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Abstract

In an era marked by swift technological progress, new forms of robot
interactions have emerged, requiring the integration of different strate-
gies to handle multi-robot collaborative situations. In these sce-
narios, robots must enhance their cognitive abilities to cooperate
efficiently, whether with humans or other autonomous agents. In
essence, strengthening the bond and understanding between agents,
be it human-robot or robot-robot, hinges upon the exploration of trust
concepts and their practical applications.

Given the growing demand for Unmanned Aerial Vehicles (UAVs) in
diverse sectors such as agriculture, inspections, security, and surveil-
lance, this thesis aims to evaluate a novel trust framework involving
auction-based task assignment to UAVs. It includes overseeing task
execution and completion and subsequently establishing agent reliabil-
ity based on the collected data following the execution and monitoring
phase, culminating in an update of trust in the system. In the context
of task allocation, our emphasis has been on navigation tasks, specifi-
cally the localization of UAVs through Aruco markers and trajectory
planning using the A* algorithm. Ultimately, this research offers valu-
able insights into the importance of trust within an autonomous drone
team, particularly in scenarios related to path planning and monitor-
ing.
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Chapter 1

Introduction

1.1 Problem statement

The integration of robots into our daily lives has highlighted the need for advanced
models of cooperation. When it comes to cooperation in multi-agent systems,
the concept of trust among robots becomes important. Earlier studies show that
trust is not just about how good the robot is at its job. It also depends on what
people expect from the robot in a cooperative context [17] and even how the
robot looks [44]. Given the above setting, the need for a robust system to foster
communication and cooperation among robots is imperative [13]. Such systems
allow them to exchange information, assign tasks, and dynamically adapt to
evolving conditions, culminating in enhanced operational outcomes and mission
fulfillment. At the core of our thesis lies the investigation and evaluation of a
trust-focused framework designed for auction-based task assignments in the realm
of Unmanned Aerial Vehicles (UAVs). This customized framework is designed
to efficiently oversee a variety of robotic agents, each with unique capabilities.
Periodically, these agents receive specific tasks relevant to the context. These
tasks are then monitored by other agents, and the system collects data to assess
the reliability of these agents, subsequently updating trust in the system. For
the purposes of this study, we focused on UAV navigation as the area of interest,
addressing two distinct tasks: the self-localization of drones and the localization
of other drones, enabling them to observe the behavior of their counterparts. In
addition, within this system, we also addressed the task of trajectory planning
for Tello drones using the A* algorithm.

Finally, through a network configuration, all UAVs are connected to a central
system, enabling them to offer their capabilities when a new task is needed and
collectively determine the most suitable agent for the task based on each agent’s
trust update.

For the purpose of this work, we opted for the DJI Tello drone Edu version due
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to its indoor flight stability, good-quality camera, affordable price, and versatile
software, which enables it to perform various tasks. However, when we take
a closer look, it’s clear that there are many tricky technical, technological, and
operational problems that need to be solved to get this job done. These challenges
are complicated and need careful thought and creative solutions to make sure we
can achieve our goal.

In tackling the issue of precisely pinpointing the position of drones within
indoor settings and subsequently enhancing their navigational capabilities, we
turned to Aruco markers. Their high level of accuracy and ease of use make
them perfect for maintaining reliable UAV positioning. Such integration becomes
pivotal when the task necessitates swift and precise camera pose detection, as
outlined in the work by [14].

Utilizing these Aruco markers, drones are endowed with the capability to
autonomously determine not only their own spatial position and orientation but
also those of their fellow drones within a predefined area. To facilitate this, mark-
ers have been thoughtfully placed throughout the operational space. Moreover,
these markers are also attached to every drone’s propellers, boosting their ability
to navigate effectively.

It’s vital to have synchronized control over multiple drones, especially con-
sidering the many tasks that demand coordinated actions. In this context, there
are multiple frameworks designed for managing drone groups. Within our work,
we’ve chosen to incorporate both TCP and UDP protocols, in tandem with some
other networking applications which are further mentioned in detail in 3.5. This
integration focuses on simplifying the deployment process while also offering a
scalable solution that can adapt to potential future needs.

1.2 Previous work

The use of robots in our daily lives is experiencing rapid growth, with a signif-
icant portion of this expansion occurring within manufacturing settings [60]. In
particular, as we delve into the era of Industry 4.0 and the Industrial Internet of
Things (IIoT), robots are poised to play a pivotal role in revolutionizing modern
manufacturing techniques, as highlighted by [24].

However, the integration of robots into our homes is another aspect of this
technological surge, as underscored by reports that predict a greater reliance on
robots in domestic settings [32]. This extension of robotic applications to ev-
eryday life is expected to bring about a diverse range of robots from various
manufacturers, all functioning in concert with each other and, at times, in col-
laboration with humans. This collaborative environment necessitates a critical
element: trust. Trust, in the context of robotic cooperation, revolves around the
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belief that one robot, when relying on another, has confidence that the latter will
perform its tasks with precision and reliability, as elucidated by [6] Therefore,
The increasing acceptance of robots in both industrial and domestic environ-
ments marks a pivotal shift in human-robot relations. This merging of high-tech
solutions and complex collaborations emphasizes the need for trust among robot
”teammates” to guarantee smooth and efficient workflows.

One prominent study [32] underscores the importance of trust as a critical
metric for task allocation amongst robots via auction-based systems. This re-
search uniquely frames trust by drawing parallels from established models [31]
[64] but with modifications catering to a dynamic open environment. In this
setting, robots may dynamically enter or exit the network, complete assigned
tasks, or verify the tasks executed by fellow robots. Notably, the study delineates
between the capabilities of ”executing an action” and ”verifying the execution
of an action”, indicating that they do not necessarily overlap. This distinction
posits scenarios where a robot may not have the capability to perform a task
but can evaluate another robot’s proficiency in executing it. Up to now, the de-
veloped framework for auction-based task assignment has been mainly tested in
simulation and with social robots Pepper and NAO.

When it comes to localizing Unmanned Aerial Vehicles (UAVs), various method-
ologies have been developed, encompassing techniques like Global Navigation
Satellite Systems (GNSS), Visual Odometry (VO), and Simultaneous Localiza-
tion and Mapping (SLAM). Each of these techniques offers distinct advantages
under particular conditions. However, there are instances, such as when the
GNSS signals are compromised due to obstructions or interference [55], or when
environments present challenges like weak distinguishable features or obstruc-
tions that obscure vision [26]. In these complex scenarios, fiducial markers have
emerged as a reliable solution. Research, including studies like [39], has indicated
that these markers not only offer enhanced accuracy but also ensure robustness,
making them particularly suitable for ensuring precise UAV localization under
challenging conditions.

Managing teams of drones requires intricate and reliable architectures to en-
sure smooth operations and effective coordination. As drone technology advances,
so does the sophistication of these control systems, with researchers and engineers
developing innovative solutions to address the unique challenges of multi-drone
management. For instance, the approach detailed in [36] leverages the power and
accessibility of cloud platforms. By doing so, it provides a decentralized control
mechanism where multiple operators, irrespective of their geographical location,
can simultaneously control and monitor multiple UAVs. This cloud-based ap-
proach is particularly beneficial as it facilitates scalability, allows real-time data
processing, and offers redundancy—qualities essential for large-scale drone oper-
ations. Moreover, the cloud’s distributed nature means that operators can join
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from anywhere with internet access, allowing for flexible and collaborative drone
management.On the other hand, the method proposed in [45] harnesses Web-
Sockets, a technology tailored for real-time communication. WebSockets provide
full-duplex communication channels, enabling data to flow in both directions si-
multaneously over a single, persistent connection. Such a communication mech-
anism is invaluable for drone operations, where real-time feedback and command
exchange are crucial. Unlike traditional HTTP connections that open and close
for each exchange, WebSockets remain open, allowing for faster and more efficient
data transfer, ideal for scenarios demanding instant responsiveness.

1.3 Document structure

Having outlined the main issue and provided an overview of prior research, the
subsequent sections of this thesis are organized as follows :

• Chapter 2:This section provides a detailed state of the art to the key the-
oretical concepts crucial for the project. It starts with an extensive look
at drone classifications, emphasizing their varied functionalities and poten-
tial use cases. The discussion progresses to multi-agent systems, focusing on
the cooperative dynamics among multiple drones. Lastly, the importance of
navigation and computer vision for drone operations is underscored, empha-
sizing their roles in movement and visual data interpretation, respectively.
This overview sets the groundwork for deeper explorations in the project’s
subsequent parts.

• Chapter 3: provides a deep dive into the software architecture of the
system while also shedding light on the hardware components involved. It
further clarifies the strategies adopted to address the issues highlighted in
1.1 as the problem statement. This section also encompasses the system’s
design and its comprehensive execution.

• Chapter 4: In this chapter, test results and the outcomes from the physical
tests are showcased.

• Chapter 5: conclusions and suggestions for future improvements
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Chapter 2

State of the Art

2.1 Multi-Agent Systems (MAS)

A Multi-Agent System (MAS) is a coordinated network of agents that interact
to achieve specific objectives. These agents can be software entities, hardware
components, or a mix of both, and they can vary in their degree of autonomy.

2.1.1 Degree of Autonomy

Although autonomy is often at the heart of many definitions for agents and stands
as a key research topic within the multi-agent domain, a universally accepted
definition still remains elusive. This paper [7] seeks to categorize the various
interpretations of autonomy found in the existing literature by employing the
Vowels approach. On the other hand, The article [70] introduces the capability
of Dynamic Adaptive Autonomy (DAA), which allows an agent to dynamically
modify its autonomy along a defined spectrum (from command-driven to consen-
sus to locally autonomous/master) for each goal it pursues. However, in MAS
scenarios, due to the wide range of skills that these agents possess, they often
encounter unpredictability, significant variances, and irregular workloads. Such
conditions can lead agents to make decisions with unforeseen results. To tackle
this issue, this paper [54] presents the Fuzzy Logic-based Adjustable Autonomy
(FLAA), aiming to fine-tune the autonomy of multi-agent systems operating in
complex environments.

2.1.2 Applications

Multi-agent systems (MAS) have become popular in various areas, acting as a
key tool for handling and mimicking complex setups. These systems made up of
several cooperating agents, promote shared efforts, flexibility, and independent
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problem-solving. In fields like healthcare, robotics, and environment studies,
MAS has brought about improvements by encouraging effective teamwork and
prompt decisions. Their responsive character, combined with their capacity to
manage lots of data at once, makes them essential for tackling the changing
challenges we face today.

• Electric power systems:The evolution of energy networks from static to
dynamic systems necessitates the infusion of intelligence throughout the
network. A promising strategy to achieve this is through the use of multi-
agent systems technology. In this setup, functional components operate
as autonomous agents, communicating and interacting via messaging pro-
tocols. This mode of interaction promotes a flexible relationship between
components, which can be advantageous for the intricate systems foreseen
in the context of the smart grid. These papers [9] [50] take a retrospec-
tive look at the pivotal developments and demonstrations of agent-based
systems within the power sector.

• Healthcare: Multi-agent systems (MAS) comprise groups of self-governing
intelligent entities that work collectively to address intricate issues. Given
the nature of challenges in the medical field, these systems prove to be par-
ticularly relevant and beneficial. this paper [53] posit that MAS is aptly
suited for addressing healthcare dilemmas. they delve into specific instances
of how this technology has been employed across various health-related chal-
lenges, such as the administration of organ transplants, facilitating access
to medical data, and caring for palliative patients. Also this literature [10]
offers a comprehensive guide detailing the research surrounding the integra-
tion of multi-agent systems within the medical healthcare domain.

• Robotics:In robotics, MAS plays a crucial role in coordinating teams of
robots, enabling them to collaborate efficiently in endeavors such as search
and rescue or exploration missions. An illustrative extension of this concept
is the use of MAS in multi-unmanned Aerial Vehicle (UAV) systems. These
UAVs, operating as a coordinated fleet, can cover large areas, execute intri-
cate tasks [2], and adapt to dynamic environments, all while leveraging the
principles of MAS to maintain synchronicity and achieve shared objectives.

2.2 Trust in MAS

Trust holds significant relevance within the domain of autonomous multi-agent
systems, where it plays a pivotal role in two distinct subfields: human-robot
interaction (HRI) and robot-robot interaction (RRI). These subfields warrant a
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more comprehensive examination as they involve intricate dynamics surrounding
trust. In HRI, understanding and fostering trust between humans and robots is
crucial for effective collaboration and user acceptance. Conversely, in RRI, the
establishment of trust among multiple autonomous robots is vital for seamless
cooperation and the achievement of collective objectives. Both subfields under-
score the multifaceted nature of trust within autonomous multi-agent systems,
necessitating nuanced exploration and evaluation.

2.2.1 Human Robot interaction

Numerous studies explore the interaction between humans and robots. For in-
stance, this paper [67] investigates the theoretical basis of trust in the context of
human-robot teamwork. The primary objective of this model is to enhance our
understanding of the factors that encourage trust between human operators and
their robotic partners. The structure of the model is informed by the results of a
thorough quantitative meta-analysis. This method categorizes the various dimen-
sions that influence trust in human-robot interaction, including those pertaining
to humans, robots, and the surrounding environment.

In a similar vein, the study outlined in [33] suggests that numerous factors
play a critical role in assessing and managing trust between humans and robots.
These factors encompass attributes related to the robot, such as its performance
and physical characteristics, as well as aspects related to humans, including their
individual skills and personality traits, along with contextual factors dictated by
the specific tasks being performed. To substantiate their hypothesis, the authors
conducted a comprehensive analysis of ten scientific articles focused on human-
robot interaction (HRI). The findings confirmed the vital importance of trust
in collaborations between humans and robots, emphasizing that different factors
carry varying degrees of significance. Furthermore, the authors argued that the
most influential factors in fostering trust are the inherent characteristics of the
robot itself. Conversely, environmental factors exert a moderate influence, while
there is limited evidence to suggest that human-related factors have a substantial
impact on trust in HRI. Lastly, the results highlighted that establishing a trustful
relationship between humans and robots is significantly influenced by several
other considerations, including trust calibration and transparency.

2.2.2 Robot Robot interaction

Initially, exploring trust in the context of robots may seem irrelevant, given that
robotic agents typically operate within their designated parameters, do not en-
gage in deceitful or malicious actions intentionally (unless compromised, a sce-
nario we won’t delve into here), and it’s challenging to envision robotic agents
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whose judgments about others are influenced by personal emotions or personali-
ties. Consequently, many researchers concentrate on the practical aspects of robot
collaboration, emphasizing tasks, cooperative control, and strategic optimization
without considering subjective elements like trust. Nonetheless, evaluating trust-
worthiness doesn’t necessarily imply a risk of malevolence. It also becomes crucial
when agents must assess their and others’ capabilities by comparing prior beliefs
and claims to actual performance results. This evaluation, both before and af-
ter task execution, becomes vital. As discussed in the introduction, mismatches
between a robot’s expected and actual capabilities can result from unpredictable
environmental conditions, limitations in perception and action, and other factors
like incomplete documentation, limited testing, wear and tear, or performance
degradation.

Take, for example, the task of allocating assignments to multiple agents. In
[42], a comprehensive review of the multi-robot task assignment (MRTA) prob-
lem is presented, highlighting various criteria and algorithms tailored to optimize
outcomes in various contextual scenarios. When tackling the challenge of dis-
tributed multi-robot task allocation, the adoption of auction-based methods [68]
emerges as a popular approach. The concept is straightforward, and multiple
variants have been proposed [35]. Agents, which may differ in sensory equipment
or functional capabilities, bid for tasks, and the auctioneer assigns tasks to the
most suitable agent based on predefined metrics.

Regardless of the specific algorithm chosen for task assignment, MRTA in-
variably relies on shared communication protocols and the assessment of one or
more metrics to gauge the suitability of each potential robot for the given task
at a given moment. Nonetheless, the judicious selection of evaluation metrics is
paramount, given the potential disparity between agents’ beliefs and claims and
their actual capabilities.

2.3 Unmanned Aerial Vehicles (UAV)

Unmanned Aerial Vehicles (UAVs), commonly known as drones, are aircraft that
operate without a human pilot onboard. Instead, they are either remotely pi-
loted, often from the ground or another vehicle, or operate autonomously based
on pre-programmed flight plans or more complex dynamic automation systems.
These papers [18] [52] provided a detailed survey and comprehensive review of
UAVS and their potential applications.UAVs come in various shapes, sizes, and
configurations, depending on their intended purpose. Broadly, they are classified
into several categories based on different features.
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2.4 UAV classifications

Unmanned Aerial Vehicles (UAVs) come in a wide variety of specifications, equip-
ment, sizes, ranges, and shapes. They are available in the market with varying
numbers of rotors or propellers. UAVs have been engineered with diverse engines
and wing configurations. They are capable of wireless communication over both
short and long distances and can be categorized by size, ranging from nano to mi-
cro to large. These UAVs hold great potential for providing cellular connectivity
due to ongoing advancements in technology. Drones are equipped with a range of
features, including First Person View (FPV) goggles, a Global Positioning System
(GPS), sensors, stabilizers, and cameras.

2.4.1 fixed-wing UAVs

Fixed-wing UAVs are integral aircraft consisting of wings, a main body, a motor,
and a propeller. While they can maintain vertical flight for approximately sixteen
hours, their inability to move backward, hover, or rotate can limit their suitability
for certain tasks, such as aerial photography. Instead, their design and stability
make them ideal for roles like power line inspections and aerial mapping. In line
with this, the study presented in [58] aims to provide guidelines for optimizing
the aerodynamics and performance of fixed-wing UAVs, especially those operating
within the low-speed subsonic range.

Figure 2.1: an example of a fixed-wing UAV

2.4.2 single rotor

Single-rotor UAVs come with their own set of challenges. They are mechanically
complex, with intricate components required for rotor control and stabilization
[69]. This complexity can lead to higher maintenance and operational costs.
Additionally, their design makes them susceptible to vibrations, which can affect
the quality of captured data, especially in applications such as aerial photography
or mapping.
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Due to their mechanical complexity and the need for skilled operators, single-
rotor UAVs are often reserved for specialized missions where their unique capa-
bilities are essential. These missions may include search and rescue operations,
high-altitude surveys, or tasks requiring heavy lifting capabilities.

Figure 2.2: an example of a single-rotor UAV

2.4.3 multirotor

The most cost-effective and easily constructed UAVs are multirotor UAVs. These
UAVs are frequently used in imaging, video surveillance, and transmission line
operation and maintenance, for example, this paper [34] delves into the safety
inspection protocols and automated detailed examination techniques for trans-
mission towers, utilizing multi-rotor unmanned aerial vehicles (UAVs), they can
take the form of quadcopters, hexacopters, or octocopters. Quadcopters have
gained immense popularity for their unique attributes, primarily their capac-
ity for vertical takeoff and landing, swift maneuvering capabilities, exceptional
agility, and simple yet efficient design. These features make them a preferred
choice in various applications due to their cost-effectiveness and compact size. In
this regard, their utility extends to a wide range of applications, one of which
is discussed in the paper [5] which explores the implementation of deep learning
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techniques for fast object detection using quadcopter drones. This technology
showcases the adaptability and versatility of quadcopters in the realm of aerial
surveillance and data acquisition.

Additionally, another noteworthy paper referenced as [28] introduces a pro-
totype system that harnesses DIY quadcopter drones for product delivery. This
innovative approach exemplifies the expanding role of quadcopters in logistics and
transportation, where their compact design and maneuverability are harnessed
to create efficient and cost-effective delivery solutions.

Furthermore, in yet another work [59], quadcopters are employed for enhanc-
ing safety and security measures in the context of building construction sites.
This application showcases their potential in surveillance and monitoring, where
they can provide valuable insights and enhance situational awareness, ultimately
contributing to safer and more efficient construction operations.

In summary, the versatility of quadcopters is evident in their diverse appli-
cations, ranging from deep learning-enabled object detection to product delivery
systems and safety monitoring in construction sites. Their unique design and
capabilities continue to drive innovation in a variety of fields.One example of this
kind of drone is the Dji Tello drone which we used for this work.

2.5 Navigation in Robotics

Amobile robot, functioning as a sophisticated intelligent system, must be equipped
to continuously monitor its surroundings, accurately interpret its operational en-
vironment, strategically map out its path, and make informed decisions based
on the data it gathers [56]. The underlying robotic control architectures play
a pivotal role in this process. They lay out the blueprint for how these varied
capabilities are harmonized and sequenced, ensuring that the robot can seam-
lessly navigate without human intervention [69]. This integration of sensory
perception, environmental interpretation, path planning, and decision-making,
steered by the right control architecture, is crucial for the robot’s successful and
efficient autonomous movement. However, unlike stationary robots, drones, or
Unmanned Aerial Vehicles (UAVs), operate in a three-dimensional space with
diverse challenges ranging from aerial obstacles to atmospheric changes. Given
this complexity, drones require an even more sophisticated level of navigation
capability.

To illustrate the advancements in UAV navigation, several works have emerged,
addressing specific methodologies and challenges. For instance, this work [73]
delves into the realm of swarm drone navigation. Here, an autonomous swarm
of drones functions as a multi-agent system. In this setup, the leader agent is
imbued with intelligent decision-making capabilities, while the other agents in
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the swarm are designed to follow the leader without individualized processing.
Such a system showcases how different navigation strategies can be distributed
across a group of UAVs to achieve collective objectives.

Conversely, another significant piece of research is documented in [49], offering
a comprehensive literature review concerning vision-based methods tailored for
UAV navigation. This work underscores the crucial components of visual naviga-
tion including visual localization and mapping, obstacle detection and avoidance,
and the intricacies of path planning. The ability of a drone to visually inter-
pret its surroundings and make informed decisions is pivotal for safe and efficient
navigation, especially in environments where traditional GPS or sensor-based
navigation might be challenged. Navigation in UAVs can be broadly divided into
three main components:

2.6 Localization

Localization is about determining the robot’s position in its environment. This
could be relative to the start position or absolute within a map of the environ-
ment. However, when it comes to unmanned aerial vehicles (UAVs), their ability
to execute autonomous flights is paramount for the success of their designated
missions. Achieving this autonomy necessitates a UAV’s constant awareness of its
precise location. Once the drone discerns its current location, it then formulates
navigation directives based on both this immediate position and the predeter-
mined end goal. This information then pilots the drone towards its intended
target or endpoint. In outdoor settings, this process of localization becomes
relatively straightforward, primarily relying on the synergy between Global Po-
sitioning System (GPS) signals and the drone’s intrinsic inertial measurement
units (IMUs) [30]. However, this methodology encounters significant challenges
when transposed to indoor arenas or areas where GPS signals are either weak or
entirely non-existent. Addressing this challenge, the research papers [21], [20],
and [19] put forth innovative indoor localization strategies, aiming to provide
drones with a high degree of positional accuracy even in environments devoid of
conventional GPS signals.

2.6.1 common methods for UAV’s localization

• Simultaneous Localization and Mapping (SLAM) Simultaneous Lo-
calization and Mapping (SLAM) [3] is a fascinating and challenging aspect
of robotics. It involves a robot moving through an unknown area, trying to
figure out its position (localization) while also mapping the space around it.
This situation is tricky: a robot needs a map to determine its location, but
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to create that map, it must know where it is. To solve this problem, many
algorithms and methods have been developed, using information from var-
ious sensors like cameras, LiDARs, or sonars. Modern SLAM approaches
can handle large areas, detect when they’ve returned to a previously visited
location (loop closures), and skillfully avoid moving obstacles.

Building on this, it’s important to mention that while SLAM has made
significant progress, traditional GPS/INS navigation systems still face chal-
lenges. The numerous advantages of visual navigation—including its vast
data, accuracy, minimal disruption, and quick real-time response have nat-
urally drawn the interest of researchers. Exploring this further, the work
[72] details the basic concepts and key technologies behind visual SLAM. It
also critiques its real-time performance and reliability issues, particularly
for UAVs. This paper [11] also highlights an exciting combination, using
the aerial view from drones to enhance the limited view of ground robots.
By emphasizing a joint mapping and navigation approach based on UAV
visual SLAM, the research takes advantage of drones’ wide visual range.

• AR tags: This article [55] introduces a technique for determining the po-
sition of drones in indoor construction settings where GPS is unavailable.
It utilizes April tags, which are associated with already established coor-
dinates in the 3D Building Information Model (BIM). By having cameras
on the drone and determining the transformation between the tag and the
camera, the drone’s location within the construction area is identified. This
information then guides the drone as it navigates between essential points
on the construction site.

Accurate positioning is vital for the self-guided movement and management
of Unmanned Aircraft Systems (UAS). Typically, location data comes from
systems like GPS, Galileo, or more modern methods like Visual Odometry,
Visual-Inertial Odometry, and SLAM techniques. However, in scenarios
demanding precise actions, fiducial markers come into play. These mark-
ers provide dependable position data and are employed in numerous ap-
plications where reliable pose data is essential for specific items or spots.
This study [38] conducts a comparative analysis of four open-source fiducial
markers extensively applied in UAS operations: ARTag, AprilTag, ArUco,
and STag. These markers’ localization proficiency and computational per-
formance form the basis of evaluation.

In the study [16], a positioning mechanism for UAVs using multiple cameras
and ArUco fiducial markers is introduced. Instead of the usual Global Navi-
gation Satellite System (GNSS) or mobile network positioning services, this
system leverages multiple optical cameras and ArUco markers integrated
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into the UAV structure. The design is versatile, allowing a varying number
of cameras to identify an array of drones. A stationary system assessment
was conducted, wherein cameras set on the ground viewed the target from
varying distances. The gathered data indicates an encouraging precision
level for the system.

2.7 Path Planning

Path planning, in general, consists of finding a sequence of actions that trans-
form some initial state into a desired goal state. The states represent agent
locations, and transitions between states signify actions the agent can undertake,
each associated with a particular cost. [23] Outlines a set of newly formulated
heuristic-driven algorithms for real-world route design. As technology evolves,
there’s a shift towards robots and automated systems operating at swifter rates
to cut down on production times [27].To ensure accurate navigation, UAVs need a
detailed environmental map or schematic for efficient decision-making. [1] delves
into the evolution of UAV route design methodologies over the years.

2.7.1 Some approaches in trajectory planning

• Dijkstra’s Algorithm: Proposed by Edsger W. Dijkstra in 1956, this
algorithm guarantees finding the shortest path in a weighted graph. It
incrementally builds a set of nodes that have a minimum distance from the
start. As an example [46]proposed a path planning method for smart cars
based on the Dijkstra algorithm and dynamic window approach

• A* Algorithm: Introduced by Peter Hart, Nils Nilsson, and Bertram
Raphael in 1968, the Astar algorithm combines the benefits of Dijkstra’s
algorithm with heuristics to improve efficiency. It uses a cost function and
a heuristic to prioritize nodes that seem more promising.

2.8 Network and control

Controlling multiple drones in a synchronized manner is crucial for numerous
applications. There are several architectures for controlling teams of drones,
for example, [36] utilizes cloud platforms to allow multiple operators from dif-
ferent locations to control and monitor multiple UAVs simultaneously, or [45]
uses WebSockets for full-duplex communication channels over a single, long-lived
connection, suitable for real-time data exchange. However, in this work, we inte-
grate TCP and UDP protocols with packet sender and networking applications
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for handling the communication between drone agents to emphasize the ease of
deployment and ensure scalability for future applications.

2.9 Computer vision

A multidisciplinary field of study that enables computers to interpret and make
decisions based on visual data. Essentially, it seeks to teach machines to process,
analyze, and understand images or videos in the same way that humans do, but
often at a much higher scale and speed.

2.10 applications and libraries

Computer vision algorithms [71] encompass a wide range of mathematical and
computational techniques aimed at enabling machines to comprehend and in-
terpret visual data from the world. These algorithms emulate certain aspects
of human vision, enabling computers to extract valuable information and glean
meaningful insights from images and videos. Image processing algorithms are fun-
damental and adept at enhancing image quality through noise reduction, sharp-
ening, and contrast adjustments. Feature detection and extraction algorithms
[66]identify crucial points in images, like edges and corners, serving as landmarks
for subsequent analysis. These algorithms find diverse applications across indus-
tries, from healthcare, where they assist in medical image analysis and diagnosis,
to automotive, enabling autonomous vehicles to perceive and navigate their sur-
roundings safely. In the field of agriculture, computer vision algorithms aid in crop
monitoring and yield prediction [48], while in manufacturing, they enhance qual-
ity control and process optimization. Furthermore, retail uses these algorithms
for inventory management, shelf monitoring, and cashierless checkout systems.
In summary, computer vision algorithms are important tools with wide-reaching
applications, revolutionizing how machines interpret and interact with the visual
world.

2.10.1 Autonomous Vehicles

Computer vision plays a pivotal role in advancing various aspects of autonomous
vehicles. It empowers these vehicles with the capability to detect and recognize
objects, such as pedestrians and road signs, ensuring safety. Computer vision
also aids in lane detection, traffic sign recognition, and monitoring of traffic con-
ditions, enabling compliance with traffic rules and efficient navigation. Moreover,
it contributes to obstacle avoidance, mapping, and localization, crucial for precise
and safe autonomous driving [22]. In addition, computer vision enhances driver
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monitoring [63] [15], interior safety, and performance in adverse conditions like
low light or adverse weather. It extends its benefits to urban mobility and delivery
services, enabling autonomous vehicles to navigate complex urban environments
and support last-mile deliveries. Furthermore, computer vision facilitates remote
supervision and fleet management, making autonomous vehicle operations more
efficient and secure, ultimately advancing the field of autonomous transportation
across various domains.

2.10.2 AR (Augmented Reality) tags

AR markers or fiducial markers, are physical markers designed to be recognized
by AR systems, cameras, or AR applications to augment the real world with
digital information or objects. These markers are typically printed on paper or
displayed on screens, and they contain patterns or symbols that can be easily
detected and tracked by AR software.

AR tags come in various forms, including QR codes, grid patterns, circular
patterns, and custom symbols. The choice of marker design depends on the
specific requirements of the AR application and the capabilities of the tracking
system being used. some of the applications are listed below:

• Tracking: This paper [40] introduces an augmented reality (AR) appli-
cation that utilizes QR Codes for tracking and identification of objects.
Instead of traditional AR markers, which are solely used for tracking and
don’t convey additional information, the proposed system uses QR Codes
due to their high information capacity. When the QR Code is scanned,
it reveals a 3D virtual representation of the embedded information. The
primary application discussed is a product demo system, where a QR Code
on a product’s packaging displays a 3D virtual object, providing customers
with an interactive and direct visualization of the product.

• Interaction: AR tags can be used as interactive elements in AR appli-
cations [8]. Users can point their device’s camera at a marker to trigger
specific actions, such as displaying additional information, launching ani-
mations, or initiating games.

• Localization: In robotics and navigation, AR tags can be placed in the
environment to help robots or autonomous vehicles localize themselves ac-
curately [41]. The robot can detect and identify these markers to determine
its position within the surroundings, in our case we used ARuco markers to
fulfill our purpose.
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2.10.3 OpenCV

It is a seminal library in the domain of computer vision [4]. Written in C++ and
optimized for real-time applications, it offers interfaces for multiple languages, in-
cluding Python, Java, and Some core functionalities and applications of OpenCV
include:

• image processing OpenCV is a powerhouse for image processing, offering
a comprehensive suite for different processing needs. Users can efficiently
manipulate images by resizing, cropping, or rotating, and can even trans-
form images as required. The library also champions versatility in handling
color spaces, supporting seamless conversions between formats like RGB,
HSV, and Grayscale. For enhancing image contrast, OpenCV provides tools
to analyze and equalize histograms.

When it comes to refining and enhancing image details, the library offers an
array of filters such as the Gaussian process to extract key features of images
taken in low light conditions [47]. Morphological operations, encompassing
erosion, dilation, opening, and closing, are essential for emphasizing image
features, especially in binary representations. OpenCV is also adept at
contour detection and analysis in binary images [43], which is pivotal for
tasks like shape recognition.

Other essential capabilities include adaptive thresholding, Canny edge de-
tection, and Sobel operators for image segmentation and edge discernment.
Additionally, OpenCV provides robust segmentation techniques like water-
shed and grabCut to isolate objects and regions in images.

• Feature Extraction and Matching OpenCV boasts an extensive set
of tools for feature extraction and matching. Among the feature detec-
tors, it offers FAST, SIFT (Scale-Invariant Feature Transform), and SURF
(Speeded-Up Robust Features) [51] for example.

These are specialized algorithms crafted to pinpoint and delineate local
features in images, which are crucial for objectives like object recognition.
Once key points are identified, OpenCV extends support through descrip-
tor extractors such as SIFT, SURF, and ORB. To ensure these features are
properly matched across different images, the library provides algorithms
like the Brute-Force matcher in this article for automatic self-checkout sys-
tem [25] and the FLANN-based matcher [37]for FAST feature matching.
These facilitate the recognition of corresponding features in varied images
based on the derived descriptors.

• Video Analysis OpenCV can read video streams directly from devices,
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files, or IP cameras. It supports various file formats, including AVI, MP4,
and MKV. You can also write and save videos after processing.

• Camra Calibrartion Camera calibration using the OpenCV library is
an essential process in computer vision and photography. It involves cap-
turing images of a known pattern, like a chessboard, from various angles.
OpenCV’s functions automatically detect and locate the pattern’s corners
in these images, allowing for the identification of corresponding points.

The library then calculates the camera’s intrinsic (focal length, distortion)
and extrinsic (position and orientation) parameters, crucial for undistorting
and accurately measuring objects in images. Once calibrated, these param-
eters can be applied to correct distortions in future images captured by
the same camera, facilitating precise tasks like object recognition and 3D
reconstruction in various applications, from robotics to augmented reality.

• Aruco Markers Fiducial markers generally play a crucial role in computer
vision, particularly in spatial orientation and location tracking. OpenCV
extensively supports these markers. It offers modules for generating and
detecting ArUco markers, square binary patterns that facilitate rapid de-
tection and pose estimation. Additionally, OpenCV can identify boards
composed of multiple ArUco markers for 3D positioning, calibrate cam-
eras using ArUco grids, and compute the marker’s position and orientation
relative to the camera, essential for augmented reality (AR) applications.
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Chapter 3

System architecture

3.1 system overview

The System Overview section of this thesis report provides a comprehensive in-
troduction to the key components and fundamental structure of the system under
study. In this section, we aim to establish a clear understanding of the system’s
architecture, its main functionalities, and how it operates within its intended en-
vironment. This serves as the foundational knowledge required for the subsequent
chapters, which delve into various aspects of the system’s design, implementation,
and evaluation

3.1.1 Trust framework and how it works

For this work, we’re exploring and enhancing a novel auction-based task assign-
ment framework developed at DIBRIS. This system is designed for a wide-ranging
and open setup, effectively managing different robotic agents. Each agent in the
framework is represented by a node, which provides the following services:

• management of auctions either as an auctioneer or a bidder;

• handling of ROS messages through which the agents receive and elaborate
data from other agents;

• synchronization with other agents through all the phases of an auction;

• processing of all the data required for the computation of Reliability and
Verification Trustworthiness, which are explained further in 3.1.2.

• evaluation of the Perceived Competence , mentioned in 3.1.2 depending on
the behaviour-disposition configuration of the agent;

19



3.1 system overview

• sending/receiving data, through a TCP/IP socket, to the Adapter to per-
form the required sensorimotor routines for executing or verifying an action.

The fundamental concept of how this framework operates can be summarized as
follows. First, using a portfolio of trust-related metrics, agents dynamically gather
data about the other agents’ capability to (i) perform actions; and (ii) verify the
outcomes of actions performed by other agents. Then, they will iteratively use and
update these metrics to evaluate the trustworthiness of other agents, including
themselves, during auctions, thus ultimately taking trustworthiness into account
when making a new decision for task assignment. To illustrate these concepts,
let’s consider a simple scenario. Imagine we have a drone named G1 tasked with
handling an event called E1, specifically ”PerformPathPlanning.” This event is
initiated by the framework instructions. G1 is equipped with the knowledge and
a plan A1, which is planning the path to a certain waypoint, and it is actively
involved in the framework. However, G1 recognizes its limitations, as it often
encounters difficulties and failures while performing the task.

Then, a noteworthy incident occurs during an auction for A1. A new agent,
G2, enters the scene. G2 is a high-end drone with advanced path-planning ca-
pabilities and is connected to the local network. G2 expresses a high level of
confidence in its ability to perform this particular task. After gathering compre-
hensive information, including inputs from other participants, G1, acting as the
auctioneer, ultimately decides to assign A1 to G2. This decision is made because
G2 confidently claims to be exceptionally reliable, and there’s no way for any
agent, including G1, to dispute this assertion. In stark contrast, everyone is well
aware of G1’s previous struggles and unreliability in performing this task. Next,
G1 gets ready to observe and assess G2’s performance, along with other agents
who volunteered to do the same. G2 successfully plans its path and reaches the
desired destination. However, due to G1’s limited vision algorithms, it mistak-
enly thinks G2 failed. Agents exchange information, and G2 communicates that
it completed the task successfully, with other agents in the room agreeing, in-
cluding the reliable G3 camera, which had a good camera to estimate the pose of
agent G2 (or other winners). G1, being the only one to detect a failure, realizes
that not only is its ability to perform A1 unreliable but also its ability to confirm
if others did it right. As a result, G1 decides to update its beliefs for future
instances of event E1.

Once E1 is done, the auction for the second event, E2, begins, involving A2,
which is about planning the path to another particular waypoint. G1 wins the
auction and starts taking action. This time, G1 accurately assesses the results of
the task, and its judgment is supported by most of the verifying agents, including
G2 and G3 with their cameras.

It’s worth noting that when all agents share their opinions about each other’s
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success rates in performing and observing actions, decision-making can be a dis-
tributed process. Even if there’s an auctioneer who assigns the action to the
winner, any agent in the framework can predict the auctioneer’s choice since they
have all the necessary information. This might still be needed for synchronization
purposes.

Figure 3.1: Framework architecture

3.1.2 How agent reliability shapes task assignments

The process of assigning tasks to agents in order to carry out plans depends
on the use of metrics that help us assess how reliable these agents are. The
trustworthiness of agents is a crucial factor in two main aspects: (i) evaluating
and ranking bidding agents, which influences the decisions made when assigning
tasks, and (ii) considering the opinions of agents regarding the outcomes of these
tasks. here we elucidate and explore the overall trustworthiness model from [32],
which is also applied in our own research. In the subsequent discussion, we
introduce the importance of two context-independent metrics, namely Reliability
and Verification Trustworthiness, which are combined to determine an agent’s
Perceived Competence.

• Reliability: Reliability, a constituent of Logical Trust as defined in [12],
refers to an assessment made by an agent, denoted as Gi, regarding the
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probability of agent Gj’s successful execution of a particular action. The
concept of reliability is quantified on a scale that ranges between 0 and 1,
where 0 stands for failure and 1 for success.

• Verification trustworthiness:When an agent carries out a specific action,
there is a possibility that other agents may step forward to confirm the re-
sults. Consequently, it becomes essential not only to assess the reliability
of an agent when it performs a given task but also to gauge how depend-
able that agent is in confirming the accurate execution of that task. To
address this concern we explain the metric ”Verification Trustworthiness.”
This metric quantifies the level of trustworthiness of a confirming agent
based on the consensus it garners regarding its judgment abilities. More
precisely, it assesses the extent to which the verification provided by agent
Gj regarding the success of action Ak is regarded as reliable by agent Gi.
This evaluation involves counting the number of opinions that are concor-
dant or discordant from Gj’s judgment. The Verification Trustworthiness
metric is represented on a scale between -1 and 1. When all agents are in
agreement with Gj, it attains a higher value, but as the number of agents ex-
pressing discordant views increases, its value diminishes. Ultimately, when
all agents disagree with Gj, the metric reaches its lowest point, -1.

• Perceived competence: Whenever an auctioneer, represented by Gi,
faces the task of determining which bidding agent, denoted as Gj, should
be assigned to perform a particular action Ak, Gi engages in a calculation
to ascertain the Perceived Competence of Gj. This Perceived Competence
is derived through a function that takes into account the Reliability of
Gj, which is estimated based on input from all agents participating in the
auctions (G1, G2, ..., Gn), as well as their individual Verification Trustwor-
thiness. These relevant values are stored in vectors, and subsequently, the
Perceived Competence [57] is calculated utilizing this information.

3.1.3 Framework integration into ROS

The Trust Framework is integrated into ROS [65], which establishes the neces-
sary common language and communication protocol for agents to interact within
an open and distributed environment. This framework has been designed with
modularity in mind, allowing it to function in both simulated environments and
with actual robotic platforms.

A diagram depicting the proposed architecture can be seen in Figure 3.1,
It’s worth noting that I obtained assistance from the original paper from the
University of Genova [32] on this framework when gathering the figures. The
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TrustAgent node assumes responsibility for all tasks related to the framework,
including communication with other framework members, managing auctions,
and evaluating trust. The Adapter, on the other hand, handles the interface
with platform-specific sensorimotor routines related to perception and action.
This Adapter can be customized to suit various robotic platforms, ensuring both
modularity and compatibility.

Diving deep into the intricacies of the framework folder, there lies a multitude
of packages designed to cater to various functionalities. While all are significant
in their right, two packages stand out due to their distinct roles and capacities,
The first one is the situation simulator elaborated as below:

• Functionality: This package acts as a virtual environment that mimics
real-world scenarios.

• Event Management: Users can customize, tune, or modify different
events, allowing for diverse simulation scenarios. This adaptability ensures
the system is prepared for a variety of situations.

• Action Control: Actions within the simulation can be tailored, meaning
one can adjust how entities behave and interact within this virtual space.

• Behavior Triggering: This module allows for specific system behaviors
to be initiated based on the events and actions that transpire within the
simulation. It’s a feedback mechanism that ensures the system reacts ap-
propriately to various stimuli.

the second package is Trusting Agents:

• Functionality: The essence of this package is to foster trust within the
system by defining and managing various trust-related parameters.

• Trust Metrics Definition: This directory provides the fundamental defi-
nitions and formulas that quantify trust within the system. By standardiz-
ing these metrics, the system can consistently evaluate and establish trust
levels.

• Auction Data Management: It maintains a repository of all auction-
related information, ensuring that task assignment processes are transpar-
ent and can be audited if necessary.

• Trust Agent Details: Every agent within the system comes with specific
attributes and capabilities. This section outlines these details, ensuring the
right agents are assigned the right tasks.
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• launch file: We’ve fine-tuned certain parameters in the launch file, which
specify the count of events and their corresponding actions, as well as the
IP and port settings for each adapter facilitating communication from ROS
to external systems. Moreover, we refined settings concerning agent relia-
bility, verification trustworthiness, and their perceived competence toward
themselves and other agents.

• Adapter Information: Adapters act as intermediaries, bridging gaps be-
tween different system components. This directory offers detailed data on
these adapters, ensuring seamless integration and communication between
various system elements

3.2 DJI Tello EDU drone

DJI Tello is produced by Shenzhen Ryze Technology. This quadrotor incorpo-
rates DJI flight control technology and Intel processors (a high-performance vi-
sion processing unit based on the Intel Movidius MA2x chipset). It is a nano-size
quadrotor (9.8 × 9.2 × 4.1cm). The weight is 80 g including the battery (Li-Po,
1100 mAh, 3.8 V) and 3 ” propellers. It provides a maximum flight time of up
to 13 min (in no wind conditions with a constant speed of 15 km/h). Using the
WiFi signal, the maximum flight distance is 100 meters, and the maximum alti-
tude is 30 meters. The versatile and accessible nature of the DJI Tello drone has
made it a popular choice in various research endeavors. One noteworthy applica-
tion involved the utilization of this drone in a study aimed at identifying human
injuries from aerial images obtained during low-altitude flights [29]. This innova-
tive approach demonstrated the potential for drones to play a role in emergency
response and remote monitoring, particularly in situations where conventional
access might be limited.

In another research endeavor, detailed in a separate paper [62], a sophisticated
set of machine learning-driven tools was developed to enhance the capabilities of
the OpenMVmicrocontroller in conjunction with the DJI Tello drone. These tools
facilitated precise control of the drone’s navigation and enabled it to accomplish
specific mission goals. One such successful mission was the onboard detection of
individuals wearing protective masks in crowded environments, a task that gained
particular relevance during the COVID-19 pandemic.

The DJI Tello’s adaptability and compatibility with advanced technologies
make it a valuable platform for exploring a wide range of applications in research
and development, pushing the boundaries of what can be achieved with consumer-
grade drones.
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3.2.1 camera and sensors

Tello EDU comes with a 5MP monocular camera that can shoot 720p HD video
and has a good camera field of view (FOV) of 82.6°, which is particularly useful
for FPV (First Person View) Regarding sensors, it features a Vision Positioning
System (VPS) that combines a forward-facing camera and an infrared sensor to
ensure stable hovering, even indoors.

Parameter Value

accelerometer and gyroscope no details provided
barometer no details provided

GPS unavailable
Wifi 2.4 GHz

front-facing camera electronic image stabilization
FOV 82.6°

video resolution 1280 x 720 pixels (HD,30fps)
image resolution 2592 x 1936 pixels (5Mpix)

Table 3.1: DJI Tello Ryze sensors

3.2.2 hardware components

The computing hardware structure of the system can be broadly divided into two
main components. Firstly, the drone is equipped with an onboard flight controller
responsible for fundamental functions like stabilizing flight, regulating attitude,
controlling translational velocity, and executing basic trajectories. This part of
the system operates on closed hardware and communicates using a dedicated
command protocol.

Secondly, a higher degree of autonomy can be attained through an external
ground-based computer. This external computer leverages telemetry data and
video feed to control the drone, utilizing the communication protocol mentioned
earlier. This split and distributed computing approach offers the advantage of
circumventing size and weight constraints associated with the drone’s hardware.
Additionally, it allows for the use of a powerful external PC workstation to handle
more advanced navigation tasks due to its substantial computing capabilities.

3.3 Drone Localization

As previously discussed in 1.1, the evaluation of the trust framework’s perfor-
mance on a group of Unmanned Aerial Vehicles (UAVs) necessitates the alloca-
tion of specific tasks to these drones. To facilitate comprehension within this
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section, let’s familiarize ourselves with some key terms that will be central to this
discussion. As indicated in section 3.1.1, during each iteration of an event, de-
noted as ”Event I,” every individual drone is categorized as either a ”performer”
or an ”observer” drone, terms we will continue to employ for clarity.

Within this section, our focus shifts to elucidate the task associated with ob-
server drone verification, which can be divided into two distinct stages. The first
stage encompasses drone self-localization using fixed Aruco markers in the en-
vironment 1, while the second revolves around localizing the collaborative agent
with the help of affixed markers to the body of the drone, commonly referred to
as the ”performer.” To ensure a thorough understanding, we will delve deeper
into the intricacies of these processes, accompanied by relevant mathematical
equations that underpin their implementation. Through this comprehensive ex-
ploration, we aim to shed light on the fundamental mechanisms behind observer
drone verification and its significance within the broader context of the trust
framework for UAVs.

3.3.1 Spatial Frames in Experimental Setup

As illustrated in figure 3.2, our experiment involved the utilization of four dis-
tinct spatial frames: the global frame, the Aruco frame, the camera frame, and
the robot frame. These frames can be categorized into three computational lay-
ers, which will be explored in more detail in transformation matrices part ??.In
the initial layer, we have successfully ascertained the position and orientation of
the Aruco marker frame within the global reference frame. Progressing to the
second layer, our goal is to determine the transformation matrix necessary for
establishing the position and orientation of the camera frame in relation to the
Aruco marker frame. Finally, in the third layer, our primary focus is dedicated
to the computation of the rotation matrix that defines the relationship between
the camera reference frame and the robot’s reference frame, which is centrally
located at the robot’s center of mass.

3.3.2 drone self-localization

In this section, we embark on a detailed exposition of the algorithm meticulously
crafted for the purpose of enabling the observer drone to autonomously determine
its precise location within the given environment. This is achieved through the
utilization of known Aruco markers, which provide essential data regarding both
their positions and orientations. While this process encompasses several integral

1refer to my GitHub repository for the source code https://github.com/elh4m/Tello-Aruco-
pose-estimation-and-localization
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Figure 3.2: all reference frames used during experiment

functions, we will systematically guide you through each step, elucidating their
respective roles.

To initiate the algorithm, we strategically deploy an ample number of Aruco
markers across the environment, ensuring comprehensive coverage of the drone’s
camera field of view from all possible angles. Simultaneously, we meticulously
define the pose, encapsulating both position and orientation, of these markers
within the global reference frame.

Next, we delve into the procedure of accessing the drone’s camera, which en-
ables us to detect the Aruco markers and subsequently estimate the camera’s pose
in relation to the Aruco frame. As we progress through this complex process, we
diligently acquire all the necessary transformation matrices at each computational
layer.

Finally, we culminate our algorithm by calculating the ultimate output – the
position and orientation of the observer drone within the global reference frame.
This algorithm is a pivotal component of our study, and its intricacies will be
unveiled to provide a profound understanding of the methodology behind observer
drone localization within the given environment. This relationship is established
through a transformation matrix, denoted as T-cam-Origin. To calculate this
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matrix, two sub-matrices are involved:

• T-aruco-origin: This sub-matrix represents the transformation from the
origin’s frame to a fixed Aruco frame. In simpler terms, it defines how the
marker is situated within a known reference frame. This transformation
matrix is predetermined based on the characteristics of the Aruco marker
and its placement.

To compute this transformation matrix, we employed four distinct rotation
matrices. Given the rectangular nature of our environment, the Aruco
frame can undergo four distinct rotational variations, in relation to the
origin frame of reference, they are provided in these equations 3.1, 3.2, 3.3,
3.4. Furthermore, we determined the translation vector for each individual
marker using its unique identifier. Subsequently, all this information was
stored in a dictionary, associating marker IDs with their respective positions
and orientations.

Whenever a marker ID is detected, a dedicated function is triggered to ex-
amine the dictionary and retrieve the marker’s information. This retrieved
information is then used for further computations, specifically in the con-
text of calculating the transformation matrix that bridges the Aruco and
origin frame. In an environment with a rectangular shape, where the origin
is located at the top left corner, the rotations around this origin can be
described as follows:

R1 is the first rotation, occurring as you move clockwise from the origin to
the right edge of the rectangular area.

R1 =

0 0 1
1 0 0
0 1 0

 (3.1)

Following R1, the next rotation as you continue clockwise around the rect-
angular area.

R2 =

1 0 0
0 0 −1
0 1 0

 (3.2)

and so on for R3

R3 =

 0 0 −1
−1 0 0
0 1 0

 (3.3)
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and R4

R4 =

−1 0 0
0 0 1
0 1 0

 (3.4)

• T-cam-aruco: This specific sub-matrix characterizes the transformation
from the camera’s vantage point to the marker’s frame. It effectively encap-
sulates key details concerning the camera’s precise position and orientation
in relation to the marker. To derive this sub-matrix, our first step involves
the calculation of the transformation matrix between the Aruco marker and
the camera, which we refer to as T-aruco-cam. This is achieved through
the processes of camera calibration and pose estimation, making use of
the results generated by the ’estimatePoseSingleMarkers’ function within
OpenCV. This function offers us invaluable insights in the form of two es-
sential components: a rotational vector and a translation vector.To proceed
with our calculations, we employed the ’Rodrigues’ function, which allowed
us to derive a rotation matrix from the rotational vector. Once this rotation
matrix was obtained, we were fully equipped to compute the transformation
matrix.

Subsequently, to establish the transformation from the marker’s frame to
the camera’s image frame, we compute the inverse of this matrix, yield-
ing T-cam-aruco. This matrix, T-cam-aruco, is pivotal in depicting the
transformation from the marker’s perspective to the camera’s image frame,
serving as a crucial element in our overall localization process.

• T-robot-cam: Upon marker detection by the camera, our focus shifts to
estimating the pose of the robot body frame in relation to the camera. To
accomplish this, we introduce an additional transformation matrix known
as the T-robot-cam, which plays a pivotal role in achieving this specific
objective. This transformation matrix serves as an intermediary in trans-
lating information between the image frame and the robot’s body frame,
enhancing the precision and accuracy of the localization procedure.

• T-cam-origin: The computation of T-cam-origin, a critical transformation
matrix for extracting the pose of the camera in the global frame and further
for calculating the co-agent location, is accomplished by the multiplication
of these two sub-matrices (T-aruco-origin and T-cam-aruco). For a visual
representation, please refer to Figure 3.3 and the corresponding equation
for T-cam-origin.

• T-robot-origin: The computation of this transformation matrix, is ac-
complished by the multiplication of these three sub-matrices. For a visual
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representation, please refer to Figure 3.3 and the equation for T-robot-
origin, which illustrates the comprehensive transformation process from the
robot frame to the origin frame. Once we have this transformation matrix
at our disposal, we can extract the drone’s orientation within the global
frame, which is achieved through the utilization of external Euler angles
using function rotationMatrixToEulerAngles(R) from scipy python library.

here you can find the formula for localizing the observer drone :

Trobot origin = Taruco origin · (Tcam aruco · Trobot cam)

Tcam origin = Taruco origin · Tcam aruco

oTr =
oTa (

aTc
cTr)

oTc =
oTa

aTc

3.3.3 Coexisting agent localization

In this section, we will explore various factors, techniques, and technologies em-
ployed to determine the performer drone’s location within the given environment.
This includes considerations such as sensor data, reference frames, and mathe-
matical transformations. We’ll also delve into the algorithms and equations that
underpin this calculation, ensuring that you gain a deep insight into the method-
ology behind this essential aspect of our project.

• Field of View Checking: In the initial phase, the observer drone con-
ducts a thorough assessment to ascertain whether the performer drone,
which has previously landed on a designated tile, falls within its field of
view (FOV). To accomplish this, we’ve developed a dedicated algorithm
specifically designed to calculate the FOV. This algorithm takes into ac-
count several critical factors, including the current camera angle, the tile’s
index, and the overall dimensions of the environment.

The FOV assessment is a pivotal step in ensuring the observer drone’s
awareness of the performer drone’s presence. It’s essential for facilitating
efficient communication and coordination between these aerial agents during
the execution of their assigned tasks. This algorithmic approach not only
enhances the observer drone’s situational awareness but also contributes to
the overall effectiveness and precision of the collaborative operation.
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• Marker Detection: If the performer drone is within its FOV, the observer
drone proceeds to detect the markers attached to the propeller guard of the
performer drone. These markers serve as reference points for determining
the performer’s location.

• Location Retrieval: The observer drone employs the detected markers to
retrieve the performer’s precise location. Once we’ve determined the T-cam-
origin for the observer drone, the next step involves computing the T-aruco-
origin for the agent drone (the performer drone with attached markers to
the body frame) to accurately pinpoint its location. A visual representation
of these transformations can be found in Figure 3.3.

Taruco origin = Tcam origin · Taruco cam

oTa =
oTc

cTa

• Location Comparison: Finally, the observer drone compares the re-
trieved location of the performer with the location that the performer had
previously broadcasted. For more comprehensive details about the commu-
nication and networking aspects, I recommend referring to Section 3.6.1,
as it provides a deeper understanding of how information exchange plays a
crucial role in this drone coordination process. If the two locations match,
the observer drone returns a ”True” result; otherwise, it returns a ”False.”

3.4 Drone navigation

In this section, we delve into the intricacies of our Tello drone’s A* path planning
algorithm 1, which plays a pivotal role in determining the most efficient route
through obstacles to reach a designated destination and subsequently guides the
drone back to its initial position with the utilization of the return-to-home func-
tion. This algorithm is meticulously implemented in Python, ensuring seamless
integration with the Tello SDK.

The A* path planning algorithm, as employed in our system, initiates by
constructing a graph representation of the environment using the ”map-graph-
generator” function. This graph serves as a structured framework that encap-
sulates critical information about the spatial layout and obstacles within the
environment.

1refer to my GitHub repository for the source code https://github.com/elh4m/Tello-drone-
Astar-path-planning-python
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3.4 Drone navigation

Figure 3.3: Drones transformations matrices

Subsequently, we employ the A* algorithm itself to calculate the shortest
path among obstacles, considering factors such as proximity, terrain, and any
obstructions in the drone’s path. This step is fundamental in determining the
optimal route that the drone should follow to reach its intended destination.

Based on the path derived from the A* algorithm, we issue a series of flight
commands to the Tello drone. These commands include instructions for takeoff,
rotations in a counter-clockwise direction, and precise movements in specified
directions. This orchestration ensures that the drone follows the calculated path
accurately and efficiently.

To provide a comprehensive understanding of this process, we offer a schematic
representation that visually illustrates the functioning of this algorithm. By the
end of this section, readers will have a thorough insight into how our Tello drone
successfully navigates through its environment, effectively avoiding obstacles and
reaching its intended destination while ensuring a safe return to its starting point.
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Figure 3.4: Visual exploration of Tello drone A* trajectory planning algorithm

3.5 Software utilization

In this section, we are presenting all system components employed in this project,
beginning with the top-level system architecture and extending to the specific
applications, along with their respective installed versions.

3.5.1 ROS

ROS (Robot Operating System) doesn’t function like a traditional operating sys-
tem that manages processes and scheduling [61]. Instead, it serves as a structured
communication layer above the underlying operating systems of a diverse com-
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puting cluster. The core concepts in the implementation of ROS include nodes,
messages, topics, and services.

Nodes are like computational processes, fostering modularity within a system,
and they communicate through messages, which are structured data entities.
These messages can contain various data types and can even be nested.

Nodes share data by publishing messages with no specific topics, and other
nodes interested in that data can subscribe to those topics. ROS also supports
services, enabling nodes to request specific actions from others in a client-server
manner, enhancing functionality.

In our specific scenario, we opted for the ROS Noetic version, which offers
enhanced robustness. This version was installed directly on a native Ubuntu
20.04 system. This choice was made to ensure the durability and stability of our
ROS environment.

3.5.2 websockets

WebSockets 1 is a communication protocol enabling bidirectional, real-time inter-
action over the web. Traditionally, the web-operated request-response paradigms
where the client requests and the server responds. WebSockets revolutionize this
by allowing both client and server to send data at any time, making live updates
and interactive applications, like online gaming and chat systems, viable without
constantly polling the server.

Beginning with an HTTP handshake, the protocol establishes a persistent
connection, replacing repetitive open-close cycles, and reducing overhead and la-
tency. The fundamental communication framework that connects a ROS-based
server to an adapter, which is implemented as a Python script utilizing the TCP
communication protocol, heavily relies on the Python socket module. This mod-
ule plays a crucial role in ensuring real-time data exchange with minimal latency,
facilitating synchronized operations.

3.5.3 packet sender application

The primary method to connect the Tello Edu drone to a PC is by broadcasting a
Wi-Fi signal. The computer then establishes a connection via SSH. Consequently,
at any given moment, only one drone can be linked to a PC (or put another way,
one PC can only connect to one drone). Additionally, when a drone is connected,
the PC loses its internet connection. For our specific setup, we utilized the Packet

1find the full documentation for python socket library
https://docs.python.org/3/library/socket.html/
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Figure 3.5: Packet sender user interface

Sender application 1 to establish a triangular network connection.

3.5.4 Syncthing application

Syncthing 2 is an open-source application designed for continuous file synchro-
nization across multiple devices.

In a setup involving different computers each with its own operating system,
Syncthing can synchronize files across all these entities. Each machine would run
an instance of Syncthing, and they would form a peer-to-peer network. As files
are changed on any device, Syncthing detects the modifications and propagates
them to the other connected devices, ensuring all devices have the latest version of
the files, thus facilitating seamless data synchronization in a mixed environment.

3.5.5 SDK (Software Development Kit)

The SDK for Tello EDU includes additional commands and functionalities, such
as support for controlling multiple drones simultaneously (drone swarms) and

1refer to the address for more information such as downloading the specific system version
https://packetsender.com/download

2website address to download the application https://syncthing.net/
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more sophisticated flight patterns. also Because the SDK is essentially a list
of commands and a communication protocol, it’s not restricted to any specific
programming language. However, popular implementations and libraries have
been developed in Python, JavaScript (Node.js), and other languages, which make
it easier for developers to get started.

The SDK primarily uses UDP (User Datagram Protocol) as a communication
protocol with the drone. There are specific ports assigned for command and con-
trol, video streaming, and event logging.some of the SDK modes and commands
are described below:

• Command Mode Once connected, developers send the ”command” com-
mand to the drone to enter SDK mode, which allows the sending and re-
ceiving of further commands.

• Command Types The Tello drone’s SDK offers a versatile set of com-
mand types that facilitate diverse interactions with the device. Control
Commands provide fundamental flight instructions, encompassing actions
such as ”takeoff”, and ”land”, and directional commands like ”up”, ”down”,
”left”, and ”right”. On the other hand, Setting Commands enable users to
modify configuration settings, including adjustments to the Wi-Fi SSID and
password.

To glean insights about the drone’s status, Read Commands can be uti-
lized, which fetch vital information like the drone’s current speed, battery
level, and the strength of its Wi-Fi signal. Additionally, for those keen on
multimedia applications, the SDK includes Video Commands, dedicated to
managing and orchestrating video streaming capabilities.

• Response Types When a command is sent to the Tello drone, it will
return a response. This can be an ”OK” if the command was successfully
received and executed, or an ”ERROR” if there was a problem.
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3.5.6 Tello Command types Table

The SDK commands received by Tello can be grouped into three basic types.
Control command (xxx)

• Tello returns ”ok” if the command was executed successfully.

• Tello returns an ”error” or a result code if the command failed.

Setting command (xx a)

• will attempt to set a new sub-parameter value (a).

• Tello returns ”ok” if the command was executed successfully.

• Tello returns an ”error” or a result code if the command fails.

Read command (xx?)

• Read the real-time sub-parameter value.

Command Description Possible Response

command Enter SDK command mode ok/error/inactive
takeoff Auto take-off ok/error
land Auto landing ok/error

streamon Turn on the video stream ok/error
streamoff Turn off the video stream. ok/error
forward x Fly forward by x cm ok/error + error status
ccw x rotate counterclockwise by x° ,x=1-360 ok/error + error status

Table 3.2: some UDP Tello control commands

Command Description Possible Response

ap ssid pass Switch Tello to Station mode ok,drone will reboot in 3s
speedx Set the current speed to x cm/s ok/error

Table 3.3: some UDP Tello setting commands
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Command Description Possible Response

speed? Get the current set speed (cm/s) x
battery? Get the percentage indicating the current battery level x

ap? access point name and pass name and password

Table 3.4: some UDP Tello Read commands

3.6 Environmental setup

In our experimental setup, I used my personal laptop as indicated in table 3.5.
Furthermore, to interface all drones with the computer, we utilized the Packet
Sender application. By sending the ”command” command to the drones, they
were prompted to enter SDK mode. Following this, we used ”ap SSID pass” com-
mand from the tello SDK 3.0 User Guide, to transition Tello into Station mode
and connect it to a simple TP-Link router. Each drone, upon selection, reboots
within 3 seconds, and this procedure is iterated for all drones to facilitate their
connection to the router.

Characteristic Utility

OS name Ubuntu 20.04 LTS, Ros Noetic
OS type 64-bit

Manufacturer Lenovo
Model name Ideapad L330

RAM 18,9 GiB
CPU Intel® Core™ i7-8550U CPU @ 1.80GHz × 8

Disk capacity 2.2 TB
GPU 2 GB RADEON

Table 3.5: control system information

Characteristic Utility

OS name Ubuntu 20.04 LTS
RAM 3 GB
CPU Intel® Core™ i7-8550U CPU @ 1.80GHz × 3

Disk capacity 27GB

Table 3.6: Virtual machine information

We established a configuration where each drone was associated with its own
virtual machine to handle socket operations internally, find the detailed config-

38



3.6 Environmental setup

Figure 3.6: complete setup

uration of one VM as an example in table 3.6. Within each virtual machine,
we implemented an identical setup to that of the host machine, which was my
personal computer. This setup included the installation of necessary libraries
and dependencies, such as the Syncthing application for managing network oper-
ations.

This step was of utmost importance because we had previously encountered
an issue related to the Tello library, particularly concerning synchronized socket
binding and release. In our experimental scenario involving multiple drones op-
erating together, all observer drones needed to bind to the same socket simul-
taneously. However, due to the inherent waiting time associated with socket
operations, which exceeded 60 seconds, this configuration introduced significant
latency during our tests.

To address this issue and ensure smooth operation within multi-drone forma-
tions, we adopted the strategy of creating individual virtual machines for each
drone. This approach not only resolved the synchronization problem but also
allowed us to maintain consistency in our testing environment by replicating the
same setup and dependencies present on the host machine. By doing so, we were
able to conduct experiments with reduced latency and more accurate results.
This meticulous configuration played a crucial role in enhancing the reliability
and precision of our experiments.

3.6.1 communication setup

To facilitate seamless communication among all agent drones, it was imperative to
establish a shared environment where each agent could broadcast its information
whenever it was assigned a task, whether it was executing the task or verifying its
performance. Furthermore, this shared environment allowed agents to access real-
time data from other agents, particularly in cases where one agent’s information
was lost, and others needed to retrieve the latest data.

To achieve this communication framework, we followed the following proce-
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dure:
Initialization: After completing the initialization procedure on each machine,

we proceeded to create a shared folder named ”Sync” on all operating systems.
In our test environment, which initially consisted of three virtual boxes and one
host machine (with the potential for expansion in the future), this shared folder
served as a central hub for data exchange.

• Data Format: Each agent had the responsibility of recording its infor-
mation in a specific format within a .txt file situated in the shared ”Sync”
folder. This format was designed to provide a structured representation of
the agent’s status and actions. The information was organized as follows:

Task Flag (0/1): This flag served as an indicator, with a value of 0 repre-
senting an agent responsible for observation and verification tasks, while a
value of 1 designated an agent actively engaged in flying tasks.

Current Angle: This parameter denoted the current orientation angle of
the drone as it occupied a specific tile. It offered insight into the drone’s
heading.

Current Tile Index: This index represented the number or position of the
tile that the drone was currently located on. Tile indexing typically began
at 0 and incremented accordingly.

X and Y Coordinates: These coordinates were calculated using a specific
formula, allowing us to pinpoint the drone’s precise location within the test
environment.

By adhering to this standardized format, we ensured that data recorded
by all agents followed a consistent structure. This uniformity facilitated
easy parsing and interpretation of the information, enabling efficient data
exchange and coordination among the agents. The task flag, angle, tile
index, and coordinates collectively provided comprehensive insights into
each agent’s role, position, and activities within the multi-agent system.

• Synchronization: Every time a small change occurred in one of the ma-
chines within the network, the change was automatically propagated to all
other machines. This synchronization process ensured that all agents had
access to the most up-to-date information from their peers.

By implementing this communication method and establishing a shared folder,
we created a robust and efficient means for agents to exchange information, en-
abling effective coordination and collaboration among them. This approach was
pivotal in maintaining real-time awareness and facilitating cooperative decision-
making within the multi-agent system.
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3.6.2 Live test environment

To conduct the physical tests, we utilized the RICE laboratory. To ensure the
safety of everyone involved, strict safety measures were implemented, including
the evacuation of other lab members from the testing area. We set up a dedicated
station, illustrated in Figure 3.7, to closely monitor the experiments and safely
maneuver all the flying drones within a confined space.

With these precautions in place, we were able to collect valuable data and
effectively test the networking system and the broader framework by dynamically
modifying parameters. For a more comprehensive understanding of the testing
methodology and the results obtained, please refer to Chapter 4. This chapter
provides additional insights into the specifics of our testing procedures and the
outcomes we achieved.

Figure 3.7: environmental setup

3.7 system architecture

The system’s architecture in figure 3.7.3 is broken down into three primary com-
ponents:

3.7.1 ROS-based Trust Framework

This Framework, with its methodical design and well-defined packages, ensures
that tasks are appropriately assigned, trust is maintained, and the system op-
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erates cohesively. For more in-depth information about this framework, refer to
3.1.3.

3.7.2 Performing package

Another vital component within our system architecture is the ”performing pack-
age.” This package houses a variety of algorithms, each contributing to the overall
functionality of the navigation system. One such algorithm is the ”map-graph-
generator,” which plays a pivotal role in creating a graph representation of the
environment. Additionally, the A* path planning algorithm” is employed to de-
termine the most efficient route through obstacles to reach a specified destination
and then come back to the initial position with the return-to-home function. Fur-
thermore, this package includes a crucial function responsible for activating the
Tello drone’s SDK mode, subsequently issuing precise commands to guide the
drone along the predefined path. Importantly, it also calculates any necessary
rotation adjustments required for seamless transitions between tiles, ensuring the
drone’s precise movement.

3.7.3 observation package

On the other hand, the ”observation component” encompasses various packages
geared toward enhancing our system’s perception and situational awareness ca-
pabilities:

• Camera Calibration: To calibrate the cameras on our Tello drones, we
implemented a meticulous process. We utilized a 0.03-meter square calibra-
tion checkerboard, capturing approximately 50 images from various angles
along each axis (x, y, z) for each individual Tello drone in our fleet. To
streamline the image acquisition process from the Tello cameras, we devel-
oped a Python script named ”data-generation-tello-camera.”

This Python code is designed to interface with the Tello drones, establish
a connection to the camera through activating SDK mode, and initiate a
video stream. It performs several essential tasks to facilitate the calibration
process. First, it retrieves and displays the Tello’s battery level, ensuring
the drone’s readiness for the operation. Additionally, the script sets up a
counter to keep track of the images captured during the calibration process.

The key function within the script is ”take-picture(),” which is responsible
for capturing frames from Tello’s camera and saving them as individual
images. In an infinite loop, the script continuously reads frames from the
camera, displays the live feed using the OpenCV library, and waits for user
input. When the user presses the ”c” key, the ”take-picture()” function is
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triggered to capture an image. It then increments the counter and saves
the image with a corresponding filename. This loop continues until the
user decides to exit by pressing the ”ESC” key, at which point the program
gracefully terminates.

After repeating these steps for all the Tello drones in our fleet, we aggre-
gated the paths to the saved images. Subsequently, we executed the ”cal-
ibration.py” file, which facilitated the retrieval of intrinsic parameters and
distortion coefficients. This meticulous calibration process ensures that the
Tello drone cameras provide accurate and undistorted images, laying the
foundation for precise and reliable visual data acquisition in various opera-
tional scenarios.

Figure 3.8: calibration checkerboard

• ArUco Pose Estimation: To perform camera pose estimation using
ArUco markers, we followed a systematic approach that involved several
steps:

ArUco Tag Generation: We initiated the process by generating ArUco tags
of the preferred size and ID using the online tool available at 1 These tags
would serve as reference markers for the camera pose estimation. We used
the ”ArUCo-Markers-Pose-Estimation-Generation-Python” GitHub reposi-
tory, which contains all the necessary code for detecting ArUco tags in both
images and videos. This repository enabled us to not only detect the tags
but also estimate the pose of the object relative to the camera. It provided
comprehensive information and resources for camera pose estimation.

1refer to this address for more information, ”https://chev.me/arucogen/”
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the camera calibration step generated two ”.npy” files, namely ”calibration-
matrix.npy” and ”distortion-coefficients.npy.” These files store critical infor-
mation about the camera’s intrinsic parameters and distortion coefficients,
respectively. It’s worth noting that this calibration process did not require
the Tello drone to be connected to Wi-Fi or any network. With the calibra-
tion data in hand, we connected our Tello drone to the network and executed
the ”aruco-detection-live.py” script. This script allowed us to detect and
track the ArUco markers in real time using the Tello’s onboard camera. To
enable accurate camera pose estimation, we integrated the calibration data
into the ”aruco-pose-estimation.py” script. Specifically, we inserted the val-
ues from the ”calibration-matrix.npy” and ”distortion-coefficients.npy” files
into the ”intrinsic-camera” and ”distortion” variables, respectively. After
integrating the calibration data, we reconnected our Tello drone and reran
the ”aruco-detection-live.py” script. This time, the script utilized the cali-
brated camera parameters to improve the accuracy of marker detection and
camera pose estimation.

By following these steps, we achieved reliable camera pose estimation using
ArUco markers with our Tello drone, ensuring that we could accurately
determine the position and orientation of objects within the drone’s field of
view.

• Drone Localization: Building upon the data gathered from the previous
components, the ”drone localization” package takes the localization pro-
cess to a more comprehensive level. It extends beyond solely relying on
ArUco markers and works to localize the drones within the broader context
of a global reference frame. Within this package, several functions come
into play. Initially, they compute the camera’s position in relation to the
global frame within the given environment. Subsequently, they estimate
and calculate the precise position of the drone agent (often referred to as
the ”winner”) within the world frame. This comprehensive localization ca-
pability ensures that the drones can navigate and operate effectively within
a larger spatial context.

In this schematic overview of the system architecture, the ROS (Robot Oper-
ating System) framework initiates a TCP connection to each adapter, located
inside individual virtual boxes, through a socket binding on their unique IP
and port combinations. Once these connections are successfully established, the
framework proceeds to transmit a string message to each adapter. As an ex-
ample, the message might be in the format ”G1—PERFORMING—E1/A1/0”
or ”G1—VERIFYING—E1/A1/0” where E stands for event and A stands for
action. Importantly, only one adapter will receive the ”PERFORMING” string,
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while the others will receive the ”VERIFYING” string.
Each adapter, upon receiving the message, performs some modifications on

the initial string to extract the command part. Based on this extracted command,
the corresponding function is then triggered to proceed accordingly, whether it
involves performing a task or verifying certain parameters. Subsequently, the
command is sent through a UDP socket connection to each drone, utilizing their
respective IP addresses and ports as illustrated in the figure. This architecture
facilitates effective communication and coordination between the ROS frame-
work, the adapters, and the drones, enabling the system to execute tasks and
verifications seamlessly.
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3.7 system architecture

Figure 3.9: system software architecture
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Chapter 4

test results

4.1 initial stage

In the initial testing stage, our primary objective was to validate the accuracy
of the drone’s localization capabilities. We achieved this by employing Aruco
marker pose estimation, followed by rigorous calculations. The precision of our
estimation is depicted in Figure 4.1, where we observed an offset falling within
the range of ±3 cm in at least 60 tests on real robots. This level of precision was
achieved despite the inherent challenges in estimating the drone’s position in a
dynamic environment.

Expected Real

x=51 ,y=65 x=53.2 ,y=65.1
x=120 ,y=0 x=122.6 ,y=2.9
x=90 ,y=150 x=89.1 ,y=148.5
x=60 ,y=60 x=58.9 ,y=58.1
x=120 ,y=60 x=122.1 ,y=61.9
x=0 ,y=180 x=2.1 ,y=181.9
x=60 ,y=180 x=58.4 ,y=178.2
x=0 ,y=60 x=2.2 ,y=62.1

x=180,y=120 x=178.5 ,y=119.1

Table 4.1: data offset comparison in theory and real experiment

In order to compute the standard deviation, we performed a statistical analysis
on a specific dataset. This sample dataset was comprised of nine pairs of x and
y coordinates, which were conveniently provided in the table located above our
analysis. These pairs of values were crucial for our calculations and played a
fundamental role in determining the variability and dispersion of the data.
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4.1 initial stage

Calculate Differences in x-values:

dxi = xreal,i − xexpected,i

Similarly, for the y-values:

dyi = yreal,i − yexpected,i

Calculate the Mean of the Differences for the x-values:

d̄x =

∑
dxi

n
= 0.67

For the y-values:

d̄y =

∑
dyi
n

= −0.57

Calculate the Standard Deviation of the Differences for the x-values:

sdx =

√∑
(dxi − d̄x)2

n− 1
= 1.7860

And for the y-values:

sdy =

√∑
(dyi − d̄y)2

n− 1
= 1.9730

Upon analyzing the discrepancies between the theoretical and actual data
sets, the calculated standard deviations for the x and y values were found to be
1.7860 and 1.9730 respectively. These values represent the average deviations of
the data points from their respective means. Given the dimensions of each Tello
drone being 10cm x 10 cm x 5 cm and considering the environmental unit size of
60cm (with each tile measuring 60cm x 60cm), such discrepancies in data can be
overlooked.

This suggests that while there are variations between the theoretical predic-
tions and the actual measurements, the magnitude of these variations is consistent
and within expected boundaries. The data’s spread, as captured by the standard
deviations, is in alignment with the thresholds set for this investigation, indicating
that the real data and theoretical model are reasonably congruent.

4.1.1 Exploring Factors Behind Data Discrepancies

Numerous elements contribute to the disparity between the expected and ob-
served data. Among these factors, hardware limitations frequently come into
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4.2 second phase

Figure 4.1: camera pose estimation values in real experiments, from left to right
the expected values were x=120,y=0; x=51,y=65; x=31, y=-30.

play. To illustrate, as soon as the drone’s battery level falls below the 40 percent
threshold, it triggers a rise in temperature within the device. This temperature
increase, specifically on the motherboard, frequently leads to noticeable compli-
cations with the camera’s operation. Consequently, it becomes evident that the
intrinsic hardware constraints within our system, such as the drone’s response to
low battery levels or prolonged camera usage (beyond 10 minutes), exert a sub-
stantial influence in elucidating the observed deviation between projected and
actual data.

4.2 second phase

The second phase of testing was dedicated to verifying network connectivity and
ensuring that communication between all the drones was established within the
local network. To accomplish this, we followed a specific sequence of steps. Ini-
tially, we connected all the drones to a router, and then we connected the router
to the host computer, which happened to be my personal computer. The host
computer, in turn, was linked to the laboratory’s Wi-Fi network via a LAN cable.

In this configuration, each drone possessed its own unique IP address, but
they all shared the same UDP port (8889) for activating the drone control mode
1. Once the TCP connection between the trust framework and adapters was
successfully established, the winning drone initiated its flight by binding to a
socket on the local host IP address and port 8889. The flights were executed

1for more details, please refer to the SDK website
https://dl.djicdn.com/downloads/RoboMaster+TT
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flawlessly in all of our tests. However, upon completing their missions, the drones
released their respective sockets.

A challenge emerged during this process, primarily related to the waiting
time associated with each socket. In most cases, this waiting period exceeded 60
seconds, resulting in a noticeable delay within the system. In other words, even
if a socket was available for binding, it couldn’t be utilized immediately due to
this extended wait time. To address this issue, we made certain modifications
to the Tello official library, allowing the socket to be reused if it was within its
designated waiting time. Despite these improvements, all the observer drones still
encountered difficulty in simultaneously performing the verification tasks, which
was contrary to our initial objective. To resolve this challenge, we devised a
solution that incorporated the use of the Syncthing application, as mentioned in
3.5.4. Additionally, we employed Oracle VirtualBox to create a separate virtual
machine for each drone. These virtual machines were instrumental in managing
socket binding operations locally, further optimizing our system’s performance
and addressing the socket waiting time issue.

4.3 final phase

Afterward, we advanced to the final testing phase, where our primary goal was
to evaluate how well all system components, including the reliability and Trust
updates in the framework, integrated and interacted seamlessly.

4.3.1 Experiment results, one perfect agent,two with 60%
and 70% rate of observing correctly

Before explaining the experiment details let’s understand the values of the table
4.2. There are 3 sets of values in each cell, the first value indicates the success rate
in performing an action, and the second and third numbers are the optimism and
pessimism rates for observing the action, (TP) and (TN) respectively. For exam-
ple, G3 with these values 1.00;0.6;1.00 (toward itself) holds strong confidence in
its ability to perform an action (number 1.00) while having only a 60% optimism
rate when assessing the outcome of actions it observes. The last number 1.00,
indicates 100% pessimism when assessing the outcome of actions. This means the
agent is always expecting negative outcomes or true negatives. In this scenario,
all three agents have performed a single action. Remarkably, G1 and G2 deemed
their respective actions as successful (for action result verifications for G1 and
G2, please refer to tables 4.7 and 4.6, respectively). On the contrary, G3 regarded
their action as a failure (for the result verification table for G3, please see 4.8).
Meanwhile, the other two observing agents, in the first case, G2 and G3, and in
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the second case, G1 and G3, and in the last case, G1 and G2 perceived these
actions as failures.

The perceived reliability of G1 for action 2 and G2 for action 1 is recorded
as 1.00, indicating their strong belief in the success of their actions, even though
their observations contradict this belief. Their verification trustworthiness(refer
to 4.3.2 for more details on trust metrics interpretation) however, is low (-0.33), as
their observations clash with the accounts of the other two agents. On the other
hand, G3 executed action 3 but evaluated it as unsuccessful, with a perceived
reliability of 0.00. Interestingly, in this case, G3’s observation aligns with the
accounts of the other two agents, resulting in all three agents having a verification
trustworthiness score of 1.0 for action 3 (although G3 failed to perform or does
not believe in themselves, the trust increased in values, updating a higher trust
in the system).

The primary factor contributing to the negative and low reliability in the
system can be attributed to the inherent limitations of the agents in effectively
observing and verifying the outcomes of the performing drone, camera initial-
ization failure or onboard Aruco markers were not visible due to the performer
drone’s landing angle. These limitations in their ability to gather accurate and
consistent information regarding the drone’s actions and results have a direct
impact on their trust in the system and each other. Inadequate observation
and verification mechanisms can lead to discrepancies in the agents’ assessments
and, consequently, result in lower levels of perceived reliability. Addressing these
limitations and improving observation and verification processes is crucial for
enhancing the overall trustworthiness and performance of the system.

G1 G2 G3
G1 1.00;1.00;1.00 1.00;1.00;1.00 1.00;1.00;1.00
G2 1.00;0.7;1.00 1.00;0.7;1.00 1.00;0.7;1.00
G3 1.00;0.6;1.00 1.00;0.6;1.00 1.00;0.6;1.00

Table 4.2: Self-declaration and assumptions of each agent towards all the other
agents

4.3.2 Trust metrics update

In order to create a general idea of how these trust metrics are updated in the
framework we will go through the details of the table 4.3 as an example. In the
following tables for G2 4.5, and G3 4.4, you can find the ultimate trust updates
for each agent concerning their perceptions of one another. In these tables, the
maximum level of trust is 1 and the minimum is -1. This detailed analysis helps to
understand how G1 evaluates the abilities and observations of the other agents,
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as well as the execution and verification of actions in the given scenarios (the
pattern is the same for G2 and G3).

In table 4.3, the first column pertains to G1’s assessments of the performance
and reliability of agents G1 (itself), G2, and G3 in executing action A1. Given
that only G2 has attempted A1 so far and it resulted in failure, all the trust
values in this column are set to 0, indicating low trust in their ability to perform
A1 successfully.

The second column addresses the agents’ proficiency in observing the out-
comes of action A1. In this case, because G1 and G3 concurred in their observa-
tions, while G2’s observations differed, G1 and G3 exhibited higher trust values
compared to G2. This discrepancy reflects the agreement between G1 and G3,
leading to a greater level of trust in their observations.

Continuing further, the third column of the table is dedicated to the assess-
ment of how G1 perceives G1, G2, and G3’s reliability and ability to perform
action A2. In this case, G1 holds itself in high regard when it comes to execut-
ing action A2, assigning a trust value of 1 to itself (since G1 won the task and
executed action A2), indicating absolute self-confidence and competence. while
for others this value is zero.

Now, moving to the fourth column, which relates to the verification phase,
since G2 and G3 reached an agreement on their observations, both perceived the
result as false, while G1 disagreed with their observations. Consequently, the
values for G2 and G3 are less than the values assigned to G1 in the verification
trust column.

The fifth and sixth columns in the table are associated with the execution and
verification of action A3, seen from G1’s perspective.

In the fifth column, G1’s trust levels are notably low towards all entities,
including itself, when it comes to executing action A3. This low trust can be
attributed to the fact that G3 attempted action A3 and experienced a failure, as
indicated in reference 4.8. This unfavorable outcome likely contributed to G1’s
skepticism and low trust values assigned to all agents for this specific action.

In contrast, the last column, representing the verification of the execution,
shows all values set at 1.00. This signifies unanimous agreement among all agents
regarding the observation results. Regardless of the initial low trust in executing
action A3, the agents seem to have reached a consensus when it comes to verifying
the outcomes, as all values are harmonized at 1.00.

G1 0.00 0.33 1.00 -0.33 0.00 1.00
G2 0.00 -0.33 0.00 0.33 0.00 1.00
G3 0.00 0.33 0.00 0.33 0.00 1.00

Table 4.3: Trust metrics at the end of the experiment according to G1
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G1 0.00 0.33 0.00 -0.33 0.00 1.00
G2 0.00 -0.33 0.00 0.33 0.00 1.00
G3 0.00 0.33 0.00 0.33 0.00 1.00

Table 4.4: Trust metrics at the end of the experiment according to G3

G1 0.00 0.33 0.00 -0.33 0.00 1.00
G2 1.00 -0.33 0.00 0.33 0.00 1.00
G3 0.00 0.33 0.00 0.33 0.00 1.00

Table 4.5: Trust metrics at the end of the experiment according to G2

Figure 4.2: Trust dynamics of the experiment according to G1

Auction ID Declarant Performer Perceived Result

E1/A1/0 G2 G2 True
E1/A1/0 G3 G2 False
E1/A1/0 G1 G2 False

Table 4.6: Result verification for E1/A1/0 , G2 performed
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Figure 4.3: Trust dynamics of the experiment according to G2

Auction ID Declarant Performer Perceived Result

E2/A2/1 G1 G1 True
E2/A2/1 G3 G1 False
E2/A2/1 G2 G1 False

Table 4.7: Result verification for E2/A2/1 , G1 performed

Auction ID Declarant Performer Perceived Result

E3/A3/2 G1 G3 False
E3/A3/2 G3 G3 False
E3/A3/2 G2 G3 False

Table 4.8: Result verification for E3/A3/2, G3 performed
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Figure 4.4: Trust dynamics of the experiment according to G3
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Chapter 5

conclusion

5.1 Recap

In this research, the primary goal was to assess how well the Trust framework
could be implemented and function effectively in the context of UAVs. It is worth
noting that this framework had previously been examined and tested in the do-
main of humanoid robots. The thesis aimed to expand the scope of its application
by exploring its effectiveness when dealing with UAVs, which are fundamentally
different in terms of functionality, operation, and the trust dynamics involved.
This shift in focus from humanoid robots to UAVs is a significant aspect of this
research, aiming to provide insights into the framework’s adaptability across di-
verse technological platforms.

Furthermore, in this work Trust is emphasized as a crucial factor when multi-
ple robots from different companies collaborate, highlighting the need for a robust
system for communication and cooperation among robots. It also introduces the
integration of Aruco markers for precise localization. Additionally, it mentions
the importance of synchronized control of multiple drones and the use of different
networking approaches for establishing communication among them.

5.2 System strengths

Three advantages of the mentioned system are as below:

• Enhanced Cooperation: The trust-centric framework for task assign-
ment fosters cooperation among robotic agents, enabling them to exchange
information, assign tasks, and adapt to changing conditions. This leads to
improved operational outcomes and mission fulfillment.
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5.3 Future work

• Precise Localization: The integration of Aruco markers provides UAVs
with reliable and precise positioning and orientation information, even in
scenarios with GNSS signal limitations or occlusions. This ensures cohesive
inter-robot operations and accurate camera pose identification.

• Scalability and Ease of Deployment: The use of TCP and UDP pro-
tocols for communication between drone agents emphasizes ease of deploy-
ment and scalability for future applications. This approach facilitates effi-
cient data exchange among drones and supports real-time communication
for controlling multiple UAVs.

5.3 Future work

The derived system architecture demonstrates its versatility on UAVs perform-
ing a wide spectrum of tasks. This adaptability is a key advantage, as it enables
researchers and practitioners to apply the trust-centric framework to different
UAV models and mission profiles. This work paves the way for future examina-
tions by providing a flexible foundation for assessing the system’s performance
in real-world scenarios. Moreover, it encourages the exploration of new applica-
tions and optimizations, making it a valuable resource for advancing the field of
collaborative robotics and autonomous systems.
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