) ≥ w(u)− 1. Then f = Xu −Xv ∈ I(C) and, since ≤ is
degree-compatible, we have LT≤(f) = Xu if w(u) > w(v). If w(u) = w(v) and
Xv > Xu, then we can interchange u and v so that LT≤(f) = Xu.

Let Xa − Xb ∈ G≤(C) such that Xa|Xu, which is equivalent to supp a ⊆
suppu. Assume, by contradiction, that supp a ⊊ suppu, then we have

w(b) ≤ w(a) ≤ w(u)− 1 ≤ w(v) ≤ w(u).

As a consequence, w(a + b) < w(u + v) = w(a1), in particular Xa+b < Xa1 <
Xa2 , so, by the choice of a2, w(⟨a+ b, a1⟩) = | supp(a+ b)∪ I1| > d2(C). Hence,

|I1|+ |I2| − |I1 ∩ I2| = |I1 ∪ I2| = d2(C) ≤ | supp(a+ b) ∪ I1| − 1

= | supp b∪I1|−1 ≤ | supp b|+|I1|−| supp b∩I1| ≤ | supp a|+|I1|−| supp b∩I1|−1

where the third equality follows from supp a ⊆ suppu ⊆ I1 and the last inequal-
ity follows from Xb ≤ Xa. Consequently,

|I2| − |I1 ∩ I2| ≤ | supp a| − | supp b ∩ I1| − 1 ≤ w(a)− 1.
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Thus, by the previous remark,

w(a) = w(a)− 1 + 1 ≥ |I2| − |I1 ∩ I2|+ 1 ≥ |I2| −
1

2
|I2|+ 1 =

1

2
|I2|+ 1

≥ 1

2
|I1|+ 1 =

w(a1)

2
+ 1 > w(u);

which is a contradiction. This proves thatXu is a minimal generator of LT≤(I(C)).
In order to prove that f is in G≤(C), we still need to check that Xv ̸∈

LT≤(I(C)). Assume by contradiction that this wasn’t the case, then there is
Xa−Xb ∈ G≤(C) such that Xa|Xv or, equivalently, supp a ⊆ supp v. But then,
Xb < Xa ≤ Xv < Xu and, in particular, Xa+b < Xu+v = Xa1 < Xa2 . One
then proceeds as above, and gets w(v) < w(a), which is a contradiction since
supp a ⊆ supp v.

Proposition 6.8. a2 ∈ T≤(C).

Proof. Let u1, u2, v ∈ Fn
2 such that

1. suppu1, suppu2 and supp v are pairwise disjoint.

2. supp v = I1 ∩ I2.

3. suppu1 ⊎ suppu2 = I2\I1.

4. w(u2) = ⌊w(a2)
2 ⌋.

That we can choose u1, u2 and v such that they satisfy 1,2 and 3 is clear. Since

|I1 ∩ I2| ≤ |I2|
2 , we also have |I2\I1| ≥ |I2|

2 = w(a2)
2 and that’s why we can also

choose u1, u2 and v so that they satisfy 4.
Since the supports of u1, u2 and v3 partition the support of a2 in such a way

that | suppu2| = ⌊ 1
2 | supp a2|⌋, we have w(u2) + 1 ≥ w(u1) + w(v) ≥ w(u2).

Now, let
g = Xu1+v −Xu2 .

Notice that, since their supports coincide, u1 + u2 + v = a2. In particular,
g ∈ I(C) and therefore there exists Xa −Xb ∈ G≤(C) such that Xa|LT≤(g). A
priori, it is not clear what the leading term of g is, so we study both cases with
the goal of proving that either g or −g is in the reduced Gröbner basis. In any
case, it will follow that a2 ∈ T≤(C).

Case 1 : LT≤(g) = Xu1+v. In this case, Xa|Xu1+v, so supp a ⊆ suppu1 ⊎
supp v = suppu1⊎I1∩I2 ⊆ I2. Assume by contradiction that the inclusion
was strict, then w(b) ≤ w(a) ≤ w(u1+v)−1 = w(u1)+w(v)−1 ≤ w(u2),
so w(a+ b) ≤ w(u1 + u2 + v)− 1 = w(a2)− 1 < w(a2), but then

d2(C) = |I1 ∪ I2| = |I1|+ |I2\I1| = |I1|+ w(u1) + w(u2)
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≥ |I1|+ w(u1) + w(a) ≥ |I1|+ w(u1) + w(b)

≥ |I1 ∪ suppu1 ∪ supp b| = |I1 ∪ supp(u1 + v) ∪ supp b|
≥ |I1 ∪ supp a ∪ supp b = |I1 ∪ supp(a+ b)|,

which is a contradiction because |I1 ∪ supp(a+ b)| = w(⟨a1, a+ b⟩), with
Xa+b < Xa2 .

Therefore, a = u1 + v and Xu1+v − Xb ∈ G≤(C), in particular Xb ̸∈
LT≤(I(C)). Suppose by contradiction that b ̸= u2, then 0 ̸= Xa−Xb−g =
Xu2 −Xb ∈ I(C) and Xu2 > Xb because Xb ̸∈ LT≤(I(C)). However,

|I1 ∪ supp(a+ b)| = |I1 ∪ suppu1 ∪ supp v ∪ supp b|

= |I1 ∪ suppu1 ∪ supp b| ≤ |I1|+ w(u1) + w(b)

≤ |I1|+ w(u1) + w(u2) = |I1|+ |I2\I1| = |I1 ∪ I2| = d2(C),

which is a contradiction because we would have |I1 ∪ supp(a + b)| =
w(⟨a1, a+ b⟩) = d2(C), with X

a+b = Xu1+vXb < Xu1+vXu2 = Xa2 .

Case 2: LT≤(g) = Xu2 . One proceeds as above by first showing that a = u2
and then that b = u1 + v. For the first part, one can check that, if
a ̸= u2, then c = a+ b+ a2 would have to satisfy w(⟨a1, c⟩) = d2(C) with
Xc < Xa2 , a contradiction. One can also check that, if b ̸= u1 + v, this
would imply w(a1, u1 + v+ b) = d2(C) with X

u1+v+b < Xa
2 , which again,

is a contradiction.

The next theorem is then a trivial consequence of the two preceding propo-
sitions.

Theorem 6.9. There exist a1, a2 ∈ T≤(C) such that

d2(C) = | supp a1 ∪ supp a2| = w(⟨a1, a2⟩).

In order to prove the main theorem, we will use the following result, which
can be used to construct the second module of a minimal graded free resolution
of a monomial ideal.

Theorem 6.10. Let m1, ...,mc ∈ S be monomials and let

ϕ :

c⊕
i=1

S(−degmi) → S, ei 7→ mi;

where ei denotes the vector with ith entry equal to 1 and all the other entries
equal to 0. For all i, j ∈ [c] let mij = GCD(mi,mj) and

σij(m1, ...,mc) =
mj

mij
ei −

mi

mij
ej .

Then
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i) σij(m1, ...,mc) is homogeneous of degree equal to deg lcm(mi,mj).

ii) kerϕ = ⟨σij(m1, ...,mc) : 1 ≤ i < j ≤ c⟩.

Remark. If a, b ∈ Fn
2 , then lcm(Xa, Xb) = Xsupp a∪supp b has degree equal to

w(⟨a, b⟩).
Let m = (X1, ..., Xn) be the unique homogeneous maximal ideal of S.

Lemma 6.11. Let M be a finitely generated graded S-module, generated by the
homogeneous elements x1, ..., xc. If xi ̸∈ mM , there exists I ⊆ [c] containing i
such that the xj with j ∈ I form a minimal set of generators of M .

Proof. x1, ..., xc generate M , therefore their classes generate M/mM . We also
know that the class of xi is not zero, so we can extract a basis ofM/mM from the
classes of x1, ..., xc containing xi, but then, from a consequence of Nakayama’s
lemma, their representatives form a minimal set of generators of M .

Theorem 6.12.
d2(C) = min{j : β2,j(S/J) ̸= 0}.

Proof. We will prove this by explicitly constructing the first three modules of a
minimal graded free resolution

...
∂i+1−−−→ Fi

∂i−→ ...
∂2−→ F1

∂1−→ F0
∂0−→ S/J → 0

of S/J . Let T≤(C) = {a1, ..., ac}. According to theorem 6.9, there are i, j with
i ̸= j such that w(⟨ai, aj) = d2(C). Up to reordering the elements of T≤(C), we
may assum without loss of generality that i = 1 and j = 2.

We construct F0 and F1 as follows:

F0 is just S with the standard grading and ∂0 is the quotient map.

F1 =
⊕c

i=1 S(−w(ai)) and ∂1 sends ei to X
ai , where ei is the vector with

a 1 in the ith position and all zeroes elsewhere.

So far, ker ∂0 = J ⊆ mF0 = m because J is a nontrivial monomial ideal, and
ker ∂1 ⊆ mF1 because the Xai are minimal homogeneous generators of J . In
light of theorem 6.10, we would like to construct F2 and ∂2 as follows:

F2 =
⊕

1≤i<j≤c

S(−deg lcm(Xai , Xaj )) =
⊕

1≤i<j≤c

S(−w(⟨ai, aj⟩),

∂2 : F2 → F1, eij 7→ σij ,

where σij = σij(X
a1 , ..., Xac).

However, the σij might not be a minimal set of generators of ker ∂1. Nonethe-
less, σ12 has degree deg lcm(Xa1 , Xa2) = w(⟨a1, a2⟩) = d2(C), which is smaller
than or equal to the degree of all the other σijs. This implies that ker ∂1 is non
zero in degree d2(C) and zero in degree i for all i < d2(C), but then σ12 cannot
lie in m ker ∂1 since, otherwise, it would have degree strictly greater than d2(C).
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Hence, by lemma 6.11, there is a minimal set of generators of ker ∂1 of the
form {σij : (i, j) ∈ I}, for some I ⊆ [n]2 such that (1, 2) ∈ I. Then, we construct
F2 and ∂2 as follows:

F2 =
⊕

(i,j)∈I

S(−w(⟨ai, aj⟩),

∂2 : F2 → F1, eij 7→ σij .

In this case we do have that ker ∂2 ⊆ mF2, so we can keep constructing a minimal
resolution by minimally presenting ker ∂2 and so on. In particular, we have that

min{j : β2j(S/J) ̸= 0} = min{j : F2 is not zero in degree j} = d2(C).

There are still some open problems regarding the G≤-test set of a code, for
example:

1. Can we always recover d3(C) from the Betti numbers of S/J?

2. When the projective dimension of S/J is equal to k, can we recover all
the Hamming weights of C from the Betti numbers of S/J?
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