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Abstract

Action recognition plays a pivotal role in understanding and interpreting human behavior
within videos, finding applications across various domains such as surveillance, human-
computer interaction, and robotics. Traditional methods predominantly rely on RGB
images, treating actions as holistic events without capturing the intricate hierarchical part
structures inherent in activities. In this context, Spatio-temporal Scene Graphs offer a
transformative approach. Unlike conventional RGB-based approaches, Spatio-temporal
Scene Graphs allow for the decomposition of actions into nuanced interactions between
objects and their pairwise relationships, thereby capturing the temporal evolution of vi-
sual scenes during actions. This novel representation serves as a potent alternative to
conventional RGB-based methods, offering a more detailed and interpretable depiction of
actions. Moreover, recognizing the importance of forecasting actions before their comple-
tion, the thesis delves into the anticipation task. This task addresses the inherent challenge
of understanding ongoing actions and holds significant potential for real-time applications,
enabling systems to react proactively to unfolding events. The thesis delves into these as-
pects, providing insights into the efficacy of Spatio-temporal Scene Graphs for both Action
Recognition and Anticipation tasks.
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Chapter 1

Introduction

1.1 Introduction and Motivation

In the rapidly evolving field of computer vision and artificial intelligence, the tasks of Action
Recognition and Anticipation have emerged as pivotal domains with transformative impli-
cations. Action Recognition involves imparting machines with the ability to comprehend
and interpret human actions depicted in images or videos, thereby enabling applications
ranging from interactive interfaces to security surveillance and robotics. Anticipation, a
more advanced facet, extends this capability by predicting actions before they fully unfold,
thereby enhancing the proactive responsiveness of systems to dynamic scenarios. These
tasks are not merely technical challenges but gateways to revolutionize human-computer
interaction, fortify security measures, and optimize automation processes.

However, the journey towards achieving proficiency in Action Recognition and Anticipation
is full of challenges. Action Recognition grapples with the intricacies of temporal dynamics,
diverse environmental conditions, and the necessity to decipher actions within varying
contextual settings [MBM14]. The temporal dynamics introduce challenges in capturing
the nuanced progression of actions over time, making it difficult for traditional methods
to discern complex interactions. [SNpS22] Additionally, diverse environmental conditions
further compound the complexity, as actions may manifest differently depending on factors
such as lighting, background, and occlusions [RYT14]. The need to decipher actions within
varied contextual settings requires models to possess a contextual understanding that goes
beyond simple recognition.

Anticipation, taking a step beyond, encounters additional hurdles [FF21] [HDL+22]. Pre-
dicting actions before their full development demands the ability to discern subtle cues and
infer potential outcomes. Understanding uncertainties associated with human behavior
introduces challenges in accurately predicting actions in dynamic and unpredictable sce-
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narios. Furthermore, adapting to rapidly changing scenarios poses a significant challenge,
requiring models to exhibit a level of flexibility and adaptability to unforeseen circum-
stances.

Motivated by the need to overcome these challenges and to unlock the full potential of
computer vision, and inspired by the work of others [JKFFN19] [Tri23] [RRF23], this
thesis leverages the concept of Spatio-temporal as a foundational framework for addressing
challenges in Action Recognition and extending it to the domain of Anticipation. Spatio-
temporal Scene Graphs provide a comprehensive representation, capturing not only spatial
relationships between objects but also the temporal evolution of these relationships over
time. Our contribution lies in the distinct methodologies employed for Action Recognition
and the novel extension of these scene graphs to the challenging task of Anticipation.

For Action Recognition, these graphs offer a structured framework that enriches the un-
derstanding of actions, allowing for nuanced modeling of intricate interactions. Lever-
aging Graph Convolutional Networks (GCNs), trained and optimized to enhance accu-
racy, becomes instrumental in capturing and learning complex relationships within the
scene graphs, thereby improving the overall performance of Action Recognition [DLP21]
[DMP21].

For Anticipation, the hierarchical nature of Spatio-temporal Scene Graphs becomes par-
ticularly crucial. This hierarchy facilitates context-aware recognition by explicitly model-
ing relationships between different elements, contributing to more accurate predictions of
the final action. Although similar to Action Recognition in the utilization of GCNs, the
scene graphs for Anticipation represent only a partial action. GCNs play a pivotal role
in capturing and learning the temporal dependencies and intricate relationships within
these scene graphs, enabling the model to make informed predictions about incomplete
actions[DHJ+21] [TFL+22].

In essence, Spatio-temporal Scene Graphs, in conjunction with Graph Convolutional Net-
works, emerge as key contributors to advancing the accuracy of both Action Recognition
and Anticipation, addressing the challenges posed by the intricate temporal dynamics,
diverse environmental conditions, uncertainties in human behavior, and adaptability to
rapidly changing scenarios. By providing a structured and comprehensive representation
and harnessing the capabilities of GCNs, these approaches pave the way for more effective
computer vision systems, enhancing their capabilities in understanding, predicting, and
responding to human actions in diverse and dynamic environments. This thesis unfolds
with the aim of delving into the theoretical foundations, presenting original contributions,
and substantiating the effectiveness of the proposed model through experimental results
and analysis.
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1.1.1 Scope

The scope of this thesis is to advance the field of computer vision through a focused explo-
ration of Action Recognition and Anticipation, leveraging Spatio-temporal Scene Graphs
and Graph Convolutional Networks (GCNs). Building on existing knowledge and inspired
by prior work [JKFFN19], our research extends the utility of Spatio-temporal Scene Graphs
beyond Action Recognition to the challenging task of Anticipation. Through a carefully
selected dataset and robust experimental protocols, our aim is to contribute novel method-
ologies that enhance the understanding, predictive accuracy, and responsiveness of com-
puter vision systems in interpreting and anticipating human actions. This thesis seeks to
provide valuable insights, bridging theoretical foundations with empirical evaluations to
enrich the capabilities of contemporary computer vision models.

The main contributions of this thesis are summarized as follows:

• An analysis of the state-of-art models working on spatio-temporal scene graphs
[JKFFN19]

• A detailed algorithm for producing spatio-temporal scene graphs from annotation
files.

• An empirical evaluation for different structural choices in a graph neural network
(choice of convolutional layers, hyperparameters and so on).

• An experimental evaluation for the tasks of action recognition and anticipation on a
benchmark dataset using multiple metrics (precision, recall and mean average preci-
sion).

1.2 Structure of the Thesis

The remainder of this thesis is structured into several chapters, each systematically delving
into the research topic to offer a comprehensive understanding of the proposed approach.
The following provides an overview of the thesis structure:

• Chapter 2: This chapter spans critical concepts, including the fundamentals of
Action Classification, Anticipation in Action Recognition, and the application of
Neural Networks and Deep Learning in this domain. The discussion extends to Graph
Neural Networks, particularly Graph Convolutional Networks and Graph Attention
Networks, establishing the theoretical groundwork for the subsequent chapters.
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• Chapter 3: This chapter provides an extensive review of related work, and state-of-
the-art models, examining key areas such as Object Detection, Scene Graph Gener-
ation, Action Recognition, Graph Neural Networks and Anticipation. The synthesis
of existing knowledge sets the stage for the original contributions presented in this
thesis.

• Chapter 4: This chapter unveils the methodology adopted, encompassing the dataset
used, the generation of Spatio-temporal Scene Graphs, the task of Action Recogni-
tion, and the novel Anticipation approach. The Graph Convolutional Network is
strategically designed and experimented upon to attain optimal performance.

• Chapter 5: In this chapter, the experimental results unfold, showcasing the effec-
tiveness of the proposed model in both Action Recognition and Anticipation tasks.
The presentation includes a detailed analysis of the results on the dataset, offering
insights into the model’s capabilities.

• Chapter 6: The concluding chapter encapsulates the cumulative findings and sum-
marizes its multifaceted contributions to Machine Learning and Computer Vision.
It also presents future directions for research, proposing avenues for improvement
and extending an invitation to future researchers to explore the proposed avenues,
fostering continued progress in this dynamic field.
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Chapter 2

Background

This chapter delves into the foundational concepts crucial for understanding the subsequent
chapters. It explores the basics of Action Classification, the role of anticipation in Action
Recognition, and provides an in-depth overview of Neural Networks and Deep Learning.
Topics covered include key components such as layers, loss functions, and regularization
techniques, along with an introduction to Convolutional Neural Networks (CNNs) and
Graph Neural Networks (GNNs). The chapter concludes by discussing the applicability of
GNNs to Action Classification and Anticipation.

2.1 Foundations of Action Classification

Action classification, within the realm of computer vision, is a fundamental task that in-
volves the identification and categorization of human activities or movements within visual
data, typically in the form of images or videos. This process is essential for machines to
interpret and understand dynamic scenes, enabling them to make informed decisions or
predictions based on observed actions. The foundations of action classification are inte-
gral to applications across diverse domains, ranging from surveillance to human-computer
interaction and robotics.

Definition of Action Classification: In the context of computer vision, action classifi-
cation refers to the computational process of recognizing and categorizing human activities
or gestures depicted in visual data. This involves teaching machines to distinguish between
various actions, allowing them to comprehend and respond to dynamic changes in their
visual environment. Examples of actions may include walking, running, eating, drinking,
or complex activities involving multiple interacting entities.

Importance Across Applications: The importance of action recognition extends across
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a spectrum of practical applications, each benefiting from the capability to understand and
interpret human behavior:

- Video Surveillance: In surveillance systems, action classification enables the automatic
identification of suspicious activities, facilitating real-time monitoring and threat detection.

- Human-Computer Interaction: Action classification plays a pivotal role in creating in-
tuitive and responsive human-computer interfaces. Recognizing gestures or actions allows
for natural interaction between users and devices, enhancing user experience.

- Robotics: In robotics, the ability to classify human actions is crucial for robots to navigate
and interact with their surroundings. This is particularly relevant in scenarios where
robots need to understand and respond to human commands or collaborate with human
counterparts.

Challenges in Action Classification: While action classification holds great poten-
tial, it comes with inherent challenges that need to be addressed for robust and accurate
performance

- Variability in Pose: Human actions can be performed in various poses and orientations,
making it challenging to create models that generalize well across different body positions.

- Lighting Conditions: Changes in lighting conditions can significantly impact the appear-
ance of actions, leading to difficulties in recognizing them accurately.

- Limited View: Depending on the type of images/ videos, it is very likely that the data is
from one camera, and therefore lacking visibility from other view points.

- Temporal Dynamics: Actions unfold over time, introducing the temporal dimension to the
classification task. Capturing and modeling temporal dependencies is crucial for accurately
recognizing actions, especially in video sequences.

Understanding and mitigating these challenges are central to advancing the field of action
classification and ensuring its applicability in real-world scenarios.

2.2 Anticipation in Action Recognition

Anticipation refers to the proactive ability of a system to predict and recognize actions
before their completion, based on partial or incomplete information. In the realm of action
recognition, this entails the foresight to identify and comprehend ongoing activities before
they reach their conclusion. The anticipation framework aims to bridge the gap between
the observed initial cues of an action and the full understanding of its intended or future
trajectory. This section delves into the conceptualization of anticipation, its significance
in real-time applications, and the inherent challenges and advantages it brings to action
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recognition systems.

Significance of Anticipating Actions:

Anticipating actions holds paramount importance, particularly in real-time applications
and systems, for several compelling reasons:

- Enhanced Responsiveness: Anticipatory systems enable quicker responses to unfolding
events by recognizing actions in their early stages. This is critical in time-sensitive appli-
cations where prompt decision-making is essential.

- Improved Interaction: In human-computer interaction and robotics, anticipating user
actions allows systems to respond more intuitively and seamlessly. This enhances the
overall user experience by creating interfaces that align more closely with natural human
behavior.

- Predictive Analytics: Anticipation facilitates the integration of predictive analytics in
various domains. By foreseeing actions, systems can make informed predictions, aiding in
better planning, resource allocation, and decision-making.

Challenges of Anticipation in Action Recognition Systems:

Incorporating anticipation into action recognition systems comes with many challenges.

- Ambiguity in Early Cues: Early cues of an action might be ambiguous or insufficient,
introducing challenges in accurately predicting the full action sequence.

- Temporal Variability: The temporal dynamics of actions, with varying speeds and du-
rations, pose challenges in developing models that can effectively anticipate actions across
different time scales.

- Uncertainty Handling: Anticipation introduces uncertainty, as predictions are made based
on incomplete information. Effectively handling and quantifying this uncertainty is crucial
for robust and reliable anticipatory systems.

Advantages of Anticipation in Action Recognition Systems: Even though Antici-
pation can be challenging, it brings many advantages.

- Improved Reaction Time: Anticipation significantly reduces reaction time by recognizing
actions early, enabling systems to respond rapidly to dynamic environments and scenarios.

- Contextual Understanding: Anticipatory models inherently develop a contextual under-
standing of actions, considering not only the immediate visual cues but also the broader
context in which actions unfold.

- Enhanced Performance: Anticipatory systems can enhance the overall performance of
action recognition by providing a more comprehensive and timely interpretation of dynamic
scenes.
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Understanding the interplay between anticipation and action recognition is central to ad-
vancing the field and unlocking the full potential of intelligent systems.

2.3 Neural Networks and Deep Learning

Neural networks form the backbone of modern artificial intelligence, enabling machines to
learn from data and make intelligent decisions. At the heart of this paradigm lies deep
learning, a subfield of machine learning that leverages neural networks with multiple layers
to extract intricate patterns and representations from complex data. This section provides
a foundational understanding of neural networks and their evolution into deep learning.

2.3.1 Neural Networks

Defining Basic Components of Neural Networks: Neural networks are composed
of interconnected layers, each consisting of nodes (or neurons) and weighted connections.
The basic components include:

- Layers: Neural networks are organized into layers, each serving a specific purpose. The
input layer receives data, hidden layers process information, and the output layer produces
the final results.

- Nodes (Neurons): Nodes are the fundamental processing units within each layer. They
receive inputs, apply a transformation using weights, and produce an output. The collective
activity of nodes across layers forms the network’s predictions.

- Weights: Weights represent the strength of connections between nodes. They are ad-
justed during the training process to optimize the network’s performance by minimizing
the difference between predicted and actual outcomes.

Mathematical Representation of Neural Networks: Neural networks are capable of
capturing complex relationships in data through the iterative adjustment of weights during
a training process. The output yi of a node i in a neural network is calculated as follows:

yi = σ(
∑
j

wij .xj + bi) (2.1)

where:
- yi is the output of node i,
- σ is the activation function,
- wij is the weight connecting node j to node i,

17



- xj is the input from node j,
- bi is the bias term for node i.

2.3.2 Layers and Loss function

Important Neural Network Layers: Many layers can be used to build a network. We
will focus on the ones needed for our work.

ReLU: Rectified Linear Unit also known as ReLU, is an activation function widely
used in Neural Networks. It known for its simplicity and effectiveness. ReLU introduces
non-linearity into the network, allowing it to learn complex relationships between inputs
and outputs. Mathematically, ReLU is defined in Equation 2.2:

f(x) = max(0, x) (2.2)

where x represents the input to the activation function, and f(x) is the output. The
ReLU function replaces all negative values in the input with zero and leaves positive values
unchanged. This piece-wise linear function is computationally efficient and mitigates the
vanishing gradient problem.

Dense Layers: Dense layers, also known as fully connected layers, constitute a fun-
damental building block in neural networks. These layers connect each neuron to every
neuron in the preceding and succeeding layers, forming a dense matrix of connections.
Mathematically, the output of a dense layer is calculated in Equation 2.3:

y = σ(W.X + b) (2.3)

where X represents the input vector, W is the weight matrix, b is the bias vector, and σ is
the activation function (such as ReLU). The dot product W.X + b computes the weighted
sum of inputs, and the activation function introduces non-linearity into the network. Dense
layers play a crucial role in learning hierarchical representations of input data. Each neuron
in a dense layer learns to capture specific features or patterns, and the collective behavior
of neurons in subsequent layers enables the network to learn complex relationships. The
number of neurons in a dense layer and the architecture of the network, including the
number of layers, are hyperparameters that influence the model’s capacity to learn and
generalize.

Softmax: Softmax is an activation function and a fundamental component in neural
networks, often used to convert raw output scores into probability distributions. Commonly
employed in the output layer for multiclass classification tasks, softmax transforms the raw
scores (logits) into a set of probabilities that sum to 1. The mathematical expression for
softmax is given in Equation 2.4:
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softmax(zi) =
ezi∑k
j=1 e

zj
(2.4)

where z = [z1, z2, ...zk] represents the vector of logits for K classes. The function ezj expo-
nentiates each logit, and the division by the sum of exponentiated logits ensures that the
resulting values form a valid probability distribution.
Softmax introduces competition among the classes, emphasizing the prediction of the most
probable class while suppressing others. The output probabilities can be interpreted as the
model’s confidence in assigning an input to each class. The softmax function is differen-
tiable, making it compatible with gradient-based optimization algorithms like backpropa-
gation.

Cross Entropy Loss: Cross Entropy Loss, or log loss, is a commonly used objective
function in neural networks, particularly for classification tasks. It measures the difference
between the predicted probability distribution and the true distribution of the target labels.
Cross Entropy Loss is defined in Equation 2.5:

Cross Entropy Loss = −
N∑
i=1

K∑
j=1

yij.log(pij) (2.5)

where:
- N is the number of samples,
- K is the number of classes,
- yij is an indicator variable that equals 1 if the sample i belongs to class j,
- pij is the predicted probability of sample i belonging to class j.

The goal during training is to minimize the Cross Entropy Loss. Intuitively, this loss
function punishes the model more severely when it confidently predicts the wrong class.
The logarithmic term log(pij) amplifies the penalty for confidently incorrect predictions,
making it a suitable choice for models aiming to output well-calibrated probabilities.

2.3.3 Evaluation Metrics

Precision: Precision is a fundamental metric in classification tasks, providing insights
into the accuracy of positive predictions made by a model. It is defined as the ratio of true
positive predictions to the total number of positive predictions, highlighting the model’s
ability to avoid false positives. Precision is particularly crucial in scenarios where the cost
of false positives is high. Precision can be written as in Equation 2.6

Precision =
True Positives

True Positives + False Positives
(2.6)
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where True Positives represent the instances that were correctly predicted into their class,
and False Positives represent the instances that were falsely predicted into that class.

Recall: Recall, also known as sensitivity or true positive rate, measures the ability of a
model to capture all relevant instances of a class. It is the ratio of true positives to the total
number of actual positive instances, emphasizing the model’s completeness in identifying
positives. Recall is vital in situations where missing positive instances can have severe
consequences. Recall can be written as in Equation 2.7

Recall =
True Positives

True Positives + False Negatives
(2.7)

where False Negatives represent the instances that should have been predicted into a class
but were predicted as something else.

Mean Average Precision: Mean Average Precision (mAP) is an evaluation metric com-
monly used in object detection and information retrieval tasks. It combines precision and
recall across multiple classes to provide a comprehensive measure of a model’s performance.
The process involves computing the Average Precision (AP) for each class and then taking
the mean across all classes as shown in Equation 2.8

mAP =
1

N

N∑
i=1

APi (2.8)

The Average Precision for a single class is determined by calculating the area under the
precision-recall curve. This curve represents the trade-off between precision and recall at
different confidence score thresholds.

In summary, precision and recall offer insights into different aspects of a model’s perfor-
mance, addressing the trade-off between accuracy and completeness. mAP extends this
evaluation to multiple classes, providing a holistic assessment of a model’s effectiveness in
handling diverse categories.

2.3.4 Deep Learning

Introduction to Deep Learning:

Deep learning extends the concept of neural networks to multiple layers, referred to as
deep neural networks. The depth of these networks allows them to automatically learn hi-
erarchical features from data. The training process involves forward and backward passes,
where inputs are propagated through the network to produce predictions, and errors are
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backpropagated to adjust the weights. The backpropagation algorithm, coupled with op-
timization techniques like stochastic gradient descent, enables deep neural networks to
iteratively improve their performance.

Mathematical Representation of Deep Learning: For a deep neural network with L
layers, the output y is calculated through a series of transformations:

y = fL(...f2(f1(x,W1, b1),W2, b2)...,WL−1, bL−1) (2.9)

where:
- fi is the activation function for layer i,
- Wi and bi are the weight matrix and bias vector for layer i,
- x is the input.

Despite their power, deep neural networks face challenges such as overfitting, vanishing
gradients, and the need for large amounts of labeled data. Regularization techniques,
advanced activation functions, and transfer learning have been employed to address these
challenges.

2.3.5 Backpropagation:

Backpropagation [RHW86], short for ”backward propagation of errors”, is a supervised
learning algorithm used to train artificial neural networks by minimizing the error between
predicted and actual outputs. The backpropagation algorithm is a key component in the
optimization process of neural networks, enabling the adjustment of weights and biases to
improve model performance.

The core idea of backpropagation is to iteratively update the model parameters (weights
and biases) by computing the gradient of the loss function with respect to each parameter.
This is achieved through the chain rule of calculus, allowing the algorithm to propagate
the error backward through the network layers.

Mathematically, the backpropagation process involves two main steps: the forward pass
and the backward pass.

- Forward Pass: During the forward pass, the input data is propagated through the
neural network to generate predictions. For each layer, the weighted sum of inputs is
passed through an activation function to produce the layer’s output. The predicted output
is then compared to the actual output using a loss function, such as cross-entropy loss.

- Backward Pass: The backward pass begins by calculating the gradient of the loss
function with respect to the output of the network. This gradient is then propagated
backward through the layers, computing the gradients of the loss function with respect to
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the parameters (weights and biases) of each layer. For a single-layer perceptron, the weight
update rule during the backpropagation step can be expressed as in Equation 2.10:

∆wij = −η
δE

δwij

(2.10)

where:
- ∆wijis the change in weight connecting neuron i to neuron j,
- η is the learning rate,
- δE

δwij
is the gradient of the loss function with respect to the weight.

The weight update for multilayer networks involves a similar process, with the chain rule
applied to calculate the gradient at each layer. The final weight updates are typically
performed using optimization algorithms like Stochastic Gradient Descent (SGD) or its
variants[Rud17].

2.3.6 Regularization

Regularization techniques in machine learning aim to prevent overfitting by introducing
constraints on the model parameters.

Dropout: Dropout [SHK+14] is a regularization technique used in neural networks to
prevent overfitting by randomly deactivating a fraction of neurons during training. This
process introduces robustness and helps the network generalize better to unseen data.
Dropout is typically applied to fully connected layers, although it can be adapted for other
layer types. Mathematically, dropout is implemented by randomly setting a fraction p
of neurons to zero during each forward and backward pass. Dropout effectively creates
an ensemble of neural networks by training different subnetworks for each mini-batch.
This ensemble helps prevent co-adaptation of neurons and results in a more robust model.
Dropout has been shown to be particularly effective in scenarios where overfitting is a
concern, especially when dealing with limited training data.

2.4 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) are a class of deep learning models designed for
processing structured grid data, such as images. They have proven highly effective in com-
puter vision tasks, demonstrating superior performance in tasks like image classification,
object detection, and segmentation. CNNs are specifically engineered to recognize spatial
hierarchies of patterns through the application of convolutional operations.
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2.4.1 Key Components of CNNs:

Convolutional Neural Networks have many components, such as:

- Convolutional Layers: The fundamental building block of CNNs is the convolu-
tional layer. It applies convolutional operations to the input data using learnable filters
(kernels). Convolution involves sliding these filters over the input image and computing the
dot product at each position. This operation captures local patterns and detects features
like edges and textures.

- Activation Functions: Common activation functions, such as Rectified Linear Unit
(ReLU), introduce non-linearity to the model. ReLU, for example, outputs the input for
positive values and zero for negative values, enabling the model to learn complex relation-
ships.

- Pooling Layers: Pooling layers, often implemented as max pooling or average
pooling, downsample the spatial dimensions of the feature maps, reducing computational
complexity and creating a degree of translation invariance.

- Fully Connected Layers: Fully connected layers follow the convolutional and
pooling layers, transforming the high-level filtered information into a vector of probabilities
for classification tasks.

Mathematical Representation: The convolution operation is represented in Equation
2.11:

F (i, j) = (X ⋆K)(i, j) =
∑
m

∑
n

X(m,n).K(i−m, j − n) (2.11)

where:
- X is the input image,
- K is the convolutional filter,
- F is the feature map,
- i and j represent the spatial dimensions of the feature map,
- m and n represent the filter dimensions.

2.4.2 Global Mean Pooling:

Global Mean Pooling (GMP) [LCY14] is a technique commonly used in neural network
architectures, especially in convolutional neural networks (CNNs), for spatial dimension
reduction. It provides a global context to the network by summarizing the spatial infor-
mation of each feature map into a single value. Unlike traditional fully connected layers,
which flatten the spatial dimensions, GMP retains the spatial structure while reducing
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dimensionality. This process is particularly effective in handling input data with varying
spatial sizes. GMP is performed by computing the mean along each channel, represented
in Equation 2.12

GMP (F ) =
1

H ×W

H∑
i=1

W∑
j=1

Fi,j (2.12)

where:
- F ∈ RH×W×C is the Feature Map,
- H and W are the width and height dimensions respectively,
- C is the number of channels,
- Fi,j ∈ RC represents the activation values at spatial position (i, j) across all channels.

The mean is calculated across all spatial positions, resulting in a global context represen-
tation for each channel.

Global Mean Pooling is often employed as a global feature extraction step before the final
classification layer in CNNs. Its application can lead to more interpretable and robust
representations while maintaining computational efficiency.

In summary, CNNs leverage convolutional operations, activation functions, pooling, and
fully connected layers to automatically learn hierarchical features and relationships in input
data, making them powerful tools for visual recognition tasks.

2.5 Graph Representation of Data

The representation of data as graphs introduces a versatile and expressive paradigm for
modeling relationships and dependencies. In this section, we explore the conceptualization
of representing data as graphs and the advantages this approach brings.

Structure of Graphs: A Graph G(V,E) is a data structure containing a set of vertices
(nodes) i ∈ V and a set of edges eij ∈ E connecting vertices i and j. These connections
can be represented in an adjacency matrix. If the value of the matrix at row i and column
j of the matrix is 0, it means there is no connection. If that value is 1 it means node i
is connected to node j. Figure 2.1 shows a simple example of a Graph structure, and its
corresponding adjacency matrix. However graphs can get more complex by adding node
attributes, edge attributes, edge direction and so on.

Graphs for Action Recognition: In the context of action recognition, a graph-based
representation involves defining nodes to represent objects or entities within a scene and
edges to denote relationships or interactions between these entities. - Nodes: Nodes in
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Figure 2.1: Simple Example of Graph Structure and Adjacency Matrix

the graph correspond to the objects or entities present in the visual data. In the con-
text of action recognition, these entities could be individuals, objects, body parts, or any
relevant components contributing to the observed actions. Each node is associated with
attributes that encapsulate information about the corresponding entity. These attributes
may include visual features, spatial coordinates, or any relevant descriptors contributing
to the understanding of the entity. - Edges: Edges in the graph represent the relation-
ships or interactions between pairs of nodes. These relationships can encompass spatial
connections, temporal dependencies, or any contextual associations that contribute to the
overall understanding of the actions taking place. The edges may carry weights that sig-
nify the strength or significance of the relationships. For example, in the context of human
actions, an edge weight could represent the degree of interaction or dependency between
two body parts. The edges may also be associated with attributes representing the type
of relationship between nodes.

An example of a simple scene graph representation is illustrated in Figure 2.2 where in this
scenario we have a person in front of a bottle and chips, and touching a cup. The activity
here could be ”Drinking water”.

Graph representations provide a natural way to encode complex relationships and inter-
actions within structured data. Unlike traditional data representations, where entities are
treated as independent and isolated, graphs allow us to model the interconnectedness be-
tween entities. This proves particularly valuable in domains such as action recognition,
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Figure 2.2: Example of Scene Graph Representation

where the understanding of relationships between objects or entities is crucial for a holistic
interpretation of dynamic scenes.

2.6 Graph Neural Networks

While traditional neural networks operate on data organized in a sequential or grid-like
fashion, graph structures introduce a more flexible and expressive representation. Graphs
consist of nodes and edges, allowing for the modeling of intricate relationships between
entities. In the context of neural networks, this entails considering not just the individual
data points but also their connections and dependencies.

Fundamentals of GNNs: Graph Neural Networks (GNNs) extend the capabilities of
traditional neural networks to handle graph-structured data. The key features of GNNs
include:

- Node Embeddings: GNNs assign embeddings to nodes, capturing their features and
contextual information. This allows nodes to represent entities in a graph, such as objects
in an image or words in a document. These node features (embeddings) are the inputs to
the GNN. every node i has its associated node features xi.

- Edge Attributes: Edges can have features as well, such as the type of connection
between the nodes. These features are represented as aij

-Message Passing: GNNs look for neighborhoods to understand why some nodes connect
and others don’t. The Neighborhood Ni of a node i is defined as the set of nodes j
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Figure 2.3: Example of Message Passing in a Neighborhood

connected to i by an edge. This is represented as Ni = {j : eij ∈ E} [Ana22]. In
a Graph Neural Network (GNN) layer, Message Passing involves taking the features of
neighboring nodes, transforming them, and then transmitting these transformed features
back to the source node. This iterative process is performed simultaneously for all nodes
in the graph, ensuring that every neighborhood is thoroughly explored by the conclusion
of this step. For the sake of simplicity, let’s take the Graph in Figure 2.2 and consider just
the node features. Message Passing for the neighborhood of node ”Person” would look
something similar to what is represented in Figure 2.3, where F could be any Function,
such as a simple Neural Network or affine Transform. For the sake of simplicity, let us
consider F to be F (xj) = Wj.xj

- Aggregation: The transformed messages have been passed from the neighbors of the
node ”Person” to it, they have to be aggregated (combined) in some way. There are many
aggregation functions that can be used. These functions include:

Sum =
∑
j∈Ni

Wj.xj (2.13)

Mean =
Sum

|Ni|
=

∑
j∈Ni

|Ni|
Wj.xj (2.14)

Min = minj∈Ni
(Wj.xj) (2.15)

Max = maxj∈Ni
(Wj.xj) (2.16)

Suppose the chosen Aggregation Function is denoted as Agg, the final Message Passing
equation is denoted as:

m̄i = Agg(Wj.xj : j ∈ Ni) (2.17)
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Using the aggregated messages, the GNN updates the source’s features to include them.
This is done using either a simple addition or a concatenation. This is represented as:

hi = σ(K(H(xi), m̄i)) (2.18)

where :
- hi are the new node features for node i,
- σ is the activation function (ReLU, Tanh ...),
- H is a simple Neural Network (MLP) or Affine Transformation,
- K is another MultiLayer Perceptron (MLP) to project the added vectors into another
dimension.

Putting them together, and considering the aggregation function to be the Mean and F
and H to be simple Feed-Forward layers, the final equation can be written as:

hi = σ(W1.hi +

∑
j∈Ni

|Ni|
W2.hj) (2.19)

- Adding Edge Features to the equation: Suppose edges have features aij, the GNN
should find a way to pass them too. This is done by factoring the embeddings of both
nodes connected by the edge to update them at a particular layer l. This is represented
as:

alij = T (hl
i, h

l
j, a

l−1
i,j ) (2.20)

where T is a simple Neural Network that takes in the embeddings from connected nodes i
and j as well as the edge features from the previous layer.

- Stacking GNN Layers: A Network is built by adding multiple layers. Let us consider a
Network made out of 2 GNN layers. The input to the first GNN layers are the node features
(embeddings) represented as X which are made of xi:1−>N . The output is the modified
node embeddings H1 which are made of h1

i:1−>N . This is the input to the next GNN layer.
The final output is the modified node embeddings H2 which is made of h2

i:1−>N . This is
represented in Figure 2.4

Strengths of GNNs: The strength of GNNs lies in their inherent capacity to model
relationships and dependencies within structured data. By considering the interconnect-
edness of entities in a graph, GNNs excel at tasks where understanding the context and
interactions between elements is paramount. This is particularly valuable in action classifi-
cation and anticipation, where actions unfold in dynamic scenes with intricate relationships
between entities.
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Figure 2.4: Stacked GNN layers

2.7 Graph Convolutional Networks

Graph Convolutional Networks (GCNs) are a class of Graph Neural Networks (GNNs) that
have proven effective in modeling relationships and dependencies within graph-structured
data. The essence of GCNs lies in their ability to perform convolutions on graphs, allowing
them to capture complex relationships between nodes. Let’s delve into the specifics of
GCNs and understand how they operate on graph-structured data.

Propagation of Information: In GCNs, information is propagated through the graph
by aggregating and combining information from neighboring nodes. The aggregation op-
eration involves taking into account the features of connected nodes, capturing the depen-
dencies between them.

Mathematical Representation: The output of a node in a GCN is calculated by ag-
gregating the features of its neighbors. GCN has the following layer-wise propagation rule
[KW17]:

H l+1 = σ(D̃− 1
2 ÃD̃− 1

2H(l)W (l)) (2.21)

where:
- Ã = A+ IN is the adjacency matrix of the graph G with added self connections and IN
is the identity matrix,
- D̃ii =

∑
j Ãij is a degree matrix, as a form of renormalisation to avoid numerical insta-

bilities and exploding/vanishing gradients,
- W (l) is a layer-specific trainable weight matrix,
- σ is an activation function such as ReLU ,
- H(l) is the matrix of activations in the lth layer; H(0) = X

Modeling Dependencies:
- Hierarchical Learning: GCNs enable hierarchical learning by capturing local dependencies
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in the early layers and gradually incorporating information from distant nodes in deeper
layers. This facilitates the modeling of complex relationships within the graph.
- Graph Convolution Operation: The graph convolution operation is fundamental to GCNs,
allowing them to adapt their weights based on the local structure of the graph. This
adaptability is crucial for capturing the nuances of dependencies in various applications,
including action recognition.

2.8 Graph Attention Networks

Graph Attention Networks (GATs) [VCC+18] enhance the expressive power of GNNs by
introducing attention mechanisms. Attention mechanisms enable nodes to selectively fo-
cus on relevant information from their neighbors, allowing for more flexible and adaptive
learning. Let’s explore the specifics of GATs and how attention mechanisms contribute to
their effectiveness.

Attention Mechanisms: GATs assign importance weights to the edges connecting nodes,
allowing each node to weigh the information from its neighbors differently. This attention
mechanism is based on learned parameters, enabling the model to adaptively determine
the importance of each neighbor.

Mathematical Representation: Edge weights are generated as follows:

αij = Softmax(LeakyReLU(W T
a .[Whl

i ⊕Whl
j])) (2.22)

where:
- αij are the edge weights,
- W T

a ∈ R2d′ and W ⊆ Rd′×d are learned parameters and d is the embedding dimension,
- ⊕ is the vector concatenation operation.

The combined Message Aggregation and Update steps are a weighted sum over all the
neighbours and the node itself:

hi =
∑

j∈Ni∪{i}

αij.Whl
j (2.23)

Advantages of GATs:
- Selective Information Fusion: By allowing nodes to selectively focus on relevant neigh-
bors, GATs enhance the model’s ability to capture fine-grained dependencies. Nodes can
adaptively attend to informative neighbors, leading to a more nuanced understanding of
the graph.
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- Improved Generalization: Attention mechanisms in GATs contribute to improved gen-
eralization by reducing the reliance on fixed neighborhood sizes. Nodes can dynamically
adjust their attention to different neighbors based on the context, enhancing the model’s
flexibility.

2.9 Applicability of GNNs to Action Classification

and Anticipation

Graph Neural Networks (GNNs) offer a powerful and versatile framework for tackling the
challenges of action classification and anticipation. In this section, we delve into how GNNs
can be effectively applied to these tasks, highlighting their unique strengths in modeling
temporal dependencies and capturing contextual information within video sequences.

Modeling Temporal Dependencies with GNNs:
- Sequential Information: Actions unfold over time, and capturing the temporal depen-
dencies between different frames is crucial for understanding the progression of an action.
GNNs excel in contextualizing temporal information, allowing them to consider the dy-
namic evolution of actions.

- Dynamic Graph Adaptation: GNNs can adapt their graph structures dynamically to
reflect the changing relationships between entities (nodes) across frames. This adaptability
enables the model to learn and encode temporal dependencies inherent in video sequences.

- Temporal Graph Convolution: GNNs, particularly Graph Convolutional Networks (GCNs),
can perform graph convolutions not only in the spatial domain but also in the temporal
domain. This capability enables the modeling of complex temporal relationships between
nodes, facilitating more accurate action recognition and anticipation.

- Hierarchical Learning: GNNs support hierarchical learning, allowing them to capture
both short-term and long-term dependencies. This is essential for recognizing actions that
may involve varying time scales and intricate temporal patterns.

Graph-Structured Data in Video Sequences:

- Nodes Representing Entities: In the context of action recognition, video frames can be
represented as graphs where nodes correspond to objects, body parts, or entities present
in each frame. GNNs enable the modeling of relationships between these nodes, capturing
the spatial and temporal interactions.

- Edges Representing Relationships: Edges in the graph signify the spatial or temporal
relationships between nodes. For example, edges may represent the spatial connections
between body parts or the temporal dependencies between consecutive frames.
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- Spatial Dependencies: GNNs inherently capture spatial relationships by considering the
interactions between nodes within a single frame. This is particularly valuable in recog-
nizing actions that involve complex spatial configurations, such as interactions between
multiple objects or body parts.

- Temporal Dependencies: GNNs extend their spatial modeling capabilities to incorporate
temporal dependencies, allowing them to recognize actions that evolve over time. The
dynamic adaptation of graph structures enables the model to discern how entities interact
across different frames.

Graph Attention Mechanisms:
- Selective Information Integration: Graph Attention Networks (GATs) within the GNN
framework enhance the modeling of relationships by allowing nodes to selectively attend
to relevant information. This attention mechanism is advantageous for discerning critical
spatial and temporal cues, contributing to more accurate action recognition and anticipa-
tion.

- Adaptive Learning: GATs enable nodes to dynamically adjust their focus based on the
context, leading to adaptive learning that is particularly beneficial in scenarios where
certain entities or relationships may be more informative for specific actions.

In summary, GNNs, with their ability to model temporal dependencies and handle graph-
structured data in video sequences, present a promising avenue for advancing action clas-
sification and anticipation. By leveraging the inherent relationships between entities and
adapting dynamically to evolving contexts, GNNs offer a robust framework for understand-
ing and interpreting dynamic actions in complex visual scenarios.
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Chapter 3

Related Work

This chapter reviews existing literature relevant to the domains of Object Detection, Scene
Graph Generation, Action Recognition, and Anticipation.

Within Object Detection, the discussion encompasses traditional methods, the evolution
towards Convolutional Neural Networks (CNNs), and advancements in both region-based
and single-stage detectors. The exploration of Scene Graph Generation includes an exam-
ination of its components, associated datasets, and diverse generation approaches. The
section on Action Recognition covers techniques utilizing CNNs, Temporal Convolutional
Networks (TCNs), Transfer Learning, Pretrained Models, and Attention Mechanisms. Ad-
ditionally, the chapter investigates the application of Scene Graphs in the context of Action
Recognition and provides insights into Graph Neural Networks, including specific architec-
tures such as GraphSAGE, GraphConv, TransformerConv, GENConv, and GATv2Conv.

The comprehensive overview of related work sets the stage for the subsequent chapters,
positioning the research within the broader landscape of current methodologies and ad-
vancements in the field.

3.1 Object Detection

Object detection is a fundamental computer vision task that involves locating objects and
identifying them in an image or a video. It plays a crucial role in various applications, such
as autonomous driving, surveillance, medical imaging, and augmented reality.
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3.1.1 Traditional Methods:

Early object detection methods primarily relied on handcrafted features and traditional
machine learning algorithms. Techniques like Histogram of Oriented Gradients (HOG)
[DT05] and Haar-like features were widely used in combination with classifiers such as Sup-
port Vector Machines (SVM) and Cascade Classifiers, like the Viola Jones object detector
[VJ01]. While effective for certain applications, these methods struggled with complex
scenes, variations in lighting, and the presence of occlusions.

3.1.2 Convolutional Neural Networks:

The introduction of deep learning and Convolutional Neural Networks (CNNs) revolu-
tionized object detection. The seminal work of AlexNet in 2012 [KSH12] and subsequent
models, like VGG [SZ14b], GoogLeNet [SLJ+14], and ResNet [HZRS15], greatly improved
object detection accuracy. AlexNet is a convolutional neural network that is eight layers
deep: five convolutional layers and three fully-connected layers. The architecture is visual-
ized in Figure 3.1. There is a pretrained version of the network that can be loaded which
is trained on more than a million images from the ImageNet database1. The pretrained
network can classify images into 1000 object categories, such as keyboard, mouse, pencil,
and many animals. Some of the special features of the AlexNet are ReLU non linearity,
multiple GPUs and overlapping Pooling [Wei19]. As a result, CNNs effectively learned
rich feature representations for a wide range of images, making them well-suited for object
detection tasks.

3.1.3 Region-Based Object Detection:

Region-based approaches, including Region Proposal Networks (RPN), Fast R-CNN [Gir15],
and Faster R-CNN [RHGS15], emerged as significant advancements in object detection.
R-CNN uses a region proposal method to generate about 2000 regions of interest (ROI).
Different CNN networks are used for each region, followed by a fully connected layers to
classify the object and refine the boundary box. However R-CNN is slow in training and
the cost of repeating feature extractions 2000 times for different ROIs is expensive. Fast
R-CNN solves this issue by using a feature extractor to extract features for the whole im-
age first (single CNN for the regions). A region proposal feature map is collected, then max
pooling is applied which reduces the dimensions of the feature maps. They are then trans-
formed into a one-dimensional vector and fed to fully connected layers for classification and
localization. Fast R-CNN is 25 times faster than R-CNN, but generating 2000 ROIs is still

1https://www.image-net.org/
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Figure 3.1: AlexNet Architecture from [TCAR20]

computationally expensive. Faster R-CNN replaces the region proposal method by an
internal deep network and the ROIs are derived from the feature maps instead. This makes
it around 10 times faster than Fast R-CNN, and 250 times faster than R-CNN, but still
not fast enough for real time detection [Hui18] [Bul21]. The differences in architecture and
performance between R-CNN, Fast R-CNN and Faster R-CNN are illustrated in Figure
3.2.

3.1.4 Single-Stage Detectors:

A single-stage detection framework refers to an integrated pipeline, like unified architec-
tures, which directly predicts class probabilities and bounding box offsets from complete
images in a single forward pass through a CNN network. This setup does not involve re-
gion proposal generation or post-classification. Single-stage Detectors, such as SSD (Single
Shot Detector) [LAE+15] and YOLO (You Only Look Once) [RDGF15], were designed
for real-time object detection. They use a single feedforward neural network to simulta-
neously predict object bounding boxes and class probabilities for multiple objects in an
image. These models excel in applications where speed is critical.

SSD have two components rather than one: a backbone model and an SSD head. The
backbone model is a pretrained image classification network like ResNet or VGG16 which
acts as a feature extractor, without their final classification layer. The SSD head is com-
prised of convolutional layers responsible for producing feature maps which in turn produces
the bounding box and class predictions. [Ray22]. SSD only requires an input image and
ground truth boxes during training. It evaluates default boxes of different aspect ratios at
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Figure 3.2: Architecture and Performance differences between R-CNN, Fast R-CNN and
Faster R-CNN from [AGMM+21]

each location in several feature maps with varying scales. For each default box, it predicts
shape offsets and confidences for all object categories. During training, it matches these
default boxes to ground truth boxes, and the model loss is a weighted sum of localization
loss and confidence loss.

YOLO treats detection as a regression problem, dividing the image into an S×S grid. For
each grid cell, YOLO predicts B bounding boxes, their confidences, and C class probabili-
ties. These predictions are encoded as a tensor. If the center of an object falls into a grid
cell, that cell is responsible for detecting the object[AG19].

The difference between the SSD and YOLO architectures is illustrated in Figure 3.3.

3.2 Scene Graph Generation

Scene graph generation is a critical computer vision task that focuses on extracting struc-
tured representations of visual scenes. These representations, often referred to as scene
graphs, encode the relationships between objects in an image, providing a deeper under-
standing of the visual content. The concept of scene graphs originated from earlier work
in computer vision, where researchers focused on object detection and image captioning.

36



Figure 3.3: Architectures of SSD and YOLO from [AG19]

Scene graphs emerged as a means to combine both object recognition and relationship
modeling, enhancing the overall comprehension of visual content.

3.2.1 Scene Graph Components:

A typical scene graph comprises three key components: nodes representing objects, edges
denoting relationships between objects, and attributes associated with both objects and
relationships. Objects in the scene graph are labeled entities, relationships are labeled
predicates, and attributes describe the properties of entities and relationships.

3.2.2 Scene Graph Datasets:

To train and evaluate scene graph generation models, researchers created datasets that
contain annotated scene graphs.

- MS COCO: It does not contain any usable semantic information needed to make a machine
learn how to generate scene graphs, but is the base dataset that most other datasets were
built upon.

37



Figure 3.4: Semantic Scene Graph Generation model from [YCZ+20]

- VRD (Visual Relationship Detection) [LKBF16]: It is one of the first datasets developed
during scene graph generation research. The VRD-Net leverages convolutional neural
networks and recurrent neural networks to improve relationship detection accuracy.

- VG (Visual Genome)2 [KZG+16]: This dataset introduces additional ground truths,
including object relations and examples for visual question answering. VG leverages
WordNet[Mil95], to identify objects and relations. However, due to the automatic gen-
eration of semantic data from crowd-sourced input, the dataset is inherently noisy, neces-
sitating substantial preprocessing before utilization.

- HOMAGE (Home Action Genome3 [RCJ+21]: It is a dataset for videos and it has played
a significant role in advancing the field by providing large-scale, diverse data for training
and testing. HOMAGE even created a challenge for the Scene Generation Task.

3.2.3 Scene Graph Generation Approaches:

Bottom up two-stage processes: Early scene graph generation models used a bottom
up two-stage process, first identifying objects and relationships, and then constructing the
scene graph. It’s a process in which entities are grouped into triplets (subject, relation,
object) which are connected to form the entire scene graph. The essence of the task
is to detect the visual relationships. An interesting method is the one proposed in the
paper ”A Bottom-up Framework for Construction of Structured Semantic 3D Scene Graph”
[YCZ+20] where they adopt visual perception to capture the semantic information and
inference from scene priors to calculate the optimal parse graph. Afterwards, an improved
probabilistic grammar model is used to represent the scene priors. Figure 3.4 illustrates
their model. Given a sequence of RGB images, each frame is employed to reconstruct a
sparse point map (a), while key frames are specifically used for estimating the 2D entities

2https://homes.cs.washington.edu/~ranjay/visualgenome/index.html
3https://homeactiongenome.org/
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Figure 3.5: Relationformer architecture from[SKW+22]

(b). The results from (a) and (b) are then associated and merged to form a unified 3D
map (c). Concurrently, graph properties are asynchronously extracted from the entity
map (d) to estimate the Semi-Sparse Graph (SSG). Their network computes geometric,
multi-view, and edge features (e). These features undergo mutual propagation through
message passing (f), facilitating the prediction of an SSG (g). Subsequently, periodic SSGs
are amalgamated to generate a comprehensive global 3D SSG (h).

One stage Approaches: In the traditional bottom up approach, 2 stages are required,
one for detection and one for relation prediction. One stage approaches were introduced
that jointly predict the objects and their relations. Relationformer [SKW+22] is a one-
stage transformer-based framework that does that. It leverages direct set-based object
prediction and incorporates the interaction among the objects to learn an object-relation
representation jointly. The architecture of the model is illustrated in Figure 3.5

End-to-End Approaches: Recent advancements in scene graph generation involve
end-to-end models such as SGTR [LZH22]. This SGG method formulates the task as a bi-
partite graph construction problem. The problem is solved by the developing a transformer-
based end-to-end framework that first generates the entity and predicate proposal set,
followed by inferring directed edges to form the relation triplets. Their architecture is
illustrated in Figure 3.6

Graph Neural Networks (GNNs): The application of graph neural networks to
scene graph generation has gained popularity. GNNs enable direct modeling of object-
object relationships and can leverage contextual information to improve predictions. Meth-
ods like Graph R-CNN [YLL+18] and Relational Graph Convolutional Networks (R-GCN)
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Figure 3.6: SGTR model Architecture from [LZH22]

[SKB+17] have showcased the potential of GNNs in this context. The Graph R-CNN model
contains a Relation Proposal Network (RePN) that efficiently deals with the quadratic
number of potential relations between objects in an image. The attentional Graph Con-
volutional Network (aGCN) proposed alongside the RePN effectively captures contextual
information between objects and relations. Given an image, their model first uses RPN to
propose object regions, and then prunes the connections between object regions through
their relation proposal network (RePN). To incorporate contextual information from neigh-
boring nodes in the graph, the Attentional Graph Convolutional Network (GCN) is applied.
Finally, the scene graph is obtained on the right side. Their architecture is illustrated in
Figure 3.7

3.3 Action Recognition

Action recognition is a crucial task in computer vision and artificial intelligence, enabling
machines to understand and interpret human activities and gestures from visual data.
Action recognition has found applications in various domains, including video surveillance,
healthcare (patient monitoring and rehabilitation), sports analytics, autonomous robotics,
and human-computer interaction. The ability to understand human actions from video
data is essential for creating intelligent and interactive systems.

Early Approaches to Action Recognition:
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Figure 3.7: Graph R-CNN Architecture from [YLL+18]

Early action recognition methods primarily focused on handcrafted features and traditional
machine learning algorithms. Techniques like Histogram of Oriented Gradients (HOG)
[KS18], Local Binary Patterns (LBP) [MS09], and Space-Time Interest Points (STIP)
[BGX09] were used to capture motion and appearance information in video frames. These
methods lacked robustness to variations in lighting, viewpoint, and background clutter.

3.3.1 Convolutional Neural Networks (CNNs):

The introduction of deep learning, particularly Convolutional Neural Networks (CNNs),
revolutionized action recognition. CNNs can automatically learn discriminative features
from raw image data and video frames, leading to significant improvements in recognition
accuracy. Notable models like Two-Stream CNNs and 3D CNNs have been developed to
leverage spatiotemporal information effectively.

Two-Stream CNNs: [SZ14a] Two-Stream CNNs consist of two parallel networks:
one processes spatial information (RGB frames), and the other processes temporal infor-
mation (optical flow or stacked optical flow frames). A video can be naturally divided
into two elements: the spatial component, represented by the appearance of individual
frames, contains information about the scenes and objects depicted. The temporal compo-
nent, expressed through motion across frames, communicates the movement of the observer
(camera) and the objects within the video. Their architecture is divided into 2 streams
and each stream is implemented using a deep ConvNet. This approach allows the network
to capture both appearance and motion cues, enhancing action recognition accuracy. The
architecture is illustrated in Figure 3.8

3D Convolutional Neural Networks (3D CNNs):[JXYY13] 3D CNNs extend the
concept of 2D CNNs to video data, treating video frames as 3D volumes. They have been
effective in modeling both spatial and temporal features, making them suitable for action
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Figure 3.8: Two-Stream CNN Architecture from [SZ14a]

recognition in videos. C3D (Convolutional 3D) [TBF+15] and I3D (Inflated 3D) [CZ18]
networks are prominent examples of 3D CNN architectures. The idea behind 3D CNNs
lies in the fact that applying 2D convolution on wither an image, or a video volume results
in an image; While applying 3D convolution on a video volume results in another volume,
preserving temporal information of the input signal.

3.3.2 Temporal Convolutional Networks (TCNs):

Temporal Convolutional Networks (TCNs) are a class of models designed to capture long-
range temporal dependencies in video sequences. TCNs have gained attention for their
effectiveness in action recognition tasks, especially when dealing with long and complex
actions. [KR17] The properties of a TCN are similar to those of a modern spatial Con-
volutional Neural Network(CNN) for recognition tasks. The network is built from stacked
units of 1D convolution followed by a non-linear activation function. The 1D convolution
is across the temporal domain.

3.3.3 Transfer Learning and Pretrained Models:

Transfer learning has become a standard practice in action recognition. Researchers often
fine-tune models pretrained on large-scale video datasets like Kinetics or Sports-1M for
specific action recognition tasks. This approach significantly reduces the need for extensive
labeled data and improves recognition accuracy. In the paper [ZHL+22], they proposed a
self-distillation guided transfer learning framework. At the beginning of each epoch, they
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Figure 3.9: Transfer Learning Architecture from [ZHL+22]

make a copy of the spatial-temporal encoder from the last epoch and designate it as the
teacher network. The regularization in transfer learning involves considering the Euclidean
distance between representations generated by both encoders. Additionally, conventional
cross-entropy loss is applied to the head network for action recognition. Their framework
is illustrated in Figure 3.9

3.3.4 Attention Mechanisms:

Attention mechanisms have been integrated into action recognition models to focus on rel-
evant spatiotemporal regions within video frames. These mechanisms enhance the ability
to recognize actions in cluttered or complex scenes. In the paper [BTW+20] they propose
an attention mechanism: In the first stage of this attention model, there’s a view-specific
attention process. Two LSTM encoders individually perform recognition for each view.
The attention scores from these two views are then collected and input into the second
stage. In the second stage, a Mutual-Aid RNN is employed to establish a collaborative at-
tention mechanism. The Mutual-Aid block works frame-by-frame, facilitating cooperation
between the two views. An attention module is applied to each view, and the results from
multiple views are fused together.

3.4 Scene Graphs for Action Recognition

Using scene graphs for action recognition is an innovative approach that leverages struc-
tured representations of visual scenes to enhance the understanding of complex actions
in videos. Several recent studies have explored this approach, and their contributions are
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Figure 3.10: SGFB Model Architecture from [JKFFN19]

noteworthy.

- In the paper “Action Genome: Actions as Composition of Spatio-temporal
Scene Graphs” [JKFFN19], they worked on the Action Genome dataset, created spatio-
temporal scene graphs and proposed a method, named Scene Graph Feature Banks (SGFB),
to incorporate spatio-temporal scene graphs into action recognition. They created a graph
for each frame of the video and used the sequence of scene graphs as feature banks for
the action recognition task. The feature vector is obtained by aggregating the information
across all the scene graphs into a feature bank. The final representation is merged with
3D CNN features and used to predict action labels.
They also created the SGFB Oracle method, which assumes the availability of a perfect
scene graph prediction method. The spatio temporal scene graph feature bank therefore,
directly encodes a feature vector from ground truth objects and visual relationships for the
annotated frames of the dataset.
With their SGFB model they reached an average precision of 44.3% on the validation set,
and with their SGFB Oracle model they reached a 60.3% average precision.

- In the paper “Explainable Action Prediction through Self-Supervision on Scene
Graphs” [KMOK23], they designed an encoder network that can learn embeddings from
a sequence of scene graphs in a self-supervised manner on the ”ROad event Awareness
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Dataset (ROAD) for autonomous driving” [SAM+23]. Their encoder architecture allows
for spatial and temporal modelling of scene graphs. It incorporates key spatial elements, in-
cluding graph convolution layers, graph attention pooling layers, and graph readout layers.
The model utilizes a Multi-Relational Graph Convolution (MR-GCN) approach, process-
ing a sequence through multiple MR-GCN layers to acquire a K-hop spatial representation
for each node concerning its neighbors. Drawing inspiration from graph isomorphism net-
works, this spatial representation is designed to capture relational information.
For hierarchical pooling, the model employs Self-Attention Graph Pooling (SAGPool),
leveraging graph features, topology, and self-attention on the generated node embeddings
to extract the most beneficial information for the learning task. A Global Readout opera-
tion is performed, involving the addition of each set of node embeddings to produce a full
graph embedding of fixed dimensions. This output serves as a sequence of embeddings for
each scene graph in the input.
The encoder’s temporal attention component, LSTM-attn, plays a pivotal role in con-
verting the sequence of graph embeddings into a single spatiotemporal embedding, often
referred to as a context vector. Inspired by previous work, the model employs an attention
mechanism to dynamically focus on embeddings in the sequence that are most relevant
to the overall scene context. This involves computing weights for each embedding using a
feed-forward layer on the LSTM output and final hidden state. The resulting spatiotempo-
ral embedding, or context vector, is a weighted combination of hidden states over the entire
sequence, serving as a crucial representation for downstream tasks such as classification or
prediction.

- In the article “Scene Graph Generation, Compression, and Classification on
Action Genome Dataset” [Li22], they used the Home Action Genome dataset to gen-
erate scene graphs and classify the action it represents. In their approach, they simplified
the problem by having only 2 classes ”using the phone” and ”not using the phone”.
First they divided the Scene Graph Generation task into 2 parts: node prediction and edge
prediction.
For the node prediction they used an Object Detection Benchmark adapted from Mask
R-CNN [MG18] to detect the object labels and their bounding box.
For the edge prediction they used a Scene Graph Benchmark [TZW+19] [Tan20] [TNH+20]
model to predict the relationships between any two nodes as the edges. The combination
of predicted nodes and edges form the complete scene graph.
Next they perform Graph Compression to create a smaller graph representation. To do this
they apply the Multi-kernel Inductive Attention Graph Autoencoder (MIAGAE) [GPLI21]
which has an encoder and a decoder. The encoder E learns to prune graph nodes and edges
to create a compressed graph, then the decoder D learns to reconstruct the original graph
by adding new nodes and edges. The encoder architecture includes Multi-kernel Inductive
Graph convolution layers and Similarity Attention Graph Pooling layers. The decoder
architecture includes inductive Un-pooling layers.
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Finally they use a Graph Convolutional Network (GCN) consisting of 2 graph convolu-
tional layers and 4 layers of multilayer perceptron (MLP) with batch normalization to
train the model and output the final classification result. With this approach, the highest
train accuracy reached was 0.60 and the highest test accuracy reached was 0.55.

3.5 Graph Neural Networks

Graph Neural Networks (GNNs) have garnered substantial attention in the field of machine
learning, offering a powerful paradigm for learning and representation on graph-structured
data. GNNs build upon the concept of neural networks but are tailored to handle graph
data. Theoretical foundations of GNNs can be traced back to early works on graph-based
semi-supervised learning. The propagation of information across nodes, often character-
ized by graph convolutions, lies at the core of GNNs. Torch geometric offers many models
of GNNs that are ready to use in a network, with the most famous ones being GCNConv
[KW17] and GATConv [VCC+18], both of which we discussed in the Background section.
Other state-of-the-art which are built upon the idea of the previously mentioned models
surfaced recently including GraphSAGE [HYL18], GraphConv [MRF+21], Transformer-
Conv [SHF+21], GENConv [LXTG20], GeneralConv [YYL21], and GATv2Conv [BAY22].
In this section I will explain these state-of the art layers and how they work.

3.5.1 GraphSAGE

GraphSAGE[HYL18], which stands for Graph Sample and Aggregated, is a graph neural
network architecture designed for inductive learning on large graphs. GraphSAGE aims to
generate embeddings for nodes in a graph by sampling and aggregating information from
their local neighborhoods.
GraphSAGE starts by sampling a fixed-size neighborhood around each node in the graph.
This neighborhood includes the central node itself and its adjacent nodes. For each node
and its sampled neighborhood, GraphSAGE defines an aggregation function. This function
aggregates information from the node and its neighbors to create a representative vector
for the node. The aggregation function is parameterized, meaning it uses learnable pa-
rameters. The model learns how to aggregate information from different nodes based on
their roles in the neighborhood. GraphSAGE learns embeddings for each node by itera-
tively sampling and aggregating information from its neighborhood. The embeddings are
updated through training using backpropagation and optimization techniques.
One key feature of GraphSAGE is its inductive learning capability. Once the model is
trained on a graph, it can generalize to unseen nodes during inference. This is achieved
by using the learned aggregation functions, allowing the model to adapt to new nodes or
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graphs.
In each layer, GraphSAGE performs a form of graph convolution operation by aggregat-
ing information from neighboring nodes. This allows the model to capture local graph
structures and relationships. This is represented in Equations 3.1 and 3.2:

hl
N(i) = AGGREGATEl({hl−1

j : j ∈ N(i)}) (3.1)

hl
i = σ(F (hl−1

i ⊕ hl
N(i))) (3.2)

where:
- ⊕ is the vector concatenation operation.
- N(i) is the uniform sampling function that returns a subset of all neighbours.
- σ is the activation function (ReLU),
- hl−1

j is the node embedding of node j at layer l-1,
- F is a simple affine transform or neural network.

GraphSAGE typically consists of multiple aggregation layers. Each layer refines the node
embeddings by sampling and aggregating information from increasingly larger neighbor-
hoods. This hierarchical aggregation helps the model capture both local and global graph
structures. In summary, GraphSAGE operates by iteratively sampling and aggregating in-
formation from local neighborhoods of nodes in a graph. This process allows it to generate
embeddings that capture the structural and relational aspects of the graph. The use of pa-
rameterized aggregation functions and inductive learning makes GraphSAGE particularly
effective for large-scale graph-based learning tasks.

3.5.2 GraphConv

GraphConv [MRF+21] is very similar to GCNConv [KW17]. The difference is that Graph-
Conv preserves central node information by omitting neighborhood normalisation. So the
equation for GraphConv is represented in Equation 3.3

hl+1
i = W1h

l
i +W2

∑
j∈N(i)

elj,i.h
l
j (3.3)

where elj,i denotes the edge weight from source node j to target node i at layer l.

3.5.3 TransformerConv

For TransformerConv [SHF+21], the schematic diagram of a layer is shown in Figure 3.11. It
consists of the input with Positional Encodings (PEs), the multi-head attention mechanism
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with attention restricted to local neighbors, and the feed forward module. The attention
mechanism is a function of the neighborhood connectivity for each node, which is shown
in Equation 3.4

hl+1
i = W1h

l
i +

∑
j∈N(i)

αi,jW2h
l
j (3.4)

where the attention coefficients αi,j are computed via multi-head dot product attention
shown in Equation 3.5

αi,j = Softmax(
(W3hi)

T (W4hj)√
d

) (3.5)

Positional Encoding is represented by Laplacian PEs. The feed forward module employs
batch normalization. Graph Transformer is extended to have edge representation. Two
aspects are noteworthy in this extended-edge architecture [Dwi21]: the fusion of edge
features with their corresponding pairwise implicit attention scores, and the presence of a
dedicated edge feature pipeline at each layer. Equation 3.5 becomes Equation 3.6

αi,j = Softmax(
(W3hi)

T (W4hj)√
d

.W5eij) (3.6)

where W1,W2,W3,W4,W5 are learnable parameters and d represents the embedding di-
mension.

3.5.4 GENConv

GENConv (GENeralized Graph Convolution) [LXTG20] is a proposed graph convolutional
model that aims to leverage the beneficial properties of invariance and equivariance in graph
learning. It extends beyond traditional aggregation functions like mean, max, and sum.
The model introduces generalized aggregation functions, which are permutation-invariant
set functions parameterized by a continuous variable. This diversity provides flexibility
in capturing different types of relationships within graph-structured data. These aggre-
gation functions are continuous and differentiable with respect to the parameter. This
property enables the use of optimization techniques during training and facilitates smooth
transitions between different aggregation behaviors. GENConv emphasizes the ability to
interpolate between parameter values to discover and adapt aggregation functions for spe-
cific tasks. This is crucial for tailoring the model’s behavior to different data characteristics
and learning requirements.
To empirically validate these properties, the model introduces two families of generalized
mean-max aggregation functions: SoftMax aggregation and PowerMean aggregation.
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Figure 3.11: TransformerConv Architecture with and without edge features from [Dwi21]
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- SoftMax aggregation, parameterized by an inverse temperature (β), exhibits mean-like
behavior for low inverse temperatures and approaches max aggregation for high inverse
temperatures.
- PowerMean aggregation, parameterized by a power factor (p), serves as a generalized
mean-max aggregation function, including special cases like harmonic mean, geometric
mean, arithmetic mean, and quadratic mean.
Its message construction is given by Equation 3.7

hl+1
i = MLP (hl

i + AGG({ReLU(hl
i + elji) + ϵ : j ∈ N(i)}))) (3.7)

where MLP is a MultiLayer Perceptron.

- GeneralConv: [YYL21] This is a General Convolutional layer. It expects a sparse
adjacency matrix and computes the output shown in Equation 3.8

hl+1
i = AGG({σ(Dropout(BN(hl

jW + b))), j ∈ N(i)}) (3.8)

where Dropout applies dropout to the node features and BN applies batch normalization
to the node features.

3.5.5 GATv2Conv

GATv2Conv [BAY22] is based on the GATConv but it fixes the static attention problem
of the standard GATConv layer. In the traditional GAT, linear layers are consecutively
applied, leading to an unconditioned ranking of attended nodes with respect to the query
node. In contrast, GATv2 allows each node the capability to attend to any other node.
Similarly to GAT, the output is represented as 3.9

hi =
∑

j∈Ni∪{i}

αij.Whl
j (3.9)

The difference lies in the calculation of the attention coefficients αij. For GATv2 , the
equation is represented in Equation 3.10

αij = Softmax(aTLeakyReLU(W1hi +W2hj)) (3.10)

Adding the edge attributes transform the equation into Equation 3.11

αij = Softmax(aTLeakyReLU(W1hi +W2hj +W3ei,j)) (3.11)
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To conclude, all of the previously discussed layers (GCNConv, GATConv, GraphSAGE,
GraphConv, TransformerConv, GENConv, GeneralConv and GATv2Conv) are Graph
Convolutional layers that work with Graph data. They take as parameters the input
channels, the output channels and other optional parameters. The forward of these models
takes the x tensor , which is the tensor of the node attributes, as well as the edge index,
which is the tensor of the list of edges in the graph. Some of these models are able to
take additionally the edge attr which is the tensor of the edge attributes. The parameters
supported by each of these models are listed in the torch geometric GNN Cheatsheet4.

3.6 Anticipation

Early recognition a.k.a anticipation is a crucial aspect of artificial intelligence and predic-
tive analytics, enabling systems to forecast future events or conditions based on available
data. Early recognition and anticipation find applications in various domains, including
healthcare, finance, cybersecurity, manufacturing, and environmental monitoring.

Early Recognition vs. Traditional Prediction: Early recognition goes beyond tradi-
tional predictive analytics. While prediction typically aims to forecast an event or outcome,
early recognition focuses on identifying signs or patterns that precede an event, allowing
for proactive decision-making and intervention.

Anticipation in Action Prediction: Anticipation in action prediction allows systems to
make proactive decisions. Instead of merely recognizing and reacting to current actions. It
also improves the interaction between humans and intelligent systems. When AI systems
can anticipate human actions, they can provide more intuitive and responsive interfaces.
In domains like surveillance and security, anticipation is vital for early threat detection.

3.6.1 Techniques for Anticipation in Action Prediction

There are multiple techniques for performing Anticipation. We will introduce some of them
in this section.

Pattern Recognition: Anticipation relies on recognizing patterns in previous action
data. This often involves the use of machine learning and deep learning techniques, includ-
ing recurrent neural networks (RNNs) and Long Short-Term Memory (LSTM) networks,
to model temporal dependencies and predict future actions based on historical sequences.
In the paper “Encouraging LSTMs to Anticipate Actions Very Early” [ASS+17], the au-
thors present a novel multi-stage Long Short-Term Memory (LSTM) architecture for ac-

4https://pytorch-geometric.readthedocs.io/en/latest/notes/cheatsheet.html
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Figure 3.12: Model Architecture using LSTM for Anticipation from [ASS+17]

tion anticipation. The model efficiently extracts and simultaneously utilizes context- and
action-aware features, contrasting with existing methods that either focus on global rep-
resentations for the entire image or video sequence, neglecting the action itself, or localize
feature extraction solely to the action through dense trajectories or optical flow, thereby
failing to exploit contextual information. The proposed model refrains from relying on
optical flow, making it significantly more efficient. On a single GPU, the model analyzes
a short video (e.g., 50 frames) 14 times faster than comparable methods utilizing optical
flow. The architecture consists of two stages: the first stage emphasizes global, context-
aware information by extracting features from the entire RGB image, while the second
stage combines these context-aware features with action-aware ones obtained from class-
specific activations, typically corresponding to regions where the action occurs. Essentially,
the model initially extracts contextual information and then merges it with the localized
features. The state-of-the-art model architecture is illustrated in Figure 3.12

Temporal Modeling: Temporal modeling is essential for understanding the flow and
order of actions. Techniques like Hidden Markov Models (HMMs) and Conditional Random
Fields (CRFs) are used to model temporal relationships and anticipate future actions.
These are more traditional techniques. For example, in the paper “Person Movement
Prediction Using Hidden Markov Models” [GV06], they use HMMs to anticipate the next
movement of a person. The system learns habits automatically and is able to predict the
next location of the person based on previous behavior patterns.

Contextual Information: Anticipation is improved by considering contextual infor-
mation. This involves incorporating data from sensors, environmental factors, and user
context to refine action predictions. Context-aware systems can adapt to changing situa-
tions and make more accurate forecasts.
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Multi-Modal Data Fusion: Anticipation is enhanced when combining data from
multiple sources and modalities. For example, in autonomous vehicles, anticipating the
actions of pedestrians involves fusing data from cameras, LIDAR, and radar sensors.

Reinforcement Learning: Reinforcement learning is a type of machine learning
paradigm in which an agent learns to make decisions by interacting with an environment.
The goal of the agent is to maximize a cumulative reward signal over time. In reinforcement
learning, the agent takes actions within the environment, and the environment responds
with feedback in the form of rewards or penalties. The agent learns to optimize its decision-
making strategy to achieve long-term objectives. Reinforcement learning can be used to
teach AI systems to anticipate actions by rewarding correct predictions and penalizing
incorrect ones. This approach is particularly useful in robotics and control systems.

In the paper “Reinforcement Learning for Predicting Traffic Accidents” [CRKH22] the
authors propose a model that focuses on predicting accidents as early as possible while
maintaining high prediction accuracy. The task is framed within the context of existing
research, leveraging dashcam video data as input. The main structure of the machine
learning model is based on Markov Decision Process (MDP). The model predicts two ac-
tions, representing accident prediction and fixation prediction.
To efficiently process the entire video frame, the model employs a visual attention mecha-
nism inspired by human perception, combining top-down and bottom-up attention. A con-
volutional neural network (CNN)-based saliency module processes input data for bottom-
up attention, while top-down attention involves passing input data through the foveal
vision module before reaching the saliency module. Both attention mechanisms are nor-
malized and combined to form the observation environment for the reinforcement learning
model.
The model’s action space is defined by accident scores and fixation predictions, forming a
concatenated policy. During training, the model uses two policy networks and two fully
connected layers with ReLU activation to determine actions. A Long Short-Term Mem-
ory (LSTM) layer captures the temporal dependency of connected actions. The model
addresses a multi-task problem, simultaneously performing accident anticipation and fixa-
tion prediction.
The reward functions are designed based on the accuracy of predictions, utilizing XNOR
gates for accident scores and 2-D coordinates for fixation predictions. The weighting factor
in the accident reward function is designed to decay exponentially, emphasizing early pre-
diction. The model is trained using the Double Actors and Regularized Critics (DARC)
[LMYL21] algorithm, allowing the critics to choose from two policies for accident scores
and two for fixation predictions, resulting in four policies in total. This training approach
contributes to the effectiveness of the reinforcement learning model in accident anticipation.
The architecture is illustrated in Figure 3.13

Convolutional Neural Networks: Convolutional Neural Networks (CNNs) can be
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Figure 3.13: Reinforcement Learning Model Architecture from [CRKH22]

utilized for action anticipation in videos by sampling a limited number of frames for train-
ing. Many papers worked on CNNs for anticipation tasks [FRG18], [NM18], [WYW19].
The CNN, which is designed with a suitable architecture, incorporates temporal modeling
components such as 3D CNNs or temporal layers in 2D CNNs. Training involves predicting
future actions based on the sampled frames, and the model is evaluated on a separate video
set for performance assessment. Fine-tuning and optimization strategies are employed to
enhance accuracy, and the trained model can be deployed for real-time action anticipation
on new video sequences, capturing spatial and temporal features to forecast actions before
they occur.
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Chapter 4

Methodology

This chapter details the methodology employed in this study. It begins by outlining the
dataset used for experiments and proceeds to explain the processes of Spatio-temporal
Scene Graph Generation, Action Recognition, and Anticipation. This chapter serves as a
comprehensive guide to the procedures and techniques applied in the subsequent experi-
mental analysis.

4.1 Dataset

The dataset used in this work is a section of the Home Action Genome dataset (Homage).
The original dataset has 30 hours of videos, 70 classes of daily activities and 453 atomic
actions. There are 86 object classes (excluding “person”), and 29 relationship classes in
the dataset. The HOMAGE dataset has ego-view and 3rd-view for each video. Each video
represents one activity and each activity is made of multiple atomic actions. Ground truth
scene graph annotation files are present for all videos representing the objects, person and
relationships between them present in each frame. A representation of the structure of
Home Action Genome is represented in Figure 4.1

The HOMAGE dataset has 3 types of spatial relationship: one relating to attention, one
to the relative position and one to the contact. The different types of relationships are
presented in Table 4.1

The scene graph annotation files for all videos are formatted in the following way:

{“task”: task name, “labels”: [{“frame”: frame number, “subject”: {“name”: “person”,
“rect”: {“x”: x, “y”: y, “w”: w, “h”: h}}, “object”: {“name”: object name, “rect”: {“x”:
x, “y”: y, “w”: w, “h”: h}}, “relationships”: [relationship1, relationship2...]}, ...]}
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Figure 4.1: Home Action Genome Dataset from [RCJ+21]

Attention Relative Contact
lookingat infrontof carrying coveredby

notlookingat behind drinkingfrom eating
unsure onthesideof haveitontheback holding

above leaningon lyingon
beneath notcontacting sittingon

in standingon touching
twisting wearing
wiping writingon

Table 4.1: Types of Relationships present in HOMAGE
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Figure 4.2: Data Distribution between classes

An example from the dataset would be:

{“task”: “p0003 r000 v002 a003-blowdry hair”,“labels”:[{“frame”:1896, “subject”: {“name”:
“person”, “rect”: {“x”: 475, “y”: 206, “w”: 189, “h”: 273 }},“object”: {“name”: ”mir-
ror”, “rect”: {“x”: 199, “y”: 51, “w”: 193, “h”: 242}},“relationships”: [”notcontacting”]},
...]}

The part of the dataset that is used in the thesis is made of a total of 2617 videos rep-
resenting 69 daily activities. There are 85 object classes (excluding ”person”) so that’s a
total of 86 with ”person”. There is a total of 25 relationship classes. In each frame there
is only one subject (person) and one or multiple objects. The relationship is between the
subject and an object. Multiple relationships could be present between the subject and an
object, and multiple relationships could be present in the frame between the subject and
multiple objects. Each video represents one activity from start to end. The distribution
of the videos among the 69 activities is shown in Figure 4.2 . The classes are balanced
enough, with most of them having a count between 25 and 45.
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4.2 Spatio-temporal Scene Graph Generation

The first step to creating spatio-temporal scene graphs is creating spatial scene graphs. We
do this by taking the annotation files, processing them to retrieve the desired information
and reformat them in a way that can be used to create graphs using the networkx library.
Nodes are the subject and the objects, and edges are the spatial relationships between them.
Transforming the graphs into spatio-temporal is a matter of adding temporal connections
between the subjects, and between each object to itself in consecutive frames.
Since the tasks are labeled only in the annotation files and with many prefixes (example:
p0003 r000 v002 a003-blowdry hair), the first step is to remove the prefixes and leave only
the name of the activity (blowdry hair). After doing that for all files, each activity is given
a class (from 0 to 68); This is the class that should be predicted by the model.
Next is creating the actual graphs. The algorithm we implemented is shown in 1.

This is what the algorithm is doing: For the first frame of the video, the subject and object
nodes are added, as well as the spatial relationships between them. The algorithm then
checks if the next frame number is still the same as the previous one, and if so it means
that there are additional objects to be added, and so it adds the object and connects it
to the same previous subject with an edge based on the relationships between them. It
keeps doing that until the frame number is different from the previous one, meaning it’s a
new frame. Since it’s not the first frame the algorithm starts adding temporal connections
between the node (subject or object) to itself in the previous frame. If many instances
of the same object are present in the previous frame, the algorithm checks for minimal
distance in the bounding box position under the assumption that in consecutive frames
the object would not move too much. After creating the spatio-temporal graph, edge index
and edge attr, x and y are specified as follows:
- edge index is the torch tensor of the list of edges in the graph G.
- edge attr is the torch tensor of the numerical edge relationship attributes of all edges in
the graph G.
- x is the torch tensor of the node attributes of all nodes of the graph G, where node
attributes are the object label and the position (x, y, w, h) of the object.
- y is the torch tensor of the numerical label of the task (activity done in the video).
Then data is created as a Data from torch geometric.data, with parameters x, edge index,
edge attr and y.

For visualization purposes, the spatio-temporal graph is reduced to just the first 5 frames.
The position of the nodes is based on the center of the bounding box of the subject/ object,
translated by a fixed amount for each timesteps for better visualization. Figure 4.3, Figure
4.4 and Figure 4.5 are all examples of spatio-temporal graphs generated from the Home
Action Genome dataset and using the algorithm 1. Graphs defer in complexity based on
the scene and its elements.
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Algorithm 1 Algorithm for creating Spatio-Temporal Scene Graphs

Sort the frames in consecutive order
node id, subject id← 0
frame idx, start← −1
first← False
curr name, new name, curr id, new id← [ ]
G← nx.Graph()
for frame data in data do

fr ← frame data[′frame′]
if frame idx ̸= fr then

if (start == 1) & (first == False) then
curr name← new name
curr id← new id

end if
▷ Add Subject Node

subject name← frame data[′subject′][′name′]
subject rect← frame data[′subject′][′rect′]
name label← mapped label(subject name)
Create node with node id, name label, position
nodeattributes← namelabel, x, y, w, h]
subj id← node id
node id← node id+ 1

▷ Add Object Node
object name← frame data[′object′][′name′]
object rect← frame data[′object′][′rect′]
name label← mapped label(object name)
Create node with node id, name label, position
node attributes← name label, x, y, w, h]

▷ Add Relationship Edges
for i in range(len(frame data[′relationships′])) do

rel label← mapped rel(relationship)
edge attributes← rel label
Add edge between subj id and node id

end for

59



if start ̸= −1 then
first← False
if subject name in curr name then

index← curr name.index(subject name)
rel label← mapped rel(′temporal′)
edge attributes← rel label
Add edge between subj id and curr id[index]

end if
if object name in curr name then

if Count of object name in curr name == 1 then
index← curr name.index(object name)
rel label← mapped rel(′temporal′)
edge attributes← rel label
Add edge between node id and curr id[index]

else
Find distance between the object and all occurances
min diff index← index of the object in curr name with min dist
rel label← mapped rel(′temporal′)
edge attributes← rel label
Add edge between node id and curr id[min diff index]

end if
end if
new name← [subject name, object name]
new id← [node id− 1, node id]

else
start← 1
first← True
curr name← [subject name, object name]
curr id← [node id− 1, node id]

end if
node id← node id+ 1
frame idx← frame data[′frame′]
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else
object name← frame data[′object′][′name′]
object rect← frame data[′object′][′rect′]
name label← mapped label(object name)
Create node with node id, name label, position
node attributes← name label, x, y, w, h]

▷ Add Relationship Edges
for i in range(len(frame data[′relationships′])) do

rel label← mapped rel(relationship)
edge attributes← rel label
Add edge between subj id and node id

end for
if first == True then

Append object name to curr name
Append node id to curr id

else
if object name in curr name then

if Count of object name in curr name == 1 then
index← curr name.index(object name)
rel label← mapped rel(′temporal′)
edge attributes← rel label
Add edge between node id and curr id[index]

else
Find distance between the object and all occurances
min diff index← index of the object in curr name with min dist
rel label← mapped rel(′temporal′)
edge attributes← rel label
Add edge between node id and curr id[min diff index]

end if
end if
Append object name to new name
Append node id to new id

end if
node id← node id+ 1

end if
end for
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Figure 4.3: Example of Scene Graph for activity ”Put Away Leftovers”

For example, Figure 4.3 shows the first 5 timeframes of the action ”Put Away Leftovers”.
We can see that this scene graph has many nodes, including: 42: ”person”, 44: ”counter-
top”, 24: ”fridge”, 19: ”food”, 75: ”microwave” and 1: ”cabinet”. Inside each frame the
person is connected to the different objects with spatial relationships such as ”lookingat”,
”notlookingat”, ”holding”, ”carrying”, ”touching”, ”onthesideof”... And successive frames
are connected with temporal edges. We can see the movement of the person from the way
the position of node 42 is changing.
Figure 4.4 has a less complicated graph. It represents the action of ”load the dishwasher”.
The nodes present in this graph are 42: ”person”, 13: ”dishwasher”, 44: ”countertop”, 20:
”detergent” and 2: ”sink”. As mentioned previously, the person is connected to the objects
by spatial relationships and then the nodes are connected from one frame to another with
temporal edges.
Figure 4.5 has a very simple scene graph with just 2 nodes: 42: ”person” and 37: ”laptop”.
The spatial relationships represented here are ”infrontof”, ”lookingat” and ”touching”, and
the activity represented here is ”Use Laptop”.
Naturally the full scene graphs of most videos are way bigger and more complex with a big
number of nodes and relationships, depending on the number of frames present in a video.
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Figure 4.4: Example of Scene Graph for activity ”Load Dishwasher”

Figure 4.5: Example of Scene Graph for activity ”Use Laptop”
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4.3 Action Recognition

The task at hand is action recognition based on scene graphs, which is why building a
GNN (Graph Neural Network) makes perfect sense. There are many possible layers to
choose from to build the network, all easily accessible through the torch geometric library.
Because of the nature of the graphs being spatio-temporal, it is important to include edge
attributes while training the model and not just the node attributes. This reduces the
number of potential layers significantly as not all of them support edge attributes. 13
potential layers remain that are filtered using the torch geometric GNN cheatsheet, of
which 5 take input channels and output channels in the same way that is readily available
in the data. These 5 layers are: TransformerConv, GENConv, GeneralConv, GATConv
and GATv2Conv. We perform preliminary tests on the five different layers at our disposal,
investigate their strengths and weaknesses and compare their performance on the data.
The input to the model is the scene graphs (inputted as x, edge index and edge attr) and
the output is the class of the activity.

The input graphs have 5 node features (object label, x, y, w, and h) and 1 edge attribute
(relationship label). The model comprises:

• 4 Graph Convolutional Layers, each with 64 channels and ReLU activation.

• Global mean pooling layer for spatial dimension reduction while retaining important
information.

• Dropout of 20% to prevent overfitting.

• 2 Dense Layers to create a fully connected network.

• Softmax layer to transform the output into probabilities.

Since we have 2617 scene graphs, we divide them in the following way: 2000 for training
and 617 for testing (23.5%). We use the torch geometric.data DataLoader to create the
train loader and test loader with a batch size = 200. Since we are dealing with a classifica-
tion task, we use the Cross Entropy loss. We also use the Adam optimizer with a learning
rate of 0.008.

For the training loop, we iterate in batches over the train loader, clear the gradients, get
the predicted output of the model on this data, compute the loss between that predicted
output and the ground truth labels, and use loss.backwards to compute the gradients
of the model parameters with respect to the loss and perform backpropagation through
the computational graph, calculating how much each parameter contributed to the error.
optimizer.step then updates the model parameters based on the computed gradients. The
optimizer adjusts the weights of the model to minimize the loss.
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Figure 4.6: Test Network

The testing loop iterates through a loader (could be train or test), gets the predicted output
and computes the loss and accuracy.

We then iterate through the number of epochs, in this case set to 200, train the model and
then get the accuracy and loss for both training and testing.

4.4 Anticipation

The goal of anticipation is to predict the activity before the video is over. We do that by
removing the nodes and edges of the last few frames of a video when creating the scene
graphs, and training the best performing model on them. This way the model is forced to
learn to recognize an action by its first few frames without having the luxury of processing
the full video. In this section we first perform anticipation by removing the last 5, 10, 20,
30 and 50 frames of a video, and creating the scene graphs without them. If a video has
a fewer number of frames they remain intact. The graphs are then trained on the best
performing network for comparison. It is important to note that the same training/testing
partition is used for all experiments so that the comparison is fair.

After plotting the distribution of the number of frames amongst the videos, illustrated in
Figure 4.7, we can see that most videos have less than 50 frames, and so keeping them
intact while removing 50 frames from videos that have more frames is not fair. The solution
is to perform anticipation by removing a percentage of the frames from the end. This way
is more fair for all videos. Videos with less than 10 frames are discarded in this part, and
so the total number of videos used goes down from 2617 to 2432, and the train test split
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Figure 4.7: Distribution of Number of Frames in the videos

becomes 1900 for training and 532 for testing (27% for test). We first run the model on
the reduced dataset without anticipation, and then we perform anticipation of 10%, 20%,
30% , 40%, 50%, 60% , 70%, 80%, 90% and compare and plot the results.

The algorithm for creating the spatio-temporal scene graphs for the anticipation task is
very similar to that described as Algorithm 1 but with 2 main differences. First we need to
add a counter to count what consecutive frame number we are on, and second we need to
calculate how many frames to remove from the end of each video based on the percentage.
We also add an if condition to add nodes and edges of only graphs that have more than 10
frames (to eliminate videos with few frames), and to stop adding nodes and edges once the
frame counter reaches the desired number of frames for the anticipation task, calculated
as total number of frames - number of frames to be eliminated from the end. The changes
to the algorithm are presented in Algorithm 2.
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Algorithm 2 Algorithm for creating Spatio-Temporal Scene Graphs for Anticipation
counter ← 0
Sort the frames in consecutive order
node id, subject id← 0
frame idx, start← −1
first← False
curr name, new name, curr id, new id← [ ]
G← nx.Graph()
framesremoved← anticipation percentagexnum frames

100

for frame data in data do
fr ← frame data[′frame′]
if frame idx ̸= fr then

counter ++ ▷ Increment frame counter
if num frames >= 10 & counter <= (num frames − frames removed) then

Continue the Scene Graph creation exactly as in Algorithm 1
from line 10 and on but inside this loop

end if
end if

end for
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Chapter 5

Experiments and Results

This chapter presents the outcomes of the conducted experiments in the areas of Action
Recognition and Anticipation. The section on Action Recognition (5.1) provides a detailed
analysis of the model’s performance, offering insights into its accuracy and effectiveness in
classifying actions, while section (5.2) provides the results on Anticipation. The discussion
is accompanied by a thorough examination of the experimental setup and the parameters
that influence the results, providing a comprehensive understanding of the model’s behav-
ior. The chapter serves as a critical evaluation of the proposed methodologies, contributing
valuable insights to the fields of Action Recognition and Anticipation.

5.1 Action Recognition

In this section, we perform a preliminary evaluation of the GCN layers by trying the 5
different types of layers as the Convolutional layer in our network. The general network
layout is the one shown in Figure 4.6, where we have 4 conv layers with ReLU activation
then global mean pooling and dropout, then 2 dense layers and finally a softmax layer.

The Conv layers that we are evaluating are the following: TransformerConv, GENConv,
GeneralConv, GATConv, GATv2Conv. All of these layers take as parameters the in channels,
which is the input dimension and out channels, which is the output dimension, and some
layers take other optional parameters such as the edge dim, which is the edge dimension.
The forward method of these layers take the x, edge index and edge attr.

The results of using the test network of Figure 4.6 with the different Conv layers and with
dropout = 0.2, number of epochs = 200, learning rate = 0.008 and batch size = 200 are
shown in Table 5.1
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Conv Layer Training Accuracy Test Accuracy
TransformerConv 0.41 0.29
GENConv 0.88 0.67
GeneralConv 0.69 0.42
GATConv 0.65 0.44
GATv2Conv 0.41 0.18

Table 5.1: Results of using the test network on the different Conv Layers with dropout =
0.2, number of epochs = 200, learning rate = 0.008 and batch size = 200

We can clearly see that on the Test Network, GENConv outperforms all other layers with
0.88 train accuracy and 0.67 test accuracy. The second best model was GeneralConv
with 0.69 train accuracy and 0.42 test accuracy which is a big difference in performance.
However it is obvious that General Convolutions are better suited for the task at hand.
GATv2Conv performed the worse with just 0.41 train accuracy and 0.18 test accuracy.

It is important to note that since we are working with 69 classes, it is fairly easy for the
model to confuse two classes and hence get lower test results.

Since the GENConv performed the best on the test network, this is the layer to be used
in the final model. The task now is to optimize this model by tuning the hyperparameters
such as the learning rate and number of epochs, and changing the architecture of the
network by adding and removing layers and hidden channels.

For the model optimization task, we fix the number of epochs to a reasonable number equal
to 250, the dropout to 0.2 and the batch size to 200. The results of the experiments for
finding the optimal model are shown in Table 5.2

Model Learning Rate Training Acc Test Acc
GENConv(5,64),
GENConv(64,64),
GENConv(64,64),
GENConv(64,64),
dense(64,64),
dense(64,69)

0.008 0.92 0.71

GENConv(5,64),
GENConv(64,64),
GENConv(64,64),
GENConv(64,64),
dense(64,64),
dense(64,69)

0.01 0.87 0.67
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GENConv(5,64),
GENConv(64,64),
GENConv(64,64),
GENConv(64,64),
dense(64,64),
dense(64,69)

0.005 0.94 0.68

GENConv(5,64),
GENConv(64,128),
GENConv(128,128),
GENConv(128,128),
dense(128,64),
dense(64,69)

0.008 0.87 0.70

GENConv(5,32),
GENConv(32,64),
GENConv(64,64),
GENConv(64,64),
dense(64,64),
dense(64,69)

0.008 0.87 0.70

GENConv(5,64),
GENConv(64,64),
GENConv(64,128),
dense(128,128),
dense(128,69)

0.008 0.87 0.71

GENConv(5,64),
GENConv(64,64),
GENConv(64,64),
GENConv(64,128),
dense(128,128),
dense(128,69)

0.008 0.87 0.66

GENConv(5,64),
GENConv(64,64),
GENConv(64,128),
dense(128,64),
dense(64,69)

0.008 0.93 0.75
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GENConv(5,64),
GENConv(64,64),
GENConv(64,128),
GENConv(128,128),
dense(128,64),
dense(64,69)

0.008 0.89 0.72

Table 5.2: Train and Test Accuracy on different models
and configurations, to find the optimal hyperparameters

The first 3 rows are to experiment with the learning rate and determine which one works
best. So we fixed the model to 4 GENConv layers and 2 dense layers and changed the
learning rate from 0.008 to 0.01 and 0.005. The results show that a learning rate of 0.008
gives the best test accuracy. This is the learning rate that is used from the fourth row on.

Next we change the number of channels and use a different number of Conv layers. The
model that gave the best results is the one made of 3 GENConv layers, going from 5 to
64 channels , then from 64 to 64 , and from 64 to 128, with a dense layer going from 128
to 64 neurons and a final dense layer from 64 neurons to the number of classes (69). This
model gave a test accuracy of 0.75, which is a big improvement from the previous model.
The structure of the best model is illustrated in Figure 5.1

5.2 Anticipation

For the Anticipation task, we follow 2 different strategies: anticipating by a fixed amount
of frames, and anticipating by percentage.

Anticipation by fixed amount of frames: First we decided to perform the anticipation
task by removing the last X frames of a video where X is 5, 10, 20 , 30 and 50 frames. Since
the amount of frames vary from video to video and some of them do not have X frames,
the strategy is to keep videos with number of frames less than X intact and remove frames
from videos that have more than X frames. The results of this experiment are shown in
Table 5.3

The test accuracy consistently decreases as more frames are removed, aligning with the
anticipated trend. However, an intriguing deviation occurs between the removal of 30 to
50 frames, where the test accuracy surprisingly improves. This anomaly is rooted in the
dataset’s heterogeneous video lengths, ranging from as short as 10 frames to as long as
200 frames. Looking at Figure 4.7 we can see that a lot of videos have 30 to 50 frames.
The challenge arises from the uniform removal of a fixed number of frames, disproportion-
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Figure 5.1: Best Network

Number of frames Training Accuracy Test Accuracy
0 0.93 0.75
5 0.94 0.71
10 0.93 0.70
20 0.92 0.67
30 0.92 0.65
50 0.93 0.68

Table 5.3: Anticipation Results for fixed number of Frames
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ately affecting shorter videos compared to their lengthier counterparts. Consequently, a
substantial portion of videos remains unaffected by frame removal, resulting in a dataset
where more than half of the videos represent complete activities. In contrast, less than half
undergo a significant reduction in frames. This imbalance introduces a dataset bias, as the
model trains on scenarios where it encounters more instances of complete activities during
training than those with substantial frame reduction. Consequently, this bias elucidates
the observed phenomenon where removing 50 frames yields superior results compared to
removing 30 frames. It underscores the critical influence of dataset composition on model
performance and emphasizes the need for a balanced representation of full and partial ac-
tivities in the training data. A better approach would be to consider a fixed percentage of
frames to be removed and set a threshold for the minimal allowed number of frames in a
video.

Anticipation by fixed percentage: Since the first approach was not very indicative
and fair, the better approach is to use a percentage of frames P to be removed from the
end of the video. This insures fairness across videos. We set the threshold for the minimal
allowed number of frames in a video to be 10 frames. Meaning from this point on, videos
with less than 10 frames are not considered anymore. After eliminating these videos, the
total number of videos goes from 2617 to 2432. We change the train test partition to 1900
videos for training and 532 for testing (22%). We then create the scene graphs for these
videos without considering the last P% amount of frames. So for example if a video has
10 frames, and the percentage P is 10% we create the scene graph with just the first 18
frames removing only 2 frames; while if a video has 200 frames and the percentage is 10%,
the scene graph is created with the first 180 frames and thus removing 20 frames from the
video.

We run this experiment for P = 10, 20, 30, 40, 50, 60, 70 , 80 and 90 to see the difference
in results and how far can we anticipate while keeping a good accuracy. The results of this
experiment are shown in Table 5.4, and visualized in Figure 5.2.

There is a few things to note from the results shown in Table 5.4 and Figure 5.2. First, the
test accuracy without anticipation has increased from the previously best test accuracy of
0.75 to 0.79. The only thing that changed is the elimination of the 185 videos with less
than 10 frames. This indicates that the model struggles to recognize patterns in videos
with few numbers of frames and thus struggles to classify them, while using videos with
a bigger amount of frames improves the results. So removing videos with few frames is a
good preprocessing step to improve the quality of the data.

Next we can notice that the test accuracy for the anticipation with 10% is the exact same
as the test accuracy without anticipation. This means that by 90% of the video, the model
is able to give the same predictions it would give with the full 100% video, without any
additional mistakes.
From 20% on the test accuracy starts to decrease, which is expected considering the model
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Percentage of frames Training Accuracy Test Accuracy
0 0.95 0.79
10 0.96 0.79
20 0.96 0.76
30 0.93 0.73
40 0.96 0.71
50 0.93 0.70
60 0.91 0.67
70 0.94 0.61
80 0.90 0.57
90 0.88 0.54

Table 5.4: Results of Anticipation by Percentage

Figure 5.2: Test Accuracy of Anticipation by Percentage
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is receiving less and less information each time.
At 20% the test accuracy is still higher than the one obtained using all of the videos without
anticipation.
At 50% the test accuracy is still higher than 0.7 , meaning that the models only needs
half of the video to be able to accurately predict 70% of the activities correctly. At 90% ,
meaning the model only has access to the first 10% of the video, it is still able to predict
more than half of the classes correctly. Considering that we have 69 classes, this is a good
accuracy.

5.3 Results on Reduced Dataset

Since eliminating the 185 videos that have less than 10 frames improved the test accuracy
by more than 4% giving the best achieved accuracy as 0.79%, this is the dataset we will
be using for this section.

We wanted to visualize the predictions on the test set class by class since we have 69 classes
of activities. The results are illustrated in Figure 5.4. The blue bars represent the count of
the correctly predicted instances of a class, while the red represent the additional instances
of the class that were incorrectly predicted. We can see that the performance is better for
some classes and worse for others. A few things to note from this illustration:

• There are 20 classes that were predicted 100% correct, such as 3: ”clean stovetop”,
62: ”use microwave” and 23: ”wash vegetables”.

• 1 class was predicted 0% correctly, which is 50: ”prepare for shower”. This class was
always confused with class 12: ”draw bath”.

• The rest of the 69 classes (48 classes) were neither of the 2 extremes. Most of them
were predicted correctly the majority of the time and incorrectly a few times.

The Recall of each class are illustrated in Figure 5.5. We can see that 20 classes have a
recall of 100% and 1 has 0% while the rest are mostly between 50 and 90%. The median
of the recall of all classes is 83%, while the average of the recall of all classes is 78.3%.

The Precision of each class are illustrated in Figure5.3. We can see that 17 classes have
a precision of 100% and 1 has 0% while the rest are mostly between 50 and 90%. The
median of the precision of all classes is 83%, while the average of the precision of all classes
is 77.8%.

The mean Average Precision (mAP) is then calculated from the precision-recall curve,
where each AP is the area under the curve and the mAP is the mean of all APs. We
obtain a mAP = 63.1%.
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Figure 5.3: Precision percentage per class

The Confusion Matrix is plotted in Figure 5.6, showing the percentage of the predicted
classes against the actual classes. We can note that the predictions are mostly along the
diagonal which means that mostly the predictions were correct. A few examples where
classes were confused are:

• class 1: ”unpack from a suitcase” was confused 71% of the time with class 29: ”pack
a suitcase”.

• class 29: ”pack a suitcase” was confused 62% of the time with class 1: ”unpack a
suitcase”.

• class 46: ”listen to music” was confused 60% of the time with class 57: ”use laptop”.

• class 26: ”serve dinner” was confused 44% of the time with class 10: ”eat dinner”
and 33% of the time with class 19: ”set table”

• class 25: ”load and run dryer” was confused 40% of the time with class 32: ”unload
drying machine”.

• class 13: ”work at table” was confused 25% of the time with class 60: ”organize office
supplies”.

From the examples above, we can see that for the instances that the predictions were mostly
incorrect, the predicted action was similar to the real one, and had similar components
(such as pack and unpack suitcase or serve dinner and eat dinner).
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Figure 5.4: True Positives (Predicted) and False Negatives (True) on the test data

Figure 5.5: Recall percentage per class
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Figure 5.6: Confusion Matrix on Test Data
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Chapter 6

Conclusion and Future Directions

In this thesis, we have presented a novel and approach for the Action Recognition and
Anticipation tasks. By using Spatio-temporal Scene Graphs as inputs to a Graph Convo-
lutional Network, we were able to classify with good accuracy the activities from the Home
Action Genome dataset.

Throughout this research we were able to contribute in important areas. First we created
an algorithm for converting spatial scene graphs on individual frames into one big spatio-
temporal scene graph for the full video.

Next we experimented on different model architectures and evaluated different convolu-
tional layers, thus optimizing the network with GENConv layers, dense layers, global mean
pooling, dropout and Softmax. This model achieved an accuracy of 79% on our test data
and a mean Average Precision of 63.1%[JKFFN19] for a classification over 69 classes .

For the anticipation task, we introduced a novel approach using the spatio-temporal graphs
of a percentage of frames, and using the best performing GCN from the Action Recogni-
tion task. With 10% anticipation we achieved the exact same test accuracy as without
anticipation, meaning that the model is able to give the same predictions by having 90%
of the video as it would by having 100% of the video; and with anticipation of 50% we
achieved an accuracy of 0.7.

The work done in this thesis resulted in good test accuracy on the Home Action Genome
dataset, but there is always room for improvement. Here are some methods we propose
that could potentially improve our model:

Using human skeleton: When creating the Scene Graphs, we are currently pre-
senting the person as one node, positioned at the center of its bounding box. This can
potentially be improved by representing the person by its skeleton instead, where joints
are the nodes. This way relationships can be divided depending on the body parts that are
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Figure 6.1: Nested Graphs using Skeleton

engaged. This can be done using nested Graphs, which means that the node person would
further have a graph inside it for the skeleton. This is illustrated in Figure 6.1. In this
case, contact relationships such as ”touching” and ”holding” can be directly connected to
the hands, while relationships such as ”looking” can be connected to the head. This can
give a deeper understanding of which joints the person uses for each action, however it is
not a simple task as the connections are much deeper.

Adding more attributes: An easier method to improve the model is by adding
more node and edge attributes. We used the label and position as attributes, but other
attributes can be added too such as the velocity of the object (change in position from
one frame to the next), or the type of spatial connection for the edges (contact- relative -
attention)

Using edge weights: In this thesis we considered all edges to have equal weight,
however a possible direction to take is to give different weights for different types of edges.
For example contact relationships could be more important than relative relationships and
so on. So assigning weights to the edges could potentially improve the model.

Other methods could include adding temporal attention mechanisms, use some graph
refinement techniques , use data augmentation techniques, and reduce inference time to
make the model more practical for applications that require quick action recognition and
anticipation. Additionally creating Scene Graphs from scratch could enrich the task and
make it more challenging. There are multiple ways to potentially improve the model, all
of which require additional research and experimentation.
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In conclusion the thesis contributed to many areas of research in Machine Learning and
Computer Vision for Action Recognition and Anticipation tasks. The proposed future
directions provide a roadmap for further research and development, opening up exciting
opportunities for exploration and innovation in this evolving field.
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