
DevOptimizeAI: a GPT based tool for
supporting developers in a DevOps scenario

Alessandro Penco

Master Thesis

Università di Genova, DIBRIS Via Opera Pia, 13 16145 Genova, Italy
https://www.dibris.unige.it/

MSc Computer Science
Data Science and Engineering Curriculum

DevOptimizeAI: a GPT based tool for
supporting developers in a DevOps scenario

Alessandro Penco

Advisor: Prof. Daniele D’Agostino, Prof. Gianna Reggio

Examiner: Prof. Matteo Dell’Amico

December, 2023

Abstract

The main contribution of this thesis is to address the pressing challenge of maintaining
high-quality software in large teams with developers of different experience levels. In
particular, it presents an evaluation of the effectiveness of GPT models, coupled with
Apache JMeter, in supporting developers in a DevOps scenario of REST API development
via Azure Functions. Furthermore, the thesis aims to identify the potential benefits that
can be gained from using the discussed approach in the broader software development
scenario, e.g. to identify areas in need of improvement or resolve logical errors in code and
guide developers through the code implementation process.

To address this challenge, this thesis discusses the development of a tool, called DevOpti-
mizeAI, that can enhance CI pipelines in the previously described scenario. The tool will
consist of two basic parts: a web app form for creating YAML code to be copy&pasted to
the developer’s pipeline and a pair of pipeline stages. The former runs tests with JMeter
and prepares the results, the latter analyzes the results properly adapted and merged to the
Azure Function code via a GPT model and delivers code improvement recommendations to
the developer.

Results show that the tool has the potential to significantly improve the efficiency and
quality of Azure Functions by always providing tailored recommendations as well as speeding
up development time, which will ultimately lead to better products and services for end
users.

Table of Contents

Chapter 1 Introduction and motivation 7

Chapter 2 Background and related works 9

2.1 DevOps . 9

2.2 Generative AI . 16

2.3 Performance testing Tools . 22

2.4 Related Works . 27

Chapter 3 DevOptimizeAI Requirements and Design 34

3.1 DevOptimizeAI mission . 34

3.2 Requirements . 36

3.3 Design . 42

Chapter 4 DevOptimizeAI Implementation 51

4.1 Configuration Form . 51

4.2 DevOptimizeAI pipeline stages . 55

4.3 GPT response formatting . 60

Chapter 5 Experimental Results 64

5.1 Azure Functions Test Code Implementation 66

5.2 Acceptance tests . 73

5.3 Validation tests . 83

4

Chapter 6 Conclusions and future works 102

6.1 Conclusions . 102

6.2 Future works . 104

List of Tables 105

List of Figures 106

Bibliography 108

Appendix A Template YAML code I

A.1 JMeter YAML code . I

A.2 OpenAi YAML code . III

Appendix B C# function code VI

B.1 GetMean code . VI

B.2 GetAPI code . IX

B.3 PostAPI code . XI

B.4 CalculatePrimeNumbers code . XIII

Appendix C JMeter Test Plans XV

C.1 GetMean Test plan . XV

C.2 GetAPI Test plan . XX

C.3 PostAPI Test plan . XXVI

C.4 CalculatePrimeNumbers Test plan . XXXII

Appendix D Prompt Engineering component XXXIX

D.1 JMeter result files . XXXIX

D.2 Generated JMeter input for GPT model XLI

D.3 Input for GPT model . XLII

5

Appendix E Test with different program without prompt engineering XLVII

E.1 Test results with GPT-3 . XLVII

E.2 Program test results with GPT4 . XLIX

Appendix F Prompt Test LII

F.1 Prompt Test using only system message LII

F.2 Prompt Test using only user message . LV

F.3 Prompt Test using both user and system message LXIII

Appendix G CPU-Intensive Test LXX

G.1 CalculatePrimeNumbers Test . LXX

Appendix H Behavioural Test LXXVI

H.1 Prompt Test providing prompt to different developer types LXXVI

H.2 Prompt Test providing hint for the model LXXX

H.3 Model behaviour with previous successful messages example LXXXII

H.4 Prompt Test using feedback provided from the model for GetMean API . . LXXXIV

Appendix I ChatGPT Response XCII

6

Chapter 1

Introduction and motivation

In the current digital era, web applications and APIs form the backbone of many businesses
and organizations worldwide. These digital tools are not just interfaces; they are vital
instruments that drive customer engagement, streamline business operations, and contribute
to the creation of value. Within this context, the performance of web applications and
APIs, particularly those developed through Azure Functions in a DevOps environment, is
vital for ensuring user satisfaction, operational efficiency, and overall business success.

However, maintaining high-quality, efficient, and reliable software in such a dynamic
environment presents significant challenges. Large development teams, often consisting of
developers with varying degrees of experience, can struggle to maintain consistency in code
quality and efficiency. Moreover, the pressure of swift development and deployment cycles
inherent in DevOps can exacerbate these issues, leaving little room for comprehensive code
optimization and performance tuning.

Recognizing these challenges, this Master’s thesis introduces DevOptimizeAI, an innovative
tool designed to support developers in enhancing the efficiency and quality of Azure
Functions. DevOptimizeAI brings together Generative Pretrained Transformer (GPT)
models and Apache JMeter, offering an automated solution for code optimization in a
DevOps setting. The tool serves to identify areas in need of improvement and guides
developers through the code implementation process, thereby enhancing overall software
quality.

DevOptimizeAI integrates seamlessly into the Continuous Integration (CI) pipeline and
comprises two core components. The first is a form for creating YAML code, which
developers can easily incorporate into their existing pipeline. The second component
consists of a pair of pipeline stages. The first stage conducts performance tests with JMeter
and prepares the results. The second stage leverages a GPT model to analyze the test results
and the Azure Function code, providing personalized code improvement recommendations

7

to the developer.

The primary objective of this thesis is to evaluate the tangible benefits of leveraging GPT
models and Apache JMeter as a support system in a DevOps scenario of REST API
development via Azure Functions.

The thesis aims to show the potential benefits of this approach in broader software develop-
ment scenarios, enhancing overall software quality, and leading to more efficient, reliable,
and robust web applications and APIs.

The research also explores the practical implementation of DevOptimizeAI in a CI pipeline,
shedding light on how such a tool can streamline and automate the code optimization
process.

Ultimately, this thesis contributes to the ongoing discourse on software development best
practices, demonstrating how innovative solutions like DevOptimizeAI can address pressing
challenges faced by development teams, particularly in the context of maintaining high-
quality software in large teams with varying experience levels, and lead to better products.

The thesis is organized as follows.

Chapter 2 provides background information and relevant related works about DevOps and
Azure Functions, generative AI and ChatGPT and then benchmaking tools and Apache
JMeter.

In Chapter 3 outlines the specific requirements and design considerations for developing
DevOptimizeAI, detailing its mission and expected functionalities.

Chapter 4 discuss about the practical implementation of each of the previously designed
DevOptimizeAI components going into details.

Chapter 5 focuses on experimenting DevOptimizeAI. Initially it describe the major function
with the tool will be tested. Then will be done different test: from testing different function
with different tool configuration, to evaluating DevOptimizeAI behaviour in difference
circumstances, passing through tests on functions with different objectives and complexity.

Finally, Chapter 6 draws conclusions and proposes possible implications and future work.

8

Chapter 2

Background and related works

This chapter will initially present DevOps and CI/CD explaining what they are and the
advantages of using them. It also present the Microsoft Azure service and other important
concept and services that will be used in the thesis.

It discuss the AI topics of this thesis such as generative AI, Large Language Models (LLMs),
and OpenAI models. It make a dive in the ChatGPT tool and explain some of its important
features and also show some related work about AI and DevOps.

Finally it will deal with the topic of performance testing tools in the field of computer
science, going to compare some in the field of web applications, focusing on JMeter. The
last part discuss on the situation about the performance testing in relation to AI.

2.1 DevOps

In the fast-paced arena of modern software development, the convergence of DevOps and
Continuous Integration and Continuous Delivery (CI/CD) has emerged as a pivotal paradigm.
DevOps removes barriers between development and operations, promoting collaboration
and agility. Meanwhile, CI/CD automates the software release process, enabling frequent,
reliable, and efficient deployment. This section outlines the fundamentals of DevOps
and CI/CD, their principles, and their transformative impact on software development
methodologies.

What is DevOps?
There is no globally agreed definition to describe what DevOps is.

For example, Microsoft provides the following definition: ”DevOps combines development

9

(Dev) and operations (Ops) to unite people, process, and technology in application planning,
development, delivery, and operations”[25]. Instead Amazon Web Services (AWS) provides
its definition, which is semantically equal, but syntactically different; and is: ”DevOps is the
combination of cultural philosophies, practices, and tools that increases an organization’s
ability to deliver applications and services at high velocity: evolving and improving products
at a faster pace than organizations using traditional software development and infrastructure
management processes”[13]. Or again, ChatGPT provides this version: ”DevOps is a set of
practices and principles that aims to improve the software development process by increasing
collaboration, automation, and feedback between software developers and IT operations
teams”.

Although they have different syntaxes, they are not different versions or applications of
DevOps and all have the same purpose: The goal of DevOps is to shorten the software
development lifecycle, from the initial idea to production deployment, by making the process
more efficient and effective. DevOps brings together development and operations teams

Figure 2.1: DevOps

to work together throughout the entire software development process as represented in
Figure 2.1. This collaboration helps to eliminate silos and ensures that everyone is working
towards the same goals. DevOps also emphasizes automation, with the use of tools and
processes to automate repetitive tasks and increase the speed and accuracy of the software
development process.

Another key aspect of DevOps is the use of continuous feedback and monitoring. By
constantly monitoring and analyzing software performance, teams can identify issues and
make improvements quickly. This helps to ensure that software is reliable, secure, and
meets the needs of end-users.

In a CI/CD scenario DevOps is implemented through a pipeline that automates the process

10

of continuous integration and continuous delivery (CI/CD).

DevOps pipeline
A DevOps pipeline is a set of automated processes that facilitate the integration, testing,
deployment, and delivery of software applications. It is a key component of a DevOps
approach to software development, enabling organizations to automate the software delivery
process and ensure that software is delivered rapidly and reliably.

In this context, multiple developers are collaborating to produce different software compo-
nents that need to be integrated and delivered quickly and efficiently. The DevOps pipeline
begins with the code being pushed to a version control system, such as Git, which triggers
the continuous integration stage.

In the continuous integration stage, the code is compiled, built, and tested using automation
tools such as Azure Pipelines, Jenkins, Travis CI, or CircleCI. If the tests pass, the code
moves to the continuous delivery stage, where it is deployed to a staging environment for
further testing and validation.

Continuous integration (CI) is the process of automating the build and testing of code every
time a team member commits changes to version control[22].

CI encourages developers to share their code and unit tests by merging their changes into
a shared version control repository after every small task completion. Committing code
triggers an automated build system to grab the latest code from the shared repository and
to build, test, and validate the full main branch (also known as the trunk).

A pipeline defines the continuous integration process for the application. It’s made up of
steps called tasks. You can think of it as a script that defines how your build, test, and
deployment steps are run.

The pipeline runs when you submit code changes. You can configure the pipeline to run
automatically, or you can run it manually. You connect your pipeline to a source repository
like GitHub, Bitbucket, or Subversion. One of our tasks for this sprint is to start using
GitHub. So we’ll use GitHub for this project.

A build agent builds or deploys the code. When your build or deployment runs, the
system begins one or more jobs. An agent is an installable software that runs one build or
deployment job at a time.

The final product of the pipeline is a build artifact. Think of an artifact as the smallest
compiled unit that we need to test or deploy the app. For example, an artifact can be:

• A Java or .NET app packaged into a .jar or .zip file.

• A C++ or JavaScript library.

11

• A virtual machine, cloud, or Docker image.

Once the code has been validated in the staging environment, it moves to the final stage of
the pipeline: continuous deployment. In this stage, the code is automatically deployed to
the production environment using tools such as Kubernetes or Docker Swarm.

Throughout the pipeline, automated testing and monitoring tools are used to ensure that
the code meets the required quality standards and is functioning correctly in production.
This helps to detect and fix issues quickly, ensuring that the software is delivered reliably
and efficiently.

By using a DevOps pipeline, organizations can reduce the time and effort required to
deliver high-quality software while also improving the overall reliability and security of their
software applications.

Microsoft Azure

Microsoft Azure, commonly known as Azure, is a cloud computing service created by
Microsoft for building, testing, deploying, and managing applications and services through
Microsoft-managed data centers. It provides a broad range of services including those
for computing, analytics, storage, and networking. Users can choose and configure these
services to meet their specific needs [36].

Azure Subscription
An Azure subscription is a logical unit of Azure services that is linked to an Azure account.
In essence, an Azure subscription is an agreement with Microsoft to consume and pay for
cloud resources. Each Azure subscription can have a separate billing setup, so you can
have different subscriptions on your account for different departments, projects, or billing
requirements [12].

Subscriptions help you organize access to cloud service resources, providing a way to manage
the resources that your applications use. They allow you to control and manage costs,
monitor usage, and report on your organization’s cloud resource use.

In the context of Azure DevOps, you can use Azure subscriptions to manage and deploy
your resources. For example, you can create an Azure Resource Manager service connection
with your Azure subscription in Azure DevOps, allowing your Azure DevOps pipelines to
authenticate and deploy resources to Azure.

An Azure subscription is also required for using Azure Key Vault, a service that safeguards
cryptographic keys and secrets used by cloud applications and services. Once you have

12

an Azure subscription, you can create a Key Vault in the Azure portal and begin adding
secrets to it, which can then be accessed securely by your applications.

Azure DevOps
In the context of DevOps, Azure offers a wide array of services to support the DevOps
approach. Azure DevOps, a service offered by Microsoft, provides developer services to
support teams to plan work, collaborate on code development, and build and deploy
applications. Azure DevOps supports a range of applications types and is extensible and
fully featured to support enterprises [42].

Azure Pipelines
Azure DevOps includes Azure Pipelines is a cloud service you can use to automatically
build, test, and deploy your code project. You can also make it available to other users,
and it works with just about any language or project type [23].

Furthermore, Microsoft Azure includes a vast range of services that can be used in a DevOps
pipeline. From Azure Repos for Git-based source control, Azure Boards for work tracking,
Azure Test Plans for testing applications, to Azure Artifacts for hosting package feeds,
Azure provides all the tools necessary for implementing a robust and efficient DevOps
pipeline.

Service Endpoint Connection
Service Endpoint Connection in Azure DevOps is a secure way of connecting to and accessing
resources inside an Azure environment. It encapsulates the details of a connection to a
particular service, providing a secure, reusable connection to external systems or services.
This is crucial in a DevOps context, where you might need to connect to different services
like Azure Resource Manager, Docker Registry, or others. Service endpoints can be used
in Azure Pipelines to connect to any of these services securely and execute tasks during a
pipeline run [27].

In the context of this thesis, the Azure DevOps pipeline will interact with a GitHub
repository to access the Azure Functions code and with Azure Key Vault to manage secrets
needed to call a GPT model.

Let’s consider a scenario where your Azure DevOps pipeline needs to interact with a GitHub
repository for source code.

1. In Azure DevOps, navigate to Project Settings, then select Service connections under
Pipelines.

2. Click on New service connection, then select GitHub from the drop-down list.

13

3. If prompted, authenticate with your GitHub account credentials.

4. After successful authentication, you can select the specific repository you want to
connect with.

5. Click on Save.

Now, this GitHub service endpoint can be referenced in your Azure Pipelines configuration.
This allows Azure Pipelines to securely interact with your GitHub repository, pulling the
necessary code for builds and deployments.

Azure Key Vault
Azure Key Vault is a cloud-based service provided by Microsoft’s Azure platform. It is
designed to safeguard cryptographic keys and secrets (like tokens, passwords, certificates,
API keys) used by your cloud applications and services[7].

Azure Key Vault provides a way to securely store and tightly control access to tokens,
passwords, certificates, API keys, and other secrets. It is backed by hardware security
modules (HSMs), providing a secure and scalable way to manage and control access to
these secrets.

Instead of having application and service code that contains sensitive information, Azure
Key Vault allows applications to use these secrets without exposing them. Secrets and
keys can be created and controlled through Azure Key Vault, and then accessed through a
secured HTTP API when needed.

Additionally, Azure Key Vault allows users to manage and enforce access policies, and
to track usage of secrets using logging mechanisms. This can be useful for auditing and
compliance. Azure Key Vault can also handle tasks such as secret rotation and expiration.

Using Azure Key Vault
To use Azure Key Vault, you create a vault, and store any secrets that your application
uses in that vault. Applications or users must authenticate with Azure Active Directory
(AD) before they can access the secrets in Azure Key Vault, providing an additional layer
of security.

Once authenticated, applications can access a secret (for example, a connection string or
an API key) by using a URI. This means the secret itself is not included in the application
code, and the secret is delivered securely to the application.

To connect Azure KeyVault with Azure DevOps, follow these steps:

14

1. In Azure DevOps, navigate to Project Settings, then select Service connections under
Pipelines.

2. Click on New service connection, then select Azure Resource Manager from the
drop-down list.

3. Provide the necessary details such as the Subscription ID, Subscription Name, Service
Principal Id, Service principal key, and Tenant ID. These details allow Azure Pipelines
to authenticate and interact with Azure KeyVault.

4. Under ’Resource Group’, select the Resource Group where your KeyVault is located.
Under ’Azure Key Vault’, select the specific KeyVault you want to access.

5. Click on Save.

Now, this Azure KeyVault service endpoint can be referenced in your Azure Pipelines
configuration. This allows Azure Pipelines to securely fetch secrets from your Azure
KeyVault during pipeline runs.

These examples illustrate how service endpoints in Azure DevOps can be used to securely
interact with external services, like GitHub and Azure KeyVault. By encapsulating connec-
tion details, they provide a way to securely interact with these services without exposing
sensitive information, enhancing the security and efficiency of your DevOps operations.

Azure Functions
Azure Functions is a serverless computing service provided by Microsoft as part of the
Azure cloud platform. It allows developers to write and execute pieces of code in the cloud
without having to explicitly provision or manage infrastructure [14].

Serverless computing is an event-driven model, and with Azure Functions, these events
could be anything from HTTP requests, timer-based triggers, to changes in a database or a
message queue. The function is the unit of deployment and scaling, and it contains the
code to be run in response to the event trigger.

Azure Functions operate on a ”write and run” model. You write the code for the function in
a language supported by Azure (such as C#, Java, JavaScript, Python, or PowerShell), and
then Azure takes care of the rest. It executes the code when the specified event happens
and then scales out to handle high loads when needed, and scales in when demand is low.

Each function has associated bindings. Bindings are ways of declaratively connecting other
resources to the function. Input bindings are data that the function receives, and output
bindings are data the function sends out. For example, a function could have an input
binding to Azure Storage blob (which triggers the function when a blob is added) and an
output binding to send a message to an Azure Queue Storage.

15

Azure Functions offer several benefits. They eliminate the need to manage servers, allowing
developers to focus on writing code. They offer automatic scaling and you only pay for the
time your code runs, making them cost-efficient. They support a variety of programming
languages and offer seamless integration with other Azure services.

However, Azure Functions also have some weaknesses. Cold start can be an issue where a
function hasn’t been invoked for a period of time, and then it takes longer to run when it’s
triggered again. Debugging and testing Azure Functions, especially complex ones, can be
challenging. Stateless functions (which most Azure Functions are) don’t retain data from
one execution to the next, which might not be ideal for some use cases.

2.2 Generative AI

Generative AI is a subfield of artificial intelligence that focuses on the development of
machines and algorithms that can create or generate new content, such as images, music, or
text, without explicit human input, but only providing to the algorithm some information
about what it is wanted to be generate (prompt), more sophisticated and precise information
are provided to the algorithm and it is more likely to obtain the desired output. Gener-
ative AI can be used to generate new content that is both realistic and diverse, allowing
organizations to create unique and engaging content for their audiences. Generative AI
is being used in a wide range of applications, including video game development, graphic
design, and content creation [37].

One example of generative AI is the use of generative adversarial networks (GANs) to
generate realistic images. GANs consist of two neural networks: a generator and a
discriminator. The generator creates new images based on random noise input, while the
discriminator tries to distinguish between real and generated images. Through an iterative
process of training, the generator learns to create images that are increasingly difficult for
the discriminator to distinguish from real images. This process can be used to generate
realistic images of objects, people, and even entire scenes.

Generative AI is being increasingly used in the code development area to automate various
aspects of software development, including code completion, code generation, and bug
fixing. One of the main advantages of using generative AI in code development is that it
can help reduce the time and effort required to write high-quality code [37].

For example, AI-based code completion tools can suggest code snippets and functions that
are likely to be relevant based on the context of the code, enabling developers to write code
more quickly and efficiently. Similarly, AI-based code generation tools can generate new
code based on existing code or user input, making it easier to create new applications and
software features. Furthermore, generative AI can be used to identify and fix bugs in code,

16

allowing developers to create more robust and reliable software applications.

Generative AI is a vast topic, this thesis limit the analysis and use of generative AI that
is powered by deep learning techniques that rely on a type of AI model called a language
model.

Large Language model (LLM)
“In very simple terms, the LLM is, at its core, just a document completion model. For
training it was given partial documents and it learned how to complete them one token at a
time. Therefore, the art of prompt crafting is really all about creating a ‘pseudo-document’
that will lead the model to a completion that benefits the customer,” John Berryman[41], a
senior researcher of machine learning on the Model Improvements team explains.

A language model is a type of model that is specifically designed to understand and generate
natural language. It is trained on large amounts of text data and learns the statistical
patterns and relationships between words and phrases in a given language. The primary
goal of a language model is to predict the likelihood of a particular word or phrase given the
context of the language. The difference between language model and large language model
is that an LLM is the evolution of the language model concept in AI that dramatically
expands the data used for training and inference.

One key difference between language models and generative models is their purpose.
Language models are specifically designed to understand and generate natural language,
while generative models can be used to generate a wide range of data types. Another
key difference is the training process. Language models are typically trained on large
amounts of text data, while generative models can be trained on a wide range of data types,
depending on the application. Additionally, the evaluation metrics for language models
and generative models are different. For language models, the primary metric is often
perplexity, which measures how well the model can predict the next word given the context.
For generative models, the primary metric is often the quality of the generated data, which
can be evaluated using a range of metrics specific to the data type being generated.

One of the most advanced and widely-used language models in the field of Generative AI is
the GPT (Generative Pre-trained Transformer) series developed by OpenAI. GPT models
are pre-trained on vast amounts of data and can be fine-tuned to generate high-quality text
content, such as articles, stories, or even code.

GPT series and OpenAI
OpenAI is an AI research and deployment company, its mission is to ensure that artificial
general intelligence benefits all of humanity [29]. One of their notable achievements is the
creation of the GPT language models, which have been at the forefront of natural language
processing research.

17

Figure 2.2: ChatGPT Methodology Diagram

ChatGPT is a sibling model to InstructGPT, which is trained to follow an instruction in
a prompt and provide a detailed response. ChatGPT is fine-tuned from a model in the
GPT-3.5 series, which finished training in early 2022 [30]. The metodology used to train
this model is shown in Figure 2.2.

It is designed to generate human-like responses to natural language prompts, making it
an ideal tool for a wide range of applications, including chatbots, virtual assistants, and
customer support systems. ChatGPT is trained on a vast corpus of text data, enabling it to
generate coherent and contextually appropriate responses to a wide range of queries. It is
capable of understanding the nuances of human language and can generate responses that
are indistinguishable from those of a human being. ChatGPT has been used in a variety of
applications, including customer support, language translation, and content creation, and
its versatility and effectiveness make it an important tool for businesses and organizations
looking to automate their customer service and communication processes.

The ChatGPT API allows developers to integrate the model’s capabilities into their
applications, enabling them to generate high-quality, natural-sounding text and have
conversations with users in a variety of contexts.

ChatGPT

ChatGPT is designed as an application of GPT-3.5-turbo specifically for generating conver-
sational responses. It’s mainly used in interactive scenarios, such as drafting emails, writing

18

Models Bard ChatGPT GPT-4 LLaMa
Audience Users interested

in a natural
language gener-
ating/processing
chatbot that can
answer human
questions

Users interested
in a conversa-
tional chatbot
that can be
used for various
natural language
processing tasks,
such as question
answering, con-
versation, and
text generation

Users interested
in a powerful
a large-scale
unsupervised
language model
that can gener-
ate human-like
text and com-
plete a wide
variety of tasks

AI developers in-
terested in a pow-
erful large lan-
guage model

Offers
API

No Yes Yes No

Pricing Free Free $0.0200 per 1000
tokens

Free

Table 2.1: Most popular commercial LLM comparison

code or content, answering questions, creating conversational agents, tutoring, translating
languages, simulating characters for video games, and more. For general users, interacting
with ChatGPT typically involves a straightforward, user-friendly interface where users can
provide their input and receive responses from the model [24].

GPT-3.5-turbo
GPT-3.5-turbo refers to the AI model that powers applications like ChatGPT. For developers
or researchers who use the OpenAI API directly, they can utilize the power of GPT-3.5-turbo
for more than just conversation. They can use it for various complex tasks such as text
generation, summarization, translation, and more. To use GPT-3.5-turbo via the API,
users need to construct API calls, which requires technical knowledge. Developers can
also modify various parameters like temperature and max tokens to influence the model’s
output.

So, in practical terms, the difference between using ChatGPT and GPT-3.5-turbo depends
on the user’s technical knowledge and their specific needs. ChatGPT is more suited for
general users looking for conversational AI, while GPT-3.5-turbo offers developers more
flexibility and control over the AI’s capabilities [2].

Strengths and Limitations of ChatGPT
ChatGPT has several strengths. It can generate creative and diverse outputs, it can

19

understand and generate text in multiple languages, and it can be fine-tuned on specific
tasks to provide more accurate responses [24].

However, it also has limitations. It can sometimes write incorrect or nonsensical answers.
The model is sensitive to slight tweaks in the input phrasing. It also tends to be excessively
verbose and overuses certain phrases. It doesn’t always ask clarifying questions when faced
with ambiguous queries, often guessing the user’s intent [24].

In terms of safety, while significant efforts have been made to refuse inappropriate requests,
it might sometimes respond to harmful instructions or exhibit biased behavior.

Prompt Engineering
Prompt engineering is a critical aspect of effectively using models like ChatGPT. It involves
strategically crafting the input, or ”prompt”, to guide the AI model towards producing
the desired output. It’s not just about what you ask, but how you ask it. The phrasing,
context, specificity, and structure of the prompt can all significantly influence the model’s
response.

The importance of effective prompt engineering cannot be overstated. With a well-crafted
prompt, you can guide the AI model to generate more accurate, relevant, and useful
responses. It can help in reducing the model’s tendency to generate verbose or off-topic
responses, and increase the likelihood of the model providing a direct and concise answer.

For instance, if a user is seeking a specific piece of information, a more structured and
explicit prompt can help in getting a direct answer. Additionally, system-level instructions,
such as ”You are an assistant that speaks like Shakespeare”, can be used to guide the
model’s tone and style in the response.

However, crafting effective prompts often requires a deep understanding of the model and
its behavior, as well as trial and error. It could be challenging for users who are not familiar
with the model’s complexity. This underlines the need for more user-friendly interfaces and
tools that can assist users in prompt crafting, as well as continued research to make models
more robust to variations in prompt phrasing.

System and User Messages in ChatGPT and GPT Models via API
In the context of the GPT models, specifically within a conversation, messages can be
categorized into system messages and user messages and both make up the prompt.

System messages are instrumental in shaping the model’s behavior during the conversation.
They serve as contextual instructions, guiding the model on how to generate its responses.
For instance, a system message could instruct the model to mimic the speaking style
of a specific character or adhere to a certain tone throughout the conversation. While
system messages help tailor the model’s responses, it is important to note that they do not

20

guarantee the model’s behavior but merely influence it[2].

User messages, on the other hand, are the actual inputs provided by the user during the
conversation. These could be questions, statements, or any other form of communication
that the user wants the model to respond to. The model generates its responses based on
these user messages, taking into account the context set by the system and prior messages
[2].

The primary difference between system and user messages lies in their purpose and function.
System messages guide the model’s overall behavior and tone during the conversation,
while user messages are the specific inputs that the model responds to. System messages
can be seen as setting the stage for the conversation, while user messages are the actual
conversation.

Max Tokens Parameter
Another important element in ChatGPT is the ”max tokens” parameter. It is used to
control the maximum length of the output text that the model generates. It essentially
sets an upper limit on the number of tokens (words or parts of words) that can be in the
generated response.

In ChatGPT it is a fixed value and it vary with the model selected, 4096 for if the model
used is GPT-3.5-turbo or 8192 is the model selected is GPT-4 [32].

On the other hand with GPT models used via API it is possible to use the model providing
a specific amount of max tokens response value, this is an advantage because allow the
developer to choose a more tailored verbosity response provided by the model.

In terms of its specific value, it can vary based on the desired application or use case. If you
want a shorter response, you would set a lower value. If a longer, more detailed response is
needed, a higher value would be set. However, it’s important to note that setting a very
high value could lead to verbose outputs, and setting a very low value might cut off the
generated text, leading to responses that may not make sense.

It’s also worth noting that the total number of tokens in an API call both for input and
output cannot exceed the model’s maximum limit (e.g., 4096 tokens for gpt-3.5-turbo).
This means that if your input message is very long, your output message could be cut short.

The exact ”max tokens” value to use would depend on the specific requirements of the
interaction or conversation you’re designing. It’s often a matter of trial and error to find
the value that produces the best results for your specific needs.

21

2.3 Performance testing Tools

Performance testing is a subset of software testing that evaluates an application’s per-
formance under various workloads. It involves scrutinizing the user interface, generating
test scripts, and comparing different metrics such as response time, CPU utilization, and
memory allocation [8, 9].

In the context of modern software development and performance evaluation, performance
testing tools play a pivotal role in assessing the capabilities, efficiency, and reliability of
software systems. These tools provide invaluable insights by subjecting applications to
controlled stress tests, measuring response times, and measuring their behavior under various
loads and scenarios. Performance testing enables developers and system administrators to
identify bottlenecks, performance gaps, and areas for optimization, thus contributing to the
creation of robust and high-performing software solutions.

Performance testing tools
Performance testing tools are software applications or utilities designed to measure and
evaluate the performance of various aspects of a computer system or software application.
These tools are used to determine how well a system or application performs under specific
conditions and compare it to other systems or known standards. The primary purpose
of performance testing is to identify potential performance bottlenecks, optimize system
performance, and make informed decisions about hardware or software upgrades.

There are several types of performance testing tools, each focusing on different aspects of
performance evaluation: CPU, GPU, Memory, Network, Web Application and Database.

Performance testing software is an essential tool for evaluating the scalability, stability, and
speed of software applications. It is used to simulate various load conditions and analyze
the application’s performance under these conditions.

There are many commercial and open-source performance testing tools available on the
market, each with its own set of features, capabilities, and limitations. Some popular
commercial tools include LoadRunner, Silk Performer, and NeoLoad, while popular open-
source tools include Apache JMeter, Gatling, and Tsung. These tools can be used to test a
wide range of applications, including web-based applications, databases, and web services.

Let go on to narrow it down to only the tools of Web Application performance testing tools.

Web Application performance testing tools
In this realm of performance testing tools, there exists a range of options, each with its own
strengths and weaknesses. Noteworthy among these tools are Apache JMeter, LoadRunner,
Microsoft Visual Studio (TFS), and Siege, all of which are suitable for test automation.

22

Let’s delve into more specific details about the capabilities of each performance testing tool
following the research done by Abbas et al. (2017)[3]:

• Apache JMeter:

1. Load Testing: Apache JMeter excels in load testing web applications and services,
simulating multiple users and measuring how the system handles concurrent
requests.

2. Stress Testing: It can apply stress to the system by pushing it beyond normal
capacity to evaluate its stability and responsiveness under extreme conditions.

3. Protocols: JMeter supports various protocols, including HTTP, HTTPS, FTP,
JDBC, SOAP, and more, allowing testing of diverse applications.

4. Extensibility: JMeter is highly extensible through a wide range of plugins,
enabling users to customize and enhance its functionality to suit specific testing
requirements.

5. Versatility: It can be used for small-scale as well as large-scale performance
testing, making it suitable for a broad range of projects.

• LoadRunner:

1. Enterprise-Level Testing: LoadRunner is designed for enterprise-level perfor-
mance testing and can handle large-scale and complex applications with high
concurrency.

2. Protocol Support: It offers an extensive library of protocols, such as web, mobile,
API, database, Citrix, and more, allowing comprehensive testing of various
systems.

3. Robustness and Scalability: LoadRunner is known for its robustness and ability
to simulate a massive number of virtual users, providing accurate performance
evaluation for critical applications.

4. Diagnostics and Analysis: The tool provides integrated diagnostics and trans-
action tracing features to identify performance bottlenecks and root causes of
issues.

5. Cross-Platform Testing: LoadRunner supports performance testing across dif-
ferent platforms and technologies, making it suitable for diverse application
landscapes.

• Microsoft Visual Studio (TFS):

1. Integrated Load Testing: Visual Studio (TFS) offers integrated load testing
features within the Visual Studio development environment, streamlining the
testing process for developers.

23

2. Web and Service Testing: It specializes in performance testing for web applica-
tions, web services, and other types of applications, making it well-suited for
web-centric projects.

3. Scripting Capabilities: Visual Studio (TFS) supports scripting using C#, allowing
developers to create and customize load testing scenarios to meet specific testing
requirements.

4. Seamless Integration: Since it is part of the Microsoft Visual Studio suite, it
seamlessly integrates with other development and testing tools, providing a
cohesive environment for software development.

• Siege:

1. Web Application Load Testing: Siege focuses on HTTP and HTTPS load testing
of web applications, making it a straightforward tool for basic web performance
evaluation.

2. Simplicity: Its command-line interface and easy setup make it user-friendly,
particularly for those looking for a quick and simple load testing solution.

3. Unix and macOS Support: Siege is compatible with Unix-like systems, such as
Linux and macOS, making it ideal for testing on these platforms.

In summary, Siege stands out for its cost-effectiveness as an open-source tool, although it
does have certain limitations. On the other hand, Microsoft Visual Studio (TFS) offers
easy-to-use features and built-in testing capabilities. It excels at accommodating varying
user requirements, whether for 100 parallel users or thousands. However, it is important to
note that Microsoft Visual Studio (TFS) is limited to Windows OS and can entail high
licensing costs. Meanwhile, Apache JMeter emerges as an optimal choice due to its cost-
effectiveness, being freely available. Although it requires more time for initial installation,
Apache JMeter boasts a wide array of options for result analysis and is well-suited for
running different tests simultaneously. Additionally, its testing capabilities can be enhanced
through the use of various plugins. Notably, comparative evaluations have shown that
JMeter outperforms other tested tools or techniques, thanks to its ratio scale methodology
and inclusion of consistency checks [3].

JMeter
Apache JMeter™ has emerged as a cornerstone in the realm of performance testing and
evaluation. As an open-source Java application, JMeter was initially conceived to address
the challenges of testing web applications, but its evolution has led to its adoption across
a spectrum of testing functions. With its user-friendly interface and robust capabilities,
JMeter enables software developers, quality assurance teams, and system administrators to
comprehensively assess the performance and functional attributes of their applications [6].

24

At its core, JMeter excels in emulating real-world scenarios by simulating heavy loads
on target components such as servers, networks, and endpoints. This capability proves
invaluable in determining system resilience, scalability, and responsiveness under diverse
and demanding conditions. Whether the focus is on web applications or other systems,
JMeter stands ready to gauge the thresholds and capabilities of the software in question. Its
utility extends beyond mere performance metrics; JMeter is adept at uncovering bottlenecks,
identifying latency issues, and revealing potential vulnerabilities that might arise under
high loads.

One of the hallmark features of JMeter is its ability to accommodate a wide range of
applications, protocols, and platforms. From web technologies like HTTP and HTTPS to
various programming languages like Java, NodeJS, PHP, and ASP.NET, JMeter provides
a versatile testing ground. Furthermore, its adaptability is evidenced by its integration
with popular continuous integration tools, such as Maven, Gradle, and Jenkins, allowing
seamless inclusion within modern development pipelines [6].

Let’s get into the architecture, methodologies and specific use cases of jmeter

Architecture and Methodologies
The architecture of Apache JMeter was designed with extensibility, modularity and flexibility
in mind. It works using a decentralized architecture in which test plans are created and
executed by the JMeter engine. This engine, written in Java, coordinates the execution of
test scripts, manages threads, and collects results.

This design confers a significant advantage: one person can create a test and other people
can run it to test the application in different configurations. There is no need to be a
JMeter expert to run the tests. This means that the testing process can be easily scaled
and distributed among a team, allowing each person to focus on his or her area of expertise.

JMeter Test Plan Structure

JMeter follows a methodology rooted in simulation. Test plans are crafted to replicate
real-world user behavior, interactions, and load patterns [6].

A JMeter test plan describes a series of steps that JMeter will execute when run. It provides
a framework for the test, including what to test and how to go about it. The test plan
serves as the root node where all other elements like Thread Groups, Controllers, Samplers
etc. are added.

Thread Group
In JMeter, a Thread Group is an essential part of any test plan. The Thread Group

25

represents a pool of virtual users that will execute the specific test plan [6]. Each thread
simulates one real user making requests to the server. The controls for a thread group allow
you to:

• Set the number of threads: This is the number of users JMeter will attempt to
simulate.

• Set the ramp-up period: This is the time-frame over which JMeter will distribute
the start of the threads.

• Set the number of loop iterations: This is the number of times the test will be
executed by each simulated user.

For example, if you have 100 users and a 100-second ramp-up period, then the delay between
starting users would be 1 second (100 seconds /100 users).

User Defined Variables
User Defined Variables in JMeter are a useful feature when you need to define your own
variables and assign them certain values. They allow you to create default variables that
can be used throughout your test plan. These variables are especially useful when you need
to use the same value in multiple places in your test, and you want the ability to easily
change that value [6].

JMeter also provides elements to generate random values, such as the Random Variable
Config Element. This can be very useful when you need to simulate a more realistic scenario
with varied input data. For example, you might need to simulate requests to a server with
different user IDs or search terms.

These random values can also be assigned to User Defined Variables. So, instead of assigning
a static value to a variable, you can assign a random value. This way, every time the
variable is referenced, a new random value will be used. This can be done by combining the
User Defined Variables element and the Random function. For example, you could define
a variable named ”random id” with the value ”$ Random(1,100)”. This would generate a
random number between 1 and 100 each time ”random id” is referenced.

For example, you might define a variable for the base URL of the website you’re testing.
Instead of typing the base URL into every HTTP Request sampler, you can use the variable
instead, which makes your test plan easier to maintain and update.

Listeners
Listeners in JMeter are used to provide access to the data gathered by JMeter about the
test cases during their execution. They allow users to view, save, and read the test results.

26

Listeners can be added at any place in the test, providing a clear and accurate picture of
their performance [6].

There are many types of listeners available in JMeter, each providing a different way to
view the collected data. For instance, the View Results Tree listener shows a tree of all
sample responses, allowing you to inspect every single request and response in detail. The
Summary Report listener provides a table with aggregated metrics about all requests, such
as the average response time, min and max response time, error percentage, and more.

Practical Use Cases
The practical use cases of Apache JMeter are diverse and span across multiple domains:

• Web Application Testing: JMeter excels in testing web applications by emulating user
interactions, measuring response times, and identifying bottlenecks. It enables load
testing, stress testing, and capacity planning, ensuring that web applications perform
optimally under various user loads.

• API and Web Services Testing: JMeter’s versatility extends to API testing, where it
can send various types of requests like HTTP, SOAP, REST, and more. It validates
the responses, checks data accuracy, and assesses the reliability of APIs.

• Database Testing: JMeter can simulate database loads by sending SQL queries,
measuring database performance, and ensuring the database can handle concurrent
user requests.

• Performance Testing: JMeter facilitates performance testing by subjecting applications
to different load levels, helping identify thresholds, scalability issues, and response
time variations.

• Security Testing: With JMeter’s ability to generate a wide range of requests, it is
used for security testing by sending malicious requests and assessing an application’s
resilience against potential attacks.

• Continuous Integration: JMeter integrates seamlessly into CI/CD pipelines, enabling
automated performance testing as part of the development process. This ensures that
performance issues are caught early in the development lifecycle.

2.4 Related Works

This section provides an in-depth review of existing literature related to three key areas
pertinent to this thesis: DevOps, Generative AI, and the use of Artificial Intelligence in
Performance Testing.

27

DevOps Related Works

Now let’s look more specifically at the benefits of using DevOps for software development.

DevOps combines development (Dev) and operations (Ops) to unite people, process, and
technology in application planning, development, delivery, and operations [18]. When a
team adopts DevOps culture, practices, and tools, they can achieve remarkable outcomes:

• Accelerate time to market: Through increased efficiencies, improved team collabora-
tion, automation tools, and continuous deployment, teams are able to rapidly reduce
the time from product inception to market launch.

• Adapt to the market and competition: A DevOps culture demands teams to have a
customer-first focus. By combining agility, team collaboration, and a focus on the
customer experience, teams can continuously deliver value to their customers and
increase their competitiveness in the marketplace.

• Maintain system stability and reliability: By adopting continuous improvement
practices, teams are able to build increased stability and reliability into the products
and services they deploy. These practices help reduce failures and risk.

• Improve the mean time to recovery: The mean time to recovery metric indicates
how long it takes to recover from a failure or breach. To effectively manage software
failures, security breaches, and continuous improvement plans, teams should measure
and work to improve this metric.

DevOps practices also improve organizational culture and enhance employee engagement.

Recent studies show that implementing DevOps can lead to a 24x faster recovery time and
high-performing organizations spend 22 percent less time on unplanned work and rework.
Consequently, they are able to allocate 29 percent more time to new work, such as new
features or code [20]. The primary driver of this improvement is the implementation of
CI/CD pipelines.

CI/CD pipelines contribute to development improvement by:

• Enabling faster feedback: CI/CD allows developers to quickly receive feedback on
code changes, helping them identify and address issues early in the development
process.

• Ensuring code quality: By automating the build and testing processes, CI/CD
pipelines enforce code quality standards and reduce the risk of introducing bugs and
errors.

28

• Facilitating frequent releases: CI/CD pipelines automate the deployment process,
making it easier to release new features and updates more frequently, resulting in
faster time-to-market.

• Promoting collaboration: CI/CD encourages collaboration between development,
testing, and operations teams, fostering a culture of shared responsibility and account-
ability.

This integration of CI/CD pipelines with DevOps practices leads to improved development
outcomes and helps organizations achieve their goals more effectively.

Generative AI Related Works

When discussing Generative AI in the realm of code creation and suggestion, it is crucial to
mention the collaboration between GitHub and OpenAI, resulting in the development of
GitHub Copilot. This model, trained on vast amounts of code, leverages natural language
prompts to provide coding suggestions across multiple programming languages [1]. Extensive
research has indicated that GitHub Copilotenables developers to code more efficiently, focus
on tackling larger problems, remain in a state of flow for longer periods, and experience
greater fulfillment in their work [19]. Moreover, empirical studies have demonstrated how
GitHub Copiloteffectively strengthens pair programming relationships among developers,
spanning various programming languages [16, 28].

While GitHub Copilotproves to be an invaluable tool for developers, it is important to
acknowledge that it has certain limitations in terms of code optimization and natural
language understanding. Consequently, it is advisable for GitHub Copilotto be utilized by
experienced programmers or individuals with a solid understanding of the specific context
they are working within [26].

OpenAI claims that GPT-4 outperforms previous large language models across various
domains, including code generation, logical reasoning, and mathematical reasoning. Fur-
thermore, the latest model demonstrates an 82% reduction in the likelihood of providing
disallowed content and a 40% increase in the likelihood of producing factual results compared
to its predecessor, addressing concerns about misinformation [31].

One notable advancement in the latest model is the increased context length. GPT-4
introduces two variants with 8,192 tokens and 32,768 tokens, which is approximately eight
times longer than GPT-3.5, allowing users to process larger volumes of text and perform
tasks such as long document summarization. Both versions have been trained on data up
to September 2021, similar to the training data of previous models [31].

Furthermore, a significant breakthrough with GPT-4 is its ability to accept images as

29

Figure 2.3: Rate of incorrect behavior on sensitive and disallowed prompts. Lower values
are better. GPT-4 RLHF exhibits significantly lower incorrect behavior rates compared to
prior models [32].

inputs. This means that visual data, such as photographs or physical data, can be directly
processed using the model, enabling the generation of insights, summaries, Q&A, and more
[31].

Last but not least, GPT-4 excels in terms of safety and security of output prompts, as
depicted in Figure 2.3.

OpenAI’s safety mitigations have significantly enhanced many of GPT-4’s safety properties
compared to GPT-3.5. The model demonstrates an 82% decrease in its tendency to respond
to requests for disallowed content compared to GPT-3.5, and it adheres to policies regarding
sensitive requests (e.g., medical advice and self-harm) 29% more frequently [31].

Studies such as ”CAN ARTIFICIAL INFLUENCE TRANSFORM DEVOPS?” by Alenezi,
Zarour, and Akour (2022)[4] and ”How artificial intelligence (ai) and machine learning are
changing devops” by Kinsbruner (2020)[21] delve into the transformative potential of AI,
exploring how it can augment the functionality of DevOps. These researchers elucidate
how AI can automate critical DevOps processes such as code reviews, streamline team
operations, and enhance problem-solving capabilities.

Another pivotal concept that has garnered significant attention is Machine Learning DevOps
(ML-DevOps), often misconstrued due to several myths prevalent in the literature. Scholars
such as Poloskei (2022)[34], Tamburri (2020)[39], and Treveil (2020)[40] have undertaken
comprehensive analyses of ML-DevOps from an end-to-end perspective. They have con-
textualized ML-DevOps as a specialized subset of DevOps, located at the intersection of

30

software engineering, data engineering, and Machine Learning. This clarity in understanding
is furthered by studies like those conducted by Alla (2021)[5], Gift and Deza (2021)[15],
and Symeonidis et al. (2022)[38], who have strived to define ML-DevOps with precision,
contributing to a common understanding of the paradigm.

Parallelly, the emergence of DevSecOps and AIOps, as extensions of DevOps, has been
a significant focus in the realm of software development and IT operations. DevSecOps
aims to identify and mitigate application vulnerabilities early in the development process, a
concept discussed in detail by Rajkumar et al. (2016)[35]. On the other hand, AIOps marks
the integration of AI and Machine Learning into the DevOps life cycle, enhancing various
IT tasks such as data monitoring, predicting the effects of deployment, and automatically
responding to environmental changes, as elaborated by Ebert et al. (2016)[11].

Performance Testing Related Works

Moreover, AI and Machine Learning techniques are increasingly being employed in the
development and testing processes of these applications. Specifically, Performance Testing
(a crucial facet of software testing) is experiencing a significant impact of AI.

AI’s Contribution to Performance Testing
The comprehensive performance testing process, which necessitates continuous manual
inputs and in-depth testing, poses several challenges. These include the time-intensive
scripting of real user experiences, analysis of extensive data, identification and elimination
of performance bottlenecks, manual generation of test cases, and manual root cause analysis
of failures [9].

AI can address these challenges by automating nearly every stage of the application
performance testing phase. The outcome is a user-friendly product that reaches the
consumer in less time, utilizing fewer resources and manpower [8, 9].

Benefits of AI-Driven Performance Testing
The integration of AI into performance testing presents numerous advantages:

• Precise Data Analysis and Delivery: AI-based testing techniques outperform
manual testing in terms of accuracy and data delivery. AI minimizes the potential for
human error, thereby enhancing the precision in product development [9].

• Time and Cost Efficiency: By automating testing tasks, AI significantly reduces
the time taken and eliminates overhead costs compared to manual inputs [8, 9].

31

• In-depth Error Detection: AI’s capacity to detect errors and discrepancies sur-
passes human capabilities, simplifying the tracing of bugs and defects that might be
missed by manual and conventional testing methods [9].

• Pattern Recognition and Visual Testing: AI can identify and rectify visual bugs,
ensuring all graphic components operate as intended, thereby adding flexibility to
software performance testing [8].

• Error-Free API Generation: AI-enabled performance testing tools can generate
and verify whether an API (Application Programming Interface) is functioning as
per instructions, ensuring seamless communication between API tools and databases
[8, 10].

• High-Quality Test Cases: AI facilitates the generation of superior quality test
cases. Unlike developers using traditional methods, those leveraging AI can evaluate
numerous test case scenarios and implement innovative methods to test cases within
seconds [9].

AI Tools for Performance Testing
The market offers several AI tools for performance testing. Some of the notable ones
include:

• Mabl: A popular DevTestOps platform, Mabl simplifies the creation and automation
of user interface tests. It offers unlimited testing and scaling scripts, simultaneous
testing, a secure cloud platform, and self-correcting test scripts [8].

• TestCraft: Known for reliable testing when paired with Selenium, TestCraft is an
AI-powered performance testing tool. It generates a test model of the actual scenario,
facilitating easy code editing [8].

• Applitools: A prominent AI-enabled visual apps management testing and monitoring
tool, Applitools offers an end-to-end, intelligent performance testing platform preferred
by software development professionals [8].

• Functionize: A cloud-based, AI testing technology, Functionize is renowned for load
and performance testing. It uses AI and Machine Learning techniques to enhance
test script creation, debugging, and script maintenance. It also incorporates Natural
Language Processing (NLP), enabling it to understand commands in plain English
while creating functional test scripts [8].

AI automation has simplified the testing process beyond the capabilities of manual testing.
It’s crucial to choose the right combination of tools suitable for the product, create code-less

32

automated scripts, and always keep the user’s perspective in mind while testing. The
integration of AI in performance testing is revolutionizing the way businesses develop their
software products by delivering high-quality solutions in less time and at a lower cost. The
use of AI for performance testing is anticipated to gain widespread popularity in the coming
years [8, 9, 10].

33

Chapter 3

DevOptimizeAI Requirements and
Design

This chapter provides a comprehensive exploration of the essential requirements and design
considerations for DevOptimizeAI.

The mission section provide a description of the mission of DevOptimizeAI and describe
some use cases.

The requirements section details the functional and non-functional requirements that guide
the DevOptimizeAI development. This section ensures DevOptimize is tailored to meet the
specific needs of users.

The design section presents the DevOptimizeAI design,from high to low level design.

3.1 DevOptimizeAI mission

DevOptimizeAI’s mission is to improve the efficiency and quality of Azure Functions software
by integrating the performance testing capabilities of Apache JMeter along with OpenAI’s
GPT models into existing DevOps pipelines.

Azure Functions are serverless computing resources provided by Microsoft’s Azure cloud
platform. They allow developers to run code in response to various events without managing
the underlying infrastructure.

The uniqueness of DevOptimizeAI lies not within its individual components but in their
synergy. The objective is to ensure the efficiency of an application, even if it’s developed by
multiple hands or with differents knowledge background.

34

DevOptimizeAI achieves this by analyzing Azure Function code in conjunction with the
execution and analysis of performance tests.

This analysis produce a detailed report as shown in the Appendixes E, F, G and H about
the code describing how to improve the performance and how to improve the overall written
code, also in terms of quality of code, also proposing better ready to use implementation of
the code.

This empowers developers at all levels of experience, from junior to senior, by assisting them
in optimizing their code, identifying potential performance bottlenecks, and improving the
overall software development process.

The strength of DevOptimizeAI lies in its ability to assist multiple developers working on
the same project simultaneously, even if they do not have any knowledge about performance
testing and promt engineering. Furthermore, it can do so automatically following a single
configuration, making it a powerful tool for enhancing the software development process in
an Azure Function and Azure DevOps development environment.

DevOptimizeAI’s mission goes beyond empowering developers; it aims to contribute to the
production of high-quality, efficient software. To better define this mission, we present a
practical use case example followed by a number of possible more general uses of DevOpti-
mizeAI

Case 1: Scenario without DevOptimizeAI
Suppose Alice and Bob are senior and junior developers, respectively, and are working
jointly on a project using Azure DevOps to manage it. Alice instructs Bob to create the
connection to a database for a set of REST APIs that will be managed by an Azure Function.
Bob creates the connection, brings the changes into the test environment, and asserts, after
a series of his own tests, that it works. So Bob brings the updates into production. Alice
unfortunately cannot validate the work done by Bob as she has other urgent tasks to handle.
When Alice sees the code written by Bob, given her experience, she tests it with tests she
wrote on JMeter to monitor performance and modifies Bob’s code to make it more efficient.
DB calls have been inefficient for two weeks, Bob has brought an inefficient version of the
project into production, and Alice has had to waste valuable time for her to modify Bob’s
version of the connection.

Case 2: Scenario with DevOptimizeAI
If we assume instead that there are always Alice and Bob, but that they use DevOptimizeAI
then the scenario looks rosier. Alice produces the tests with JMeter while Bob produces the
connection to DB. When Bob brings the changes into the test environment after creating
the connection, DevOptimizeAI will perform the analysis and improvement guidance for
the code written by Bob.

The beauty of this scenario is that Bob doesn’t need to be familiar with JMeter or

35

performance testing and also he doesn’t need to be expert in prompt engineering and GPT
models.

DevOptimizeAI does the complex work, generating actionable advice that Bob can follow
to enhance his code. This way Bob can modify the code by improving it and bring the
most efficient version into production.

This scenario presents a win-win situation for both Alice and Bob. For Alice, validation
becomes a breeze as she can rely on DevOptimizeAI to assess Bob’s work for efficiency.
For Bob, the benefit is twofold: he is able to write more efficient code and learn from the
advice provided by DevOptimizeAI. In essence, DevOptimizeAI not only promotes efficient
and superior code but also fosters a learning environment, contributing to the professional
growth of developers like Bob.

There are some other examples of how the ”DevOptimizeAI” prototype could be used:

1. Performance Testing: A company wants to ensure its Azure Functions can handle high
user loads. They use DevOptimizeAI to conduct performance testing with JMeter,
identifying potential performance issues with the GPT model. This performance
testing is also enhanced by the fact that is conducted an analysis of the test results
providing further insight about the output values of the test (analysing execution
time, throughput and percentage of errors).

2. Code Quality Improvement: A novice developer is learning best coding practices.
They use DevOptimizeAI to receive feedback and guidance on their Azure Functions
code, helping them understand how to improve the efficiency and quality of their
coding.

3. Bottleneck Identification: A team is facing performance issues with their software
but can’t identify the bottleneck. By integrating DevOptimizeAI into their DevOps
pipeline, they receive insightful feedback pinpointing the potential bottlenecks and
suggestions for improvements.

4. Learning and Training: An educational institution uses DevOptimizeAI as a teaching
tool in their software development courses. Students can get immediate feedback on
their coding assignments, helping them learn and improve their coding skills.

3.2 Requirements

This section outlines the essential requirements for DevOptimizeAI, categorized into func-
tional and non-functional.

36

Figure 3.1: Data flow diagram

Functional Requirements

The following subsection presents the functional requirements of the DevOptimizeAI system,
outlining the specific responsibilities and expected behaviors of each component in the
system.

The functional requirements are also visually depicted in an Entity-Relationship Diagram
(ERD) in Figure 3.2. The ERD provides a clear and concise visual representation of the
interactions and relationships between the different entities involved in the system. In
addition, the Sequence Diagram in Figure 3.3 offers an in-depth illustration of the sequence
of actions performed during the utilization of DevOptimizeAI, including the interaction
among the various components over time.

A comprehensive view of the data movement between the components is provided in a
Data-Flow Diagram (DFD) shown in Figure 3.1. This diagram offers a perspective on how
data flows and is processed within the system, contributing to a complete understanding of
the system’s operation.

The involved entities in the system include the Developer, the Configuration Form, the
Azure Function Code and Test plan, the Git Repository, the CI Pipeline, the Performance
Test, the GPT model, the Test Result, and the Analysis Report. Each of these entities has
specific roles and responsibilities in the system, as detailed below.

• Developer: The Developer should be able to create one or multiple test plan and
write one or multiple code. Both, code and test plan should be correct and do
not contain errors. However, in certain scenarios, a developer may not possess the
knowledge or resources to generate a test plan. In such cases, they can leverage test
plans produced by other developers in the team. This allows for greater collaboration
and knowledge sharing, as well as ensuring the efficiency and correctness of the code

37

Figure 3.2: Entity-Relationship requirements diagram

without requiring every developer to have expertise in test plan creation.

The Developer should also know the DevOps paradigm. The Developer should also
be able to receives and understand the analysis report.

• Configuration Form: DevOptimizeAI should provide an easy-to-use form for
developers to fill out, which will generate the necessary configuration that should be
cut&pasted to the pipeline for the performance test and GPT model analysis.

• Azure Function Code and Test plan: Both Azure Function code and test plan
should be submitted by the developer into the same Git repository. Both should
be without syntax errors and the code must be able to compile and the test plan
should be able to be exetuted by JMeter . The test plan should the accessible to the
performance test tool and the code should be accessible to the GPT model.

• Git Repository: The system should be able to integrate with the Git repository
that hosts multiple code and test plan.

• CI Pipeline: Upon submission of the project or a change done to the Git repository,
the CI pipeline process should be able to automatically start. The CI pipeline should
be able to use the performance test tool and the GPT model and should be able to
integrate these components together. The CI Pipeline should also:

38

1. Improve the results provided by the JMeter test by going to format them so that
they are more understandable to the GPT model.

2. Configure of a robust and detailed prompt message for the GPT model.

3. Delivery of the analysis report to the developer team.

• Performance Test: DevOptimizeAI should be able to use the performance testing
tool and should be started by the CI pipeline and execute the test plan stored in the
Git repository. After the execution it should generate the test result in a format that
could be analyzed by the GPT model with the code.

• Test Result: The test result should be generated by the perfromance test tool and
analyzed by the GPT model with the code to generate the analysis report.

• GPT model: The DevOptimizeAI GPT model should be used directly by the
CI pipeline. The GPT model should be able to analyze a test result and a code
simultaneously to generate an analysis report.

• Analysis Report: Analysis report should be produced and provided securely and
quickly to the Developer. It should be readable and well formatted and provide useful
insight to the developer.

Sequence diagram
To provide a better comprehension of the interaction between elements in the system there
is provided a sequence diagram in Figure 3.3.

This sequence diagram communicates the flow of operations in the CI environment, high-
lighting the sequential and automated nature of the tasks following a code commit action
by the Developer, in particular:

1. The process initiates with the Developer filling out a Configuration Form. The purpose
of this form is to gather the necessary details for the upcoming stages.

2. The Configuration Form, upon receiving the input, generates a YAML script and
returns it to the Developer.

The Developer then:

3.1 adds this generated YAML script into the CI Pipeline

3.2 commits the Azure Function Code and JMeter file (.jmx) to the Git Repository.

3. The action of committing triggers the CI Pipeline, and a series of automated tasks
are set into motion.

39

Figure 3.3: High level sequence diagram

4. The first task from the CI Pipeline involves the Build & Deploy Stage. Here, the
Azure Function code that was committed by the Developer is built and deployed.

Once the Build & Deploy Stage is complete, the CI Pipeline starts the JMeter Stage
in which:

6.1 JMeter executes the test plan outlined in the JMX file.

6.2 returns the test log file summarized to the CI Pipeline.

With the completion of the JMeter Stage, the CI Pipeline triggers the OpenAI Stage
in wich:

7.1 A GPT model analyse the test result and the Azure Function code.

7.2 A Python script prepare and send the analysis report to the developer via
Telegram.

Non-Functional Requirements

Quality Requirements:

• System Performance: DevOptimizeAI should be capable of handling varying sizes
of code but smaller than the maximum input token available for the model chosen

40

for the analysis (e.g. GPT-4 could handle about 32k token, the equivalent of about
100k characters) and any numbers of developers, queueing the request, without
compromising on performance.

• Analysis Speed: The GPT model should complete the analysis of code and test results
in a from 2 up to 5 minutes, to not delay the development process.

• Scalability: DevOptimizeAI should be designed to maintain performance as the load
increases, supporting an increasing number of developers, handling larger codes and
more complex test plans.

• Usability: DevOptimizeAI should provide an interactive and user-friendly interface,
making it easy for developers of all experience levels to interact with DevOptimizeAI
and understand the analysis reports.

• Reliability: DevOptimizeAI should consistently produce accurate and reliable analysis
reports, contributing to the production of high-quality, efficient software.

External Interface Requirements:

• Interoperability: DevOptimizeAI should seamlessly integrate with existing CI pipeline
tools, specifically it should support various Git repository platforms and be able to
effectively work with performance testing tools for performance testing.

• User Interface: The analysis report should be presented in a clear and understandable
manner, accommodating developers at all experience levels.

41

3.3 Design

This section discusses the DevOptimizeAI design. The design process is guided by the
functional and non-functional requirements outlined in the previous section. The design
process takes inspiration from similar implementations in prior research [33], with certain
modifications to better suit the requirements of this thesis.

High-level design

The software design specification is divided into three main part: system overview design,
high-level pipeline design and high-level DevOptimizeAI design. The creation of the high-
level design was done from an architectural design proposed by Microsoft, specifically:
CI/CD baseline architecture with Azure Pipelines [17].

System overview design
The system overview design will present a comprehensive view of the system environment.
This includes all the external entities that interact with our system, such as the Developer,
Git Repository, and the configuration form. The architecture in Figure 3.4 provides a broad
perspective of how the system fits within its environment and communicates with external
interfaces.

In system overview design are represented:

• Developer: The developer is also the end-user and it must provide JMX file and
Azure Function code into a GitHub repository. The developer should also use the
configuration form to configure the pipeline stage and subsequently add that to the
project pipeline. At the end of the pipeline the developer should receive the analysis
report from the Azure DevOps pipeline

• Configuration form: The configuration form should be implemented via Web app
to provide a very simple, lightweight and user friendly form from which the developer
could cut&paste the YAML configuration script.

• YAML configuration script: The YAML configuration script is the output of the
configuration form. The developer should add this script in its pipeline to empower the
deployment of its Azure Function. This script adds at the pipeline the DevOptimizeAI
stages.

• JMX file: A JMX file is an XML file used by Apache JMeter to store test plans.
JMeter’s test plans are the cornerstone of any JMeter test, as they describe a series
of steps JMeter will execute when run.

42

Figure 3.4: Architecture - system overview

• Azure Function code: Azure Functions is a serverless compute service provided by
Microsoft Azure. It lets developers run small pieces of code (called ”functions”) in
the cloud without needing to provision or manage infrastructure. The code for Azure
Functions can be written in several programming languages like C#, Java, JavaScript,
TypeScript, and Python. The code is event-driven, meaning it runs in response to
triggers like HTTP requests, database operations, queue messages, or timers.

• GitHub: GitHub is a web-based platform used for version control and source code
management. GitHub allows developers to collaborate on projects and keep track
of changes to any set of files. Its features include code reviewing, project managing,
integrating with other platforms, hosting documentation, and team management.

• Analysis report: This is a markdown file that will contain explanation of the
test results and suggestion to improve the code. In particular this could include
performance testing results, security analysis, code review, or any other type of
software analysis. The report typically includes information on the methods used for
the analysis, the results, and any recommendations or steps for improvement.

• Azure DevOps Pipeline: Azure DevOps Pipeline is a cloud service provided by

43

Microsoft Azure to automatically build, test, and deploy your code to any platform.
It integrates perfectly with GitHub, making it easy to implement CI/CD practices.
Pipelines can be configured through a web interface or a YAML file, and they support
a wide range of languages, platforms, and cloud services. In pipeline must be present
a build and deploy stage in which will be provided the deployment of the Azure
Function before the start of the DevOptimizeAI stage.

High level pipeline design
Moving to high level pipeline design the focus move on its major components and illustrating
how they interact with each other and the external entities identified in system overview.
This will give a more detailed view of the Pipeline’s internal structure and the interactions
between its key components.

Figure 3.5: High-level pipeline design

High-level pipeline design is show in Figure 3.5 and it represents:

• AZ Func code and JMX file: Here are shown the previously presented Azure
Function code and JMX file. This diagram shows the pipeline stages where these
components are used. The JMX file is used in the JMeter stage, while the Azure
Function Code is used in the Build and Deploy stages and the OpenAI stage.

• Build and Deploy stage: This is the initial stage where the code is compiled and
built. If the build is successful, it is then deployed to the specified environment.
This stage may involves processes like code compilation, unit testing and deployment.
These two stage should be done by the Developer configuring the deployment of the
Azure Function.

• From the cut&pasted YAML configuration script are then provided two more stages:

44

– JMeter Stage: In this stage, the deployed application is tested for its perfor-
mance using Apache JMeter. JMeter simulates different user loads and behaviors
as configured via the JMX file and the DevOptimizeAI configuration and tests
how the application performs under these conditions. The results from these
tests are then collected and prepared for the next stage.

– OpenAI Stage: Here, the results from the JMeter Stage are analyzed using
OpenAI. This AI model can understand the test results, identify patterns, detect
potential bottlenecks or areas of improvement in the Azure Function code, and
provide suggestions for optimization. The output of this stage is a detailed
analysis report that provides insights into the performance and efficiency of the
code.

High level DevOptimizeAI design
High-level DevOptimizeAI design, finally, delve into the specific details of the DevOptimizeAI
pipeline part. This level dissects the main components into their individual parts, providing
a deep understanding of the inner workings of the DevOptimizeAI pipeline. This includes
the processes and functionalities that enable the system to perform its tasks.

Figure 3.6: High-level DevOptimizeAI design

High-level DevOptimizeAI is shown in Figure 3.6 and it represents:

• In JMeter stage:

– JMX file: This is the previously described JMX file submitted by the developer.
In this phase is read from the GitHub and passed to the Apache JMeter.

– Apache JMeter: Now Apache JMeter execute the test plan provided and
produce the JTL file.

45

– JTL File: JTL is a file format used by JMeter to log test results. The results
can then be displayed by the various JMeter Viewers, or processed externally
with further analysis.

– Summarize Test Result Script: This is a script that parses the JTL file
and summarizes the test results, providing key metrics and insights about the
performance tests keeping the size of the file limited to permit a better future
analysis.

• In OpenAI stage:

– Azure Function Code: This is the code of the previously builted and deployed
function app. It will be part of the inputs for the GPT model analysis

– Summarized JTL Result: This is the output of the previous stage of the
pipeline.

– GPT Model: A machine learning model that analyzes the JTL results and
the Azure Function Code. It will be prepared with the appropriate prompt to
generates tailored analysis report. It is prepared by packaging the JTL results
and the Azure Function code into system and user messages. The system message
serves as a high-level directive, informing the GPT model about the task at
hand (the analysis of JTL results and Azure Function code). The user message
provides the actual input data for the task, i.e., the JTL results and the Azure
Function code.

– Analysis Report: This report contains the output from the GPT model. It
provides insights into the performance of the tested application and suggests
areas for improvement. It is in markdown format to a better visualization of the
code and text parts that will produce.

– Send Analysis Report To Developer: This is the final step where the
analysis report is sent to the developer, via Telegram, so they can review and act
on it. The use of Telegram for delivering these insights has several advantages
over traditional methods like email, for example the platform allows for easy
group collaboration as well as safer and faster messages.

Low-Level Design

In the low-level design phase of the system the three key components will be analyzed: the
configuration form, the JMeter stage, and the OpenAI stage. Each of these components will
be broken down into their finer details, illustrating the implementation specifics, interaction
pathways, and data structures.

46

The configuration form is an integral part of the user interface, designed to gather
necessary information from the developers. This stage of the design will detail the layout,
field specifications, and data validation rules. Additionally, it will outline the process of
form submission and the communication flow to the next stage.

The JMeter stage is responsible for performance testing of the deployed application. In
the low-level design, we’ll outline the specific utilization of Apache JMeter, including the
structure of the JMX file it uses, the test execution process, and the format of the JTL file
it produces to log test results.

The OpenAI stage employs artificial intelligence to analyze test results. In this part of the
design, we’ll explain the specifics of the AI model used, how it interprets the JTL results,
and how it generates and deliver an analysis report.

Configuration form
The DevOptimizeAI configuration form will be implemented as a web application, is the
fundamental user interface to allow Developers to integrate DevOptimizeAI within their
pipeline. It will need to be lightweight and portable as well as intuitive. It will need to
allow the configuration of several parameters useful for both the JMeter stage and the
OpenAI stage. These parameters will need to be:

• For the JMeter stage:

– Threads: This parameter determines the number of virtual users or threads that
JMeter will simulate to put a load on the server. This is crucial for understanding
how the system performs under various loads.

– Rampup: This parameter is used to specify the time taken to create the total
number of threads for the test execution. It aids in gradually increasing the
server load to assess its performance.

– Loops: This parameter indicates the number of times the test case needs to be
executed. It allows for repeated execution to ensure the system’s stability over
time.

• For OpenAI stage:

– GPT Model: The choice should be limited between GPT 3.5 and GPT 4.

– Max Token: This parameter limits the maximum number of tokens in the
generated output. It helps control the verbosity of the model’s response. Higher
Max token could provide more detailed response, but if this value is too high
could cause error due to the model inability to deal with too large texts.

47

– Temperature: This parameter, bounded between 0 and 1, controls the random-
ness of the model’s output, affecting the diversity of the generated responses.
For instance lower values like 0.1 would make the model’s outputs more deter-
ministic, the output will be ”safer” and more focused, but it may lack diversity
and creativity. On the other hand, higher values like 0.9 increase randomness
this can also result in more mistakes or nonsensical outputs.

– Message caption: This parameter allows for the input of a custom caption
that will be included in the message containing the Anlysis report. This will
allow developer to better discriminate different tests.

– chatid: This parameter represents the unique identifier of the Telegram chat
where the AI’s analysis report will be sent.

• For Pipeline configuration:

– Root Directory: This parameter specifies the root directory where all the
necessary files for both stages are stored.

– Working Directory: This parameter points to the active directory where the
Azure Function code is stored. The compination of Root Directory and Working
Directory provide full path to the Azure function code.

– Service Connection to azure keyvault: This parameter allows for the secure
storage and retrieval of the secrets related to the GPT model used, ensuring a
secure connection to Azure Key Vault.

All these parameters will be aggregated in order to produce a configuration text for
connecting to the DevOptimizeAI pipeline in a simple and intuitive way.

JMeter stage
The JMeter stage is the first stage in the DevOptimizeAI pipeline. In this stage, perfomance
testing is performed with respect to the previously deployed Azure Function. This stage is
triggered from the developer pipeline with the previously described YAML configuration
script. This pipeline stage will need to:

• Read the JMX file: In this step, the JMX file, which contains the test plan, is read.
The parameters for threads, rampup, and loops are then set up based on the data
retrieved from the previous configuration file. This ensures that the JMeter stage
aligns perfectly with the developer’s initial configuration, leading to more accurate
and relevant performance tests.

• Execute the test plan: Based on the details read from the JMX file, the test plan
is executed. This includes simulating the specified number of users, requests, and

48

other configurations to test the application’s performance under various loads. This
is the main part of this stage and the one that is more time consuming depending on
the test that should be carried out.

• Produce the JTL file: Upon completion of the test plan execution, the results are
compiled and logged into a JTL file. This file includes crucial data such as response
times, error rates, and throughput, which will be used in the next stage for analysis.

• Summarize the Test Result: After the JTL file has been produced, a summary
of the test results is created. This summary provides a quick overview of the test
execution, highlighting any significant findings or anomalies that occurred during the
testing. This is mandatory due to the fact that for larger test simulation the results
could produce large JTL file making the GPT Model goes in error.

By providing the model with a condensed yet comprehensive summary instead of the
complete JTL file, we not only prevent these potential issues, but also enable the
model to focus on the most relevant data. This leads to more accurate, meaningful,
and appropriate responses from the model, enhancing the overall quality of insights
generated and ensuring the reliability of the outcomes.

OpenAI stage
The OpenAI stage is the last in the DevOptimizeAI Pipeline and the one with the most
tasks. During this stage the pipeline will have to:

• Read the Azure Function code and the summarized test file: This task
involves reading and interpreting the Azure Function code and the summarized
test result file generated from the JMeter stage. This data forms the basis for the
subsequent analysis by the GPT Model.

• Call the GPT Model with engineered prompt: In this task, the GPT Model is
invoked with an appropriately crafted prompt. This prompt is engineered based on
the Azure Function code and the summarized test results, and is designed to guide
the GPT Model to provide the most relevant analysis and suggestions. By providing
a well-formulated prompt, the model is given clear direction regarding the context
and the desired type of response. This not only streamlines the model’s processing
but also significantly enhances the relevance and accuracy of the outputs.

• Generation of the Analysis report: The GPT Model generates an analysis report
based on the interpreted test results and the Azure Function code. This report
contains valuable insights about the performance of the Azure Function, including
potential bottlenecks and areas for optimization.

49

• Deliver the Analysis report to the developer via Telegram: Once the analysis
report is generated, it is delivered to the developer through a Telegram message. This
provides a convenient and immediate way for the developer to receive the insights
generated by the OpenAI stage.

This part of the design assume that the Developer know how to configure a receiver
bot on Telegram.

50

Chapter 4

DevOptimizeAI Implementation

The chapter delves into the details of the Configuration Form, breaking down its structure,
functionality, and role in the system. This will highlight how this component facilitate the
customisation and control of the testing process.

The chapter will also cover the specifics of the DevOptimizeAI pipeline stages, the JMeter
stage and the OpenAI stage. This will provide insights into how these stages work together
to run tests and generate useful feedback.

Finally, it will explore the GPT response formatting, explaining the different types of
responses that the model can provide and their significance in the context of DevOptimizeAI.

4.1 Configuration Form

The Configuration form Web App provides a user interface for configuring parameters
related to OpenAI and JMeter Test and it is shown in Figure 4.1.

It’s important to note that this form is not limited to local usage and can be accessed as a
web app via an HTTP call. This feature enhances the accessibility and versatility of the
form, allowing developers to utilize it in various environments and platforms.

Form Content
The form collects the various parameters, proposed by design, from the developer. These
include JMeter (threads, rampup, loops), OpenAI (GPT model, maximum token, tem-
perature) and pipeline (pipeline directory, message caption, and chat ID) configuration
parameters. Each input field is labeled for the developer’s understanding.

51

Figure 4.1: Configuration Form

Functionalities
Upon submitting the form by clicking the ”Submit” button, the JavaScript function
”submitForm()” is called. This function collects the values entered by the user, creates a
formatted string with these values, and displays the string in the output box.

There is also a ”Copy Output” button, which, when clicked, copies the content of the
output box to the clipboard.

In the listing 4.1 is shown an example of output provided by the form.

1 - stage: JMeterTest

2 condition: always ()

3 displayName: JMeter Test stage

4 jobs:

5 - template: JMeter.yml@templates

6 parameters:

7 threads: ’10’

8 rampup: ’1’

9 loops: ’10’

10

11

12 - stage: ChatGPT

13 condition: always ()

14 displayName: ChatGPT stage

15 jobs:

52

16 - template: ChatGPT.yml@templates

17 parameters:

18 tokens: ’4000’

19 temperature: ’0.7’

20 model: ’GPT4’

21 workingDir: $(workingDirectory)
22 caption: ’Checkout these suggestions!’

23 chatid: ’549538016 ’

24 azSubscription: ’DevOptimizeAISubscription ’

25

26 resources:

27 repositories:

28 - repository: templates

29 type: github

30 name: apencoreply/DevOpsEmpowerTool

31 endpoint: DevOptimizeAIRepository

32

33 variables:

34 # Working Directory

35 workingDirectory: $(System.DefaultWorkingDirectory)

Listing 4.1: Form output example

Script explanation
The pipeline script is divided into two stages: JMeterTest and ChatGPT.

• JMeterTest Stage: This stage is always executed and it uses a job template called
’JMeter.yml’ that is stored in the ’templates’ repository.
The parameters for this job include:

– the number of threads (threads: ’10’),

– the ramp-up period (rampup: ’1’),

– the number of execution loops (loops: ’10’).

• ChatGPT Stage: Similar to the first stage, this stage is always executed and it uses
the ’ChatGPT.yml’ template from the ’templates’ repository.
The parameters for this job include:

– the number of tokens (tokens: ’4000’),

– the temperature setting (temperature: ’0.7’),

53

– the model to be used (model: ’GPT4’),

– the working path, so the path in which is located the Azure Function code,

– a caption (caption: ’Checkout these suggestions!’),

– a chat ID (chatid: ’549538016’),

– a azure subscription service connection string to the azure keyvault (Service
connection to azure keyvault: ’DevOptimizeAISubscription’).

– and a GitHub service connection string to the repository (Service connection to
the repository: ’DevOptimizeAIRepository’).

The resources section specifies the ’templates’ repository, which is a GitHub repository
named ’apencoreply/DevOpsEmpowerTool’. This repository is accessed through the ’De-
vOptimizeAIRepository’ endpoit, configured via service endpoint connection.

The variables section defines global variables that are used in the pipeline.

• workingDirectory: sets the working directory for the pipeline concatenating the root
directory of the pipeline with the path to reach the Azure Function code.

Here more detail about important features:

• azSubscription: An Azure Subscription (azSubscription) refers to a logical unit of
Azure services, linked to an account and billing information, where you can deploy
resources like virtual machines (VMs), databases, and more. In script, azureSubscrip-
tion: ’DevOptimizeAISubscription’ specifies the Azure Resource Manager connection
that was created during the pipeline’s creation. This allows DevOptimizeAI pipeline
to interact with and manage resources in this specific Azure subscription. In particular
this will be used to acces the Key Vault and the GPT model.

• endpoint: These are reposotory that is accessed through a specific network end-
point. In the context of the script, the ’templates’ repository, accessed through the
’DevOptimizeAIRepository’ endpoint, is an example of this. This GitHub repository
named ’apencoreply/DevOpsEmpowerTool’ is where the script fetches job templates
’JMeter.yml’ and ’ChatGPT.yml’ which contain respectivly the JMeter stage and
the OpenAI stage. Also for the endpoint to the GitHub repository, as for the Azure
Subscription, it is necessary to configure the connection during the pipeline’s creation.

• Azure Key vault: Azure Key Vault is a service provided by Microsoft Azure for
securely storing and accessing secrets. A ”secret” could be anything that you want to
tightly control access to. For DevOptimizeAI the secrets are enpoint and key to the
GPT models.

54

4.2 DevOptimizeAI pipeline stages

In these sections are presented the main component of DevOptimizeAI pipeline that work to
produce the test results (JMeter stage) and the response with the feedback to the Developer
(OpenAI stage).

In the following subsection are presented the steps of the stages in detail and in Figure 4.2
is presented a flow chart is represented to outline the main steps in logical and temporal
order.

JMeter stage

This subsection provide a description of the YAML code that is used to orchestrate the
execution of the JMeter test in an Azure Pipeline. The YAML code is divided into several
sections, each performing a specific role in the pipeline.

The YAML file is used to configure a job in an Azure Pipeline that installs Apache JMeter,
sets parameters for JMeter at runtime, runs a JMeter test, filters and concatenates test
results, and publishes the test results as a pipeline artifact.

The full code used to run the JMeter tests is in Listing A.1 in Appendix A.

Parameters
The parameters of the stage are defined at the top of the file. These parameters include
threads (the number of users simulating the test), rampup (the time taken to get all threads
up and running), and loops (the number of times to execute the test).

Installing Apache JMeter
The first step employs a PowerShell script to download Apache JMeter from the official
archive and extract it into the working directory.

Setting Parameters at Runtime
The pipeline uses a PowerShell script to dynamically replace default values in a JMX file
with parameters defined at the beginning of the YAML file. This allows for customization
of the JMeter test plan based on specific requirements.

The script operates on three key parameters: the number of threads, the ramp-up period,
and the number of loops. The JMX file path and the values of these parameters are obtained
from the system’s default working directory and the parameter values in the YAML file,
respectively.

55

Figure 4.2: JMeter and OpenAI stages flow chart

56

The content of the JMX file is read and the default values for the number of threads,
ramp-up period, and number of loops are replaced with the defined parameters using the
-replace operation.

This dynamic modification allows the JMeter test plan to be adjusted based on the specific
parameters set at runtime, providing flexibility in performance testing.

Running the JMeter Test
The pipeline proceeds with the execution of the JMeter test, facilitated by a script that uses
the updated JMX file. The JMX file, which defines the test plan, is passed as an argument
to the JMeter command.

The script runs in non-GUI mode (-n), which is suitable for running performance tests.
The -t option specifies the JMX file to be used for the test. The JMeter test results are
written to a JTL file (-l), which is a common format for recording test results in JMeter.

In addition, the script redirects the standard output to a TXT file. This file provides a
summary of the test results, making it easier to quickly evaluate the performance of the
tested system.

Both the JTL file and the TXT file are saved in the system’s default working directory.
Examples of these files can be found in Appendix D, specifically in sections D.1 and D.1
respectively.

Through this script, the pipeline is able to execute the JMeter test and capture the results
in a structured and easily digestible format.

Enhances and formats Test Results
This stage employs a Python script to enhance and format summary and JTL files, removing
extraneous information, and then concatenates the filtered results into a unified text file.
This is a pivotal step in translating voluminous raw data into a concise and meaningful
summary of the test results.

The script performs three main functions:

1. A function shifts through the summary file keeping only the relevant information.

2. A function analyse the JTL file, isolating and storing lines that encapsulate error
responses.

3. Finally, a last function merge the content from both pruned files into a single, well-
structured output file.

57

The principal advantage of this step is that it allows for a shorter and more dense version
of the test results to be presented to the subsequent GPT model. The GPT model, guided
by its prompt, can then generate insights more efficiently due to the reduced complexity
and length of the input. This refined form of the test data not only ensures the model’s
performance is optimized, but it also enhances the clarity and relevance of the insights
generated.

An example of this streamlined result file is provided in Appendix D, specifically in Section
D.2. This sample illustrates the impact of the Python script, showcasing its ability to distill
extensive and complex data into a comprehensive and easily digestible summary.

Publishing the Test Results
The final step in the pipeline publishes the enhanced test results as a pipeline artifact,
allowing for subsequent download and review of the test results after the pipeline has run
and for the subsequent job to retrieve these information.

OpenAI stage

This subsection provide a detailed description of the YAML code that is used to orchestrate
the execution of the OpenAI API in an Azure Pipeline.

The YAML file is used to set up a job in an Azure Pipeline that interacts with the OpenAI
API and sends the result to a Telegram chat.

You can find the full code used to interact with OpenAI model in Listing A.2 in Appendix
A.

Parameters
The parameters are defined at the top of the file. These parameters include tokens (the
maximum length of the model-generated content), temperature (controls randomness of the
model’s output), model (the type of model to be used), workingDir (the working directory
for the pipeline), caption (the caption for the Telegram message), and chatid (the id of the
Telegram chat where the message will be sent).

Downloading Artifact
The first step downloads the enhanced and formatted test result previously generated. It
also need to retrieve the Azure Function Code.

58

Fetching Secrets
The next step fetches the API key and URL for the specified model from the Azure Key
Vault.

Calling OpenAI API
The OpenAI API is interacted with through a PowerShell script. This script is designed
to prepare a payload for the API request, which includes data from the enhanced test
results and Azure Function code. These are read from files in the system’s default working
directory and the specified working directory, respectively.

The script uses the specified model’s API key and URL, obtained from the Azure Key Vault,
to make a POST request to the OpenAI API. The payload for this request is prepared in a
specific format that includes a system message describing the role of the AI model, and a
user message asking the model to provide improvement suggestions based on the formatted
test results and the function code.

This prompt preparation process is vital as it directly influences the effectiveness and rele-
vance of the GPT model’s analysis. A well-prepared prompt enables the model to generate
a comprehensive and tailored analysis report that provides developers with actionable
insights and recommendations for optimizing their Azure Function code and improving its
performance. Therefore, careful attention is paid to the crafting of the prompt to ensure
the GPT model is set up to deliver the most valuable analysis.

The response from the API is then processed. The generated text is extracted and saved to
a markdown file named ”generatedText.md” in the system’s default working directory for
further use. This process allows the script to utilize the power of the OpenAI model to
generate useful insights from the provided formatted test results and function code.

Sending Analysis Report via Telegram
The final stage of the process involves delivering the AI-generated insights to a specified
Telegram chat. This is facilitated by a Python script that uses the requests library to
interact with the Telegram Bot API.

The script is configured with the bot token, chat ID, document path, and caption as
parameters. The bot token is a unique identifier provided by Telegram for the bot. The
chat ID corresponds to the specific Telegram chat where the document will be sent. The
document path points to the ”generatedText.md” file in the system’s default working
directory, which contains the insights generated by the AI model. The caption is a brief
message that accompanies the document in the Telegram chat.

The script constructs the API URL using the bot token, and opens the markdown file in
read-binary mode. It then prepares an HTTP POST request payload that includes the chat

59

ID, caption, and the document itself.

The request is sent to the Telegram API. This process ensures that the AI-generated insights
are delivered efficiently and securely to the specified Telegram chat, allowing for easy access
and review.

The use of Telegram for delivering these insights has several advantages over traditional
methods like email. Messages on Telegram are delivered in real-time and the app’s push
notifications ensure they are seen promptly. The platform also allows for easy group
collaboration, and its robust API makes automating the delivery of insights straightforward.
Furthermore, Telegram is known for its strong security measures, making it a safe option
for sharing potential sensitive information like AI-generated insights.

4.3 GPT response formatting

In this section, the different potential responses from the model are discussed. Basically,
the responses that the model can provide are of two types.

Please note that for brevity and clarity, the full function code has been omitted in this
section. However, it is in Appendix B, specifically in Listing B.3. This code provides a
deeper understanding of how the model processes the input and generates its responses.

Response without code example
The first type of response doesn’t include a code example. In this case, the GPT model
provides a text-based explanation, suggestion, or answer depending on the query. This
could be a response to a theoretical question, an explanation of a concept, or a suggestion
for improving code without providing a specific code snippet. The response is typically in a
conversational format, and its main objective is to provide insights, knowledge, or guidance
based on the user’s input.

Here in this paragraph is shown an example of response with only plain text in it.

Based on the code snippet and JTL results, here are some possible improve-
ments:

1. Move configurations to a separate configuration file or use environment
variables: Instead of hardcoding the configuration values (cosmosD-
bEndpoint, cosmosDbKey, databaseId, containerId), it is better to
store them in a separate configuration file or use environment variables
for better flexibility and security.

60

2. Implement error handling and logging: Currently, the code only logs
the exception when an error occurs while inserting data into Cosmos
DB. It would be more useful to have proper error handling and logging
throughout the code to provide better debug information and handle
exceptions gracefully.

...

Implementing these improvements will help enhance the code’s performance,
security, and maintainability.

In the following is presented the input text that is submitted to the GPT-3.5-turbo model
without system message configuration.

Result from the JTL file from the JMeter test in which are saved the errors
and the description:
- - -
JTL Results:
- - -

- - -
Summary results:
- - -
summary = 100 in 00:00:12 = 8.1/s Avg: 1068 Min: 308 Max: 8042 Err: 0
(0.00%)

- - -

Function Code:
- - -
#FUNCTIONCODE
- - -

Response with code example
The second type of response includes a code example. In this case, besides providing
a text-based response, the GPT model also generates a relevant code snippet. This is
particularly useful in instances where the user is looking for a practical solution or wants
to understand a concept through an example. The model generates code based on the
context of the query and the language specified. This allows users to not only understand
the concept but also see its practical implementation, enhancing their learning experience.

Here in this paragraph is presented an example of response with code suggestion in it.

61

Based on the given code snippet and JTL results, here are a few suggestions
for improving the code:

1. Use Connection Pooling for HttpClient:

• The current code creates a new instance of HttpClient for each
request, which can lead to performance issues. It is better to use
a single instance of HttpClient and reuse it across requests. You
can achieve this by using connection pooling.

• Modify the code to create a static instance of HttpClient with
connection pooling enabled:

1 private static readonly HttpClient httpClient = new

↪→ HttpClient(new HttpClientHandler ()

2 {

3 UseDefaultCredentials = true ,

4 MaxConnectionsPerServer = 100,

5 });

2. Optimize Cosmos DB Client usage:

• The code currently creates a new instance of CosmosClient and
Container for each request. Instead, initialize these objects once
and reuse them across requests.

• Modify the code to create static instances of CosmosClient and
Container:

1 private static readonly CosmosClient cosmosClient =

↪→ new CosmosClient(cosmosDbEndpoint , cosmosDbKey

↪→);

2 private static readonly Microsoft.Azure.Cosmos.

↪→ Container cosmosContainer = cosmosClient.

↪→ GetContainer(databaseId , containerId);

...

These are some general suggestions to improve the code based on the
provided information. It is important to consider the specific requirements
and constraints of your application while implementing these suggestions.

In the following is presented the input text that is submitted to the GPT-4 model with
system message configuration.

62

Provide improved implementation example taking into account the follow-
ing:
- - - -
Result from the JTL file from the JMeter test in which are saved the errors
and the description:
- - -
JTL Results:
- - -

- - -
Summary results:
- - -
summary = 100 in 00:00:12 = 8.1/s Avg: 1068 Min: 308 Max: 8042 Err: 0
(0.00%)

- - -

Function Code:
- - -
#FUNCTIONCODE
- - -
- - - -

63

Chapter 5

Experimental Results

This chapter will delve in different stages of testing.

It starts by examining the Azure Functions used to test DevOptimizeAI in Section 5.1.
This will provide a clear understanding of how these functions contribute to the robust
testing of the system, helping to ensure its reliability and efficiency.

Then the Section 5.2 provide information about the acceptance testing carried out to
guarantee that the requirements are met. Meanwhile the section explores different test
configurations for both JMeter tests parameters configuration and model type.

Subsequently, in Section 5.3, the focus will be on validation testing for the efficiency and
improvement of the AI component of DevOptimizeAI.

Specifically, all with the aim of understanding how to get the best response, the following
tests will be carried out:

• Firstly, prompt selection/engineering tests, to try to explore the best prompt
message for the GPT Models.

• Then, CPU-Intensive test, to understand the efficacy of DevOptimizeAI for this
type of API.

• Subsequently, behavioural tests, to try to exploit the best from the model using
different approach like a reuse of the feedback provided or give a ’hint’ in the code to
the GPT.

• And finally a comparison tests, with the direct competitor: ChatGPT.

In Table 5.1 are presented an overview with all the category of test that will be conduct
during this chapter with a brief description and the main outcome.

64

Test
Name

Detailed Description Comprehensive Key In-
sights

Acceptance
Test

This test is designed to ensure that De-
vOptimizeAI meets the predefined re-
quirements. It involves exploring dif-
ferent configurations and checking the
system’s response to ensure compliance
with the requirements.

The test confirmed that De-
vOptimizeAI adheres to the
specified requirements under
various configurations.

Prompt
Testing

This test examines how DevOptimizeAI
responds to a variety of prompts and
measures the influence of these prompts
on the system’s performance. It helps in
understanding the versatility and adapt-
ability of the system.

The test revealed that De-
vOptimizeAI responds effec-
tively to different prompts,
demonstrating high flexibil-
ity and adaptability in its
operations.

CPU-
intensive
Test

This test is focused on evaluating the
performance of a CPU-intensive func-
tion in DevOptimizeAI. It includes in-
jecting logical errors and inducing eter-
nal loops to understand how effectively
DevOptimizeAI can analyze and handle
such scenarios.

The results indicated that
CPU-intensive functions are
more beneficial when using
DevOptimizeAI as it effec-
tively identifies and handles
injected errors and infinite
loops.

Behavior
Testing

This test evaluates how DevOptimizeAI
behaves under a range of conditions.
These include varying developer abil-
ities, code cues, successful answer exam-
ples, and repeated requests. It gives in-
sights into the system’s robustness and
resilience.

The test showed that De-
vOptimizeAI performs well
under most conditions. How-
ever, it underperforms in a
few scenariosn.

ChatGPT
vs DevOp-
timizeAI

This test compares the performance of
DevOptimizeAI against ChatGPT, a
widely recognized language model de-
veloped by OpenAI. It provides insights
into the comparative effectiveness of the
two systems.

The comparative study of-
fered valuable insights into
the relative strengths and
weaknesses of both systems.

Table 5.1: Comprehensive Overview of Tests Conducted

65

5.1 Azure Functions Test Code Implementation

This section discusses how Azure Functions are implemented and tested within the DevOp-
timizeAI For the purpose of testing DevOptimizeAI, the focus move on the HTTP-triggered
Azure Functions because Apache JMeter is designed to load test web APIs.

To assess the capabilities of the DevOptimizeAI, GPT Model and JMeter, have been
created and testd a variety of HTTP-triggered Azure Functions. These functions simulate
various real-world scenarios that a typical web API might encounter. This approach ensures
comprehensive testing of DevOptimizeAI pipeline.

Test Azure Functions

• GetAPI: This function responds to an HTTP request with a simple message. It’s
useful for testing the basic functionality of the pipeline and JMeter’s ability to send
requests and receive responses.

• PostAPI: This function takes an HTTP request, processes data contained in the
request body, and returns a response. This can simulate more complex operations
that a web API might perform.

• GetMean: This function accepts an HTTP GET request with a specific parameter.
It retrieves related data, performs an analysis on the data, and returns the result in
the HTTP response. This scenario represents complex operations involving both data
retrieval and computation.

These scenarios represent typical API scenarios, but are predominantly I/O-intensive, not
requiring a large CPU load to execute, but exchanging a large amount of data. For this
reason, tests were also conducted on CPU-intensive functions.

• CalculatePrimeNumbers: This function performs a computation-intensive task
upon receiving an HTTP request. It could involve complex mathematical calculations
or other tasks that require significant CPU resources. The result of the computation
is returned in the HTTP response.

Azure Functions test plans

The next step is to configure JMeter test plan (JMX file) to JMeter stage to send HTTP
requests to these functions and capture the responses.

For each function, them have to assess the following:

66

• Response Time: How long does it take for the function to respond to the request?
This is a key performance indicator.

• Success Rate: Does the function always respond successfully under load, or are
there any failed requests?

• Throughput: How many requests can the function handle per unit of time?

Detailed Implementation of Azure Functions

The subsequent paragraph delve into the details of each API, explaining their operations
and their contribution to the comprehensive testing of the DevOptimizeAI prototype.

Upon initialization, all these three I/O intensive functions creates a CosmosClient and
Cosmos Container using the Cosmos DB endpoint, key, database ID, and container ID
obtained from the environment variables.

After this common initialisation, the functions differ as follows.

GetAPI
The GetAPI function (Appendix B.2) is a data retrieval mechanism that interfaces with
the Azure Cosmos DB service to obtain specific data entities based on a provided ID. The
function is designed to be invoked through an HTTP GET request.

In Figure 5.1 is presented a Flow Chart to visually present this API.

The function accepts an HTTP request object and extracts the ’id’ parameter from it.
A validation check is performed to ensure that the ’id’ is provided, thereby ensuring the
integrity of the function execution.

The function then attempts to retrieve the item from the Cosmos DB using the provided ’id’.
If successful, the retrieved item is returned in the HTTP response as an OkObjectResult.

In situations where the provided ’id’ does not correspond to any item in the Cosmos DB,
the function captures the CosmosException and returns a NotFoundResult. For all other
exceptions, an error message is logged, and an HTTP 500 status code is returned, indicating
an internal server error.

The RequestDocument and Tag classes encapsulate the schema of the data stored in the
Cosmos DB, facilitating structured data retrieval and deserialization.

The GetAPI function tests the scenario of HTTP GET requests and data retrieval operations
from Azure Cosmos DB; it also satisfies the Simple HTTP Trigger scenario. It responds to

67

Figure 5.1: GetAPI - API Flow Chart

68

an HTTP GET request and retrieves data from Azure Cosmos DB. However, it does more
than just returning a simple message; it’s involved in database operations.

The JMX file outlines a test plan that will execute a GET request to:

• getwebapi.azurewebsites.net/api/GetWebAPI (the API endpoint)

with variable parameters such as the number of threads, the ramp-up period, and the loop
count. The test plan will generate a random number called ”ID” between 100 and 1000 for
each HTTP request. The results are collected and displayed in a Summary Report.

For the complete description of the JMeter test for this function, please refer to the JMX
file in Listing C.2 in Appendix C.

PostAPI
The PostAPI function (Appendix B.3) serves as a mechanism for data insertion, designed
to interface with the Azure Cosmos DB service. The function is invoked by an HTTP
POST request and is responsible for inserting a new data entity into the Cosmos DB.

In Figure 5.2 is presented a Flow Chart to visually present this API.

The function accepts an HTTP request object and reads the JSON data from the request
body. This JSON data is deserialized into a RequestDocument object.

Before data insertion, the function validates that the ’id’ attribute of the RequestDocument
object is provided, ensuring data integrity.

The function then attempts to insert the RequestDocument object into the Cosmos DB.
A successful insertion results in the function returning an OkObjectResult, signifying the
successful data insertion.

In the event of exceptions during execution, the function logs an error message and returns
an HTTP 500 status code, indicating an internal server error.

The PostAPI function tests the scenario of HTTP POST requests and data insertion
operations into Azure Cosmos DB; it also satisfies Data Processing scenario. It receives
an HTTP POST request, processes data contained in the request body (JSON data), and
inserts it into Azure Cosmos DB, returning an HTTP response.

The JMX file for the PostAPI outlines a test plan that will execute a POST request to:

• fidelapp.azurewebsites.net/api/FiDelApp (the API endpoint).

This test plan also includes variable parameters such as the number of threads, the ramp-up
period, and the loop count. This test plan differs from the one for GetAPI in that it

69

Figure 5.2: PostAPI - API Flow Chart

70

includes a payload with each HTTP request. The payload is a JSON object which includes
a variable that represent the ’id’ of the Cosmos DB that is managed via GUID.

The corresponding JMeter test is detailed in the JMX file in Listing C.3 in Appendix C.

GetMean
The GetMean function (Appendix B.1) is an Azure Function designed to compute the mean
elevation of volcanoes for a specified country. The function operates by interacting with
the Azure Cosmos DB service, extracting the necessary data, and performing the statistical
calculation.

In Figure 5.3 is presented a Flow Chart to visually present this API.

Upon receiving an HTTP GET request, the function extracts the ’Country’ parameter. It
validates the ’Country’ parameter to ensure it is not null or empty.

A FeedIterator of type Volcano is then initialized to traverse the Cosmos DB records. The
function iterates over each record, checking if the ’Country’ attribute matches the provided
parameter. If a match is found, the function attempts to parse the elevation to an integer,
incrementing the total elevation sum and the count of volcanoes.

Upon completion of the iteration, the function computes the mean elevation by dividing the
total elevation sum by the count. The mean elevation is then returned as an OkObjectResult.
In the event of any exceptions during the execution, the function logs an error message and
returns an HTTP 500 status code, indicating an internal server error.

The GetMean function satisfies Data Analysis scenario. It receives an HTTP GET request
with a specific parameter, retrieves the relevant data from the database, performs the mean
value, and returns this result in the HTTP response. This process embodies the operations
of data retrieval, analysis, and response generation.

The JMX file outlines a test plan that will execute a GET request to:

• getmean.azurewebsites.net/api/GetMean (the API endpoint)

with variable parameters such as the number of threads, the ramp-up period, and the loop
count. This test plan differs from the other two in that it includes a variable ”Country”
parameter with each HTTP request to determine a sample country to the test call. The
results are collected and displayed in a View Results Tree.

The JMeter test that targets this function can be found in Listing C.1 in Appendix C.

CalculatePrimeNumbers
The CalculatePrimeNumbers function (Appendix B.4) is a CPU-intensive Azure Function

71

Figure 5.3: GetMean - API Flow Chart

72

designed to compute prime numbers up to a specified number. This function is designed to
stress the CPU resources and test the system’s performance under computation-intensive
tasks.

In Figure 5.4 is presented a Flow Chart to visually present this API.

Upon receiving an HTTP GET request, the function extracts the ’number’ parameter from
either the query string or the request body. The parameter is validated to ensure it is a
valid integer.

The function then calls the GetPrimes function, passing the validated ’number’ as the
argument. The GetPrimes function uses the Sieve of Eratosthenes algorithm to find all
prime numbers up to the specified number. It initializes a list of prime numbers with the
first prime number, 2. For each odd number up to the ’number’, it checks whether the
number is divisible by any of the known primes. If a number is not divisible by any known
prime, it is prime, and is added to the list of primes.

Once all the primes up to the specified number have been computed, the function returns
these prime numbers in an HTTP response as an OkObjectResult.

In case the ’number’ parameter is not provided or is not a valid integer, the function returns
a BadRequestObjectResult, indicating that a valid integer should be provided.

The CalculatePrimeNumbers function tests the scenario of CPU-intensive tasks. It receives
an HTTP GET request with a specific parameter and performs a computation-intensive
task, returning the result in the HTTP response.

The JMX file outlines a test plan that will execute a GET request to:

• validationtestfunctions.azurewebsites.net/api/CalculatePrimeNumbers (the API end-
point)

with variable parameters such as the number of threads, the ramp-up period, and the loop
count. This test plan includes a variable ”number” parameter with each HTTP request to
determine the upper limit for the prime numbers calculation. The results are collected and
displayed in a View Results Tree.

The corresponding JMeter test is detailed in the JMX file in Listing C.4 in Appendix C.

5.2 Acceptance tests

To conduct acceptance tests, it is necessary to try DevOptimizeAI with all real world
scenario test cases, so the I/O-intensive functions and different configurations. The CPU-
intensive function will be tested in the validation test part in another manner. To do this,

73

Figure 5.4: CalculatePrimeNumbers - API Flow Chart

74

an Azure DevOps pipeline was developed for each Azure Function code with associated test
plans, and in each pipeline a connection was set to the DevOptimizeAI pipeline. Presented
below are the configurations and results for the tests regarding the variation of:

• Azure Function code

• GPT Model

• Max token response

• Different number of threads and loops.

For each test is it possible to consult the Appendix E to read all the response provided by
DevOptimizeAI.

An example of the input to the model is presented in Chapter 4 in Section 4.3 when
Response without code example is discussed.

GPT-3 tests
DevOptimizeAI is tested using GPT-3 model with the three previously mentioned functions:
GetMean B.1, GetAPI B.2 and PostAPI B.3.

The purpose of this test is to understand how DevOptimizeAI work with different environ-
mental request; in this case the aim is to compare two GET function, one more complex
and another very simple, and a POST and how the GPT-3 model perform this requests.

The result of this test can be seen in the Appendix E in the Section E.1.

For the execution of this test has been used the GPT-3 model with 4000 token available
to try DevOptimizeAI whit low usage of resources, it is also not done any type of specific
request, to the model are only submitted the test results and the code. The response that
DevOptimizeAI provide are quick, but not specific for the purpose of the enhancing of
the API. The response only provide a brief description of the provided texts, without any
snippet of code proposed by the model itself.

A summary of quantitative result obtained from these test are presented in Table 5.2.

GPT-4 tests
Immediately after testing DevOptimizeAI with the GPT-3 model it is tested DevOptimizeAI
with the GPT-4 model.

The answers obtained are in the Appendix E in the Section E.2.

75

Several factors can be seen in these responses that define that these responses are better
than previous responses.

First of all a greater size of the response text: which is also richer in information and with
a better formatting of the text that makes it more understandable.

It also provides a more detailed description of the function in question going, although in
a generic way, to provide advice not related with performance only, but also on possible
checks and changes to be made to the code to enhance it, also based on the results of the
tests.

A summary of quantitative result obtained from these test are presented in Table 5.2.

Model API AVG Re-
sponse
Time x
call (ms)

Scalability
(Requests
x second)

JMeter
test time
(sec)

Response
Size (KB)

GPT-3 GetMean 3267 2.7 37 0.9
GPT-4 3442 2.6 39 1.2
GPT-3 GetAPI 890 7.3 14 0.8
GPT-4 448 10.8 9 1.1
GPT-3 PostAPI 923 7.7 13 0.7
GPT-4 400 13.2 8 1.3

Table 5.2: Comparison of GPT-3 and GPT-4 Tests with 4k max token response

Response token test with GPT-4
After testing the GPT-4 model the following tests will focus on exploiting all its potential
going to see how far you can push the model without wasting resources or running into
errors shifting the focus from model selection to the selection of other parameters such as
the Max Token for the GPT Model or the values of threads and rampup for the JMeter
test.

A first test was carried out by modifying the maximum number of tokens available for the
response and thus allowing the model to provide more extensive answers. The maximum
amount of token include the token in input (the user message) and output (the response)
of the model. These tests are conducted using GPT-4 model with available 32 thousands of
token.

The model having 32k token if the response token are set to 14k, that means that for the
input tokens the model could provide at most 8k tokens.

These tests have not led to satisfactory results although having greatly increased the number

76

Figure 5.5: GPT response dimension varying the max token value

of maximum tokens available for the response the quality of the response has remained
almost the same both in terms of length and in terms of clarity and effectiveness to the
developer, also for the similarity with the previous response, these response are not present
in the appendix.

A representation of what just said is shown in the Figure 5.5 in which are condensate several
test on the three different functions.

In the figure it is shown how the response size grow rapidly until 4000 tokens for the
response and an after that stay between 1 and 1.2 KB of message response, with a slightly
decreasing approaching the model limit and going in error if passed.

The Table 5.3 give another view of the same data.

While a higher token limit allows the model to generate longer responses, it doesn’t
necessarily mean that the model will have a better understanding of the input or be able
to provide more accurate or relevant responses. The model’s performance is based on its
ability to understand and generate contextually appropriate responses, not the length of
the response.

Lower amount of token can cause a truncate response. It is the case when a value lower
than 1k token is submitted to DevOptimizeAI.

This parameter is more usefull with longer functions, these will benefits the most form

77

Max Token Response Value Weight (KB)

100 0.4
200 0.5
400 0.7
800 0.8
1000 1.034
2000 1.175
4000 1.300
8000 1.294
16000 1.144
24000 1.125
30000 1.058
31000 1.024
32000 NAN

Table 5.3: Response token test table

the decreasing of this parameter, because allow also to them to obtain a response without
leading the model into error, even if eventually shorter compared to some shorter function
that use higher value for this parameter.

Load test GPT-4 test
Following the tests conducted with the GPT-4 model and varying maximum token amount,
the next phase of testing involved increasing the number of API calls. The goal was to
understand the model’s performance under a higher load and determine its capability in
handling a larger volume of requests.

In these tests, the GPT-4 model was subjected to a higher number of API calls, while
maintaining the other parameters constant: the model is GPT-4 and the max token response
are 8000. The model was expected to process these calls and provide responses within
the defined token limit. The quality, clarity, and efficiency of these responses were then
evaluated, similar to the previous tests.

Each result is the mean of the three different executions, one for each function, providing
a more robust analysis of the system’s performance, and also normalize to make all the
parameter comparable.

As part of this testing phase, a number of cases were designed where the number of API
calls was increased. To visualize the model’s performance in these cases the Figure 5.6
shows result obtained clustered by the number of API calls as threadsXloops.

So if in the plot is presented 100x1000 that means that the test is conducted with 100

78

Figure 5.6: Load Test Graph

threads executing 1 API call for 1000 times. Rampup is setted to 1.

This graph provides a clear visual representation of how the model’s response times are
affected as the number of API calls increases.

The 10x10 and 100x100 tests had the shortest execution times and zero errors, indicating
excellent performance and reliability when handling smaller test scenario.

The 100x1000 test showed impressive results with a high throughput of 269.6 messages per
second and the shortest average response time of 363 milliseconds, all with no errors. This
suggests that the applications excel at handling a large volume distributed over different
calls round.

However, the 1000x1000 and 1000x100 tests showed significant increases in execution time
and error rates, suggesting challenges when dealing with high volumes of threads regardless
of loops. The 1000x100 test had the highest throughput at 401.9 messages per second, but
also the highest error rate at 69.53%.

In addition to the graph, Table 5.4 shows the key data from these tests. This table includes
information such as the number of API calls, the response times, and other relevant metrics.
It provides a quick and easy way to compare the results across different test cases and
identify any trends or patterns.

However, it should be noted that the response messages from these tests are not included
in the Appendix E. This is because the responses are analogous to those from the previous

79

Test Time (sec) Throuput (msg x sec) avg response time (ms) errors (%)

10x10 8 12.1 721 0
100x100 45 221.6 419 0
1000x1000 3269 305.9 3146 42.75
100x1000 371 269.6 363 0
1000x100 249 401.9 1931 69.53

Table 5.4: Summary of load test results

tests, and no further prompt engineering has been done at this stage. Indeed, the focus
of this test is more on the model’s performance metrics under increased API calls, rather
than the content of the responses.

Upon analysis of the graph and table, it is evident that as the number of API calls increases,
there is a corresponding increase in the response times. However, the model still manages
to maintain a relatively stable performance, indicating its robustness and ability to handle
a higher load.

Test with logical error in the test plan
It has been seen that with regard to logical errors within the code of the Azure Function
DevOptimizeAI is able to detect such errors and suggest a solution approach as well as an
improvement approach. Now its behavior in case the logical error is present in the JMX file
will be analyzed.

A test was done with the PostAPI test plan, where at the post of entering an id of type
string, it was tried to enter an id of type integer which causes a write error to the DB
classified as 500 Internal Error.

Trying to run DevOptimizeAI with this test plan showed that the suggestions are still
related to the code, proposing solutions that improve the program, but having less specificity
given by the distorted result of the JMeter test.

So despite the test plan being poorly set up, the system still manages to provide an answer
to the developer, but not as targeted as if the test had been set up correctly.

Some consideration
The Table 5.5 provide an overview of the test and result done in this section. Throughout
the testing process, several considerations have been drawn.

1. The model’s capabilities are dependent on the number of tokens available for it to
provide responses. However, increasing the maximum number of tokens does not

80

Test Model Token
Limit

Comments

GPT-3 Test GPT-3 4000 General responses, no code snip-
pets

GPT-4 Test GPT-4 4000 Richer responses, more detailed
information

Response token test GPT-4 N/A The improvement in the responses
with larger size are achievable, but
not mandatory. Larger response
size do not necessary outcome into
better response.

Load test GPT-4 8000 DevOptimizeAI demonstrated ro-
bustness and ability to handle a
higher load, with a relatively sta-
ble performance despite the in-
crease in API calls.

Logical error in test
plan

GPT-4 8000 DevOptimizeAI is still able to pro-
vide suggestion to improve the
API, but do not grasp any error
in the test plan configuration.

Table 5.5: Summary table of integration tests

81

necessarily lead to more satisfactory results in terms of response quality.

2. The model’s performance can also be affected by the number of requests it handles.
While it is capable of handling a high number of requests, errors may occur when
the number becomes too large. These errors are not necessarily due to the model’s
inability to handle the load, but could be attributed to issues in the code or database
configuration.

3. Despite the issues encountered, the model exhibits a remarkable ability to self-diagnose
and recommend improvements to the code to manage and prevent errors. This shows
that the model can provide valuable insights for developers even when not explicitly
asked to do so. However, it’s important to note that in none of the responses did the
model provide suggested code.

4. Lastly, the model’s expressiveness seems to decrease when the number of input tokens
increases. This suggests that the model might be more effective when used for simpler
functions rather than complex ones or that very large test could not lead to more
expressive analysis.

82

5.3 Validation tests

Now the research will delve into some validation test done with DevOptimizeAI and the
three previously mentioned functions: GetMean B.1, GetAPI B.2 and PostAPI B.3.
DevOptimizeAI will be tested using GPT-4 with a maximum response token fixed to 14000
and the JMeter configuration fixed.

The purpose of these tests is to understand the real capabilities and limitation of DevOpti-
mizeAI.

Prompt test

This section will explore how it is possible to enhance the input provided to the GPT model
by DevOptimizeAI, for example with some prompt engineering and other test, and analyze
how its response to the users is influenced.

The test will be presented each one divided by paragraph and for each test is it possible to
consult the Appendix F to read all the response provided by DevOptimizeAI.

An example of the input to the model is presented in Chapter 4 in Section 4.3 when
Response without code example is discussed.

Another example of input file to the model, this with enhanced user input, is provided in
Appendix D.3.

Prompt engineering
This paragraph delves into the testing procedures undertaken to evaluate the efficiency and
functionality of prompt engineering within DevOptimizeAI, specifically focusing on how
the GPT-4 model interacts with different types of inputs.

To understand the influence of different input types on the model’s output, was been
conducted a test in which the GPT-4 model was set to interact in three distinct ways:

• Interaction with only the system message: This setup aimed to observe how the
model responds when it is given only a system message as input. The system message
typically provides high-level instructions or context to the model.

• Interaction with only the user message: In this case, the model was tested with only
a user message as input. The user message is often more specific and task-oriented
than the system message.

• Interaction with both system and user messages: This test was conducted to see how

83

the model handles a combination of system and user messages, to exploit the best
response possible with richer information and more suited advice.

The part of the user message containing the test information and the Azure Function
code remains in any test configuration. The objective of this testing procedure was to
discern whether the model’s output is more influenced by the system-provided context
(system message), the user’s specific request (user message), or a combination of both. This
understanding would help to determine the optimal configuration for generating complete
and consistent responses to user.

System Message prompt engineering
In this analysis, we explore the results of tests performed using the prompt engineering,
applied at the system message level.

Detailed responses derived from these tests can be found in Appendix F in Section F.1.

The test on GetMean offered valuable insights into areas requiring enhancement, such as
database management, parallel processing, and the implementation of caching, tracing, and
sharding strategies, all crucial for reducing response times.

The test on GetAPI emphasized the importance of robust error handling and data validation
in minimizing HTTP 404 errors. It also highlighted the need for a more comprehensive
logging system that provides specific details about the error, such as the unique ID that
was not found.

The test on PostAPI underscored the necessity for sturdy exception handling mechanisms
to prevent HTTP 500 errors, drawing attention to the importance of logging meaningful
error messages and implementing advanced error handling strategies.

It is important to note that while these tests provide valuable insights and recommendations,
none of them offer specific code snippet examples. They focus on providing a high-level
understanding of the issues and potential solutions, leaving the implementation details to
the developers.

User Message prompt engineering
This paragraph will look at the results of the tests performed with prompt engineering at
the user message level. These responses are particularly noted for their focus on practical
coding solutions, providing substantial examples and potential optimizations.

DevOptimizeAI response can be found in the Appendix F in the Section F.2.

In the GetAPI response, the GPT-4 model presents a well-structured code snippet for
interacting with a Cosmos DB database, measuring and logging the time taken for these

84

interactions.

The GetMean response, meanwhile, provides an optimized data fetching code, demonstrating
improvements such as the ”WithPartitionKey” clause and the ReadAsStreamAsync method.

The PosAPI response addresses a potential failure during a Cosmos DB insertion operation,
offering a practical solution through detailed code.

These responses, while rich in practical coding solutions, differ from previous GPT-4
model responses in their reduced focus on high-level explanations of the code and the
testing process. The comparison reveals that while the model excels at providing detailed
code examples, it may need to improve the balance between practical code and high-level
explanations for a comprehensive understanding.

System & User Message prompt engineering
This paragraph will look at the results of the tests performed with prompt engineering both
at the user message level and at the system message level.

For a comprehensive understanding of the tests performed on these enhanced API functions,
refer to Appendix F in Section F.3.

In the case of GetAPI, the initial issue was difficulty in data retrieval from the Cosmos
DB, resulting in a 404 status code. The recommended solution goes beyond a simple
explanation and provides a tangible code snippet demonstrating the implementation of a
caching mechanism. This strategy significantly improves performance by minimizing the
need for repeated database calls.

Similarly, for the GetMean function, the response includes a practical code example
illustrating the use of CosmosDB’s SQL Query capabilities for efficient data filtering. While
the function was error-free, the high average response time was a concern. The suggested
enhancements effectively address this issue, leading to improved efficiency and reduced data
transfer from the CosmosDB to the function.

The PostAPI function’s enhancements are also detailed, with a focus on caching, nuanced
error handling, singleton design pattern for the database connection, and load testing.
The revised code snippet demonstrates how the singleton pattern can be implemented for
the Cosmos DB connection and how specialized error handling for CosmosException can
provide deeper insights into potential issues.

These responses, therefore, not only provide advanced high-level explanations for each issue
but also offer practical code examples to implement the proposed solutions.

In the Figure 5.7 it is possible to see the variation of performance before and after DevOp-
timizeAI advice. It is possible to see the enhance of the GetAPI and the grater enhance for
the GetMean, but unfortunately for the PostAPI the model provide an example with a bad

85

connection to the DB, showwd in Listing 5.1, that cause an 100% error rate.

1 ...

2 namespace PostAPI

3 {

4 public static class PostAPI

5 {

6 private static readonly HttpClient httpClient = new HttpClient ();

7

8 // Database Settings

9 private static readonly CosmosClient cosmosClient;

10 private static readonly Microsoft.Azure.Cosmos.Container

↪→ cosmosContainer;

11

12 // Static constructor

13 static FiDelApp ()

14 {

15 ...

16 }

17

18 [FunctionName("FiDelApp")]

19 public static async Task <IActionResult > Run(

20 [HttpTrigger(AuthorizationLevel.Anonymous , "post", Route =

↪→ null)] HttpRequest req ,

21 ILogger log)

22 {

23 ...

24 }

25 }

26 }

Listing 5.1: Error DB connectio in PostAPI

As expected the API with the greatest advantage was the most complex is with more points
where you can improve (GetMean).

86

Figure 5.7: Before and after DevOptimizeAI enhancement for I/O-intensive functions

87

Figure 5.8: GPT response dimension varying the max token value with and without prompt
engineering

Max response token test with prompt engineering
After prompt engineering, having seen the size of the response grow as the detail provided
to the model increased, the Response Token test was again performed. Figure 5.8 shows
the comparison between the size of the responses with prompt and without prompt. In the
case of the responses with prompt, a higher expressiveness of the model is evident due to a
higher level of detail or requests from DevOptimizeAI to the model.

Considerations on Prompt Engineering
The examination of DevOptimizeAI’s responses to varied prompt tests has underscored the
value of precision in crafting system and user prompts. The study revealed that the AI
model’s responses can be greatly enhanced through meticulous prompt engineering.

In particular:

• The system message level tests demonstrated the model’s capability to provide valuable
insights for system optimization, despite a lack of specific code examples.

• Conversely, in user message level tests, the model showcased its strength in generating
detailed coding solutions, highlighting the need for balancing practical code with
high-level explanations.

88

Test Comments Key Learning

System Message
Prompt Engi-
neering Test

Focused on understanding the
model’s performance using specifi-
cation only on system message.

The model provided valuable in-
sights and recommendations for
system optimization, but didn’t
offer specific code examples.

User Message
Prompt Engi-
neering Test

Examined the model’s responses
to prompt engineering at the user
message level.

The model excelled at provid-
ing detailed code examples, but
needed to improve the balance
between practical code and high-
level explanations.

System & User
Message Prompt
Engineering Test

Tested prompt engineering at both
the user message level and the sys-
tem message level.

The unique blend of high-level ex-
planations and practical code snip-
pets proved particularly effective.

Table 5.6: Summary table of prompt tests

• In tests involving prompt engineering at both system and user message levels, a
combination of high-level explanations and practical code examples proved most
effective. This balanced approach provided a comprehensive understanding of the
issues at hand and their potential solutions.

89

CPU-intensive test

As seen in the previous subsection, the function with the most CPU-intensive part will be
the one more advantageous by the enhancement provided by DevOptimizeAI.

This section will delve into the exploration of CPU-intensive function B.4 and how DevOp-
timizeAI can enhance it.

The discussion of this CPU-intensive operation will be broken down into individual para-
graphs for each test, enabling a comprehensive and detailed analysis.

The main tests will be:

• The original function: with some possible optimization.

• The function with a logical error in it: it will try DevOptimizeAI to understand where
the function is logically wrong even if the code compile.

• The function with an infinite loop: it will try DevOptimizeAI to discover the infinite
loop, fix the function and enhance it.

The Appendix G to read all the response provided by DevOptimizeAI.

An example of input file to the model for this test is provided in Appendix D.3.

Error injection test
The error injection test will involve running the function with this known error and observing
if DevOptimizeAI can successfully detect and suggest a solution for it. This will demonstrate
the effectiveness of DevOptimizeAI in identifying logical errors in the code, which is a
critical part of code optimization.

In this particular test, we examine CalculatePrimeNumbers B.4 with a logical error embedded
within it. The function is designed to calculate prime numbers up to a given number.
However, the problem arises within the inner ’for’ loop where the function tries to divide
the number by zero when i equals to 0. This division by zero error is a common pitfall in
programming and occurs when a number is divided by zero. In mathematics, division by
zero is undefined, hence, it usually results in a runtime error in programming.

The line of code that introduces this error is:

• if ((num % primes[i] == 0) || (num / (i-1) == 0))

This test case is interesting because it provides an excellent opportunity to see if DevOp-
timizeAI can detect this logical error that manages to pass compilation but fails during

90

runtime. Being able to identify such errors can greatly help in increasing the reliability of
the code and reducing debugging time.

Infinite loop test case
The infinite loop test will involve running the function with this known error and observing if
DevOptimizeAI can successfully detect and propose a solution for it. This will demonstrate
DevOptimizeAI’s proficiency in identifying and rectifying code that could lead to infinite
loops, which is a crucial aspect of code optimization.

In this test, we examine a function that inadvertently includes an infinite loop. This
function is designed to calculate prime numbers up to a given number. However, the issue
arises in the inner ’for’ loop where it fails to increment the variable ’i’.

The line of code that introduces this error is:

• for (int i = 0; primes[i] * primes[i] <= num;)

In this loop, ’i’ never increments, causing the loop to run indefinitely whenever the
condition primes[i] * primes[i] <= num is met. This results in an infinite loop, one of the
most common and frustrating errors in programming, which can cause the program to
freeze or use excessive amounts of CPU, making it unresponsive.

This test case is intriguing because it provides an opportunity to see if DevOptimizeAI can
detect this infinite loop, which otherwise might go unnoticed until runtime. Being able to
identify such issues can significantly enhance the performance and reliability of the code.

CPU-intensive Test results
The results of the tests conducted on DevOptimizeAI were both revealing and promising.
The tool demonstrated proficiency in identifying and rectifying common coding issues, such
as logical errors and infinite loops, that can significantly affect the performance and stability
of a program.

A quantitative analysis of the test results revealed that DevOptimizeAI successfully detected
the errors in each scenario. In the Error Injection test, it correctly identified the division
by zero error, and in the Infinite Loop test, it successfully detected the infinite loop caused
by lack of incrementation.

In Figure 5.9 are presented the value that are also in Table 5.7 that represent the quantitative
aspect of these test and in details:

• Original Test: This test was carried out using the original function without any
injected errors. From the table, it is clear that DevOptimizeAI made significant

91

Original Error Injec-
tion

Infinite
Loop

Time (sec) Before 70.75 0.59 N/A
After 30.30 16.7 25

Throughput (req x sec) Before 1.414 168.5 N/A
After 3.3 6 4.1

Errors (%) Before 0 100 100
After 0 0 0

Table 5.7: Comparison between tests in CPU-intensive tests part (Transposed)

improvements in the function’s performance. The time taken for execution decreased
from 70.75 sec to 30.30 sec, and the throughput increased from 1.414 req/sec to
3.3 req/sec. This confirms that DevOptimizeAI was able to optimize the function
effectively.

• Error Injection Test: In this test, a logical error was intentionally introduced into the
function to test the effectiveness of DevOptimizeAI in detecting and fixing it. From
the table, we can observe that before the optimization, the function had an error rate
of 100%, indicating that it was failing every time. However, after the optimization, the
error rate dropped to 0%, indicating that DevOptimizeAI was successful in identifying
and fixing the error. Also, the time taken for execution decreased from 0.59 sec to
16.7 sec, and the throughput decreased from 168.5 req/sec to 6 req/sec. This could
be due to the fact that the erroneous function was failing quickly before optimization
(thus the high throughput and low time), while after the error was fixed, it took a
longer time for correct execution. DevOptimizeAI not only fix the error, but also
improve the function achieving the best throughput result.

• Infinite Loop Test: In this test, an infinite loop was intentionally introduced into
the function. Before optimization, the function was not able to complete execution
(hence the N/A values for time and throughput), and had an error rate of 100%.
After optimization by DevOptimizeAI, the function was able to complete execution
in 25 sec, with a throughput of 4.1 req/sec, and an error rate of 0%. This shows that
DevOptimizeAI was successful in identifying and fixing the infinite loop.

Some consideration These tests have provided some intresting details about DevOpti-
mizeAI capabilities in identifying and rectifying common coding errors that can severely
reduce the performance and stability of a program. The tool not only successfully detected
and fixed logical errors, but it also accurately identified and resolved infinite loops. In all

92

Figure 5.9: Before and after DevOptimizeAI enhancement for CPU-intensive function

93

the tested scenarios, DevOptimizeAI was able to improve the performance and reliability of
the function, substantiating its effectiveness as a code optimization tool.

The results also indicate that DevOptimizeAI can be particularly beneficial for complex,
CPU-intensive functions. By optimizing such functions, it can significantly enhance the
overall efficiency and performance of the software. Furthermore, the tool’s ability to detect
errors that might go unnoticed until runtime can help in reducing debugging time and
improving code reliability.

Behavior tests

In this subsection, the different behavior tests conducted on DevOptimizeAI are presented
to go and understand how DevOptimizeAI really works and to go and unearth interesting
insights. Behavior analysis will include 4 tests:

• DevOptimizeAI behavior if it know the developer’s ability.

• DevOptimizeAI behavior when aided with code cues.

• DevOptimizeAI behavior if given examples of well-formulated answers.

• DevOptimizeAI behavior if reused multiple times.

An example of input file to the model for this test is provided in Appendix D.3.

DevOptimizeAI behaviour oriented to different developer types
This section will analyze the behavior of DevOptimizeAI in case a particular use is made
for a specific type of developer. DevOptimizeAI response can be found in Appendix H,
specifically in Section H.1. An array of tests were conducted using various system prompts
and user messages, but only the two cases that most closely aligned with the established
objectives have been included in the appendix. Despite the extensive testing, the results
did not meet the anticipated standards.

Interestingly, when the DevOptimizeAI was tasked to provide advanced advice to a more
experienced developer, it underperformed. The responses lacked tangible code examples and
the advice offered was often basic. Similarly, when instructed to cater to an inexperienced
or junior developer, DevOptimizeAI’s performance was largely unchanged, producing advice
and response messages similar to those generated without specific user details.

DevOptimizeAI seems to operate more efficiently when user specifications are kept generic,
rather than furnishing it with detailed information about the user’s level of experience; this
could be caused by an overly specific prompt that causes difficulty for the model to find
appropriate information.

94

DevOptimizeAI behaviour with hints in the code
This paragraph provides an evaluation of test results based on the advice model coded di-
rectly into the comments. DevOptimizeAI response can be found in Appendix H, specifically
in Section H.2.

One noteworthy aspect of the test results analysis is that the suggested improvements align
directly with the hints provided in the code comments, rather than offering an entirely
new version. This approach emphasizes the value of embedded advice in the code and its
potential for optimizing system performance.

It is possible to think of this approach as a version of Copilot that does not provide
immediate code, but after a more careful analysis of even the performance of the software.

In this instance, the system managed an average of 2.6 requests per second over 100 requests,
with an average server-side response time of 3589 milliseconds. While these metrics indicate
that the system is functional, they also reveal areas for enhancement, specifically in reducing
response times.

The primary contributors to the reduce response times were identified as the CosmosDB
queries. By refining the querying strategy as suggested in the code comments, performance
enhancements are achievable.

The revised function, which aligns with the provided hints, offloads data filtering tasks to
CosmosDB, thus optimizing response times.

Additional enhancements can be achieved by refining the application’s connection and
interaction with CosmosDB, as suggested in the embedded advice. Implementing connection
caching, optimizing database indexes, partitioning, and analyzing the collection RU/s and
load can all contribute to performance improvements.

The potential of this approach extends beyond individual tests. It can significantly improve
software development practices by providing immediate, context-specific guidance and best
practices directly in the code. By following these hints, experienced developers can enhance
both the efficiency and effectiveness of their code, streamline the debugging process, and
ensure their systems are equipped to handle varying loads and traffic spikes.

DevOptimizeAI behaviour with previous successful messages example
In this paragraph will be presented the test done with DevOptimizeAI to understand that it
is possible to improve the response of the model providing to it good example of response.

This test is set up by giving the to model user message and assistant message of different
functions (e.g. the GetAPI and PostAPI request and response example). The user message,
as previously stated, is the message sent from the user that query the model, the assistant
message is the response example provided to the model by the developer of the model to

95

answer the user message. DevOptimizeAI response is included in Appendix H in Section
H.3.

This experiment did not provide an extremely satisfactory result when used for a model to
which prompt engineering had been made, but if the model in question does not have any
type of prompt engineering can lead the model to be more accurate and efficient without
having to do prompt engineering.

This approach can also be advantageous in models where prompt engineering has been
done and a specific response format is wished.

Implementation of feedback provided
This paragraph will summarize the findings from the tests conducted following the model’s
feedback, particularly after applying the ’hint test’ suggestions. DevOptimizeAI response is
included in Appendix H, more specifically in Section H.4.

The first feedback, provided after the integration of the ’hint test’ suggestions, offered
a valuable solution. By identifying that CosmosDB operations were being executed syn-
chronously, potentially leading to blocking IO operations, the model recommended a shift
to asynchronous programming. The revised code, utilizing tasks for parallel data processing
and a lock for synchronization, provided a potentially significant enhancement in efficiency,
especially when processing a large number of items.

However, the subsequent feedback messages revealed some complexities. The second
feedback, while offering an insightful solution, contained some logical errors. Although it
correctly identified issues such as 502 Bad Gateway and 503 Service Unavailable errors, the
errors encountered were related more to the suggested modifications than to the database
operations.

1 ...

2 var tasks = new List <Task >();

3 var sum = 0.0;

4 var count = 0;

5 var queryResultSetIterator = cosmosContainer.GetItemQueryIterator <

↪→ Volcano >(queryDefinition);

6

7 while (queryResultSetIterator.HasMoreResults)

8 {

9 // Start a new task to process this set of results

10 tasks.Add(Task.Run(async () =>

11 {

12 var currentResultSet = await queryResultSetIterator.

↪→ ReadNextAsync ();

13

14 foreach (var v in currentResultSet)

15 {

96

16 if (int.TryParse(v.Elevation , out var parsedElevation))

17 {

18 Interlocked.Add(ref sum , parsedElevation);

19 Interlocked.Increment(ref count);

20 }

21 else

22 {

23 ...

24 }

25 ...

Listing 5.2: Error in provided code

The error is in Interlocked.Add(ref sum, parsedElevation); because the Interlocked.Add do
not work with double or float, but only with int and uint. So before moving to the third
feedback iteration i fix the script as changing the devinition of sum from var sum = 0.0 to
int sum = 0 to allow the correct execution of the program.

The third feedback, despite proposing several strategies for performance enhancement,
provided a solution that contained logical errors into the usage of the asynchronous pattern
that make the usage of the proposed snippet impossible.

Notably, it incorrectly used an integer parameter instead of a double. This highlights the
importance of thorough code review and testing, as even seemingly beneficial solutions can
introduce new errors if not correctly implemented.

Considerations on Behavior Tests
Behavior tests on DevOptimizeAI revealed key insights on its function under different
conditions. Four main tests were conducted: varying developer abilities, code cues, well-
formulated answer examples, and multiple requests.

Following are the main insight:

• model underperformed when catering to advanced developers and didn’t significantly
adjust when addressing inexperienced developers. The model seemed to operate best
with generic user specifications rather than detailed user experience levels.

• DevOptimizeAI’s responses are aligned directly with the hints provided in the code
comments, emphasizing the value of embedded advice for performance optimization
(delayed Copilot).

• The test with assistant configuration didn’t significantly improve the model’s perfor-
mance when prompt engineering was applied. However, it was noted that providing
successful response examples could enhance the model’s performance when prompt
engineering was not applied.

97

Test Comments Key Learning

DevOptimizeAI
behaviour ori-
ented to different
developer types

Analyzed the model’s performance
when tasked to cater to developers
of varying experience levels.

The model operates more effi-
ciently when user specifications
are kept generic.

DevOptimizeAI
behaviour with
hints in the code

Evaluated the model’s responses
based on advice coded directly
into comments (delayed Copilot).

Embedded advice in code com-
ments can guide DevOptimizeAI
towards optimized response.

DevOptimizeAI
behaviour with
previous suc-
cessful messages
example

Examined how providing the
model with successful response ex-
amples can influence its perfor-
mance.

The model’s performance can be
enhanced by providing it with ex-
amples of successful responses, es-
pecially when prompt engineering
is not applied.

Implementation
of feedback
provided

Summarized the findings from
the tests conducted following the
model’s feedback.

The value of iterative enhance-
ment and rigorous testing in
software development was under-
scored.

Table 5.8: Summary table of behavior tests

• The implementation of feedback from the DevOptimizeAI revealed the potential for
logical errors in the proposed solutions.

98

ChatGPT vs DevOptimizeAI

The last test delves into a comparison with the usage of DevOptimizeAI and the usage of
the only chatGPT.

The purpose of this analysis is to scrutinize the respective strengths and weaknesses of
these approach, thereby gaining valuable insights into their potential applications. This
analysis focuses on two AI-based systems: DevOptimizeAI and ChatGPT.

This test compare the enhanced function provided by these methods.

For DevOptimizeAI will be used the GetMean with its enhanced version provided in the test
with system and user prompt, meanwhile, for the chatGPT it will be used a new generated
function and its enanched version again from ChatGPT.

The GPT response is included in Appendix I.

An example of input file for DevOptimizeAI for this test is provided in Appendix D.3.

Here’s a comparison of the two enhanced implementations:

• Dependency Injection: The GPT implementation uses Dependency Injection to
instantiate the DocumentClient. This allows for better connection management
and performance. The DevOptimizeAI implementation initializes the CosmosClient
directly within the implementation class.

• Cosmos DB SDK: The GPT implementation uses the older DocumentDB SDK
(Microsoft.Azure.
Documents.Client) while the DevOptimizeAI implementation uses the newer Cosmos
DB SDK (Microsoft.Azure.Cosmos).

• Error Handling: The DevOptimizeAI implementation has more extensive error han-
dling, including a try-catch block around the main logic and logging of errors.

• Data Model: The DevOptimizeAI implementation uses a specific data model (Volcano
and Location classes). The GPT implementation does not assume a specific data
model and operates on dynamic data.

• Query Parameter: The GPT implementation uses a route parameter to get the
country, while the DevOptimizeAI implementation uses a query parameter.

• Authorization Level: The GPT implementation uses AuthorizationLevel.Function,
which means the implementation requires the implementation key in the request. The
DevOptimizeAI implementation uses AuthorizationLevel.Anonymous, which means
the implementation can be triggered without authentication.

99

• Average Calculation: The DevOptimizeAI implementation calculates the sum and
count during the Cosmos DB data retrieval, and then calculates the average. The
GPT implementation retrieves all the elevations, stores them in a list, and then
calculates the average. The approach in the DevOptimizeAI implementation can be
more efficient, especially if the data set is large.

• Elevation Parsing: The DevOptimizeAI implementation expects Elevation as a string
and attempts to parse it to an integer. The GPT implementation expects Eleva-
tion as an integer. If the data in Cosmos DB has Elevation as a string, the GPT
implementation will not work correctly.

• Environment Variables: The DevOptimizeAI implementation retrieves the Cosmos
DB details from environment variables, which can be more secure and flexible than
hard-coding them in the implementation code as in the GPT implementation.

• Null Check: The DevOptimizeAI implementation checks if the elevation can be
parsed to int and if not, it gives a warning and ignores the elevation. The GPT
implementation does not have this check.

Both implementations do the job, but the choice between them depends on the specific
requirements, the data model in Cosmos DB, and the preferred coding and error handling
practices.

In terms of correctness:

• Both implementations are correct as they are able to query data from Cosmos DB
and calculate the mean of the elevations.

• The DevOptimizeAI implementation uses a specific data model (Volcano and Location
classes). If the data in Cosmos DB matches this model, this implementation will work
correctly. If the data model is different, this implementation will fail.

• The GPT implementation does not assume a specific data model and operates on
dynamic data. This makes the implementation more flexible but also requires that
the data in Cosmos DB has Elevation as an integer. If Elevation is a string or other
type, this implementation will fail.

• The DevOptimizeAI implementation expects Elevation as a string and attempts to
parse it to an integer. If the parsing fails, it logs a warning and ignores the elevation.
This makes the implementation more robust against data inconsistencies.

In terms of performance:

100

• The GPT implementation uses Dependency Injection to manage the DocumentClient,
which can lead to better performance due to better connection management.

• The DevOptimizeAI implementation calculates the sum and count during the Cosmos
DB data retrieval, and then calculates the average. This can be more efficient than
the GPT implementation, which retrieves all the elevations, stores them in a list, and
then calculates the average. This is especially true if the data set is large.

• The DevOptimizeAI implementation uses the newer Cosmos DB SDK (Microsoft.
Azure.Cosmos), which has performance improvements and new features compared to
the older DocumentDB SDK used in the GPT implementation.

• The GPT implementation uses a cross-partition query, which can be more expensive
in terms of Request Unit (RU) charge compared to a single-partition query. If
the Country is the partition key, a single-partition query could be used for better
performance.

In conclusion, while both implementations are correct given the right conditions, the
DevOptimizeAI implementation is likely to have better performance due to the reasons
mentioned above. However, the actual performance can depend on various factors such as
the data size, the data model, the partitioning strategy, and the frequency of implementation
execution.

101

Chapter 6

Conclusions and future works

In this last chapter will be presented the conclusion and the possible future works about
this prototype and this final project.

6.1 Conclusions

This thesis has successfully navigated the intersection of DevOps, Generative AI, and
Performance Testing Tools, resulting in the creation of DevOptimizeAI. This tool brings
together the efficiency of DevOps, the innovative capabilities of Generative AI, and the
precision of Performance Testing Tools to improve Azure Functions software development.

This thesis has presented DevOptimizeAI, a novel tool designed to enhance the efficiency
and quality of Azure Functions within a DevOps environment. The tool, which combines
Generative Pretrained Transformer (GPT) models and Apache JMeter, offers an automated
solution for code optimization, ensuring superior software quality and operational efficiency.

DevOptimizeAI operates within the CI/CD pipeline allowing it to analyze the software
code and test results in real-time. This seamless integration is guided by a comprehensive
design and analysis process that incorporates both functional and non-functional aspects.

The high-level design of DevOptimizeAI involves the creation of a configuration form
and two YAML templates for the JMeter and the OpenAI stages, with each component
having a specific role in the system. The configuration form is a crucial part of the user
interface, providing developers with an easy-to-use platform to input their requirements
and control the testing process. The JMeter stage performs performance testing on the
deployed application and test formatting for better suit the GPT model integration, while
the OpenAI stage uses a GPT model to analyze the test results and the Azure Function

102

code in conjunction, generating a detailed analysis report highlighting bottleneck, logical
error and areas where improvement are possible with, also, implementation guidance and
explanation.

The primary aim of this thesis was to evaluate the potential benefits of using GPT models
and Apache JMeter in a DevOps scenario of REST API development via Azure Functions.
The results show that DevOptimizeAI can indeed improve the software development process,
leading to more efficient, reliable, and robust web applications and APIs.

DevOptimizeAI was put to test using three specific Azure Function APIs (GetAPI, PostAPI,
and GetMean) which were created to simulate various real-world scenarios and another
function (CalculatePrimeNumbers) to simulate CPU-intensive API. The performance of
these functions under different conditions was observed and analyzed, providing valuable
insights into the system’s capabilities and potential areas for improvement.

A first set of acceptance testing test was a crucial part of the evaluation process, focusing
on validating the interaction between Azure Functions, the GPT model, and JMeter.

Then more specific validation testing were conducted on prompt engineering and on a
CPU-Intensive function. Others behavioural test were conducted in different condition:
assessing the system’s performance as it catered to developers of varying experience levels,
handled different types of code cues, and responded to multiple requests.

The results of these tests underscored the importance of prompt engineering in optimizing
the model’s responses. It was observed that the model operates more efficiently when
user specifications are kept generic but both system and user specification message are
provided. The practice of embedding advice in code comments was found to guide developers
towards optimized system performance, and providing the model with examples of successful
responses could enhance its performance.

A comparison between DevOptimizeAI and ChatGPT revealed that while both tools can
provide context-specific advice and code improvement suggestions, they have different
strengths and weaknesses. The choice between them depends on the specific requirements
of the project, the data model, and the preferred coding and error handling practices.

Furthermore, this research contributes to the ongoing discourse on software development
best practices, indicating that innovative solutions like DevOptimizeAI can mitigate the
challenges faced by large development teams, particularly in maintaining high-quality
software.

In conclusion, the extensive testing and experiments conducted on DevOptimizeAI have
provided valuable insights into its capabilities and limitations. These findings pave the
way for future enhancements and improvements, making DevOptimizeAI a promising tool
for software development teams working in a DevOps setting for enhancing the software
development process in an Azure Function and Azure DevOps development environment.

103

6.2 Future works

Future works for DevOptimizeAI and the project can focus on extending the functionality
and exploring new use cases for AI models in the DevOps scenario. The following are some
possible extensions and future works for the prototype and the project:

• Integration with other AI models: DevOptimizeAI currently utilizes the OpenAI API
for its AI capabilities. Future works can explore the integration of other AI models to
enhance the prototype’s capabilities and provide developers with a wider range of
recommendations.

• Integration with other DevOps tools: DevOptimizeAI currently integrates with
Azure DevOps pipelines. Future works can explore the integration of the prototype
with other DevOps tools to provide developers with a more comprehensive set of
recommendations for system optimization.

• Improved handling of errors: The prototype currently identifies bottlenecks in the
software and provides feedback to developers and also provide correction to logical
error. Future works can focus on developing models that can diagnose and recommend
fixes for syntax errors in the code.

• Integration with other types of applications: DevOptimizeAI’s functionality and
effectiveness are currently bound to web APIs written in Azure Function style. Future
works can explore the integration of the prototype with other types of applications to
increase its applicability.

• Exploration of new use cases: Future works can explore new use cases for AI models
in the DevOps scenario. For example, AI models can be used to optimize database
configurations or provide recommendations for optimizing cloud infrastructure.

In light of recent advancements, such as the introduction of customizable versions of
ChatGPT (called GPTs) by OpenAI, the future of DevOptimizeAI could involve the
integration of these tailored AI models. This would enable more personalized and specific
AI applications in the DevOps scenario.

Additionally, OpenAI’s incoming GPT Store, which will feature creations from verified
builders, presents a potential platform for sharing and monetizing optimized AI models
for DevOps. This could lead to a broader range of AI tools and solutions available for
integration with DevOptimizeAI, improving its capabilities and potential use cases.

104

List of Tables

2.1 Most popular commercial LLM comparison 19

5.1 Comprehensive Overview of Tests Conducted 65

5.2 Comparison of GPT-3 and GPT-4 Tests with 4k max token response . . . 76

5.3 Response token test table . 78

5.4 Summary of load test results . 80

5.5 Summary table of integration tests . 81

5.6 Summary table of prompt tests . 89

5.7 Comparison between tests in CPU-intensive tests part (Transposed) 92

5.8 Summary table of behavior tests . 98

105

List of Figures

2.1 DevOps . 10

2.2 ChatGPT Methodology Diagram . 18

2.3 Rate of incorrect behavior on sensitive and disallowed prompts. Lower values
are better. GPT-4 RLHF exhibits significantly lower incorrect behavior rates
compared to prior models [32]. 30

3.1 Data flow diagram . 37

3.2 Entity-Relationship requirements diagram 38

3.3 High level sequence diagram . 40

3.4 Architecture - system overview . 43

3.5 High-level pipeline design . 44

3.6 High-level DevOptimizeAI design . 45

4.1 Configuration Form . 52

4.2 JMeter and OpenAI stages flow chart . 56

5.1 GetAPI - API Flow Chart . 68

5.2 PostAPI - API Flow Chart . 70

5.3 GetMean - API Flow Chart . 72

5.4 CalculatePrimeNumbers - API Flow Chart 74

5.5 GPT response dimension varying the max token value 77

5.6 Load Test Graph . 79

106

5.7 Before and after DevOptimizeAI enhancement for I/O-intensive functions . 87

5.8 GPT response dimension varying the max token value with and without
prompt engineering . 88

5.9 Before and after DevOptimizeAI enhancement for CPU-intensive function . 93

107

Bibliography

[1] GitHub Copilot. Website. URL: https://github.com/features/copilot.

[2] Openai text generation guide, 2022. [Online; accessed on Date of access]. URL:
https://platform.openai.com/docs/guides/text-generation.

[3] Rabiya Abbas, Zainab Sultan, and Shahid Nazir Bhatti. Comparative analysis of
automated load testing tools: Apache jmeter, microsoft visual studio (tfs), loadrunner,
siege. In 2017 International Conference on Communication Technologies (ComTech),
Bahria University Islamabad, Pakistan, 2017. IEEE.

[4] Mamdouh Alenezi, Mohammad Zarour, and Mohammad Akour. Can artificial intelli-
gence transform devops?, 2022. URL: https://arxiv.org/abs/2206.00225.

[5] S. Alla and S. K. Adari. What is mlops? In Beginning MLOps with MLFlow, pages
79–124. Springer, 2021.

[6] Apache Software Foundation. Apache jmeter - Apache JMeterTM, 2023. URL:
https://jmeter.apache.org/.

[7] M. Baldwin. Azure key vault documentation, 2023. [Online; accessed 03-January-2023].
URL: https://learn.microsoft.com/en-us/azure/key-vault/.

[8] S. Chamoli. Implementing ai for improved performance testing, April 24 2023. URL:
https://www.openxcell.com/blog/implementing-ai-for-improved-performan

ce-testing/.

[9] S. Chamoli. Manual testing vs automation testing: Which one should you prefer.
Online Blog Post, June 20 2023. URL: https://www.openxcell.com/blog/manua
l-testing-vs-automation-testing-which-one-should-you-prefer/.

[10] S. Chamoli. What is api testing: Complete guide. Online Blog Post, May 18 2023. URL:
https://www.openxcell.com/blog/what-is-api-testing-complete-guide/.

108

https://github.com/features/copilot
https://platform.openai.com/docs/guides/text-generation
https://arxiv.org/abs/2206.00225
https://jmeter.apache.org/
https://learn.microsoft.com/en-us/azure/key-vault/
https://www.openxcell.com/blog/implementing-ai-for-improved-performance-testing/
https://www.openxcell.com/blog/implementing-ai-for-improved-performance-testing/
https://www.openxcell.com/blog/manual-testing-vs-automation-testing-which-one-should-you-prefer/
https://www.openxcell.com/blog/manual-testing-vs-automation-testing-which-one-should-you-prefer/
https://www.openxcell.com/blog/what-is-api-testing-complete-guide/

[11] C. Ebert, G. Gallardo, J. Hernantes, and N. Serrano. Devops. IEEE Software,
33(3):94–100, 2016.

[12] Martin Ekuan. Azure subscription documentation, 2023. [Online; accessed 09-October-
2023]. URL: https://learn.microsoft.com/en-us/azure/cloud-adoption-fra
mework/ready/landing-zone/design-area/resource-org-subscriptions.

[13] Eric Freeman. Devops, 2019. URL: https://aws.amazon.com/devops/what-is-dev
ops/.

[14] Glenn Gailey. Azure functions documentation, 2023. [Online; accessed 24-May-2023].
URL: https://learn.microsoft.com/en-us/azure/azure-functions/.

[15] N. Gift and A. Deza. Practical MLOps. O’Reilly Media, Inc., 2021.

[16] Saki Imai. Is github copilot a substitute for human pair-programming? an empirical
study. In 2022 IEEE/ACM 44th International Conference on Software Engineering:
Companion Proceedings (ICSE-Companion), Waterville, Maine, USA, 2022. Colby
College. URL: https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9
793778.

[17] Mike Jacobs. Ci/cd baseline architecture with azure pipelines. Microsoft Learn, August
2023.

[18] Mike Jacobs, Theano Petersen, Ed Kaim, Steve Danielson, and Dan Hellem. What is
devops?, 01 2023. URL: https://learn.microsoft.com/en-us/devops/what-is-d
evops.

[19] Eirini Kalliamvakou. Research: quantifying github copilot’s impact on developer
productivity and happiness. GitHub Blog, September 7 2022. URL: https://github
.blog/2022-09-07-research-quantifying-github%2Dcopilots-impact-on-dev

eloper-productivity-and-happiness/.

[20] Nigel Kersten, Alanna Brown, Jez Humble, Dr. Nicole Forsgren, and Gene Kim.
2016 State of DevOps Report. Technical report, Puppet + DORA, 2016. URL:
http://devops-research.com.

[21] Eran Kinsbruner. How artificial intelligence (ai) and machine learning are changing
devops, 2022. Accessed: May 01, 2022. URL: https://enterprisersproject.com/.

[22] Jennifer Kulla-Mader. What is azure pipelines? - azure pipelines, December 2023.
URL: https://learn.microsoft.com/en-us/azure/devops/pipelines/get-sta
rted/what-is-azure-pipelines?view=azure-devops.

109

https://learn.microsoft.com/en-us/azure/cloud-adoption-framework/ready/landing-zone/design-area/resource-org-subscriptions
https://learn.microsoft.com/en-us/azure/cloud-adoption-framework/ready/landing-zone/design-area/resource-org-subscriptions
https://aws.amazon.com/devops/what-is-devops/
https://aws.amazon.com/devops/what-is-devops/
https://learn.microsoft.com/en-us/azure/azure-functions/
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9793778
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9793778
https://learn.microsoft.com/en-us/devops/what-is-devops
https://learn.microsoft.com/en-us/devops/what-is-devops
https://github.blog/2022-09-07-research-quantifying-github%2Dcopilots-impact-on-developer-productivity-and-happiness/
https://github.blog/2022-09-07-research-quantifying-github%2Dcopilots-impact-on-developer-productivity-and-happiness/
https://github.blog/2022-09-07-research-quantifying-github%2Dcopilots-impact-on-developer-productivity-and-happiness/
http://devops-research.com
https://enterprisersproject.com/
https://learn.microsoft.com/en-us/azure/devops/pipelines/get-started/what-is-azure-pipelines?view=azure-devops
https://learn.microsoft.com/en-us/azure/devops/pipelines/get-started/what-is-azure-pipelines?view=azure-devops

[23] Julia Kulla-Mader. Azure pipelines documentation, 2023. [Online; accessed 12-April-
2023]. URL: https://learn.microsoft.com/en-us/azure/devops/pipelines/get
-started/what-is-azure-pipelines.

[24] Deepali Medchal. Chatgpt vs google bard vs bing chat, 2023. [Online; accessed on
Date of access]. URL: https://www.openxcell.com/blog/chatgpt-vs-google-bar
d-vs-bing-chat/.

[25] Mijacobs. What is devops? - azure devops, 2023. URL: https://learn.microsoft.
com/en-us/devops/what-is-devops.

[26] Arghavan Moradi Dakhel, Vahid Majdinasab, Amin Nikanjam, Foutse Khomh,
Michel C. Desmarais, and Zhen Ming (Jack) Jiang. Github copilot ai pair pro-
grammer: Asset or liability? Journal of Systems and Software, 203:111734, 2023. URL:
https://www.sciencedirect.com/science/article/pii/S0164121223001292,
doi:10.1016/j.jss.2023.111734.

[27] Roopesh Nair. Service connection in azure pipeline, 2023. [Online; accessed 28-
November-2023]. URL: https://learn.microsoft.com/en-us/azure/devops/pip
elines/library/service-endpoints?view=azure-devops&tabs=yaml.

[28] Nhan Nguyen and Sarah Nadi. An empirical evaluation of github copilot’s code
suggestions. In 2022 IEEE/ACM 19th International Conference on Mining Software
Repositories (MSR), Edmonton, AB, Canada, 2022. University of Alberta. URL:
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9796235.

[29] OpenAI. About OpenAI. https://openai.com/about, 2015–2023. OpenAI ©
2015–2023.

[30] OpenAI. ChatGPT Blog Post. https://openai.com/blog/chatgpt, November 2022.
Accessed on July 6, 2023.

[31] OpenAI. GPT-4. https://openai.com/research/gpt-4, March 14 2023.

[32] OpenAI. GPT-4 Technical Report. https://doi.org/10.48550/arXiv.2303.08774,
March 15 2023. Submitted on 15 Mar 2023 (v1), last revised 27 Mar 2023 (this version,
v3). arXiv:arXiv:2303.08774.

[33] Mohammad Rizky Pratama and Dana Sulistiyo Kusumo. Implementation of continuous
integration and continuous delivery (ci/cd) on automatic performance testing. In 2021
9th International Conference on Information and Communication Technology (ICoICT),
pages 230–235, 2021. doi:10.1109/ICoICT52021.2021.9527496.

[34] I. Pölöskei. Mlops approach in the cloud-native data pipeline design. Acta Technica
Jaurinensis, 15(1):1–6, 2022.

110

https://learn.microsoft.com/en-us/azure/devops/pipelines/get-started/what-is-azure-pipelines
https://learn.microsoft.com/en-us/azure/devops/pipelines/get-started/what-is-azure-pipelines
https://www.openxcell.com/blog/chatgpt-vs-google-bard-vs-bing-chat/
https://www.openxcell.com/blog/chatgpt-vs-google-bard-vs-bing-chat/
https://learn.microsoft.com/en-us/devops/what-is-devops
https://learn.microsoft.com/en-us/devops/what-is-devops
https://www.sciencedirect.com/science/article/pii/S0164121223001292
https://doi.org/10.1016/j.jss.2023.111734
https://learn.microsoft.com/en-us/azure/devops/pipelines/library/service-endpoints?view=azure-devops&tabs=yaml
https://learn.microsoft.com/en-us/azure/devops/pipelines/library/service-endpoints?view=azure-devops&tabs=yaml
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9796235
https://openai.com/about
https://openai.com/blog/chatgpt
https://openai.com/research/gpt-4
https://doi.org/10.48550/arXiv.2303.08774
https://arxiv.org/abs/arXiv:2303.08774
https://doi.org/10.1109/ICoICT52021.2021.9527496

[35] M. Rajkumar, A.K. Pole, V.S. Adige, and P. Mahanta. Devops culture and its impact
on cloud delivery and software development. In 2016 International Conference on
Advances in Computing Communication & Automation (ICACCA)(Spring), pages 1–6,
2016.

[36] McLean Schofield. Microsoft azure documentation, 2022. [Online; accessed 18-October-
2022]. URL: https://learn.microsoft.com/en-us/azure/developer/intro/azur
e-developer-overview.

[37] Kalaivani Sundararajan. What is generative ai? a brief overview, 2023. [Online;
accessed on Date of access]. URL: https://www.openxcell.com/blog/what-is-gen
erative-ai-brief-overview/.

[38] G. Symeonidis, E. Nerantzis, A. Kazakis, and G. A. Papakostas. Mlops–definitions,
tools and challenges, 2022. URL: https://arxiv.org/abs/2201.00162.

[39] D. A. Tamburri. Sustainable mlops: Trends and challenges. In 2020 22nd International
Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC),
pages 17–23. IEEE, 2020.

[40] M. Treveil, N. Omont, C. Stenac, K. Lefevre, D. Phan, J. Zentici, A. Lavoillotte,
M. Miyazaki, and L. Heidmann. Introducing MLOps. O’Reilly Media, 2020.

[41] S. Verdi. Inside github: Working with the llms behind github copilot. The GitHub
Blog, September 29 2023. URL: https://github.blog/2023-05-17-inside-githu
b-working-with-the-llms-behind-github-copilot/.

[42] Chase Wilson. Azure devops documentation, 2023. [Online; accessed 10-October-2023].
URL: https://learn.microsoft.com/en-us/azure/devops/user-guide/what-i
s-azure-devops?

111

https://learn.microsoft.com/en-us/azure/developer/intro/azure-developer-overview
https://learn.microsoft.com/en-us/azure/developer/intro/azure-developer-overview
https://www.openxcell.com/blog/what-is-generative-ai-brief-overview/
https://www.openxcell.com/blog/what-is-generative-ai-brief-overview/
https://arxiv.org/abs/2201.00162
https://github.blog/2023-05-17-inside-github-working-with-the-llms-behind-github-copilot/
https://github.blog/2023-05-17-inside-github-working-with-the-llms-behind-github-copilot/
https://learn.microsoft.com/en-us/azure/devops/user-guide/what-is-azure-devops?
https://learn.microsoft.com/en-us/azure/devops/user-guide/what-is-azure-devops?

Appendix A

Template YAML code

A.1 JMeter YAML code

1 parameters:

2 - name: threads

3 type: string

4 default: ’10’

5 - name: rampup

6 type: string

7 default: ’1’

8 - name: loops

9 type: string

10 default: ’10’

11

12 jobs:

13 - job: Test

14 displayName: Test

15 pool:

16 vmImage: ’windows -2019’

17

18 steps:

19 - task: PowerShell@2

20 displayName: ’Install Apache JMeter ’

21 inputs:

22 targetType: ’inline ’

23 script: |

I

24 $jmeterZipUrl = ’https :// archive.apache.org/dist/

↪→ jmeter/binaries/apache -jmeter -5.5. zip’

25 $jmeterZipPath = ’$(System.DefaultWorkingDirectory)/
↪→ jmeter.zip’

26 $jmeterExtractPath = ’$(System.DefaultWorkingDirectory
↪→)/jmeter ’

27

28 Invoke -WebRequest -Uri $jmeterZipUrl -OutFile

↪→ $jmeterZipPath
29 Expand -Archive -Path $jmeterZipPath -DestinationPath

↪→ $jmeterExtractPath -Forc

30

31 - task: PowerShell@2

32 displayName: ’Set parameters runtime ’

33 inputs:

34 targetType: ’filePath ’

35 filePath: ’./ scripts/set_parameters.ps1’

36 arguments: ’-threads ${{ parameters.threads }} -rampup $
↪→ {{ parameters.rampup }} -loops ${{ parameters.

↪→ loops }}’

37

38 - script: |

39 $(System.DefaultWorkingDirectory)/jmeter/apache -jmeter
↪→ -5.5/ bin/jmeter -n -t $(System.
↪→ DefaultWorkingDirectory)/*.jmx -l $(System.
↪→ DefaultWorkingDirectory)/test_summary.jtl > $(
↪→ System.DefaultWorkingDirectory)/summary.txt

40 displayName: ’Run JMeter Test’

41

42 - task: PythonScript@0

43 displayName: ’Filter and concatenate test results ’

44 inputs:

45 scriptSource: ’filePath ’

46 scriptPath: ’./ scripts/filter_concatenate_test_results.

↪→ py’

47 arguments: ’--summary $(System.DefaultWorkingDirectory)/
↪→ summary.txt --test_summary $(System.
↪→ DefaultWorkingDirectory)/test_summary.jtl’

48

49 - task: PublishPipelineArtifact@1

50 inputs:

II

51 targetPath: ’$(System.DefaultWorkingDirectory)/
↪→ TestResults.txt’

52 artifact: ’JTLResults ’

Listing A.1: JMeter YAML code

A.2 OpenAi YAML code

1 parameters:

2 - name: tokens

3 type: string

4 default: ’4000’

5 - name: temperature

6 type: string

7 default: ’0.7’

8 - name: model

9 type: string

10 default: ’GPT4’

11 - name: workingDir

12 type: string

13 default: ’$(System.DefaultWorkingDirectory)’
14 - name: caption

15 type: string

16 default: ’Checkout our suggestions!’

17 - name: chatid

18 type: string

19 default: ’549538016 ’

20 - name: azSubscription

21 type: string

22 default: ’’

23

24 jobs:

25 - job: OpenAi

26 displayName: OpenAi

27 pool:

28 vmImage: ’windows -2019’

29

30 steps:

31 - task: DownloadPipelineArtifact@2

III

32 displayName: ’Download JTL Results Artifact ’

33 inputs:

34 artifactName: ’JTLResults ’

35 targetPath: ’$(System.DefaultWorkingDirectory)’
36

37 - task: AzureKeyVault@2

38 inputs:

39 azureSubscription: ’${{ parameters.azSubscription }}’

40 KeyVaultName: ’DevEmpower ’

41 SecretsFilter: ’${{ parameters.model }}-KEY ,${{
↪→ parameters.model }}-URL’

42 RunAsPreJob: false

43

44 - task: PowerShell@2

45 displayName: ’Call ChatGPT API’

46 inputs:

47 targetType: ’filePath ’

48 filePath: ’./ scripts/call_chat_gpt_api.ps1’

49 arguments: ’-jtlResultsPath $(System.
↪→ DefaultWorkingDirectory)/TestResults.txt -

↪→ functionCodePath ${{ parameters.workingDir }}/*.cs

↪→ -apiKey ${{ parameters.model }}-KEY -apiUrl ${{
↪→ parameters.model }}-URL -temperature ${{
↪→ parameters.temperature }} -tokens ${{ parameters.

↪→ tokens }}’

50

51 - task: UsePythonVersion@0

52 inputs:

53 versionSpec: ’3.x’

54 addToPath: true

55 architecture: ’x64’

56

57 - script: |

58 python -m pip install --upgrade pip

59 pip install requests

60 displayName: ’Install requests ’

61

62 - task: PythonScript@0

63 inputs:

64 scriptSource: ’filePath ’

65 scriptPath: ’./ scripts/send_to_telegram.py’

IV

66 arguments: ’-bot_token 6096186625:

↪→ AAHcTptWfiK5CIAmSEcmjEtpfJA1oiKGR_Q -chat_id ${{
↪→ parameters.chatid }} -document_paths [$(System.
↪→ DefaultWorkingDirectory)/generatedText.md, $(
↪→ System.DefaultWorkingDirectory)/userContent.txt] -

↪→ caption ${{ parameters.caption }}’

Listing A.2: OpenAi YAML code

V

Appendix B

C# function code

B.1 GetMean code

1 using System;

2 using System.IO;

3 using System.Threading.Tasks;

4 using Microsoft.AspNetCore.Mvc;

5 using Microsoft.Azure.WebJobs;

6 using Microsoft.Azure.WebJobs.Extensions.Http;

7 using Microsoft.AspNetCore.Http;

8 using Microsoft.Extensions.Logging;

9 using Newtonsoft.Json;

10 using System.Net.Http;

11 using Microsoft.Azure.Cosmos;

12 using System.ComponentModel;

13 using Azure;

14 using System.Collections.Generic;

15 using System.Collections.Concurrent;

16 using System.Linq;

17

18 namespace GetMean

19 {

20 public static class GetMean

21 {

22 private static readonly string cosmosDbEndpoint = Environment.

↪→ GetEnvironmentVariable("DBENDPOINT", EnvironmentVariableTarget.

↪→ Process);

23 private static readonly string cosmosDbKey = Environment.

↪→ GetEnvironmentVariable("DBKEY", EnvironmentVariableTarget.Process);

24 private static readonly string databaseId = Environment.

↪→ GetEnvironmentVariable("DBID", EnvironmentVariableTarget.Process);

VI

25 private static readonly string containerId = Environment.

↪→ GetEnvironmentVariable("CONTAINERID", EnvironmentVariableTarget.

↪→ Process);

26 private static readonly CosmosClient cosmosClient = new

↪→ CosmosClient(cosmosDbEndpoint , cosmosDbKey);

27 private static readonly Microsoft.Azure.Cosmos.Container

↪→ cosmosContainer = cosmosClient.GetContainer(databaseId , containerId

↪→);

28

29 [FunctionName("GetMean")]

30 public static async Task <IActionResult > Run(

31 [HttpTrigger(AuthorizationLevel.Anonymous , "get", Route =

↪→ null)] HttpRequest req ,

32 ILogger log)

33 {

34 ///*

35 try

36 {

37 string country = req.Query["Country"];

38

39 // Validate that the country is provided

40 if (string.IsNullOrEmpty(country))

41 {

42 return new BadRequestObjectResult("The ’Country ’

↪→ query parameter is required.");

43 }

44

45 FeedIterator <Volcano > queryResultSetIterator =

↪→ cosmosContainer.GetItemQueryIterator <Volcano >();

46 double sum = 0;

47 int count = 0;

48

49 while (queryResultSetIterator.HasMoreResults)

50 {

51 FeedResponse <Volcano > currentResultSet = await

↪→ queryResultSetIterator.ReadNextAsync ();

52

53 foreach (Volcano volcano in currentResultSet)

54 {

55 if (volcano.Country == country)

56 {

57 if (int.TryParse(volcano.Elevation , out int

↪→ parsedElevation))

58 {

59 sum += parsedElevation;

60 count ++;

61 }

62 else

63 {

VII

64 log.LogWarning($"Could not parse

↪→ elevation ’{volcano.Elevation}’ for volcano ’{volcano.VolcanoName

↪→ }’. This elevation will be ignored.");

65 }

66 }

67 }

68 }

69

70

71 // If no volcanoes found , return not found

72 if (count == 0)

73 {

74 return new NotFoundResult ();

75 }

76

77 // Calculate the mean elevation

78 double meanElevation = Math.Round(sum / count , 3);

79

80

81 return new OkObjectResult(meanElevation);

82 }

83 catch (Exception ex)

84 {

85 log.LogError(ex , "An error occurred while retrieving data

↪→ from Cosmos DB.");

86 return new StatusCodeResult(StatusCodes.

↪→ Status500InternalServerError);

87 }

88 }

89 //*/

90 }

91 public class Volcano

92 {

93 public string VolcanoName { get; set; }

94 public string Country { get; set; }

95 public string Region { get; set; }

96 public Location Location { get; set; }

97 public string Elevation { get; set; }

98 public string Type { get; set; }

99 public string Status { get; set; }

100 public string LastKnownEruption { get; set; }

101 public string Id { get; set; }

102 }

103

104 public class Location

105 {

106 public string Type { get; set; }

107 public List <double > Coordinates { get; set; }

108 }

VIII

109 }

Listing B.1: GETMean

B.2 GetAPI code

1 using System;

2 using System.IO;

3 using System.Threading.Tasks;

4 using Microsoft.AspNetCore.Mvc;

5 using Microsoft.Azure.WebJobs;

6 using Microsoft.Azure.WebJobs.Extensions.Http;

7 using Microsoft.AspNetCore.Http;

8 using Microsoft.Extensions.Logging;

9 using Newtonsoft.Json;

10 using System.Net.Http;

11 using Microsoft.Azure.Cosmos;

12 using System.ComponentModel;

13 using Azure;

14 using System.Collections.Generic;

15 using System.Collections.Concurrent;

16

17 namespace GetAPI

18 {

19 public static class GetAPI

20 {

21 private static readonly string cosmosDbEndpoint = Environment.

↪→ GetEnvironmentVariable("DBENDPOINT", EnvironmentVariableTarget.

↪→ Process);

22 private static readonly string cosmosDbKey = Environment.

↪→ GetEnvironmentVariable("DBKEY", EnvironmentVariableTarget.Process);

23 private static readonly string databaseId = Environment.

↪→ GetEnvironmentVariable("DBID", EnvironmentVariableTarget.Process);

24 private static readonly string containerId = Environment.

↪→ GetEnvironmentVariable("CONTAINERID", EnvironmentVariableTarget.

↪→ Process);

25 private static readonly CosmosClient cosmosClient = new

↪→ CosmosClient(cosmosDbEndpoint , cosmosDbKey);

26 private static readonly Microsoft.Azure.Cosmos.Container

↪→ cosmosContainer = cosmosClient.GetContainer(databaseId , containerId

↪→);

27

28 [FunctionName("GetWebAPI")]

29 public static async Task <IActionResult > Run(

30 [HttpTrigger(AuthorizationLevel.Anonymous , "get", Route =

↪→ null)] HttpRequest req ,

IX

31 ILogger log)

32 {

33 try

34 {

35 string id = req.Query["id"];

36

37 // Validate that the ID is provided

38 if (string.IsNullOrEmpty(id))

39 {

40 return new BadRequestObjectResult("The ’id ’ query

↪→ parameter is required.");

41 }

42

43 // Retrieve the item from Cosmos DB

44 var response = await cosmosContainer.ReadItemAsync <

↪→ RequestDocument >(id , new PartitionKey(id));

45

46 return new OkObjectResult(response.Resource);

47 }

48 catch (CosmosException ex) when (ex.StatusCode == System.Net.

↪→ HttpStatusCode.NotFound)

49 {

50 return new NotFoundResult ();

51 }

52 catch (Exception ex)

53 {

54 log.LogError(ex , "An error occurred while retrieving data

↪→ from Cosmos DB.");

55 return new StatusCodeResult(StatusCodes.

↪→ Status500InternalServerError);

56 }

57 }

58 }

59

60 public class RequestDocument

61 {

62 public string id { get; set; }

63 public string categoryId { get; set; }

64 public string categoryName { get; set; }

65 public string sku { get; set; }

66 public string name { get; set; }

67 public string description { get; set; }

68 public double Price { get; set; }

69 public List <Tag > tags { get; set; }

70 }

71

72 public class Tag

73 {

74 public string id { get; set; }

X

75 public string name { get; set; }

76 }

77 }

Listing B.2: GetAPI

B.3 PostAPI code

1 using System;

2 using System.IO;

3 using System.Threading.Tasks;

4 using Microsoft.AspNetCore.Mvc;

5 using Microsoft.Azure.WebJobs;

6 using Microsoft.Azure.WebJobs.Extensions.Http;

7 using Microsoft.AspNetCore.Http;

8 using Microsoft.Extensions.Logging;

9 using Newtonsoft.Json;

10 using System.Net.Http;

11 using Microsoft.Azure.Cosmos;

12 using System.ComponentModel;

13 using Azure;

14 using System.Collections.Generic;

15

16 namespace PostAPI

17 {

18

19

20 public static class PostAPI

21 {

22 private static readonly HttpClient httpClient = new HttpClient ();

23 private static readonly string cosmosDbEndpoint = Environment.

↪→ GetEnvironmentVariable("DBENDPOINT", EnvironmentVariableTarget.

↪→ Process);

24 private static readonly string cosmosDbKey = Environment.

↪→ GetEnvironmentVariable("DBKEY", EnvironmentVariableTarget.Process);

25 private static readonly string databaseId = Environment.

↪→ GetEnvironmentVariable("DBID", EnvironmentVariableTarget.Process);

26 private static readonly string containerId = Environment.

↪→ GetEnvironmentVariable("CONTAINERID", EnvironmentVariableTarget.

↪→ Process);

27 private static readonly CosmosClient cosmosClient = new

↪→ CosmosClient(cosmosDbEndpoint , cosmosDbKey);

28 private static readonly Microsoft.Azure.Cosmos.Container

↪→ cosmosContainer = cosmosClient.GetContainer(databaseId , containerId

↪→);

29

XI

30 [FunctionName("FiDelApp")]

31 public static async Task <IActionResult > Run(

32 [HttpTrigger(AuthorizationLevel.Anonymous , "post", Route =

↪→ null)] HttpRequest req ,

33 ILogger log)

34 {

35 try

36 {

37 string requestBody = await new StreamReader(req.Body).

↪→ ReadToEndAsync ();

38

39 // Deserialize the JSON request body

40 var requestDocument = JsonConvert.DeserializeObject <

↪→ RequestDocument >(requestBody);

41

42 // Validate that the ID is provided

43 if (string.IsNullOrEmpty(requestDocument.id))

44 {

45 return new BadRequestObjectResult("The ’id ’ property

↪→ is required.");

46 }

47

48 // Insert the JSON document into Cosmos DB

49 var response = await cosmosContainer.CreateItemAsync(

↪→ requestDocument);

50

51 return new OkObjectResult("Data inserted successfully!

↪→ Well Done! (12/07/2023)");

52 }

53 catch (Exception ex)

54 {

55 log.LogError(ex , "An error occurred while inserting data

↪→ into Cosmos DB.");

56 return new StatusCodeResult(StatusCodes.

↪→ Status500InternalServerError);

57 }

58 }

59 }

60 public class RequestDocument

61 {

62 public string id { get; set; }

63 public string categoryId { get; set; }

64 public string categoryName { get; set; }

65 public string sku { get; set; }

66 public string name { get; set; }

67 public string description { get; set; }

68 public double Price { get; set; }

69 public List <Tag > tags { get; set; }

70 }

XII

71 public class Tag

72 {

73 public string id { get; set; }

74 public string name { get; set; }

75 }

76 }

Listing B.3: PostAPI

B.4 CalculatePrimeNumbers code

1 using System;

2 using System.Net;

3 using Microsoft.AspNetCore.Mvc;

4 using Microsoft.Extensions.Primitives;

5 using Microsoft.Azure.WebJobs;

6 using Microsoft.Azure.WebJobs.Extensions.Http;

7 using Microsoft.AspNetCore.Http;

8 using System.Collections.Generic;

9 using System.IO;

10 using Newtonsoft.Json;

11

12 public static class CalculatePrimeNumbers

13 {

14 [FunctionName("CalculatePrimeNumbers")]

15 public static async Task <IActionResult > Run(

16 [HttpTrigger(AuthorizationLevel.Function , "get", Route = null)]

↪→ HttpRequest req , ILogger log)

17 {

18 log.LogInformation("C# HTTP trigger function processed a request.

↪→ ");

19

20 string number = req.Query["number"];

21 string requestBody = await new StreamReader(req.Body).

↪→ ReadToEndAsync ();

22 dynamic data = JsonConvert.DeserializeObject(requestBody);

23 number = number ?? data?. number;

24

25 if (int.TryParse(number , out int num))

26 {

27 List <int > primes = GetPrimes(num);

28 return new OkObjectResult($"Prime numbers up to {num}: {

↪→ string.Join(", ", primes)}");

29 }

30 else

31 {

XIII

32 return new BadRequestObjectResult("Please provide a valid

↪→ integer.");

33 }

34 }

35

36 private static List <int > GetPrimes(int maxNum)

37 {

38 var primes = new List <int >() { 2 };

39 for (int num = 3; num <= maxNum; num += 2)

40 {

41 bool isPrime = true;

42 for (int i = 0; primes[i] * primes[i] <= num; i++)

43 {

44 if (num % primes[i] == 0)

45 {

46 isPrime = false;

47 break;

48 }

49 }

50 if (isPrime)

51 {

52 primes.Add(num);

53 }

54 }

55 return primes;

56 }

57 }

Listing B.4: CalculatePrimeNumbers

XIV

Appendix C

JMeter Test Plans

C.1 GetMean Test plan

<?xml version ="1.0" encoding ="UTF -8"?>

<jmeterTestPlan version="1.2" properties="5.0" jmeter="5.5">

<hashTree >

<TestPlan guiclass="TestPlanGui" testclass="TestPlan"

↪→ testname="Test␣Plan" enabled="true">

<stringProp name="TestPlan.comments"></stringProp >

<boolProp name="TestPlan.functional_mode">false </

↪→ boolProp >

<boolProp name="TestPlan.tearDown_on_shutdown">true </

↪→ boolProp >

<boolProp name="TestPlan.serialize_threadgroups">false </

↪→ boolProp >

<elementProp name="TestPlan.user_defined_variables"

↪→ elementType="Arguments" guiclass="ArgumentsPanel"

↪→ testclass="Arguments" testname="User␣Defined␣

↪→ Variables" enabled="true">

<collectionProp name="Arguments.arguments"/>

</elementProp >

<stringProp name="TestPlan.user_define_classpath"></

↪→ stringProp >

</TestPlan >

<hashTree >

<Arguments guiclass="ArgumentsPanel" testclass="

↪→ Arguments" testname="User␣Defined␣Variables"

XV

↪→ enabled="true">

<collectionProp name="Arguments.arguments">

<elementProp name="1" elementType="Argument">

<stringProp name="Argument.name">1</stringProp >

<stringProp name="Argument.value">Japan </

↪→ stringProp >

<stringProp name="Argument.metadata">=</stringProp

↪→ >

</elementProp >

<elementProp name="2" elementType="Argument">

<stringProp name="Argument.name">2</stringProp >

<stringProp name="Argument.value">Italy </

↪→ stringProp >

<stringProp name="Argument.metadata">=</stringProp

↪→ >

</elementProp >

<elementProp name="3" elementType="Argument">

<stringProp name="Argument.name">3</stringProp >

<stringProp name="Argument.value">India </

↪→ stringProp >

<stringProp name="Argument.metadata">=</stringProp

↪→ >

</elementProp >

</collectionProp >

</Arguments >

<hashTree/>

<RandomVariableConfig guiclass="TestBeanGUI" testclass="

↪→ RandomVariableConfig" testname="Random␣Variable"

↪→ enabled="true">

<stringProp name="variableName">numCountry </ stringProp

↪→ >

<stringProp name="outputFormat"></stringProp >

<stringProp name="minimumValue">1</stringProp >

<stringProp name="maximumValue">3</stringProp >

<stringProp name="randomSeed"></stringProp >

<boolProp name="perThread">false </boolProp >

</RandomVariableConfig >

<hashTree/>

<ThreadGroup guiclass="ThreadGroupGui" testclass="

↪→ ThreadGroup" testname="Thread␣Group" enabled="true

↪→ ">

XVI

<stringProp name="ThreadGroup.on_sample_error">

↪→ continue </ stringProp >

<elementProp name="ThreadGroup.main_controller"

↪→ elementType="LoopController" guiclass="

↪→ LoopControlPanel" testclass="LoopController"

↪→ testname="Loop␣Controller" enabled="true">

<boolProp name="LoopController.continue_forever">

↪→ false </boolProp >

<stringProp name="LoopController.loops">10</

↪→ stringProp >

</elementProp >

<stringProp name="ThreadGroup.num_threads">10</

↪→ stringProp >

<stringProp name="ThreadGroup.ramp_time">1</stringProp

↪→ >

<boolProp name="ThreadGroup.scheduler">false </boolProp

↪→ >

<stringProp name="ThreadGroup.duration"></stringProp >

<stringProp name="ThreadGroup.delay"></stringProp >

<boolProp name="ThreadGroup.

↪→ same_user_on_next_iteration">true </boolProp >

</ThreadGroup >

<hashTree >

<HTTPSamplerProxy guiclass="HttpTestSampleGui"

↪→ testclass="HTTPSamplerProxy" testname="HTTP␣

↪→ Request" enabled="true">

<elementProp name="HTTPsampler.Arguments"

↪→ elementType="Arguments" guiclass="

↪→ HTTPArgumentsPanel" testclass="Arguments"

↪→ enabled="true">

<collectionProp name="Arguments.arguments">

<elementProp name="Country" elementType="

↪→ HTTPArgument">

<boolProp name="HTTPArgument.always_encode">

↪→ false </boolProp >

<stringProp name="Argument.value">${__V(${
↪→ numCountry })}</stringProp >

<stringProp name="Argument.metadata">=</

↪→ stringProp >

<boolProp name="HTTPArgument.use_equals">true

↪→ </boolProp >

XVII

<stringProp name="Argument.name">Country </

↪→ stringProp >

</elementProp >

</collectionProp >

</elementProp >

<stringProp name="HTTPSampler.domain">getmean.

↪→ azurewebsites.net </stringProp >

<stringProp name="HTTPSampler.port">443</ stringProp >

<stringProp name="HTTPSampler.protocol">https </

↪→ stringProp >

<stringProp name="HTTPSampler.contentEncoding"></

↪→ stringProp >

<stringProp name="HTTPSampler.path">/api/GetMean </

↪→ stringProp >

<stringProp name="HTTPSampler.method">GET </

↪→ stringProp >

<boolProp name="HTTPSampler.follow_redirects">true </

↪→ boolProp >

<boolProp name="HTTPSampler.auto_redirects">false </

↪→ boolProp >

<boolProp name="HTTPSampler.use_keepalive">true </

↪→ boolProp >

<boolProp name="HTTPSampler.DO_MULTIPART_POST">false

↪→ </boolProp >

<stringProp name="HTTPSampler.embedded_url_re"></

↪→ stringProp >

<stringProp name="HTTPSampler.connect_timeout"></

↪→ stringProp >

<stringProp name="HTTPSampler.response_timeout"></

↪→ stringProp >

</HTTPSamplerProxy >

<hashTree >

<ResultCollector guiclass="ViewResultsFullVisualizer

↪→ " testclass="ResultCollector" testname="View␣

↪→ Results␣Tree" enabled="true">

<boolProp name="ResultCollector.error_logging">

↪→ false </boolProp >

<objProp >

<name >saveConfig </name >

<value class="SampleSaveConfiguration">

<time >true </time >

XVIII

<latency >true </latency >

<timestamp >true </timestamp >

<success >true </success >

<label >true </label >

<code >true </code >

<message >true </message >

<threadName >true </threadName >

<dataType >true </dataType >

<encoding >false </encoding >

<assertions >true </assertions >

<subresults >true </subresults >

<responseData >false </ responseData >

<samplerData >false </ samplerData >

<xml >false </xml >

<fieldNames >true </fieldNames >

<responseHeaders >false </ responseHeaders >

<requestHeaders >false </ requestHeaders >

<responseDataOnError >false </

↪→ responseDataOnError >

<saveAssertionResultsFailureMessage >true </

↪→ saveAssertionResultsFailureMessage >

<assertionsResultsToSave >0</

↪→ assertionsResultsToSave >

<bytes >true </bytes >

<sentBytes >true </sentBytes >

<url >true </url >

<threadCounts >true </ threadCounts >

<idleTime >true </idleTime >

<connectTime >true </ connectTime >

</value >

</objProp >

<stringProp name="filename"></stringProp >

</ResultCollector >

<hashTree/>

</hashTree >

</hashTree >

</hashTree >

</hashTree >

</jmeterTestPlan >

Listing C.1: GetMean.jmx

XIX

C.2 GetAPI Test plan

<?xml version ="1.0" encoding ="UTF -8"?>

<jmeterTestPlan version="1.2" properties="5.0" jmeter="5.5">

<hashTree >

<TestPlan guiclass="TestPlanGui" testclass="TestPlan"

↪→ testname="Test␣Plan" enabled="true">

<stringProp name="TestPlan.comments"></stringProp >

<boolProp name="TestPlan.functional_mode">false </

↪→ boolProp >

<boolProp name="TestPlan.tearDown_on_shutdown">true </

↪→ boolProp >

<boolProp name="TestPlan.serialize_threadgroups">false </

↪→ boolProp >

<elementProp name="TestPlan.user_defined_variables"

↪→ elementType="Arguments" guiclass="ArgumentsPanel"

↪→ testclass="Arguments" testname="User␣Defined␣

↪→ Variables" enabled="true">

<collectionProp name="Arguments.arguments"/>

</elementProp >

<stringProp name="TestPlan.user_define_classpath"></

↪→ stringProp >

</TestPlan >

<hashTree >

<Arguments guiclass="ArgumentsPanel" testclass="

↪→ Arguments" testname="User␣Defined␣Variables"

↪→ enabled="true">

<collectionProp name="Arguments.arguments">

<elementProp name="threads" elementType="Argument">

<stringProp name="Argument.name">threads </

↪→ stringProp >

<stringProp name="Argument.value">${__P(threads)
↪→ }</stringProp >

<stringProp name="Argument.metadata">=</stringProp

↪→ >

<stringProp name="Argument.desc">${__P(threads)}</
↪→ stringProp >

</elementProp >

<elementProp name="rampup" elementType="Argument">

XX

<stringProp name="Argument.name">rampup </

↪→ stringProp >

<stringProp name="Argument.value">${__P(rampup)}</
↪→ stringProp >

<stringProp name="Argument.metadata">=</stringProp

↪→ >

<stringProp name="Argument.desc">${__P(rampup)}</
↪→ stringProp >

</elementProp >

<elementProp name="loops" elementType="Argument">

<stringProp name="Argument.name">loops </stringProp

↪→ >

<stringProp name="Argument.value">${__P(loops)}</
↪→ stringProp >

<stringProp name="Argument.metadata">=</stringProp

↪→ >

<stringProp name="Argument.desc">${__P(loops)}</
↪→ stringProp >

</elementProp >

</collectionProp >

</Arguments >

<hashTree/>

<ThreadGroup guiclass="ThreadGroupGui" testclass="

↪→ ThreadGroup" testname="Thread␣Group" enabled="true

↪→ ">

<stringProp name="ThreadGroup.on_sample_error">

↪→ continue </ stringProp >

<elementProp name="ThreadGroup.main_controller"

↪→ elementType="LoopController" guiclass="

↪→ LoopControlPanel" testclass="LoopController"

↪→ testname="Loop␣Controller" enabled="true">

<boolProp name="LoopController.continue_forever">

↪→ false </boolProp >

<stringProp name="LoopController.loops">${loops}</
↪→ stringProp >

</elementProp >

<stringProp name="ThreadGroup.num_threads">${threads
↪→ }</stringProp >

<stringProp name="ThreadGroup.ramp_time">${rumpup}</
↪→ stringProp >

XXI

<boolProp name="ThreadGroup.scheduler">false </boolProp

↪→ >

<stringProp name="ThreadGroup.duration"></stringProp >

<stringProp name="ThreadGroup.delay"></stringProp >

<boolProp name="ThreadGroup.

↪→ same_user_on_next_iteration">true </boolProp >

</ThreadGroup >

<hashTree >

<CounterConfig guiclass="CounterConfigGui" testclass="

↪→ CounterConfig" testname="Counter" enabled="false

↪→ ">

<stringProp name="CounterConfig.start">100</

↪→ stringProp >

<stringProp name="CounterConfig.end">1000 </

↪→ stringProp >

<stringProp name="CounterConfig.incr">1</stringProp >

<stringProp name="CounterConfig.name">ID </ stringProp

↪→ >

<stringProp name="CounterConfig.format"></stringProp

↪→ >

<boolProp name="CounterConfig.per_user">false </

↪→ boolProp >

</CounterConfig >

<hashTree/>

<RandomVariableConfig guiclass="TestBeanGUI" testclass

↪→ ="RandomVariableConfig" testname="Random␣

↪→ Variable" enabled="true">

<stringProp name="maximumValue">1000</ stringProp >

<stringProp name="minimumValue">100</ stringProp >

<stringProp name="outputFormat"></stringProp >

<boolProp name="perThread">false </boolProp >

<stringProp name="randomSeed"></stringProp >

<stringProp name="variableName">ID </stringProp >

</RandomVariableConfig >

<hashTree/>

<HTTPSamplerProxy guiclass="HttpTestSampleGui"

↪→ testclass="HTTPSamplerProxy" testname="HTTP␣

↪→ Request" enabled="true">

<elementProp name="HTTPsampler.Arguments"

↪→ elementType="Arguments" guiclass="

↪→ HTTPArgumentsPanel" testclass="Arguments"

XXII

↪→ testname="User␣Defined␣Variables" enabled="

↪→ true">

<collectionProp name="Arguments.arguments">

<elementProp name="id" elementType="HTTPArgument

↪→ ">

<boolProp name="HTTPArgument.always_encode">

↪→ false </boolProp >

<stringProp name="Argument.value">${ID}</
↪→ stringProp >

<stringProp name="Argument.metadata">=</

↪→ stringProp >

<boolProp name="HTTPArgument.use_equals">true

↪→ </boolProp >

<stringProp name="Argument.name">id </

↪→ stringProp >

</elementProp >

</collectionProp >

</elementProp >

<stringProp name="HTTPSampler.domain">getwebapi.

↪→ azurewebsites.net </stringProp >

<stringProp name="HTTPSampler.port">443</ stringProp >

<stringProp name="HTTPSampler.protocol">https </

↪→ stringProp >

<stringProp name="HTTPSampler.contentEncoding"></

↪→ stringProp >

<stringProp name="HTTPSampler.path">/api/GetWebAPI </

↪→ stringProp >

<stringProp name="HTTPSampler.method">GET </

↪→ stringProp >

<boolProp name="HTTPSampler.follow_redirects">true </

↪→ boolProp >

<boolProp name="HTTPSampler.auto_redirects">false </

↪→ boolProp >

<boolProp name="HTTPSampler.use_keepalive">true </

↪→ boolProp >

<boolProp name="HTTPSampler.DO_MULTIPART_POST">false

↪→ </boolProp >

<stringProp name="HTTPSampler.embedded_url_re"></

↪→ stringProp >

<stringProp name="HTTPSampler.connect_timeout"></

↪→ stringProp >

XXIII

<stringProp name="HTTPSampler.response_timeout"></

↪→ stringProp >

</HTTPSamplerProxy >

<hashTree >

<ResultCollector guiclass="SummaryReport" testclass=

↪→ "ResultCollector" testname="Summary␣Report"

↪→ enabled="true">

<boolProp name="ResultCollector.error_logging">

↪→ false </boolProp >

<objProp >

<name >saveConfig </name >

<value class="SampleSaveConfiguration">

<time >true </time >

<latency >true </latency >

<timestamp >true </timestamp >

<success >true </success >

<label >true </label >

<code >true </code >

<message >true </message >

<threadName >true </threadName >

<dataType >true </dataType >

<encoding >false </encoding >

<assertions >true </assertions >

<subresults >true </subresults >

<responseData >false </ responseData >

<samplerData >false </ samplerData >

<xml >false </xml >

<fieldNames >true </fieldNames >

<responseHeaders >false </ responseHeaders >

<requestHeaders >false </ requestHeaders >

<responseDataOnError >false </

↪→ responseDataOnError >

<saveAssertionResultsFailureMessage >true </

↪→ saveAssertionResultsFailureMessage >

<assertionsResultsToSave >0</

↪→ assertionsResultsToSave >

<bytes >true </bytes >

<sentBytes >true </sentBytes >

<url >true </url >

<threadCounts >true </ threadCounts >

<idleTime >true </idleTime >

XXIV

<connectTime >true </ connectTime >

</value >

</objProp >

<stringProp name="filename"></stringProp >

</ResultCollector >

<hashTree/>

<ResultCollector guiclass="ViewResultsFullVisualizer

↪→ " testclass="ResultCollector" testname="View␣

↪→ Results␣Tree" enabled="true">

<boolProp name="ResultCollector.error_logging">

↪→ true </boolProp >

<objProp >

<name >saveConfig </name >

<value class="SampleSaveConfiguration">

<time >true </time >

<latency >true </latency >

<timestamp >true </timestamp >

<success >true </success >

<label >true </label >

<code >true </code >

<message >true </message >

<threadName >true </threadName >

<dataType >true </dataType >

<encoding >false </encoding >

<assertions >true </assertions >

<subresults >true </subresults >

<responseData >false </ responseData >

<samplerData >false </ samplerData >

<xml >false </xml >

<fieldNames >true </fieldNames >

<responseHeaders >false </ responseHeaders >

<requestHeaders >false </ requestHeaders >

<responseDataOnError >false </

↪→ responseDataOnError >

<saveAssertionResultsFailureMessage >true </

↪→ saveAssertionResultsFailureMessage >

<assertionsResultsToSave >0</

↪→ assertionsResultsToSave >

<bytes >true </bytes >

<sentBytes >true </sentBytes >

<url >true </url >

XXV

<threadCounts >true </ threadCounts >

<idleTime >true </idleTime >

<connectTime >true </ connectTime >

</value >

</objProp >

<stringProp name="filename"></stringProp >

</ResultCollector >

<hashTree/>

</hashTree >

</hashTree >

</hashTree >

</hashTree >

</jmeterTestPlan >

Listing C.2: GetAPI.jmx

C.3 PostAPI Test plan

<?xml version ="1.0" encoding ="UTF -8"?>

<jmeterTestPlan version="1.2" properties="5.0" jmeter="5.5">

<hashTree >

<TestPlan guiclass="TestPlanGui" testclass="TestPlan"

↪→ testname="Test␣Plan" enabled="true">

<stringProp name="TestPlan.comments"></stringProp >

<boolProp name="TestPlan.functional_mode">false </

↪→ boolProp >

<boolProp name="TestPlan.tearDown_on_shutdown">true </

↪→ boolProp >

<boolProp name="TestPlan.serialize_threadgroups">false </

↪→ boolProp >

<elementProp name="TestPlan.user_defined_variables"

↪→ elementType="Arguments" guiclass="ArgumentsPanel"

↪→ testclass="Arguments" testname="User␣Defined␣

↪→ Variables" enabled="true">

<collectionProp name="Arguments.arguments"/>

</elementProp >

<stringProp name="TestPlan.user_define_classpath"></

↪→ stringProp >

</TestPlan >

XXVI

<hashTree >

<Arguments guiclass="ArgumentsPanel" testclass="

↪→ Arguments" testname="User␣Defined␣Variables"

↪→ enabled="true">

<collectionProp name="Arguments.arguments">

<elementProp name="threads" elementType="Argument">

<stringProp name="Argument.name">threads </

↪→ stringProp >

<stringProp name="Argument.value">${__P(threads)
↪→ }</stringProp >

<stringProp name="Argument.metadata">=</stringProp

↪→ >

<stringProp name="Argument.desc">${__P(threads)}</
↪→ stringProp >

</elementProp >

<elementProp name="rampup" elementType="Argument">

<stringProp name="Argument.name">rampup </

↪→ stringProp >

<stringProp name="Argument.value">${__P(rampup)}</
↪→ stringProp >

<stringProp name="Argument.metadata">=</stringProp

↪→ >

<stringProp name="Argument.desc">${__P(rampup)}</
↪→ stringProp >

</elementProp >

<elementProp name="loops" elementType="Argument">

<stringProp name="Argument.name">loops </stringProp

↪→ >

<stringProp name="Argument.value">${__P(loops)}</
↪→ stringProp >

<stringProp name="Argument.metadata">=</stringProp

↪→ >

<stringProp name="Argument.desc">${__P(loops)}</
↪→ stringProp >

</elementProp >

</collectionProp >

</Arguments >

<hashTree/>

<ThreadGroup guiclass="ThreadGroupGui" testclass="

↪→ ThreadGroup" testname="Thread␣Group" enabled="true

↪→ ">

XXVII

<stringProp name="ThreadGroup.on_sample_error">

↪→ continue </ stringProp >

<elementProp name="ThreadGroup.main_controller"

↪→ elementType="LoopController" guiclass="

↪→ LoopControlPanel" testclass="LoopController"

↪→ testname="Loop␣Controller" enabled="true">

<boolProp name="LoopController.continue_forever">

↪→ false </boolProp >

<stringProp name="LoopController.loops">${loops}</
↪→ stringProp >

</elementProp >

<stringProp name="ThreadGroup.num_threads">${threads
↪→ }</stringProp >

<stringProp name="ThreadGroup.ramp_time">${rumpup}</
↪→ stringProp >

<boolProp name="ThreadGroup.scheduler">false </boolProp

↪→ >

<stringProp name="ThreadGroup.duration"></stringProp >

<stringProp name="ThreadGroup.delay"></stringProp >

<boolProp name="ThreadGroup.

↪→ same_user_on_next_iteration">true </boolProp >

</ThreadGroup >

<hashTree >

<HTTPSamplerProxy guiclass="HttpTestSampleGui"

↪→ testclass="HTTPSamplerProxy" testname="HTTP␣

↪→ Request" enabled="true">

<boolProp name="HTTPSampler.postBodyRaw">true </

↪→ boolProp >

<elementProp name="HTTPsampler.Arguments"

↪→ elementType="Arguments">

<collectionProp name="Arguments.arguments">

<elementProp name="" elementType="HTTPArgument">

<boolProp name="HTTPArgument.always_encode">

↪→ false </boolProp >

<stringProp name="Argument.value">{

"id": "${__UUID ()}",
"categoryId": "3E4CEACD -D007 -46EB -82D7 -31

↪→ F6141752B2",

"categoryName": "Components , Road Frames&

↪→ quot;,

"sku": "FR-R38R -48& quot;,

XXVIII

"name": "LL Road Frame - Red , 48& quot;,

↪→ ;

"description": "The product called \"

↪→ LL Road Frame - Red , 48\& quot;",

"price": 337.22 ,

"tags": [

{

"id": " ;033 D3826 -2851 -4B97 -9464 -59

↪→ D3675175D4",

"name": "Tag -108& quot ;

},

{

"id": "A2176C7A -4E0D -4283-AFAA -319

↪→ A77E9C122",

"name": "Tag -19& quot ;

}

]

}</stringProp >

<stringProp name="Argument.metadata">=</

↪→ stringProp >

</elementProp >

</collectionProp >

</elementProp >

<stringProp name="HTTPSampler.domain">fidelapp.

↪→ azurewebsites.net </stringProp >

<stringProp name="HTTPSampler.port">443</ stringProp >

<stringProp name="HTTPSampler.protocol">https </

↪→ stringProp >

<stringProp name="HTTPSampler.contentEncoding"></

↪→ stringProp >

<stringProp name="HTTPSampler.path">/api/FiDelApp </

↪→ stringProp >

<stringProp name="HTTPSampler.method">POST </

↪→ stringProp >

<boolProp name="HTTPSampler.follow_redirects">true </

↪→ boolProp >

<boolProp name="HTTPSampler.auto_redirects">false </

↪→ boolProp >

<boolProp name="HTTPSampler.use_keepalive">true </

↪→ boolProp >

XXIX

<boolProp name="HTTPSampler.DO_MULTIPART_POST">false

↪→ </boolProp >

<stringProp name="HTTPSampler.embedded_url_re"></

↪→ stringProp >

<stringProp name="HTTPSampler.connect_timeout"></

↪→ stringProp >

<stringProp name="HTTPSampler.response_timeout"></

↪→ stringProp >

</HTTPSamplerProxy >

<hashTree >

<ResultCollector guiclass="SummaryReport" testclass=

↪→ "ResultCollector" testname="Summary␣Report"

↪→ enabled="true">

<boolProp name="ResultCollector.error_logging">

↪→ false </boolProp >

<objProp >

<name >saveConfig </name >

<value class="SampleSaveConfiguration">

<time >true </time >

<latency >true </latency >

<timestamp >true </timestamp >

<success >true </success >

<label >false </label >

<code >true </code >

<message >true </message >

<threadName >false </threadName >

<dataType >false </dataType >

<encoding >false </encoding >

<assertions >false </assertions >

<subresults >false </subresults >

<responseData >false </ responseData >

<samplerData >true </ samplerData >

<xml >true </xml >

<fieldNames >false </fieldNames >

<responseHeaders >true </ responseHeaders >

<requestHeaders >true </ requestHeaders >

<responseDataOnError >false </

↪→ responseDataOnError >

<saveAssertionResultsFailureMessage >true </

↪→ saveAssertionResultsFailureMessage >

XXX

<assertionsResultsToSave >0</

↪→ assertionsResultsToSave >

<sentBytes >true </sentBytes >

</value >

</objProp >

<stringProp name="filename"></stringProp >

</ResultCollector >

<hashTree/>

<ResultCollector guiclass="ViewResultsFullVisualizer

↪→ " testclass="ResultCollector" testname="View␣

↪→ Results␣Tree" enabled="true">

<boolProp name="ResultCollector.error_logging">

↪→ false </boolProp >

<objProp >

<name >saveConfig </name >

<value class="SampleSaveConfiguration">

<time >true </time >

<latency >true </latency >

<timestamp >true </timestamp >

<success >true </success >

<label >true </label >

<code >true </code >

<message >true </message >

<threadName >true </threadName >

<dataType >true </dataType >

<encoding >false </encoding >

<assertions >true </assertions >

<subresults >true </subresults >

<responseData >false </ responseData >

<samplerData >false </ samplerData >

<xml >false </xml >

<fieldNames >true </fieldNames >

<responseHeaders >false </ responseHeaders >

<requestHeaders >false </ requestHeaders >

<responseDataOnError >false </

↪→ responseDataOnError >

<saveAssertionResultsFailureMessage >true </

↪→ saveAssertionResultsFailureMessage >

<assertionsResultsToSave >0</

↪→ assertionsResultsToSave >

<bytes >true </bytes >

XXXI

<sentBytes >true </sentBytes >

<url >true </url >

<threadCounts >true </ threadCounts >

<idleTime >true </idleTime >

<connectTime >true </ connectTime >

</value >

</objProp >

<stringProp name="filename"></stringProp >

</ResultCollector >

<hashTree/>

</hashTree >

</hashTree >

</hashTree >

</hashTree >

</jmeterTestPlan >

Listing C.3: PostAPI.jmx

C.4 CalculatePrimeNumbers Test plan

<?xml version ="1.0" encoding ="UTF -8"?>

<jmeterTestPlan version="1.2" properties="5.0" jmeter="5.5">

<hashTree >

<TestPlan guiclass="TestPlanGui" testclass="TestPlan"

↪→ testname="Test␣Plan" enabled="true">

<stringProp name="TestPlan.comments"></stringProp >

<boolProp name="TestPlan.functional_mode">false </

↪→ boolProp >

<boolProp name="TestPlan.tearDown_on_shutdown">true </

↪→ boolProp >

<boolProp name="TestPlan.serialize_threadgroups">false </

↪→ boolProp >

<elementProp name="TestPlan.user_defined_variables"

↪→ elementType="Arguments" guiclass="ArgumentsPanel"

↪→ testclass="Arguments" testname="User␣Defined␣

↪→ Variables" enabled="true">

<collectionProp name="Arguments.arguments"/>

</elementProp >

XXXII

<stringProp name="TestPlan.user_define_classpath"></

↪→ stringProp >

</TestPlan >

<hashTree >

<Arguments guiclass="ArgumentsPanel" testclass="

↪→ Arguments" testname="User␣Defined␣Variables"

↪→ enabled="true">

<collectionProp name="Arguments.arguments">

<elementProp name="threads" elementType="Argument">

<stringProp name="Argument.name">threads </

↪→ stringProp >

<stringProp name="Argument.value">${__P(threads)
↪→ }</stringProp >

<stringProp name="Argument.metadata">=</stringProp

↪→ >

<stringProp name="Argument.desc">${__P(threads)}</
↪→ stringProp >

</elementProp >

<elementProp name="rampup" elementType="Argument">

<stringProp name="Argument.name">rampup </

↪→ stringProp >

<stringProp name="Argument.value">${__P(rampup)}</
↪→ stringProp >

<stringProp name="Argument.metadata">=</stringProp

↪→ >

<stringProp name="Argument.desc">${__P(rampup)}</
↪→ stringProp >

</elementProp >

<elementProp name="loops" elementType="Argument">

<stringProp name="Argument.name">loops </stringProp

↪→ >

<stringProp name="Argument.value">${__P(loops)}</
↪→ stringProp >

<stringProp name="Argument.metadata">=</stringProp

↪→ >

<stringProp name="Argument.desc">${__P(loops)}</
↪→ stringProp >

</elementProp >

</collectionProp >

</Arguments >

<hashTree/>

XXXIII

<ThreadGroup guiclass="ThreadGroupGui" testclass="

↪→ ThreadGroup" testname="Thread␣Group" enabled="true

↪→ ">

<stringProp name="ThreadGroup.on_sample_error">

↪→ continue </ stringProp >

<elementProp name="ThreadGroup.main_controller"

↪→ elementType="LoopController" guiclass="

↪→ LoopControlPanel" testclass="LoopController"

↪→ testname="Loop␣Controller" enabled="true">

<boolProp name="LoopController.continue_forever">

↪→ false </boolProp >

<stringProp name="LoopController.loops">${loops}</
↪→ stringProp >

</elementProp >

<stringProp name="ThreadGroup.num_threads">${threads
↪→ }</stringProp >

<stringProp name="ThreadGroup.ramp_time">${rumpup}</
↪→ stringProp >

<boolProp name="ThreadGroup.scheduler">false </boolProp

↪→ >

<stringProp name="ThreadGroup.duration"></stringProp >

<stringProp name="ThreadGroup.delay"></stringProp >

<boolProp name="ThreadGroup.

↪→ same_user_on_next_iteration">true </boolProp >

</ThreadGroup >

<hashTree >

<RandomVariableConfig guiclass="TestBeanGUI" testclass

↪→ ="RandomVariableConfig" testname="Random␣

↪→ Variable" enabled="true">

<stringProp name="maximumValue">1000001 </ stringProp >

<stringProp name="minimumValue">1000000 </ stringProp >

<stringProp name="outputFormat"></stringProp >

<boolProp name="perThread">false </boolProp >

<stringProp name="randomSeed"></stringProp >

<stringProp name="variableName">NUMBER </stringProp >

</RandomVariableConfig >

<hashTree/>

<HTTPSamplerProxy guiclass="HttpTestSampleGui"

↪→ testclass="HTTPSamplerProxy" testname="HTTP␣

↪→ Request" enabled="true">

XXXIV

<elementProp name="HTTPsampler.Arguments"

↪→ elementType="Arguments" guiclass="

↪→ HTTPArgumentsPanel" testclass="Arguments"

↪→ testname="User␣Defined␣Variables" enabled="

↪→ true">

<collectionProp name="Arguments.arguments">

<elementProp name="number" elementType="

↪→ HTTPArgument">

<boolProp name="HTTPArgument.always_encode">

↪→ false </boolProp >

<stringProp name="Argument.value">1000000 </

↪→ stringProp >

<stringProp name="Argument.metadata">=</

↪→ stringProp >

<boolProp name="HTTPArgument.use_equals">true

↪→ </boolProp >

<stringProp name="Argument.name">number </

↪→ stringProp >

</elementProp >

<elementProp name="code" elementType="

↪→ HTTPArgument">

<boolProp name="HTTPArgument.always_encode">

↪→ false </boolProp >

<stringProp name="Argument.value">

↪→ eGey3pmSHrb3HvoFf0gzMIdLP7hthzrTLqwKvLwneQm7AzFuDGzGeA

↪→ ==</ stringProp >

<stringProp name="Argument.metadata">=</

↪→ stringProp >

<boolProp name="HTTPArgument.use_equals">true

↪→ </boolProp >

<stringProp name="Argument.name">code </

↪→ stringProp >

</elementProp >

</collectionProp >

</elementProp >

<stringProp name="HTTPSampler.domain">

↪→ validationtestfunctions.azurewebsites.net </

↪→ stringProp >

<stringProp name="HTTPSampler.port">443</ stringProp >

<stringProp name="HTTPSampler.protocol">https </

↪→ stringProp >

XXXV

<stringProp name="HTTPSampler.contentEncoding"></

↪→ stringProp >

<stringProp name="HTTPSampler.path">api/

↪→ CalculatePrimeNumbers </ stringProp >

<stringProp name="HTTPSampler.method">GET </

↪→ stringProp >

<boolProp name="HTTPSampler.follow_redirects">true </

↪→ boolProp >

<boolProp name="HTTPSampler.auto_redirects">false </

↪→ boolProp >

<boolProp name="HTTPSampler.use_keepalive">true </

↪→ boolProp >

<boolProp name="HTTPSampler.DO_MULTIPART_POST">false

↪→ </boolProp >

<stringProp name="HTTPSampler.embedded_url_re"></

↪→ stringProp >

<stringProp name="HTTPSampler.connect_timeout"></

↪→ stringProp >

<stringProp name="HTTPSampler.response_timeout"></

↪→ stringProp >

</HTTPSamplerProxy >

<hashTree >

<ResultCollector guiclass="SummaryReport" testclass=

↪→ "ResultCollector" testname="Summary␣Report"

↪→ enabled="true">

<boolProp name="ResultCollector.error_logging">

↪→ false </boolProp >

<objProp >

<name >saveConfig </name >

<value class="SampleSaveConfiguration">

<time >true </time >

<latency >true </latency >

<timestamp >true </timestamp >

<success >true </success >

<label >true </label >

<code >true </code >

<message >true </message >

<threadName >true </threadName >

<dataType >true </dataType >

<encoding >false </encoding >

<assertions >true </assertions >

XXXVI

<subresults >true </subresults >

<responseData >false </ responseData >

<samplerData >false </ samplerData >

<xml >false </xml >

<fieldNames >true </fieldNames >

<responseHeaders >false </ responseHeaders >

<requestHeaders >false </ requestHeaders >

<responseDataOnError >false </

↪→ responseDataOnError >

<saveAssertionResultsFailureMessage >true </

↪→ saveAssertionResultsFailureMessage >

<assertionsResultsToSave >0</

↪→ assertionsResultsToSave >

<bytes >true </bytes >

<sentBytes >true </sentBytes >

<threadCounts >true </ threadCounts >

<idleTime >true </idleTime >

<connectTime >true </ connectTime >

</value >

</objProp >

<stringProp name="filename">C:\ Users\a.penco\

↪→ OneDrive - Reply\Desktop\summary.jtl </

↪→ stringProp >

</ResultCollector >

<hashTree/>

<ResultCollector guiclass="ViewResultsFullVisualizer

↪→ " testclass="ResultCollector" testname="View␣

↪→ Results␣Tree" enabled="true">

<boolProp name="ResultCollector.error_logging">

↪→ false </boolProp >

<objProp >

<name >saveConfig </name >

<value class="SampleSaveConfiguration">

<time >true </time >

<latency >true </latency >

<timestamp >true </timestamp >

<success >true </success >

<label >true </label >

<code >true </code >

<message >true </message >

<threadName >true </threadName >

XXXVII

<dataType >true </dataType >

<encoding >false </encoding >

<assertions >true </assertions >

<subresults >true </subresults >

<responseData >false </ responseData >

<samplerData >false </ samplerData >

<xml >false </xml >

<fieldNames >true </fieldNames >

<responseHeaders >false </ responseHeaders >

<requestHeaders >false </ requestHeaders >

<responseDataOnError >false </

↪→ responseDataOnError >

<saveAssertionResultsFailureMessage >true </

↪→ saveAssertionResultsFailureMessage >

<assertionsResultsToSave >0</

↪→ assertionsResultsToSave >

<bytes >true </bytes >

<sentBytes >true </sentBytes >

<url >true </url >

<threadCounts >true </ threadCounts >

<idleTime >true </idleTime >

<connectTime >true </ connectTime >

</value >

</objProp >

<stringProp name="filename"></stringProp >

</ResultCollector >

<hashTree/>

</hashTree >

</hashTree >

</hashTree >

</hashTree >

</jmeterTestPlan >

Listing C.4: CalculatePrimeNumbers.jmx

XXXVIII

Appendix D

Prompt Engineering component

D.1 JMeter result files

JTL file

timeStamp ,elapsed ,label ,responseCode ,responseMessage ,threadName ,

↪→ dataType ,success ,failureMessage ,bytes ,sentBytes ,grpThreads ,

↪→ allThreads ,URL ,Latency ,IdleTime ,Connect

timeStamp ,elapsed ,label ,responseCode ,responseMessage ,threadName ,

↪→ dataType ,success ,failureMessage ,bytes ,sentBytes ,grpThreads ,

↪→ allThreads ,URL ,Latency ,IdleTime ,Connect

1699096653555 ,96198 , HTTP Request ,429,Too Many Requests ,Thread

↪→ Group 1-65,,false , ,158 ,155 ,1000 ,1000 , https:// getmean.

↪→ azurewebsites.net/api/GetMean?Country=Italy ,96193 ,0 ,96041

1699096653279 ,96483 , HTTP Request ,429,Too Many Requests ,Thread

↪→ Group 1-15,,false , ,158 ,155 ,1000 ,1000 , https:// getmean.

↪→ azurewebsites.net/api/GetMean?Country=Italy ,96483 ,0 ,96307

1699096653460 ,96303 , HTTP Request ,429,Too Many Requests ,Thread

↪→ Group 1-668,,false , ,158 ,155 ,1000 ,1000 , https:// getmean.

↪→ azurewebsites.net/api/GetMean?Country=Japan ,96303 ,0 ,96128

1699096653791 ,95972 , HTTP Request ,429,Too Many Requests ,Thread

↪→ Group 1-902,,false , ,158 ,155 ,1000 ,1000 , https:// getmean.

↪→ azurewebsites.net/api/GetMean?Country=India ,95972 ,0 ,95795

1699096653222 ,96541 , HTTP Request ,429,Too Many Requests ,Thread

↪→ Group 1-538,,false , ,158 ,155 ,1000 ,1000 , https:// getmean.

↪→ azurewebsites.net/api/GetMean?Country=Japan ,96541 ,0 ,96349

1699096653235 ,96528 , HTTP Request ,429,Too Many Requests ,Thread

↪→ Group 1-646,,false , ,158 ,155 ,1000 ,1000 , https:// getmean.

XXXIX

↪→ azurewebsites.net/api/GetMean?Country=Japan ,96528 ,0 ,96351

1699096653714 ,96050 , HTTP Request ,429,Too Many Requests ,Thread

↪→ Group 1-970,,false , ,158 ,155 ,1000 ,1000 , https:// getmean.

↪→ azurewebsites.net/api/GetMean?Country=India ,96050 ,0 ,95866

1699096653624 ,96140 , HTTP Request ,429,Too Many Requests ,Thread

↪→ Group 1-139,,false , ,158 ,155 ,1000 ,1000 , https:// getmean.

↪→ azurewebsites.net/api/GetMean?Country=Japan ,96140 ,0 ,95950

1699096653425 ,96339 , HTTP Request ,429,Too Many Requests ,Thread

↪→ Group 1-885,,false , ,158 ,155 ,1000 ,1000 , https:// getmean.

↪→ azurewebsites.net/api/GetMean?Country=Italy ,96339 ,0 ,96149

...

...

...

1699096898618 ,315 , HTTP Request ,200,OK ,Thread Group 1-642,text ,true

↪→ ,,195,155,2,2, https:// getmean.azurewebsites.net/api/GetMean?

↪→ Country=India ,315,0,0

1699096898700 ,325 , HTTP Request ,200,OK ,Thread Group 1-851,text ,true

↪→ ,,195,155,2,2, https:// getmean.azurewebsites.net/api/GetMean?

↪→ Country=India ,325,0,0

1699096898933 ,315 , HTTP Request ,200,OK ,Thread Group 1-642,text ,true

↪→ ,,195,155,2,2, https:// getmean.azurewebsites.net/api/GetMean?

↪→ Country=India ,315,0,0

1699096899025 ,323 , HTTP Request ,200,OK ,Thread Group 1-851,text ,true

↪→ ,,198,155,1,1, https:// getmean.azurewebsites.net/api/GetMean?

↪→ Country=Japan ,323,0,0

Listing D.1: GetMean.jtl

TXT summary file

Creating summariser <summary >

Created the tree successfully using D:\a\1\s\GetMean.jmx

Starting standalone test @ November 4, 2023 11:17:28 AM UTC

↪→ (1699096648850)

Waiting for possible Shutdown/StopTestNow/HeapDump/ThreadDump

↪→ message on port 4445

summary + 27611 in 00:01:59 = 231.1/s Avg: 4154 Min: 19 Max:

↪→ 102787 Err: 23309 (84.42%) Active: 1000 Started: 1000

↪→ Finished: 0

summary + 50478 in 00:00:30 = 1683.0/s Avg: 553 Min: 18 Max:

↪→ 8504 Err: 44202 (87.57%) Active: 796 Started: 1000 Finished

↪→ : 204

XL

summary = 78089 in 00:02:29 = 522.5/s Avg: 1826 Min: 18 Max:

↪→ 102787 Err: 67511 (86.45%)

summary + 7010 in 00:00:30 = 233.7/s Avg: 3191 Min: 1064 Max:

↪→ 11273 Err: 791 (11.28%) Active: 666 Started: 1000 Finished

↪→ : 334

summary = 85099 in 00:02:59 = 474.2/s Avg: 1939 Min: 18 Max:

↪→ 102787 Err: 68302 (80.26%)

summary + 6943 in 00:00:30 = 231.4/s Avg: 2559 Min: 530 Max:

↪→ 7988 Err: 798 (11.49%) Active: 470 Started: 1000 Finished

↪→ : 530

summary = 92042 in 00:03:29 = 439.4/s Avg: 1985 Min: 18 Max:

↪→ 102787 Err: 69100 (75.07%)

summary + 7252 in 00:00:30 = 241.7/s Avg: 1395 Min: 307 Max:

↪→ 9672 Err: 428 (5.90%) Active: 76 Started: 1000 Finished:

↪→ 924

summary = 99294 in 00:03:59 = 414.7/s Avg: 1942 Min: 18 Max:

↪→ 102787 Err: 69528 (70.02%)

summary + 706 in 00:00:09 = 75.6/s Avg: 325 Min: 308 Max:

↪→ 746 Err: 0 (0.00%) Active: 0 Started: 1000 Finished:

↪→ 1000

summary = 100000 in 00:04:09 = 401.9/s Avg: 1931 Min: 18 Max:

↪→ 102787 Err: 69528 (69.53%)

Tidying up ... @ November 4, 2023 11:21:39 AM UTC

↪→ (1699096899348)

... end of run

Listing D.2: summary.txt

D.2 Generated JMeter input for GPT model

Result from the JTL file from the JMeter test in which are saved

↪→ the errors and the description:

66587 x 429 Too Many Requests

2941 x 500 Internal Server Error

Summary results:

summary + 27611 in 00:01:59 = 231.1/s Avg: 4154 Min: 19 Max:

↪→ 102787 Err: 23309 (84.42%) Active: 1000 Started: 1000

↪→ Finished: 0

XLI

summary + 50478 in 00:00:30 = 1683.0/s Avg: 553 Min: 18 Max:

↪→ 8504 Err: 44202 (87.57%) Active: 796 Started: 1000 Finished

↪→ : 204

summary = 78089 in 00:02:29 = 522.5/s Avg: 1826 Min: 18 Max:

↪→ 102787 Err: 67511 (86.45%)

summary + 7010 in 00:00:30 = 233.7/s Avg: 3191 Min: 1064 Max:

↪→ 11273 Err: 791 (11.28%) Active: 666 Started: 1000 Finished

↪→ : 334

summary = 85099 in 00:02:59 = 474.2/s Avg: 1939 Min: 18 Max:

↪→ 102787 Err: 68302 (80.26%)

summary + 6943 in 00:00:30 = 231.4/s Avg: 2559 Min: 530 Max:

↪→ 7988 Err: 798 (11.49%) Active: 470 Started: 1000 Finished

↪→ : 530

summary = 92042 in 00:03:29 = 439.4/s Avg: 1985 Min: 18 Max:

↪→ 102787 Err: 69100 (75.07%)

summary + 7252 in 00:00:30 = 241.7/s Avg: 1395 Min: 307 Max:

↪→ 9672 Err: 428 (5.90%) Active: 76 Started: 1000 Finished:

↪→ 924

summary = 99294 in 00:03:59 = 414.7/s Avg: 1942 Min: 18 Max:

↪→ 102787 Err: 69528 (70.02%)

summary + 706 in 00:00:09 = 75.6/s Avg: 325 Min: 308 Max:

↪→ 746 Err: 0 (0.00%) Active: 0 Started: 1000 Finished:

↪→ 1000

summary = 100000 in 00:04:09 = 401.9/s Avg: 1931 Min: 18 Max:

↪→ 102787 Err: 69528 (69.53%)

Listing D.3: TestResults.txt

D.3 Input for GPT model

Provide improved implementation example taking into account the

↪→ following:

JTL Results:

Result from the JTL file from the JMeter test in which are saved

↪→ the errors and the description:

66587 x 429 Too Many Requests

XLII

2941 x 500 Internal Server Error

Summary results:

summary + 27611 in 00:01:59 = 231.1/s Avg: 4154 Min: 19 Max:

↪→ 102787 Err: 23309 (84.42%) Active: 1000 Started: 1000

↪→ Finished: 0

summary + 50478 in 00:00:30 = 1683.0/s Avg: 553 Min: 18 Max:

↪→ 8504 Err: 44202 (87.57%) Active: 796 Started: 1000 Finished

↪→ : 204

summary = 78089 in 00:02:29 = 522.5/s Avg: 1826 Min: 18 Max:

↪→ 102787 Err: 67511 (86.45%)

summary + 7010 in 00:00:30 = 233.7/s Avg: 3191 Min: 1064 Max:

↪→ 11273 Err: 791 (11.28%) Active: 666 Started: 1000 Finished

↪→ : 334

summary = 85099 in 00:02:59 = 474.2/s Avg: 1939 Min: 18 Max:

↪→ 102787 Err: 68302 (80.26%)

summary + 6943 in 00:00:30 = 231.4/s Avg: 2559 Min: 530 Max:

↪→ 7988 Err: 798 (11.49%) Active: 470 Started: 1000 Finished

↪→ : 530

summary = 92042 in 00:03:29 = 439.4/s Avg: 1985 Min: 18 Max:

↪→ 102787 Err: 69100 (75.07%)

summary + 7252 in 00:00:30 = 241.7/s Avg: 1395 Min: 307 Max:

↪→ 9672 Err: 428 (5.90%) Active: 76 Started: 1000 Finished:

↪→ 924

summary = 99294 in 00:03:59 = 414.7/s Avg: 1942 Min: 18 Max:

↪→ 102787 Err: 69528 (70.02%)

summary + 706 in 00:00:09 = 75.6/s Avg: 325 Min: 308 Max:

↪→ 746 Err: 0 (0.00%) Active: 0 Started: 1000 Finished:

↪→ 1000

summary = 100000 in 00:04:09 = 401.9/s Avg: 1931 Min: 18 Max:

↪→ 102787 Err: 69528 (69.53%)

Function Code:

using System;

using System.IO;

using System.Threading.Tasks;

using Microsoft.AspNetCore.Mvc;

using Microsoft.Azure.WebJobs;

using Microsoft.Azure.WebJobs.Extensions.Http;

using Microsoft.AspNetCore.Http;

XLIII

using Microsoft.Extensions.Logging;

using Newtonsoft.Json;

using System.Net.Http;

using Microsoft.Azure.Cosmos;

using System.ComponentModel;

using Azure;

using System.Collections.Generic;

using System.Collections.Concurrent;

using System.Linq;

namespace GetMean

{

public static class GetMean

{

private static readonly string cosmosDbEndpoint =

↪→ Environment.GetEnvironmentVariable("DBENDPOINT",

↪→ EnvironmentVariableTarget.Process);

private static readonly string cosmosDbKey = Environment.

↪→ GetEnvironmentVariable("DBKEY",

↪→ EnvironmentVariableTarget.Process);

private static readonly string databaseId = Environment.

↪→ GetEnvironmentVariable("DBID",

↪→ EnvironmentVariableTarget.Process);

private static readonly string containerId = Environment.

↪→ GetEnvironmentVariable("CONTAINERID",

↪→ EnvironmentVariableTarget.Process);

private static readonly CosmosClient cosmosClient = new

↪→ CosmosClient(cosmosDbEndpoint , cosmosDbKey);

private static readonly Microsoft.Azure.Cosmos.Container

↪→ cosmosContainer = cosmosClient.GetContainer(

↪→ databaseId , containerId);

[FunctionName("GetMean")]

public static async Task <IActionResult > Run(

[HttpTrigger(AuthorizationLevel.Anonymous , "get",

↪→ Route = null)] HttpRequest req ,

ILogger log)

{

try

{

string country = req.Query["Country"];

// Validate that the country is provided

XLIV

if (string.IsNullOrEmpty(country))

{

return new BadRequestObjectResult("The␣’

↪→ Country ’␣query␣parameter␣is␣required.");

}

FeedIterator <Volcano > queryResultSetIterator =

↪→ cosmosContainer.GetItemQueryIterator <Volcano

↪→ >();

double sum = 0;

int count = 0;

while (queryResultSetIterator.HasMoreResults)

{

FeedResponse <Volcano > currentResultSet = await

↪→ queryResultSetIterator.ReadNextAsync ();

foreach (Volcano volcano in currentResultSet)

{

if (volcano.Country == country)

{

if (int.TryParse(volcano.Elevation ,

↪→ out int parsedElevation))

{

sum += parsedElevation;

count ++;

}

else

{

log.LogWarning($"Could␣not␣parse␣
↪→ elevation␣ ’{volcano.Elevation

↪→ }’␣for␣volcano␣ ’{volcano.

↪→ VolcanoName }’.␣This␣elevation

↪→ ␣will␣be␣ignored.");

}

}

}

}

// If no volcanoes found , return not found

if (count == 0)

{

return new NotFoundResult ();

XLV

}

// Calculate the mean elevation

double meanElevation = Math.Round(sum / count , 3);

return new OkObjectResult(meanElevation);

}

catch (Exception ex)

{

log.LogError(ex , "An␣error␣occurred␣while␣

↪→ retrieving␣data␣from␣Cosmos␣DB.");

return new StatusCodeResult(StatusCodes.

↪→ Status500InternalServerError);

}

}

}

public class Volcano

{

public string VolcanoName { get; set; }

public string Country { get; set; }

public string Region { get; set; }

public Location Location { get; set; }

public string Elevation { get; set; }

public string Type { get; set; }

public string Status { get; set; }

public string LastKnownEruption { get; set; }

public string Id { get; set; }

}

public class Location

{

public string Type { get; set; }

public List <double > Coordinates { get; set; }

}

}

Listing D.4: InputForGPT.txt

XLVI

Appendix E

Test with different program without
prompt engineering

E.1 Test results with GPT-3

Prototype response for GetMean

The JTL file contains results from a JMeter test. It includes information
such as timeStamp, elapsed time, label, response code, response message,
thread name, data type, success, failure message, bytes, sent bytes, group
threads, all threads, URL, latency, idle time, and connection.

The function code is written in C# and is a Azure Function named ”Get-
Mean”. It is triggered by an HTTP GET request and retrieves data from
a Cosmos DB. The function calculates the mean elevation of volcanoes
in a specific country. It reads the ”Country” query parameter from the
request and queries the Cosmos DB container for volcanoes in that country.
It then calculates the mean elevation by summing up the elevations and
dividing by the number of volcanoes found. The result is returned as a
HTTP response.

The function uses the Cosmos Client SDK to connect to the Cosmos DB
using the endpoint and key provided as environment variables. It retrieves
the Cosmos DB container and iterates over the query results to calculate
the mean elevation.

The function handles various scenarios, such as when the ”Country” query

XLVII

parameter is not provided or when no volcanoes are found for the given
country. It logs any errors that occur during the execution and returns
appropriate HTTP responses.

Prototype response for GetAPI

The JTL results show the details of the JMeter test, including the times-
tamp, elapsed time, label, response code, response message, thread name,
data type, success status, failure message, bytes, sent bytes, group threads,
all threads, URL, latency, idle time, and connect time.

The function code is a C# program that uses Azure Functions to create a
HTTP trigger function named ”GetAPI”. This function retrieves data from
a Cosmos DB container using the provided ID as a query parameter. If the
ID is not provided, a BadRequestObjectResult is returned. If the item is
not found in the Cosmos DB, a NotFoundResult is returned. If any other
exception occurs during the retrieval process, a StatusCodeResult with a
status code of 500 is returned. The RequestDocument class represents the
structure of the item in the Cosmos DB container, with properties for the
ID, category ID, category name, SKU, name, description, price, and a list
of tags. The Tag class represents a tag with an ID and name.

Prototype response for PostAPI

From the JTL results, it looks like there were a total of 100 HTTP requests
made, with all of them resulting in an internal server error (500). The
average response time for the requests was 923 milliseconds, with the
minimum being 154 milliseconds and the maximum being 6885 milliseconds.

The function code provided is a C# Azure Function with an HTTP trigger.
It reads a JSON request body, deserializes it into a ‘RequestDocument‘
object, and then inserts the document into a Cosmos DB container using
the Cosmos DB .NET SDK.

There is also a ‘RequestDocument‘ class defined, with properties for the
document fields, such as ‘id‘, ‘categoryId‘, ‘categoryName‘, ‘sku‘, ‘name‘,
‘description‘, ‘price‘, and ‘tags‘.

It appears that there may be an issue with the Azure Function, as all the
HTTP requests resulted in an internal server error. Further debugging and
investigation would be needed to determine the cause of the error.

XLVIII

E.2 Program test results with GPT4

Prototype response for GetMean

The above code is an Azure function in C# that retrieves the mean (average)
elevation of volcanoes in a specific country. This function retrieves data
stored in a Cosmos DB, calculates the mean elevation and returns it.

The Azure function is named ”GetMean” and it is an HTTP trigger type of
function, meaning it is invoked when an HTTP request is made. It accepts
anonymous authorization with only the GET method.

The function retrieves the country as a parameter from the HTTP request,
makes a query to Cosmos DB to retrieve an iterator over all items (repre-
senting volcanoes), then it aggregates the total elevation of all volcanoes
found in the specified country, keeping a count of total found items as well.

Once the iteration is done, it calculates the average (mean) by dividing
the total elevation by the number of volcanoes found. If no volcanoes are
found, it returns a ”not found” result. It rounds the mean to three decimal
places before returning it.

When the elevation of a volcano can’t be parsed as an integer, a warning
message is logged and the elevation is ignored in the sum calculation.

The class Volcano and nested class Location provide the schema for the
data expected from Cosmos DB.

If an exception occurs during retrieval or processing, the function logs
the error and returns the HTTP status 500 (internal server error).This
error does not leak implementation details to clients and maintains server
security. Still, it allows debugging and error tracing using logs.

Environmental variables store Cosmos DB’s endpoint, key, and specified
database and container IDs. Setting sensitive data in environment variables
is a common security best practice.

Prototype response for GetAPI

This report presents the results from a JMeter test where HTTP requests
have been sent to the GetAPI Azure function. The Azure function retrieves
particular data from a Cosmos DB database.

However, the test results demonstrate that the function returned the HTTP

XLIX

status code 404 (Not Found) for all the HTTP requests. This status code
implies that the requested resource could not be found on the server and
could indicate either a missing function or missing data in the database.

A few request details from the JTL file:

• The first request (https://getwebapi.azurewebsites.net/api/Ge
tWebAPI?id=168) took 979 milliseconds to complete and failed with
a 404 status code.

• The second request (https://getwebapi.azurewebsites.net/ap
i/GetWebAPI?id=476) took 886 milliseconds to return a 404 status
code.

• Other requests reveal similar failure patterns.

Overall, 65 out of 100 HTTP requests failed, resulting in an error rate of 65

The Azure function code reveals that each HTTP request must provide an
”id” as a query parameter. The function uses this ”id” to read an item
from the Cosmos DB database. If the ”id” is not provided in the request
or if the corresponding item is not found in the database, an error will be
returned.

It is recommended to double-check if the ”id” query parameters used in
the test are valid and correspond to existing items in the Cosmos DB.
Additionally, it might be useful to verify the configuration and availability
of the Cosmos DB and the Azure function.

Prototype response for PostAPI

Based on the results from the JMeter test, all 100 HTTP requests to
the Azure app https://fidelapp.azurewebsites.net/api/FiDelApp

resulted in a 500 Internal Server Error. The test was performed by ten
threads in just over 8 seconds and had an average response time of 400
milliseconds.

The error rate was 100%, indicating a severe issue with the request or
the server. Notably, the test reported that the maximum response time
was significantly high at 5375 milliseconds or about 5.4 seconds. This
anomaly is worth investigating as it could suggest some potential issues or
bottlenecks with the server performance.

The function code is implemented as a HTTP-triggered Azure function

L

https://getwebapi.azurewebsites.net/api/GetWebAPI?id=168
https://getwebapi.azurewebsites.net/api/GetWebAPI?id=168
https://getwebapi.azurewebsites.net/api/GetWebAPI?id=476
https://getwebapi.azurewebsites.net/api/GetWebAPI?id=476
https://fidelapp.azurewebsites.net/api/FiDelApp

in C#. It listens to HTTP POST requests, reads and deserializes the
JSON body of the request into a RequestDocument object, performs some
basic data validation, and then attempts to insert the received data into a
Cosmos DB database.

The 500 Internal Server Error status means that the server encountered
an unexpected condition that prevented it from fulfilling the request. The
error is reported in the catch block that deals with exceptions that might
have been thrown while inserting data into Cosmos DB. This leads to the
suggestion that the exception may have roots in Cosmos DB manipulation,
such as issues with the Cosmos DB settings or the structure of the inserted
document.

Given the error message and code from the JTL file, one could start
debugging by verifying whether the cosmosDbEndpoint, cosmosDbKey,
databaseId, and containerId are correctly configured, the cosmosContainer
exists and is reachable and ensuring the inserted document complies with
the defined RequestDocument class in terms of structure and datatypes.

LI

Appendix F

Prompt Test

F.1 Prompt Test using only system message

DevOptimizeAI response for GetMean

From the JTL Results, one can observe that your overall average response
time is 3466 milliseconds which is quite high. To optimize your function,
you may consider the following points:

1. Database Calls: By looking at your code it seems clear that the
function makes a lot of sequential database calls when fetching and
processing data from the Cosmos DB. Cosmos DB provides a lot of
advanced query features that you could use to perform calculations
like SUM or AVERAGE directly in the database. This would reduce
your data transfer over the network and decrease the load on your
function. Look into Refactoring the code to use stored procedures or
Triggers inside Cosmos DB.

2. Parallel Processing: Some parts of your code do not depend on the
results of previous iterations and can therefore be parallelized. For
example, the processing of the Volcano objects in the loop can run
concurrently using Parallel.ForEach or Task.WhenAll.

3. Caching: You should consider implementing caching. Depending on
the use case and how often the data changes, you may cache data that
are expensive to retrieve and does not change often, such as Volcanos
elevation, avoiding a database hit on every request and thus improve

LII

your function performance.

4. Tracing: You should also consider profiling your function to get more
detailed insights on how it performs. Tools like Application Insights
can help to identify bottlenecks in your code.

5. Sharding: Check also your Cosmos DB setup. If data is spread over
multiple partitions, performance can be affected.

Finally, remember that improving performance often comes at the cost of
increased complexity, so always profile and measure your changes to make
sure that they are actually providing the expected benefits.

DevOptimizeAI response for GetAPI

Based on the JTL results from the JMeter test, there seems to be a
recurring issue with HTTP requests returning a 404 error response code,
which indicates that the requested resource could not be found on the
server.

The reasons responsible for this response code might be:

• The item with the provided ID is not present in the database.

• The query parameter ID is not provided in the HTTP request.

This further leads to lower request throughput, longer average elapsed
times, and an 86% error rate which quite high.

In terms of the function code, it seems to be set up correctly to handle
different cases and exceptions. It extracts the id parameter from the HTTP
request as a string, checks whether it is present, and if it is, it tries to
retrieve the corresponding item from Cosmos DB.

Nonetheless, based on the JMeter results, it seems like items might not be
found in the DB consistently - thus the 404 error.

Here are some recommendations to better handle this situation:

• Implement more robust error handling and logging that includes
specifics about the error, such as the specific ID that was not found.

• Check the database to ensure that data exists for the IDs that you
are using in the tests.

LIII

• Validate the IDs being used in the test to ensure they are correctly
formatted and of the correct type.

• Consider implementing a caching strategy to avoid hitting the DB
for every request, which could help improve the response times and
lessen the load on your database. But remember, caching needs to be
managed carefully to avoid serving stale or inaccurate data.

These enhancements should help improve the response times, decrease the
error rate, and increase system throughput.

DevOptimizeAI response for PostAPI

JMeter Test Result Analysis: The JMeter tests indicate that there is an
issue with the web server returning HTTP 500 (Internal Server Error) status
for all the requests, indeed a high error rate (20.00%) is reported. This
usually indicates an unhandled exception in your code. In your context,
from the HTTP requests, it seems the requests are being made to the
https://fidelapp.azurewebsites.net/api/FiDelApp API endpoint,
which is consistently failing.

Given the fact that all the requests resulted in a 500 - Internal Server Error,
it may indicate the occurrence of exceptions or failures in application while
trying to process these requests. In this case, the error logs would contain
specific details as to what the exceptions or failures were, this information
would be useful to focus the debugging efforts.

Code Review: The issue may come from the PostAPI Azure function.

In the code, the request body is deserialized and inserted into CosmosDB.
Two cases are handled:

1. The case where the ’id’ in the request is null or empty returns a
’BadRequest’ status, which is not the case as per the test result.

2. The application returns HTTP status 500 on any exception while
trying to insert data into Cosmos DB.

As JMeter doesn’t test the logic inside your function, only its response, we
can infer that the issue comes after the ID validation, in the interaction
with Cosmos DB.

A good strategy would be to add more try-catch blocks around the smaller
units of work (like the deserialization process, the CosmosDB submission).

LIV

https://fidelapp.azurewebsites.net/api/FiDelApp

This would allow you to return different HTTP status codes according to
the error, which would give you more indications for your JMeter tests.
You should also log meaningful error messages and/or exception details to
accurately trace the root cause of issues. For critical issues, such as failure
in connection to resources, it is recommended to implement advanced error
handling strategies such as retries with exponential backoff.

Please rectify the issue by debugging HTTP 500 (Internal Server Error)
status at https://fidelapp.azurewebsites.net/api/FiDelApp and
performing tests again.

F.2 Prompt Test using only user message

DevOptimizeAI response for GetMean

Function Code:

1 using System;

2 using System.IO;

3 using System.Threading.Tasks;

4 using Microsoft.AspNetCore.Mvc;

5 using Microsoft.Azure.WebJobs;

6 using Microsoft.Azure.WebJobs.Extensions.Http;

7 using Microsoft.AspNetCore.Http;

8 using Microsoft.Extensions.Logging;

9 using Newtonsoft.Json;

10 using System.Net.Http;

11 using Microsoft.Azure.Cosmos;

12 using System.ComponentModel;

13 using Azure;

14 using System.Diagnostics;

15 using System.Collections.Generic;

16

17 namespace GetAPI

18 {

19 public static class GetAPI

20 {

21 private static readonly string cosmosDbEndpoint =

↪→ Environment.GetEnvironmentVariable("DBENDPOINT",

↪→ EnvironmentVariableTarget.Process);

22 private static readonly string cosmosDbKey = Environment.

↪→ GetEnvironmentVariable("DBKEY",

↪→ EnvironmentVariableTarget.Process);

23 private static readonly string databaseId = Environment.

LV

https://fidelapp.azurewebsites.net/api/FiDelApp

↪→ GetEnvironmentVariable("DBID",

↪→ EnvironmentVariableTarget.Process);

24 private static readonly string containerId = Environment.

↪→ GetEnvironmentVariable("CONTAINERID",

↪→ EnvironmentVariableTarget.Process);

25

26 private static readonly CosmosClientOptions options =

↪→ new CosmosClientOptions{ ApplicationName = "GetWebAPI"

↪→ };

27 private static readonly CosmosClient cosmosClient = new

↪→ CosmosClient(cosmosDbEndpoint , cosmosDbKey , options);

28 private static readonly Microsoft.Azure.Cosmos.

↪→ Container cosmosContainer = cosmosClient.GetContainer(

↪→ databaseId , containerId);

29

30 [FunctionName("GetWebAPI")]

31 public static async Task <IActionResult > Run(

32 [HttpTrigger(AuthorizationLevel.Anonymous , "get",

↪→ Route = null)] HttpRequest req ,

33 ILogger log)

34 {

35 Stopwatch stopwatch = Stopwatch.StartNew ();

36

37 try

38 {

39 string id = req.Query["id"];

40

41 if (string.IsNullOrEmpty(id))

42 {

43 return new BadRequestObjectResult("The ’id ’

↪→ query parameter is required.");

44 }

45

46 ItemResponse <RequestDocument > response = await

↪→ cosmosContainer.ReadItemAsync <RequestDocument >(id, new

↪→ PartitionKey(id));

47

48 stopwatch.Stop();

49

50 log.LogInformation($"Elapsed time: {stopwatch.

↪→ Elapsed.Milliseconds} ms");

51 return new OkObjectResult(response.Resource);

52 }

53 catch (CosmosException ex) when (ex.StatusCode ==

↪→ System.Net.HttpStatusCode.NotFound)

54 {

55 return new NotFoundResult ();

56 }

LVI

57 catch (Exception ex)

58 {

59 stopwatch.Stop();

60 log.LogError(ex , $"An error occurred while

↪→ retrieving data from Cosmos DB. Elapsed time: {

↪→ stopwatch.Elapsed.Milliseconds} ms");

61 return new StatusCodeResult(StatusCodes.

↪→ Status500InternalServerError);

62 }

63 }

64 }

65

66 public class RequestDocument

67 {

68 public string id { get; set; }

69 public string categoryId { get; set; }

70 public string categoryName { get; set; }

71 public string sku { get; set; }

72 public string name { get; set; }

73 public string description { get; set; }

74 public double Price { get; set; }

75 public List <Tag > tags { get; set; }

76 }

77

78 public class Tag

79 {

80 public string id { get; set; }

81 public string name { get; set; }

82 }

83 }

This improved example has added a stopwatch to record the elapsed time
of the database interaction. This can be useful for tracking and optimizing
performance. Also, this version logs the time it takes for each call. This
provides the ability to store instances where the function has been called,
and how long those calls take. These log data can later be analyzed to
identify system bottlenecks or areas that may require optimization. It also
applies CosmosClientOptions with the name of the application, which could
be useful for diagnostics and telemetry.

DevOptimizeAI response for GetAPI

Function Code:

1 using System;

LVII

2 using System.IO;

3 using System.Threading.Tasks;

4 using Microsoft.AspNetCore.Mvc;

5 using Microsoft.Azure.WebJobs;

6 using Microsoft.Azure.WebJobs.Extensions.Http;

7 using Microsoft.AspNetCore.Http;

8 using Microsoft.Extensions.Logging;

9 using Newtonsoft.Json;

10 using System.Net.Http;

11 using Microsoft.Azure.Cosmos;

12 using System.ComponentModel;

13 using Azure;

14 using System.Diagnostics;

15 using System.Collections.Generic;

16

17 namespace GetAPI

18 {

19 public static class GetAPI

20 {

21 private static readonly string cosmosDbEndpoint =

↪→ Environment.GetEnvironmentVariable("DBENDPOINT",

↪→ EnvironmentVariableTarget.Process);

22 private static readonly string cosmosDbKey = Environment.

↪→ GetEnvironmentVariable("DBKEY",

↪→ EnvironmentVariableTarget.Process);

23 private static readonly string databaseId = Environment.

↪→ GetEnvironmentVariable("DBID",

↪→ EnvironmentVariableTarget.Process);

24 private static readonly string containerId = Environment.

↪→ GetEnvironmentVariable("CONTAINERID",

↪→ EnvironmentVariableTarget.Process);

25

26 private static readonly CosmosClientOptions options =

↪→ new CosmosClientOptions{ ApplicationName = "GetWebAPI"

↪→ };

27 private static readonly CosmosClient cosmosClient = new

↪→ CosmosClient(cosmosDbEndpoint , cosmosDbKey , options);

28 private static readonly Microsoft.Azure.Cosmos.

↪→ Container cosmosContainer = cosmosClient.GetContainer(

↪→ databaseId , containerId);

29

30 [FunctionName("GetWebAPI")]

31 public static async Task <IActionResult > Run(

32 [HttpTrigger(AuthorizationLevel.Anonymous , "get",

↪→ Route = null)] HttpRequest req ,

33 ILogger log)

34 {

35 Stopwatch stopwatch = Stopwatch.StartNew ();

LVIII

36

37 try

38 {

39 string id = req.Query["id"];

40

41 if (string.IsNullOrEmpty(id))

42 {

43 return new BadRequestObjectResult("The ’id ’

↪→ query parameter is required.");

44 }

45

46 ItemResponse <RequestDocument > response = await

↪→ cosmosContainer.ReadItemAsync <RequestDocument >(id, new

↪→ PartitionKey(id));

47

48 stopwatch.Stop();

49

50 log.LogInformation($"Elapsed time: {stopwatch.

↪→ Elapsed.Milliseconds} ms");

51 return new OkObjectResult(response.Resource);

52 }

53 catch (CosmosException ex) when (ex.StatusCode ==

↪→ System.Net.HttpStatusCode.NotFound)

54 {

55 return new NotFoundResult ();

56 }

57 catch (Exception ex)

58 {

59 stopwatch.Stop();

60 log.LogError(ex , $"An error occurred while

↪→ retrieving data from Cosmos DB. Elapsed time: {

↪→ stopwatch.Elapsed.Milliseconds} ms");

61 return new StatusCodeResult(StatusCodes.

↪→ Status500InternalServerError);

62 }

63 }

64 }

65

66 public class RequestDocument

67 {

68 public string id { get; set; }

69 public string categoryId { get; set; }

70 public string categoryName { get; set; }

71 public string sku { get; set; }

72 public string name { get; set; }

73 public string description { get; set; }

74 public double Price { get; set; }

75 public List <Tag > tags { get; set; }

LIX

76 }

77

78 public class Tag

79 {

80 public string id { get; set; }

81 public string name { get; set; }

82 }

83 }

This improved example has added a stopwatch to record the elapsed time
of the database interaction. This can be useful for tracking and optimizing
performance. Also, this version logs the time it takes for each call. This
provides the ability to store instances where the function has been called,
and how long those calls take. These log data can later be analyzed to
identify system bottlenecks or areas that may require optimization. It also
applies CosmosClientOptions with the name of the application, which could
be useful for diagnostics and telemetry.

DevOptimizeAI response for PostAPI

Based on the error log, it is successful with the HTTP connection and
with receiving the incoming HTTP request but it fails while performing an
action on the Cosmos DB, during the Cosmos DB insertion.

There could be several reasons why it’s failing:

1. Cosmos DB is rejecting the incoming connection - for example due to
firewall rules or invalid connection strings.

2. There is a problem with the document data being inserted.

The error log also doesn’t provide a detailed error message which makes it
harder to fault-find. To add more detailed logging messages, you can use
the following improvement for the PostAPI function:

1 using System;

2 using System.IO;

3 using System.Threading.Tasks;

4 using Microsoft.AspNetCore.Mvc;

5 using Microsoft.Azure.WebJobs;

6 using Microsoft.Azure.WebJobs.Extensions.Http;

7 using Microsoft.AspNetCore.Http;

8 using Microsoft.Extensions.Logging;

9 using Newtonsoft.Json;

LX

10 using System.Net.Http;

11 using Microsoft.Azure.Cosmos;

12

13 namespace PostAPI

14 {

15 public static class PostAPI

16 {

17 private static readonly HttpClient httpClient = new

↪→ HttpClient ();

18 private static readonly string cosmosDbEndpoint =

↪→ Environment.GetEnvironmentVariable("DBENDPOINT",

↪→ EnvironmentVariableTarget.Process);

19 private static readonly string cosmosDbKey = Environment.

↪→ GetEnvironmentVariable("DBKEY",

↪→ EnvironmentVariableTarget.Process);

20 private static readonly string databaseId = Environment.

↪→ GetEnvironmentVariable("DBID",

↪→ EnvironmentVariableTarget.Process);

21 private static readonly string containerId = Environment.

↪→ GetEnvironmentVariable("CONTAINERID",

↪→ EnvironmentVariableTarget.Process);

22 private static readonly CosmosClient cosmosClient = new

↪→ CosmosClient(cosmosDbEndpoint , cosmosDbKey , new

↪→ CosmosClientOptions () { ApplicationName = "FiDelApp"

↪→ });

23 private static readonly Container cosmosContainer =

↪→ cosmosClient.GetContainer(databaseId , containerId);

24

25 [FunctionName("FiDelApp")]

26 public static async Task <IActionResult > Run(

27 [HttpTrigger(AuthorizationLevel.Anonymous , "post",

↪→ Route = null)] HttpRequest req ,

28 ILogger log)

29 {

30 log.LogInformation("Received a PostAPI request.");

31

32 string requestBody = await new StreamReader(req.

↪→ Body).ReadToEndAsync ();

33 log.LogInformation($"Request body: {requestBody}");

34

35 try

36 {

37 var requestDocument = JsonConvert.

↪→ DeserializeObject <RequestDocument >(requestBody);

38 if (string.IsNullOrEmpty(requestDocument.id))

39 {

40 log.LogWarning("The ’id ’ property is

↪→ required.");

LXI

41 return new BadRequestObjectResult("The ’id ’

↪→ property is required.");

42 }

43 log.LogInformation($"Inserting data into Cosmos

↪→ DB: {JsonConvert.SerializeObject(requestDocument)}");

44 var response = await cosmosContainer.

↪→ CreateItemAsync(requestDocument);

45 log.LogInformation("Data inserted to Cosmos DB

↪→ successfully.");

46 return new OkObjectResult("Data inserted

↪→ successfully! Well Done! (12/07/2023)");

47 }

48 catch (CosmosException ex)

49 {

50 log.LogError(ex , "A Cosmos DB error occurred.")

↪→ ;

51 throw;

52 }

53 catch (Exception ex)

54 {

55 log.LogError(ex , "An error occurred.");

56 return new StatusCodeResult(StatusCodes.

↪→ Status500InternalServerError);

57 }

58 }

59 }

60

61 public class RequestDocument

62 {

63 public string id { get; set; }

64 public string categoryId { get; set; }

65 public string categoryName { get; set; }

66 public string sku { get; set; }

67 public string name { get; set; }

68 public string description { get; set; }

69 public double Price { get; set; }

70 }

71 }

Addressing the two potential causes:

1. We can use the CosmosClientOptions to set the ApplicationName
while creating the CosmosClient which will be useful while tracing
the logs on the Cosmos DB side.

2. I added detailed logging messages to trace all the steps in the func-
tion from receiving the request, to parsing and inserting it which

LXII

will provide more information in case of failures. In addition, I sepa-
rated ‘CosmosException‘ from ‘Exception‘ to distinguish issues about
Cosmos DB specifically.

F.3 Prompt Test using both user and system message

DevOptimizeAI response for GetMean

Based upon the JMeter test results and the provided source code, it appears
the main problem is in getting the data from the Cosmos DB. Most calls
result in a 404 status code, indicating the requested resource is not found
on the server. This seems to be due to a failure to find the requested ID in
the Cosmos DB document store.

The given function is an Azure Function that is triggered by an HTTP
GET request, retrieves an item in a specified partition of the Cosmos DB
based on a provided ID, and returns the result to the client. It ends up
catching a CosmosException when the requested item is not found, which
is when it returns the 404 NotFound status. The function also catches any
other exceptions and sends back a 500 Internal Server Error status.

A good improvement to the source code will be to add logging to the
successful operation of the REST call, to provide visibility into the execution
of the function. Second, creating a cache that will save the data after first
request to the Cosmos DB will prevent the expensive operation of calling
Cosmos DB every single time when we need to get a record.

Thus, the following is the updated function code:

1 public static class GetWebAPI

2 {

3 private static readonly ConcurrentDictionary <string ,

↪→ RequestDocument > cache = new ConcurrentDictionary <

↪→ string , RequestDocument >();

4 // ... Rest of the objects declaration

5

6 [FunctionName("GetWebAPI")]

7 public static async Task <IActionResult > Run(

8 [HttpTrigger(AuthorizationLevel.Anonymous , "get", Route

↪→ = null)] HttpRequest req ,

9 ILogger log)

10 {

11 try

LXIII

12 {

13 string id = req.Query["id"];

14

15 // Validate that the ID is provided

16 if (string.IsNullOrEmpty(id))

17 {

18 return new BadRequestObjectResult("The ’id ’

↪→ query parameter is required.");

19 }

20

21 // Check if item in cache

22 if (cache.TryGetValue(id , out var cachedItem))

23 {

24 log.LogInformation($"Retrieved cached item with

↪→ ID ’{id}’.");

25 return new OkObjectResult(cachedItem);

26 }

27

28 // Retrieve the item from Cosmos DB

29 var response = await cosmosContainer.ReadItemAsync <

↪→ RequestDocument >(id , new PartitionKey(id));

30

31 // Add retrieved item to cache

32 cache.TryAdd(id, response.Resource);

33

34 log.LogInformation($"Retrieved item with ID ’{id}’

↪→ from Cosmos DB.");

35 return new OkObjectResult(response.Resource);

36 }

37 catch (CosmosException ex) when (ex.StatusCode ==

↪→ System.Net.HttpStatusCode.NotFound)

38 {

39 return new NotFoundResult ();

40 }

41 catch (Exception ex)

42 {

43 log.LogError(ex , "An error occurred while

↪→ retrieving data from Cosmos DB.");

44 return new StatusCodeResult(StatusCodes.

↪→ Status500InternalServerError);

45 }

46 }

47 }

The cache policy in this example is simple and does not include expiration.
In a real life scenario, more advanced caching policies should be used to
prevent serving outdated data.

LXIV

DevOptimizeAI response for GetAPI

Based upon the JMeter test results and the provided source code, it appears
the main problem is in getting the data from the Cosmos DB. Most calls
result in a 404 status code, indicating the requested resource is not found
on the server. This seems to be due to a failure to find the requested ID in
the Cosmos DB document store.

The given function is an Azure Function that is triggered by an HTTP
GET request, retrieves an item in a specified partition of the Cosmos DB
based on a provided ID, and returns the result to the client. It ends up
catching a CosmosException when the requested item is not found, which
is when it returns the 404 NotFound status. The function also catches any
other exceptions and sends back a 500 Internal Server Error status.

A good improvement to the source code will be to add logging to the
successful operation of the REST call, to provide visibility into the execution
of the function. Second, creating a cache that will save the data after first
request to the Cosmos DB will prevent the expensive operation of calling
Cosmos DB every single time when we need to get a record.

Thus, the following is the updated function code:

1 public static class GetWebAPI

2 {

3 private static readonly ConcurrentDictionary <string ,

↪→ RequestDocument > cache = new ConcurrentDictionary <

↪→ string , RequestDocument >();

4 // ... Rest of the objects declaration

5

6 [FunctionName("GetWebAPI")]

7 public static async Task <IActionResult > Run(

8 [HttpTrigger(AuthorizationLevel.Anonymous , "get", Route

↪→ = null)] HttpRequest req ,

9 ILogger log)

10 {

11 try

12 {

13 string id = req.Query["id"];

14

15 // Validate that the ID is provided

16 if (string.IsNullOrEmpty(id))

17 {

18 return new BadRequestObjectResult("The ’id ’

↪→ query parameter is required.");

19 }

LXV

20

21 // Check if item in cache

22 if (cache.TryGetValue(id , out var cachedItem))

23 {

24 log.LogInformation($"Retrieved cached item with

↪→ ID ’{id}’.");

25 return new OkObjectResult(cachedItem);

26 }

27

28 // Retrieve the item from Cosmos DB

29 var response = await cosmosContainer.ReadItemAsync <

↪→ RequestDocument >(id , new PartitionKey(id));

30

31 // Add retrieved item to cache

32 cache.TryAdd(id, response.Resource);

33

34 log.LogInformation($"Retrieved item with ID ’{id}’

↪→ from Cosmos DB.");

35 return new OkObjectResult(response.Resource);

36 }

37 catch (CosmosException ex) when (ex.StatusCode ==

↪→ System.Net.HttpStatusCode.NotFound)

38 {

39 return new NotFoundResult ();

40 }

41 catch (Exception ex)

42 {

43 log.LogError(ex , "An error occurred while

↪→ retrieving data from Cosmos DB.");

44 return new StatusCodeResult(StatusCodes.

↪→ Status500InternalServerError);

45 }

46 }

47 }

The cache policy in this example is simple and does not include expiration.
In a real life scenario, more advanced caching policies should be used to
prevent serving outdated data.

DevOptimizeAI response for PostAPI

Based on the JMeter results and the provided source code, there are a
couple of suggestions for enhancing and improving performance in the code:

1. Caching: CosmosDB retrieval maybe slow or unstable which results

LXVI

in 500 errors. If the majority of the data you’re retrieving from
CosmosDB doesn’t change frequently, you can cache your data. This
can significantly improve your application’s performance by reducing
unnecessary I/O operations.

2. Error Handling: In your catch block, you’re handling all types of
exceptions in a very general manner. It would be better if you can
try to anticipate the types of exceptions that might occur and handle
each of them appropriately.

3. Database Connection: The database connection (CosmosDB in this
case) creation process generally takes more time and efforts. Currently,
a new database connection is created on every HTTP request, which
is expensive in terms of resources. Making the database client as a
singleton (one per application) might provide better results.

4. Load Testing: Based on the JMeter results, it seems that the applica-
tion does not perform well under intense load. Load testing should be
performed which help to identify performance bottlenecks and resolve
those issues which improves the overall application performance.

Below is the improved code implementation:

1 using System;

2 using System.IO;

3 using System.Threading.Tasks;

4 using Microsoft.AspNetCore.Mvc;

5 using Microsoft.Azure.WebJobs;

6 using Microsoft.Azure.WebJobs.Extensions.Http;

7 using Microsoft.AspNetCore.Http;

8 using Microsoft.Extensions.Logging;

9 using Newtonsoft.Json;

10 using System.Net.Http;

11 using Microsoft.Azure.Cosmos;

12 using System.ComponentModel;

13 using Azure;

14 using System.Collections.Generic;

15

16 namespace PostAPI

17 {

18 public static class PostAPI

19 {

20 private static readonly HttpClient httpClient = new

↪→ HttpClient ();

21

22 // Database Settings

LXVII

23 private static readonly CosmosClient cosmosClient;

24 private static readonly Microsoft.Azure.Cosmos.

↪→ Container cosmosContainer;

25

26 // Static constructor

27 static FiDelApp ()

28 {

29 string cosmosDbEndpoint = Environment.

↪→ GetEnvironmentVariable("DBENDPOINT",

↪→ EnvironmentVariableTarget.Process);

30 string cosmosDbKey = Environment.

↪→ GetEnvironmentVariable("DBKEY",

↪→ EnvironmentVariableTarget.Process);

31 string databaseId = Environment.

↪→ GetEnvironmentVariable("DBID",

↪→ EnvironmentVariableTarget.Process);

32 string containerId = Environment.

↪→ GetEnvironmentVariable("CONTAINERID",

↪→ EnvironmentVariableTarget.Process);

33

34 cosmosClient = new CosmosClient(cosmosDbEndpoint ,

↪→ cosmosDbKey);

35 cosmosContainer = cosmosClient.GetContainer(

↪→ databaseId , containerId);

36 }

37

38 [FunctionName("FiDelApp")]

39 public static async Task <IActionResult > Run(

40 [HttpTrigger(AuthorizationLevel.Anonymous , "post",

↪→ Route = null)] HttpRequest req ,

41 ILogger log)

42 {

43 try

44 {

45 string requestBody = await new StreamReader(req

↪→ .Body).ReadToEndAsync ();

46 var requestDocument = JsonConvert.

↪→ DeserializeObject <RequestDocument >(requestBody);

47

48 if (string.IsNullOrEmpty(requestDocument.id))

49 return new BadRequestObjectResult("The ’id ’

↪→ property is required.");

50

51 var response = await cosmosContainer.

↪→ CreateItemAsync(requestDocument);

52 return new OkObjectResult("Data inserted

↪→ successfully! Well Done! (12/07/2023)");

53 }

LXVIII

54 catch (CosmosException ex)

55 {

56 log.LogError(ex , $"CosmosDB service error.

↪→ Error Details: { ex.Message }");

57 return new StatusCodeResult(StatusCodes.

↪→ Status500InternalServerError);

58 }

59 catch(Exception ex)

60 {

61 log.LogError(ex , "An unexpected error occurred.

↪→ ");

62 return new StatusCodeResult(StatusCodes.

↪→ Status500InternalServerError);

63 }

64 }

65 }

66 }

This new implementation initiates the Cosmos client on the application
start and reuses it for every request (Singleton). Also, it provides specialized
error handling for CosmosException.

LXIX

Appendix G

CPU-Intensive Test

G.1 CalculatePrimeNumbers Test

Original Function resposnse

Based on your JMeter results, it seems like the performance of your API
is pretty decent. The average response time is 47 milliseconds, and the
maximum response time is 208 milliseconds. The standard deviation is also
quite low. However, there is always room for improvement.

The main potential performance issue in your code lies in the GetPrimes()
method. This method uses a simple but computationally expensive algo-
rithm for generating prime numbers. To improve performance, you could
use a more optimized algorithm like the Sieve of Eratosthenes:

Here’s an optimized version of your code:

1 using System;

2 using System.Net;

3 using Microsoft.AspNetCore.Mvc;

4 using Microsoft.Extensions.Primitives;

5 using Microsoft.Azure.WebJobs;

6 using Microsoft.Azure.WebJobs.Extensions.Http;

7 using Microsoft.AspNetCore.Http;

8 using System.Collections.Generic;

9

10 public static class CalculatePrimeNumbers

11 {

12 [FunctionName("CalculatePrimeNumbers")]

13 public static IActionResult Run(

LXX

14 [HttpTrigger(AuthorizationLevel.Function , "get",

↪→ Route = null)] HttpRequest req)

15 {

16 string number = req.Query["number"];

17

18 if (int.TryParse(number , out int num))

19 {

20 List <int > primes = GetPrimes(num);

21 return new OkObjectResult($"Prime numbers up to

↪→ {num}: {string.Join(", ", primes)}");

22 }

23 else

24 {

25 return new BadRequestObjectResult("Please

↪→ provide a valid integer.");

26 }

27 }

28

29 private static List <int > GetPrimes(int limit)

30 {

31 var primes = new List <int >();

32 var sieve = new bool[limit + 1];

33 for (int x = 2; x <= limit; x++)

34 {

35 if (! sieve[x])

36 {

37 primes.Add(x);

38 for (int u = 2*x; u <= limit; u += x)

39 {

40 sieve[u] = true;

41 }

42 }

43 }

44 return primes;

45 }

46 }

In this optimized version of the code, the Sieve of Eratosthenes is used to
find all primes less than or equal to the provided number. This algorithm
works by iteratively marking the multiples of each prime number starting
from 2. The multiples are not prime, so they are eliminated, leaving only
the primes in the end. This algorithm is much faster, especially for larger
ranges of numbers.

Error Injection test

LXXI

The performance issues you’re facing are likely due to the inefficient imple-
mentation of the prime number generation algorithm. This algorithm has
a time complexity of O(n2), which makes it quite slow for larger numbers.

In addition, the HTTP 500 Internal Server Error indicates there is a problem
with the server-side execution of the code. The error is likely caused by
the division by zero error in this line: if ((num % primes[i] == 0) || (num

↪→ / (i-1) == 0)) When i is 1, i-1 becomes 0 and causes a division by
zero error.

Here’s a revised version of the code that uses the Sieve of Eratosthenes
algorithm, which is more efficient for generating prime numbers up to a
given limit. Also, I’ve fixed the division by zero issue:

1 public static class CalculatePrimeNumbers

2 {

3 [FunctionName("CalculatePrimeNumbers")]

4 public static async Task <IActionResult > Run(

5 [HttpTrigger(AuthorizationLevel.Function , "get",

↪→ Route = null)] HttpRequest req , ILogger log)

6 {

7 log.LogInformation("C# HTTP trigger function

↪→ processed a request.");

8

9 string number = req.Query["number"];

10 string requestBody = await new StreamReader(req.

↪→ Body).ReadToEndAsync ();

11 dynamic data = JsonConvert.DeserializeObject(

↪→ requestBody);

12 number = number ?? data?. number;

13

14 if (int.TryParse(number , out int num))

15 {

16 List <int > primes = GetPrimes(num);

17 return new OkObjectResult($"Prime numbers up to

↪→ {num}: {string.Join(", ", primes)}");

18 }

19 else

20 {

21 return new BadRequestObjectResult("Please

↪→ provide a valid integer.");

22 }

23 }

24

25 private static List <int > GetPrimes(int maxNum)

26 {

27 var primes = new List <int >();

LXXII

28 var sieve = new bool[maxNum + 1];

29 for (int num = 2; num <= maxNum; num++)

30 {

31 if (! sieve[num])

32 {

33 primes.Add(num);

34 for (int i = num * 2; i <= maxNum; i += num

↪→)

35 {

36 sieve[i] = true;

37 }

38 }

39 }

40 return primes;

41 }

42 }

This version of code should provide better performance and avoid server-
side errors. However, keep in mind that generating a large number of
prime numbers still requires significant computational resources. If the
performance is still not satisfactory, you may need to consider a different
approach or limit the maximum input value.

Infinite Loop test

The JTL results indicate that the HTTP requests made by the function
are all failing with either a 502 (Bad Gateway) error or a 500 (Internal
Server Error). The first thing to do is to handle these errors properly.

In addition, the function’s performance could be improved by optimizing the
GetPrimes function. The current implementation is not efficient because
it checks every odd number to see if it’s prime by checking divisibility
by all smaller primes. A better approach would be to use the Sieve of
Eratosthenes algorithm, which is more efficient for finding all primes up to
a given limit.

Here is an improved version of your function:

1 using System;

2 using System.Net;

3 using Microsoft.AspNetCore.Mvc;

4 using Microsoft.Extensions.Primitives;

5 using Microsoft.Azure.WebJobs;

6 using Microsoft.Azure.WebJobs.Extensions.Http;

7 using Microsoft.AspNetCore.Http;

LXXIII

8 using System.Collections.Generic;

9 using System.IO;

10 using Newtonsoft.Json;

11

12 public static class CalculatePrimeNumbers

13 {

14 [FunctionName("CalculatePrimeNumbers")]

15 public static async Task <IActionResult > Run(

16 [HttpTrigger(AuthorizationLevel.Function , "get",

↪→ Route = null)] HttpRequest req , ILogger log)

17 {

18 log.LogInformation("C# HTTP trigger function

↪→ processed a request.");

19

20 string number = req.Query["number"];

21 string requestBody = await new StreamReader(req.

↪→ Body).ReadToEndAsync ();

22 dynamic data = JsonConvert.DeserializeObject(

↪→ requestBody);

23 number = number ?? data?. number;

24

25 if (int.TryParse(number , out int num))

26 {

27 List <int > primes = GetPrimes(num);

28 return new OkObjectResult($"Prime numbers up to

↪→ {num}: {string.Join(", ", primes)}");

29 }

30 else

31 {

32 return new BadRequestObjectResult("Please

↪→ provide a valid integer.");

33 }

34 }

35

36 private static List <int > GetPrimes(int limit)

37 {

38 var primes = new List <int >();

39 var sieve = new bool[limit + 1];

40

41 for (int num = 2; num <= limit; num++)

42 {

43 if (! sieve[num])

44 {

45 primes.Add(num);

46 for (int multiple = num * 2; multiple <=

↪→ limit; multiple += num)

47 {

48 sieve[multiple] = true;

LXXIV

49 }

50 }

51 }

52

53 return primes;

54 }

55 }

The function now uses the Sieve of Eratosthenes algorithm to efficiently
calculate prime numbers. This should improve the performance of your
function.

However, the 502 and 500 errors suggest there might be issues with the
server or network that are not related to your function’s code. You might
need to investigate these issues separately.

LXXV

Appendix H

Behavioural Test

H.1 Prompt Test providing prompt to different devel-

oper types

DevOptimizeAI response for Junior Developer

One of the ways to optimize your function is to create a query that will
directly calculate the mean elevation for a specified country on the database
side. This approach will reduce network overhead, as you will transfer a
lot less data from the database to the function. Moreover, this should also
reduce the CPU usage on the function side.

Here is the updated function:

1 using System;

2 using Microsoft.AspNetCore.Mvc;

3 using System.Threading.Tasks;

4 using Microsoft.Azure.WebJobs;

5 using Microsoft.Azure.WebJobs.Extensions.Http;

6 using Microsoft.AspNetCore.Http;

7 using Microsoft.Extensions.Logging;

8 using Microsoft.Azure.Cosmos;

9 using Microsoft.Azure.Cosmos.Linq;

10

11 namespace GetMean

12 {

13 public static class GetMean

14 {

15 private static readonly string cosmosDbEndpoint =

LXXVI

↪→ Environment.GetEnvironmentVariable("DBENDPOINT",

↪→ EnvironmentVariableTarget.Process);

16 private static readonly string cosmosDbKey =

↪→ Environment.GetEnvironmentVariable("DBKEY",

↪→ EnvironmentVariableTarget.Process);

17 private static readonly string databaseId =

↪→ Environment.GetEnvironmentVariable("DBID",

↪→ EnvironmentVariableTarget.Process);

18 private static readonly string containerId =

↪→ Environment.GetEnvironmentVariable("CONTAINERID",

↪→ EnvironmentVariableTarget.Process);

19 private static CosmosClient cosmosClient = new

↪→ CosmosClient(cosmosDbEndpoint , cosmosDbKey);

20 private static Container cosmosContainer =

↪→ cosmosClient.GetContainer(databaseId , containerId);

21

22 [FunctionName("GetMean")]

23 public static async Task <IActionResult > Run(

24 [HttpTrigger(AuthorizationLevel.Anonymous , "get

↪→ ", Route = null)] HttpRequest req ,

25 ILogger log)

26 {

27 string country = req.Query["Country"];

28

29 if (string.IsNullOrEmpty(country))

30 {

31 return new BadRequestObjectResult("The ’

↪→ Country ’ query parameter is required.");

32 }

33

34 IQueryable <double > elevationQuery =

↪→ cosmosContainer.GetItemLinqQueryable <Volcano >()

35

↪→ .Where(v => v.Country == country)

36

↪→ .Select(v => Convert.ToDouble(v.Elevation));

37

38 double sum = await elevationQuery.SumAsync ();

39 long count = await elevationQuery.CountAsync ();

40

41 if (count == 0)

42 {

43 return new NotFoundResult ();

44 }

45

46 double meanElevation = Math.Round(sum / count ,

↪→ 3);

47 return new OkObjectResult(meanElevation);

LXXVII

48 }

49 }

50

51 public class Volcano

52 {

53 public string VolcanoName { get; set; }

54 public string Country { get; set; }

55 public string Elevation { get; set; }

56 }

57 }

Please note that this can be done only if the Elevation property is stored
as a number in the database. If it is stored as a string and a lot of your
records have the elevation not set or set to a invalid number, this can lead
to a performance degradation. In this case, you should have a separate
process to clean and convert the data.

DevOptimizeAI response for Senior Developer

The JMeter results indicate a slow response time for the operation being
performed. Your code is currently querying the database and iterating
through each item, checking the country, before doing a calculation. This
can potentially result in a large number of unnecessary operations, thus
slowing down the process.

Another potential performance issue is with int parsing of the ’Elevation’.
Although this is not significant, it does add up when iterating through a
large dataset.

Let’s optimize it with these steps:

1. Restructure the database query to only return items for the selected
country. This can significantly reduce the number of items being
processed.

2. Try to parse the ’Elevation’ to an integer once and if it fails, store it
as ’0’. Log the warning message for debugging purposes but continue
the execution.

Here is the adjusted code:

1 public static async Task <IActionResult > Run(

2 [HttpTrigger(AuthorizationLevel.Anonymous , "get", Route

↪→ = null)] HttpRequest req ,

LXXVIII

3 ILogger log)

4 {

5 try

6 {

7 string country = req.Query["Country"];

8 if (string.IsNullOrEmpty(country))

9 {

10 return new BadRequestObjectResult("\"The ’

↪→ Country ’ query parameter is required .\"");

11 }

12

13 FeedIterator <Volcano > queryResultSetIterator =

↪→ cosmosContainer.GetItemQueryIterator <Volcano >(

14 new QueryDefinition($"SELECT * FROM c WHERE c.

↪→ country = ’{country}’")

15);

16

17 double sum = 0;

18 int count = 0;

19

20 while (queryResultSetIterator.HasMoreResults)

21 {

22 FeedResponse <Volcano > currentResultSet = await

↪→ queryResultSetIterator.ReadNextAsync ();

23 foreach (Volcano volcano in currentResultSet)

24 {

25 int parsedElevation = 0;

26 if (int.TryParse(volcano.Elevation , out

↪→ parsedElevation))

27 {

28 sum += parsedElevation;

29 }

30 else

31 {

32 log.LogWarning($"Could not parse

↪→ elevation ’{volcano.Elevation}’ for volcano ’{volcano.

↪→ VolcanoName }’. This elevation will be marked as 0.");

33 }

34 count ++;

35 }

36 }

37

38 if (count == 0)

39 {

40 return new NotFoundResult ();

41 }

42

43 double meanElevation = Math.Round(sum / count , 3);

LXXIX

44 return new OkObjectResult(meanElevation);

45 }

46 catch (Exception ex)

47 {

48 log.LogError(ex , "An error occurred while

↪→ retrieving data from Cosmos DB.");

49 return new StatusCodeResult(StatusCodes.

↪→ Status500InternalServerError);

50 }

51 }

Remember to sanitize your inputs while creating the SQL query; else, it can
lead to an SQL Injection attack. You may also want to handle exceptions
or incorrect input at the SQL level.

Also, moving the cosmos client AllThread and connecting to a static field
might cause stale connections and thread synchronization issues; if this is
being reused across multiple threads. You can opt to make a new cosmos
client for each request, or add connection pooling.

H.2 Prompt Test providing hint for the model

DevOptimizeAI response for GetMean

Analyzing your JTL results, I can see that your JMeter test made 100
requests, and your system was able to serve an average of 2.6 requests per
second with an average server-side response time of 3589 milliseconds (ms)
which seems a bit high and could be improved.

Looking at your function code, the main sections that may be contributing
to the higher than desired response times could be the CosmosDB queries.
On average, your application spends the majority of its time waiting for
CosmosDB’s response.

Therefore, one way to enhance the performance might be to adjust your
CosmosDB querying strategy.

I would recommend to adapt the first version which was commented out and,
thus, make the DB process the query instead of filtering in the application:

1 try

2 {

3 string country = req.Query["Country"];

LXXX

4

5 if (string.IsNullOrEmpty(country))

6 {

7 return new BadRequestObjectResult("The ’Country ’ query

↪→ parameter is required.");

8 }

9

10 var sqlQueryText = $"SELECT c.Elevation FROM c WHERE c.

↪→ Country = ’{country}’";

11 QueryDefinition queryDefinition = new QueryDefinition(

↪→ sqlQueryText);

12 FeedIterator <Volcano > queryResultSetIterator =

↪→ cosmosContainer.GetItemQueryIterator <Volcano >(

↪→ queryDefinition);

13

14 double sum = 0;

15 int count = 0;

16

17 while (queryResultSetIterator.HasMoreResults)

18 {

19 FeedResponse <Volcano > currentResultSet = await

↪→ queryResultSetIterator.ReadNextAsync ();

20 foreach (Volcano volcano in currentResultSet)

21 {

22 if (int.TryParse(volcano.Elevation , out int

↪→ parsedElevation))

23 {

24 sum += parsedElevation;

25 count ++;

26 }

27 else

28 {

29 log.LogWarning($"Could not parse elevation ’{

↪→ volcano.Elevation}’ for volcano ’{volcano.VolcanoName

↪→ }’. This elevation will be ignored.");

30 }

31 }

32 }

33

34 if (count == 0)

35 {

36 return new NotFoundResult ();

37 }

38

39 double meanElevation = Math.Round(sum / count , 3);

40 return new OkObjectResult(meanElevation);

41 }

42

LXXXI

43 catch (Exception ex)

44 {

45 log.LogError(ex , "An error occurred while retrieving data

↪→ from Cosmos DB.");

46 return new StatusCodeResult(StatusCodes.

↪→ Status500InternalServerError);

47 }

This highlighted function offloads the filtration of data to the CosmosDB,
thus reducing the data transfer and parse computation.

Next to this, you should consider optimizing the way your application
connects and communicates with the CosmosDB and ideally connection
caching should be in place if possible. Consider indexing, partitioning,
analyzing the collection RU/s and load. For example, make sure DB
indexing is properly aligned with the queries could help.

Moreover, also take into consideration to handle peak load or traffic spikes,
as I see your test started 10 threads but it finished only 3 of them. So
make sure that your infrastructure and services are capable to handle the
volume.

It is essential to have monitoring and observability to identify the bottle-
necks and apply the proper solution.

H.3 Model behaviour with previous successful mes-

sages example

DevOptimizeAI response for GetMean

Analyzing your JTL results, I can see that your JMeter test made 100
requests, and your system was able to serve an average of 2.6 requests per
second with an average server-side response time of 3589 milliseconds (ms)
which seems a bit high and could be improved.

Looking at your function code, the main sections that may be contributing
to the higher than desired response times could be the CosmosDB queries.
On average, your application spends the majority of its time waiting for
CosmosDB’s response.

Therefore, one way to enhance the performance might be to adjust your
CosmosDB querying strategy.

LXXXII

I would recommend to adapt the first version which was commented out and,
thus, make the DB process the query instead of filtering in the application:

1 try

2 {

3 string country = req.Query["Country"];

4

5 if (string.IsNullOrEmpty(country))

6 {

7 return new BadRequestObjectResult("The ’Country ’ query

↪→ parameter is required.");

8 }

9

10 var sqlQueryText = $"SELECT c.Elevation FROM c WHERE c.

↪→ Country = ’{country}’";

11 QueryDefinition queryDefinition = new QueryDefinition(

↪→ sqlQueryText);

12 FeedIterator <Volcano > queryResultSetIterator =

↪→ cosmosContainer.GetItemQueryIterator <Volcano >(

↪→ queryDefinition);

13

14 double sum = 0;

15 int count = 0;

16

17 while (queryResultSetIterator.HasMoreResults)

18 {

19 FeedResponse <Volcano > currentResultSet = await

↪→ queryResultSetIterator.ReadNextAsync ();

20 foreach (Volcano volcano in currentResultSet)

21 {

22 if (int.TryParse(volcano.Elevation , out int

↪→ parsedElevation))

23 {

24 sum += parsedElevation;

25 count ++;

26 }

27 else

28 {

29 log.LogWarning($"Could not parse elevation ’{

↪→ volcano.Elevation}’ for volcano ’{volcano.VolcanoName

↪→ }’. This elevation will be ignored.");

30 }

31 }

32 }

33

34 if (count == 0)

35 {

36 return new NotFoundResult ();

LXXXIII

37 }

38

39 double meanElevation = Math.Round(sum / count , 3);

40 return new OkObjectResult(meanElevation);

41 }

42

43 catch (Exception ex)

44 {

45 log.LogError(ex , "An error occurred while retrieving data

↪→ from Cosmos DB.");

46 return new StatusCodeResult(StatusCodes.

↪→ Status500InternalServerError);

47 }

This highlighted function offloads the filtration of data to the CosmosDB,
thus reducing the data transfer and parse computation.

Next to this, you should consider optimizing the way your application
connects and communicates with the CosmosDB and ideally connection
caching should be in place if possible. Consider indexing, partitioning,
analyzing the collection RU/s and load. For example, make sure DB
indexing is properly aligned with the queries could help.

Moreover, also take into consideration to handle peak load or traffic spikes,
as I see your test started 10 threads but it finished only 3 of them. So
make sure that your infrastructure and services are capable to handle the
volume.

It is essential to have monitoring and observability to identify the bottle-
necks and apply the proper solution.

H.4 Prompt Test using feedback provided from the

model for GetMean API

DevOptimizeAI response first feedback iteration

Your code seems to be read and written to CosmosDB synchronously which
may result in blocking IO operation. Using asynchronous operations can
help improve the performance in your scenario. Ergo, we can modify
your code to utilize asynchronous programming to further enhance code
performance.

LXXXIV

Here’s the improved implementation:

1 namespace GetMean

2 {

3 public static class GetMean

4 {

5 ...

6 [FunctionName("GetMean")]

7 public static async Task <IActionResult > Run(

8 ...

9 {

10 try

11 {

12 ...

13 double sum = 0;

14 int count = 0;

15

16 List <Task > tasks = new List <Task >();

17 while (queryResultSetIterator.HasMoreResults)

18 {

19 var resultTask = Task.Run(async () =>

20 {

21 FeedResponse <Volcano > currentResultSet

↪→ = await queryResultSetIterator.ReadNextAsync ();

22 foreach (Volcano volcano in

↪→ currentResultSet)

23 {

24 if (int.TryParse(volcano.Elevation ,

↪→ out int parsedElevation))

25 {

26 lock (tasks)

27 {

28 sum += parsedElevation;

29 count ++;

30 }

31 }

32 else

33 {

34 log.LogWarning($"Could not

↪→ parse elevation ’{volcano.Elevation}’ for volcano ’{

↪→ volcano.VolcanoName }’. This elevation will be ignored.

↪→ ");

35 }

36 }

37 });

38 tasks.Add(resultTask);

39 }

40

LXXXV

41 await Task.WhenAll(tasks);

42

43 ...

44 }

45 ...

46

47 }

48 }

49

50 public class Volcano

51 {

52 ...

53 }

54 }

In the updated code, we have:

1. Created a list of tasks.

2. On each iteration of while (queryResultSetIterator.HasMoreResults),
we initiate a new task to process the data.

3. Used the Task.Run method to execute these operations in parallel.

4. Utilized Task.WhenAll to ensure the completion of all running tasks.

5. Applied a lock on the sum and count variables to handle synchroniza-
tion.

The amount of improvement will depend on the number of items that are
being processed. As a note, the lock can be a bottleneck if there are a
lot of tasks trying to update the sum and count at the same time. If the
count and sum are too large causing performance issues you may need to
implement an other method like partition or map reduce.

DevOptimizeAI response second feedback iteration

From the JMeter test results, it is clear that the HTTP requests are
failing with a 502 Bad Gateway error. This suggests that the backend
server, possibly the Azure Function or even the Cosmos DB, is unable to
process the request. This may be due to hitting throughput limits or other
computational resources running out such as memory or CPU.

Here, the HTTP Requests are processed sequentially, the function makes an
HTTP request for each country, which isn’t very efficient. By implementing

LXXXVI

parallel processing of those HTTP requests, we can make the function scale
better under load and improve the overall latency of the function. Also,
unwrapped exceptions in database operations can be handled better.

Here’s an optimized version of your function where HTTP requests are
processed concurrently:

1 public static class GetMean

2 {

3 ...

4

5 [FunctionName("GetMean")]

6 public static async Task <IActionResult > Run(

7 [HttpTrigger(AuthorizationLevel.Anonymous , "get", Route

↪→ = null)] HttpRequest req ,

8 ILogger log)

9 {

10 string country = req.Query["Country"];

11 if (string.IsNullOrEmpty(country))

12 {

13 return new BadRequestObjectResult("The ’Country ’

↪→ query parameter is required.");

14 }

15

16 try

17 {

18 QueryDefinition queryDefinition = new

↪→ QueryDefinition("SELECT * FROM c WHERE c.Country =

↪→ @country")

19 .WithParameter("@country", country);

20

21 var tasks = new List <Task >();

22 var sum = 0.0;

23 var count = 0;

24 var queryResultSetIterator = cosmosContainer.

↪→ GetItemQueryIterator <Volcano >(queryDefinition);

25

26 while (queryResultSetIterator.HasMoreResults)

27 {

28 // Start a new task to process this set of

↪→ results

29 tasks.Add(Task.Run(async () =>

30 {

31 var currentResultSet = await

↪→ queryResultSetIterator.ReadNextAsync ();

32

33 foreach (var v in currentResultSet)

34 {

LXXXVII

35 if (int.TryParse(v.Elevation , out var

↪→ parsedElevation))

36 {

37 Interlocked.Add(ref sum ,

↪→ parsedElevation);

38 Interlocked.Increment(ref count);

39 }

40 else

41 {

42 log.LogWarning($"Could not parse

↪→ elevation ’{v.Elevation}’ for volcano ’{v.VolcanoName

↪→ }’. This elevation will be ignored.");

43 }

44 }

45 }));

46 }

47

48 // Wait for all tasks to complete

49 await Task.WhenAll(tasks);

50

51 if (count == 0)

52 {

53 return new NotFoundResult ();

54 }

55

56 double meanElevation = Math.Round(sum / count , 3);

57

58 return new OkObjectResult(meanElevation);

59 }

60 catch (CosmosException cosmosEx) when (cosmosEx.

↪→ StatusCode == HttpStatusCode.TooManyRequests)

61 {

62 log.LogError($"Request rate too large. Delay for {

↪→ cosmosEx.RetryAfter}");

63 // Handle request rate too large

64 return new StatusCodeResult(StatusCodes.

↪→ Status429TooManyRequests);

65 }

66 catch (Exception ex)

67 {

68 log.LogError(ex , "An error occurred while

↪→ retrieving data from Cosmos DB.");

69 return new StatusCodeResult(StatusCodes.

↪→ Status500InternalServerError);

70 }

71 }

72 }

LXXXVIII

Remember that with concurrency every async operation should be thread-
safe. Here Interlocked methods are used to protect against concurrent
updates of the sum and count variables.

JMeter test results show also Error 503 service unavailable which might be
caused by other services your code is dependent on or insufficient resources
of Azure Functions server.

Lastly, ensure to perform Load and Performance test to validate that this
improved implementation manages application scaling requirements as
required.

DevOptimizeAI response third feedback iteration

The error ”502 Bad Gateway” indicates that the issue is most likely on
the server side and not on the client’s side. Based on the JTL results,
the problem is persisting because of the HTTP requests getting ”502 Bad
Gateway” and ”503 Service Unavailable” in response.

Coming to your Function Code, there are a few strategies you can apply to
enhance its performance.

1. Reduce Latency: The more requests sent to the database for data
retrieval, the more latency there will be. In your Function Code, you
are getting data multiple times from the same database for all the
volcanoes of a specific country. That could be improved by fetching it
once and storing it locally.

2. Utilize Batch Processing: Rather than handling one request at a
time, batch processing takes in multiple requests and processes them
together.

3. Use Efficient Data Types: Efficient use of data types especially in case
of huge data can help in consuming less memory and can increase the
overall performance.

4. Retry Policy: It is a good practice to implement a retry policy in your
application. Azure Cosmos DB SDK include a built-in retry policy
which handles throttling by doing exponential back off.

Here is an example of how the function can be improved. Please note that
you have to further modify this based on your specific requirements.

1 [FunctionName("GetMean")]

LXXXIX

2 public static async Task <IActionResult > Run(

3 [HttpTrigger(AuthorizationLevel.Anonymous , "get", Route =

↪→ null)] HttpRequest req ,

4 ILogger log)

5 {

6 string country = req.Query["Country"];

7 if (string.IsNullOrEmpty(country))

8 {

9 return new BadRequestObjectResult("The ’Country ’ query

↪→ parameter is required.");

10 }

11

12 try

13 {

14 var queryDefinition = new QueryDefinition("SELECT *

↪→ FROM c WHERE c.Country = @country")

15 .WithParameter("@country", country);

16

17 // RequestOptions with a retry policy

18 var requestOptions = new RequestOptions { RetryPolicy =

↪→ new RetryPolicy(HttpStatusCode.TooManyRequests) };

19

20 FeedIterator <Volcano > feedIterator = cosmosContainer.

↪→ GetItemQueryIterator <Volcano >(queryDefinition ,

↪→ requestOptions: requestOptions);

21

22 double sum = 0;

23 int count = 0;

24

25 while (feedIterator.HasMoreResults)

26 {

27 FeedResponse <Volcano > response = await feedIterator

↪→ .ReadNextAsync ();

28 foreach (var v in response)

29 {

30 if (double.TryParse(v.Elevation , out var

↪→ parsedElevation))

31 {

32 sum += parsedElevation;

33 count ++;

34 }

35 else

36 {

37 log.LogWarning($"Could not parse elevation

↪→ ’{v.Elevation}’ for volcano ’{v.VolcanoName }’. This

↪→ elevation will be ignored.");

38 }

39 }

XC

40 }

41

42 if (count == 0)

43 {

44 return new NotFoundResult ();

45 }

46

47 double meanElevation = Math.Round(sum / count , 3);

48

49 return new OkObjectResult(meanElevation);

50 }

51 catch (Exception ex)

52 {

53 log.LogError(ex , "An error occurred while retrieving

↪→ data from Cosmos DB.");

54 return new StatusCodeResult(StatusCodes.

↪→ Status500InternalServerError);

55 }

56 }

Please note that the RetryPolicy class is deprecated and will be removed
in future versions of the Azure Cosmos DB .NET SDK. It’s recommended
to use the new built-in retry logic by setting CosmosClientOptions when
creating an instance of CosmosClient. We are still using it here for simplicity
and it’s better to refactor the retry mechanism in your production code.

XCI

Appendix I

ChatGPT Response

ChatGPT first response

User: provide an azure http trigger function in c# to get data from a
CosmosDB NoSQL searching by country and compute the mean of the
elevation
Model: Here is an example of how you can write an Azure Function with
an HTTP trigger that fetches data from Azure Cosmos DB and calculates
the mean of the elevation based on a provided country. Please replace
[DatabaseName], [CollectionName], [ConnectionStringSetting] with your
actual Cosmos DB details.

1 using System;

2 using System.Linq;

3 using System.Net;

4 using System.Threading.Tasks;

5 using Microsoft.AspNetCore.Mvc;

6 using Microsoft.Azure.WebJobs;

7 using Microsoft.Azure.WebJobs.Extensions.Http;

8 using Microsoft.AspNetCore.Http;

9 using Microsoft.Extensions.Logging;

10 using Newtonsoft.Json;

11 using Microsoft.Azure.Documents.Client;

12 using Microsoft.Azure.Documents.Linq;

13

14 public static class GetMeanElevation

15 {

16 [FunctionName("GetMeanElevation")]

17 public static async Task <IActionResult > Run(

18 [HttpTrigger(AuthorizationLevel.Function , "get", "

XCII

↪→ post", Route = null)] HttpRequest req ,

19 ILogger log)

20 {

21 log.LogInformation("C# HTTP trigger function

↪→ processed a request.");

22

23 string country = req.Query["country"];

24

25 string requestBody = await new StreamReader(req.

↪→ Body).ReadToEndAsync ();

26 dynamic data = JsonConvert.DeserializeObject(

↪→ requestBody);

27 country = country ?? data?. country;

28

29 if (string.IsNullOrEmpty(country))

30 {

31 return new BadRequestObjectResult("Please pass

↪→ a country on the query string or in the request body")

↪→ ;

32 }

33

34 var client = new DocumentClient(new Uri("https ://[

↪→ YourCosmosDBAccountName]. documents.azure.com :443/"), "

↪→ [YourCosmosDBAccountKey]");

35 var query = client.CreateDocumentQuery <Document >(

36 UriFactory.CreateDocumentCollectionUri("[

↪→ DatabaseName]", "[CollectionName]"),

37 new FeedOptions { EnableCrossPartitionQuery =

↪→ true })

38 .Where(d => d.Country == country)

39 .AsDocumentQuery ();

40

41 var elevations = new List <int >();

42 while (query.HasMoreResults)

43 {

44 foreach (var result in await query.

↪→ ExecuteNextAsync ())

45 {

46 if (result.Elevation != null)

47 {

48 elevations.Add(result.Elevation);

49 }

50 }

51 }

52

53 if (elevations.Count == 0)

54 {

55 return new NotFoundResult ();

XCIII

56 }

57

58 var meanElevation = elevations.Average ();

59

60 return new OkObjectResult($"The average elevation

↪→ for {country} is {meanElevation}");

61 }

62 }

Listing I.1: first GPT-4 response

Please note that this code assumes that your Cosmos DB documents have a
Country and Elevation properties. If your document structure is different,
please adjust the query and property accesses accordingly. Also, don’t forget
to add the necessary NuGet packages for Microsoft.Azure.WebJobs.
Extensions.CosmosDB and Microsoft.Azure.DocumentDB.Core.

User: is the function efficient and correct?
Model:The function is correct in terms of achieving the required func-
tionality of getting data from CosmosDB and calculating the mean of the
elevation. It is efficient in the sense that it’s using the IDocumentQuery in-
terface which allows for asynchronous iteration over the results and handles
pagination behind the scenes.

However, the function could be improved for efficiency in a few ways:

1. Using Dependency Injection: The DocumentClient instance could be
injected into the function using Dependency Injection, rather than
creating a new instance for each function execution. This would allow
for better connection management and performance.

2. Handling Large Data: If the data from CosmosDB is large, fetching
all data to the function and then calculating the average might not be
efficient. It would be better to calculate the sum and count separately
in the CosmosDB query itself, and then calculate the average in the
function.

3. Avoiding Null Checks: The null check for Elevation in the loop can be
avoided if the data in CosmosDB is guaranteed to have an Elevation
for every document.

4. Input Validation: The function currently accepts both GET and POST
requests. It would be more efficient to accept only GET requests with
the country as a query parameter, unless there’s a requirement to
accept the country in the request body.

XCIV

5. Partition Key: The function is currently using cross partition queries
which can be expensive. If the Country is the partition key, we can
execute queries within a partition which will be faster and cost-efficient.

Remember to replace placeholders in the URI and Key with your actual
Cosmos DB instance details. Also, the query is assuming that your doc-
uments have a property named ”Country”. If your document structure is
different, please adjust accordingly.

ChatGPT enhanced response

User: provide a better implementation with better performance
Model: Here’s an improved version of the function that uses Dependency
Injection to manage the DocumentClient instance. It also changes the
HTTP trigger to only accept GET requests and moves the country to a
route parameter. The CosmosDB query is also optimized to only select the
Elevation field, reducing the amount of data transferred.

You need to add a Startup.cs file to your project to set up Dependency
Injection:

1 using Microsoft.Azure.Functions.Extensions.

↪→ DependencyInjection;

2 using Microsoft.Extensions.DependencyInjection;

3 using Microsoft.Azure.Documents.Client;

4

5 [assembly: FunctionsStartup(typeof(MyNamespace.Startup))]

6

7 namespace MyNamespace

8 {

9 public class Startup : FunctionsStartup

10 {

11 public override void Configure(

↪→ IFunctionsHostBuilder builder)

12 {

13 builder.Services.AddSingleton ((s) => {

14 return new DocumentClient(new Uri("https

↪→ ://[YourCosmosDBAccountName]. documents.azure.com :443/"

↪→), "[YourCosmosDBAccountKey]");

15 });

16 }

17 }

18 }

XCV

And here’s the improved function:

1 using System;

2 using System.Linq;

3 using System.Net;

4 using System.Threading.Tasks;

5 using Microsoft.AspNetCore.Mvc;

6 using Microsoft.Azure.WebJobs;

7 using Microsoft.Azure.WebJobs.Extensions.Http;

8 using Microsoft.AspNetCore.Http;

9 using Microsoft.Extensions.Logging;

10 using Newtonsoft.Json;

11 using Microsoft.Azure.Documents.Client;

12 using Microsoft.Azure.Documents.Linq;

13

14 public static class GetMeanElevation

15 {

16 private static DocumentClient client;

17

18 public GetMeanElevation(DocumentClient documentClient)

19 {

20 client = documentClient;

21 }

22

23 [FunctionName("GetMeanElevation")]

24 public static async Task <IActionResult > Run(

25 [HttpTrigger(AuthorizationLevel.Function , "get",

↪→ Route = "meanelevation /{ country}")] HttpRequest req ,

26 string country ,

27 ILogger log)

28 {

29 log.LogInformation("C# HTTP trigger function

↪→ processed a request.");

30

31 if (string.IsNullOrEmpty(country))

32 {

33 return new BadRequestObjectResult("Please pass

↪→ a country on the query string or in the request body")

↪→ ;

34 }

35

36 var query = client.CreateDocumentQuery <int >(

37 UriFactory.CreateDocumentCollectionUri("[

↪→ DatabaseName]", "[CollectionName]"),

38 new SqlQuerySpec

39 {

40 QueryText = "SELECT VALUE c.Elevation FROM

↪→ c WHERE c.Country = @country",

XCVI

41 Parameters = new SqlParameterCollection ()

42 {

43 new SqlParameter("@country", country)

44 }

45 },

46 new FeedOptions { EnableCrossPartitionQuery =

↪→ true })

47 .AsDocumentQuery ();

48

49 var elevations = new List <int >();

50 while (query.HasMoreResults)

51 {

52 foreach (var result in await query.

↪→ ExecuteNextAsync ())

53 {

54 elevations.Add(result);

55 }

56 }

57

58 if (elevations.Count == 0)

59 {

60 return new NotFoundResult ();

61 }

62

63 var meanElevation = elevations.Average ();

64

65 return new OkObjectResult($"The average elevation

↪→ for {country} is {meanElevation}");

66 }

67 }

Please note that this code assumes that your Cosmos DB documents have a
Country and Elevation properties. If your document structure is different,
please adjust the query and property accesses accordingly. Also, don’t forget
to add the necessary NuGet packages for Microsoft.Azure.WebJobs.
Extensions.CosmosDB and Microsoft.Azure.DocumentDB.Core.

User: is the function efficient and correct?
Model: The given function is correct in terms of functionality as it fetches
data from Cosmos DB based on a given country and calculates the mean of
the elevation. It is efficient in the sense that it’s using the IDocumentQuery
interface which allows for asynchronous iteration over the results and
handles pagination behind the scenes.

However, the function could be improved for efficiency in a few ways:

XCVII

• Using Dependency Injection: The DocumentClient instance is injected
into the function using Dependency Injection, rather than creating a
new instance for each function execution. This would allow for better
connection management and performance.

• Handling Large Data: If the data from Cosmos DB is large, fetching
all data to the function and then calculating the average might not be
efficient. It would be better to calculate the sum and count separately
in the Cosmos DB query itself, and then calculate the average in the
function.

• Avoiding Null Checks: The null check for Elevation in the loop can be
avoided if the data in Cosmos DB is guaranteed to have an Elevation
for every document.

• Input Validation: The function currently accepts only GET requests
with the country as a route parameter.

• Partition Key: The function is currently using cross partition queries
which can be expensive. If the Country is the partition key, we can
execute queries within a partition which will be faster and cost-efficient.

Remember to replace placeholders in the URI and Key with your actual
Cosmos DB instance details. Also, the query is assuming that your doc-
uments have a property named ”Country”. If your document structure is
different, please adjust accordingly.

XCVIII

	Chapter Introduction and motivation
	Chapter Background and related works
	DevOps
	Generative AI
	Performance testing Tools
	Related Works

	Chapter DevOptimizeAI Requirements and Design
	DevOptimizeAI mission
	Requirements
	Design

	Chapter DevOptimizeAI Implementation
	Configuration Form
	DevOptimizeAI pipeline stages
	GPT response formatting

	Chapter Experimental Results
	Azure Functions Test Code Implementation
	Acceptance tests
	Validation tests

	Chapter Conclusions and future works
	Conclusions
	Future works

	List of Tables
	List of Figures
	Bibliography
	Appendix Template YAML code
	JMeter YAML code
	OpenAi YAML code

	Appendix C# function code
	GetMean code
	GetAPI code
	PostAPI code
	CalculatePrimeNumbers code

	Appendix JMeter Test Plans
	GetMean Test plan
	GetAPI Test plan
	PostAPI Test plan
	CalculatePrimeNumbers Test plan

	Appendix Prompt Engineering component
	JMeter result files
	Generated JMeter input for GPT model
	Input for GPT model

	Appendix Test with different program without prompt engineering
	Test results with GPT-3
	Program test results with GPT4

	Appendix Prompt Test
	Prompt Test using only system message
	Prompt Test using only user message
	Prompt Test using both user and system message

	Appendix CPU-Intensive Test
	CalculatePrimeNumbers Test

	Appendix Behavioural Test
	Prompt Test providing prompt to different developer types
	Prompt Test providing hint for the model
	Model behaviour with previous successful messages example
	Prompt Test using feedback provided from the model for GetMean API

	Appendix ChatGPT Response

