
Activity Recognition and
Localization in Smart

Environments

Marco Limone

DIBRIS - Department of Computer Science, Bioengineering,
Robotics and System Engineering

University of Genova

Supervisors:
Prof. Antonio Sgorbissa
Prof. Carmine Recchiuto
Prof. Luca Oneto

In partial fulfillment of the requirements for the degree of

Laurea Magistrale in Robotics Engineering

October 26, 2023

2

Declaration of Originality

I, Marco Limone, hereby declare that this thesis is my own work and
all sources of information and ideas have been acknowledged appro-
priately. This work has not been submitted for any other degree or
academic qualification. I understand that any act of plagiarism, re-
production, or use of the whole or any part of this thesis without
proper acknowledgment may result in severe academic penalties.

Acknowledgements

Special thanks to Professor Antonio Sgorbissa, who, by making the
time spent working together enjoyable, guided and supported me in
the development of my thesis work, even giving me the opportunity to
write a paper. Likewise, a heartfelt thanks also to professors Carmine
Recchiuto and Luca Oneto, for their help throughout this work.

Abstract

In recent decades, the evolution of digital technologies has led to the
creation of smart environments, spaces in which objects and devices
are interconnected and able to communicate with each other, work-
ing together to enhance the user experience. These environments,
also known as ”Internet of Things” (IoT) or ”Internet of Everything”
(IoE), have revolutionized several areas of our daily lives, including
home, office, transportation and health.

This thesis work focuses on the concept of smart environments and its
importance in identifying and recognizing what is happening within
a specific environment. In particular, it explores how the systems in
these environments are able to collect, analyze and interpret data from
sensors and devices, enabling a better understanding of the dynamics
and the activities taking place.

One of the key aspects of intelligent environments is the ability to
recognize events and interactions occurring within the environment.
This recognition is based on the use of advanced artificial intelligence
techniques, such as machine learning and computer vision. Using
these technologies, intelligent environments can discern human activ-
ities, monitor physical spaces, and identify users’ behavioral patterns.
This results in a more personalized and efficient experience for the in-
dividuals involved, improving quality of life and optimizing available
resources.

In addition, analysis of the environment is important for the creation
of safe and suited to users’ needs environments. Through data collec-
tion and interpretation of information, hazardous situations or abnor-
mal behavior can be identified. This is particularly relevant in areas
such as home security, industrial automation and health care, where
early detection of potential threats can prevent significant damage.

However, the implementation of smart environments also raises eth-
ical and privacy issues. The collection of vast amounts of data car-
ries the risk of privacy violations and misuse of personal information.
Therefore, it is essential to strike a balance between the efficiency

and convenience of intelligent environments and the protection of the
privacy of the individuals involved.

This thesis explores technological developments and challenges related
to smart environments, highlighting the importance of recognizing
what is happening within these spaces. Through extensive research
and critical analysis, methods and strategies are proposed to address
emerging challenges and maximize the benefits of smart environments.

Contents

1 Introduction 1
1.1 Context . 1
1.2 Motivations . 2
1.3 Objectives . 3
1.4 Document’s Structure . 3

2 State of the Art 5
2.1 Architecture for Ambient Intelligence 5

2.1.1 Architecture Cloud for Ambient Intelligence 7
2.2 Activity Recognition . 11

2.2.1 Indoor Localization . 11
2.2.1.1 Topological Localization 11
2.2.1.2 Geometrical Localization 13
2.2.1.3 Approaches . 14

2.3 Machine Learning for Activity Recognition 19
2.4 Large Lenguage Models . 27

3 Software Architecture 29
3.1 Sensors . 36
3.2 Data Acquisition . 37

3.2.1 Cloud Architecture . 39
3.2.2 Database Structure . 41

3.3 Reasoning Server . 43
3.3.1 Activity Detection with ML 44
3.3.2 Activity Detection with LLM 47

4 Experiments 51
4.1 Methodology . 51

4.1.1 Strategic Arrangement of Sensors 51
4.1.2 Activities and Creation of Datasets 52
4.1.3 Database Access . 54

v

CONTENTS

4.1.4 ML . 55
4.1.5 LLM . 57
4.1.6 Online Data Acquisition and Analysis 59

4.2 Results . 59
4.2.1 ML Accuracy . 59
4.2.2 LLM Accuracy . 62
4.2.3 Real-time test . 63
4.2.4 Comunication times . 66

4.3 Discussion . 67

5 Conclusions 69

References 76

vi

List of Figures

2.1 Ambient Intelligence architecture from Agate et al. (2019). 6
2.2 AWS Cloud Architecture . 9
2.3 GCP cloud architecture. 10
2.4 Example of a Topological map from Zhu et al. (2019) 12
2.5 Example of Trilateration from ilçi et al. (2015) 13
2.6 Example of Triangulation from Montanha et al. (2019) 14
2.7 Overlapped areas for human detection with PIR from Wu et al.

(2021) . 16
2.8 Schema of tests done with RFID from Xu et al. (2018a) 17
2.9 Schema of tests done with UWB from Che et al. (2023) 17
2.10 System architecture with BLE from Garćıa-Paterna et al. (2021) . 18
2.11 Example of Random Forest . 21
2.12 Pose machines flow chart . 22
2.13 LSTM flow chart example . 23
2.14 SVM functioning . 23
2.15 HMM scheme . 24
2.16 Transformers scheme from Gavrilyuk et al. (2020) 25
2.17 Prompt schema of the LLM-Planner 28

3.1 First evolution of the architecture. 30
3.2 Second evolution of the architecture. 31
3.3 Cloud architecture for data acquisition and activity recognition. . 32
3.4 Sequence diagram showing data exchanges between architecture’s

components. 35
3.5 Database structure. 42
3.6 Structure of the prompt: the system field is constant for all activ-

ities, while the user field varies based on the specific activities and
sensor readings. 49

vii

LIST OF FIGURES

4.1 Smart Environment considered for experiments. In the image, the
red dots represent the PIR sensors with their visibility range. Blue
dots represent the magnetic door sensors. The robot is manually
placed in different positions. In black we see the desks and the
meeting table. 52

4.2 Environment Topological map . 53

viii

Chapter 1

Introduction

1.1 Context

When we talk about smart environments we refer to spaces in which the synergy
between digital and physical technologies enables the creation of personalized and
enhanced experiences for users. Smart environments have revolutionized several
spheres of our daily lives, such as home, office, transportation, and healthcare,
offering extraordinary opportunities for optimization and comfort.

This thesis focuses on the implementation of a human AR (Activity Recogni-
tion) and localization system within smart environments, using passive infrared
(PIR), magnetic door sensors and cameras, whose data are analyzed by machine
learning algorithms. The resulting architecture is a combination of a hardware
part given by the sensors and a software part based on a Client/Server architec-
ture, organized on several layers, to allow the proper exchange of data and make
them available for evaluation.

Activity Recognition plays a central role in enhancing the user experience
within an intelligent environment. The capability to automatically and accu-
rately recognize human activities enables the system to adapt in real-time to the
user’s needs. The use of passive infrared (PIR) sensors, which detect body heat
emitted by people in motion, offers an effective and cost-efficient solution for cap-
turing activities related to specific locations in the environment without intrusive
interactions with the user. Magnetic door sensors, providing information about
the state (open or closed) of doors and windows, can complement PIR sensors.
Robots equipped with cameras can furnish additional data about user posture,
gestures, and gaze without compromising privacy, as users can explicitly request
the robot to withdraw or ”close its eyes”.

1

1.2 Motivations

By analyzing the data collected from these sensors, it is possible to iden-
tify and categorize behavioral patterns and gather information about the user’s
activities and their locations. Then, information about detected activities can
offer valuable insights for optimizing the environment based on the inhabitants’
habits, provide information to improve their safety (especially for older people
living alone), or even assist the robot in assessing different ways to interact with
them.

The contribution of this work lies in its approach to data analysis, con-
ducted either through machine learning (ML) algorithms or large language models
(LLMs), a different approach for activity recognition and localization. Addition-
ally, we introduce a solution that consists of a hardware layer comprising sensors
and processing units, as well as a software layer built as a cloud client/server
architecture. This architecture facilitates the exchange of data, making it avail-
able for reasoning and evaluation. Furthermore, this architecture is designed to
manage simultaneous internal environments, making it well-suited for handling
different real-world scenarios.

1.2 Motivations

In order to effectively address the challenges associated with this approach, care-
ful management of the data collected is essential. This entails integrating data
from different sensors, such as PIRs and magnetics, and using machine learning
algorithms to minimize errors and achieve precise outcomes. It is important to
gain insights into individuals’ activities to understand their unique needs across
different domains. For instance, in the healthcare industry, this can help us gain
a better understanding of patients’ or elderly individuals’ requirements, while in
the workplace, it can assist in assessing the progress of work processes and eval-
uating the overall quality of the work environment.

When discussing the topic of data collection within smart environments, it
is important to emphasize the importance of safeguarding user privacy. This
must be the primary focus when implementing such environments. As the data
collected can comprise sensitive information regarding users’ lifestyles and where-
abouts, it is imperative to take appropriate measures to guarantee that privacy
is guaranteed under all circumstances.

2

1.3 Objectives

1.3 Objectives

This thesis aims to create a versatile architecture that can handle easily multiple
internal environments. Its goal is to accurately recognize activities and locations
in a modular and robust manner. With a deep understanding of the challenges
involved.

The objective of this study is to develop a reliable Client/Server framework
that can efficiently manage data acquisition, storage, and activity recognition.
Our goal is to create a system that works consistently in different settings and
complex scenarios, achieved through careful planning and integration of essential
components.

In order to accomplish our goals, we plan to use two different predictive mod-
els. Our first strategy involves utilizing conventional Machine Learning algo-
rithms, like the Random Forest and versatile Support Vector Machine (SVM).
These well-established techniques have demonstrated their effectiveness in vari-
ous scenarios and can provide us with valuable insights into our specific area of
interest.

We recognize the vast possibilities that advanced technologies offer and are
currently exploring the potential of Large Language Models (LLMs). These mod-
ern models have transformed the way we process and comprehend natural lan-
guage. Our aim is to harness the power of LLMs for activity recognition and
localization, thereby unlocking valuable new perspectives.

Our research will center on comparing these two methods, providing a de-
tailed evaluation of their respective advantages, drawbacks, and overall efficacy.
Through this comparative analysis, we aim to extract important assessments that
will guide us in future data-driven efforts.

This thesis aims to create an architecture that can manage multiple internal
environments while providing modularity, robustness, and precision in activity
recognition and localization.

1.4 Document’s Structure

Following this, all the stages of the work done divided into various chapters will
be presented in detail, specifically:

3

1.4 Document’s Structure

1. Chapter 2: this chapter presents the state of the art by dwelling on exist-
ing architectures, activity recognition, localization, Machine Learning algo-
rithms, and LLM

2. Chapter 3: this chapter presents how is structured the software architecture

3. Chapter 4: this chapter presents the experiments done and the results ob-
tained

4. Chapter 5: this chapter presents the final conclusions

4

Chapter 2

State of the Art

2.1 Architecture for Ambient Intelligence

In the context of Ambient Intelligence (AmI), combining complex and innova-
tive solutions is crucial. AmI-based systems must be dynamic, flexible, robust,
adaptable to changing contexts, scalable, and easy to use and maintain. The
use of Multi-agent systems(MAS), like in Tapia et al. (2009b) Fraile et al. (2008)
Tapia et al. (2013) Sanchez-Pi & Molina (2010), plays a key role in this area,
as they have important qualities such as autonomy, reasoning ability, responsive-
ness, social skills, and proactivity, which prove to be crucial for the development
of AmI-based distributed systems. Another essential aspect in these develop-
ments is the use of context-sensitive technologies, which enable them to sense
surrounding stimuli and react autonomously and effectively.

As part of the search for software solutions that can adapt to people’s needs
and specific situations, the development of Ambient Intelligence (AmI) systems
has emerged. This new technological frontier aims to personalize human-machine
interaction by incorporating pervasive computing elements that communicate
with each other ubiquitously. AmI systems aim to capture and manage rele-
vant information in the surrounding environment, enabling greater adaptability
and interactivity between technology and individuals. Operating in a lot of dif-
ferent fields like in Alonso et al. (2010) Cai et al. (2019) Bavafa & Navidi (2010).

Today, society is increasingly accustomed to the use of compact, noninvasive
technological devices that facilitate daily routines. These devices act as agents,
constantly collecting dynamic data from the surrounding context in a distributed
manner. However, the integration of such devices is not without challenges, re-
quiring the development of innovative solutions that combine different approaches
to create versatile and adaptable systems.

5

2.1 Architecture for Ambient Intelligence

With an intelligent and ubiquitous approach, AmIs aim to provide person-
alized support that is integrated into the surrounding environment, thereby en-
hancing people’s life experiences.

The sensing component of AmI could be wired or wireless, like in Kartakis
et al. (2012), with sensors either independent or embedded in a device such as
a wearable or smartphone. Wireless sensor networks (WSN) are more flexible
and require less infrastructural support than wired sensor networks, as in Marin-
Perianu et al. (2007) Tapia et al. (2009a) Malatras et al. (2008). However, wired
sensors can provide more reliable and secure data transmission.

Among the many architectures present in the present state, a very interesting
one is the one presented in Agate et al. (2019) where the idea from which the
architecture was born is very close to the one we would like to develop in this
thesis, that is, an architecture capable of understanding what is happening in
the concerned environment and to sample activities and habits of those who live
within it. An example of the architecture they devised can be found in Figures
2.1

Figure 2.1: Ambient Intelligence architecture from Agate et al. (2019).

6

2.1 Architecture for Ambient Intelligence

2.1.1 Architecture Cloud for Ambient Intelligence

A cloud is a remote server-based data storage and management system that of-
fers a wide range of services and resources over the Internet. Data are stored
and managed on virtual servers, allowing users to access them from anywhere
at any time. Cloud connection is the process of connecting an organization’s IT
system to the cloud platform for storing, processing, and managing data and ap-
plications. Cloud connections can be implemented through several mechanisms,
including virtual private network (VPN) connection, direct network connection
(DNC), and hybrid network connection. In today’s digital world, more and more
organizations are adopting cloud technology to improve the productivity, effi-
ciency and flexibility of their systems. Cloud connectivity is a critical aspect of
this change, as it enables organizations to access and manage data and applica-
tions from anywhere, anytime, with an Internet connection. There are several
benefits that characterize cloud connectivity and that need to be taken into ac-
count. Cloud connectivity offers several benefits to organizations. First, it offers
greater flexibility and scalability, as organizations can access their data and ap-
plications from anywhere, anytime. Second, it reduces IT infrastructure costs, as
organizations can use cloud resources according to their needs and pay only for
what they use. Third, cloud connectivity offers greater data security, as data is
stored safely and securely in the cloud platform.

Regarding the use of clouds to manage data from smart sensors in smart
environments we could have some examples like Cubo et al. (2014), but two are
the most prominent reference examples:

1. Amazon Web Services (AWS).

2. Google Cloud Platform (GCP).

In recent years, the evolution of digital technologies has led to the creation
of increasingly intelligent and connected environments, known as smart environ-
ments or smart environments. These environments integrate a wide range of
devices, sensors, data and digital resources to improve efficiency, convenience and
the overall user experience. Amazon Web Services (AWS) has established itself
as a leading cloud service provider, offering a range of tools and resources that
are essential for creating and managing smart and intelligent environments.

AWS offers services in Intelligent and Smart Environments such as:

1. IoT Devices and Sensors: Smart environments rely on a vast network of
IoT devices and sensors to collect real-time data. AWS IoT provides the

7

2.1 Architecture for Ambient Intelligence

ability to securely connect, manage and interact with these devices. AWS
IoT Core enables secure, two-way communication between devices and the
cloud, while AWS Greengrass enables local processing on devices to reduce
latency and improve responsiveness.

2. Data Storage and Analysis: Data collection from devices and sensors re-
quires powerful storage and analysis solutions. AWS S3 (Simple Storage Ser-
vice) offers scalable and durable storage space, while Amazon DynamoDB
is a NoSQL database for storing structured and semi-structured data. For
data analysis, AWS offers services such as Amazon Kinesis for real-time data
stream management and Amazon Redshift for large-scale data analysis.

3. Artificial Intelligence and Machine Learning: Intelligent environments of-
ten leverage artificial intelligence (AI) and machine learning (ML) to ex-
tract insights from data and make automated decisions. AWS provides
Amazon SageMaker for developing, training and implementing ML models.
In addition, services such as Amazon Rekognition enable image and face
recognition, while Amazon Polly offers speech synthesis.

4. Security and Privacy: In connected environments, data security is critical.
AWS offers tools such as Amazon Identity and Access Management (IAM)
for authorization management, Amazon GuardDuty for threat detection,
and AWS Key Management Service (KMS) for cryptographic key manage-
ment.

5. Management and Automation: Centralized management is essential to main-
tain efficiency in smart environments. AWS offers AWS Management Con-
sole for simplified management, while AWS CloudFormation enables auto-
mated provisioning and resource management.

The use cases of AWS in Smart and Intelligent Environments is indeed consid-
erable for example its use in smart cities can be used to create solutions for traffic
monitoring, smart lighting, waste management and more, helping to make cities
more efficient and sustainable; smart buildings for controlling heating, ventila-
tion, and air conditioning systems, optimizing energy use, and managing security;
or even in health and wellness where smart environments in healthcare can use
AWS to collect and analyze patient data, support telehealth, and facilitate the
management of connected medical devices.

From Figure 2.2 we can see the basic architecture used in AWS which precisely
presents the Lambda tool in which there are all the applications that can be
created by the developer to manage data or obtain specific information.

8

2.1 Architecture for Ambient Intelligence

Figure 2.2: AWS Cloud Architecture

Google Cloud Platform (GCP) has established itself as a leading cloud service
provider, offering a range of tools and resources that play a crucial role in creating
and managing smart and intelligent environments.

1. Internet of Things (IoT) and Sensors: GCP provides Google Cloud IoT
Core, a service for connecting, managing and monitoring IoT devices and
sensors. It allows data to be collected from connected devices and securely
transmitted to the cloud for analysis.

2. Data Storage and Analysis: GCP offers scalable storage solutions such as
Google Cloud Storage and databases such as Google Cloud Bigtable and
Google Cloud Firestore. For data analysis, Google BigQuery is a powerful
tool for querying large amounts of data quickly and efficiently.

3. Artificial Intelligence and Machine Learning: The integration of artificial
intelligence and machine learning is critical in smart environments. Google
Cloud offers tools such as Google AI Platform for developing, training and
deploying machine learning models. In addition, Google AutoML makes it
easy to create models without the need to be a machine learning expert.

4. Geospatial Data Analysis: For environments requiring geospatial analysis,
GCP offers Google Cloud Location Services, enabling the integration of
mapping, positioning, and geocoding capabilities into services.

5. Security and Privacy: GCP provides advanced security tools such as Google
Cloud Identity and Access Management (IAM), which allows granular man-
agement of permissions. Google Cloud Security Command Center provides
an overview of the security of the environment.

9

2.1 Architecture for Ambient Intelligence

6. Management and Automation: Management and automation are simplified
by services such as Google Cloud Console for centralized management and
Google Cloud Deployment Manager for declarative resource creation and
management.

In Figure 2.3 it is possible to see the basic architecture used by Google for
its smart environments. It can be seen that the Google Cloud Platform contains
all the services made available by Google including an environment for creating
code and applications, and a storage section for data.

Figure 2.3: GCP cloud architecture.

As with AWS, the GCP use cases can be the same going from smart city to
smart home or wellness and health.

In conclusion, Amazon Web Services and Google Cloud Platform offer a wide
range of services and resources that are well suited to the needs of smart and
intelligent environments. From data storage and analytics to artificial intelligence
and security, they both play a key role in enabling the digital transformation of
environments across different industries. The integration of these services can
lead to a higher level of efficiency, sustainability, and convenience for users of
these advanced environments.

10

2.2 Activity Recognition

2.2 Activity Recognition

2.2.1 Indoor Localization

Indoor localization, commonly known as indoor positioning, is a cutting-edge
technology that enables the location of objects, devices, or individuals within
buildings, enclosed spaces, and business facilities. Although outdoor location
systems such as GPS have become very important in our everyday lives, they fall
short in providing precise information indoors. To bridge this gap, indoor local-
ization has emerged, utilizing a range of technologies and methods to accurately
calculate the coordinates of individuals or devices in environments where satellite
signals are not available.

Indoor location is rapidly gaining importance in several application areas. In
shopping malls and airports, it offers personalized navigation services, providing
precise directions to users regarding desired stores or boarding gates. In the cor-
porate environment, indoor locations can be used for asset tracking, optimization
of warehouse operations, and workflow management. In addition, in the enter-
tainment and tourism sectors, visitor experiences in museums, theme parks or
fairs can be improved through interactive apps that provide contextual informa-
tion based on the user’s location.

However, indoor localization still presents some challenges, such as the need
to manage signal interference and ensure data privacy of localized devices. Nev-
ertheless, thanks to technological advances and continuous innovations, indoor
localization is gradually becoming more accurate, efficient, and reliable, paving
the way for a future in which indoor navigation will be as smooth and intuitive
as outdoor navigation.

2.2.1.1 Topological Localization

Topological localization is an approach to indoor localization that is based on the
creation of a topological map of the environment in which localization takes place.
The topological map describes the spatial relationships between different areas
or points of interest within the environment, such as corridors, rooms, stairways,
or access points.

In the context of topological localization, the main objective is to determine
the relative position of an object or device within this map, rather than to deter-
mine its precise location in terms of spatial coordinates. For example, instead of
providing the exact coordinates of a device, topological localization may indicate

11

2.2 Activity Recognition

that the device is in a specific room or along a specific path.

Topological localization relies on algorithms and techniques that exploit rel-
ative information, such as the path followed or points of interest traversed, to
determine relative location. This information is usually collected using specific
sensors or technologies, such as cameras, motion sensors, or Wi-Fi access points.

One of the advantageous aspects of topological localization is its relative sim-
plicity compared to other approaches, such as geometric localization. It does not
necessarily require complex infrastructure or measurement tools. Furthermore,
topological localization can be useful in situations where it is sufficient to know
the general area in which an object or device is located, rather than its exact
location.

Topological localization is used in many different ways; in Zhu et al. (2019)
for example, a method is used that has the same concept behind it that will be
developed later for the method proposed in this thesis. Specifically, a Convolu-
tional Neural Network trained on a dataset of images, representing all rooms in
the chosen environment, is used to perform topological localization using images
from a smartphone camera. The following is an example of a topological map
used in Zhu et al. (2019).

Figure 2.4: Example of a Topological map from Zhu et al. (2019)

12

2.2 Activity Recognition

Figure 2.4 demonstrates that a topological map only exhibits the core rooms
and their interconnections, without considering the size of the rooms or the dis-
tances between them. The map’s intent is to convey how the rooms are linked to
each other, rather than providing specific measurements or dimensions.

2.2.1.2 Geometrical Localization

Geometric localization is a process of determining an object’s position or spatial
coordinates in a three-dimensional space. This type of localization relies on geo-
metric information, such as distances or angles, to calculate the object’s position
relative to a predefined reference system.

In the context of indoor localization, geometric localization is often used to
determine the location of mobile devices or objects within a building or enclosed
space. This can be done using various technologies and techniques, including:

1. Trilateration: uses distances measured from at least three known landmarks
(such as Wi-Fi access points or Bluetooth beacons) to calculate the object’s
position through the intersection of spheres or circumferences. Trilateration
for example is used in ilçi et al. (2015) where a geometric localization is
made using Received Signal Strength (RSS) measurements taken from WI-
Fi. The RSS measurements make it possible to calculate the distance of
the object from the sent signal and consequently obtain the position of the
object as in Figure 2.5

Figure 2.5: Example of Trilateration from ilçi et al. (2015)

13

2.2 Activity Recognition

2. Triangulation: uses angles or directions measured from at least three known
landmarks to calculate the position of the object through the intersection of
triangles. Triangulation is a very complex but also a very precise method.
Because it is so complex as an approach, the data obtained from the sensors
can be processed in a variety of different ways to obtain the most accurate
position possible. For example, five methods of analysis are even presented
in Montanha et al. (2019). In Figure 2.6 it is possible to observe the result
of the method based on Polar Points Centroids.

Figure 2.6: Example of Triangulation from Montanha et al. (2019)

3. Fingerprints: A technique for tracking the location of devices inside a build-
ing or an enclosed space involves using reference data, also known as ”fin-
gerprints,” that were previously gathered. The process of collecting this
data usually involves mapping the environment where location tracking is
needed. The data is then utilized to create fingerprints for each location
which contain information about the strength of the wireless signal in that
specific area. Fingerprints are a popular approach for indoor localization
because, when properly calibrated and mapped, they can be fairly precise.

2.2.1.3 Approaches

Indoor localization methods can be different and are often combined to achieve
optimal results.

14

2.2 Activity Recognition

1. PIR (Passive InfraRed): Locating people indoors has become an increas-
ingly relevant challenge in recent years. One of the methods used to ad-
dress this challenge is the use of PIR(Passive InfraRed) sensors and machine
learning algorithms. PIR sensors are devices that can detect human pres-
ence by analyzing heat changes in the surrounding environment. These
sensors are widely used for lighting control and security, but they can also
be used to locate people as in Lai et al. (2018).

The use of machine learning algorithms allows meaningful information to
be extracted from the data collected by PIR sensors. These algorithms can
learn the movement patterns and spatial characteristics of people within a
specific environment. For example, the algorithm can be trained on train-
ing data that contains information about the layout of spaces, such as the
position of doors, windows and fixed objects in the environment. Then, the
algorithm can be used to analyze PIR sensor data in real time and estimate
the position of people within the environment.

The combination of PIR sensors and machine learning algorithms offers
many advantages in locating people in indoor environments. This approach
can be used for monitoring elderly or disabled people, managing the flow
of people in public or commercial buildings, improving energy efficiency
through automated control of lighting and heating, and much more. The
use of PIR sensors and machine learning algorithms enables accurate and
reliable tracking of people, thus helping to create safer, more efficient and
personalized indoor environments.

In Wu et al. (2021) they propose a non-wearable system for cooperative
indoor human localization using a PIR detector and sensing signal process-
ing algorithms. The system utilizes the information of overlapping FOV of
multiple sensors to improve localization accuracy, in Figure 2.7 are visible
the detected areas. Signal processing algorithms and refinement schemes
such as the Kalman filter are used to improve the system performance with
good results.

2. RFID (Radio Frequency Identification): The RFID tracking system uses
RFID tags (labels) that are attached to objects or worn by people. These
tags emit radio signals that can be detected by RFID readers placed at
strategic locations in the environment. People’s location is determined
based on proximity to the RFID readers. This system is explored in San-
pechuda & Kovavisaruch (2008) and it is often used in environments such
as hospitals or airports for asset tracking or resource management.

15

2.2 Activity Recognition

Figure 2.7: Overlapped areas for human detection with PIR fromWu et al. (2021)

In Xu et al. (2018a) they proposes an algorithm to improve the positioning
precision of the LANDMARC algorithm Ni et al. (2003), which uses RFID
tags and readers to implement an Indoor Positioning System (IPS). The
proposed algorithm uses the weighted path length and support vector re-
gression to improve the accuracy of the LANDMARC algorithm. The RSSI
of the target tag is read in different directions of the antenna, and the posi-
tion is estimated using support vector regression. In Figure 2.8 is visible a
schema of the tests done in which we can see in green are the reference tags
that transmit to the antennas the RSSI received from the unknown tag in
yellow whose location is desired. these data are subsequently interpolated
to obtain the most accurate location possible.

3. Ultrasound: Ultrasonic-based tracking systems use ultrasonic transmitters
and receivers placed in the environment. The transmitters emit ultrasonic
signals, and the receivers detect the arrival time of these signals from the
various transmitters. Using the arrival time of ultrasonic signals, the local-
ization algorithm can calculate the distance between people and transmit-
ters, determining their location.

Che et al. (2023) highlights the advantages of UWB technology over narrowband-
based technologies such as Bluetooth and Wi-Fi, including a very large
bandwidth, very high data rate, short signal transmission length, low trans-
mission energy, and high penetration capability. The paper also discusses
the functionality of indoor localization with UWB, including client-based
positioning for indoor navigation and server-based positioning for asset
tracking. The accuracy of UWB-based IPS is reported to be 10-30 cm,

16

2.2 Activity Recognition

Figure 2.8: Schema of tests done with RFID from Xu et al. (2018a)

which is considerably better than other technologies such as beacons and
Wi-Fi. in Figure 2.9 is represented in a simple way the proposed localization
method.

Figure 2.9: Schema of tests done with UWB from Che et al. (2023)

4. Bluetooth Low Energy (BLE): BLE is a short-range communication tech-
nology that is used in many mobile devices. Using the BLE signal emitted
by mobile devices, people’s location can be estimated. This system is based
on detecting the strength of the BLE signal received from BLE beacons
placed in the environment. The location algorithm uses the received sig-
nal strength to calculate the distance between people and the beacons, and
then estimate their location like in Baronti et al. (2018).

17

2.2 Activity Recognition

In Garćıa-Paterna et al. (2021) the authors propose a simple and low-cost
architecture, visible in Figure 2.10, for a room-level indoor positioning sys-
tem based on Bluetooth Low Energy (BLE) technology. The system is
designed to provide location services for BLE-enabled smart devices worn
by the person to be localized. The paper describes the design, installation,
and testing methodology of the system, which has been developed for sim-
plicity, ease of installation, development, maintenance, and low cost. The
authors also provide the design decisions and explain them in detail, high-
lighting key ideas and lessons learned to reproduce the solution. The main
contributions of the paper are the proposed architecture for a room-level
indoor positioning system based on BLE technology, the design decisions,
and the testing methodology.

Figure 2.10: System architecture with BLE from Garćıa-Paterna et al. (2021)

5. Wi-Fi: Wi-Fi-based location systems take advantage of Wi-Fi networks in
the environment to estimate the location of people. This system uses Wi-Fi
signals emitted from mobile devices or Wi-Fi access points placed in the
environment. The location algorithm uses the strength of the Wi-Fi signal
received from mobile devices to calculate the distance and estimate the lo-
cation of people.

Roy & Chowdhury (2022) provides an overview of WiFi-based indoor local-
ization systems for smartphones based on RSSI values. The paper discusses
the advantages of using smartphones for indoor localization and the chal-
lenges associated with it. The paper also provides a comprehensive review of
the existing literature on WiFi-based indoor localization systems, including
the techniques used for localization, the algorithms used for data processing,
and the accuracy of the systems. The paper concludes that WiFi-based in-
door localization systems are a promising approach to achieve ubiquity since

18

2.3 Machine Learning for Activity Recognition

smartphones are widely available today and WiFi access points are ubiq-
uitous. The paper also highlights the need for further research to improve
the accuracy and reliability of WiFi-based indoor localization systems.

The PIR sensor approach to indoor localization has unique advantages that
make it preferable to other methods such as RFID, ultrasound, BLE, and Wi-Fi.
PIR sensors offer simple and cost-effective implementation, allowing for rapid in-
stallation and requiring little maintenance. In addition, because of their ability
to detect body heat, PIR sensors are particularly effective at detecting the pres-
ence of people, making them suitable for low-light environments. Unlike RFID,
the PIR approach does not require the installation and management of tags or
labels on the subjects to be located. Compared with ultrasound, the use of PIR
sensors does not require the installation of numerous transmitters and receivers,
reducing the cost and complexity of the system. In addition, PIR sensors are not
affected by ultrasonic reflections or diffractions, providing greater reliability in
localization. Compared with BLE and Wi-Fi, the PIR approach does not require
additional mobile devices or access points, simplifying deployment and reducing
costs. Finally, PIR sensors offer an immediate and real-time response, enabling
rapid and responsive localization. In conclusion, the PIR sensor approach stands
out for its simplicity and efficiency in indoor localization, making it a preferable
choice over other solutions such as RFID, ultrasound, BLE, and Wi-Fi. The only
aspect that slightly penalizes the PIR approach compared to others is accuracy,
this gap, however, can be easily bridged by using other types of sensors due to
the versatility of the approach itself.

2.3 Machine Learning for Activity Recognition

Machine Learning (ML) changes in a consistent manner the way we interact with
technology and the way automated systems can learn from data to make decisions
and take intelligent actions. One of the most relevant areas where ML has found
application is in human activity recognition. This field of research focuses on the
development of machine learning algorithms and models that can identify and
classify different activities performed by an individual or a group of people.

Human activity recognition is a complex and interesting challenge. It has
a wide range of practical applications ranging from areas such as robotics and
industrial automation to human health and well-being. For example, in a col-
laborative robotics context, an activity recognition system can enable a robot
to understand human actions and intentions, thereby improving human-machine
interaction. In drones and autonomous vehicles, activity recognition can help

19

2.3 Machine Learning for Activity Recognition

better understand the behavior of pedestrians and other vehicles, increasing road
safety.

In the medical field, activity recognition can be used to monitor the well-being
of the elderly and patients by detecting abnormal behavior or emergency situa-
tions. For example, a home monitoring system could recognize when a person
falls and send a distress notification. In addition, activity recognition is used in
the field of security surveillance to identify suspicious or potentially dangerous
activities, thereby improving the safety of public and private environments.

There are several Machine Learning approaches used for human activity recog-
nition like in Jain et al. (2023). Each approach has its strengths and weaknesses,
and the choice often depends on the nature of the data available and the specific
needs of the application. Among the main approaches:

1. Structured Data-Based Classification: This approach involves the use of
classification algorithms such as Support Vector Machines (SVM) or Ran-
dom Forest to label tasks. The data used to train these algorithms can be
represented by structured features extracted from raw data or sensors. This
approach is particularly useful when activities can be distinctly separated
into well-defined categories.

2. Deep Learning: Deep neural networks, a subfield of Machine Learning, have
been shown to be extremely powerful in activity recognition. In particular,
convolutional neural networks (CNNs) are used to automatically extract
meaningful features from raw data, such as images or sensor data. Recur-
rent neural networks (RNNs), on the other hand, are suitable for recognizing
activities based on temporal sequences of data. Deep neural networks are
prized for their ability to learn complex representations and have achieved
outstanding results in many applications, such as human activity recogni-
tion.

3. Unsupervised learning: Some activity recognition approaches use unsuper-
vised learning techniques, such as clustering or dimensionality reduction.
These approaches try to discover hidden patterns or structures in the data
without the use of labels. Unsupervised learning is useful when activity
labels are expensive or difficult to obtain.

The following are examples of algorithms used for activity recognition

1. Random Forest is a widely used machine learning algorithm for classification
and regression Breiman (2001) Biau (2012). It is based on a technique

20

2.3 Machine Learning for Activity Recognition

called ”bagging,” which combines the results of many decision trees (known
as ”weak” decision trees) to improve the overall prediction. In a Random
Forest, many decision trees are created using random subsets of the training
data and features, thus reducing the risk of overfitting (overlearning) and
improving generalization. When making a prediction, each decision tree
contributes its vote, and the final result is a weighted combination of these
votes. This technique is effective in handling complex data and noise in
the data and is used in a wide range of machine learning applications,
from image analysis to financial forecasting. It is also a very efficient and
fast algorithm as described in Nurwulan & Selamaj (2020). In Xu et al.
(2018b) for example, it is used to do activity recognition through the use
of accelerometers attached to various parts of a person’s body. Below in
Figures 2.11 is an example of the operation of the Random Forest.

Figure 2.11: Example of Random Forest

2. Convolutional Pose Machine (CPM) is a deep learning model used in the
field of human pose recognition and extraction from images or videos. This
approach relies on convolutional neural networks (CNNs) to identify key
joints and positions of the human body in an image Thilakarathne et al.
(2022). Unlike other architectures, such as kinetic chain models, CPM is
able to capture the spatial relationships between joints, thus improving the
accuracy of pose recognition. This makes it useful in applications such
as motion monitoring, gesture analysis, camera-based surveillance, and ad-
vanced human-computer interaction. The model takes advantage of the
ability of CNNs to automatically learn features from images, making CPM
a popular choice for computer vision problems related to human pose recog-
nition. It is often used for activity recognition based on human posture, for

21

2.3 Machine Learning for Activity Recognition

example, identifying specific gestures or postures. An example of this is in
Wei et al. (2016) where was tested the implementation on the MPII Hu-
man Pose dataset which consists of more than 28000 training samples and
contains images of a lot of different activities. In Figure 2.12 we can see the
pose machines flow chart from the paper.

Figure 2.12: Pose machines flow chart

3. LSTM, short for ”Long Short-Term Memory,” is a type of recurrent neu-
ral network (RNN) widely used in the field of machine learning, especially
in natural language processing (NLP) applications and time series recogni-
tion. What makes LSTM particularly powerful is its ability to capture and
maintain long-term information within the network, avoiding the ”gradient
disappearance” problem that plagues traditional RNNs, problem that is ex-
plored and solved with a LSTM in Murad & Pyun (2017). This architecture
can store and retrieve information from previous time steps, which is critical
for tasks such as machine translation, text prediction and speech recogni-
tion. LSTM has specialized internal layers called ”gates” that regulate the
flow of information within the network, making it capable of learning com-
plex sequences and maintaining long-term memory, making it a critical tool
for sequence-based machine learning applications. In Figure 2.13 we can
see an example of a flow chart of LSTM. An example of using LSTM for ac-
tivity recognition is in Pienaar & Malekian (2019) where they use a dataset
that includes labels for each of six activities, each including the x, y and
z axis values for the tri-axial accelerometer during the labeled activities.
The activities available in the dataset include standing, sitting, walking,
jogging, ascending and descending stairs.

4. SVM, short for ”Support Vector Machine,” is a machine learning algorithm
used for classification and regression problems. Its distinguishing feature is
its ability to find an optimal ”separation hyperplane” between two classes of
data in a multidimensional space. The main goal of SVM is to maximize the
distance between training examples closest to this hyperplane, called ”sup-
port vectors,” which helps to improve the generalization of the model. SVM

22

2.3 Machine Learning for Activity Recognition

Figure 2.13: LSTM flow chart example

can also be extended to handle nonlinear classification problems through the
use of kernel functions, which map data into a high-dimensional space so
that they become linearly separable. This makes SVM a powerful tool for
complex data classification and for problems where clear separation between
classes is essential, such as image recognition, text classification, and com-
putational biology. In Figure 2.14 we can see the way in which SVM works.
In Nawal et al. (2023) discusses the use of SVM as a method for activity
recognition of activities such as cooking, leaving home, sleeping and eating
in a smart home.

Figure 2.14: SVM functioning

5. Hidden Markov Models (HMMs) are probabilistic models used in machine
learning and sequential pattern recognition applications. These models con-
sist of two main components: a hidden state (hidden state) and an emitted
observation (emission). Hidden states represent the unobservable or latent
information in a system, while emitted observations are the information

23

2.3 Machine Learning for Activity Recognition

that can be measured or observed. HMMs are often used to model data
sequences, such as natural language recognition, handwriting recognition,
speech recognition, and more. One of the key features of HMMs is the abil-
ity to model the temporal dynamics of sequences, as the hidden states are
linked together through probabilistic transitions. These models have been
successfully used in a wide range of applications where it is important to
handle uncertainty and complex data sequences. In Figure 2.15 there is an
example of an HMM scheme. In Abreu et al. (2019) they use sensors like
accelerometer, gyroscope, magnetometer and microphone to create a new
dataset, with 10 complex activities, such as opening a door, brushing teeth
and typing on the keyboard. The classifier was based on multiple hidden
Markov models, one per activity.

Figure 2.15: HMM scheme

6. Transformers models are a type of neural network architecture that has rev-
olutionized the field of machine learning, particularly in the area of natural
language. These models are known for their ability to capture long-term
relationships in data sequences through the attention mechanism, which
allows different parts of an input to be given weight based on their rela-
tive relevance. Transformers are widely used in natural language processing
applications, such as machine translation, text recognition and text gener-
ation, and have led to state-of-the-art results in many of these areas. In
addition to NLP, Transformers models have also been successfully adapted
for other applications, such as image processing and time series prediction,
demonstrating their versatility and power in the field of machine learning. A

24

2.3 Machine Learning for Activity Recognition

notable example of a Transformer model is BERT (Bidirectional Encoder
Representations from Transformers), which has set new standards in the
field of NLP. In Gavrilyuk et al. (2020) the object is to recognize individual
actions and group activities from videos using Transformers. In Figure 2.16
we can see the scheme of functioning of the approach used in Gavrilyuk
et al. (2020).

Figure 2.16: Transformers scheme from Gavrilyuk et al. (2020)

As previously alluded to, the significance of location in activity recognition
cannot be overstated, and the advent of Machine Learning has played a pivotal
role in advancing this field, enabling the development of increasingly sophisti-
cated algorithms and systems for precisely determining the position of objects or
individuals within enclosed spaces, such as buildings, shopping malls, airports,
and factories, some methods are highlighted in Nessa et al. (2020) Zhang et al.
(2017) Roy & Chowdhury (2021).

It is essential to emphasize that indoor tracking faces a unique set of chal-
lenges, as traditional GPS technology becomes ineffective in these environments.
Thus, alternative technologies come into play, including Passive Infrared Sensors
(PIRs), Wi-Fi networks like in Salamah et al. (2016), Bluetooth Low Energy
(BLE), Radio-Frequency Identification (RFID), and inertial sensors, which serve
as data collection tools. Nonetheless, due to the inherent noise and potential
inaccuracies associated with such data sources, the incorporation of Machine
Learning algorithms becomes imperative to effectively handle uncertainties and
deliver highly accurate position estimates.

25

2.3 Machine Learning for Activity Recognition

Below, we will explore some of the most common and widely utilized ap-
proaches for indoor tracking. While some of these methods have been previously
discussed, we shall now consider them from a different perspective, particularly in
how they synergize with Machine Learning algorithms to enhance their efficacy:

1. RSSI-based fingerprinting: In this approach, location data (fingerprints)
are collected from various Wi-Fi access points or Bluetooth beacons within
the environment like in Singh et al. (2021). The collected data include the
received signal strength (RSSI) from each access point or beacon. These
fingerprints are used to build a reference model that maps RSSI readings to
specific locations. Machine Learning algorithms, such as k-Nearest Neigh-
bors (k-NN) or Support Vector Regression (SVR), are then used to estimate
the location of an object or device based on the RSSI readings received.

2. Trilateration: This method uses distance measurement signals, such as
Bluetooth BLE signals or ultrasonic waves, to calculate the position of
a device based on the distances detected by beacons or sensing sensors.
Machine Learning algorithms in this case are used to improve the accuracy
of trilateration by also considering other factors, such as signal attenuation
due to obstacles or fluctuations in the environment.

3. Triangulation : This method uses angles or directions measured from at
least three known landmarks to calculate the position of the object through
the intersection of triangles. In this case, Machine Learning algorithms are
used to compensate for possible errors and noise in data acquisition and to
estimate possible positions even when the object or person is not correctly
identified by at least three landmarks.

4. Sensor Fusion: Indoor localization can be improved by fusing data from
different sensor sources, such as accelerometers, gyroscopes, and magne-
tometers, in addition to Wi-Fi or BLE connectivity data. The combined
use of this data can provide a better understanding of object or user motion,
enabling more accurate localization. Machine Learning algorithms, such as
Kalman filters or neural networks, can be applied to efficiently integrate
and combine information from different sensors.

5. Map Matching: This approach is based on the use of maps of the indoor
environment to improve location accuracy. Sensor data and RSSI readings
are combined with information about the geometry and distribution of ac-
cess points or beacons in the environment. Machine Learning algorithms
can be used to fit the observed data to the map information and provide a
more accurate estimate of location.

26

2.4 Large Lenguage Models

2.4 Large Lenguage Models

Large Language Models (LLMs) represent a revolution in artificial intelligence
and natural language. Developed in recent years, these models have led to sig-
nificant advances in the ability of machines to understand, generate and interact
with human language.

LLMs are artificial intelligence systems that use deep learning techniques to
learn from large amounts of text. These models are trained on huge datasets
containing billions of words from a wide range of sources, such as books, arti-
cles, Web pages and more. This volume of data allows the models to capture
the complexity and richness of human language, gaining in-depth knowledge of
grammatical structures, semantic relationships and linguistic peculiarities.

One of the first and most famous Large Language Models was the GPT-2
(Generative Pre-trained Transformer 2) developed by OpenAI. Later, it was fol-
lowed by even larger models such as GPT-3 (Generative Pre-trained Transformer
3), on which, the GPT-3.5 AI Assistant, is based. These LLMs contain hundreds
of billions of parameters, enabling them to generate incredibly realistic and con-
sistent text.

LLMs can be used in a variety of contexts and have a wide range of applica-
tions. One of the most common uses is automatic text completion, where a model
suggests the completion of a sentence or paragraph based on the context. This
feature is very useful for speeding up the writing process and reducing grammat-
ical errors.

Other important uses include machine translation, sentiment analysis, creative
text generation and more like inWang et al. (2022). LLMs have demonstrated
an amazing ability to adapt to different language tasks without having to be
reformed or trained specifically for each one. Recently, Large Language Models
(LLMs) have been proposed as valuable alternatives for various activities, such
as planning Scalmato et al. (2013)

However, with the opportunities that these models offer, some concerns also
arise. The very size of LLMs requires an enormous amount of computational
resources for training, making the process environmentally costly.

To attenuate these concerns, the scientific community and companies are
working to develop more energy-efficient models. At the same time, research
continues to explore new ways to ensure that LLMs are ethical, transparent and

27

2.4 Large Lenguage Models

aligned with human interests.

Figure 2.17: Prompt schema of the LLM-Planner

Song et al. (2023) proposes a novel method for few-shot planning for embodied
agents that can follow natural language instructions to complete complex tasks
in a visually perceived environment. The method, LLM-Planner, harnesses the
power of large language models (LLMs) to generate and update plans that are
grounded in the current environment. The paper also proposes a simple but effec-
tive way to enhance LLMs with physical grounding. In Figure 2.17 is visible the
way the proposed solution works, especially the study that is done on the prompt
of the LLM being considered is important (GPT3). The final optimal prompt
includes an intuitive explanation of the task, the list of allowable high-level ac-
tions, in-context examples selected by the kNN retriever, the subgoals that have
been completed, and the list of objects observed so far in the environment after
the task description.

In the end, Large Language Models represent an important evolution in ar-
tificial intelligence and natural language. Because of their potential, they can
transform the way people interact with digital technologies and open new hori-
zons in language understanding and processing. However, it is essential to address
the ethical and technical challenges that arise with their use, ensuring that they
are a safe, reliable, and beneficial tool for society.

28

Chapter 3

Software Architecture

The software architecture was designed and developed based on Flask, a Web
framework for Python with a number of features that make it an ideal choice for
creating a robust and scalable system. Flask, despite its lightweight nature, pro-
vides a powerful framework for managing client-server communications efficiently
and effectively.

One of the main qualities of Flask is its modularity. This framework allows
code to be broken down into separate modules, each of which can handle a specific
aspect of the application. This makes system design and development extremely
flexible and makes it easy to adapt the server to the growing needs of users. In
addition, Flask offers a wide range of extensions and libraries that simplify the
management of common features such as user authentication and data manipu-
lation.

Another key aspect of Flask is its ability to create RESTful APIs in an in-
tuitive way. This is especially important if you want to provide Web services
to allow clients to interact with the server in a structured and consistent way.
Flask makes defining API endpoints, handling requests and JSON responses, and
validating input data a smooth process.

In addition, Flask’s lightness does not mean compromising security. The
framework offers mechanisms that handle common vulnerabilities ensuring that
your system is robust and reliable.

Choosing to base the architecture on Flask offers many advantages, including
flexibility, scalability, security, and ease of development.

The final proposed architecture went through multiple ideas and evolutions

29

before being settled upon. The architecture underwent significant changes from
the initial concept to the final design. Originally, a client-server architecture was
not considered, but instead, there was a plan to have a single module that could
collect data from proprietary clouds and use Machine Learning algorithms or
Large Language Models to make predictions with newly obtained data.

To enable the learning of Machine Learning algorithms, it was imperative to
develop a database for efficient data storage. Furthermore, a real-time database
was also required. It was crucial to have a comprehensive database that incorpo-
rated all the data from the manufacturers’ cloud to enable the proper functioning
of the two reasoning approaches and to maintain the activation history of the
sensors. As the manufacturers’ clouds only retain the last data sent by the sensor
and not the activation history, an internal database was considered necessary.

Figure 3.1: First evolution of the architecture.

Upon thorough consideration, it was concluded that dividing the data acqui-
sition and reasoning activities into separate modules would be the most efficient
approach. This not only enhances modularity but also facilitates future upgrades

30

or troubleshooting without interruption to either process. Consequently, two
modules were devised: one to collect data from producer clouds and feed it into
the database (Data Server), and another to analyze the data with its own set of
algorithms (Reasoning Server). This configuration closely resembles the ultimate
design.

Figure 3.2: Second evolution of the architecture.

Our current plan involves activating both the Data Server and Reasoning
Server simultaneously, in order to gather new data and generate fresh predic-
tions. However, this approach poses two challenges. The first is that the data
collection module gathers information from all sensors connected to the architec-
ture, even those in different environments, resulting in excessive computational
energy consumption. To address this issue, we need to modify the Data Server
to differentiate between environments and end data acquisition in specific situa-
tions. The second challenge is that the predictions generated by the Reasoning
Server are stored in a database that is only accessible by components on the same
machine. This limits the usefulness of the predictions for other devices, such as a
robot, that may require this data in a different format and cannot directly access
the machine.

31

In order to resolve the aforementioned problems, a client-server architecture
has been suggested. The servers are comprised of the data collection (Data Server)
and reasoning (Reasoning Server) modules, while clients are utilized to address
problems. The Data client is responsible for managing the activation of specific
environments to collect data. For Reasoning Client, it requests information from
the server and receives prediction data in response. This facilitates a link between
the machine and external sources. For instance, a robot with internet connectiv-
ity can readily acquire predictions from the Reasoning Server by making a request.

Having thus presented the evolution of the architecture, it is now time to go
and see the final architecture in detail. The proposed method features the use
of PIR sensors, magnetic door sensors, and cameras of a robot for data acqui-
sition in the environment. On the software side, the architecture includes two
main servers, one for data collection (Data Server) and the other for reasoning
about the data (Reasoning Server), a Database for data storage, and two clients
interacting with the two servers respectively (Data Client and Reasoning Client).
The architecture is visible in Figure 3.3.

Figure 3.3: Cloud architecture for data acquisition and activity recognition.

32

Devices: Sensing devices acquire data periodically or upon request, typically
uploading data to cloud servers for data collection provided by the manufacturer.

While the architecture we propose is general and can accommodate various
types of devices, our current setup includes three types of devices. PIR sensors,
when strategically placed at points of interest, provide valuable information about
ongoing activities. Magnetic door sensors complement PIR sensors for localiza-
tion, enhancing the amount of data available for reasoning.

Finally, to avoid the potential perception of intrusiveness in a domestic envi-
ronment, we have chosen to incorporate a humanoid social robot equipped with
onboard cameras. The robot’s cameras, when the robot approaches a person and
is welcomed, allow us to capture the relative orientation of the head and the eyes,
providing additional information to better understand the activities taking place.

Data Server: As mentioned earlier, a common trend in mobile sensing
technology is that wireless sensors periodically upload the data they acquire to
a private cloud maintained by the manufacturer that developed them. Users are
then provided with apps (or APIs) to query the cloud and access the collected
data. Following this approach, the Data Server serves as an access point for
gathering data from various manufacturers’ clouds. This server is responsible for
authenticating with the manufacturers’ clouds, accessing the relevant data, and
transferring it to a centralized database, as shown in Figure 3.3. This aggregation
process consolidates all the data into one location, simplifying further analysis
and processing. Specifically, after initialization, the Data Server periodically col-
lects data from all proprietary servers and stores them in the database

Reasoning Server: The Reasoning Server processes data acquired from
sensors and stored in the database. It collects and organizes data, interprets
them to classify human behaviors, and draws conclusions. Two types of reasoning
approaches were considered:

• Machine Learning Algorithms (ML). To tackle various prediction and clas-
sification challenges, two types of ML algorithms were selected: Random
Forest and Support Vector Machine (SVM). The use of these algorithms
allowed us to address both situations where binary prediction was required
and classification situations where specific classes had to be identified. To
this end, we needed to acquire a dataset in the Smart Environment, and
then train Random Forest and SVM to learn a function mapping inputs
(sensor data) to outputs (relevant activities and locations).

• Large Language Models (LLM). Reasoning based on LLMs ??? represents

33

a novel approach to data analysis for activity understanding. This approach
relies on the concept of representing sensor data in natural language to con-
struct prompts (e.g., “Prompt: the PIR in the kitchen detected somebody,
and it is noon. What’s happening?”) and then using LLMs to comprehend
and interpret free text. This enables a deep analysis of qualitative data,
ultimately allowing the detection of the context in which this data was ac-
quired (“Reply: Perhaps somebody is having lunch”). In this case, there
is no need for specific model training for the environment since the model
relies on the common-sense reasoning capabilities embedded in language.

The Reasoning Server periodically acquires data from the database, reasons
upon them, and stores results in the database.

Database: The database is essential for real-time data storage, and its
structure allows for a general view of the various environments, where ”environ-
ments” are defined, for example, as different houses or workplaces. The database
includes:

• a table listing all the environments and their statuses;

• tables for each environment summarizing all the sensors present in each of
them;

• tables for each sensor that store the history of their activations;

The database is managed using SQLite.

Data Client: The Data Client interacts with the Data Server. When a
user or system intends to initiate data acquisition from specific environments or
sensors, the Data Client sends a request to the server, which server responds by
providing the collection of relevant data.

Reasoning Client: The Reasoning Client is responsible for interacting with
the Reasoning Server. A user or a system can send requests to this client: the
client forwards the request to the Reasoning Server, which processes the data in
real-time using the models mentioned before and returns results.

Data Flow: In Figure 3.4, it is possible to observe how data travels within
the architecture.

1. The sensors send data to the manufacturer’s cloud.

2. The data server requests data from all sensors to the manufacturer’s cloud

34

Figure 3.4: Sequence diagram showing data exchanges between architecture’s
components.

3. The manufacturer’s cloud responds by sending the requested data

4. The Data Server acquires the data and writes them to the Database

5. The Reasoning Client requests the predictions from the Reasoning Server

6. The Reasoning Server reads the data from the database

7. The Reasoning Server processes the data and sends the predictions made
to the Reasoning Client and stores them in the Database

In addition, a note should be made about the type of data that is exchanged
within the architecture.

• the Data Server takes individual values from the Manifacturer’s clouds, one
for each sensor, and then the same values go and insert them individually
into the appropriate database tables

• the Data Server takes individual values from the Manifacturer’s clouds, one
for each sensor, and then the same values go and insert them individually
into the appropriate database tables

• the Reasoning Server sends to the Reasoning Client and Database an array
of seven elements containing the predictions of all activities

35

3.1 Sensors

Tthis software architecture is designed to enable the collection, analysis, and
prediction of data from distributed sensors in various environments. Using a com-
bination of servers and clients, along with machine learning algorithms, the sys-
tem provides an effective way to obtain valuable information from large amounts
of data. The architecture is scalable, as new sensors and environments can be
easily integrated into the system, and machine learning models can be adapted
and improved over time to provide increasingly accurate results.

3.1 Sensors

The described architecture requires a variety of sensors to collect data from com-
plex environments. In particular, Passive Infrared (PIR) sensors, Magnetic Door
sensors and cameras are used to monitor human presence and activities within
environments. These sensors represent an important part in the analysis of hu-
man interaction with the surrounding environment

PIR Sensors: PIR sensors detect infrared radiation emitted by the human
body and other heat sources in the surrounding environment. These sensors are
very sensitive to changes in temperature, and as a result, they detect human
presence in the surroundings with great accuracy. In the described architecture,
PIR sensors are strategically distributed to cover different areas within the envi-
ronment. This arrangement makes it possible to obtain information about human
presence and activity in various segments of the monitored environment. Specif-
ically, the PIR sensors used are from Anvek and are part of the family of sensors
managed by TUYA which provides the cloud services for sensor data acquisition
and management. These sensors have a detection distance of 12 meters and an
angle of 110°.

Magnetic Door Sensors: The integration of magnetic door sensors with
PIR sensors is a step forward in architecture optimization. These sensors mon-
itor the open/closed status of doors and windows in the environment. The use
of magnetic sensors provides a richer context for PIR sensor readings. For ex-
ample, when a door is opened or closed, the data collected by the PIR sensors
can be associated with a specific area of the environment, thus providing greater
accuracy in locating human activities. The magnetic door sensors used are Wi-Fi
DW2s from SONOFF which are managed through eWeLink servers that enable
data acquisition and management.

36

3.2 Data Acquisition

Cameras: The introduction of cameras for the acquisition of eye and head
orientation data represents a significant step forward in enriching the understand-
ing of human interaction with the environment. These cameras use eye and head
motion tracking technologies to accurately detect a person’s gaze direction and
head position. These data are important for understanding how people move and
interact with the environment, enabling additional levels of detail in analyses of
human activities. In this case, an HD wireless mini camera from Peecla is used,
which connects to the network and sends images to the manufacturer’s cloud.
Unlike the other types of sensors, for the camera, there is no API to use to get
the images but just connect to a specific IP address to get live streaming of the
images that the camera is receiving. From the streaming of images, six values are
obtained.

• Distance of the person from the room and thus from the robot

• head yaw

• head pitch

• head roll

• gaze yaw

• gaze pitch

In particular, the five angles obtained are important in trying to interpret
what the person is doing based on the context surrounding the person.

In the end utilizing PIR sensors, magnetic door sensors, and cameras to collect
eye and head orientation data is a highly effective means of sensing and moni-
toring. With these diverse sensors at hand, valuable insights can be gained on
human presence, location, and activities within a given environment. By combin-
ing these technologies, a thorough and accurate understanding of the dynamics
and behaviors within monitored spaces can be achieved.

3.2 Data Acquisition

The data acquisition phase represents an important part. The selected sensors,
all of which operate on battery power or are connected to power, introduce a flex-
ible and scalable approach to data collection, minimizing the use of complicated
cabling and enabling easy installation in various settings. The key element that

37

3.2 Data Acquisition

makes this data acquisition possible is the connection to the Internet, which pro-
vides the bridge between the sensors and their respective manufacturers’ clouds.

Data Acquisition Modes: The sensors operate autonomously, constantly
monitoring their surroundings for significant changes and activity. With their
battery- or grid-powered capabilities, the sensors are able to operate continu-
ously without interruption. Once changes in data, such as human presence or
other specific metrics, are detected, the sensors begin the data transmission pro-
cess.

Internet Connectivity and Data Transmission: Internet connectivity
is the hub that enables sensors to communicate with the manufacturer’s cloud.
The sensors, after sensing significant data, transmit this information to remote
servers via the Internet. This step is important to ensure that the data are up-
dated in real-time in the respective manufacturers’ clouds. Regular and timely
sending of data is a key element in obtaining up-to-date information about the
monitored environment.

Sensor State Storage in Manufacturers’ Clouds: Manufacturers’
clouds play an important role in storing data from sensors. Whenever a sen-
sor detects a change, it sends data to the manufacturer’s cloud, which in turn
stores the latest sensor status. This approach ensures that data are always avail-
able and accessible, enabling continuous, real-time monitoring of the environment.

Role of the Data Server in Acquisition and Storage: When the Data
server is activated by its client, it begins the process of collecting data from the
manufacturers’ clouds.

The Data Server runs at the following Base URL

Listing 3.1: Data Server URL

1 BASE = "http :// localhost :8000/"

When the Data Client attempts to connect to the Data Server, it includes a
payload in the request with the fields ”house” and ”desiredstatus”. The ”house”
field indicates which environment the Data Server should refer to, while ”desired-
status” indicates whether the status should be online or offline. In other words,
it determines whether the data collection of sensors in that environment should
be activated or deactivated. The example below shows, if ”house1” is the envi-
ronment, how data collection for sensors in that environment can be activated.

38

3.2 Data Acquisition

Listing 3.2: Payload example

1 payload = {"house": "house1", "desiredstatus": "online←↩
"}

The server, using the appropriate authorization, accesses the data stored in
the individual manufacturers’ clouds. The collected data is then transferred to
the server and stored in a local database. This database managed with SQLite,
does not just store the latest status of individual sensors. Instead, it maintains
a complete historical track of each sensor’s activations over time. This feature
provides a historical and detailed picture of the activities and changes detected
in the monitored environment. Specifically, this server leverages two APIs, the
”Tuya IoT Development Platform” for PIR sensors and ”ewelinkAPI” for mag-
netic door sensors. For both there was a need to create login credentials for the
two clouds, so you have access to an APIkey that allows access to the cloud and
the use of certain specific requests.

This part of the process is identified by the first four transitions of the Se-
quence Diagram in Figure 3.4 while as far as the architecture in Figure 3.3 is
concerned, the parts involved are those present at the top of the figure i.e. De-
vice, Manifacturer’s Cloud and Data Server.

In conclusion, data acquisition in this architecture represents a process that
takes advantage of Internet connectivity and the ability of sensors to operate
autonomously. This combination provides ample visibility into the monitored en-
vironment and allows for up-to-date and historical data to be at hand. Accurate
management and storage of data in the local database are critical to ensure that
information is always accessible and ready for further analysis and evaluation.

3.2.1 Cloud Architecture

The cloud architecture that acts as a bridge between the sensor manufacturers’
clouds and the Data Server is an important element in the infrastructure. This
is an adaptable component plays the essential role of obtaining data from the
various manufacturers’ clouds and delivering it in a consistent and structured
manner to the central server.

Access to Manufacturers’ Clouds: To acquire data from manufacturers’
clouds, the cloud architecture follows a well-defined access process. Each pro-
ducer requires a custom access method, which means that for each cloud, the

39

3.2 Data Acquisition

architecture must perform a specific sequence of steps. Initially, to gain access,
an authentication process must be performed through a login. Once logged in,
an access token is generated that enables the architecture to retrieve data from
the manufacturer’s cloud. Another important aspect is the indication of the con-
tinental cloud to which one refers. This is critical because data may be hosted
in different clouds based on geographic location. The cloud architecture must
ensure that requests are routed to the correct cloud, ensuring compliance with
privacy regulations and data location.

Producer Cloud Structure: Due to the variety in the structure of pro-
ducer clouds, the cloud architecture must be able to accommodate different mod-
els. Some manufacturers may organize data into well-defined categories, while
others may require more complex searches to access specific sensor data. In ad-
dition, the structure of the data itself may vary from cloud to cloud, requiring
different data processing. To obtain specific information about various sensors,
the cloud architecture must generate different queries. Depending on the infor-
mation desired and the structure of the cloud, the requests can vary greatly. This
requires careful planning and dynamic processing of requests by the cloud archi-
tecture, which must be able to understand and interpret the data structures and
requests of the various clouds.
Below you can see specifically the two requests that are made for the two APIs
used where ”DEVICE ID” contains the identification code of each sensor.

Listing 3.3: TuyaAPI device status request

1 openapi.get("/v1.0/iot -03/ devices /{}/ status".format(←↩
DEVICE_ID))

Listing 3.4: ewelinkAPI device status request

1 connection.getDevicePowerState(’DEVICE_ID ’)

In particular, these two requests are used to access a specific part of the re-
spective clouds, which is the part that contains all the data about the individual
device and contains all the information about it including the status. As it is
possible to see from the name of both functions, they are ”GET” requests. This
is important because some areas of the cloud allow not only to fetch data with
the ”GET” function but also to make changes through ”POST” functions. With
the type of function then you identify the type of data access you want to do.

40

3.2 Data Acquisition

Benefits of Flexible Cloud Architecture: The flexible and adaptable ap-
proach of the cloud architecture allows new sensor manufacturers and new clouds
to be integrated with relative ease. This flexibility is a key advantage, allowing
the entire system to remain aligned with evolving technology and changing in-
dustry needs.

The cloud architecture provides an essential link between the various sensor
manufacturer clouds and the central server. Its ability to adapt to the various
access methodologies and structures of the manufacturers’ clouds is crucial to
ensure accurate and timely data collection. This cloud architecture is designed
to provide a dynamic and reliable solution for data acquisition in the overall
architecture.

3.2.2 Database Structure

The memory of the described software architecture resides in a highly organized
and modular data management system, implemented through a specified database
structure. This structure, consisting of several interconnected tables, is designed
to enable the efficient collection, organization, and storage of vast amounts of
data from sensors distributed in various environments. This modular approach
provides flexibility and scalability, allowing monitored environments to be added
or modified easily.

Table of Environments: The database structure begins with a table of
environments, which serves as the starting point for configuration and activation
of acquisition data. In this table, each monitored environment is listed along
with an indicator of whether or not data acquisition is active in that particular
environment. This approach allows careful control over data acquisition, enabling
acquisition to be turned on or off as needed.

Environment-Specific Tables: For each environment listed in the envi-
ronments table, there is a dedicated table that collects specific details related
to that particular environment. These tables contain detailed information about
the sensors that are part of that environment, allowing for a highly organized
structure. This separation of tables by environments makes the system highly
modular and adaptable to future expansion or modification.

Individual Sensor Tables: The database contains highly detailed infor-
mation in the individual sensor tables. Each sensor has its own table, which
stores the complete history of its activations and collected data. These tables can
include activation time stamps, data types, values, and more. The database’s de-

41

3.2 Data Acquisition

Figure 3.5: Database structure.

tailed organization in separate tables makes it easy to search for further analysis.

Advantages of Modular Structure: The modular approach to database
structure offers several advantages. First, it allows simplified and focused data
management for each environment and sensor. In addition, this structure facili-
tates the management of changes and expansions. If new environments are added,
simply create new specific tables. Similarly, the addition of new sensors involves
the creation of new entries in the corresponding tables.

The database structure plays a central role in maintaining consistency, orga-
nization, and accessibility of sensor data in the architecture. Its modular design
allows for seamless adaptation and expansion while ensuring the data remains
efficient and comprehensible. By categorizing tables based on environment and
sensor, a robust foundation is established for monitoring, analyzing, and leverag-
ing the collected data.

42

3.3 Reasoning Server

3.3 Reasoning Server

The Reasoning Server is an intelligent computational platform that processes data
acquired from sensors to extract meaning and value. It is equipped with analyti-
cal capabilities, such as machine learning algorithms and large language models,
which enable it to recognize hidden patterns, trends, and connections within the
data. This server is the link between the vast amount of data collected and the
ability to provide relevant and useful information to end users.

The role of the Reasoning Server in converting data processing into refined
knowledge is crucial for analysis and reasoning. It is a critical component in
transforming raw data into valuable insights by gathering, organizing, and uti-
lizing it to create predictive models, interpreting human behaviors, and drawing
significant conclusions to facilitate continuous improvement.

The Reasoning Server has two different features that can be accessed depend-
ing on which server route is taken. It can be run on either the network or locally
at a specific IP address and port number. These two elements constitute the
BASE URL. The Reasoning Server is located at the following BASE address.

Listing 3.5: BASE URL

1 BASE = "http :// localhost :5000/"

This address corresponds to the main functionality of the Reasoning Server,
the real reasoning that makes the predictions for the seven chosen activities.

For the ML approach, for example, here are the individual functions that
allow obtaining the predictions. In order we have predictions for the activities
”Somebody at the desk”, ”Somebody outside the office”, ”Watching the computer
screen”, ”Somebody moving”, and ”Ongoing meeting”.

Listing 3.6: BASE URL service

1 y_pred_pos = pos_prediction ()

2 y_pred_office = office_prediction ()

3 y_pred_gaze = gaze_prediction ()

4 y_pred_path = path_prediction ()

5 y_pred_meeting = meeting_prediction ()

Instead for the LLM approaches there will be the prompt and the sequence
of queries that will be presented later.

43

3.3 Reasoning Server

The Reasoning Server also has a second feature that is identified by the fol-
lowing URL

Listing 3.7: BASE+/robot URL

1 URL = BASE + "/robot"

When the Reasoning Client connects to this URL, it can access the latest pre-
dictions directly from the Database. The addition to the BASE URL is named
”robot” to allow for the possibility of one or more robots that can gather predic-
tion information and potentially take action based on it.

Listing 3.8: BASE+/robot URL service

1 con = sqlite3.connect(DB)

2 con.row_factory = dict_factory

3 curs = con.cursor ()

4 query = ’SELECT * FROM Predictions;’

5 data = curs.execute(query).fetchall ()

6 lenght = len(data)

7 last_data = data[lenght - 1:]

8 return jsonify(last_data)

To provide this service, the Reasoning Server connects to the Database and
retrieves data from the Prediction table. This table contains all the predictions
made in chronological order. After that, the Reasoning Server extracts the latest
prediction for all activities and sends it to the Reasoning Client.

Within the Reasoning server, two types of reasoning were considered to max-
imize the analysis of collected data:

1. Machine Learning Algorithm (ML).

2. Large Language Models (LLM).

3.3.1 Activity Detection with ML

Integrating machine learning algorithms into the Reasoning Server is an impor-
tant step in maximizing the value of sensor data. By utilizing this technique,
hidden patterns, trends, and connections can be detected, leading to a deeper
understanding of ongoing activities and events in the monitored environment.

44

3.3 Reasoning Server

This approach is useful in a study environment that includes a study room, of-
fice, corridor, and bathroom, where the analysis can focus on significant activities
and events occurring in these locations.

Definition of Activities and Events: The initial phase of this process
required a thorough analysis to establish the activities and events that needed to
be recognized and monitored. This involved defining events such as the presence
of people at different desks, the presence of people outside the office, the identi-
fication of meetings taking place in designated areas, and the understanding of
activities being performed based on people’s eye and head movements. Regarding
movement paths within the environment, it was a key priority to define which
rooms were visitable and which paths were possible. This analysis of the physical
layout of the environment made it possible to accurately determine the different
possible routes and transit areas, enabling accurate modeling of possible routes.

Creation of Detailed Datasets: To feed the machine learning algorithms,
a large dataset had to be created. For each activity and route considered, de-
tailed information was collected from sensors. This dataset captured a variety of
possible situations and scenarios, allowing the algorithms to learn from a wide
range of contexts. Is important to underline that the datasets used in the learning
phase are stored separately in the ”test.db” file and not in the ”sensors.db” file
which stores the real-time data. The ”test.db” file is accessed in the same way as
the ”sensors.db” file.

Choice of Algorithms Random Forest and SVM: To address the differ-
ent prediction and classification challenges, two types of machine learning algo-
rithms were selected: Random Forest and Support Vector Machine (SVM). The
use of these algorithms allowed addressing both situations where binary predic-
tion was required (Random Forest) and classification situations where specific
classes had to be identified (SVM). Through learning from the dataset, machine
learning algorithms extracted patterns and relevant information from historical
data. They learned to recognize connections between inputs (sensor data) and
outputs (relevant activities and events), enabling advanced predictive and classi-
ficatory capabilities.

We briefly remind that ML aims to find a function fΘ : X → Y , where X and
Y are respectively the input and the output space, and Θ is the set of parameters
of the function f such that the function well approximates P (Y |X). Since the real
distribution of X × Y is not known, the function fΘ must be learned using infor-
mation about the input and the output space X and Y derived from the sampling
of these spaces, which is called the dataset Dn = {(X1, Y1), . . . , (Xn, Yn)}, where

45

3.3 Reasoning Server

n is the number of samples. Model Selection consists of splitting the dataset into
three parts: the Learning Set L, the Validation Set V , and the Test Set T . For
each configuration of its hyperparameters, the function f , with its parameters,
is learned through L and then validated on V . The model is represented by the
configuration of parameters and hyperparameters that give the best results, ac-
cording to a loss function. In the end, the model can be tested on T : the model
is repeatedly fed a window of data of the designated size, taken individually from
the T set, drawing conclusions about the model’s accuracy. The data are divided
in 80% for learning and validation, 20% for testing. This procedure needs to be
carried out for each of the activities considered.

In our particular scenario utilizing the SVC algorithm (a variant of SVM em-
ployed to detect the ”Somebody moving” activity), grids were used thanks to
which is possible to determine which parameters need to be optimized. In this
case, the parameter ”C” is being optimized by testing various values within a set
range on the grid.

The parameter ”C” in the Support Vector Machine (SVM) algorithm is a
hyperparameter that controls the trade-off between maximizing the width of the
decision ”margin” and minimizing the classification error on the training set. In
other words, it affects the ability of the SVM model to balance the correctness
of classification on the training data and its ability to generalize well to new data.

Low values of C: When C is small, the SVM model is more tolerant to errors
on the training set and tries to maximize the width of the decision margin, even
at the cost of misclassifying some training points. This leads to SVM models
with greater generalization capacity, but can sometimes result in wider margins
and more conservative decisions.

High values of C: When C is large, the SVM model tries to minimize the clas-
sification error on the training set, which means it will try to correctly classify
as many training points as possible. This can lead to SVM models with tighter
margins and could lead to a higher risk of overfitting, i.e., the model may overfit
the training data and have a worse generalization ability.

When conducting cross-validation, it is important to take into account the
number of dataset portions being analyzed. This factor influences both the accu-
racy of model performance estimates and the speed of the process of finding the
best parameters. The chosen value determines how many times the function f
with the parameter set Θ will be evaluated on different portions of the database.
Opting for a higher value can result in more reliable model performance estimates,

46

3.3 Reasoning Server

but it also means that the model will need to be trained and assessed multiple
times, which requires more computational time.

Modularity of the code: Considering that each activity has a differ-
ent learning phase, the learning process in the code is made modular. There is
a function for each activity that returns the model obtained from the learning
process. This allows specific changes without affecting all activities and enables
new activities to be added or removed based on the environment in a simpler way.

In the same way, when the Reasoning Client makes a request, the prediction
phase begins and for each activity there is a specific function that accesses the
database, retrieves the necessary data for the specific activity, and provides it the
corresponding model.

Benefits of the Machine Learning-Based Approach: The machine
learning algorithm-based approach has made it possible to overcome the limita-
tions of traditional analysis and capture small and complex details in the col-
lected data. These algorithms are able to adapt to changes and improve their
performance as they gain experience on new data, thus contributing to increasing
accuracy in task analysis.

In order to extract insights from sensor data, the utilization of machine learn-
ing algorithms is essential. Our Reasoning Server use powerful algorithms such
as Random Forest and SVM to identify patterns and generate comprehensive
datasets. This enables careful analysis and interpretation of activities within
the observed environment, delivering valuable information for informed decision-
making and ongoing optimization. Ultimately, this technique increases the level
of understanding derived from the data.

3.3.2 Activity Detection with LLM

Reasoning based on large language models, such as using ChatGPT 3.5 Turbo, in
the context of the Data Server represents an important step in data analysis and
context interpretation. This approach relies on the use of high-powered language
models to understand and interpret free text, enabling deep analysis of qualitative
data, written interactions, and associated metadata. In the context of an office
environment with labs, offices, hallways, and bathrooms, the use of ChatGPT
3.5 Turbo offers a unique opportunity to extract knowledge from textual data
collected by sensors.

47

3.3 Reasoning Server

Role of Large Language Models: Large language models, such as Chat-
GPT 3.5 Turbo, are trained on a large amount of text and possess the ability to
generate consistent and relevant responses to a variety of questions and topics.
These models are able to understand context, recognize entities and relationships,
and generate texts that reflect deep knowledge. In the context of the architecture
described, the use of a large language model opens up new possibilities for under-
standing human interactions, interpreting textual data, and drawing meaningful
insights.

Question and Answer Modulation: The ChatGPT 3.5 Turbo API al-
lows questions and answers to be modulated according to the specific needs of
the analysis. Users can flexibly formulate questions, asking the model to extract
specific information from the collected textual data. This approach offers con-
siderable flexibility in guiding the model toward extracting relevant knowledge,
allowing customization of the analysis.

Textually Interpreted Activities and Events: With the power of large
language models, it is possible to interpret free text associated with different ac-
tivities and events. For example, descriptions of meeting or meeting activities can
be analyzed, identifying participants, topics discussed, and outcomes achieved.
In addition, data collected by sensors on people’s gaze and head can be correlated
with texts to better understand the activities performed and the attention paid
to certain topics.

Structuring of Text Data: Large language models allow textual data
to be structured in a consistent and organized manner. For example, detailed
accounts of events, activities, and human interactions can be created by summa-
rizing data into understandable and useful formats for end users.

Integration with Quantitative Analysis: The qualitative analysis pro-
vided by large language models integrates with quantitative analysis based on
machine learning algorithms. While machine learning algorithms recognize pat-
terns and relationships in numerical data, large language models allow textual
data to be interpreted and contextualized, thus enriching the overall analysis.

Advantages of the Large Language Models Approach: Large language
models can enhance the analysis of textual data, providing a more comprehensive
understanding of activities and events taking place in a monitored environment.
This approach includes human interpretation, which can capture shades and de-
tails that may not be detected by machine learning algorithms alone.

48

3.3 Reasoning Server

The approach we implement using LLMs retains the entire architecture de-
scribed so far by simply replacing the ML-based Reasoning Server with another
LLM-based Reasoning Server. The sensors used for each activity, and the data
windows used are the same as the ML approach summarized in Table 4.1. How-
ever, since LLMs introduce a different level of interaction based on natural lan-
guage, there is a need for preprocessing the acquired samples so that we know
what values to include in the prompt that will be submitted to the language
model.

Figure 3.6: Structure of the prompt: the system field is constant for all activities,
while the user field varies based on the specific activities and sensor readings.

In this study, we used ChatGPT 3.5 Turbo as a ’reasoner,’ capable of an-
swering questions based on natural language understanding. To obtain answers
consistent with our requirements, it is necessary to construct the prompt provided
to the OpenAI API interface as accurately as possible. The prompt consists of
three fields: ’system,’ ’user,’ and ’assistant.’ The ’system’ field is highly impor-
tant as it provides guidelines for the model’s responses and, most importantly,
furnishes a description of the environment upon which it must reason. The ’user’
and ’assistant’ fields are used for the user’s question and the model’s answer in

49

3.3 Reasoning Server

the previous iteration, respectively. While the ’system’ field remains consistent
throughout the process, the user’s questions vary depending on the task to be
analyzed, resulting in varying model responses as required.

In a preliminary phase, which could ideally correspond to validation in ML,
the responses provided by ChatGPT 3.5 Turbo were manually analyzed to assess
their consistency. When the answers were consistent, the prompt wording was
retained, and the prompt was considered appropriate for that activity and the
corresponding sensors. If the answers were not consistent, we returned to the
previous step to modify the wording of the prompt submitted to the LLM. The
final structure of the prompt can be observed in Figure 3.6.

Please note that the variable part {real string} should be filled with a sequence
of sensor readings, automatically composed from actual sensor data. For example,
if we set {real string} to “sensor bathroom, bathroom door, sensor corridor, of-
fice door, sensor office,” the response would simply be “office.” If we submitted a
different user prompt, such as “Tell me the path of the person if the sensors are ac-
tivated in the following order: sensor bathroom, bathroom door, sensor corridor,
office door,” we can expect a more detailed reply, like this: “The person’s path
is as follows: sensor Bathroom (in the Bathroom); door Bathroom (leaving the
Bathroom); sensor Corridor (in the Hallway); door Office (entering the Office).”

In conclusion, reasoning based on large language models is a good solution for
the described architecture. Through the use of ChatGPT 3.5 Turbo and question-
and-answer modulation with the prompt, it is possible to interpret textual data,
extract meaningful knowledge, and enrich the overall analysis. This approach
provides a deep perspective on the monitored environment, allowing meaningful
insights to be captured from human interactions and qualitative data.

50

Chapter 4

Experiments

4.1 Methodology

Experiments were designed to capture a wide range of activities and interac-
tions in a university environment. The methodology involved strategically plac-
ing sensors to capture meaningful details, creating representative datasets, and
conducting data acquisition and analysis.

4.1.1 Strategic Arrangement of Sensors

We consider a university environment with an office, a study room (featuring
desks where students study or have meetings), and a bathroom, as shown in
Figure 4.1.

• Two PIR sensors were placed to cover three study desks in the study room.
Specifically, PIR1 monitored desks 1 and 3, while PIR2 covered desks 1 and
2.

• PIR3 sensor was placed to detect any movement around a meeting table,
allowing for the detection of people’s activities and meetings.

• PIR4 sensor was placed inside the corridor, in the direction of the office
door, to detect the passage of people through that area.

• PIR5 sensor was installed inside the office itself.

• PIR6 sensor was placed inside the bathroom.

• Three magnetic door sensors were placed on the study room door (magnetic
sensor1), office door (magnetic sensor2), and bathroom door (magnetic sen-
sor3), providing information on door opening and closing.

51

4.1 Methodology

• A robot with onboard cameras is positioned in strategic positions depending
on the activities to be recognized. In this experiment, the robot does not
move autonomously to keep the experiment simpler.

Figure 4.1: Smart Environment considered for experiments. In the image, the
red dots represent the PIR sensors with their visibility range. Blue dots represent
the magnetic door sensors. The robot is manually placed in different positions.
In black we see the desks and the meeting table.

4.1.2 Activities and Creation of Datasets

The following activities were considered, necessitating the creation of represen-
tative datasets for training ML algorithms and testing both ML and LLM algo-
rithms.

• Somebody at study desks. Data were collected for empty desks, individually
occupied desks, and different combinations of occupancy.

• Ongoing meeting. Data were recorded during simulated meetings as well as
during lunch breaks to distinguish between meetings and free time.

• Somebody outside the office. Data were acquired during the quick passage
of people and their static presence, such as while waiting for somebody.

52

4.1 Methodology

• Somebody moving. Data were acquired about the sequence of sensor ac-
tivations while moving between rooms. This activity is mainly related to
localization in the environment and the ability to know topologically where
a person is. Since the localization that is done is topological, in Figures ??
it is possible to see the topological map of the environment represented in
Figures 4.1.

• Watching the computer screen. The robot’s camera was used to observe
students sitting at desks in the study room, both while they were studying
and during other activities, with the ultimate goal of encouraging students
to work if they were spending time on social networks or their smartphones.

Figure 4.2: Environment Topological map

Data collection was conducted to capture realistic and representative situa-
tions of the selected activities within the office environment. Data were recorded
and documented during working hours, with every aspect accurately annotated
by a human observer for proper interpretation.

Table 4.1 presents the differences just mentioned between the various activi-
ties, including: the classification output (binary/not-binary), the algorithms used
for classification, the sensors used, the size of the dataset computed as number
of data windows × data window (i.e., where the data window determines how
many replicas of sensor data in the recent history are considered for classification).

The acquired data were subsequently utilized to train, validate, and test the
ML algorithms and test LLMs (which do not require training).

53

4.1 Methodology

Table 4.1: Activity, Sensors and Data

Activity, outputs, and algorithms Sensor and size Dataset
Somebody at study desk 1 {T,F} PIR1, PIR2 1500×15

Random Forest and GPT3.5
Somebody at study desk 2 {T,F} PIR1, PIR2 1500×15

Random Forest and GPT3.5
Somebody at study desk 3 {T,F} PIR1, PIR2 1500×15

Random Forest and GPT3.5
Somebody outside the office {T,F} PIR4 500×15

Random Forest and GPT3.5
Watching the computer screen {T,F} Robot’s camera 10700× 1

Random Forest
Somebody moving PIR1 105×40
{p1, p2, p3, p4, p5, p6} PIR2
SVM and GPT3.5 PIR3

PIR4
PIR5
PIR6

magnetic sensor1
magnetic sensor2
magnetic sensor3

Ongoing meeting {T,F} PIR3 820× 15
Random Forest and GPT3.5

4.1.3 Database Access

Access to the database is critical to the proper functioning of the architecture, a
wrong way of accessing it would first compromise the veracity of the data in it
and then the quality of the predictions obtained from the two approaches used.
The database is managed through SQLite, which means having a file that in the
specific case is ”sensors.db.” To access this file, one must connect to it and use
specific queries to access the database to insert data or retrieve it.

Following the flow of data in Figure 3.4 the first to access the Database is the
Data Server, which writes data into it. The storage of the data in the database
is done using specific commands inserted into the queries handled by SQLite:

54

4.1 Methodology

Listing 4.1: SQLite formalism to insert data in the database

1 conn = sqlite3.connect(DB)

2 sql = f"INSERT INTO {tab}(time ,data) VALUES (?,?)"

3 insert_data = (obj , data)

4 cur = conn.cursor ()

5 cur.execute(sql , insert_data)

In this code block, there are three variables being used. Firstly, ”conn” is
a variable that represents the database connection. Secondly, ”cur” is a cursor
that is used to navigate through the database and retrieve specific data. Finally,
”sql” is a query that specifies the table and columns to be used for inserting data.
The INSERT INTO command is used to insert data into the specified table and
columns. The data to be inserted is represented using the VALUE command and
two question marks. These question marks are later replaced with actual data
using the ”insert data” variable. The ”insert data” variable contains the current
time and status of the sensor. It is important to note that the number of values in
”insert data” should match the number of question marks in the query. Finally,
the ”cur.execute” command is used to execute the query with the data from the
”insert data” variable.

The Reasoning Server is responsible for accessing the database to retrieve
data. It uses a similar structure to that used by the Data Server to write data to
the database. However, the query changes to retrieve the data from the database.

Listing 4.2: Reasoning Server database access

1 "SELECT time ,data FROM tab"

In this case, we are not using the ”INSERT INTO” and ”VALUES” com-
mands. Instead, we are using the ”SELECT” and ”FROM” commands to indicate
the columns and table from which we need to retrieve the required data.

4.1.4 ML

In the preceding chapter, we discussed the essential stages of learning and valida-
tion for ML algorithms. They allow us to identify the optimal set of parameters
Θ for the function f , which can effectively approximate P (Y |X). In particular,
grids were also discussed for the optimization of parameters such as the ”C” pa-
rameter within the SVC algorithm. The grid used and the process for arriving at
the final model is presented below.

55

4.1 Methodology

Listing 4.3: ewelinkAPI device status request

1 grid = {’C’: np.logspace(-4, 3, 5),

2 ’kernel ’: [’linear ’]}

3 MS = GridSearchCV(estimator=SVC(),

4 param_grid=grid ,

5 scoring=’balanced_accuracy ’,

6 cv=10,

7 verbose =3)

8 H = MS.fit(X_train , y_train)

9 M = SVC(C=H.best_params_[’C’],

10 kernel=H.best_params_[’kernel ’])

It is possible to see that in the ”grid” variable there is the parameter ”C” and
is also indicated the range of values to test for it. The ”GridSearchCV” function
is then used to perform cross-validation and determine the best values within the
grid.

Below in Table 4.2 are summarized the values of ”C” tested and the respective
score values obtained considering ”balanced accuracy” as the scoring parameter.

Table 4.2: C parameter optimization

C parameter Score
0.0001 0.143-0.286

0.005623413251903491 0.857-1
0.31622776601683794 1
17.78279410038923 1

1000.0 1

As can be seen in Table 4.2 there are three values that have maximum scores
and present the same score for all the dataset sections used in the cross-validation,
this gives consistency to the model with those specific parameters. As can be seen
from the code previously presented, the final model is created by then going to
choose those that are considered the best parameters, in this case, the model is
created with the value of C=0.31622776601683794 being the lowest value of C
that presents the maximum score.

56

4.1 Methodology

The previous chapter also discussed the importance of the number of dataset
portions analyzed during cross-validation. This information is denoted by the
”cv” parameter in the ”GridSearchCV” function. In the current scenario, the
value of ”cv” is set to 10, indicating that each C value is tested on 10 different
dataset portions for cross-validation. The integer 10 is a common value for the
parameter ”cv” but it can be set differently depending on the context and avail-
able resources.

4.1.5 LLM

In the previous chapter, the use of LLMs in Reasoning Server was discussed,
with particular emphasis on the importance of the prompt and how it should be
created in order to optimize performance. In the creation of the prompt also the
sequence of questions that are asked by the user is very important, in fact when-
ever a question is asked, it is added to the prompt along with the given answer,
the assistant will go and give an answer also contextualized by the questions that
he/she has previously answered. This is a very important quality for a model cre-
ated specifically for dialogue, but in our specific case it can create some problems
since, during the various tests, it was noticed that taking into account also the
previously given answers, the most recent answers were not completely objective
but even created confusion by giving wrong answers. To avoid this, the ”pop”
function was used to remove the last interaction between user and assistant from
the prompt. This avoids that the assistant’s answer from becoming conditioned
by previous questions and thus allows for a more objective answer for that specific
question.

In the previous chapter, an example was provided of a user’s query and the
assistant’s response for the activity ”Somebody moving.” The field ”system” used
was also shown in Figure 3.6. Now, will be presented queries and their expected
responses for the other activity.

Starting with the activity ”Somebody at desks” we have the following expected
question and answer which will be the same for all is three desks considered, obvi-
ously going to interchange P1, P2 and P3 which refer to desk , desk 2 and desk 3
respectively.

Listing 4.4: ”Somebody at study desks” user question and response

1 sensor1_Laboratory is {real_string1},←↩
sensor2_Laboratory is {real_string2 }.P3 is busy?

57

4.1 Methodology

2 Yes , P3 is busy./No , P3 is not busy.

When someone is at the desk, the first response is given, the second response
is given when no one is present.

The prompt for the ”someone outside the office” activity is structured in the
following manner. In this case it can be seen that it was asked to answer only with
yes or no. This was done to prevent the assistant from giving an unnecessarily
long answer.

Listing 4.5: ”Somebody outside the office” user question and response

1 Can you tell me if there are people waiting in the ←↩
corridor knowing that the sensor called ←↩
sensor_Corridor is {real_string }? answer yes or no.

2 yes/no

The prompt for the ”Watching the computer screen” activity is now presented.
This activity is exclusive to LLMs since it cannot evaluate the values obtained
from analyzing camera images, and its response is always Don’t know. The
variable part {real string} is filled with the values of the head yaw, head pitch,
head roll, gaze yaw and gaze pitch.

Listing 4.6: ”Watching the computer screen” user question and response

1 Consider that usually if a person is looking more or ←↩
less in front of himself is watching the computer ←↩
screen , if not he is doing something else , would ←↩
you be able to tell me whether a person who is in ←↩
the study room is watching the computer screen or ←↩
doing something else considering you have the data ←↩
of head yaw , head pitch , head roll , gaze yaw and ←↩
gaze pitch which respectively are: {real_string }. ←↩
Answer me with Watching , Do not Watching or Do not ←↩
know.

2 Do not know

The last activity is an ”Ongoing meeting” which takes into account both the
value of the PIR3 sensor and the current time. Initially, a single question was
created with both values in it, but this often caused confusion in the response
of the assistant. To make it easier to understand, the user is asked two simpler
questions instead.

58

4.2 Results

Listing 4.7: ”Watching the computer screen” user question and response

1 if the sensor sensor_Table is {real_string} tell me if←↩
there are people at the table.

2 yes/no

3 if there are people at the table and they are the {now←↩
} tell me if there is an ongoing meeting?

4 yes/no

It’s important to note that the second question is dependent on the first one.
If the answer to the first question is yes, then the second will be asked. However,
if the answer is no, the second question is unnecessary and won’t be asked.

4.1.6 Online Data Acquisition and Analysis

After completing the offline testing phase of the algorithm, we proceeded to an
’online’ simulation of its operation. During this phase, the trained models were
applied to data samples taken from the datasets, and the entire process was exe-
cuted as if it were in real-time, mirroring the actual operation of the architecture
illustrated in Figure 3.3 and simulating the office environment shown in Figure
3.4. This simulation allowed us to evaluate how the models would perform in a
scenario closely resembling real-world conditions. We expect similar results, with
possible differences due to random components in LLM responses.

Finally, we conducted real-time testing with new data (10 data windows for
each activity), acquired and processed in real-time from people interacting with
the Smart Environment. We evaluated both accuracy and execution times.

4.2 Results

This section presents the results obtained from the experiments conducted and
mentioned in the previous section.

4.2.1 ML Accuracy

As shown in Table 4.3, the accuracy values of ML algorithms consistently reach
high levels, which is expected given the simple scenario we are considering. No-
tably, the lowest accuracy is associated with the occupation of study desk number
1, yielding an accuracy of 0.76, indicating that 76 percent of the samples were
correctly recognized. The results also include instances with a maximum accuracy
of 1.0, particularly in detecting somebody in front of the office and recognizing

59

4.2 Results

people moving along a path. It is important to note that as expected, the data
from the online simulation of the whole architecture are identical to offline testing
since the same data were used.

Table 4.3: ML Accuracy

Activity Offline testing Online simulation
Somebody at study desk 1 0.76 0.76
Somebody at study desk 2 0.89 0.89
Somebody at study desk 3 0.95 0.95
Somebody outside the office 1 1

Watching the computer screen 0.99 0.99
Somebody moving 1 1
Ongoing meeting 0.87 0.87

In order to evaluate the effectiveness of our predictions, have been carefully
created seven confusion matrices, one for each activity. These matrices provide
an in-depth overview of the precision of our predictions, highlighting the true
positives, false positives, true negatives, and false negatives. Through a com-
prehensive analysis of these matrices, we were able to pinpoint the sensitivity,
specificity, and accuracy of our model for each activity. Armed with these in-
sights, we were able to identify opportunities for improving our model. In the
Tables 4.4, 4.5, 4.6, 4.7, 4.8, 4.9, 4.10 are presented the confusion matrices for
ML approach.

Table 4.4: Study desk 1 confusion matrix

Somebody at study desk 1 Positive Negative
Positive 133 21
Negative 51 95

It is also important to take into account the averages of overall learning time
and learning times for each activity. In Table 4.11 is possible to see all the learning
times. These times depend on the dimension of the respective datasets, so by the
number of processed data, and depend also on the type of data. As can be seen,
the learning time of the ”Watching the computer screen” activity is the highest
because the input data are floats, unlike the other tasks that have binary data as
input.

60

4.2 Results

Table 4.5: Study desk 2 confusion matrix

Somebody at study desk 2 Positive Negative
Positive 136 18
Negative 14 132

Table 4.6: Study desk 3 confusion matrix

Somebody at study desk 3 Positive Negative
Positive 145 9
Negative 5 141

Table 4.7: Somebody outside the office confusion matrix

Somebody outside the office Positive Negative
Positive 53 0
Negative 0 48

Table 4.8: Watching the computer screen confusion matrix

Watching the computer screen Positive Negative
Positive 1083 3
Negative 4 1055

Table 4.9: Somebody moving confusion matrix

Somebody moving Path1 Path2 Path3 Path4 Path5 Path6 No Path
Path1 4 0 0 0 0 0 0
Path2 0 4 0 0 0 0 0
Path3 0 0 2 0 0 0 0
Path4 0 0 0 3 0 0 0
Path5 0 0 0 0 3 0 0
Path6 0 0 0 0 0 2 0

No Path 0 0 0 0 0 0 3

61

4.2 Results

Table 4.10: Ongoing meeting confusion matrix

Ongoing meeting Positive Negative
Positive 66 16
Negative 4 78

Table 4.11: ML: Learning time evaluation in seconds

Activity ML learning times
Somebody at study desks 6.024517

Somebody outside the office 1.213123
Watching the computer screen 32.895582

Somebody moving 0.223945
Ongoing meeting 1.973264
Total learning time 42.331436

4.2.2 LLM Accuracy

Please keep in mind that, for sensor data processing, the Reasoning Server re-
trieves N data samples from pertinent sensors (the data window size is specified
in Table 4.1) and generates a vector that represents the sequence of sensor ac-
tivations. This sequence is then used to construct a string that populates the
prompt to be sent to the Large Language Model (LLM).

The results presented in Table 4.12 are generally very good. However, it is
worth noting that the model is not suitable for all activities: for example, it is
unable to provide outcomes for eye and head orientation data, which are used for
detecting somebody watching the computer screen. This limitation arises from
the difficulty of expressing eye and head direction in natural language, highlight-
ing the constraint of this approach, which is applicable only when sensor readings
can be easily described in natural language. For the other predictions, we once
again observe that for some of them, we achieve 1.0 accuracy due to the simplicity
of the scenario. It is important to emphasize that, unlike the previous case, the
data collected during the online phase are not identical to those obtained in the
offline phase. This discrepancy arises due to the fact that LLMs exhibit behav-
ior that is not always consistent, thereby introducing unpredictable variations in
classification outputs.

62

4.2 Results

Table 4.12: LLM Accuracy

Activity Offline testing Online simulation
Somebody at study desk 1 1 1
Somebody at study desk 2 0.97 0.97
Somebody at study desk 3 0.77 0.76
Somebody outside the office 0.98 0.99

Watching the computer screen n.a. n.a.
Somebody moving 1 1
Ongoing meeting 0.89 0.78

Confusion matrices are also presented for the LLM approach as for the ML
approach in the Tables 4.13, 4.14, 4.15, 4.16, 4.17, 4.18. However, in this case
the matrix related to the ”Watching the computer screen” activity is missing as
the model is unable to provide either a positive or negative answer.

Table 4.13: Study desk 1 confusion matrix

Somebody at study desk 1 Positive Negative
Positive 49 0
Negative 0 34

Table 4.14: Study desk 2 confusion matrix

Somebody at study desk 2 Positive Negative
Positive 192 11
Negative 0 289

4.2.3 Real-time test

Table 4.19 presents the results obtained during the real-time behavior testing
of the architecture for both classification approaches. As observed in 4.19, the
accuracy achieved in these tests is occasionally lower. However, it is essential to
note that the real-time testing dataset contained a significantly smaller number
of samples, so these results should be interpreted with caution. During real-time

63

4.2 Results

Table 4.15: Study desk 3 confusion matrix

Somebody at study desk 3 Positive Negative
Positive 14 42
Negative 0 128

Table 4.16: Somebody outside the office confusion matrix

Somebody outside the office Positive Negative
Positive 248 3
Negative 3 248

Table 4.17: Somebody moving confusion matrix

Somebody moving Path1 Path2 Path3 Path4 Path5 Path6 No Path
Path1 4 0 0 0 0 0 0
Path2 0 4 0 0 0 0 0
Path3 0 0 2 0 0 0 0
Path4 0 0 0 3 0 0 0
Path5 0 0 0 0 3 0 0
Path6 0 0 0 0 0 2 0

No Path 0 0 0 0 0 0 3

Table 4.18: Ongoing meeting confusion matrix

Ongoing meeting Positive Negative
Positive 44 12
Negative 0 57

64

4.2 Results

tests, it is important to take into consideration the temporal shifting window of
data for each activity. This window adjusts to include the last N data for each
sensor in the database. The value of N and the size of each window can be found
in Table 4.1. By considering the second value in the ”Dataset” column for the
respective tasks, can be obtained the appropriate values. If the value of N is
greater, the delay before observing the correct prediction increases. This is be-
cause the N-size window needs to be filled with data related to the event before
it can be recognized accurately.

Major differences emerge in terms of execution time: ML algorithms take ap-
proximately 0.3 sec on average on a Intel(R) Core(TM) i7-7700HQ CPU@2.80
GHz to recognize all 7 activities, while LLMs, owing to GPT 3.5 response time,
require approximately 13 sec for all 7 activities. In addition, in Table 4.21 it is
possible to observe individual task execution times.

Table 4.19: ML vs LLM: Real-time evaluation

Activity ML LLM
Somebody at study desk 1 0.70 1
Somebody at study desk 2 0.80 0.90
Somebody at study desk 3 0.90 0.70
Somebody outside the office 1 0.90

Watching the computer screen 0.90 n.a.
Somebody moving 0.90 0.95
Ongoing meeting 0.80 0.75

Table 4.20: ML vs LLM: Execution time evaluation in seconds

Activity ML LLM
Somebody at study desks 0.180 6.535

Somebody outside the office 0.050 1.850
Watching the computer screen 0.064 0.680

Somebody moving 0.006 2.057
Ongoing meeting 0.002 2.109

Total execution time 0.302 13.231

65

4.2 Results

4.2.4 Comunication times

In analyzing the performance of this architecture, it is important to give proper
emphasis to the timing of communication between the various components and
to understand how often certain routines are executed.

Based on the Sequence diagram shown in 3.4, the Data Server obtains new
data from the Manufacturer Clouds and updates the database every second. On
average, it takes 0.061724 seconds for the Data Server to communicate with the
Manufacturer Clouds. When writing data to the database, the Data Server takes
an average of 0.011295 seconds to complete the process. The Reasoning Server
reads and processes the data with a cadence of approximately 2.446922 seconds
for the ML approach and 15.417970 seconds for the LLM approach. In addi-
tion, the Reasoning Server takes approximately 2.043962 seconds to respond to
the Reasoning Client connecting to the ”BASE+/robot” URL. Additionally, the
Reasoning Server takes an average of 0.00804 seconds to read from the Database
and 0.015392 seconds to write to it. Comparing the write times of the Data
Server and Reasoning Server, it can be seen that they are very similar, and the
read time of the Reasoning Server is quite low. It can be observed that the Rea-
soning Client is quicker when connected to the route ”/robot” compared to the
basic route ”/”, due to the latter having to include the time taken for reasoning
about the data. As indicated in Table 4.21, on average, the reasoning time for
ML and LLM is about 0.302 and 13.231 respectively. On the other hand, for the
former, there are no execution times required, only the time taken to retrieve
the data from the Database and send it to the Reasoning Client. It is notable
that when the reasoning times of both approaches are added to the time taken to
receive the data at the ”/robot” route, the total time periods are similar to the
periods calculated for the two approaches mentioned above.

Table 4.21: ML vs LLM: Execution time evaluation in seconds

Comunication Time (s)
Data Server - Manufacturer Cloud 0.06172
Data Server - Database (writing) 0.01129
Reasoning Server period (ML) 2.44692
Reasoning Server period (LLM) 15.41797

Reasoning Server - Database (reading) 0.00804
Reasoning Server - Database (writing) 0.01539
Reasoning Server - Reasoning Client 2.043962

66

4.3 Discussion

4.3 Discussion

Starting with the choice of architecture, after establishing the final structure, it
was crucial to figure out what type of sensors to use and which activities to recog-
nize. The choice was made taking into account both the difficulty in recognizing
certain activities and taking into account the possibility of using a very versatile
type of sensors that would allow to keep costs low but have a very good perfor-
mance for acquiring data on various activities.

As explained in the previous sections, the choice fell on the use of PIR sen-
sors, magnetic door sensors, and cameras. These sensors in particular PIR and
magnetic door sensors, are cheap and above all very versatile in that the data
they provide us in certain areas of use are very important and easily interpreted.
The choice of activities was obviously made so that we could best evaluate the
goodness of the activity using the chosen sensors. Most of the activities are
based on a concept of localization in the environment such as ”Somebody at the
study desk”, ”Somebody outside the office” and ”Somebody moving”, activities
in which, however, the presence of people in certain areas not only gives us an
indication of localization in the environment, but also allows us to understand
what people are doing in certain areas set up for a certain purpose. Then we have
the ”Ongoing meeting” activity which also makes use of a clock to keep track of
the time and best interpret the possibility of the event in question. Finally, we
have the ”Watching the computer screen” activity for which a camera mounted
on a robot is used, which by moving around a specific area is able to obtain in-
formation about the chosen activity through the students’ faces.

After choosing the sensors and activities it was important to move on to choos-
ing the environment to figure out which areas might be of interest and how the
sensors could be placed. Once this was done, once the approaches and algorithms
to be used to analyze the data obtained from the sensors were chosen, everything
was ready to move on to the data collection phase for the machine learning algo-
rithms and then to the testing phase.

As it was possible to observe from the tables proposed above, the results
obtained are very good both from a point of view of accuracy which has very
good values, especially in some activities. Upon a detailed analysis of the results,
significant differences become evident: LLMs, aside from their intuitiveness as
they allow expressing sensor readings and events in natural language, exhibit
comparable performance to ML in activity recognition during simple scenarios,
such as recognizing a meeting. However, in more complex activity recognition
tasks involving head and eye gaze orientation data, LLMs fail to provide viable

67

4.3 Discussion

solutions. Another important consideration also needs to be made about the
execution times which are very different between the two approaches, is important
to note that for the Somebody at study desk activity, for the three desks, we go
from a time of 0.180 seconds to one of 6.535 seconds about 36 times higher, a
difference that increases considering the total time which for the LLM approach
is about 44 times larger than for the ML algorithm approach. For the LLMs,
however, there was no need to create a dataset to create the models used as for
the ML algorithms, which in the preparation phase took a lot of time because of
the huge amount of data needed. In general, a parallel could be drawn between
these two approaches with compiled and interpreted programming languages.
For compiled programming languages there is the script compilation phase that
can take some extra time, however, then you get an executable that is very fast
in terms of execution time, just like the approach of using ML algorithm. For
interpreted programming languages, there is no compilation phase, but each time
the code is executed it is reinterpreted each time raising the execution time, just
like the approach with LLMs.

68

Chapter 5

Conclusions

In this thesis, we proposed a cloud architecture for activity recognition and local-
ization within a Smart Environment. Subsequently, we evaluated two methods:
one based on standard ML approaches (Random Forest and SVM) and another
using Large Language Models (LLMs) to process data acquired from various sen-
sors distributed in the Smart Environment.

The results are very good for both approaches with some predictions that can
almost be said to be deterministic, with an accuracy of 1, thus a 100% correct pre-
diction. Taking into consideration the results obtained from the ML algorithms,
the lower values are due to the fact that in some situations, some samples were
very similar to each other despite indicating different situations, this makes it so
that when the model goes to evaluate those specific samples it can have more
doubts and thus make mistakes more easily. Considering instead the use of LLM
as we saw from the results, there was one activity in particular for which the
model failed to give any kind of response. This was probably due to not being
able to associate a specific head and gaze movement with a specific activity or
behavior.

In general, it can be said that both approaches have distinct advantages and
disadvantages. ML algorithms are notably effective and versatile but require a
substantial amount of data for training. On the other hand, Large Language
Models prove to be valuable alternatives in certain specific predictions, offering
high accuracy in straightforward cases, and they have the advantage of not re-
quiring any training.

This type of architecture also, as it is designed, is very modular and is easily
improved or even modified in its main modules. In fact, in order to test the archi-
tecture with the two proposed approaches, it was enough to simply replace part

69

of the ”Reasoning Server” module without having to touch the other modules at
all. The same applies to the sensors to be used which can be added or changed
very easily by simply going to add the new sensors in the right database table.
This modularity also makes the architecture very versatile in its applications in
that it can be used in home and work environments, but also in medical settings
such as hospitals and nursing homes, by adding and change the type of activities
that one wants to classify. For example, one could monitor Activities of Daily
Living (ADLs) and Instrumental ADLs (IADLs) to keep track of the functional
status of older people. This could also be done just by using the sensors used in
this thesis by placing the PIR sensors and magnetic door sensors in the correct
way. This would go a long way in obtaining important information for clinicians
but most importantly, it would not infringe on the privacy of people living in a
given environment. Privacy discourse is very important when it comes to smart
environments as often there is a risk of obtaining certain data or images that
from the privacy point of view could create problems.

The proposed architecture obviously is not perfect, but it has some limitations
for example the fact that it is not deterministic and not have a 100% success rate,
it may be limited for some specific uses where a very pronounced deterministic
factor is required. In addition, the use of cameras with regard to privacy dis-
course must be very limited and cannot be used for any kind of activity, while
with regard to PIR sensors and magnetic door sensors, although they are very
versatile, they limit the range of activities that can be carried out especially when
one wants to go into the specifics of an activity. Another limitation of the archi-
tecture as it is designed is the recognition of movement by different people in the
same environment. Currently, if two people were moving at the same time, the
architecture would not be able to distinguish which person is making one path
and which person is making another path and would also risk confusing the paths.

From these limitations, one can take cues for future work and improvements,
first and foremost that of trying to make the final predictions more and more
deterministic, but above all going to include other types of sensors to increase
the amount of data on which it is possible to work and consequently expand
more and more the number of classifiable activities. For example, the addition
of new sensors could be very useful in improving the localization of multiple
people in the environment, perhaps using a fingerprint system that would allow
the identification of the specific person, perhaps using RFID sensors or even
identifying them through Wi-Fi or Bluetooth technology. Another improvement
could be improving the delay between an event and its accurate prediction is
crucial. One way to achieve this is by reducing the window width for each task.
However, it’s important to have a balance and not reduce it too much, as this can

70

result in the loss of essential features that machine learning algorithms require
for proper classification. In addition, another future work that could become a
real added value for this architecture is to improve the use of a robot, which in
the work done is mentioned only for the use of the camera for acquiring head
and gaze orientation data, but in the future, it could be much more central to
the dynamics of the environment and for example in the interpretation of the
results obtained by the Reasoning Server. For example, robot navigation in the
environment could be implemented to help people in their daily activities.

71

References

Abreu, M., Barandas, M., Leonardo, R. & Gamboa, H. (2019). Detailed
human activity recognition based on multiple hmm. 171–178, cited By 5. 24

Agate, V., Ferraro, P. & Gaglio, S. (2019). A cognitive architecture for
ambient intelligence systems. vol. 2418, 52 – 58, cited by: 5. vii, 6

Alonso, R., Garćıa, O., Zato, C., Gil, O. & De la Prieta, F. (2010).
Intelligent agents and wireless sensor networks: A healthcare telemonitoring
system. Advances in Intelligent Systems and Computing , 71, 429–436, cited
By 9. 5

Baronti, P., Barsocchi, P., Chessa, S., Mavilia, F. & Palumbo, F.
(2018). Indoor bluetooth low energy dataset for localization, tracking, occu-
pancy, and social interaction. Sensors (Switzerland), 18, cited By 48. 17

Bavafa, M. & Navidi, N. (2010). Towards a reference middleware architecture
for ambient intelligence systems. 98–102, cited By 5. 5

Biau, G. (2012). Analysis of a random forests model. Journal of Machine Learn-
ing Research, 13, 1063–1095, cited By 904. 20

Breiman, L. (2001). Random forests. Machine Learning , 45, 5–32. 20

Cai, Y., Genovese, A., Piuri, V., Scotti, F. & Siegel, M. (2019). Iot-
based architectures for sensing and local data processing in ambient intelli-
gence: Research and industrial trends. vol. 2019-May, cited By 18. 5

Che, F., Ahmed, Q., Lazaridis, P., Sureephong, P. & Alade, T. (2023).
Indoor positioning system (ips) using ultra-wide bandwidth (uwb)—for indus-
trial internet of things (iiot). Sensors , 23, cited By 1. vii, 16, 17

Cubo, J., Nieto, A. & Pimentel, E. (2014). A cloud-based internet of things
platform for ambient assisted living. Sensors (Switzerland), 14, 14070 – 14105,
cited by: 108; All Open Access, Gold Open Access, Green Open Access. 7

72

REFERENCES

Fraile, J., Bajo, J. & Corchado, J. (2008). Hybrid multi-agent architec-
ture (hoca) applied to the control and supervision of patients in their homes.
Lecture Notes in Computer Science (including subseries Lecture Notes in Arti-
ficial Intelligence and Lecture Notes in Bioinformatics), 5290 LNAI, 193–202,
cited By 1. 5

Garćıa-Paterna, P., Mart́ınez-Sala, A. & Sánchez-Aarnoutse, J.
(2021). Empirical study of a room-level localization system based on bluetooth
low energy beacons. Sensors , 21, cited By 6. vii, 18

Gavrilyuk, K., Sanford, R., Javan, M. & Snoek, C. (2020). Actor-
transformers for group activity recognition. 836–845, cited By 98. vii, 25

ilçi, V., Gülal, V., Alkan, R. & Çizmeci, H. (2015). Trilateration tech-
nique for wifi-based indoor localization. vii, 13

Jain, V., Gupta, G., Gupta, M., Sharma, D.K. & Ghosh, U. (2023). Am-
bient intelligence-based multimodal human action recognition for autonomous
systems. ISA Transactions , 132, 94 – 108, cited by: 3; All Open Access, Bronze
Open Access. 20

Kartakis, S., Sakkalis, V., Tourlakis, P., Zacharioudakis, G. &
Stephanidis, C. (2012). Enhancing health care delivery through ambient in-
telligence applications. Sensors (Switzerland), 12, 11435–11450, cited By 23.
6

Lai, K.C., Ku, B.H. & Wen, C.Y. (2018). Using cooperative pir sensing for
human indoor localization. 1–5, cited By 14. 15

Malatras, A., Asgari, A. & Baugé, T. (2008). Web enabled wireless sensor
networks for facilities management. IEEE Systems Journal , 2, 500–512, cited
By 50. 6

Marin-Perianu, M., Meratnia, N., Havinga, P., De Souza, L.,
Müller, J., Spiess, P., Haller, S., Riedel, T., Decker, C. &
Stromberg, G. (2007). Decentralized enterprise systems: A multiplatform
wireless sensor network approach. IEEE Wireless Communications , 14, 57–65,
cited By 61. 6

Montanha, A., Polidorio, A., Dominguez-Mayo, F. & Escalona, M.
(2019). 2d triangulation of signals source by pole-polar geometric models. Sen-
sors (Switzerland), 19, cited By 5. vii, 14

73

REFERENCES

Murad, A. & Pyun, J.Y. (2017). Deep recurrent neural networks for human
activity recognition. Sensors (Switzerland), 17, cited By 301. 22

Nawal, Y., Oussalah, M., Fergani, B. & Fleury, A. (2023). New incre-
mental svm algorithms for human activity recognition in smart homes. Journal
of Ambient Intelligence and Humanized Computing , 14, 13433–13450, cited By
3. 23

Nessa, A., Adhikari, B., Hussain, F. & Fernando, X.N. (2020). A survey
of machine learning for indoor positioning. IEEE Access , 8, 214945 – 214965,
cited by: 97; All Open Access, Gold Open Access, Green Open Access. 25

Ni, L., Liu, Y., Lau, Y. & Patil, A. (2003). Landmarc: Indoor location
sensing using active rfid. 407–415, cited By 1000. 16

Nurwulan, N. & Selamaj, G. (2020). Random forest for human daily activity
recognition. vol. 1655, cited By 8. 21

Pienaar, S. & Malekian, R. (2019). Human activity recognition using lstm-
rnn deep neural network architecture. Cited By 62. 22

Roy, P. & Chowdhury, C. (2021). A survey of machine learning techniques for
indoor localization and navigation systems. Journal of Intelligent and Robotic
Systems: Theory and Applications , 101, cited By 67. 25

Roy, P. & Chowdhury, C. (2022). A survey on ubiquitous wifi-based indoor
localization system for smartphone users from implementation perspectives.
CCF Transactions on Pervasive Computing and Interaction, 4, 298–318, cited
By 12. 18

Salamah, A., Tamazin, M., Sharkas, M. & Khedr, M. (2016). An en-
hanced wifi indoor localization system based on machine learning. Cited By
99. 25

Sanchez-Pi, N. & Molina, J. (2010). A multi-agent approach for provision-
ing of e-services in u-commerce environments. Internet Research, 20, 276–295,
cited By 13. 5

Sanpechuda, T. & Kovavisaruch, L. (2008). A review of rfid localization:
Applications and techniques. vol. 2, 769–772, cited By 183. 15

Scalmato, A., Sgorbissa, A. & Zaccaria, R. (2013). Describing and rec-
ognizing patterns of events in smart environments with description logic. IEEE
Transactions on Cybernetics , 43, 1882–1897, cited By 17. 27

74

REFERENCES

Singh, N., Choe, S. & Punmiya, R. (2021). Machine learning based indoor
localization using wi-fi rssi fingerprints: An overview. IEEE Access , 9, 127150–
127174, cited By 49. 26

Song, C.H., Wu, J., Washington, C., Sadler, B.M., Chao, W.L. &
Su, Y. (2023). Llm-planner: Few-shot grounded planning for embodied agents
with large language models. 28

Tapia, D., Alonso, R., De Paz, J. & Corchado, J. (2009a). Introducing
a distributed architecture for heterogeneous wireless sensor networks. Lecture
Notes in Computer Science (including subseries Lecture Notes in Artificial In-
telligence and Lecture Notes in Bioinformatics), 5518 LNCS, 116–123, cited
By 30. 6

Tapia, D., Bajo, J. & Corchado, J. (2009b). Distributing functionalities in
a soa-based multi-agent architecture. Advances in Intelligent and Soft Comput-
ing , 55, 20–29, cited By 16. 5

Tapia, D., Fraile, J., Rodŕıguez, S., Alonso, R. & Corchado, J.
(2013). Integrating hardware agents into an enhanced multi-agent architec-
ture for ambient intelligence systems. Information Sciences , 222, 47–65, cited
By 83. 5

Thilakarathne, H., Nibali, A., He, Z. & Morgan, S. (2022). Pose is all
you need: the pose only group activity recognition system (pogars). Machine
Vision and Applications , 33, cited By 0. 21

Wang, P., Guo, B., Wang, Z. & Yu, Z. (2022). Shopsense:customer local-
ization in multi-person scenario with passive rfid tags. IEEE Transactions on
Mobile Computing , 21, 1812–1828, cited By 8. 27

Wei, S.E., Ramakrishna, V., Kanade, T. & Sheikh, Y. (2016). Convolu-
tional pose machines. vol. 2016-December, 4724–4732, cited By 2059. 22

Wu, C.M., Chen, X.Y., Wen, C.Y. & Sethares, W. (2021). Cooperative
networked pir detection system for indoor human localization. Sensors , 21,
cited By 7. vii, 15, 16

Xu, H., Wu, M., Li, P., Zhu, F. & Wang, R. (2018a). An rfid indoor po-
sitioning algorithm based on support vector regression. Sensors (Switzerland),
18, cited By 68. vii, 16, 17

Xu, L., Yang, W., Cao, Y. & Li, Q. (2018b). Human activity recognition
based on random forests. 548–553, cited By 36. 21

75

REFERENCES

Zhang, L., Li, Y., Gu, Y. & Yang, W. (2017). An efficient machine learning
approach for indoor localization. China Communications , 14, 141 – 150, cited
by: 26. 25

Zhu, J., Li, Q., Cao, R., Sun, K., Liu, T., Garibaldi, J., Li, Q., Liu,
B. & Qiu, G. (2019). Indoor topological localization using a visual landmark
sequence. Remote Sensing , 11, cited By 14. vii, 12

76

	1 Introduction
	1.1 Context
	1.2 Motivations
	1.3 Objectives
	1.4 Document's Structure

	2 State of the Art
	2.1 Architecture for Ambient Intelligence
	2.1.1 Architecture Cloud for Ambient Intelligence

	2.2 Activity Recognition
	2.2.1 Indoor Localization
	2.2.1.1 Topological Localization
	2.2.1.2 Geometrical Localization
	2.2.1.3 Approaches

	2.3 Machine Learning for Activity Recognition
	2.4 Large Lenguage Models

	3 Software Architecture
	3.1 Sensors
	3.2 Data Acquisition
	3.2.1 Cloud Architecture
	3.2.2 Database Structure

	3.3 Reasoning Server
	3.3.1 Activity Detection with ML
	3.3.2 Activity Detection with LLM

	4 Experiments
	4.1 Methodology
	4.1.1 Strategic Arrangement of Sensors
	4.1.2 Activities and Creation of Datasets
	4.1.3 Database Access
	4.1.4 ML
	4.1.5 LLM
	4.1.6 Online Data Acquisition and Analysis

	4.2 Results
	4.2.1 ML Accuracy
	4.2.2 LLM Accuracy
	4.2.3 Real-time test
	4.2.4 Comunication times

	4.3 Discussion

	5 Conclusions
	References

