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Abstract

This work aims to be a guide for users and companies who need to perform efficient
and precise nearest-neighbor searches on large multi-dimensional datasets. To do this we
introduced a family of algorithms called Approximate Nearest Neighbors, which allow ap-
proximate searches by providing a trade-off between accuracy and search execution speed.

The work focuses on the study of the best-known and most used Free and Open Source
libraries and, for each of them, we analyzed the main and most efficient indexes. Since these
solutions are native on a single machine and their ability to scale as the dataset grows is
limited by the amount of available RAM, distributed solutions were also presented, which
allow horizontal scaling. Once the state of the art had been studied, code was written
to run the libraries on a dataset provided by the Wikimedia Foundation, made up of 6.4
million images. Characteristics such as the documentation and maturity of the libraries
with regard to use in production environments were therefore analyzed. Following these
implementations, various tests were performed trying to cover the majority of use cases,
comparing and describing the capabilities of each index.

Finally, we have written a guide capable of responding to most of the needs of users and
companies for the choice of libraries, indexes and parameters to be used depending on the
reference dataset, obtaining high accuracy and low execution times, in the order of a few
milliseconds.
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Chapter 1

Introduction

We live in a world increasingly surrounded by technology and, through it, we can bring
innovation to all people. To do this, of course, we are faced with increasingly large datasets
and the need to have increasingly performing and scalable systems in order to be able
to handle the workload required today and, possibly, in the future. This is the goal
that Wikimedia Foundation [wika], a collaborative foundation in this thesis, has been
setting for years, providing non-profit systems to the world. One of their best-known
products is Wikipedia [wikb], “the free encyclopedia that anyone can edit”. Thanks to
this collaboration and this portal, a new need arose, which allowed us to write this thesis.
Their use-case is: Wikipedia is a free online encyclopedia where any user can upload the
articles and information they deem appropriate. While doing that they can also upload
pictures. This poses a problem as some of them may upload images under an incompatible
copyright license. To overcome this, Wikipedia provides a service that, taking the picture
that the user wants to upload as input, provides, as output, visually similar images, with
compatible copyright licenses, present in their dataset. As can be easily imagined, their
dataset is enormous and, therefore, their system must be able to perform fast and precise
similarity searches on a considerable amount of data. This need has led us to evaluate a type
of search algorithm useful for solving this problem, the Approximate Nearest Neighbors.

This family of algorithms is necessary for the resolution of this and many other use cases
as it allows very fast approximate searches maintaining very high precision. Research
in this field is all in all young with various solutions proposed in the scientific literature
and, some, even in the form of free and open source libraries. Unfortunately, despite
the various papers, the actual implementations of the algorithms presented are not many
and, those present, are not always well documented or mature enough to be brought into a
production environment. This is also noticeable through ann-benchmarks [annc, anna], the
most famous benchmarks website in this field, which does not provide enough details on the
algorithms used and the data collected, it is limited to being a simple comparison of graphs,
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without an effective guide. This is due to the fact that there are very few companies that
need to manage services that operate on huge datasets and in a very short time as in our
case, making this domain less explored by most users or companies. In fact, we will have
to carry out searches in a dataset of approximately 6.4 million images [data, datb] while
maintaining very low execution times (possibly as low as the average latency of network
communications, estimated to be between 20 and 100 milliseconds) in order to support the
traffic of a portal with approximately 14 million daily users. Most of the works we are
going to analyze are carried out by large companies such as Spotify, Meta or Microsoft.

Through this thesis, we therefore want to create something that is not present nowadays,
a document to guide all those users and organizations who find themselves having to carry
out research on an extremely large amount of data in a very short time. To do this we will
begin with chapter 2, analyzing the most common, famous and used libraries to perform
approximate searches on a single machine. This will allow us to see extremely efficient
algorithms, which share the same limit, the amount of RAM. This will be a big obstacle
since it is the one that defines the quantity of data present in the dataset on which we can
train our indices. As this amount decreases, the accuracy will also decrease. To overcome
this problem we can only perform vertical or horizontal scaling. Here we will enter the
chapter 3 where we will see libraries perform approximate searches in a distributed manner,
thus mitigating the problem imposed by the RAM. To do this we will present distributed
versions of libraries already known in chapter 2 as well as more complex systems, thus falling
into the field of vector databases. Once we finish the study of literature, in chapter 4, we
will implement these solutions by integrating the libraries within our codebase [the] to
evaluate the documentation, the maturity of the libraries and the effective usability. This
will be necessary as the libraries provided do not always implement what is defined in
the state of the art. We will therefore also have to implement features not present in the
original libraries and integrate them. It will be in chapter 5 where we will actually execute
the code to compare all the solutions previously presented by creating indexes on various
single and distributed machines over different portions of the datasets and with different
training phase sizes. These tests, performed on the Wikimedia Foundation dataset, will
allow us to replicate a production environment. Through this work we will therefore show
how to obtain optimal results even with approximate libraries, achieving high precision
with few milliseconds response times. Thanks to these results we will be able to direct
the reader towards the best library for their use case, making comparisons and, finally,
drawing some conclusions, for each of them. To do everything that was presented we will
only consider Free and Open-Source Software (FOSS).
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Chapter 2

Approximate Nearest Neighbors

The nearest neighbor search (NNS) problem is defined as follows: given a set of n points
P ∈ {p1, p2, . . . , pn} in a metric space X and a query point q ∈ X, find the closest point in
X to q [MP69]. The low-dimensional case is well-solved [GE89] so the main issue is that
of dealing with the “curse of dimensionality” [Cla94]. The algorithms known to solve this
problem are of two types, ones with high cost in the preprocessing phase while others in the
query phase. As a solution to this, a more general problem called the ϵ-approximate nearest
neighbors search was proposed. It is defined in the following way: find a point p ∈ P that
is a ϵ-nearest neighbor of the query q, that is for all p′ ∈ P, d(p, q) ≤ (1 + ϵ)d(p′, q) [IM98].

The literature provides us with several algorithms that succeed in this aim, including hash
based methods [DIIM04, JKG08, WTF09, XWL+11, WZ19, WZS+18, ZDW14], tree-based
methods [Ben75, LMGY05, WWJ+14, ML14], graph-based methods [HAYSZ11, DCL11,
WWZ+12, MY18], and hybrid methods [WL12, Iwa16, CWL+18], although, given the size
of our dataset, memory has become the biggest bottleneck, not allowing a real use of some
of these solutions. What makes our case difficult is the amount of data, which does not
allow it to be saved in RAM without adopting compression techniques.

We can also distinguish only two types of algorithms useful for our case, namely inverted
index-based and graph-based. Inverted index-based algorithms divide the dataset into clus-
ters and perform queries between the query vector and representatives of the clusters. This
reduces the search space and, therefore, makes the algorithm faster. Graph-based algo-
rithms make a hybrid use of memory (primary and secondary memory) to save in RAM the
spread-out graph [FXWC18] and the original vectors on the disk. When a query comes, it
traverses the graph, represented by compressed vectors, using a greedy approach and then
reranks the candidates according to the distance of the original vectors.

Despite the high accuracy and efficiency of these algorithms, we are still in the approximate
realm as these solutions are classified as Approximate Nearest Neighbors. Both types of
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algorithms have configurable values to choose the necessary trade-off between execution
speed and accuracy. Obviously, the tuning of these parameters will have to be done with
precision and adapting them to the individual datasets, through appropriate tests.

We will go into the details of the algorithms, costs and main parameters later in this
section, analyzing some of the most used solutions, often developed by some of the largest
companies in the world.

Before exploring how these algorithms works in depth, it is necessary to introduce a
widespread encoding typology for this kind of problem, the Vector Embedding. The idea
is to be able to represent any object within a vector space. By doing so, it is possible
to subsequently understand whether two elements are similar or close to each other by
looking at the values associated with them. As already discussed, this can lead to the
problem of the “curse of dimensionality”; it is therefore necessary to implement techniques
to reduce the dimensionality of this vector space. This space is generally referred to as
“latent” because we don’t necessarily have any prior notion of what the axes are and we
don’t mind. What we care about is that objects that are similar end up being close to each
other. Although it is necessary to apply a vector embedding model to our dataset before
using Approximate Nearest Neighbors searches, which technique or library to use is up to
us as we will not conflict with the ANN algorithm.
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2.1 Annoy

Annoy (Approximate Nearest Neighbors Oh Yeah) [Annf] is an ANN library written by
Erik Bernhardsson for Spotify [Annd, Anne]. It was created to find similar songs and
provide playlists with a homogeneous listening experience.

Following Erik Bernhardsson’s presentation at the NYC ML meetup [Annb], we can divide
the architecture of Annoy into two parts.

2.1.1 Tree Creation

The first question is why do we need a tree? We are going to build a tree that lets us
do queries in O(log(n)) time. In particular, we will use a data structure called Random
Projection Tree [DF08]. We start by taking the dataset of Figure 2.1a to which we will have
already applied the vector embedding model. Initially, we will apply on it a division by
randomly extracting as many points as the dimensionality of the dataset, in this example
we are working on a two-dimensional space, so we extract only two points. The points
are extracted following a uniform probability distribution between the extremes of each
dimension of the dataset. We use the hyperplane passing through the extracted points
as a divisor. As shown in Figure 2.1b, the dataset has been divided into two partitions.
This procedure will be repeated recursively in each newly created partition. As you can
see in Figure 2.2a we have already obtained four divisions which can be represented as
nodes/leaves of a binary tree Figure 2.2b. This procedure, performed repeatedly, will lead
to obtaining a large number of partitions. Execution ends when each set contains at most
K elements. We finally got a result shown in Figure 2.3. It is important to note that points
that are close to each other have a good chance of being close in the resulting binary tree
as well. In case this does not happen because, for example, two close points are separated
by a hyperplane, this will reduce the precision of our approximate method, furthermore,
it is sufficient to perform this procedure of creating the tree several times and compare
the results to probably get a cluster very close to the correct one. This is due to the
non-determinism in the choice of the hyperplane.

2.1.2 Search

At the end of the previous phase we obtained a tree, as shown in Figure 2.3. Analyzing
this data structure we can see how each intermediate node represents a hyperplane, while
each leaf represents a partition. Since this tree structure is binary, it is possible to search
into it with a logarithmic cost, based on the height of the tree. The search procedure is
as follows: we start from the root and ask ourselves how the query point relates to the
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(a) Dataset represented in 2D
(may have more dimensions).

(b) First split due to a hyper-
plane, plotted as a black line.

Figure 2.1: Example dataset in 2-D space and first division. Image from [Annb].

(a) Second split, another hy-
perplane for each partition.

(b) Binary tree obtained from
Figure 2.2a.

Figure 2.2: Tree construction. Image from [Annb].

(a) Dataset subdivided so that
each set contains K = 10 ele-
ments

(b) Binary tree obtained from
Figure 2.3a

Figure 2.3: Result of tree creation phase. Images from [Annb].
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hyperplane that corresponds to the node we are referring to. We go down the appropriate
branch and, once again finding ourselves confronted with an intermediate node, we repeat
the work just performed. We will stop when we reach a leaf node, which contains a number
of elements less than K.

Surely this procedure is very simple, but it leads to a question: what should we do if we
wanted to return more elements than those present in the obtained partition? Among the
possible solutions, the most popular are:

• Use a priority queue: this solution provides for having a threshold value that allows
to choose whether to descend also along the branch that we would have previously
discarded. This way we can search for multiple branches at the same time. This will
be done by inserting the values into a priority queue and sorting them by the distance
between the partition nodes and the query point. In this way we will continue the
descent along the most useful branch, thus implementing a greedy algorithm. In this
way we will have a larger set of results and we will therefore be able to obtain more
than K

• Create a forest of trees: the idea behind this solution is to use non-determinism
in the creation of the hyperplane by creating multiple trees, all different from each
other. We will use a priority queue to keep in memory the trees we will search, sorted
according to how far the query point is from the hyperplane corresponding to the
node under consideration. In this way, for each tree, we will have only one descent
path and we will always continue the search within the tree which will return the
most accurate possible value. It is interesting to note how during the descent phase
we never calculated the distance between points, but only the distance between the
hyperplane and the query point. Once the search is completed we will obtain a much
larger number of values and, finally, we will calculate the distance between them
and the query point. In this way we will have a probabilistically better precision, as
well as a larger number of elements on which to make the selection. Obviously the
trade-off between precision and execution speed is given by the threshold that we are
going to set. This threshold will tell us which trees to continue to consider in the
descent and which ones, instead, to leave aside as not useful or of little significance.

As it is easy to understand, the second solution is the best as it not only solves the problem
previously introduced but also offers greater precision as well as greater control over the
trade-off between accuracy and execution speed. However, it is important to remember
that, due to the “curse of dimensionality”, it is advisable to decrease the dimensionality
of the data before using Annoy as this algorithm suffers more from high dimensionality
rather than from a large number of elements.

13



2.2 FAISS

FAISS is a library for efficient similarity searches and clustering of dense vectors. This
library, developed by the Meta research team [Faia] was created to carry out searches on
domains of several millions or billions of elements in very short times, even 10-100ms as
reported in [MUS18]. The peculiarity of this solution is that if works with such large
datasets that they would not be able to be loaded in RAM without adopting ad-hoc
solutions. This algorithm, like all the other ANN algorithms, offers parameters with which
it is possible to choose the compromise between execution speed and precision, as we will
see later.

2.2.1 Product Quantization

Before working on the dataset we will need to compress it in some way, to do this we will
use a technique called Product Quantization, first proposed by Gray [Gra84] and applied
to ANN by Jégou et al. [JDS11]. This can be used to compress high-dimensional vectors,
keeping the search operation simple with the compressed vectors and easily allowing the
calculation of the distance between them and the original vector. This looks great, but
how do we get a compressed vector? Through encoding.

To encode we need to define a procedure called Vector Quantization. In this method a
function called quantizer q maps a D-dimensional vector x ∈ RD into a vector composed
of values called centroids q(x) ∈ C = {ci; i ∈ I} where I is a finite set of values from 0 to
k − 1, ci are the centroids and C is the codebook of size k. The set of vectors mapped to
index i is called a Voronoi cell [CRSW22], so each vector belonging to a specific Voronoi
cell will be encoded with the same centroid. In other words, a Voronoi cell of a centroid
can be defined as the set of vectors whose nearest centroid is the one at the center of
the cell. To calculate the quality of a centroid we have to use the mean squared error
defined as Ex[distance(q(x), x)

2] where the distance function is the Euclidean distance
which compares the quantized vector with the original one. A near-optimal quantizer that
can be used is the Lloyd quantizer, which corresponds to the k-means clustering algorithm
and iteratively improves the accuracy of the centroid based on the elements it receives as
input.

Vector Quantization must be applied to high-dimensional vectors, to do this each vector
will be decomposed into m subvectors and an ad-hoc quantizer will be performed on each
block j ∈ {1, . . . ,m}, this is called Product Quantization. To make it easier to understand
this technique we can summarize it as follows:

x1, . . . , xD∗︸ ︷︷ ︸
u1(x)

, . . . , xD−D∗+1, . . . , xD︸ ︷︷ ︸
um(x)

→ q1(u1(x)), . . . , qm(um(x))

14



where qj is the quantizer assigned to the j subvector. The encoded vector can be defined
as the concatenation of centroids C = C1 × . . .× Cm. An interesting property of product
quantization is that it is possible to approximate the input vector given the encoded vector,
this feature is not used, however, by FAISS and therefore we will not go into detail, which
is available in other sources [JDS11].

Regarding memory usage, Product Quantization is a method that, compared to others,
allows to store data in memory even if the dataset grows. This is possible because the
vectors resulting from the operations described above are not saved in memory, but in their
place we will save m×k∗, where k∗ is the number of centroids for each subquantizer. In this
way we will effectively write in memory mk∗D∗ = k1/mD values, obtaining a remarkable
efficiency.

2.2.2 Search

As far as the search is concerned, we must first find a way to calculate the distance between
two encoded elements. To do this, the Asymmetric Distance Computation (ADC) is used.

Figure 2.4: Asymmetric Distance Computation (ADC) between the query vector x and
q(y) that approximates distance(x, y). Every cell is a Voronoi cell with a dot in the center
that represents its centroid. Image from [JDS11].

The ADC calculates the distance between the query vector x and an already encoded
vector y = q(x). The distance(x, y) can be calculated approximately as the distance
distance(x, q(y)) Figure 2.4, defined as

distance(x, q(y)) =

√∑
j

distance(uj(x), qj(uj(y)))2 (2.1)
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Actually, in our case, we will not calculate the square root since this function is mono-
tonically increasing and therefore applying it doesn’t alter the ranking. To make equation
Equation 2.1 efficient we have to divide the procedure into several steps, that correspond
to the steps necessary to carry out a search. Initially (1) we are going to build the distance
table, then (2) we take the distances we need for the calculation and (3) carry out the
calculation of the distance.

As regards the costs of this research we have two sources of complexity. The first (1)
concerns the construction of the distance table where the cost corresponds to O(Dk), The
second (2, 3) concerns the calculation of the distance between single centroids given two
vectors with complexity O(Nm). This results in a total complexity of O(Dk+Nm), where
D is the number of dimensions of the vectors, k is the size of each codeblock, N is the
number of rows in the dataset, a value that can correspond to several million or billions,
as well as being the only significant value and m is the number of subvectors in which each
vector is decomposed.

2.2.3 More Advanced Index Solutions

A search as described so far would be linear concerning the number of elements of the
dataset. This technique is not usually suitable for production use as it is inefficient since
the ANN is used on datasets of several millions or billions of items. Instead, we will
use some other techniques such as Inverted Index, Inverted Multi-Index and Hierarchical
Navigable Small World index.

2.2.3.1 Inverted Index

To use the inverted index [JDS11, MUS18] we first need to take the full dataset and
split it into J disjoint buckets X1, . . . , XJ through k-means. At each bucket is assigned a
representative vector uj ∈ RD and the distance between it and each element of its bucket
is calculated. The result of x − uj, where x is a vector of the bucket, is encoded with
product quantization and saved in the jth bucket’s posting list. In the search phase, given
a vector y ∈ RD, the distance between y and uj is calculated. This allows us to choose the
closest bucket and, therefore, to query its posting list. Subsequently, the nearest neighbors
are searched using the ADC method between the residual vector y − uj and the vectors
in the posting list. This algorithm is efficient as it reduces the search space since only
the elements of the chosen bucket are considered, allowing us efficient searches even on
datasets with 109 elements.
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2.2.3.2 Inverted Multi-Index

To use this index type we first need to perform the Product Quantization as reported in
subsection 2.2.1, for simplicity we give an example in which we will proceed by dividing
each vector into two subvectors. We define pi = [p1i p2i ] the decomposition of a vector
pi ∈ RD of the dataset, where p1i ∈ RD/2 and p2i ∈ RD/2, remembering that D is the
number of dimensions in the dataset. We call U = {u1, . . . , uk} the codeblock related to
p1i and V = {v1, . . . , vk} the codeblock related to p2i . By performing product quantization
we will create a k × k matrix containing all possible pairs of codewords (ui, vj) | i ∈
{1, . . . , k} ∧ j ∈ {1, . . . , k}. We will identify each element of the matrix as Wij.

Once we understand how to create this data structure, we need to ask ourselves how to
query it. Given a query vector q = [q1 q2] ∈ RD and a desired output list of size T << N ,
we will query the matrix to find the T elements closest to the vector q. First, we’re
going to find the codebook that q1 and q2 belong to. To do this it is possible to use an
exhaustive search since the number of elements of U and V is typically small. We therefore
denote with α(k) the index of the element closest to q1 and with β(k) the index of the
element closest to q2, while we are going to define two functions to calculate the distance
as r(k) = distance1(q

1, uα(k)) and s(k) = distance2(q
2, vβ(k)). We will now calculate the

distances distance(q, [uα(i) vβ(j)]) for each i and j , indices of the matrix . The value
obtained will be saved in cell Wij as can be seen in the top part of Figure 2.5. Finally,
we will visit the data structure obtained greedily by selecting each time the elements with
a smaller distance from q using the multi-sequence algorithm as reported in [BL15] and
shown in the bottom of Figure 2.5. This will go on until the output list of length T will
be filled with elements.

Let’s now analyze the costs of this solution. k2 lists will be kept in memory, many of
which are empty since they contain no elements. We can refer to this phenomenon as a
non-uniform distribution of list lengths. This trade-off is, in any case, necessary as we are
able to have greater precision given by the sampling density. This high density still remains
a problem if we decide to increase the number of multi-indexes used, thus increasing the
number of dimensions into which we will divide the vector, as well as increasing the number
of empty lists. This leads us to conclude that, although a smaller number of dimensions
leads to longer quantization times, dividing the vectors into two groups of dimensions
could already be a good compromise between precision, speed and memory usage. From
a temporal point of view, this algorithm used many vector instructions which on modern
CPUs can execute really fast in comparison with scalar ones.
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Figure 2.5: Top part: Find the codebook for q1 and q2, compute the distances and insert
them into the matrix. Bottom part: Multi-sequence algorithm on the matrix to retrieve
the centroids with a smaller distance from the query point. Image from [BL15].

2.2.3.3 Hierarchical Navigable Small World Index

The HNSW index (Hierarchical Navigable Small World) [MY18] is a type of index called
graph index since it is based on a graph structure. To understand how it works, it is
first necessary to introduce the concept on which it is based, i.e. Navigable Small Worlds,
introduced for the first time by J. Kleinberg [Kle00b, Kle00a]. This type of graph is being
studied for real-life network analysis, thus trying to represent networks with logarithmic or
polylogarithmic scaling of the greedy graph routing. What is interesting about Kleinberg’s
NSW is that a node can have two types of arcs: lattice edges, i.e. short-distance arcs, and
long ranges, i.e. more improbable arcs that connect very distant nodes. The probability
with which two distant nodes u, v are connected corresponds to P (u → v) = 1

distance(u,v)r
,

we can therefore note that r is the constant that represents the particularity of these types
of graphs. Through this representation we can see how a graph with many nodes, even
billions, can be traversed with a few steps, defined as degrees of separation.

The idea of a navigable small world has inspired an ANN approach [MPLK14] in which
the NSW graph is built by connecting nodes to others in their neighborhood, and a node’s
neighbors are searched by navigating the graph, following first edges that lead closer to
the query node. To overcome the risk of falling in local minima with a greedy approach,
search is conducted on a parametric number (in general, between 50 and 200) of promising
nodes. This approach, however, has the problem of missing the long-range “lattice” edges
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discussed by Kleinberg, and for large datasets the search may take a very long time because
a large number of short-range links need to be followed.

This is where a similar data structure, which manages to overcome this problem, the
Hierarchical Navigable Small World (HNSW) [MY18], comes into play. The basic idea is
not to have a single graph on which to perform all searches, but to have a hierarchical
structure of graphs, called layers. The “bottom” layer (layer 0) corresponds to the NSW
seen before and contains all nodes; each layer i+1 contains a sample of the nodes of layer
i. As a result, each layer will connect nodes at different distances. The “upper” layer,
i.e. the one furthest from layer 0, will contain the longest links. The search algorithm
will work like the one for NSW until it finds the local minimum of the graph present in
the layer. Once this is done, it descends hierarchically to the underlying layer, resuming
the search from the previously selected node as shown in Figure 2.6. This procedure will
continue until layer 0 is reached, which contains the entire graph, but at this point the
nodes to check will be few and the query result will be easy to find. The degree for each
layer can be made constant, increasing the number of layers if necessary, and the cost of
this search is in practice polylogarithmic in real-world use cases. The cost of the memory
used corresponds to the totality of the connections between the nodes, similarly to NSW
in layer 0, giving us O(Nk) where N is the number of nodes and k is the number of edges.

Figure 2.6: HNSW search example. Image from [hns].
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2.3 SPTAG

SPTAG (Space Partition Tree And Graph) is a library [CWL+18] for large-scale vector
approximate nearest neighbor search, created by Microsoft as an alternative version to their
previous library, called DiskANN [Dis]. Unlike other technologies, this solution involves
the use of both RAM memory and the physical disk, efficiently managing which and how
much information to save on them. SPTAG offers three solutions: KD-Tree, Balanced K-
means Tree and SPANN. We will only analyze the last two as KDT has been shown to be
inefficient for large datasets and, therefore, for our use case, as reported in the Introduction
of the library Github page [CWL+18].

2.3.1 Balanced K-means Tree

The Balanced K-means Tree term was not clearly defined in the documentation, and we
could only find information about this index by looking through the papers created by the
SPTAG authors. We suppose the descriptions we use match the behavior of the library,
but we do not consider it as part of this thesis’ scope to reverse engineer the SPTAG code
to verify whether the implementation matches the descriptions provided. This solution
consists of two parts, the Balanced K-means Tree [NS06] and the Relative Neighborhood
Graph [WL12].

The first consists of creating a K-means tree and keeping it balanced in height and number
of elements within the leaves. To do this, in the portion of the dataset on which the
training will be carried, the K-means algorithm will be executed allowing us to obtain
K clusters, each identified by a vector. In each cluster obtained from the execution of
the algorithm, the K-means will be performed again to divide it into more clusters. This
procedure will be repeated recursively, forming a tree where each node is identified by
the cluster identification vector while the leaves correspond to the final clusters, which
will effectively contain secondary memory pointing to all the vectors of the dataset saved
adjacently in lists.

The second phase, i.e. the one relating to the Relative Neighborhood Graph, consists of
analyzing more clusters and elements than those returned from a simple search in the tree
obtained in the first phase. When we reach the cluster corresponding to the leaf of the
Balanced K-means Tree we create a queue where we insert all the most promising elements
to visit in an orderly manner. In addition to inserting the elements of the same cluster
to which they belong, we also insert the elements of neighboring clusters. In this way it
is possible to expand the search and obtain precise results even with values that live on
the cluster boundary. In addition to this optimization, a caching technique has also been
studied where, given a query point, we save a previous descent within the tree. This allows
us to reduce the number of checks and operations necessary to reach the reference cluster
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and, once reached, continue the exploration of the graph via the queue.

2.3.2 SPANN

This solution [CZW+21] mainly wants to solve three problems common to many approxi-
mate nearest neighbor search algorithms:

• Posting length limitation: when a dataset is divided into sets (or clusters), we will of-
ten have a very high variance in the number of elements within them. This makes the
data structure, whatever it is, unbalanced. Limiting the size of these sets, balancing
their cardinality, is a necessary solution to ensure efficiency.

• Boundary issue: once the dataset has been analyzed and divided into the data struc-
ture, we may notice how some elements have been assigned to one group rather than
another since a check has been made on the distance between them and the groups’
representative elements (often obtained via k-means). This is certainly correct, but,
with query points that are positioned on multiple set boundaries, we may not get
the best result because we may search only into some sets, maybe the ones that do
not contain the value described above, as can be seen in Figure 2.7. To overcome the
Boundary issue we will assign an element to several groups only if the distance from
it to them is similar among all.

• Diverse search difficulty: this problem identifies a difficulty in executing some queries
rather than others since for each query we will have a different number of sets to check.
The goal is to reduce the number of accesses to the data structure avoiding checking
some sets that will not help in reaching a good result.

2.3.2.1 Index Structure

The methodology used for the data structure follows that of the inverted index with the
difference that no lossy data compression techniques will be adopted as there will be no
restrictions on memory, a hybrid solution between RAM and secondary memory is used.
The index structure foresees the division of vectors into N posting lists. Once the centroids
relating to the posting lists have been calculated, using k-means, the vectors closest to the
centroids are extracted and saved in memory with a direct reference to the lists present in
the secondary memory. The use of this data structure allows efficient access to the relevant
list, without wasting accesses in secondary memory (this operation on this type of memory
is expensive). It is easy to understand that the longer a list is, the more accesses we will
have to make to find the elements of our interest. This problem was previously introduced
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Figure 2.7: The image depicts a search, without the feature developed to overcome the
Boundary issue, where the query point is colored in yellow. Comparing this point to the
representative values of both groups we will notice how the green group will be closer. This
leads us to scan the green cluster, although there are two elements of the blue group that
are closer to the query point, highlighted in red. These elements, considered boundary
elements, could be part of both clusters, thus allowing a more precise and efficient search.
Image from [CZW+21].

in subsection 2.3.2 and solved through the Posting length limitation, which will use a
multi-constraint balanced clustering algorithm [20119] to balance the lists. The idea is to

minimize the variance on the number of elements within the lists through
N∑
i=1

(|Xi| − |X|
N
)2

where X is the set of data vectors, N is the number of posting lists and Xi is the posting
list with index i. This brings the advantage of not having to scroll through extremely
long lists, but this is not the only problem since, despite a fixed list length, it may be
necessary to access more lists to obtain a satisfactory result. This problem, previously
presented under the name of Boundary issue in subsection 2.3.2, is partially solved by the
Posting list expansion technique. This method uses the multi-cluster assignment solution
for boundary vectors which is summarized by the formula Equation 2.2

x ∈ Xij ⇐⇒ Distance(x, cij) ≤ (1 + ϵ1)×Distance(x, ci1) (2.2)

where c are the representative vectors and ci1 is the closest one. This means that duplicate
vectors will only be those on the boundary, while those close to the centroid will be reported
only once. However, this solution risks not being efficient given the excessive duplication
of vectors, to overcome this the RNG rule is followed [Tou80]. What this rule wants
to do is to decrease the number of duplicate vectors in lists represented by very close
centroids, in order to make a future search more efficient by expanding the number of
different vectors that could be seen. To do this we will skip cluster ij for vector x if
Distance(cij, x) > Distance(cij−1, cij).
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2.3.2.2 Search

As far as the search phase is concerned, we have only one problem, previously described
in subsection 2.3.2, to solve. To do this we need a technique called Query-aware dynamic
pruning which consists of checking only the lists represented by a centroid close to the
query point as much as the closest centroid, as reported in Equation 2.3, performing a
distance check as in Equation 2.2.

q
search−−−→ Xij ⇐⇒ Distance(q, cij) ≤ (1 + ϵ2)×Distance(q, ci1) (2.3)

where c are the representative vectors and ci1 is the closest one.
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Chapter 3

Distributed Approximate Nearest
Neighbors

In chapter 2 we have seen various libraries and techniques to perform an Approximate
Nearest Neighbors search efficiently. These algorithms have also overcome some non-trivial
problems related to the size of the dataset; due to the dataset enlargement, it is necessary
to use more primary memory and disk space. However, this has limitations despite these
spatial reduction characteristics, it will not be possible to operate on increasingly large
datasets without reaching the physical limit (RAM) of the machine on which the algorithms
are running. Once the limit imposed by the RAM has been exceeded, we will be forced
to train the data structures on only a portion of the dataset. The remaining vectors will
still be inserted, but they will not improve the state of the index, thus decreasing its
precision. Furthermore, the previously found solutions are not full-fledged systems capable
of operating at 360 degrees and capable of scaling as the dataset grows.

The question arises, can’t we do better? To obtain an affirmative answer, we will have to
leave single-machine solutions behind us to study systems capable of scaling and which do
not suffer from some, if not all, of the previously mentioned problems, the distributed ones.
We will need some complex systems such as those we are going to analyze in this section.
Each of the next solutions will solve one or more of the problems mentioned above, thus
providing a choice based on the most convenient trade-off in reference to one’s use case.

24



3.1 Distributed FAISS

This library has already been covered in its single-machine version in section 2.2. Although
its efficiency has already been demonstrated in the previous chapter, this may not be
sufficient by the time we are going to approach, if not surpass, the physical limits of the
machine. To work around this problem, a distributed version of this library [DFa] based
on the work by Piktus et al. [PPK+21] has been made available. To get a general point of
view on how it works, we can refer to Figure 3.1; we will go into in depth in each phase in
the sections below.

Figure 3.1: Behavior of the system. Image from [DFa].

3.1.1 Index Creation

We can logically divide the system into two main parts: client and server. The clients
will take input blocks of vectors; these will be, through load-balancing policies, forwarded
to the servers through an RPC library which will insert them inside the indexes as can be
seen in Figure 3.2. The underlying indexes use FAISS; we can therefore summarize this
library as a distributed wrapper.
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Figure 3.2: Index creation phase. Image from [DFa].

3.1.2 Search

As far as the search phase is concerned, this occurs similarly to MapReduce [DG08]. A
client queries all servers for the necessary nearest neighbors. These will be merged and
filtered on the client side to then get the best available neighbors.
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3.2 Distributed SPTAG

This library has already been covered in its single-machine version in section 2.3. Although
very efficient, the distributed version is quite similar to its single-machine version. What
makes this library special, however, is that computation can be distributed on multiple
machines in a very simple way.

3.2.1 Distributed Computation

Referring to subsubsection 2.3.2.1, once the index creation phase has been completed, we
will have obtained an easily divisible structure. We will split the dataset into M posting
lists where M is the number of machines and assign each posting list to a different machine.
During the search phase we will only interrogate the machines on which the lists of our
interests reside, parallelizing this procedure. This paradigm resembles MapReduce [DG08],
an important framework for distributed computing. This type of solution, however, adds
a problem to consider: some machines may become hot-spots as they are always queried
meanwhile others may receive a much lighter workload.

3.2.2 Avoiding Hot-spots

To avoid the aforementioned hot spots we will change the approach partitioning the dataset
into K partitions where K ≫ M , remembering that M is the number of machines, and
use the best-fit bin-packing algorithm [DS14] to pack K partitions into M machines. In
this way we will be able to balance the queries on all machines, performing an efficient
parallelization. This solution manages to scale very well allowing us to support much
greater quantities of queries, even if we need to carefully evaluate the parameters K and
M to obtain a fair trade-off between workload on each machine and speed of execution,
considering the slowdowns due to the data aggregation phase.

Despite this solution to avoid hot-spots, we will notice in chapter 4 that this implementation
is not present in the library, forcing us to create a custom version.
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3.3 Milvus

Milvus is an open-source [Mila] vector database that focuses on providing an efficient
system and architecture for similarity searches and AI-powered applications. The need
that Milvus tries to satisfy is to provide a complete system capable of operating on huge
dynamic datasets, providing solutions that can run in a distributed way. Milvus is based
on the FAISS library (section 2.2), to which a few modifications have been applied.

3.3.1 System Design

Milvus consists of a structure divided into 3 main components: Query engine, GPU engine
and Storage engine as shown in Figure 3.3.

Figure 3.3: System architecture of a single instance of Milvus. Image from [WYG+21].

• Query engine: this component supports vector query processing and is optimized to
run with new processors to reduce cache misses by exploiting SIMD instructions.

• GPU engine: it is a co-processing engine to the Query engine that accelerates per-
formance through parallelism by taking advantage of the GPU.

• Storage engine: enables persistence and incorporates an LSM-based framework for
dynamic data management. This system is supported by various file systems, in-
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cluding Amazon S3 [Ama], local file systems and HDFS [SKRC10]. In the follow-
ing paragraphs, we will describe the basic Milvus characteristics; for more in-depth
knowledge we refer to the work by Guo et al. [GLX+22].

3.3.2 Features

We can distinguish various features in Milvus, the most interesting and useful for the
purposes of the study are listed below:

• Query Processing: before defining how queries are processed we need to know the
objects Milvus works on, i.e., entities. Milvus represents any object composed of
vector data and, optionally, unstructured data as an entity. Once the entities have
been saved in memory, it is possible to search by vector, attributes (i.e. by applying
filters on the attributes of the entities) or by multi-vector (data aggregation). All of
these queries support various similarity functions.

• Indexing: another factor of vital importance for the functioning of the system con-
cerns the types of indexes supported as these affect the type of data structure used
and the efficiency of the service. Referring to the latest studies [LZS+20] it was de-
cided to support quantized indices, such as FAISS Product Quantization, Inverted
Indexes and Graph-based Indexes. Nevertheless, Milvus provides interfaces for simple
integration of new indexes.

• Dynamic data management: to support this functionality Milvus adopts the idea of
LSM-trees [LC20]. Every time you want to insert a new vector in memory, you must
wait for a pre-established timeout or for the achievement of a satisfactory size to
move this set of vectors, called segment, to disk, trying to join it to other segments
already present to ensure sequential access to secondary memory. Also, the segment,
where both indexes and data are stored, is considered the basic unit for searching,
scheduling and buffering.

• Storage Management: Milvus stores entities in memory via columns. The individual
vectors are saved contiguously and, since each vector is of the same size, it is possible
to directly access the portion of memory where the searched data resides via its id.
In the case of multiple vectors, saving via column is applied.

To make this memory management easier, we provide an example. Consider 3 entities
A,B,C each containing two vectors v1 and v2, in memory data will be saved with
this layout: {Av1, Bv1, Cv1, Av2, Bv2, Cv2}.
The same method is used for the attributes, which are saved through columns. Each
column is identified by < key, value > where key is the attribute value and value is
the row id.
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3.3.3 Optimizations

As already reported in subsection 3.3.2, Milvus uses the FAISS indexes, with some modi-
fications to make it as efficient as possible. We can mainly denote 5 optimizations:

• Cache-aware design and multiprocessing: FAISS allows to use multiple threads to
query the index, to do this the query vector array Q is divided by the number of
threads, thus allowing to query the data structure in parallel. Milvus decides to
change the approach, as shown in Figure 3.4, by assigning to each thread a portion
of the vectors present in memory. Each thread will take all the query vectors as
input and the search space will be restricted. Once the k elements resulting from the
search have been found, a heap per thread and query vector will be created and, in a
second phase, these heaps will be merged, thus obtaining the final result. With this
type of dataset partition, Milvus tries to minimize the search space for each thread
in order to load it completely in the cache, precisely in the L3 cache. In this way, the
amount of cache misses is much lower than that of FAISS which, using a different
approach, was therefore slower due to this problem.

Figure 3.4: Milvus parallel computing and resource allocation. Image from [WYG+21].

• SIMD instructions: FAISS allows the use of SIMD instructions by specifying an
attribute at compile time. Milvus, on the other hand, has refactored the entire FAISS
codebase by implementing specific functions for the four types of supported SIMD
instructions (SSE, AVX, AVX2, AVX512), by compiling them with the appropriate
flag. In this way it is possible to choose the best instruction to execute directly at
runtime.
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• Bigger K neighbors with GPU: When operating on GPU, FAISS allows a maximum
search of 1024 neighbors. This limit was enforced due to a physical limit of shared
memory. Milvus overcomes this problem by executing incremental queries taking the
maximum distance of the neighbors resulting from the previous query and executing a
subsequent query considering only elements with greater distance than the previously
retrieved maximum distance. In this way it is possible to chain an arbitrary number
of queries, removing the previously imposed limitation.

• Multi-GPU support: FAISS allows compiling the code on an arbitrary number of
GPUs (c) and, therefore, to execute this binary only on servers with a number of
GPUs >= c. Milvus, through a segment-based scheduler, assigns a search task, or
a segment, to each GPU. This type of scheduler removes the usage limit on the
number of GPUs, allowing it not to specify the number of GPUs during compilation
and, therefore, to run the binary code on servers with an arbitrary number of GPUs.

• CPU and GPU co-design: to perform queries on GPU a massive movement of data
from the CPU is performed, causing a very expensive operation. To do this FAISS
moves a single bucket at a time which does not fully use bandwidth, wasting it. This
solution was chosen to avoid complex management due to missing buckets that have
been previously deleted. Milvus, on the other hand, moves multiple buckets using full
bandwidth and obviating deletions management issues by adopting an LSM-based
out-of-place approach [LC20]. Furthermore, Milvus allows dynamic management of
CPU and GPU by choosing which hardware component will be used based on the
number of queries, as running on GPU may not be convenient due to the massive
movement of data.

3.3.4 Distributed System

We can divide the architecture into many parts, as shown in Figure 3.5. The storage
one is a Distributed shared storage that concerns data that is shared between the Milvus
instances. In order to guarantee consistency Milvus adopts snapshot isolation, i.e., each
query works on its own snapshot, taken at the moment of its first execution, at query time.
The database updates do not interfere with queries that are already running. This kind
of consistency policy was necessary because Milvus needs to support multiple access to its
memory, in particular, Milvus is a read-intensive system, so it is necessary to have multiple
readers while a single writer is sufficient. These worker instances are called worker nodes
as shown in Figure 3.5. This type of architecture, based on a single writer, still satisfies the
user’s needs. The writer manages the operations of inserting, modifying and deleting from
the database, while the readers process the user’s queries, using as much as possible their
internal memory, which is more efficient than storage, to decrease network traffic. Data
is shared between readers via consistent hashing [KLL+97], while sharding information is
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Figure 3.5: Milvus Distributed System. Image from [Milb].

kept within the Coordination layer. In this architecture the faults of the various instances
are contemplated and managed. When a reader crashes it is simply pulled up again,
while on a writer’s crash, the system relies upon write-ahead logging [MHL+92] to ensure
atomicity. These multiple instances need, as previously mentioned, a Coordination layer.
This layer manages the coordination between reading and writing, load balancing and
maintains metadata for the correct functioning of the system. This layer manages to have
a high level of availability thanks to Zookeeper [HKJR19]. This architecture allows to
reach a sub-linear scalability, as reposted in the experiments at section 7 of [WYG+21].
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Chapter 4

Libraries Integration

To test the libraries presented in chapter 2 and chapter 3, some code was written, mainly in
Python, to run them on the provided dataset. This code is free and open-source, available
on Github [the]. In the following sections we will analyze the execution flow of each library,
paying attention to the peculiarities of each one. The KNN library will not be reported,
in our case we refer to the version of scikit-learn [skl] since, although it is present in the
codebase, it is only used to evaluate the precision of approximate libraries. Additionally,
unlike most other pieces of software evaluated in this thesis, it was easy to install and use.
Unfortunately, this library suffers from a major problem that limits its use on very large
datasets, i.e. it is not possible to add vectors to the index if it is already trained. This
means that once we have saturated the RAM during the training phase it will no longer
be possible to proceed with the insertion of other vectors, making the library completely
unsuitable for use cases like ours.

4.1 Common Implementations

The presented repository provides an implementation for each library while respecting
some common code portions. The most interesting aspects that deserve attention are the
use of a Chronometer class since, in order to compare libraries, it is interesting to calculate
the total time for creating an index and for searching within it, and how the dataset is
read. Since the dataset is made up of 215 [data, datb] files in csv format, we need a
reading pattern that allows us to create all the library indexes, paying attention to the
vector insertion methods, which are different for each library. It was, therefore, chosen
to leave the files separate and read them one at a time, considering the vectors as numpy
array objects to save space in RAM, being lighter than native Python lists. The phase of
inserting the vectors into the indices is governed by the size of the RAM. This is because
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index data structures need to be trained on a portion of the dataset to be efficient. The
larger the portion, the more precise the index will be. Once we have loaded as many as
possible vectors into RAM it will be possible to perform training. This phase is called
training phase. Once finished we will be able to continue with the insertion of the vectors
into the index, but these will not shape the internal data structure, but only populate it,
therefore not contributing to its refinement. We will continue with the insertion of the
vectors until we have loaded the entire dataset.

4.2 Annoy

The Annoy library, which we presented from a theoretical point of view in section 2.1, is
certainly the most user-friendly. It is very simple to install using pip, the Python installer
package, and it allows us to immediately create an index. Within this index, we can insert
all the vectors present in the dataset, one at a time. Annoy allows us to support vectors
of type float128 and therefore to use all the precision necessary to compare the vectors
in the dataset. Once the insertion is complete we can build the index by providing the
number of trees that it must use as a parameter. Obviously, the greater the number of
trees, the greater the precision, but this will increase the time required for the index build.
Unfortunately, this library does not provide the possibility to add vectors into the index
after training it, this will lead to Annoy not being optimal on very large datasets, as we
will see later. For the search we have only one parameter to tune, search k, which controls
the number of nodes that the search will check. By increasing this value we will have more
precise results, but longer search times.

4.3 FAISS

FAISS, presented in section 2.2, is certainly the most complete library, as it provides many
parameters and indexes that can be used. Installable via conda, a package manager for
Python and other programming languages, it allows the creation of various types of indexes,
even combined ones, as can be seen in the documentation [faij]. Once the index has been
created we must insert vectors inside it, paying attention to the data type as FAISS does
not support float128, instead it is possible to use float32, losing a little of precision. Since
FAISS was designed to support billions of vectors, it is possible to insert a part of them,
train the model and subsequently add other vectors. Obviously the greater the amount of
data on which we train the index, the greater the precision. This trade-off is governed by
the amount of RAM since training must be performed on a portion of data fully loaded
into RAM, placing this as the upper limit on the number of vectors that can be used in this
phase. Another peculiar aspect of this library is that to support cosine similarity, i.e. the
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function for calculating the distance on which our dataset was encoded, we must manually
normalize the vectors using a specific function.

This library aims to cover as many use cases as possible in terms of dataset size, accuracy
and search time. To do this we can see a large section [Faid] of the wiki dedicated to the
parameters necessary for creating the index. Going into the detail of the creation phase
we have two patterns that we can follow. The first, more intuitive, consists of manually
creating the indexes on the code side using the functions exposed by the library, passing the
necessary parameters to them. This method is convenient to use only if we have to run on
very small datasets using very simple indexes. The second method, which is more complex
but also more powerful, consists in using the index factory, i.e. a method that parses a
string and, based on what has been inserted, generates the index, as discussed in [Faic].
The question may arise, why two types of index creation patterns? This was chosen
because FAISS includes a disproportionate amount of parameters, indexes and additional
components to use, which would not be easily usable without the help of index factory.
For our use case, indexes were created only with index factory. This involved an in-depth
study of all the parameters and components made available by the library, selecting the
best ones by referring to the computing power available, presented in chapter 5. We can,
therefore, schematize the creation of an index into five components, which will be presented
in the actual parsing order of the string:

1. Prefixes: this phase is only useful for configuring the index to enable some special
data insertion functions.

2. Vector transforms: in this phase we want to perform a transformation of the vectors
before adding them to the index, reducing their dimensionality. The most common
use involves using the Optimized Product Quantization [GHKS13] (using the Orthog-
onal Product Quantization Matrix) or the Principal Component Analysis Matrix to
reduce the dimensionality of the input data.

3. Non-exhaustive search components: this is the phase where the indexes are chosen.
The categories of indexes that FAISS provides are Inverted file indexes, Graph-based
indexes and, for more complex cases where the datasets exceed one billion [Faif] or
thousands of billions [Faih] vectors, Composite indexes [Faib].

4. Encodings: in this phase we will compress the vectors after they have been inserted
into the index to save disk space and, in a subsequent loading of the index for a
search, RAM space. The main encoding techniques concern: Product Quantization
and Scalar Quantization.

5. Suffixes: here we define the refining techniques used to increase the precision of the
index by reordering the results during the search phase through the exact computa-
tion of the distance from the query vector.
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Obviously, each single component consists of a much greater number of solutions than
those presented as well as being made up of a large quantity of parameters on which to
perform tuning. Among these, we want to report the most impactful during the creation
of the index. The first is certainly the order of magnitude that we want to use in phase
2, i.e. by how much we want to reduce the dimensionality of the vectors. Reducing the
dimensionality will allow easier processing of the data as we will have a smaller and lighter
vector, but reducing the dimensionality also makes us partially lose the information on
the dimension that we are going to remove obtaining a resulting vector whose dimensions
are a combination of the original ones. The second parameter is an index configuration
parameter, in phase 3. In this case, the name of the parameter depends on the type of
index we want to use, in the case of Inverted Index or Inverted Multi Index we refer to
the number of centroids, while in the case of HNSW we refer to the number of edges that
each single node has. These values change both efficiency and execution times. Finally, we
have the compression parameter used in phase 4, which tells us how much to compress the
vectors to save them in memory. This parameter will influence the quality and precision of
the checks between individual elements in order to return the most correct possible result.
Obviously, all these parameters must be chosen based on the dataset on which we want to
execute, also paying attention to the RAM on which we load the index.

In conclusion, we want to provide an example of a string that can be used by index factory
with its explanation to make learning this creation pattern easier. Let’s parse the string:

OPQ16_64,IVF262144(IVF512,PQ32x4fs,RFlat),PQ16x4fsr,Refine(OPQ56_112,PQ56)

• OPQ16_64: OPQ (Optimized Product Quantization [GHKS13]) pre-processing

• IVF262144(IVF512,PQ32x4fs,RFlat): IVF index with 262k centroids. The coarse
quantizer is an IVFPQFastScan index with an additional refinement step.

• PQ16x4fsr: the vectors are encoded with PQ fast-scan (which takes 16 * 4 / 8 = 8
bytes per vector)

• Refine(OPQ56_112,PQ56): the re-ranking index is a PQ with OPQ pre-processing
that occupies 56 bytes.

4.4 SPTAG

For this library, presented in section 2.3, the most convenient solution to install it is through
the use of docker, a platform for building and running code within isolated containers. Like
FAISS, this library does not support float128, only float32 and expect an index training
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step to create the correct data structure to contain all the vectors of the dataset, which
can also be added at a later stage.

This library is the most complex, the least documented, and the one with the smallest
community. Despite the huge codebase behind it, there is no documentation section, but
there is only a .ipynb file with some examples. What has been studied and used in this
library has been possible thanks to numerous tests and through reading the source code in
C++. A peculiarity of this library, however, is that of being able to create the index and
carry out searches without writing code, but simply passing all the necessary parameters
to executables that are created during the installation of the library. This solution may
seem very convenient, but unfortunately the executables only take as input certain types
of data, formatted in a certain specific way, thus making them unusable by all those users
who do not fall within their use case, therefore only allowing the use of the library by
writing code.

4.5 Distributed FAISS

Distributed FAISS, presented in section 3.1, is nothing more than a library that acts as a
facade for the FAISS implementation to allow us to use it in a distributed manner. The
simplest and most recommended use of this library is through the slurm [slu] cluster and
the submitit [sub] library, which allows the execution of Python code on multiple machines
in the aforementioned cluster. Alternatively, you can also use the APIs made available by
the library. To use the library it is sufficient to administer the indexes and add the various
vectors via round-robin to ensure that each machine has a portion of the dataset. Data
will then be automatically inserted into the machines, whose addresses will be provided via
a specific file. What happens in the final machines is nothing other than the execution of
FAISS. The results obtained from a search will be sorted to provide us with the best result
and then returned to the client who made the request. However, these results may not
be satisfactory if correct tuning of the parameters is not first performed. Unfortunately,
this operation was not designed within the code available in the official repository. To
overcome this problem I personally implemented the necessary functionality and opened
a pull request to Meta to merge my code, currently awaiting approval [faik]. In addition
to this implementation, it was also necessary to develop a method for inserting metadata
since the library does not provide this automatically. This, however, was understood only
after various tests and implementation trials as it was not reported in the documentation.

Unfortunately, this is not the only downside of this library as, although it may seem like a
mature solution, it is not properly supported as very little documentation is written, there
is no longer a development/support team behind it and many of the useful information
for its use were obtained by reading the source code. Furthermore, it is correct to point
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out that the use case of this library is limited to very few situations, for which it might
be better to write your own solution, perhaps taking inspiration from this library. This
is caused by the many missing features to obtain satisfactory results, implemented by us.
This lack of uses is probably attributable to the great popularity, complexity and efficiency
of the single-machine version of FAISS, which covers almost all the needs of users and
companies without problems as you will see in chapter 5.

4.6 Distributed SPTAG

This library, presented in section 3.2, is the distributed version of SPTAG (section 2.3).
The codebase from which the distributed version is taken is the same as the single machine
version, therefore entailing the same positive and negative sides. Using this library involves
defining two configuration files: service.ini and Aggregator.ini. These files, respectively
passed to the service and aggregator executables, are used to configure the cluster on which
we are going to execute. We will have to manually create the index to assign to each server,
taking care to correctly partition the dataset. This also involved the implementation of our
custom indexing via metadata algorithm, as it was not managed directly by the library.
Once this is done, the various servers, governed by the service.ini file, will execute the
requested queries and then return the results to the Aggregator, the machine to which
we connect with the Client. This will merge the results and return the best candidates.
Unfortunately, the implementation of the Aggregator provided is not as complete as one
might hope. In fact, it was necessary to further implement a custom Reduce phase where,
through a partial sort, only the K requested elements were returned.

4.7 Milvus

Milvus, presented in section 3.3 is the best documented library [milc] among all those
analyzed. Its functioning is different from what the previous solutions have accustomed us
to since this solution is not just a library for approximate search, but a complete vector
database. During the index creation phase we will connect to the cluster, which must use
Kubernetes [kub], and create a collection, a sort of partition identified by a primary key,
this must contain various field schema, i.e. the types of data that we are going to load
into the index. In our case, we will have two field schema, the one relating to the id of
the image and the one relating to the vector that represents it. However, the vector fields
cannot be read as a float128 as the library does not support it, the default float data type
of Milvus will be used instead. We will then add all the vectors of the dataset to the
collection. Once this phase is completed, it will be sufficient to execute the command for
the effective creation of the index and for its upload to the network. In the search phase
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we will have to query the previously used collection.
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Chapter 5

Experiments

In this chapter we test the libraries through the code presented in chapter 4 and available
on Github [the], referring to the use-case provided by Wikimedia Foundation in chapter 1.
We evaluate two approaches:

• Vertical scaling: in this case we run the tests on a single machine with a large amount
of resources as you can see in Table 5.1. In addition to this, we were forced to add a
second machine, much less performing, as can be seen in Table 5.2, for reasons that
will be explained in section 5.3. From this moment on we will call the first “single
powerful machine” and the second “single weak machine”. Obviously, the use of this
solution does not involve the execution of the libraries presented in chapter 3 as a
single machine is used.

S.O. Ubuntu 20.04.6 LTS
Kernel Linux 5.15.0-73-generic
CPU Intel(R) Core(TM) i9-10980XE CPU @ 3.00GHz
RAM 128 GB
Physical disk SSD NVMe ∼3 TB

Table 5.1: Information of the single powerful machine used for vertical scaling

• Horizontal scaling: in this case we run the tests on a cluster made up of eight ma-
chines, individually less powerful than the aforementioned single powerful machine, as
shown in Table 5.3. Obviously, the use of this solution does not involve the execution
of the libraries presented in chapter 2 as they are not distributable.

We believe it is interesting to evaluate both solutions since each working group, evaluating
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S.O. CentOS Linux 7 (Core)
Kernel Linux 3.10.0-1127.el7
CPU Intel(R) Xeon(R) E5520 CPU @ 2.27GHz
RAM 12 GB
Physical disk HDD ∼640GB

Table 5.2: Information of the single weak machine used for vertical scaling due to the
malfunction “Memory corruption” reported in section 5.3

S.O. CentOS Linux 7 (Core)
Kernel Linux 3.10.0-1062.el7
CPU Intel(R) Core(TM) i5-9500 CPU @ 3.00GHz
RAM 16 GB
Physical disk SSD NVMe ∼256GB

Table 5.3: Information of an average machine used for horizontal scaling

its own internal availability and needs, could choose one scaling option rather than the
other.

The tests we have carried out are performed only on CPU, proportionate to the type of
algorithm used and to the reference use-case, as reported in Table 5.4. As you can see we
have two tests on single machines, some on the single powerful machine and some on the
single weak machine. Unfortunately, some problems with the single powerful machine did
not allow us to carry out further tests on this machine in addition to those shown in the
table. To overcome this, we have included further tests on the single weak machine, which
we believe are very significant. Further details can be found in section 5.3.

Dataset Use-case Libraries

16 GB Single powerful machine Annoy, FAISS, SPTAG
32 GB Single powerful machine Annoy, FAISS, SPTAG
64 GB Single powerful machine Annoy, FAISS, SPTAG
Variable training (16 GB) Single weak machine FAISS, SPTAG
Full dataset (215 GB) Single weak machine FAISS
128 GB Distributed machines Distributed-FAISS, Distributed-SPTAG
Full dataset (215 GB) Distributed machines Distributed-FAISS, Distributed-SPTAG

Table 5.4: Test suite

As you can see in Table 5.4 we have inserted a test case called “Variable training (16 GB)”.
It was inserted due to some problems reported in section 5.3 and consists of varying the
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portion of the dataset provided to the libraries during the training phase and adding the
remaining vectors later. This test is performed on the single weak machine and follows the
test cases reported in Table 5.5. In this way we are able to evaluate which library performs
best when the size of the dataset in the training phase varies. This is important because in
a real case we will rarely attempt to create indexes trained on 100% of the dataset, but we
will always have limitations provided by the amount of RAM, which, in some cases, has a
capacity much lower than the size of the dataset.

Dataset Portion used in training phase Libraries

16 GB 100% FAISS, SPTAG
16 GB 75% FAISS, SPTAG
16 GB 50% FAISS, SPTAG
16 GB 25% FAISS, SPTAG

Table 5.5: Test suite for “Variable training” on single weak machine

For each test we have analyzed the times needed to build the index and the times needed
to search. The latter one is computed as an average time between all the searches, five
on different input vectors for each index. Once we have obtained the output from each
library we analyzed the precision of the algorithm. To obtain this value we have to run the
K-Nearest Neighbors (KNN), which carries out a complete, precise and non-approximate
search, and compare the results of the libraries with those obtained from the aforementioned
method. The searches require 100 neighbors and the precision is computed by counting how
many elements, of the 100 returned, are placed among the top 100 elements returned by the
KNN. We consider a value as precise only if it is one of the 100 nearest neighbors. However,
remember that both the timing and precision are subject to variations that depend on
some parameters that are provided to the index. We also want to inform that, during the
parameter tuning phase, we paid more attention to search efficiency (time and precision)
rather than low index creation time. However, we carried out significant parameter tuning,
without going into the details of the ad-hoc compilation for the CPU. The desirable goal
is to have the highest possible precision and at the same time have searches that take as
much time as the average latency of a request on the network, estimated to be between 20
and 100 milliseconds.

5.1 Dataset

The dataset on which we carried out the tests was provided by Wikimedia Foundation.
This dataset contains 6.4 Million images, of different sizes and representing different sub-
jects/objects. We have two types of the same dataset available, the one containing the
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compressed images [data] and the one containing the vector representation of these images
[datb], both have already been shuffled. We used the latter, which was created using cosine
distance.

The dataset is made up of 215 files, each approximately 1 GB. Each of these contains 30122
rows and 2048 columns. Each element of each vector is represented with the data type
numpy.float128.

5.2 Parameters Tuning

This section is necessary to have correct, efficient and precise functioning of our indices
when we are going to execute on very large datasets. We will therefore analyze which
parameters have been tuned to carry out the tests reported above. The values we obtained
were found based on empirical tests and theoretical studies of the functioning of the internal
components of the indexes.

• Annoy: for this library, we only had to tune two parameters: n trees and searck k.
The first indicates how many trees should be created from the index. A greater
number of trees increases precision, but also the times for creating the index and the
memory that it occupies. The second parameter tells us how many tree nodes will
be checked. Higher values indicate more precise, but slower searches.

• FAISS and Distributed-FAISS: as regards this library, the number of parameters to
be tuned is enormous. As we reported in section 4.3 and in the official wiki [Faic].
The main ones are dimensionality reduction, index feature and vector compression.
As regards the first parameter, we carried out tuning only in our last test case, i.e.
section 5.8, in which we used the OPQ (Optimized Product Quantization [GHKS13])
component. This component requires two parameters that tell us respectively how
many subvectors and how many dimensions we want to obtain. Next, we have the
parameters relating to the characteristics of the index. These parameters therefore
depend on the type of index we want to use. In the case of Inverted File Index
we noticed how a value between 4 and 16 centroids was optimal for 1 GB of our
dataset. Using this information it was easy to find the number of centroids for larger
portions of the dataset. The same reasoning was made regarding Inverted Multi-
Index but through a different formula. The parameter that is passed governs the
number of centroids as follows centroids = 22∗param. We noticed that for 1 GB of
dataset the optimal value was 1. In this case the increase of this value must be
more parsimonious as the number of centroids increases exponentially. We therefore
decided to choose this value using the formula param = log2(n) + 1 where n is the
size of the dataset. In the case of HNSW, however, the parameter to pass is related

43



to the number of arcs that each node of the graph must have. The greater the
number of arcs, the greater the precision of the index at the expense of its size. We
managed to always keep this parameter between 32 and 64, recommended by the
documentation as the optimal values. Finally, we have the parameter to configure
the vector compression phase for saving vectors in memory. Here too we have many
possibilities, in our case we always use Product Quantization in which we specify
the number of blocks that will be encoded with 4 bits according to the “fast scan”
method which uses SIMD instructions to calculate the distance. We also carried out
Refinement phases in almost all executions to improve the precision of the index.
This was possible via RFlat and Refine method (which accepts other parameters).
In addition to these parameters necessary during the creation of the index we also
used some others to improve the precision of the search phase as a trade-off between
precision and execution time, as it can be read in [Faie]. The most important are:
nprobe, k factor rf and efSearch. The first two are used by Inverted File Index and
Inverted Multi-Index. The first one, nprobe, indicates how many cells of the index
must be checked during the search phase, while the second indicates how many must
be reordered among all those returned from the checked cells. The last parameter,
efSearch, is used only by HNSW and indicates the number of graph nodes to visit.
All these parameters are necessary for both the FAISS library and its distributed
version. Unfortunately, however, in the distributed version the parameters that can
be used in the search phase are not implemented natively and it is therefore necessary
to use the Pull Request containing my implementation of this functionality [faik].

• SPTAG and Distributed-SPTAG: regarding SPTAG there is no satisfactory docu-
mentation to fully understand which parameters to use and how to do it. We have
noticed how for the BKT index we can avoid carrying out parameter tuning as,
thanks to the repeated refinement phases, the index is already very precise. This,
however, is not true for the SPANN index which is completely devoid of documen-
tation even if, through an example reported in a .ipynb file, it was possible to know
some parameters that we tuned to improve its performance in a completely empirical
way without having support from the library. Since SPTAG and Distributed-SPTAG
are part of the same codebase, everything we have just reported is also applicable to
the distributed version.

5.3 Limitations and Malfunctions

Unfortunately, during the creation of the various environments and the testing phase, we
encountered problems that did not allow us to continue with the desired plan, leading to
delays, changes and alternative solutions. Below we listed the most significant problems
we encountered, what caused them and the countermeasures we took.
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• Milvus with Kubernetes: while studying the library and documentation we learned
that the library was mature enough to be used in production environments for docker
clusters and Kubernetes. Unfortunately, in the subsequent phase we realized that the
docker cluster is not yet supported for carrying out distributed searches, but only for
standalone test environments and, therefore, single machines. This led to slowdowns
due to the study of other possible solutions as the single machine version would not
have made sense as it is against nature for this library and we do not have a Ku-
bernetes cluster available. Since the Wikimedia Foundation infrastructure currently
does not support Kubernetes, we have chosen to run all the other pre-established
tests on all the other libraries and to evaluate the purchase of a Kubernetes cluster
only if the efficiency of the other solutions were extremely low, also remembering that
Milvus is based on an improved version of FAISS making us expect similar results.
This solution seemed the most sensible to us in relation to the needs of the Wikimedia
Foundation and the use case provided.

• Memory corruption: after many tests performed on the single powerful machine
reported in Table 5.1, it suffered some problems with the storage memory which,
in a non-deterministic manner, made many files in the dataset corrupt without the
possibility of correcting them. One solution we tried was to use different backups
and different partitions, but it was still not possible to run the algorithms as the
corruption continued to occur. The missing tests on a single machine are the tests
relating to portions of the 128 GB and 215 GB dataset (full dataset), these tests
would have been very interesting as we would have had to train the indexes on small
partitions of the dataset since the RAM would not have been enough to load it
entirely for the training phase. To overcome this problem we decided to add the test
suite reported in Table 5.5 in order to, combining the results already obtained from
the other tests in Table 5.4, predict the execution times and accuracy for the missing
tests in an approximate and heuristic manner. Since we consider very interesting to
run the libraries on the entire dataset despite all the limitations and malfunctions we
encountered, we decided to carry out another additional test, reported in Table 5.4 as
“Full dataset (215 GB) - single weak machine” on the machine reported in Table 5.2.
This test provides us with the experimental comparison to what we have hypothesized
through other tests although on an extremely less powerful machine.

• Distributed SPTAG with SPANN index: within the material studied for this li-
brary [CWL+18] it is reported that SPANN and, in general, SPTAG are technologies
mature enough to be distributed. Unfortunately, this is not the case, as also reported
in chapter 4 for the SPANN index. The SPTAG documentation, despite being almost
non-existent, does not provide the material and examples necessary for the correct
understanding of the use of the SPANN index in a distributed manner. Despite this
major limitation, the C++ source code was read trying to obtain a solution, but un-
fortunately it would seem that this index is not supported in a distributed manner.
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To overcome this problem we wanted to replace the distributed tests of SPANN with
those of BKT in order to still have a distributed SPTAG implementation.

• Machine’s ownership and execution times: all the machines we use are not owned by
individuals but by research groups or university courses. This led to some conflicts
during the installation of the necessary technology stacks, but above all this interfered
with the execution times of the libraries and individual indexes. By paying attention
when performing searches to detect the average execution time, we managed to obtain
clean values, which do not suffer from the problem reported above. Unfortunately,
it was not possible to do the same with the index creation times. This is because
these times, unlike searches, are much longer, even by several hours. We would
therefore like to point out that all index creation times may be slightly longer than
they would be if we had full access to the machines. However, we believe that this
does not completely invalidate our measurements as we are interested in the order of
magnitude of these execution times, which remains true despite this disturbance.

• Internet network and power grid problems: we also faced problems that did not
depend on the technologies or machines we ran on, such as Internet network and
power grid problems. The machines on which we have performed do not belong to
us and, therefore, we have no possibility of physically visiting them to carry out
operations on site. This means that we are dependent on the network in which the
machines reside. Unfortunately, it happened several times that we were unable to
reach the machines for weeks and, initially, even for months. We also encountered
some power grid problems which led to the machines being turned off and therefore
not being able to be used for several days. To overcome this discontinuity in use,
we have increased the number of local tests in order to bring onto the machines only
code on which we are sure of obtaining satisfactory results.
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5.4 Single Machine on 16 GB Dataset

With this test case we want to show which library is the best to use if we have a dataset
of around 16 GB and a sufficient amount of RAM to be able to train the indexes on the
entire dataset. The measurements were taken referring to what is presented in chapter 5.
We also remind that the technical specifications of the indices used are presented in the
footnotes.

Library Index type Creation
time

Search avg
time

Average
accuracy

Annoy Random Projection Trees1 820 s 69 ms 95.2 %
FAISS Inverted Index2 26 s 13 ms 99.6 %
FAISS Inverted Multi Index3 25 s 14 ms 99.8 %
FAISS HNSW4 87 s 8 ms 99.4 %
SPTAG BKT5 8790 s 8 ms 99.4 %
SPTAG SPANN6 6627 s 4 ms 97.6 %

Table 5.6: Index creation time, Search average time and Average accuracy for each index
in section 5.4

As we can see from Table 5.6, all the indices allow us to have very high precision, this
is certainly because the entire dataset was used in the training phase. We can also be
satisfied with the execution times as they are in the order of milliseconds, excellent for
our use case. However, we have two indexes whose creation is extremely slower than the
others, namely SPTAG. This is due to the fact that this library carries out self-tuning
phases to improve itself as much as possible in each adding phase. Obviously, this involves
longer creation times, but also less effort and study in the search for the best parameters,
which, even if provided, give details on the structure of the index, leaving the precision
and efficiency dependent on the number of refinement iterations. Although this execution
makes us very satisfied we can start to notice which index is probably not suitable for too
high workloads, namely Annoy.

164 trees, search k=32768
2IVF256,PQ2048x4fs,RFlat, nprobe=64, k factor rf=3
3IMI2x5,PQ2048x4fs,RFlat, nprobe=192, k factor rf=4
4HNSW64, efSearch=256
5Balanced k-means tree and relative neighborhood graph, 32 Threads
6SPANN, 32 Threads, Base: {IndexAlgoType: BKT}, SelectHead: {isExecute: True}, BuildHead:

{isExecute: True, RefineIterations: 3}, BuildSSDIndex: {isExecute: True, BuildSsdIndex: True, Posting-
PageLimit: 12, SearchPostingPageLimit: 12, InternalResultNum: 32, SearchInternalResultNum: 64}
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5.5 Single Machine on 32 GB Dataset

This test case is no different in terms of methods and purpose compared to the previous
one, the difference lies in the size of the dataset provided. We therefore want to understand
which library is best when running on a dataset of approximately 32 GB, which is used
entirely in the training phase. The measurements were taken referring to what is presented
in chapter 5. We also remind you that the technical specifications of the indices used are
presented in the footnotes.

Library Index type Creation
time

Search avg
time

Average
accuracy

Annoy Random Projection Trees7 1828 s 79 ms 92.6 %
FAISS Inverted Index8 39 s 13 ms 98.6 %
FAISS Inverted Multi Index9 33 s 11 ms 96.8 %
FAISS HNSW10 193 s 12 ms 98.6 %
SPTAG BKT11 18425 s 7 ms 99.6 %
SPTAG SPANN12 14073 s 5 ms 97.2 %

Table 5.7: Index creation time, Search average time and Average accuracy for each index
in section 5.5

Although the dataset used is twice the size of the previous test, we have no news from
the point of view of the results. All index construction times and some search times have
certainly increased as shown in Table 5.7, but despite this we still manage to have extremely
satisfactory results with excellent precision. We can, however, confirm the hypothesis that
we had already posed in section 5.4, that Annoy is the library least suited to running on
large datasets.

764 trees, search k=32768
8IVF512,PQ2048x4fs,RFlat, nprobe=64, k factor rf=3
9IMI2x6,PQ2048x4fs,RFlat, nprobe=192, k factor rf=4

10HNSW64, efSearch=256
11Balanced k-means tree and relative neighborhood graph, 32 Threads
12SPANN, 32 Threads, Base: {IndexAlgoType: BKT}, SelectHead: {isExecute: True}, BuildHead:

{isExecute: True, RefineIterations: 3}, BuildSSDIndex: {isExecute: True, BuildSsdIndex: True, Posting-
PageLimit: 12, SearchPostingPageLimit: 12, InternalResultNum: 32, SearchInternalResultNum: 64}
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5.6 Single Machine on 64 GB Dataset

This test case is the last one, in terms of dataset size, in which we can create indexes
and train them on almost the entire dataset. The measurements were taken referring to
what is presented in chapter 5. As the size of the dataset increases, we come up against the
physical limit of the machine on which we are running the tests. Due to this, not all indices
were trained on 100% of the dataset, but on a smaller portion. More precise information
about these are presented in footnotes.

Library Index type Creation
time

Search avg
time

Average
accuracy

Annoy Random Projection Trees13 4040 s 101 ms 87.4 %
FAISS Inverted Index14 139 s 14 ms 99.6 %
FAISS Inverted Multi Index15 89 s 12 ms 97.8 %
FAISS HNSW16 1488 s 16 ms 98.0 %
SPTAG BKT17 34796 s 8 ms 99.0 %
SPTAG SPANN18 43960 s 5 ms 82.4 %

Table 5.8: Index creation time, Search average time and Average accuracy for each index
in section 5.6

Also in this case we do not have major differences with the previous test. Although some
indices have been trained on a portion of the dataset and not on the entirety, we still have
very high precision and excellent execution times, see Table 5.8. We can, however, officially
exclude Annoy from future tests as it is definitely the worst library from the efficiency and
accuracy point of view. Furthermore, this library does not allow training the index on
a portion of the dataset and then continuing to add data, thus making it unsuitable for
datasets so large that they cannot be fully loaded into RAM. However, we note that, despite
very low search times and excellent precision, SPTAG takes disproportionately long times
to build the index. Referring to Table 5.8 we can read 34796 seconds for BKT, which is
more than 9 hours, and 43960 for SPANN, which is more than 12 hours. This means that
this library, despite its performance, may not be the best in all use cases, especially with
even larger datasets. Furthermore, we can see that, in addition to the index creation time
issue, SPANN also performed worse regarding accuracy. Although it is still the fastest in
terms of search, this does not compensate for a precision that is almost 20% lower than
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BKT, making it, in fact, uncompetitive.

1364 trees, search k=32768
14IVF1024,PQ512x4fs,RFlat, trained on 93.75% (60 GB) of dataset, nprobe=64, k factor rf=3
15IMI2x7,PQ2048x4fs,RFlat, trained on 93.75% (60 GB) of dataset, nprobe=256, k factor rf=4
16HNSW64
17Balanced k-means tree and relative neighborhood graph, 32 Threads, trained on 93.75% (60 GB) of

dataset
18SPANN, 32 Threads, trained on 89% (57 GB) of dataset, Base: {IndexAlgoType: BKT}, Select-

Head: {isExecute: True}, BuildHead: {isExecute: True, RefineIterations: 6}, BuildSSDIndex: {isExecute:
True, BuildSsdIndex: True, PostingPageLimit: 24, SearchPostingPageLimit: 24, InternalResultNum: 64,
SearchInternalResultNum: 128}
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5.7 Single Machine with Variable Training Size on 16

GB Dataset

In this section we want to see how the various libraries behave when the size of the dataset
provided in the training phase on a single machine varies. This test is substantial as these
libraries were created to support several millions if not billions of vectors, therefore using
datasets so large that they cannot be completely loaded into RAM. The test case involves
the comparison of different indices which will use 25%, 50%, 75% and 100% of the 16 GB
dataset in the training phase. As you will see not all the indexes previously proposed are
suitable for a partial training phase, narrowing the field to those present in Table 5.9. Also
in this case technical specifications of the indices are presented in footnotes.

Library Index type Creation
time

Search avg
time

Average
accuracy

Trained on 100% of the dataset

FAISS Inverted Index19 26 s 13 ms 99.6 %
FAISS Inverted Multi Index20 25 s 14 ms 99.8 %
SPTAG BKT21 8790 s 8 ms 99.4 %
SPTAG SPANN22 6627 s 4 ms 97.6 %

Trained on 75% of the dataset

FAISS Inverted Index 46 s 12 ms 99.0 %
FAISS Inverted Multi Index 25 s 15 ms 99.6 %
SPTAG BKT 19539 s 6 ms 43.6 %
SPTAG SPANN 4804 s 5 ms 97.6 %

Trained on 50% of the dataset

FAISS Inverted Index 82 s 12 ms 99.2 %
FAISS Inverted Multi Index 69 s 14 ms 99.8 %
SPTAG BKT 13616 s 6 ms 34.4 %
SPTAG SPANN 3029 s 4 ms 51.6 %

Trained on 25% of the dataset

FAISS Inverted Index 109 s 12 ms 99.4 %
FAISS Inverted Multi Index 46 s 12 ms 94.6 %
SPTAG BKT 8123 s 6 ms 20.0 %
SPTAG SPANN 1360 s 4 ms 26.4 %

Table 5.9: Index creation time, Search average time and average accuracy for each index
in section 5.7
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We can divide the analysis of this test case into three sections: creation time, search time
and accuracy as shown in Table 5.9. As regards the first, we can see how the percentage
of the dataset provided in the training phase certainly involves a change in timing, but
not always in a predictable or monotonous manner. This means that the training phase
is very dependent on the internal functioning of the algorithm, which is non-deterministic,
and on noise caused by other processes performed by other users as reported in section 5.3.
We can, however, note that the SPTAG indices have creation times hundreds, if not thou-
sands, times longer than the FAISS indices; we can also notice that as the training portion
decreases, SPTAG times decrease, while FAISS times increase. This is easily visible in
Figure 5.1a. For the second case study, the one relating to search time, we can see how
the percentage of datasets on which we train is not relevant, as reported in Figure 5.1b.
This is an excellent point in favor of these algorithms because it will allow us to always
have quick answers even with huge datasets on devices with limited RAM. Obviously, this
data must also be compared with the precision of the search, which we can see is always
optimal for the FAISS indices, unlike SPTAG, as easily shown Figure 5.1c. This leads us
to conclude that, in case we had a very large dataset and/or little RAM to perform the
training phase, the best solutions from every point of view are those proposed by FAISS,
in particular the Inverted File Index.

19IVF256,PQ2048x4fs,RFlat, nprobe=64, k factor rf=3
20IMI2x5,PQ2048x4fs,RFlat, nprobe=192, k factor rf=4
21Balanced k-means tree and relative neighborhood graph, 32 Threads
22SPANN, 32 Threads, Base: {IndexAlgoType: BKT}, SelectHead: {isExecute: True}, BuildHead:

{isExecute: True, RefineIterations: 3}, BuildSSDIndex: {isExecute: True, BuildSsdIndex: True, Posting-
PageLimit: 12, SearchPostingPageLimit: 12, InternalResultNum: 32, SearchInternalResultNum: 64}
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(a) Creation time changes versus the portion of the dataset used in the
training phase

(b) Search time changes versus the portion of the dataset used in the
training phase

(c) Accuracy changes versus the portion of the dataset used in the train-
ing phase

Figure 5.1: Graphical display of the data reported in Table 5.9
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5.8 Single Machine on 215 GB Dataset

This test case was inserted following the single powerful machine malfunction reported in
section 5.3. The idea behind this test is to perform an approximate search on the entire
dataset on a machine with very limited resources, which is not able to completely load the
dataset into RAM making it necessary to carry out the training phase on an extremely
small portion of the dataset. This involves the exclusion of Annoy from the tests, as
already announced in chapter 4, since it is not able to support a partial training phase.
The machine on which we will run this test, reported in Table 5.2, has only 12 GB of RAM.
Through some empirical tests we were able to notice that the training phase on it is able
to use only 8 GB, or approximately 3.72% of the entire dataset.

The tests carried out and the results obtained are reported in Table 5.10. Unlike the other
tests performed, we can note that we will only operate on the FAISS library. This is
because according to what we have seen in previous tests, especially thanks to section 5.7,
this library is the only one capable of carrying out fairly precise searches on indexes trained
on very small portions of the dataset. We will therefore explore different FAISS indexes,
focusing on those recommended by the documentation [Faii, Faif] for this particular use
case. We also remind you that the technical specifications of the indices used will be present
in the footnotes remembering that, as already specified in chapter 5, we have carried out a
tuning of the parameters giving greater importance to the accuracy and search time (which
we want to keep ≤ 100 ms) compared to the time necessary to create the index.

Library Index type Creation
time

Search
avg time

Average
accuracy

FAISS IVF (1)23 7459 s 89 ms 60.8 %
FAISS IVF (2)24 31339 s 86 ms 63.4 %
FAISS IVF + HNSW (1)25 7601 s 100 ms 60.8 %
FAISS IVF + HNSW (2)26 9801 s 87 ms 61.6 %
FAISS OPQ + IVF + HNSW 27 34899 s 95 ms 67.0 %
FAISS OPQ + IVF + HNSW + Refine28 18419 s 87 ms 64.6 %

Table 5.10: Index creation time, Search average time and average accuracy for each index
in section 5.8

As we can see from the results presented in Table 5.10 and shown in Figure 5.2 it is
possible to have decent precision, despite such a small training size. Obviously, it was
necessary to carry out more demanding tuning to achieve these precisions, at the expense
of execution time. We can say that, however, it will be very difficult to do better than
what is shown in the table. We can understand this by looking at the type of indices used.
Our idea was to follow three main paths: Inverted Index, Composite Index and Composite

54



Index with compression. The first solution is now well known and we know that it works
efficiently even with very small training portions as reported in section 5.7. The second
index family, i.e. the composite one, allowed us to have a second parameter to tune, used
by the sub-quantizer, but it did not provide us with better results than the single Inverted
Index. The last family is the one recommended by the documentation [Faif] and involves
the use of composite indexes by first performing a compression on the dimensions. Since
this index is composed of lighter vectors and, therefore, allows faster searches, it allowed us
to increase the value of the nprobe parameter, which increases the precision at the expense
of execution time, as can be seen in Figure 5.2. This solution provides us with slightly
more precise results than other index families. Finally, we also wanted to try a refinement
function, which however did not provide great improvements. We can finally say that, by
training the index on such a small portion of the dataset, it will be extremely difficult
to have precision greater than 70% while maintaining execution times lower than 100 ms.
This allows us to conclude that if we wanted more efficient searches in terms of precision
and execution time on a single machine it is necessary to upgrade the hardware to be able
to train on a larger portion of the dataset.

Figure 5.2: Comparison between accuracy and search time among the indices presented in
this test case. The blue column refers to the left axis, the orange column to the right one.
Data from Table 5.10

23IVF3340,PQ1024x4fsr, trained on 3.72% (8 GB) of dataset, nprobe=8
24IVF4096,PQ1024x4fsr, trained on 3.72% (8 GB) of dataset, nprobe=8
25IVF3340 HNSW64,PQ1024x4fsr, trained on 3.72% (8 GB) of dataset, nprobe=9
26IVF6120 HNSW64,PQ1024x4fsr, trained on 3.72% (8 GB) of dataset, nprobe=12
27OPQ512 1024,IVF4096 HNSW32,PQ1024x4fs, trained on 3.72% (8 GB) of dataset, nprobe=20, quan-

tizer efSearch=256
28OPQ256 512,IVF4096 HNSW64,PQ512x4fs,Refine(PCA72,SQ6), trained on 3.72% (8 GB) of dataset,

nprobe=20
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5.9 Distributed Machines on 128 GB Dataset

In this test case we will run FAISS and SPTAG in a distributed environment, on a cluster
of machines, as presented in chapter 5. The peculiarity of running on a cluster is that of
being able to distribute the workload and the dataset in order to mitigate the limit imposed
by the RAM on a single machine. This led us to train and run both libraries on the entire
dataset, corresponding to 16 GB for each machine, thanks to efficient management of the
memory by our integrations and the libraries. Unfortunately, as we can see in Table 5.11,
the SPANN index is not present for Distributed-SPTAG. This, as reported in section 5.3,
is due to the fact that it is not distributable by the library as it lacks documentation and,
probably, also the implementation to do so. We remind you that more details on the indices
are available in the footnotes.

Library Index type Creation
time

Search
avg time

Average
accuracy

Distributed-FAISS Inverted Index29 2797 s 27 ms 100.0 %
Distributed-FAISS Inverted Multi Index30 2789 s 14 ms 99.8 %
Distributed-FAISS HNSW31 2986 s 17 ms 98.8 %
Distributed-SPTAG BKT32 17525 s 28 ms 100.0 %

Table 5.11: Index creation time, Search average time and Average accuracy for each index
in section 5.9

As you can see in Table 5.11 we obtained amazing results for both libraries. For Distributed-
FAISS that was possible thanks to our pull request [faik] with which we managed to tune
the efSearch and nprobe parameters. In this test case each node created its own index on
16 GB of the dataset. This same behavior has already occurred in section 5.4. We can then
compare these two executions to see if the index creation time or search time has changed
by having to go through a network of nodes rather than running directly on a single machine
as shown in Figure 5.3. To carry out this comparison, however, we must first consider that
the creation time of the index present in table Table 5.11 for Distributed-SPTAG represents
a completely parallelized creation, while for Distributed-FAISS we have some operations
performed sequentially. To correctly represent the times of this last library we divided them
by the number of nodes in the cluster, i.e. 8. We can see in Figure 5.3a how both libraries
have significantly longer creation times. This is certainly due to a difference between the
computing power of the machines, even if the order of magnitude that passes between the
two test cases is caused by other important factors. As regards Distributed-FAISS, this
is due to the latency of transmitting the datasets from the master machine to the nodes
where the index is contained. As far as Distributed-SPTAG is concerned, the impact of a
less performing machine is greater, although from the point of view of the index structure
this is caused by complex management of metadata which requires an additional internal
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data structure. The metadata was necessary because Distributed-SPTAG does not allow
the creation of indexes via a master machine, but must be created one at a time within
the nodes, as explained in chapter 4. This means that, by accessing their portions of the
dataset, each node will contain the sequential identifiers of its vectors, without considering
the other nodes. This increases the complexity of the search since from the master node we
cannot know if a certain ID is returned from one machine rather than another. This does
not allow us to correctly map the vector ID to its image. To overcome this, each index
contains the metadata to carry out this check internally, however slowing down creation
and search times. As regards search times, reported in Figure 5.3b, these are longer due
to the latency of the network during communication between the master and the nodes.
Despite this, both libraries performed extremely well in both search speed and accuracy.

29IVF256,PQ2048x4fs,RFlat, nprobe=64
30IMI2x5,PQ2048x4fs,RFlat, nprobe=64
31HNSW64, efSearch=64
32Balanced k-means tree and relative neighborhood graph, 8 Threads
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(a) Creation time changes between single machine and distributed ma-
chines. Time values of Distributed-FAISS have been divided by the
number of machines present in the cluster as they represent sequential
vector insertion

(b) Search time changes between single machine and distributed ma-
chines

Figure 5.3: Comparison of execution times between single powerful machine and distributed
machines. Both solutions analyzed have only indices containing 16 GB of datasets, with the
difference that the orange columns show the times in a distributed context, which suffers
network latency and additional implementations necessary for communication between
master and nodes. Data from Table 5.6 and Table 5.11
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5.10 Distributed Machines on 215 GB Dataset

This further distributed test case is identical to section 5.9, with the difference that we
are going to run it on a larger dataset. In this case we have 215 GB which is divided into
portions of approximately 27 GB per cluster machine. Despite this, we still managed to
carry out a training phase on the entire dataset thanks to the efficient use of memory by
FAISS, while for SPTAG we were forced to train it on 16 GB per machine, carrying out
total training on 60% of the dataset. Further information on the indexes and parameters
used are presented in the footnotes.

Library Index type Creation
time

Search
avg time

Average
accuracy

Distributed-FAISS Inverted Index33 4759 s 48 ms 99.6 %
Distributed-FAISS Inverted Multi Index34 4754 s 31 ms 100.0 %
Distributed-FAISS HNSW35 5100 s 16 ms 98.0 %
Distributed-SPTAG BKT36 19876 s 27 ms 99.8 %

Table 5.12: Index creation time, Search average time and Average accuracy for each index
in section 5.10

As we can see from the results reported in Table 5.12, we don’t have big differences com-
pared to those reported in the test case in section 5.9. This is certainly due to the fact that
the dataset for each single machine has gone from 16 GB to 27 GB, an increase which, as we
had already tested on a single machine in section 5.4, section 5.5 and section 5.6, involves
small and easily predictable changes in both execution time and precision. However, we
obtained an excellent result from SPTAG, which underwent a training phase of 60% of the
dataset, even though we have previously noted in section 5.7 that it is not very performing
on small portions of training. Each machine on which the search was performed probably
obtained a fairly low precision, but by combining the 100 results per machine and sorting
among them it was possible to return all, or almost all, the 100 nearest neighbors, bringing
the precision to be very close to 100%. We can therefore say that the conclusions to be
drawn in this test case are the same as those provided on the previous distributed test over
128 GB reported in section 5.9.

33IVF430,PQ2048x4fs,RFlat, nprobe=64
34IMI2x5,PQ2048x4fs,RFlat, nprobe=64
35HNSW64, efSearch=64
36Balanced k-means tree and relative neighborhood graph, 8 Threads, trained on 60% (128 GB, 16 GB

for each machine) of dataset
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5.11 Discussion

In this section we will carry out an overall evaluation of all the tests previously reported and
draw conclusions applicable to our use case. To have more details on the results obtained
from the tests you can view the document which contains such information, published in
the repository belonging to this thesis [Res].

5.11.1 Libraries Comparisons

We will now carry out an evaluation and consideration for each library:

• Annoy: this library has only been tested in section 5.4, section 5.5 and section 5.6
since not distributed and, even more importantly, does not allow a training phase on
portions of the dataset smaller than the entirety. This is the worst flaw of this library
which, by its nature, is not suitable for medium/large datasets as it would not be
possible to load them completely into RAM. Despite this, we still managed to test
it on 16, 32 and 64 GB datasets, the results obtained are summarized in Figure 5.4.
We can see how this library is the least efficient in terms of search time and actual
precision. With 64 GB of dataset we are already over 100 milliseconds and with
an accuracy of 87.5%, making this library the worst when compared with FAISS
and SPTAG. The question arises spontaneously, does using Annoy make sense? The
answer is actually affirmative as the index used is one of those that requires the least
tuning phase as explained in chapter 4. We can therefore conclude that this library
is an excellent tool for all use cases that need to be performed on relatively small
datasets and that do not have time to dedicate to studying the index.

• FAISS: one of the best libraries from every point of view. We mainly tested three
types of indices: HNSW, Inverted Index (IVF), Inverted Multi-Index (IMI). The first
one has certainly suffered the most from the increasing size of the dataset, as can be
seen in Figure 5.4, from every point of view. Despite these imperfections, however,
the results remain excellent with a parameter tuning phase that is minimal. The
biggest problem with this index, however, is that it cannot be trained on a portion of
the dataset. This is due to its internal graph structure. The second and third indices,
however, were also tested by varying the size of the training phase, as reported in
Figure 5.1. We can see how these two indices are practically interchangeable as
they offer almost the same performance in every test case. Despite this, we can see
how in the more extreme tests, i.e. those reported in section 5.6 and section 5.7,
a small difference in terms of accuracy begins to appear. This difference, although
minimal, could increase as the dataset increases as is also communicated in the FAISS
documentation [Faig], which reports “IVF is better for high accuracy regimes, and
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IMI for lower regimes”. This information led us to exclude IMI in section 5.8 where
we only tested the indexes most used to index such large datasets and with such a
negligible training phase [Faif]. We can, in fact, notice excellent results from IVF
in Figure 5.2 which allowed us, through a trade-off brought by the parameters, to
obtain a precision higher than 60% and search times lower than 100 ms regardless
of the other components attached to the index. We can therefore conclude that
FAISS provides indexes and solutions that can be adapted to every need with truly
competitive index creation and search times and maintaining excellent accuracy even
in the most difficult tests.

• SPTAG: this library stands out for being certainly the slowest in the index creation
phase. As we can see in Figure 5.4 both indexes tested are extremely slow, taking
several hours. This definitely makes this library difficult to use for any use case
that needs a quick solution. This very long wait, however, is justified by a very
well-balanced data structure as it allows extremely fast searches. We can see in
Figure 5.4b that, despite an increase in the dataset, SPTAG manages to maintain
search times below 10 milliseconds. Regarding the precision obtained, however, we
must distinguish the two indices tested. BKT turns out to be the best index as it
manages to maintain extremely high precision even as the dataset increases. This,
however, is not true for SPANN which on 64 GB is even less precise than Annoy, which
we do not consider suitable for executing on large datasets. Furthermore, thanks to
the property of this library to perform training phases on portions of the dataset,
we were able to carry out additional tests on these indices, reported in section 5.7.
The results obtained, available in Figure 5.1, show us how, however, both indices
are unable to be precise if the training portions move away from the totality of the
dataset. This leads us to conclude that SPTAG, in particular BKT, is an excellent
library if we want to run on large datasets that must be used almost completely in
the training phase without performing excessive parameter tuning, leaving this task
to the library refining phases as explained in chapter 4, remembering, however, to
prepare for long index creation times.

• Distributed-FAISS: this library, being distributed, was tested only in section 5.9
and in section 5.10 on a cluster made up of 8 machines reported in Table 5.3, the
results of these tests are available in Figure 5.5. By dividing the dataset equally for
each machine we can see how the index creation time is certainly longer than the
corresponding creation time if we were to run it on a single machine. This is due
to the added delay when transmitting the dataset from the master machine to the
nodes on which the index is actually created. The recorded time during the search
phase, however, is extremely good despite the delay caused by the transmission as
you can see in Figure 5.5b. In fact, we manage to always stay under 50 milliseconds
while maintaining precision extremely close to 100%, shown in Figure 5.5c. In our
tests we didn’t think there was a need to find the perfect parameters to reconcile

61



search time and precision since even in cases where the precision reaches 100% the
search time is less than 50 ms, already considered satisfactory for our cases of study.
However, we are certain that it is possible to have a small margin of improvement
in search time by sacrificing a couple of percentage points in precision. This can be
done through parameter tuning, which is possible so efficiently thanks to our custom
implementation [faik]. To be able to affirm the existence of this improvement it is
sufficient to refer to the values obtained from the execution of FAISS on a single
machine, present in Figure 5.4, since Distributed-FAISS does nothing other than
create the same indexes, but on multiple nodes, then performing a search in which
it is possible to avoid the k factor rf parameter as its behavior is performed by the
merge and sort phase by the master node. Among the indexes we tested we have
Inverted Index, Inverted Multi-Index and HNSW. In both test cases we trained the
indices on the entire dataset and this made them extremely fast and precise. We can
conclude that with this dataset and on these machines, the type of index used makes
no difference as they are all optimal.

• Distributed-SPTAG: the distributed version of SPTAG has given us a lot of satisfac-
tion and excellent results, as can be seen in Figure 5.5. Unfortunately, however, as
already announced in section 5.3, this library only allows the use of the BKT index
as the SPANN index is not distributable. We should also note three negative aspects
of this library. The first is that it was necessary to write additional code to merge
the data returned from each node of the cluster, unfortunately this was not available
within the library, as well as to implement a logic relating to the metadata to allow
the mapping between the ID of the vector and returned image. The second is that
SPTAG’s self-trained data structure uses more RAM than the data structures of
other indices, this will result in a smaller size of the training portion since the limit
imposed by the memory will be reached early. Finally, we must once again point out
the times needed to create the index which are disproportionate when compared with
other libraries. Despite these negative sides, however, the library has a parameter
tuning phase that is practically absent and allows us to obtain truly excellent search
precision and speed. We can therefore conclude that, as long as you compromise with
the negative aspects, this library is certainly more than valid.

5.11.2 Use Case Comparisons

Finally, trying to find final solutions that can satisfy the majority of use cases, including
ours, we would like to suggest, based on the experiments and results obtained, the following
approach:

• Small dataset: here the best solutions are Annoy and FAISS with the HNSW index.
Both provide excellent performance although Annoy is simpler to integrate into the
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codebase, while FAISS with HNSW is slightly more complex but more efficient from
all points of view.

• Medium dataset fully loaded in RAM: in this case, where the entire dataset can be
used in the training phase, we recommend SPTAG with the BKT index or FAISS
with IVF and IMI. SPTAG certainly provides us with a solution in which we do not
have to spend time tuning parameters, but very complex to integrate due to poor
documentation. On the other hand, FAISS provides extremely efficient, precise and
well-documented indices, but we must start carrying out a parameters tuning phase.

• Medium dataset not fully loaded in RAM: from this moment on we will have datasets
large enough that they cannot be fully loaded into RAM on which we will have to
carry out training phases on portions of them. In this case the best solution is
represented by FAISS with the IVF and IMI index, paying attention to the tuning
phase. These solutions are interchangeable as there are no substantial differences
between the two.

• Big dataset: this use case, corresponding to the one presented in chapter 1 and
considered by us to be the most interesting for the purposes of this thesis, involves
the use of FAISS and Distributed-FAISS. These solutions are the best and provide
excellent results. We recommend the use of the single machine library with Inverted
Index, making sure to be able to carry out a training phase on at least 25% of the
dataset. If you have a cluster and this is possible on all the machines present in it,
then we continue to suggest FAISS in a non-distributed manner to be able to have
multiple machines containing the entire dataset and to be able to use a load balancing
policy to avoid overloading in case of heavy traffic. If this is not possible then we
suggest considering Distributed-FAISS. Even in this last solution we suggest the use
of IVF indices trained on the largest possible portion of the dataset to be efficient and
precise even on extremely large datasets. However, we would like to remind that the
current Distributed-FAISS solution does not allow you to obtain extremely precise
results as it requires further implementations, such as the one we proposed and used,
available as a pull request on the official FAISS repository [faik].
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(a) Creation time changes versus dataset size

(b) Search time changes versus dataset size

(c) Accuracy changes versus dataset size

Figure 5.4: Comparison of single powerful machine solutions trained on almost the entire
dataset. Graphical display of the data reported in Table 5.6, Table 5.7 and Table 5.8
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(a) Creation time changes versus dataset size for distributed tests

(b) Search time changes versus dataset size for distributed tests

(c) Accuracy changes versus dataset size for distributed tests

Figure 5.5: Comparison of distributed machine solutions. Graphical display of the data
reported in Table 5.11, and Table 5.12
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Chapter 6

Conclusion

In this thesis we presented a family of algorithms called Approximate Nearest Neighbors
by analyzing the solutions proposed in the scientific literature and their implementations.

Initially, we described the functioning of algorithms capable of executing on a single ma-
chine in chapter 2, which provided us with excellent solutions, but which are not able
to scale efficiently as the dataset grows. Here we needed to present, in chapter 3, dis-
tributed versions of the aforementioned libraries as well as more complex systems, defined
vector databases. We subsequently integrated, in chapter 4, the functionality of all the
libraries within a codebase [the] that allowed us to carry out tests on the dataset at our
disposal, thus discussing the available implementations, the maturity of the libraries and
the documentation provided. Finally, in chapter 5, we actually ran the code.

We initially compared the executions on a single machine by training the indices on almost
the entire dataset. By repeating these tests as the dataset increases, we realized how and
when the accuracy decreases and execution times increase. We subsequently tested the
libraries by keeping the size of the dataset constant, but decreasing the percentage of it
used in the training phase. In this way, we were able to filter out the indexes that were
not suitable for this test case and compare those that actually were. Once this was done
we wanted to show how the indexes performing the best from the previous phases behaved
on the entire dataset at our disposal by specifically executing them on a machine with
limited resources to show how even with a small amount of RAM it is possible to index
enormous quantities of data with excellent precision and excellent execution times. After
the single-machine tests, we also presented the distributed ones, performed on a cluster of
eight machines. In this way, we were able to show how the libraries and indexes behave
under both scaling approaches: vertical scaling and horizontal scaling.

We finally collected all the results and, by comparing them, we were able to understand
which is the best use case for each library by taking into consideration the strengths and
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weaknesses of each. At the end of this comparison, we wanted to conclude with what we
set ourselves at the beginning of this document, that is, a guide that could indicate to each
user or company which is the best library, the best index and the best approach to follow
for their use cases.

We consider have therefore managed to contribute to the scientific literature with a docu-
ment capable of providing production-ready answers to the majority of use cases in which
this family of algorithms is applicable.
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