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Abstract

In questo lavoro di tesi è presentata una possibile costruzione di spazi di Sobolev su spazi
metrici di misura. Il primo capitolo è dedicato alla teoria classica degli spazi di Sobolev in
R basata su [3], che in alcuni casi serviranno da ispirazione per motivare l’approccio seguito
nel caso generale. L’idea è di generalizzare la definizione classica che utilizza l’integrazione
per parti tramite le derivazioni.

Dopo aver introdotto lo spazio L0(m) delle funzioni misurabili su uno spazio metrico di
misura, nel secondo capitolo viene introdotta la teoria degli L0(m)-moduli L0(m)-normati,
che con la loro nozione di dualità sono la struttura giusta con cui parlare di derivazioni,
ovvero funzionali lineari su una classe di funzioni lipschitziane che verificano la regola di
Leibniz e giocano il ruolo dei campi vettoriali nella definizione di spazio di Sobolev, ovvero
le sezioni del fibrato tangente. Lo spazio delle derivazioni sarà chiamato modulo tangente.
Introdurremo una nozione di divergenza per derivazioni con la quale definiremo gli spazi
di Sobolev. Per dualità generalizzeremo le nozioni di 1-forme, ovvero le sezioni del fibrato
cotangente.

Nell’ultimo capitolo concluderemo analizzando brevemente altri approcci presenti in
letteratura ([7]) e vedremo che in realtà le definizioni sono equivalenti. La definizione
proposta in questa tesi può essere considerata più naturale perché parte dalla costruzione
di modulo tangente e cotangente per poi costruire gli spazi di Sobolev e non generalizza
solo il modulo del gradiente.



Chapter 1

Preliminaries

1.1 A motivating example

Consider the following Cauchy problem on I = [0, 1]{
−u′′(x) + u(x) = f(x)

u(0) = u(1) = 0
,

where f is a continuous function over I. Our goal is to find a formulation of the problem
which is well posed when u and u′ are in L1([0, 1]).

By multiplying the left hand side by any smooth compactly supported function on (0, 1)
and then integrating we obtain that

for all φ ∈ C∞
c (0, 1)

∫ 1

0

−φ(x)u′′(x) dx+
∫ 1

0

φ(x)u(x) dx =

∫ 1

0

f(x)φ(x) dx. (1.1.1)

Integrating the first summand by parts and recalling that u(0) = u(1) = φ(0) = φ(1) =
0 we get that

for all φ ∈ C∞
c (0, 1)

∫ 1

0

φ′(x)u′(x) + φ(x)u(x) dx =

∫ 1

0

f(x)φ(x) dx. (1.1.2)

We now observe that the integral equation in 1.1.2 makes sense for u, u′ ∈ L1(I). This
formulation is called the weak formulation of the original problem and solutions to 1.1.2
are called weak solutions. To make this argument completely formal we need a notion of
derivative for L1 functions over I.

Remark 1.1.1. The steps above show that a regular solution to the problem is also a weak
solution, since the classical integration by parts formula holds.

We will tackle the problem more in general, by defining a notion of derivative for some
Lp functions over an interval and thus introducing the Sobolev space W 1,p(I).
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1.2 Classical Sobolev spaces

Definition 1.2.1. Let I ⊆ R be an interval and 1 ≤ p < ∞. We say that a function
u ∈ Lp(I) is Sobolev is there exists a function g ∈ Lp(I) such that for all φ ∈ C∞

c (I)∫
I

uφ′dx = −
∫
I

gφdx.

Such a function g behaves like the derivative in the integration by parts formula, and is
therefore called the weak derivative of u. The space of p−integrable Sobolev functions over
I is denoted by W 1,p(I).

Definition 1.2.2. We endow W 1,p(I) with the norm

∥u∥W 1,p(I) := ∥u∥Lp(I) + ∥u′∥Lp(I).

Observe that the definition of weak derivative extends the classical definition of the
derivative. Moreover, the weak derivative is unique, as a consequence of the following
lemma.

Lemma 1.2.3 (Fundamental Lemma of the Calculus of Variation). Let Ω ⊆ Rn be an
open set and h ∈ L1

loc(Ω) be such that

for all φ ∈ C∞
c (Ω)

∫
Ω

h(x)φ(x) dx = 0.

Then h = 0 almost everywhere.

Proof. Suppose h ̸= 0. Then there exists a ball B = B(x0, r) ⊂ Ω where h restricted to
B(x0, r) is not identically zero.. In particular.∫

B(x0,r)

|h| dx > 0.

Let

g(x) =


1 x ∈ B, h(x) > 0

−1 x ∈ B, h(x) < 0

0 otherwise

.

Clearly g is bounded, supp(g) = B and∫
B

h(x)g(x) dx =

∫
B

|h| dx > 0.

We can approximate g by a sequence of smooth and compactly supported functions gn ∈
C∞

c (Ω) such that

• supp(gn) ⊂ B(x0, r +
1
n
),
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• gn −→ g almost everywhere.

By using our assumptions on gn ∈ C∞
c (Ω) and the dominated convergence theorem we

obtain a contradiction. Let δ > 0 be such that B = B(x0, r) ⊂ B(x0, r+ δ) ⊂ Ω. then, for
n large enough we have that

0 =

∫
Ω

h(x)gn(x) dx =

∫
B(x0+

1
n
)

gn(x)h(x) dx =

∫
B(x0+δ)

gn(x)h(x) dx

n−→
∫
B(x0+δ)

g(x)h(x) dx =

∫
B(x0,r)

g(x)h(x) dx =

∫
B

|h| dx > 0.

Remark 1.2.4. Let f, g ∈ Lp(I) be weak derivatives for u ∈ W 1,p(I). Then
∫
I
(f − g)φdx =

0 for all ϕ ∈ C∞
c (I) and by the Fundamental Lemma of the Calculus of Variation f = g

almost everywhere.

Lemma 1.2.5. Let u ∈ L1(I) be such that
∫
I
uφ′ = 0 for all φ ∈ C∞

c (I). Then u is
constant almost everywhere.

Proof. Let ω ∈ C∞
c (I) and ψ ∈ C∞

c (I) be such that
∫
I
ψ = 1. There exist a, b ∈ I such

that
supp(ω) ∪ supp(ψ) ⊆ [a, b] ⋐ I.

Now we define

φ(x) =

{∫ x

a
ω(t)−

(∫
I
ω
)
ψ(t) dt x ∈ (a, b)

0 otherwise

and notice that φ is smooth and compactly supported with supp(φ) ⊆ [a, b], and

φ′ = ω −
(∫

I

ω

)
ψ.

We then deduce that, for all ω ∈ C∞
c (I),

0 =

∫
I

u

(
ω −

(∫
I

ω

)
ψ

)
dx =

∫
I

uω dx−
∫
I

omega

∫
I

uψ

=

∫
I

(
u−

∫
I

uψ

)
ω dx.

By the Fundamental Lemma of the Calculus of Variations 1.2.3 we conclude that u−
∫
I
uψ =

0 almost everywhere, hence u is constant.

Remark 1.2.6. By uniqueness of the weak derivative the expected linearity properties hold:
(u+ v)′ = u′ + v′, (λu)′ = λu′ for all u, v ∈ W 1,p(I), λ ∈ R.

These lemmas are useful to characterize Sobolev functions, show some of their properties
and find embedding of Sobolev spaces into known spaces.
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Proposition 1.2.7. W 1,p(I) is a Banach space. Moreover, if (un)n∈N ⊂ W 1,p(I) is such

that un
Lp

⇀ u and u′n
Lp

⇀ g converge weakly in Lp(I), then u ∈ W 1,p(I) and u′ = g.

Proof. It is clear that ∥ ·∥W 1,p is a norm, in particular the triangle inequality holds because
(u + v)′ = u′ + v′. To show that W 1,p(I) is complete, let (un)n∈N ⊂ W 1,p(I) be a Cauchy
sequence. By definition of ∥ · ∥W 1,p this means that (un)n∈N and (u′n)n∈N are Cauchy
sequences in Lp(I) , which is complete. Hence there exist u, g ∈ Lp(I) such that

un
n−−−→

Lp(I)
u, u′n

n−−−→
Lp(I)

g.

By dominated convergence, for all φ ∈ C∞
c (I)∫

I

uφ′dx = lim
n

∫
I

φ′un = lim
n

−
∫
φu′ndx = −

∫
I

φgdx,

so we obtain that u ∈ W 1,p(I) and g = u′. Finally,

∥un − u∥W 1,p = ∥un − u∥Lp + ∥u′n − u′∥Lp
n−→ 0.

If un
Lp

⇀ u and u′n
Lp

⇀ g then, since C∞
c (I) is contained in Lq(I),∫

I

φ′udx = lim
n

∫
I

φ′undx = − lim
n

∫
I

φu′ndx = −
∫
I

φgdx ∀φ ∈ C∞
c (I).

Proposition 1.2.8. Let u ∈ W 1,p(I). Then u has a continuous representative, i.e. there
exists a continuous function û such that u = û almost everywhere.

Proof. Let x0 ∈ I and define v(x) =
∫ x

x0
u′(y) dy. The function v is continuous since, for

any sequence xn → x,

v(xn) =

∫ xn

x0

u′(y) dy =

∫
I

χ[x0,xn](y)u
′(y) dy

n−→
∫
I

χ[x0,x](y)u
′(y) dy =

∫ x

x0

u′(y) dy = v(x)

by dominated convergence. Moreover,∫
I

vφ′ = −
∫
I

u′φ ∀φ ∈ C∞
c (I)

To see this, fix φ ∈ C∞
c (I) and take a, b ∈ I such that supp(φ) ⊆ (a, b). Then, by Fubini’s

theorem, ∫
I

v(x)φ′(x) dx =

∫
I

(∫ x

x0

u′(y) dy

)
φ′(x) dx =

∫
I

∫ x

x0

u′(y)φ′(x) dy dx

=

∫ b

x0

u′(y)

∫ b

y

φ′(x) dx dy −
∫ x0

a

u′(y)

∫ y

a

φ′(x) dx dy

= −
∫ b

x0

u′(y)φ(y) dy −
∫ x0

a

u′(y)φ(y) dy

= −
∫
I

u′(y)φ(y) dy.
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Thus we obtain that ∫
I

vφ′ = −
∫
I

u′φ =

∫
I

yφ′ ∀φ ∈ C∞
c (I).

By lemma 1.2.5 we conclude that u − v = c is constant almost everywhere. Since v is
continuous, v + c is a continuous representative for u.

An immediate corollary to the last proposition is that Sobolev functions over bounded
intervals are bounded.

Corollary 1.2.9. Let I be a bounded interval and u ∈ W 1,p(I). Then u ∈ L∞(I).

Proof. By proposition 1.2.8 u admits a continuous representative, which is bounded over
I.

By the above Corollary and Proposition we have an inclusion W 1,p ↪→ L∞(I) when I is
a bounded interval. Since C(I) is a closed subspace of L∞(I), we can consider the inclusion
p : W 1,p ↪→ C(I) given by Proposition 1.2.8 to study how W 1,p(I) is embedded in L∞(I).

Theorem 1.2.10. Let I ⊆ R be any interval. Then

(i) W 1,p(I) ↪→ L∞(I) is a continuous injection,

(ii) if I is bounded and p > 1 then P : W 1,p ↪→ C(I) is compact.

Proof. Suppose I = R and let u ∈ W 1,p(R). For every interval of the form Ja = (a− 1
2
, a+ 1

2
)

there exists x0 ∈ Ja such that |u(x0)| ≤ ∥u∥Lp . Indeed, if |u(x0)| > ∥u∥Lp for all x ∈ Ja
then

∥u∥pLp =

∫
R
|u(x)|pdx ≥

∫
Ja

|u(x)|pdx >
∫
Ja

∥u∥pLpdx = ∥u∥pLp ,

leading to a contradiction. Now consider the continuous representative ũ of u. By Hölder’s
inequality

|ũ(x0)−ũ(a)| =
∣∣∣∣∫ a

x0

u′(x)dx

∣∣∣∣ ≤ |x0−a|1/q
(∫ a

x0

|u′(x)|dx
)1/p

= |x0−a|1−1/p∥u′∥Lp , (1.2.1)

from which we deduce

|ũ(a)| ≤ |ũ(x0)|+ |x0 − a|1/q∥u′∥Lp =≤ 2p−1∥u∥W 1,p ,

and continuity of W 1,p(I) ↪→ L∞(I) follows by taking the supremum over a ∈ R.
Compactness of P : W 1,p ↪→ C(I) when I is bounded is a consequence of the Ascoli-

Arzelà theorem. Indeed P
(
B(0, 1)W 1,p(I)

)
⊂ C(I) is

• bounded, since ∥P (u)∥L∞ ≤ C∥u∥W 1,p(I) ≤ C for all u ∈ B(0, 1)W 1,p(I),
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• equicontinuous by the same argument used in (1.2.1),

|u(x)−u(y)| =
∣∣∣∣∫ y

x

u′(t)dt

∣∣∣∣ ≤ |x−y|1−1/p∥u′∥Lp ≤ |x−y|1−1/p ∀u ∈ B(0, 1)W 1,p(I).

Remark 1.2.11. Both (i) and (ii) in the theorem above can fail if we remove the respective
assumptions.

If I = R, W 1,p(I) ↪→ L∞(I) is continuous but not compact, since the sequence of trans-
lations (τnu)n∈N of any nonzero u ∈ C∞

c (R) ∩ B(0, 1)W 1,p has no converging subsequences
in L∞(R).

If I = [0, 1] and p = 1, W 1,p(I) ↪→ L∞(I) is continuous but not compact. Let

W 1,1(I) ∋ un(x) =


0 0 ≤ x ≤ 1

2
− 1

n
n
2

(
x− 1

2
+ 1

n

)
1
2
− 1

n
≤ x ≤ 1

2
+ 1

n

1 1
2
+ 1

n
≤ x ≤ 1

Then

∥un∥W 1,1(I) = ∥u∥L1 + ∥u′∥L1 ≤ 1 +

∫ 1
2
+ 1

n

1
2
− 1

n

n

2
dx = 2

is bounded, but ∥un − um∥L∞ = 1 whenever n ̸= m.

1.3 Characterization of W 1,p(I)

We give a first characterization of W 1,p(I) in the following proposition.

Proposition 1.3.1. . Let p > 1, q be such that 1
p
+ 1

q
= 1 and u ∈ Lp(I). Then the

following are equivalent

(a) u is a Sobolev function, i.e. u ∈ W 1,p(I),

(b) there exists C > 0 such that, for all φ ∈ C∞
c (I), |

∫
I
uφ′| ≤ C∥φ∥Lq(I),

(c) there exists C > 0 such that, for all h ∈ R, ∥τhu− u∥Lp(I∩I−h) ≤ C|h|.

Proof. • (a) =⇒ (b) The constant that does the job is the norm of the weak derivative
of u, since by the definition of W 1,p(I) and the Hölder inequality we have that∣∣∣∣∫

I

uφ′
∣∣∣∣ = ∣∣∣∣∫

I

u′φ

∣∣∣∣ ≤ ∥u′∥Lp(I)∥φ∥Lq(I).
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• (b) =⇒ (a) Consider the linear functional

F : C∞
c (I) → R, φ 7−→

∫
I

uφ′

Since we are assuming p > 1, C∞
c (I) is a dense subset of Lq(I). Moreover F is bounded

by hypothesis, hence it can be extended to a unique functional F : Lq(I) → R. Recall
that Lq(I)∗ ∼= Lp(I), therefore there exists a function f ∈ Lp(I) such that∫

I

uφ′ = Fφ = ⟨φ, f⟩ =
∫
I

φf.

This shows that u is indeed a Sobolev function and u′ = −f .

• (a) =⇒ (c) Let ũ be the continuous representative of u

ũ = u(y) +

∫ y

x

u′dt ∀x, y ∈ I,

then

τhu(x)− u(x) = u(x+ h)− u(x)−
∫ x+h

x

u′(t)dt

and

|τhu− u∥pLp(I∩I−h)
=

∫ b

a

|τhu(x)− u(x)|pdx =

∫ b−h

a

∣∣∣∣∫ x+h

x

1 · u′(t)dt
∣∣∣∣p dx

≤
∫ b−h

a

∫ x+h

x

|u′(t)|pdt · h
p
q dx ≤ (b− a)

∫ b

a

|u′(t)|p · hp/qh = ∥u′∥pLphp.

• (c) =⇒ (a) For all φ ∈ C∞
c (I) and h sufficiently small,∫

I

(τhu(x)− u(x))φ(x)dx =

∫
I

u(x+ h)φ(x)dx−
∫
I

u(x)φ(x)dx

=

∫
I

u(x)(φ(x− h)− φ(x))dx.

Now, ∣∣∣∣∫
I

uφ′
∣∣∣∣ = ∣∣∣∣limh→0

∫
I

u(x)
φ(x)− φ(x− h)

h
dx

∣∣∣∣ = lim
h→0

1

|h|

∣∣∣∣∫
I

(τhu− u)φdx

∣∣∣∣
≤ lim

h→0

1

|h|
∥τhu− u∥Lp∥φ∥Lq ≤ lim

h→0

1

|h|
C|h|∥φ∥Lq = C|h|∥φ∥Lq .

Corollary 1.3.2. W 1,∞(I) = Lip(I).
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Proof. Let ũ be a continuous representative of u ∈ W 1,∞(I) = Lip(I). Then |ũ(x) −
ũ(y)| = |

∫ y

x
u′(t)dt| ≤ ∥u′∥L∞(I)|x − y|, hence u is Lipschitz with constant ∥u′∥L∞(I).

Conversely, suppose u is L-Lipschitz. Then |τhu(x) − u)x)| = |u(x + h) − u(x)| ≤ L|h|,
hence ∥τhu− u∥L∞ ≤ L|h|. By Corollary 1.3.1, u ∈ W 1,∞(I).

Next we give a density result. In order to achieve it we need to show that there exists
an extension operator E : W 1,p(I) → W 1,p(R).

Proposition 1.3.3. Let I be an interval. There exists a continuous linear operator E :
W 1,p(I) → W 1,p(R) such that for all u ∈ W 1,p(I)

• (Eu)|I = u,

• ∥Eu∥Lp(R) ≤ C∥u∥Lp(I), ∥(Eu)′∥Lp(R) ≤ C∥u′∥Lp(I).

Proof. Let us show the proof for I = (0,+∞).
We can extend functions to R by reflection,

Eu(x) =

{
u(x) x > 0

u(−x) x < 0
.

Clearly, ∥Eu∥Lp(R) ≤ 2∥u∥Lp(I) and ∥Eu′∥Lp(R) ≤ 2∥u′∥Lp(I).
For bounded intervals a similar argument can be obtained by introducing a mollifier η

and reflecting u = uη + u(1− η) around the interval endpoints to extend u to R.

Theorem 1.3.4. Let u ∈ W 1,p(I). Then there exists a sequence (un)n∈N ⊂ C∞
c (R) such

that un|I
n−−−→

W 1,p
u. In other words, given the restriction operator

R : C∞
c (R) → W 1,p(I), u 7−→ u|I

we have that its range R(C∞
c (R)) is dense in W 1,p(I).

Proof. Suppose I = R . We can assume u ∈ Cc(R). Let η = be a C∞ cutoff which is also

an even function and let ηn(x) = η( |x|
n
) with |η′n| ≤ C

n
. Then ηnu ∈ Cc(R), by the chain

rule, (ηnu)
′ = η′nu+ ηu′ and

∥ηnu−u∥W 1,p = ∥ηnu−u∥Lp+∥η′nu+ηu′−u′∥Lp ≤ ∥ηnu−u∥Lp+
C

n
∥η′nu∥+∥ηnu′−u′∥

n−→ 0

by dominated convergence.

Let u ∈ C∞
c (R) and define ηε = 1

ε
η
(

|x|
ε

)
, uε = u ∗ ηε ∈ C∞

c (R). Then uε → u ,

(u ∗ ηε) = u′ ∗ ηε → u′ in Lp(R).
For a generic interval I we consider the extension operator E : W 1,p(I) → W 1,p(R) as

in 1.3.3. There exists (un)n∈N ⊂ C∞
c (R) that converges to Eu in W 1,p(R). Then

∥un|I − u∥W 1,p(I) = ∥un|I − Eu|I∥W 1,p(I) ≤ ∥un|I − Eu|I∥W 1,p(R)
n−→ 0.
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Remark 1.3.5. The requirement for un to be compactly supported in R is crucial.; C∞
c (I)

is not dense in W 1,p(I) unless I = R, as we see in the following definition and proposition.

Definition 1.3.6. W 1,p
0 (I) := C∞

c (I), where the closure is taken with respect to the ∥ ·
∥W 1,p(I) topology.

Proposition 1.3.7. The following facts hold:

(i) W 1,p
0 (R) = W 1,p(R),

(ii) W 1,p
0 (I) = {u ∈ W 1,p(I) : u|∂I = 0}.

Remark 1.3.8. The requirement that u|∂I = 0, i.e. u vanishes at the endpoints of the inter-
val, would not make sense for a general function in Lp, which is defined almost everywhere.
However, as shown in Proposition 1.2.8, u ∈ W 1,p(I) has a continuous representative.

Proof. We have already shown that (i) holds in Theorem 1.3.4. Observe that (i) also follows
from (ii), since ∂R = ∅.

Let (un)n∈N ⊂ C∞
c (I) converge to u ∈ W 1,p(I). Then, since W 1,p(I) ↪→ L∞(I) is

continuous, ∥un − u∥L∞ = 0 and for a ∈ ∂a

u(a) = lim
n
un(a) = 0.

Conversely, suppose u ∈ W 1,p(I) is such that u|∂I = 0. Let Gε be smooth with bounded
derivative and such that

Gε(t) =

{
t |t| > ε

0 |t| < ε
2

.

Moreover, assume |Gε(t) − t| ≤ ε Observe that Gε ◦ u ∈ W 1,p
0 (I) since supp(Gε ◦ u) =

{|u| > ε
2
} is compact. Then

∥Gε(u)− u∥Lp ≤ ε(b− a)1/p −→ 0

and, by lemma 1.3.9 and corollary 1.3.10

∥Gε(u)
′ − u′∥pLp =

∫
I

|G′
ε(u)− 1|p|u′|pdx −→

∫
{u=0}

|u′|pdx = 0.

Lemma 1.3.9. (algebra of Sobolev functions) Let I be any interval and 1 ≤ p ≤ ∞, The
following hold:

(i) (Leibniz rule) if u, v ∈ W 1,p(I), then uv ∈ W 1,p(I) and (uv)′ = u′v + uv′,

(ii) (chain rule) if u ∈ W 1,p(I) and G ∈ C1(R) is Lipschitz and G(0) = 0, then G ◦ u ∈
W 1,p(I) and (G ◦ u)′(x) = G′(u(x))u′(x).
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(iii) if u ∈ W 1,p(I), then u+ = max{0, u}, u+ = max{0,−u} ∈ W 1,p(I) with (u+)′ =
u′1{u>0} and (u−)′ = u′1{u<0}.

Corollary 1.3.10. Let u ∈ W 1,p(I). Then u′ = 0 almost everywhere on {u = 0}.

Proof. Observe that

u = u+ + u− =⇒ u′ = (u+ + u−)
′ = u′(1{u>0} + 1{u<0}) = u′(1{u̸=0}).

Then u′(1− 1{u̸=0}) = 0.

We now give the definition of Sobolev space on an open subset of Rn and pose three
questions which will be answered in the sequel.

Definition 1.3.11. Let Ω ⊆ Rn be open. A function u ∈ Lp(Ω) is said to be Sobolev
(u ∈ W 1,p(Ω)) if there exists g ∈ Lp(Ω,Rn) such that∫

Ω

u div(v)dx = −
∫
Ω

⟨g, v⟩ dx for all v ∈ C∞
c (Ω,Rn).

The function g is called the weak gradient of u and denoted by g = ∇u.

Remark 1.3.12. W 1,p(Ω) is a Banach space when endowed with the norm

∥u∥W 1,p(Ω) = ∥u∥Lp(Ω) + ∥∇u∥Lp(Ω,Rn).

As we are interested in generalizing the concept of Sobolev space ofW 1,p to the context
of metric (measure) spaces we will need to find suitable substitutes for the notions of

• vector fields v ∈ C∞
c (Ω,Rn),

• divergence of v ∈ C∞
c (Ω,Rn),

• duality in Rn, the spaces involved will be a priori distinct and there will be no natural
identification between them.
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Chapter 2

The machinery of L0-normed modules

2.1 Metric measure spaces

A metric measure space is a triple (X, d,m), where

• (X, d) is a complete and separable metric space

• m ̸= 0 is a non-negative Borel measure which is finite on bounded sets.

Given a metric space (X, d) we will denote by P(X) the space of Borel probability
measures on X, and by Cb(X) the space of continuous and bounded functions X → R.
Moreover, Br(x) will denote the open ball of center x ∈ X and radius r > 0.

Remark 2.1.1. The measure of a metric measure space is automatically σ-finite, since
X =

⋃∞
n=1Bn(x) and m(Bn(x)) < +∞.

2.2 Lipschitz functions

Given two metric spaces (X, dX), (Y, dY ) and a map f : X → Y between them, we say
that f is Lipschitz if there exists a constant C > 0 such that for all x1, x2 ∈ X

dY (f(x1), f(x2)) ≤ CdX(x1, x2),

equivalently if

Lip(f) := sup
x1 ̸=x2

dY (f(x1), f(x2))

dX(x1, x2)
<∞.

We denote by Lip(X, Y ) the space of Lipschitz functions between X and Y . When
Y = R we will denote Lip(X) = Lip(X,R)

A function f : X → Y is said to be locally Lipschitz if for every x ∈ X there exists
r > 0 such that f |Br(x) is Lipschitz.

Given a function f : X → Y and a Borel set E we will denote with Lip(f, E) the
Lipschitz constant of f restricted to the Borel set E;

Two notion of local Lipschitz constant will be useful in the sequel.
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Definition 2.2.1. For a locally Lipschitz function f : X → Y we define the asymptotic
Lipschitz constant at a point x ∈ X as

lipaf(x) := lim
r→0

Lip(f,Br(x)).

Remark 2.2.2. Such limit exists since r 7−→ Lip(f,Br(x)) = sup
{

|f(y)−f(z)|
d(y,z)

: y, z ∈ Br(x), y ̸= z
}

decreases as r approaches 0.

Definition 2.2.3. For a locally Lipschitz function f : X → Y we define the slope (or local
Lipschitz constant) at a point x ∈ X as

|Df |(x) := lim sup
y→x

dY (f(y), f(x))

dX(y, x)
.

Remark 2.2.4. Observe that

|Df |(x) = lim sup
y→x

dY (f(y)− f(x))

dX(y, x)
= lim

r→0

(
sup

y∈Br(x)\x

dY (f(y)− f(x))

dX(y, x)

)
≤ lipaf(x).

Notice that for all x ∈ X it holds

|D(αf + βg)| ≤ |α||Df |+ |β||Dg|,∀α, β ∈ R,

and a Leibniz-type inequality

|D(fg)| ≤ |f ||Dg|+ |g||Df |. (2.2.1)

The same estimate holds for the asymptotic Lipschtiz constant:

|lipa(fg)| ≤ |f ||lipag|+ |g||lipaf |. (2.2.2)

Definition 2.2.5. When Y = R, dY = | · | we can define the one-sided counterparts of
|Df |, which are called respectively descending slope and ascending slope:

|Df |−(x) := lim sup
y→x

[f(y)− f(x)]−

d(y, x)
, |Df |+(x) := lim sup

y→x

[f(y)− f(x)]+

d(y, x)
,

which for all x ∈ X statisfy

|Df |(x) = max{|D−f |(x), |D+f |(x)|}, |D−f |(x) = |D+(−f)|(x)

2.3 The space L0(X,m)

Definition 2.3.1. Let (X, d,m) be a metric measure space. We denote by L0(X,m) the
set of measurable functions f : X → R, up to equality m-almost everywhere.
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Clearly L0(X,m) is a vector space over the real numbers. Given a probability measure
m′ such that m ≪ m′ ≪ m we can make L0(X,m) into a topological vector space by
equipping it with the topology induced by the distance

dL0,m′(f, g) :=

∫
X

inf{|f − g|, 1}dm′.

Observe that by the above definition

dL0,m′(f, g) = ∥ inf{|f − g|, 1}∥L1(m′). (2.3.1)

Remark 2.3.2. The requirement on m′ to be a probability measure ensures that dL0,m′(f, g) ≤∫
X
1dm′ = 1,so that (L0(m′), dL0,m′) is a metric space of finite diameter. Since m ≪ m′ ≪

m, by the Radon-Nikodym theorem there are functions f ∈ L1(m) and g ∈ L0(m′) such that
dm = fdm′ and dm′ = gdm. Hence dm = fgdm, or more explicitly

m(E) =

∫
E

1dm =

∫
E

fgdm for all Borel sets E ⊆ X.

Thus fg = 1 m-almost everywhere.

The the distance dL0,m′ depends on the probability measure m′, however the topology
it induces does not, as shown in the following proposition.

Proposition 2.3.3. Fix a probability measure m′ such that m ≪ m′ ≪ m. A sequence (fn)
of functions in L0(X,m) is Cauchy with respect to dL0,m′ if and only if for all Borel sets
E ⊆ X of finite measure m(E) <∞

lim sup
n,m→+∞

m(E ∩ {|fn − fm| > ε} = 0. (2.3.2)

Proof. Suppose (fn) is a sequence in L0(X,m) that satisfies 2.3.2 and fix a point x0 ∈ X.
Since m′ is a probability measure,

1 = m′(X) = m

(⋃
n

Bn(x0)

)
= lim

n→+∞
m′(Bn(x0).

Thus there exists N > 0 such that m′(BN(x0)) ≥ 1 − ε. By definition of metric measure
space m is finite on bounded sets, hence m(BN(x0)) < +∞.

Let g ∈ L1(m) be the Radon-Nikodym density of m′ with respect to m. Fix ε > 0 and
define An,m(ε) = BN(x0) ∩ {|fn − fm| > ε}. By assumption 2.3.2

m(An,m(ε)) −−→
n,m

0,

so that

χ
An,m(ε)

L1(m)−−−→
n,m

0.

13



By dominated convergence we deduce that

lim sup
m,n

m′(Am,n(ε)) = lim sup
m,n

∫
X

χ
An,m(ε)

dm′ = lim sup
m,n

∫
X

(χ
An,m(ε)

· g)dm = 0. (2.3.3)

Now observe that

dL0,m′(fn, fm) =

∫
X

inf(|fn − fm|, 1)dm′

=

∫
X\BN (x0)

inf(|fn − fm|, 1)dm′ +

∫
BN (x0)

inf(|fn − fm|, 1)dm′

≤ ε+

∫
BN (x0)\An,m(ε)

inf(|fn − fm|, 1)dm′ +

∫
An,m(ε)

inf(|fn − fm|, 1)dm′

≤ ε+ εm′(BN(x0) \ An,m) +m′(An,m(ε)) ≤ 2ε+m′(An,m(ε)).

Combining this and 2.3.2 shows that lim supn,m dL0,m′(fn, fm) = 0, i.e. (fn) is a dL0,m′-
Cauchy sequence, since ε > 0 was chosen to be arbitrary.

Conversely, suppose (fn) is a dL0,m′-Cauchy sequence and fix ε ∈ (0, 1). By Chebyshev’s
inequality,

m′({|fn−fm| > ε}) = m′({inf(|fn−fm|, 1) > ε}) ≤ 1

ε

∫
X

inf(|fn − fm|, 1)dm =
1

ε
dL0,m′(fn, fm) −−→

n,m
0.

Now fix a Borel set E ⊆ X such that m(E) < ∞ and, like above, let f ∈ L1(m′) be the
Radon-Nikodym density of m with respect to m′. Then χ

E
f ∈ L1(m′) and

m(E ∩ {|fn − fm| > ε}) =
∫
X

(χ{|fn−fm|>ε} · χE · f)dm′.

By dominated convergence, condition 2.3.2 holds.

Remark 2.3.4. Clearly condition 2.3.2 does not depend on m′, hence all metrics dL0,m′ are
equivalent, i.e. they induce the same topology on L0(m), which justifies the notation dL0

we will use from now on. We shall often deal with distances of similar form when speaking
of L0-modules.

Remark 2.3.5. One might see the definition of dL0 as an attempt to adapt the L1 norm
to measurable functions. It’s clear, however, that dL0 is not induced by a norm, since it
doesn’t behave well with scalars: even for a constant function f = 1 and for λ > 1

dL0(f, 0) =

∫
X

inf{|f |, 1}dm′ = m′(X) = 1, but

dL0(λf, 0) =

∫
X

inf{λ, 1}dm′ = m′(X) = 1 ̸= λdL0(f, 0).
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To show that L0(m, dL0) is a complete and separable space we first prove some equiv-
alent characterization of converging sequences with respect to dL0 , which is inspired by
Proposition 2.3.3.

Proposition 2.3.6. Let (X, d,m) be a metric measure space and m′ ∈ P(X) such that
m ≪ m′ ≪ m. Fix a sequence (fn)n ⊂ L0(X) and a function f ∈ L0(X). The following
are equivalent:

(1) fn converges to f with respect to dL0,

(2) any subsequence of (fn) has a further subsequence which converges to f m-almost ev-
erywhere,

(3) lim supn m(E ∩ {|fn − f | > ε}) = 0 for all ε > 0 and for all Borel sets E ⊆ X such
that m(E) <∞,

(4) lim supn m
′({|fn − f | > ε}) = 0 for all ε > 0.

Remark 2.3.7. Condition (4) amounts to saying that fn converges to f in measure with
respect to m′. Since m′ is a probability measure, convergence in measure implies convergence
m′-a.e. for a subsequence.

Proof. (1) =⇒ (2) Any subsequence (fnk
)k of (fn)n converges to f by assumption. By

remark 2.3.1 this means that inf{|fnk
− f |, 1} k−−−→

L1(m′)
0. This implies that there exists a

further subsequence which converges m′-almost everywhere.
(2) =⇒ (3) By contradiction suppose there exist ε > 0 and a Borel set E ⊆ X of
finite measure m such that lim supn m(E ∩ {|fn − f | > ε}) > 0. In particular there exists
a subsequence (fnk

)k such that

lim
k

m(E ∩ {|fnk
− f | > ε}) = r > 0. (2.3.4)

By assumption (2), (fnk
) admits a further subsequence (gℓ)ℓ which converges to f in the

m-a.e. sense. Applying the dominated convergence theorem to 1{|gℓ−f |>ε}∩E we obtain

m({|gℓ − f | > ε} ∩ E) =
∫
X

1{|gℓ−f |,1>ε}∩E︸ ︷︷ ︸
≤1E∈L1(m)

dm −→
ℓ
0,

which contradicts 2.3.4 since (gℓ)ℓ is a subsequence of (fnk
)k.

(3) =⇒ (4) Similarly to the proof of Proposition 2.3.3, let x0 ∈ X and fix δ > 0
and N > 0 such that m′(X \ BN(x0)) < δ. Just like in that proof, our assumption that
lim supn m({|fn − f | > ε} ∩BN(x0)) = 0 implies that the same holds for m′. Therefore,

lim sup
n

m′({|fn − f | > ε}) ≤ m′(X \BN(x0)) + lim sup
n

m({|fn − f | > ε} ∩BN(x0))︸ ︷︷ ︸
=0

< δ.
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Since δ is arbitrary we conclude.

(4) =⇒ (1) It suffices to adapt the argument used to prove proposition 2.3.3 to this
situation. Fix ε > 0. Then

dL0(fn, f) =

∫
X

inf{|f − fn|, 1}dm′ ≤ m′({|fn − f | > ε}) + ε,

thus lim supn dL0(fn, f) < ε and we conclude.

Observe that there are natural inclusions Lp(m) ↪→ L0(m) and that they are continuous

thanks to Hölder’s inequality. Indeed, given m′ ∈ P(X) like above and fn
Lp(m)−−−→

n
f ,

dL0(fn, f) ≤
∫
X

|fn − f |dm′ ≤ ∥fn − f∥Lp(m′)m
′(X) = ∥fn − f∥Lp(m′) → 0.

Moreover, this inclusion is dense. Indeed, let f ∈ L0(m) and x0 ∈ X, then

fn(x) =


f(x) x ∈ Bn(x0) and |f(x)| ≤ n

n x ∈ Bn(x0) and f(x) > n

−n x ∈ Bn(x0) and f(x) < −n
0 x /∈ Bn(x0)

is bounded and has bounded support inside Bn(x0), hence fn ∈ Lp(m) for all p ∈ [1,∞].
Clearly fn converges pointwise m-almost everywhere and condition (3) of proposition 2.3.6
holds. Therefore fn converges to f with respect to dL0 .

Theorem 2.3.8. (L0(m), dL0) is a complete and separable metric space.

Proof. By what we have just shown, L1(m) is embedded in L0(m) continuously and densely.
Since L1(m) is separable, L0(m) is separable as well.

To show completeness, let (fn)n∈N be a Cauchy sequence in L0(m). By proposition 2.3.3

lim sup
n,m→+∞

m(E ∩ {|fn − fm| > ε} = 0

for all m(E) <∞, in particular lim supm,n m
′({|fn − fm| > ε}) = 0. Therefore there exists

a subsequence (fnk
)k such that m′({|fnk+1

− fnk
| > ε2−k}) < 2−k. Fix representatives for

fnk
and let

Nk := {|fnk+1
− fnk

| > ε2−k},

and
N :=

⋂
n

⋃
k≥n

Nk.
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Observe that

m′(N) ≤ inf
n

{
m′

(⋃
k≥n

Nk

)}
≤ inf

n

{∑
k≥n

m′(Nk)

}
≤ inf

n

{∑
k≥n

2−k

}
= 0.

Let g(x) =
∑

k |fnk
(x) − fnk+1

(x)|. If g(x) < ∞ then (fnk
(x))k is a Cauchy sequence

and therefore converges. By construction, g(x) <∞ for x ∈ X \N , hence fnk
(x) converges

for almost every x, denote the pointwise limit by f , Then f ∈ L0(m) and we can extend f
to vanish on N .

2.4 L0-modules

Definition 2.4.1. Let (X,m) be a measure space. An L0(X,m)-normed L0(X,m)-module
is a quadruple (M , τ, ·, | · |) where

(i) (M , τ) is a complete topological vector space.

(ii) The bilinear map · : L0(X,m)× M → M satisfies

f · (g · v) = (fg) · v ∀f, g ∈ L0(X,m),∀v ∈ M

1 · v = v ∀v ∈ M .

(iii) The map | · | : M → L0(X,m), called the pointwise norm, satisfies the following
properties

|v| ≥ 0 m-a.e. ∀v ∈ M

|f · v| = |f ||v| m-a.e. ∀f ∈ L0(X,m),∀v ∈ M

|v + w| ≤ |v|+ |w| m-a.e. ∀v, w ∈ M .

(iv) The topology τ is the one induced by the distance dM on M defined by

dM (v, w) =

∫
X

inf{|v − w|, 1} dm′ for some m′ ∈ P(X) such that m ≪ m′ ≪ m

Remark 2.4.2. The name L0−module is justified by axiom (ii) in our definition, which
ensures that (M , τ, ·, | · |) is indeed a module over the ring of measurable functions. As
seen in the definition of the pointwise norm, measurable functions behave like scalars in
this setting. This idea also inspires the following definition of dual L0-module as the set
of linear maps into L0(X,m), with an additional boundedness assumption as one usually
does in analysis.
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Proposition 2.4.3. Let (X, d,m) be a metric measure space and M be a L0(m)-normed
module. Then:

(1) λv = λ̂v for λ ∈ R, where λ̂ denotes the (equivalence class of the) function identically
λ on X.

(2) |λv| = |λ||v| holds m-a.e. for all v ∈ M and λ ∈ R.

(3) the pointwise norm is uniformly continuous.

Proof. (1) Given λ ∈ R and v ∈ M , by using the bilinearity of multiplication we have
that λ̂v = (λ1̂)v = λ(1̂v) = λv.

(2) Fix λ ∈ R and v, w ∈ M . By the definition of L0-module and (1) we have that
|λv| = |λ̂v| = |λ̂||v| = |λ||v| holds m-a.e..

(3) Thanks to the triangle inequality for the pointwise norm we have that

dL0(|v|, |w|) =
∫
X

inf{||v| − |w||, 1}dm′ ≤
∫
X

inf{|v − w|, 1}dm′ = dM (v, w),

so the pointwise norm is uniformly continuous.

We will now give the notions of submodule and dual for an L0(X,m)-normed L0(X,m)-
module.

Definition 2.4.4. Let M be an L0(X,m)-module. A closed linear subspace N ⊆ M is a
submodule if it closed by multiplication by measurable functions, i.e.

f · v ∈ N for all f ∈ L0(m), v ∈ N .

Given a subset S ⊂ M , the submodule G(S,M ) generated by S is defined as the smallest
(with respect to inclusion) submodule of M containing S.

Equivalently, G(S,M ) = G(S), where

G(S) =

{
n∑

i=1

fi · si : n ∈ N, fi ∈ L0(m), si ∈ S

}
= spanL0(S)

is the set of all (finite) L0-linear combinations of elements of S.

Remark 2.4.5. It is straightforward to see that the intersection of submodules is itself a
submodule.
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2.5 Duality for L0-modules

Definition 2.5.1. Given a measure space (X,m) and an L0(X,m)-normed L0(X,m)-
module M , we define its dual module M ∗ as the set of continuous linear maps ω : M →
L0(X,m) such that

(i) ω(f · v) = fω(v), for every v ∈ M and for every f ∈ L0(X,m)

(ii) there exists g ∈ L0(X,m) such that

|ω(v)| ≤ |g||v| m-a.e. ∀v ∈ M . (2.5.1)

We then define |ω|∗ as the least (positive) function g ∈ L0(X,m) for which (ii) is satisfied.

Remark 2.5.2. Observe that the definition of |ω|∗ is well posed, since whenever two func-
tions g and h satisfy condition (ii) their infimum, which is still measurable, also does.

The dual (M ∗, |·|∗) has a natural structure of L0(X,m)-normed L0(X,m)-module given
by

• (f · ω)(v) = f · (ω(v))

• |(f · ω)(v)| = |f(ω(v)| = |f ||ω(v)| hence |f · ω|∗ = |f ||ω|∗,

• |(ω1 +ω2)(v)| ≤ |ω1(v)|+ |ω2(v)| ≤ (|ω1|∗ + |ω1|∗)|v|, hence |ω1 +ω2|∗ ≤ |ω1|∗ + |ω2|∗.

• dM ∗(ω1, ω2) =
∫
X
inf{|ω1 − ω2|∗, 1}dm′.

We can adapt the definition of L0(X,m)-normed L0(X,m)-module to include integra-
bility requirements of the norm, as seen in the following definition.

Definition 2.5.3. An Lp(X,m)-normed L∞(X,m)-module is a triple (Mp, ∥ · ∥, | · |) where

(i) (Mp, ∥ · ∥) is a Banach space.

(ii) The bilinear map · : L∞(X,m)× Mp → Mp satisfies

f · (g · v) = (fg) · v ∀f, g ∈ L∞(X,m),∀v ∈ Mp

1 · v = v ∀v ∈ Mp.

(iii) The map | · | : M → Lp(X,m), called the pointwise norm, satisfies the following
properties

|v| ≥ 0 m-a.e. ∀v ∈ Mp

|f · v| = |f ||v| m-a.e. ∀f ∈ L∞(X,m),∀v ∈ M

|v + w| ≤ |v|+ |w| m-a.e. ∀v, w ∈ Mp.
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(iv) We have ∥v∥ = (
∫
X
|v|pdm)1/p.

Remark 2.5.4. The definition differs from the L0 case in that we require Lp-normed L∞-
modules to be Banach spaces, not just topological vector spaces. This allows us to drop
condition (iv) in 2.5.1 and avoids the dependence on a probability measure.

We can also adapt the definition of dual module.

Definition 2.5.5. Given a measure space (X,m) and an Lp(X,m)-normed L∞(X,m)-
module Mp, we define (Mp)

∗, its dual module, as the set of continuous linear maps ω :
Mp → L1(X,m) such that

(i) ω(f · v) = fω(v), for every v ∈ Mp and for every f ∈ L∞(X,m)

(ii) there exists g ∈ Lq(X,m) such that

|ω(v)| ≤ |g||v| m-a.e. ∀v ∈ M

We then define |ω|∗ as the least function g ∈ Lq(X,m) for which (ii) is satisfied. Then
((Mp)

∗, | · |∗) has a natural structure of Lq(X,m)-normed L∞(X,m)-module.

Theorem 2.5.6. Let p ∈ [1,∞]. Given Mp an Lp(X,m)-normed L∞(X,m)-module, there
exists a unique L0(X,m)-normed L0(X,m)-module M (up to isomorphisms) such that

Mp = Lp(M ,m) := {ω ∈ M : |ω| ∈ Lp(m)}.

Moreover, we have the following Banach spaces are canonically isomorphic:

(i) (Mp)
∗ the dual module of Mp considered as Lp(X,m)-normed L∞(X,m)-module;

(ii) Lq(M ∗,m).

Moreover if p < ∞ we have also Lq(M ∗,m) = (Mp)
′, the Banach dual of Mp considered

as Banach space.

Proof. It is clear that (Mp)
∗ and Lq(M ∗,m) are canonically isomorphic. Moreover it is

also trivial that for every p Lq(M ∗,m) ⊆ (Mp)
′. Let us prove the reverse inclusion in the

case p <∞. Let ℓ ∈ (Mp)
′. Fix v ∈ Mp and consider the map

µv : E 7→ ℓ(χE · v).

Then µv is a measure and moreover

|µv(E)| ≤ ∥ℓ∥M ′
p
∥χE · v∥Mp ≤ ∥ℓ∥M ′

p

(∫
E

|v|pdm
)1/p

,

thus µv ≪ m. We denote its density by ω(v) ∈ L1(m). Via a density argument it can be
shown that ω is L∞(m)-linear.
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Since ℓ ∈ (Mp)
′ there exists C > 0 such that∫

X

ω(v)dm = ℓ(v) ≤ C∥v∥p. (2.5.2)

Let us consider two functionals in the Banach space Y = Lp(m):

Ψ2(h) = C∥h∥Lp(m) (2.5.3)

Ψ1(h) = sup

{∫
X

ω(v) dm : |v| ≤ h , v ∈ Mp

}
(2.5.4)

where the supremum of the empty set is meant to be −∞. Equation (2.5.2) guarantees
that

Ψ1(h) ≤ Ψ2(h) ∀h ∈ Y. (2.5.5)

Moreover Ψ2 is convex and continuous while we claim that Ψ1 is concave: it is clearly
positive 1-homogeneus and so it is sufficient to show that

Ψ1(h1 + h2) ≥ Ψ1(h1) + Ψ1(h2).

We can assume that Ψ1(hi) > −∞ for i = 1, 2 because otherwise the inequality is trivial.
In this case for every ε > 0 we can pick vi ∈ Mp such that∫

X

ω(v1) dm ≥ Ψ1(h1)− ε |v1| ≤ h1∫
X

ω(v2) dm ≥ Ψ1(h2)− ε |v2| ≤ h2

and so we can consider v1 + v2 ∈ Mp, clearly |v1 + v2| ≤ |v1|+ |v2| ≤ (h1 + h2) and so

Ψ1(h1 + h2) ≥
∫
X

(v1 + v2)(f) dm ≥ Ψ1(h1) + Ψ1(h2)− 2ε,

and we get the desired inequality letting ε → 0. By Hahn-Banach theorem we can find a
continuous linear functional L on Lp(m) such that

Ψ1(h) ≤ L(h) ≤ Ψ2(h).

Since p < ∞ we know that (Lp)∗ = Lq and so we can find g ∈ Lq such that L(h) =∫
X
gh dm. This proves in particular that∫

X

ω(v)dm ≤
∫
X

g|v|dm.

We can localize the above inequality and get ω(v) ≤ g|v| almost everywhere and thus
ω ∈ Lq(M ∗,m). Moreover we have that |ω|∗ ≤ g and so ∥ω∥Lq ≤ ∥g∥p ≤ C.
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Both in the L0 and the Lp case, when speaking of duals we have defined the pointwise
norm of a functional ωas the least among functions g satisfying |ω(v)| ≤ |g||v| for all
elements of the module. To see that such a function actually exists, we give the following
lemma.

Lemma 2.5.7. Let M be a L0(m)-normed L0(m)-module and ω : M → L0(m) be a
continuous linear functional. Then there exists a least positive function in

Y = {g ∈ L0(m) : g ≥ 0 m-a.e, |ω(v)| ≤ g|v| m-a.e ∀v ∈ M }.

Proof. Consider m′ ∈ P(X) such that m ≪ m′ ≪ m and let gn be a minimizing sequence
in Y for argmin

Y
{
∫
X
arctan(|g|)dm′} and define ḡ(x) = infn gn(x). Then ḡ ≤ g m-a.e for

all g ∈ Y .

2.6 Hahn-Banach theorem for L∞-modules

We want to prove an extension theorem for linear functional with pointwise estimates.

Lemma 2.6.1. Let Mq be an Lq(X,m)-normed L∞(X,m)-module. Let W ⊂ V be a sub-
module, and let L : W → L1 be an L∞-linear functional such that L(w) ≤ |w|g for some
g ∈ Lp(X,m). Then L can be extended to a L∞-linear functional L̃ : V → L1(X,m)
without increasing the pointwise norm, namely such that

L̃(v) ≤ |v|g ∀v ∈ V.

Proof. With an application of Zorn Lemma, we can reduce ourselves to extend the func-
tional to span{x0,W}, for some x0 /∈ W . Any element in span{x0,W} is of the form
λx0 + w where λ ∈ L∞(X,m) and w ∈ W . Since the extension L̃ has to be L∞-linear, it
must satisfy the equation

L̃(λx0 + w) = λr0 + L̃(w) = λr0 + L(w)

for some r0 ∈ L1. However we need to chose r0 in such a way that we do not increase the
norm. Then we need to choose r0 so that

|L̃(λx0 + w)| ≤ g|λx0 + w| m-a.e.

−g|λx0 + w| − L(w) ≤ λr0 ≤ g|λx0 + w| − L(w) m-a.e. (2.6.1)

Denoting λε(x) = sup{ε, λ+} − sup{ε, λ−} we have that if (2.6.1) is verified for λε for
all ε > 0 then it is verified also for λ since in the set λ = 0 the inequality is trivial. In
particular we have to check (2.6.1) only when λ, λ−1 ∈ L∞; so we can multiply by λ−1 the
whole inequality (and pay attention to the signs) to get

−g
∣∣∣x0 + w

λ

∣∣∣− L
(w
λ

)
≤ r0 ≤ g

∣∣∣x0 + w

λ

∣∣∣− L
(w
λ

)
m-a.e.
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Since λ−1w is an arbitrary element of W we can finally rewrite this inequality as

−g|x0 + w| − L(w) ≤ r0 ≤ g|x0 + w|+ L(w) m-a.e. ∀w ∈ W.

Now, if w1, w2 ∈ W we have that

L(w1)− L(w2) = L(w1 − w2)

≤ g|w1 − w2| = g|(w1 + x0)− (w2 + x0)|
≤ g|w1 + x0|+ g|w2 + x0| m-a.e.

so that

−g|w2 + x0| − L(w2) ≤ L(w1) + g|w1 + x0| m-a.e. ∀w1, w2 ∈ W,

Now we take the essential infimum of the right hand side and the essential supremum of
the left hand side to obtain

a(x) = esssup
w2∈W

{
−g|w2 + x0| − L(w2)

}
≤ essinf

w1∈W

{
g|w1 + x0| − L(w1)

}
= b(x);

so it is sufficient to take a(x) ≤ r0(x) ≤ b(x) for m-almost every x in order to extend the
functional without increasing the pointwise estimate.
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Chapter 3

Derivations

In this chapter we introduce derivations, which will play a key role in the construction of
the tangent module.

3.1 Notation

Given a function f : X → R and a Borel set E we will denote with Lip(f, E) the Lipschitz
constant of f restricted to the Borel set E; if the set E is not indicated it is assumed to
be E = X. A function f is said to be Lipschitz if Lip(f) < ∞, and the set of Lipschitz
functions is denoted by Lip(X, d). Other spaces that will be used in the sequel are:

• Lip0(X, d), the set of Lipschitz functions with bounded support: the support of a
continuous function f is defined as supp(f) = {f ̸= 0};

• Lipb(X, d), the set of bounded Lipschitz functions;

• Liploc(X, d), the set of locally Lipschitz functions, that is those functions f such that
for any x there exists r > 0 such that f |Br(x) is Lipschitz.

We have the obvious inclusions Lip0(X, d) ⊆ Lipb(X, d) ⊆ Lip(X, d) ⊆ Liploc(X, d). Recall
that for a locally Lipschitz function f asymptotic Lipschitz constant is defined as

lipaf(x) = lim
r→0

Lip(f,Br(x)).

3.2 Weaver derivations

Definition 3.2.1. A Weaver derivation on a metric measure space (X, d,m) is a linear
map b : Lip0(X, d) → L0(X,m) such that

(i) (Leibniz rule) for every f, g ∈ Lip0(X, d), we have b(fg) = b(f)g + fb(g);
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(ii) (Locality) There exists some function g ∈ L0(X,m) such that

|b(f)|(x) ≤ g(x) · lipaf(x) for m-a.e. x, ∀f ∈ Lip0(X, d).

The smallest function g with this property is denoted by |b|.

(iii) (weak* continuity) whenever fn
n−→ f pointwise with uniformly bounded Lipschitz

constants (i.e. supn Lip(fn) <∞), b(fn)
∗
⇀ b(f) in duality with L1(|b|dm).

We will denote by TX the space of Weaver derivations on X.

We will see that when b admits divergence weak* continuity follows from the first two
properties.

Remark 3.2.2. Derivations vanish at constant functions. Indeed, by the Leibniz rule,

b(1) = b(1 · 1) = 1 · b(1) + 1 · b(1) = 2b(1).

Clearly the set of derivations TX has a vector space structure over R, our main goal
now is to endow it with the structure of L0(X,m)-normed L0(X,m)-module. According to
the definition we then need to define the following:

• multiplication of derivations by measurable functions, this can be done naturally by
setting

(u · b)(f) := ub(f)

for u ∈ L0(m), b ∈ TX, f ∈ Lip0(X, d), it is straightforward to see that with this
definition u · b is indeed a derivation,

• a pointwise norm, which can be given by choosing |b| as in the locality section of
definition 3.2.1,

• a topology on TX which is compatible with the pointwise norm.

What we do is essentially adapting the dL0 distance to TX.

Lemma 3.2.3. Given m ∈ P(X) such that m ≪ m′ ≪ m consider

dTX(b1, b2) :=

∫
X

inf{|b1 − b2|, 1}dm′

and let τ be the topology on TX induced by dTX . Then (TX, τ, ·, | · |) is an L0(m)-normed
L0(m)-module.

Remark 3.2.4. Just like in the case of dL0 the topology τ does not depend on the specific
probability measure m′ chosen to define dTX .
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Proof. (Lemma) The only nontrivial condition to check in 2.4.1 is homogeneity, i.e.

|u · b| = |u||b| m-a.e. for all u ∈ L0(m), b ∈ TX. (3.2.1)

Fix u ∈ L0(m). By definition |u · b|(x) ≤ |b|(x)|u(x)| almost everywhere. The reverse
inequality is obviously true where u vanishes. Let us define

g(x) =

{
u(x)−1 u(x) ̸= 0

0 otherwise
∈ L0(m)

Notice that b(f) = (g · u)b(f) = g · (u · b) in {u(x) ̸= 0}. By 3.2.1 we obtain

|g · (u · b)| ≤ |g||u · b)| ≤ |g||u||b| = |b| in {u ̸= 0}

and so we deduce the reverse inequality on {u ̸= 0} as well.
It remains to show that dTX is complete. Let (bn)n be a dTX-Cauchy sequence. For all

f ∈ Lip0(X, d) (bn(f))n is a dL0-Cauchy sequence in L0, which is complete (lemma 2.3.8),
therefore there exists b(f) such that

bn(f)
L0

−→
n

b(f),

The Leibniz rule and locality property hold for b with |bn|
L0

−→
n

|b|. Let us now discuss

weak* continuity. Suppose fk
k−→ f pointwise with uniformly bounded Lipschitz constants.

We need to show that for all g ∈ L1(|b|,m)∫
X

gb(fk)dm −→
k

∫
X

gb(fk)dm. (3.2.2)

By assumption, ∫
X

inf{|b− bn|, 1}dm′ −→
n

0.

Up to passing to a subsequence we can suppose |b − bn| −→
n

0 m-almost everywhere, in

particular g|b|m-almost everywhere. Therefore there exists a Borel set Eε such that∫
X\Eε

g|b|dm < ε

and

lim sup
k

∣∣∣∣∫
X

gb(fk)− gb(f)dm′
∣∣∣∣ ≤ lim sup

k

∣∣∣∣∫
Eε

gb(fk)dm
′ −
∫
Eε

gb(f)dm′
∣∣∣∣+ 2ε sup

k
Lip(fk)

≤ lim sup
k

∣∣∣∣∫
Eε

gbk(fk)− gbk(f)dm
′
∣∣∣∣+ 2ε sup

k
Lip(fk) + 2ε

∫
g|b|dm′,

which yields (3.2.2).
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We will refer to TX as the tangent module to (X, d,m), where derivations are to be
thought as vector fields. The elements of the dual module, as constructed in 2.5.1, will
play the role of 1-forms, i.e. sections of the cotangent bundle.

Moreover we will denote by Lp(TX,m) the space of derivations b such that |b| ∈ Lp(m).

3.3 Equivalent locality conditions for derivations

According to definition to definition 3.2.1 a derivation b : Lip0(X, d) → L0(m) on a
metric measure space (X, d,m) satisfies |b(f)| ≤ |b|lipa(f) m-almost everywhere for all
f ∈ Lip0(X, d). We will now show that this in actually equivalent to a seemingly weaker
condition,

|b(f)| ≤ |b|lipa(f) a.e. ∀f ∈ Lip0(X, d) ⇐⇒ |b(f)| ≤ |b|Lip(f) a.e. ∀f ∈ Lip0(X, d).
(3.3.1)

Sufficiency is clear, since lipa(x) = limr→0 Lip(f,Br(x)) ≤ Lip(f).
Conversely, suppose |b(f)| ≤ |b|Lip(f) a.e. ∀f ∈ Lip0(X, d).

Step 1. If f(x) = 0 for all x ∈ Bε(x0) then b(f)(x) = 0 for m-almost everywhere in
Bε(x0). Let χε be a Lipschitz function such that χε > 0 on Bε(x0) and χε = 0 in X \ χε

(e.g. χε(x) = [ε − d(x, x0)]
+). Then fχ ≡ 0, thus b(fχε) = 0 almost everywhere. By the

Leibniz rule we obtain that

0 = b(fχε) = fb(χε) + χεb(f).

Then for almost every x ∈ Bε(x0)

b(f)(x) · χε(x) = −f(x) · b(χε)(x) = 0, χε(x) > 0 =⇒ b(f)(x) = 0.

Step 2. For all x0 ∈ X we have b(f)(x) ≤ |b|(x) Lip(f,Bε(x0)) almost everywhere in
Bε(x0).

Let L = Lip(f,Bε(x0)) and consider the McShane extension

f
Bε(x0)
L (x) = sup

y∈Bε(x0)

{f(y)− Ld(x, y)}.

We have that

• if x ∈ Bε(x0) then f
Bε(x0)
L ≥ f(x)− Ld(x, x) = f(x),

• for any x ∈ X and y ∈ Bε(x0)

f(y)− Ld(x, y)− f(x) ≤ Ld(x, y)− Ld(x, y) = 0

f(y)− Ld(x, y) ≤ f(x)

27



Therefore f ε
L(x) = f(x) when x ∈ Bε(x0). By claim 1 we know that b(f) = b(f ε

L)
almost everywhere on Bε(x0) ⊂ {f = f ε

L}, thus

|b(f ε
L)|(x) = |b(f)|(x) ≤ |b|(x) · L = |b|(x) · Lip(f,Bε(x0)) for all x ∈ Bε(x0).

Step 3. We now use the previous result to show that

b(f)(x) ≤ |b|(x) · Lip(f,Bε(x)) for almost every x ∈ X. (3.3.2)

Assume by contradiction that (3.3.2) does not hold. Then there exist x̄ ∈ X and
0 < ε̃ < ε

2
such that (3.3.2) does not hold in a subset E ⊂ Bε̃(x̄) of positive measure. By

applying step 2 to ε̃ we obtain that for x ∈ E Bε̃(x̄) ⊂ Bε(x) and

b(f)(x) ≤ |b|(x) Lip(f,Bε̃(x̄)) ≤ |b|(x) Lip(f,Bε(x))

and thus a contradiction.
Step 4. By letting ε ↓ 0 in 3.3.2 we obtain that

b(f) ≤ |b| · lipaf m-almost everywhere

and 3.3.1 is proved.

In a similar spirit we will also show that

b(f) ≤ |b|(f)lipaf ∀f ∈ Lip0(X, d) ⇐⇒ b(f) ≤ |b||Df | ∀f ∈ Lip0(X, d), (3.3.3)

and that therefore definition 3.2.1 and definition 4.3.8 have the same locality requirements.
As shown in 2.2.4, |Df | ≤ lipaf . Necessity is then clear.
As for sufficiency, suppose b(f) ≤ |b|(f)lipaf , let ℓ, r > 0 and consider

Kℓ
r :=

{
x ∈ X : sup

x ̸=y∈Br(x)

|f(y)− f(x)|
d(y, x)

}
.

Then define
Kℓ :=

⋃
r>0

Kℓ
r = {x ∈ X : |Df |(x) < ℓ}.

To show that b(f) ≤ |b||Df | it is enough to prove that b(f) ≤ |b|ℓ holds almost
everywhere on Kℓ or, equivalently, almost everywhere on Kℓ

r for all r > 0.
Fix ε > 0. By inner regularity there exists a compact setK ⊂ Kℓ

r such thatm′(Kℓ
r\K) <

ε. Consider the open cover K ⊂
⋃

x∈K B r
2
(x). Since K is compact there exists a finite

collection x1, . . . , xN ∈ K such that K ⊂
⋃N

i=1B r
2
(xi).

For i = 1, . . . , N consider

fi(x) = sup
y∈B r

2
(xi)

{f(y)− ℓd(x, y)}.

Then
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(i) fi is ℓ-Lipschitz,

(ii) fi(x) ≥ f(x) for x ∈ B r
2
(xi),

(iii) fi(x) ≤ f(x) for x ∈ B r
2
(xi) ∩K.

Claims (i) and (ii) are clear and can be shown as in section 4.
As for (iii), notice that if y ∈ B r

2
(xi) and x ∈ B r

2
(xi) ∩ K, then y ∈ Br(x) and

f(y)− f(x) ≤ ℓd(x, y). Therefore

f(y)− ℓd(x, y) ≤ f(x).

By taking the supremum over y ∈ B r
2
(xi) we obtain fi(x) ≤ f(x).

3.4 Derivations with divergence

Definition 3.4.1. Let b ∈ TX such that |b| ∈ L1
loc(X); then we say that b ∈ D(div) if

there exists a measure µb (its divergence), finite on bounded sets, such that

−
∫
X

b(f) dm =

∫
X

f dµb ∀f ∈ Lip0(X, d).

If µb ≪ m we will say that b ∈ Diva and denote µb = div b · m; in particular if b ∈ Diva
and div b ∈ Lp(m) we will say that b ∈ Divp.

Lemma 3.4.2. Let u ∈ Lip0(X, d) and b ∈ Lp1(m) be a derivation with |b| ∈ Lp1(m) ∩
Divp2. Then ub ∈ L1(TX,m) ∩Divp3 and

div(ub) = u div b+ b(u),

where p3 = max{p1, p2}.

Proof. Let f ∈ Lip0(X, d). By the Leibniz rule for derivations, b(fu) = ub(f) + fb(u).
Then

−
∫
X

ub(f)dm = −
∫
X

b(fu)dm+

∫
X

fb(u)dm

=

∫
X

fu · div(b)dm︸ ︷︷ ︸
dµb

+

∫
X

fb(u)dm

=

∫
X

f · (u div(b) + b(u))dm.

Since f is arbitrary we obtain that div(ub) = u div(b) + b(u).
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Definition 3.4.3. Let (X, d,m) be a metric measure space and q ∈ [1,∞]. We define
TqX as the submodule of TX generated by Lq(TX,m) ∩ Divq, i.e. the smallest submodule
containing derivations with q-integrable pointwise norm and divergence. We then define
T ∗
qX to be the dual module of TqX.

Lemma 3.4.4. (Strong locality for weak-continuos derivations) Let b ∈ TX. Then for
every f ∈ Lip0(X, d)

(i) b(f) = 0 m-almost everywhere in {f = 0},

(ii) b(f) ≤ |b|lipa(f |C) m-almost everywhere on every closed subset C.

Corollary 3.4.5. Let b ∈ TX. Then for every f, g ∈ Lip(X, d) b(f) = b(g) on {f = g}.

Lemma 3.4.4. Let ϕε(x) = (x − ε)+ − (x + ε)−. Then ϕε is 1-Lipschitz, |ϕε(x) − x| ≤ ε
and ϕε(x) = 0 for |x| ≤ ε. Given f ∈ Lip0(X, d)(Xd), define fε := ϕε ◦ f . Then b(fε) ≤
|b|lipa(fε) ≤ |b|lipa(f). By assumption

|fε(x)− f(x)| = |ϕε(f(x))− f(x)| ≤ ε ∀x ∈ X =⇒ fε ⇒ f.

Moreover Lip(fε) ≤ Lip(f) are uniformly bounded. It follows that∫
X

gb(fε)dm −→
ε

∫
X

b(f)dm.

Notice that fε is (m-a.e.) constantly zero where |f | < ε, so that lipa = 0 a.e. in
the same region. Let h be a positive function in L1(m) and define g = 1{f=0}sgn(b(f)).
Observe that∫

{f=0}
h · |b(f)|dm =

∫
X

h · gb(f)dm = lim
ε→0

∫
X

h · gb(fε)dm = 0.

Therefore h · |b(f)| = 0 m-a.e. on {f = 0}. Since h was chosen positive a.e. we conclude
|b(f)| = 0 m-a.e. and (i) is proved.

To prove (ii) we use the McShane extension of f restricted to closed balls. For all
y ∈ X and r > 0 let us denote

gry(x) := sup{f(x′)− Ld(x, x′) : x′ ∈ C ∩ B̄r(y)}, L = Lip(f, C ∩ B̄r(y)),

which extends f |C∩B̄r(y)) to X preserving its Lipschitz constant, i.e.

f = gry on C ∩ B̄r(y)) and Lip(f, C ∩ B̄r(y))) = Lip(gry, C ∩ B̄r(y)).

By corollary 3.4.5 (which follows from (i)) b(f) = b(gry) m-a.e. on C ∩ B̄r(y)). In
particular, since Br(y) ⊂ B2r(x) for x ∈ Br(y),

|b(f)|(x) ≤ |b|Lip(f |C , B̄r(y)) ≤ |b|Lip(f |C , B2r(x))) −−→
r→0

|b|lipa(f |C)(x) m-a.e. on C∩Br(y).

Since y is arbitrary, the thesis follows.
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3.5 A look at the smooth case

LetX = (M, g, vol·g) be a smooth manifold. We will give an analysis of the correspondence
between vector fields in L0(TM), where TM is the classical tangent bundle of differential
geometry, and our notion of TX (Weaver derivations) when X is seen as a metric measure
space.

In the standard case, every point x ∈ M comes with a tangent space TxM and a
measurable vector field v ∈ L0(TM) is a measurable function v : M → TM such that
v(x) ∈ TxM for a.e. x ∈M .

We will focus on the case M = Rn for simplicity, but a similar result holds for any
smooth manifold. With this choice of M vector fields can act as directional derivatives.
The following correspondence holds.

Theorem 3.5.1. Let M = R. In this case derivations can be identified as vector fields.

(i) Given v ∈ L0(TM) there is a unique bv ∈ TX such that bv(f) =
∂
∂v
f .

(ii) Given b ∈ TX, can we find vb ∈ L0(TM) such that b(f) = ∂
∂vb
f .

Proof. Let us address question (i) first. By Rademacher’s theorem Lipschitz functions on
Rn are Lebesgue-a.e. differentiable. Therefore, given f ∈ Lip0(X, d) we can speak of its
differential df and define

bv(f) :=
∂

∂v
f = ⟨v, df⟩ (defined a.e.),

which is linear in f , satisfies the Leibniz rule and |bv(f)| ≤ |v||∇f | ≤ |v|lipa(f). To see

that weak* continuity also holds let fk
k−→ f pointwise with supk {Lip(fk)} <∞).

It is enough to show that∫ (
∂fk
∂xi

· h
)
dx

k−→
∫ (

∂f

∂xi
· h
)
dx for all · h ∈ L1(Rn). (3.5.1)

Indeed, if one assumes (3.5.1), then for all h ∈ L1(Rn)

∫
(⟨dfk, v⟩ · h) dx =

∑n
i=1

∫ (
∂fk
∂xi

· vi · h
)
dx

∫
(⟨df, v⟩ · h)dx

∑n
i=1

∫ (
∂f
∂xi

· vi · h
)
dx =

∫
∂f
∂v

· hdx

k k

Let us prove that 3.5.1 holds. If h ∈ C∞
c (Rn) then by integration by parts and domi-

nated convergence∫ (
∂fk
∂xi

· h
)
dx = −

∫
fk
∂h

∂xi
−→
k

−
∫
f
∂h

∂xi
dx =

∫
∂f

∂xi
hdx
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By density of C∞
c (Rn) in L1(Rn) we conclude. Let h ∈ L1(Rn) and (hε) ⊂ C∞

c (Rn) be

such that hε
ε→0−−→ h. Then

∣∣∣∣∫ (∂fk∂xi
· h
)
dx−

∫ (
∂f

∂xi
· h
)
dx

∣∣∣∣
≤
∣∣∣∣∫ ∂fk

∂xi
· (h− hε)dx

∣∣∣∣+ ∣∣∣∣∫ (∂fk∂xi
− ∂f

∂xi

)
· hεdx

∣∣∣∣+ ∣∣∣∣∫ ∂f

∂xi
(h− hε)dx

∣∣∣∣
≤
(
sup
m

{Lip(fm)}+ Lip(f)

)
∥h− hε∥L1(Rn) +

∣∣∣∣∫ (∂fk∂xi
− ∂f

∂xi

)
· hεdx

∣∣∣∣
−−→
k

(
sup
m

{Lip(fm)}+ Lip(f)

)
∥h− hε∥L1(Rn)

ε→0−−→ 0.

This shows that L0(TM) ∋ v 7−→ bv ∈ TX is well defined and gives a positive answer
to question (i). It is not hard to see that this map preserves sums, multiplication by scalars
and that it is injective.

Conversely, to answer question (ii) let b ∈ TX and let fi(x) = xi be the i-th coordinate.
We define

vb :=
n∑

i=1

b(fi)ei.

According to definition to definition 3.2.1 a derivation b : Lip0(X, d) → L0(m) on a
metric measure space (X, d,m) satisfies |b(f)| ≤ |b|lipa(f) m-almost everywhere for all
f ∈ Lip0(X, d).

We would like to show that

b(f) =
∂

∂vb
f.

Since f is Lipschitz, almost everywhere we have |df | = |Df | = |∇f |.
Let q̄ = (q1, . . . , qn) ∈ Qn. Then

b(f)−
n∑

i=1

b(xi)qi = b

(
f −

n∑
i=1

qixi

)
∣∣∣∣∣b(f)−

n∑
i=1

b(xi)qi

∣∣∣∣∣ ≤ |b|

∣∣∣∣∣D(f −
n∑

i=1

qixi)

∣∣∣∣∣ = |b||df − q̄|.

Therefore for all q̄ ∈ Qn

∣∣∣∣b(f)− ∂

∂vb
f

∣∣∣∣ ≤
∣∣∣∣∣b(f)−

n∑
i=1

b(xi)qi

∣∣∣∣∣+
∣∣∣∣∣

n∑
i=1

b(xi)qi −
n∑

i−=1

b(xi)
∂f

∂xi

∣∣∣∣∣
≤ |b||df − q̄|+

∣∣∣∣∣
n∑

i=1

b(xi)

(
qi −

∂f

∂xi

)∣∣∣∣∣ ≤ (1 +
√
n)|b||df − q̄|.

(3.5.2)
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Hence for any q̄ ∈ Qn,∣∣∣∣b(f)− ∂

∂vb
f

∣∣∣∣ ≤ (1 +
√
n)|b||df − q̄| m-almost everywhere. (3.5.3)

Since Qn is countable, m-almost everywhere the following holds∣∣∣∣b(f)− ∂

∂vb
f

∣∣∣∣ ≤ (1 +
√
n)|b||df − q̄| for all q̄ ∈ Qn. (3.5.4)

By taking the infimum over q̄ ∈ Qn we obtain
∣∣∣b(f)− ∂

∂vb
f
∣∣∣ = 0.

3.6 Sobolev spaces via derivations

The goal of this section is to define a notion of Sobolev space W 1,p over a metric measure
space (X, d,m) which uses derivations.

Definition 3.6.1. Let f ∈ Lp(X,m). then f ∈ W 1,p(X, d,m) if, setting p = q/(q − 1),
there exists df ∈ Lp(T ∗

qX,m) satisfying∫
X

df · b dm = −
∫
X

f div b dm for all b ∈ Lq(TX,m) ∩Divq. (3.6.1)

In analogy with the characterization of classical Sobolev spaces seen in 1.3.1 we give
the following

Definition 3.6.2. Let f ∈ Lp(X,m). Then, setting p = q/(q − 1), the following are
equivalent:

(i) There exists df ∈ Lp(T ∗
qX,m) satisfying∫

X

df · b dm = −
∫
X

f div b dm for all b ∈ Lq(TX,m) ∩Divq. (3.6.2)

(ii) There exists a linear map Lf : Lq(TX,m) ∩ Divq → L1(X,m) which is Lipb-linear,
such that∫

X

Lf (b) dm = −
∫
X

f div b dm for all b ∈ Lq(TX,m) ∩Divq. (3.6.3)

(iii) Only for p > 1: there exists a constant Cf <∞ such that∣∣∣∣∫
X

f div b dm

∣∣∣∣ ≤ Cf∥|b|∥Lq for all b ∈ Lq(TX,m) ∩Divq. (3.6.4)

If one of the above is satisfied we say the f ∈ W 1,p(X, d,m), we say that df is the
differential of the function f . Moreover we have that the best Cf in Equation (3.6.4) is
∥|df |∗∥Lp.

Remark 3.6.3. In the above definition it is clear that (i) =⇒ (ii) and (ii) =⇒ (iii).
To see that
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3.7 An example in R
In this example we will consider the metric measure space (X, d,m) = (R, | · |, ρdx) for
a function ρ ∈ L0(R). In this setting TX can be identified with R and TqX is a linear
subspace of TX, so the only options are TqX = 0 and TqX = R.

Theorem. Let E be the set of points around which ρ−1 is not q − 1-integrable. Then
TqR = 0 ρ−almost everywhere on E.

Proof. Let us assume that ρ is bounded. We would like to show that if v ∈ Lq(ρ) and
divρ(v) ∈ L∞(ρ), then v = 0 on E. By assumption for every φ ∈ C∞

c (R)∫
R
φ′vρdx = −

∫
φ divρ(v)ρdx.

But then vρ is Sobolev in the classical sense on R and therefore it has a continuous
representative. Suppose v(x0)ρ(x0) ̸= 0 for some x0 ∈ E, then in a neighbourhood of x0
we have

|v(x)| ≥ c

ρ(x)
=⇒ v /∈ Lq(ρ).

Since ρ > 0 ρ-almost everywhere on E we get v(x) = 0 ρ-almost everywhere on E.

Question: Does there exist a function ρ which is almost everywhere positive and such
that TqX = 0 almost everywhere?

For instance, if ρ(x) = min{|x|, 1}, TqR =

{
R x ̸= 0

0 x = 0
, but we would like to have this

behaviour everywhere.
If ρ were not integrable over any interval of R, then this behaviour (TxR = 0) would

occur at (a.e.) point. We will give an explicit example of such a function in the case p = 2.
Let (qn)n be an enumeration of the rational numbers and

ρ(x) =
1

1 +
∑∞

n=0
1

|x−qn|1B(qn,2−n)

.

Let Cn := R \
⋃

k≥nB(qk, 2
−k) and consider⋃
n

Cn = R \
⋂
n

⋃
k≥n

B(qk, 2
−k).

Observe that |
⋂

n

⋃
k≥nB(qk), 2

−k| ≤ infk c2
−k = 0 (for some c > 0) so that

⋃
nCn has full

measure.
Since Q is dense in R it is clear that

ρ−1(x) = 1 +
∞∑
n=0

1

|x− qn|
1B(qn,2−n)
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is nowhere integrable.
Our goal now is to show that if v ∈ L2(ρ) and divρ(v) ∈ L∞(ρ), then v = 0.
Indeed, suppose vρ has a continuous nonzero representative around x0. Then in a

neighbourhood of x0 we have

|v(x)| ≥ c

ρ(x)
=⇒ v /∈ L2(ρ).

As a consequence of this observation we have the following lemma.

Lemma. Let f ∈ L2(ρ). Then there exists a sequence (fn) ⊂ C∞
c (R) such that

1. fn → f in L2(ρ)

2. ∇fn → ∇f = 0 in L2(ρ).
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Chapter 4

Other definitions of Sobolev spaces

In this chapter we give a brief overview of other approaches to the definition of Sobolev
spaces over metric measure spaces that can be found in literature, see [7]. Thanks to what
we have showed in section we obtain that these notions of Sobolev spaces are equivalent
to the one described in section 3.6.

4.1 Cheeger energy and minimal relaxed slope

Definition 4.1.1. Let (X, d,m) be a metric measure space and fix p > 1. The Cheeger
energy is the convex and lower semicontinuous functional Ch : Lp(X,m) → [0,+∞] defined
as

Ch(f) := inf

{
lim inf
n→∞

∫
X

lipp
a(fn) : fn ∈ Lip0(X, d) ∩ Lp(X,m), fn

n−−−−−→
Lp(X,m)

f

}
.

The Sobolev space W 1,p(X, d,m) is then defined as the finiteness domain of Ch.

Recall the definition of slope for a Lipschitz function g : X → R seen in 2.2.3:

|Dg|(x) = lim sup
y→x

|f(y)− f(x)|
d(y, x)

.

Definition 4.1.2. (Relaxed gradients) Given f ∈ Lp(X,m) we say G ∈ Lp(X,m) is a
relaxed gradient of f if there exists a sequence of Borel d-Lipschitz functions such that

fn → f in Lp(X,m) and the asymptotic Lipschitz constants lipafn converge weakly
to a function G̃,

• G̃ ≤ G m-almost everywhere in X.

We say that G is the minimal relaxed gradient of f if its Lp(X,m) norm is minimal
among relaxed gradients. We shall denote by |df |∗ the minimal relaxed gradient.

The main result we want to achieve is the following.
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Theorem 4.1.3. For all f ∈ W 1,p(X) one has

Ch(f) =

∫
X

|df |p∗dm

and there exists fn ∈ Lip0(X, d) ∩ Lp(X,m) with fn → f in Lp(X,m) and lipafn → |Df| in
Lp(X,m). In particular, ifW 1,p(X, d,m) is reflexive, there exists fn ∈ Lip0(X, d)∩Lp(X,m)
satisfying fn → f in Lp(X,m) and |D(fn − f)| → 0 in Lp(X,m).

Lemma 4.1.4. (i) If G ∈ Lp(X,m) is a relaxed gradient of f ∈ Lp(X,m), then there
exist Borel d-Lipschitz functions fn converging to f in Lp(X,m) and gn ∈ Lp(X,m)
strongly convergent to G̃ in Lp(X,m) with |Dfn| ≤ Gn and G̃ ≤ G.

(ii) If Gn ∈ Lp(X,m) is a relaxed gradient of fn ∈ Lp(X,m) and fn ⇀ f , gn ⇀ g weakly
in Lp(X,m), then g is a relaxed gradient of f .

(iii) In particular, the collection of all the relaxed gradients of f is closed in Lp(X,m) and
there exist bounded Borel d-Lipschitz functions fn ∈ Lp(X,m) such that

fn → f, |Dfn| → |Df |∗ strongly in Lp(X,m).

Remark 4.1.5. Observe that (ii) is in analogy with 1.2.7 in the classical theory of Sobolev
spaces.

Proof. (i) Since g is a relaxed gradient, we can find Borel d-Lipschitz functions gi ∈
Lp(X,m) such that gi → f in Lp(X,m) and |Dgi| weakly converges to g̃ ≤ g in Lp(X,m);
by Mazur’s lemma we can find a sequence of convex combinations gn of |Dgi|, strongly
convergent to g̃ in Lp(X,m); the corresponding convex combinations of gi, that we shall
denote by fn, still converge in Lp(X,m) to f and |Dfn| is bounded from above by gn.

(ii) We will show that the set

S := {(f,G) ∈ Lp(X,m)× Lp(X,m) : G is a relaxed gradient of f}

is weakly closed in Lp(X,m) × Lp(X,m). Since S is convex, it is sufficient to prove that
it is strongly closed. Consider a sequence (f i, Gi) ∈ S and suppose (f i, Gi) → (f,G) in
Lp(X,m)×Lp(X,m). For each (f i, Gi) we can find a sequence of Borel Lipschitz functions
(f i

n) and of nonnegative Lp(X,m) functions (Gi
n) such that |Df i

n|⇀n G̃
i, G̃i ≤ Gi and

f i
n

n−→ f i, Gi
n

n−→ strongly in Lp(X,m).

Up to taking a subsequence we can assume G̃i ⇀ G̃ weakly in Lp(X,m). By a diagonal
argument we can find f i

n(i) → f , Gi
n(i) ⇀ G̃ in Lp(X,m) and such that |Df i

n(i)| is bounded
in Lp(X,m). Since Lp(X,m) is reflexive, |Df i

n(i)| has a subsequence that converges weakly,

so it is not restrictive to suppose |Df i
n(i)| ⇀ H. It follows that H ≤ G̃ ≤ G and G is a
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relaxed gradient for f .

(iii) Now consider the minimal relaxed gradient G := |Df |∗ and let fn, Gn be sequences
in Lp(X,m) as in (i). Again, since |Dfn| is uniformly bounded in Lp(X,m) it is not
restrictive to assume that it is weakly convergent to some limit H ∈ Lp(X,m) with 0 ≤
H ≤ G̃ ≤ G. Since G is minimal this implies that H = G̃ = G and |Dfnn| weakly
converges to |Df |∗ (because any limit point in the weak topology of |Dfn| is a relaxed
gradient with minimal norm) and that the convergence is strong, since

lim sup
n

∫
|Dfn|pdm ≤ lim sup

n

∫
Gp

ndm =

∫
Gpdm =

∫
Hpdm.

Finally, replacing fn by suitable truncations f̃n , made in such a way that f̃ → f in
Lp(X,m), we can achieve the boundedness property retaining the strong convergence of
|Df̃n| to |Df |∗, since |Df̃n| ≤ |Df | and any weak limit point of |Df̃n| is a relaxed gradient.

Remark 4.1.6. The minimal relaxed gradient satisfies a Leibniz inequality: if f, g ∈
Lp(X,m) ∩ L∞(X,m) have relaxed gradients, then fg has a relaxed gradient and

|D(fg)|∗ ≤ |f ||D(g)|∗ + |g||D(f)|∗,

as a consequence of the properties of the asymptotic Lipschitz constant (2.2.1).

Lemma 4.1.7. Let G1, G2 be relaxed gradients of f . Then min{G1, G2} and 1BG1 +
1X\BG2, B ∈ B(X), are relaxed gradients of f as well. In particular, for any relaxed
gradient G of f it holds

|Df |∗ ≤ G m− a.e. in X.

Theorem 4.1.8. Cheeger’s functional

Ch(f) =

∫
X

|Df |p∗dm,

(set equal to +∞ if f has no relaxed slope), is convex and lower semicontinuous in
Lp(X,m).

Proof. Recall |lipa(αf + βg)| ≤ |α||lipaf |+ |β||lipag|. If F is a relaxed gradient for F and
G is a relaxed gradient for g, then αF + βG is a relaxed gradient for αf + βg when α and
β are nonnegative. Taking the minimal relaxed gradients F = |Df |∗ and G = |Dg|∗ yields

|D(αf + βg)|∗ ≤ |α||Df |∗ + |β||Dg|∗ for every α, β ∈ R.

This proves the convexity.
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4.2 Weak upper gradient

In [7] the weak upper gradient is defined as follows. The Sobolev class Sp
loc(X) is introduced

as the set of measurable functions f which admit a weak upper gradient which is Lp
loc(m)

and |Df |w is chosen to be the minimal weak upper gradient in the m-almost everywhere
sense. It can be shown that this notion of gradient is local and satisfies the chain rule
and the Leibniz rule. The Sobolev class Sp(X) is then defined as the space of functions in
S2
loc(X) whose minimal weak upper gradient |Df |w is in Lp(X).
More precisely, S2(X) is defined as follows.

Definition 4.2.1. A measure π ∈ P(C([0, 1], X)) is said to be a q-test plan on X if it
satisfies the following properties:

(1) there exists a constant C > 0 such that (et)#π ≤ Cm for every t ∈ [0, 1],

(2) it holds that
∫∫ 1

0
|γ̇|qdπ(γ)dt <∞.

Definition 4.2.2. The Sobolev class Sp
loc(X) is defined as the space of functions f ∈ L0(m)

for which there exists a function G ∈ Lp
loc(m) with G ≥ 0 such that∫

|f(γ1)− f(γ0)|dπ(γ) ≤
∫∫ 1

0

G(γt)|γ̇t|dt dπ(γ) for every q-test plan π on X.

Sobolev spaces are then defined as W 1,p(X) := Lp(m) ∩ Sp(X) with the norm given by

∥f∥W 1,p(X) =
(
∥f∥pLp(m) + ∥|Df |w∥pLp(m)

)1/p
, (4.2.1)

it is shown in ?? that (W 1,p(X), ∥ · ∥W 1,p(X)) is a Banach space.

4.3 Construction of the cotangent module

Theorem 4.3.1. There exists a unique pair (L0(T ∗X), d) where L0(T ∗X) is a L0-module
and d : S2(X) → L0(T ∗X) is linear and such that

1. |df | = |Df | m-almost everywhere and for every f ∈ S2(X),

2. L0(T ∗X) is generated by df : f ∈ S2
loc(X).

Remark 4.3.2. Uniqueness is intended up to existence of a unique isomorphism.

Definition 4.3.3. The module L0(T ∗X) is called the L0(m)-cotangent module of X and
the map d the differential.

We will show the construction of the cotangent module with this definition, i.e. the
existence part of Theorem 4.3.1.
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Proof. (Theorem 4.3.1)
(Uniqueness) Suppose (L0(T ∗X), d) and (M , d′) verify the conditions in 4.3.1. In

particular for all f, g and E ⊂ X Borel

df = dgm-a.e. on E ⇐⇒ |D(f − g)| = 0-a.e. on E ⇐⇒ d′f = d′g-a.e. on E.

Our goal is to show that Φ(df) = d′f defines a well posed map which is an isomorphism
between (L0(T ∗X), d) and (M , d′). By L0-linearity it must hold

Φ

(
n∑

i=1

χEi
dfi

)
=

n∑
i=1

χEi
d′fi

for every simple function
∑n

i=1 χEi
dfi : X → d[S2

loc(X)]. Moreover, pointwise norms are
preserved, since∣∣∣∣∣

n∑
i=1

χEi
dfi

∣∣∣∣∣ =
n∑

i=1

χEi
|dfi| =

n∑
i=1

χEi
|Dfi| =

n∑
i=1

χEi
|dfi| =

n∑
i=1

χEi
|d′fi| =

∣∣∣∣∣
n∑

i=1

χEi
d′fi

∣∣∣∣∣ .
Since df : f ∈ S2

loc(X) generates L0(T ∗X) (i.e. simple functions
∑n

i=1 χEi
dfi : X →

d[S2
loc(X)] are dense in L0(T ∗X)) we can uniquely extend Φ to a linear, continuous isometry

Φ : L0(T ∗X) → M . It is also surjective since simple functions |
∑n

i=1 χEi
d′fi| are dense

in M . L0-linearity follows from the definition over simple functions, every measurable
function can be approximated by simple functions.

By construction this is the unique isomorphism between (L0(T ∗X), d) and (M , d′),
thus 4.3.2 holds.

Existence We define the “Pre-Cotangent Module” as the set of finite measurable parti-
tions of X, where each component carries a function of class S2:

Pcm := {(Ei, fi)i=1,...,n : (Ei)i is a Borel partition of X, fi ∈ S2
loc(X)}.

We introduce an equivalence relation on Pcm by declaring (Ei, fi)i ∼ (Fj, gj)j whenever
|D(fi − gj)| = 0 m-a.e.in Ei ∩ Fj forevery i, j. We denote by [Ei, fi]i ∈ Pcm/ ∼ the
equivalence class of (Ei, fi)i ∈ Pcm. We can endow the quotient with a structure of vector
space by defining a sum and a scalar multiplication naturally by restricting to intersections:

λ[Ei, fi]i + µ[Fj, gj]j := [Ei ∩ Fj, λfi + µgj]g,j.

Moreover we can define a multiplication by simple functions (measurable functions
attaining finitely many values) as · : S(X)× Pcm/ ∼→ Pcm/ ∼, where(

n∑
j=1

αjχj

)
· [Ei, fi]i := [Ei ∩ Fj, αjfi]i,j for all [Ei, fi]i ∈ Pcm/ ∼,

n∑
j=1

αjχj ∈ S(X).

Finally, we endow Pcm/ ∼ with a pointwise norm | · | : Pcm/ ∼→ L0(m) by setting
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|[Ei, fi]i| :=
n∑

i=1

χEi
|Dfi| for all [Ei, fi]i ∈ Pcm/ ∼

and a distance

dPcm/∼([Ei, fi]i, [Fj, gj]j) :=
∑
i,j

∫
Ei∩Fj

inf{D(fi − gj), 1}dm′,

where m′ ∈ P(X) is such that m ≪ m′ ≪ m.
The completion of Pcm/ ∼ with respect to dPcm/∼ is our candidate for L0(T ∗X). The

pointwise norm and the product by simple functions are Cauchy continuous with respect
to dPcm/∼ (2.4.3) and can therefore be extended to maps

| · | : L0(T ∗X) → L0(m), · : L0(m)× L0(T ∗X) → L0(T ∗X).

This endows L0(T ∗X) with the structure of an L0-normed L0-module. The differential
operator is defined as d : S2

loc(X) → L0(T ∗X) as

df := [X, f ] ∈ Pcm/ ∼ ⊂ L0(T ∗X),

where X is the trivial partition.
The definitions above ensure that d is linear,

d(αf + βg) = [X,αf + βg] = [X ∩X,αf + βg] = α[X, f ] + β[X, g] = αdf + β]dg.

By the definition of pointwise norm in Pcm/ ∼, |df | = |[X, f ]| = |Df | holds almost
everywhere for functions in S2

loc(X) and, by extension, on L0(T ∗X). To conclude, d[S2
loc]

coincides exactly with Pcm/ ∼ and is thus dense in L0(T ∗X) by construction.

Proposition 4.3.4. Let (fn)n ⊂ S2
loc(X) be a sequence mm-a.e. converging to a some

function f ∈ L0(m). Assume that (dfn)n converges to some ω ∈ L0(T ∗X) in L2lloc(m), i.e.
for every B ⊆ X bounded

lim
n

∫
B

|dfn − ω|2dm = 0. (4.3.1)

Then f ∈ S2
loc(X) and df = ω.

Remark 4.3.5. Again, notice the similarity with 1.2.7.

Observe that the differential can be restricted to W 1,2(X) as defined in (4.2.1) and the
restriction is continuous in the sense that if fn → f inW 1,2(X) then dL0(T ∗X)(dfn, df)

n−→ 0.
Actually, a stronger fact holds.

Lemma 4.3.6. The cotangent module L0(T ∗X) is generated by

dW 1,2 := {df : d ∈ W 1,2(X)}.
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Proof. By construction of the cotangent module, it is enough to show that df ∈ G(dW 1,2)
for every f ∈ S2

loc(X).

After constructing the cotangent module as described, the tangent module is defined
as follows.

Definition 4.3.7. Let (X, d,m) be a metric measure space. The tangent module L0(TX)
is defined as the dual as module of L0(T ∗X). Its elements are called vector fields.

In this setting, derivations are defined as follows.

Definition 4.3.8. A linear map L : S2
loc → L0(m) is an L0(m) derivation if there exists

g ∈ l0(m) such that
|L(f) ≤ g|Df | for all f ∈ S2

loc(X). (4.3.2)

Recall that in the construction we showed in Chapter 2, the space of derivations was
taken as the definition of the tangent module. There is a natural identification between
these two notions of tangent module which connects derivations and vector fields.

Theorem 4.3.9. For any vector field X ∈ L0(TX) the map X ◦ d : S2
loc(X) → L0(m)

is a derivation. Conversely, given a derivation L there exists a unique vector field X in
L0(TX) such that the diagram

S2
loc(X) L0(T ∗X)

L0(m)

d

L
X

commutes. Moreover, |X| is the minimal g that satisfies condition (4.3.2).

The differences between the derivations considered here and those defined in chapter 2
3.2.1are the following:

• in 3.2.1 a derivation b : Lip0(X, d) → L0(m) takes Lipschitz functions as opposed to
Sobolev class functions,

• the Leibniz rule is not explicitly stated in definition 4.3.8. However, as we have seen,
both the chain rule and Leibniz rule follow from locality.
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