

Scuola Politecnica

CORSO DI LAUREA IN ENGINEERING TECHNOLOGY FOR STRATEGY (AND
SECURITY)

Tesi di Laurea
Dipartimento di Ingegneria navale, elettrica, elettronica e delle telecomunicazioni

“Rule-based out-of-distribution detection for image
classification”

anno accademico 2022/2023

Relatori:

Maurizio Mongelli,

Agostino Bruzzone

Correlatori:

Giacomo De Bernardi,

Sara Narteni

Candidato

Andrea Cappelli

Contents

Abstract 3

Notations 4

1 Introduction 5
1.1 Out-of-Distribution . 5
1.2 Contribution . 7

2 Related Works 8

3 Materials and Methods 10
3.1 Uniform Manifold Approximation and Projection for Dimension Re-

duction (UMAP) . 10
3.1.1 Hyper-parameters . 11
3.1.2 Weaknesses . 13

3.2 Logic Learning Machine (LLM) . 14
3.2.1 Feature and Value Ranking 15

3.3 Out-of-Distribution Detection Algorithm 16

4 Performance Evaluation 20
4.1 Datasets . 20
4.2 Experiments settings . 22
4.3 Results . 28

4.3.1 Summary of Results . 33

5 Conclusions 36

A Appendix 38
A.1 Code example . 38

A.1.1 UMAP code . 38
A.1.2 Training and operational datasets creation 39
A.1.3 From Rulex C-like rules to Python rules 40
A.1.4 Rule hits tables building . 42
A.1.5 ODD . 47

Bibliography 49

Acknowledgments 55

2

Abstract

In the context of implementing Deep Neural Networks (DNNs) in perception pipelines
for real-time decision-making systems, ensuring their safe usage becomes a paramount
concern. The main challenge lies in detecting efficiently and accurately inputs that
belong outside the boundaries of the training distribution, known as Out-of-Training-
Distribution inputs.

This concern also applies to the detection of Out-of-Distribution (OOD) input
data when using Deep Neural Networks. To deal with this problem, we suggest
a simple yet effective technique to enhance the resilience of various OOD detection
methods, specifically in label change scenarios. This enhancement boosts the robust-
ness and reliability of these methods, making them applicable in diverse real-world
situations.

OoD Detection (ODD) is undoubtedly one of the most crucial challenges that
arise while deploying machine learning models. Data analysts are responsible for
ensuring that operational data correspond to the training phase and remain vigilant
to any environmental changes that may compromise autonomous decision-making
processes.

The approach used in this thesis is rooted in eXplainable Artificial Intelligence
(XAI), which uses different metrics to identify similarities between In-Distribution
(ID) and OOD data, as perceived by the XAI model. This novel approach is not
reliant from assumptions relating to distribution. Through testing, including in
intricate situations like preventive maintenance, vehicle coordination, and covert
digital communication, it has been validated as precise in discovering and assessing
the proximity between training and operational conditions. The ultimate intention
of this inclusive strategy is to overcome the various complex obstacles encountered
during practical implementation of machine learning.

3

Notation

In this chapter, a table will be presented which contains the notations to be used
throughout this agreement. It is important to establish these notations in order to
ensure clarity and consistency in the document. Technical term abbreviations will
be explained upon first use:

OOD Out-of-Distribution
ID In-Distribution

ODD OoD detection
ML Machine learning
XAI eXplainable Artificial Intelligence
TR Training set
OP Operational set
tri i-th training subset
opi i-th operational subset
ns number of data samples in a split
Ntr Number of training splits
Nop Number of operational splits
Rtr Training reference ruleset
ri i-th rule
hji j-th hit for the i-th rule
lp lp norm

FN False Negatives
FP False Positives

H&R Hazard&Robots dataset

4

Chapter 1

Introduction

1.1 Out-of-Distribution
With the proliferation of machine learning, Out-of-Distribution Detection (ODD)
has arisen as a significant issue in the field.

Imagine, for instance, that we intended to learn our classifier to distinguish
between various dishes based on images. What if a user fed our algorithm a picture
of something that is not food, or of an unknown cuisine?

The classifier attempts to approximate the received input based on its knowledge,
for example by matching it to a known food that most closely resembles the input
based on features established during its previous training phase. However, this
approach can lead to an incorrect output. Fortunately, the resulting damage is
minimal, as the incorrect output would not cause any harm.

Figure 1.1: Out-of-Distribution example.

But let us consider another example, where a machine that was trained to detect
the state of a system, anticipate impending failures and make decisions grounded
in the detected state. In case the machine receives a system state that it has not
encountered before during its training, it will approximate the seen state to a fa-
miliar one leading to an erroneous output, as previously discussed. However, in this
instance, the machine may make erroneous judgments, which could result in serious
consequences. This approach can prevent potentially harmful decisions from being
made. Hence, it is imperative that the machine refrains from rendering an approx-

5

imation that does not mirror the genuine state of the system. Instead, it is much
more suitable for the machine to express its ignorance of the input, indicating that
it lies outside the distribution with which it has been trained.

The examples provided are merely two potential cases used to elucidate the
concept of OOD.

To provide a clear definition of OOD and ODD, we begin by assuming that
numerous current machine learning models are trained based on the assumption of
a closed system [1][2], where data for the testing phase is presumed to have the
same distribution as the data used for training. Such data is referred to as In-
Distribution (ID) data. However, it is likely that these models will be utilized in an
open-world context [3], meaning that they will receive input data that is not part of
their original distribution, also known as OOD data. A dependable detection system
should, therefore, produce precise forecasts in ID scenarios while also being able to
identify and dismiss out-of-distribution data [4]; this is referred to as ODD.

The previous examples were presented to illustrate the greatest level of severity
concerning OOD, namely, the scenario in which the system fails to fulfil its purpose.

Figure 1.2: EASA illustration of work domains as reported in [5].

As illustrated in Figure 1.2, system failures are not the result of every OOD input
as various levels of severity exist. The green bar indicates an in-distribution input,
for which the machine’s performance is expected, resulting in a correct output.
Beginning from the yellow bar and onward, all inputs are OOD. The yellow bar
segment poses no issues as the autonomous functions continue to provide precise
predictions without any risk. The orange bar denotes the failure of the autonomous
functions, but it does not result in any hazardous situations, unlike the red bar
scenario where degradation of the system occurs [6].

Figure 1.3: Manarola in 3 different weather conditions.

6

Why might a machine receive OOD images as input? Apart from instances
where the system is given data that is entirely unrelated to its training (such as a
classifier intended to identify dog breeds being shown an image of a vehicle), various
factors can contribute to the presence of OOD inputs, many of which can be traced
to suboptimal training.

In the example presented in Figure 1.3, it is possible that the impact of envi-
ronmental conditions such as rain or snow as opposed to standard sunny conditions
was not taken into account. Other contributing factors include data shortage during
training or the rarity of certain inputs in the open world. To mitigate the number
of OOD instances, the data augmentation technique [7] could be implemented.

1.2 Contribution
To address this issue, the present thesis introduces a model that will be outlined in
detail.

The approach is founded on a thorough analysis centred on an assessment of a
rule hits table, which is generated from the validation instances yielded by subjecting
a rule-based model to the dataset. This evaluation is crucial in gauging the model’s
adaptability and performance.

During the initial phase of the system’s training, a table is developed, showcasing
a unique footprint that captures the characteristics and underlying patterns present
within the dataset. This table acts as a reference for subsequent real-time analysis.
As the system transitions from the training phase to the operational phase, the table
serves as an indispensable reference point to assess incoming data.

The notion of a “significant difference” between tables is pivotal to this process. If
the table created during runtime diverges significantly from the established training
table, this signals that the incoming data is outside the norm. This deviation serves
as a dependable indicator of OOD data, which may require an alternative approach
or further checks.

It is notable that this methodology significantly deviates from conventional tech-
niques such as K-Nearest Neighbors (K-NN) and Neural Networks distance calcula-
tions. K-NN utilizes a single distance criterion to establish proximity, whereas the
Neural Network distance method relies on a single prescribed metric for evaluating
similarity. In contrast, the proposed approach adopts a more diverse perspective, al-
lowing for the derivation of similarity measures through a wide range of metrics. The
model’s flexibility enhances its ability to recognise various patterns and complexities
in the data, thereby improving its overall effectiveness.

7

Chapter 2

Related Works

As mentioned before, the matter of OOD carries great significance in the field of
machine learning. It is undeniably essential to ensure that a system is capable of
making accurate predictions within its known domain and can also identify unfa-
miliar territory. This system possesses the dual capacity of comprehending familiar
content and responsibly navigating uncharted territories, effectively avoiding nega-
tive repercussions [8].

Several solutions proposed to address the OOD challenge in video analysis are
based on robust distributional assumptions in feature space [8]. Alternatively, cer-
tain individuals presume availability of probability density functions (PDF) for in-
coming and outgoing data in the training phase [9]. However, such presumptions
often result in being impractical in real-world scenarios. Furthermore, several statis-
tical tests encounter difficulties in accurately estimating the authentic distribution
of training data due to data scarcity and pdfs’ inherent complexity [10].

The issue of neural networks exhibiting overconfidence with out-of-distribution
data was first highlighted in [11]. This discovery has led to an increase in research
attention towards several productive directions:

1. One approach has attempted to detect OOD samples through designing score
functions. These functions include the OpenMax score [12], maximum softmax
probability [13], ODIN score [14], deep ensembles [15], Mahalanobis distance-
based score [8], and energy score [16]. [17]; [18]; [19]. It is essential to explore
activation rectification (ReAct) [20], gradient-based score [21], and ViM score
[22]. The authors of [23] demonstrated that methods developed for CIFAR
datasets might not translate effectively to a large-scale ImageNet benchmark.
Therefore, it is necessary to evaluate OOD detection methods in real-world
settings. To date, no previous studies have explored the potential of using
non-parametric nearest neighbour. Our research aims to fill this gap by con-
ducting the first investigation into the efficacy of using the nearest-neighbour
distance for ODD. We demonstrate remarkable results on various OOD detec-
tion benchmarks, emphasising the significant potential of using this approach.

2. Another promising avenue tackled OOD detection through training-time reg-
ularization [16, 24–38]. For instance, models are encouraged to provide pre-
dictions with a uniform distribution [24] [34] or higher energies [16] [30] [39]
[31] for outlier data. Most regularization methods require auxiliary OOD data

8

availability. Recently, VOS [40] alleviates this need by automatically gener-
ating virtual outliers that can meaningfully regularize the model’s decision
boundary during training.

3. More recently, several works have explored the role of representation learning
for ODD. In particular, CSI [41] investigates the type of data augmentations
that are particularly beneficial for ODD. Other works [42] [43] verify the effec-
tiveness of applying off-the-shelf multiview contrastive losses such as SimCLR
[44] and SupCon [45] for ODD. These two works both use Mahalanobis distance
as the OOD score and make strong distributional assumptions by modelling
the class-conditional feature space as a multivariate Gaussian distribution. [46]
propose a prototype-based contrastive learning framework for OOD detection,
promoting stronger ID-OOD separability than SupCon loss. Despite benefit-
ing from high-quality representations, our method and previous works differ
fundamentally in the OOD detection approach. Particularly, KNN is a non-
parametric method that doesn’t impose ID priors. In terms of performance,
our method significantly outperforms SSD and is easily applicable in practical
scenarios.

Regarding KNN for anomaly detection, KNN has been explored for anomaly detec-
tion [47] [48] [49], aiming to detect abnormal input samples from a single class. We
focus on ODD, which additionally requires performing multi-class classification for
ID data. Some recent works [50] [51] [52] explore the effectiveness of KNN-based
anomaly detection for tabular data. The potential of utilizing KNN for ODD in
deep neural networks remains underexplored. Our work provides both new empiri-
cal insights and theoretical analysis of employing the KNN-based approach for ODD
[10] [53].

That said, rule-based ODD methods have not been explored yet. This work
has been prepared precisely on this method and specifically studies the XAI ODD
method for images, previously applied only to longitudinal data. The novelty lies
in applying the XAI method to a compressed image feature space. This will be
addressed in the next chapter.

9

Chapter 3

Materials and Methods

3.1 Uniform Manifold Approximation and Projection
for Dimension Reduction (UMAP)

The Uniform Manifold Approximation and Projection (UMAP) [54] is a learning
technique to reduce dimensions. It is based on a theoretical framework of Rieman-
nian geometry and algebraic topology. This produces an algorithm that is scalable
and practical for real-world data. UMAP is comparable to t-SNE for visualization
quality and probably retains more global structure with faster runtime performance.
Moreover, UMAP presents no computational limitations on embedding dimension,
rendering it a viable general-purpose technique for dimension reduction in machine
learning.

UMAP can be described, constructed, and operated as a weighted graph from a
practical computational perspective. Therefore, it can be categorized as a k-nearest
neighbour-based graph learning algorithm, much like t-SNE [55]. Like other algo-
rithms in this category, we can split it into two phases with an identical fundamental
structure that can be summarized as follows:

1. Graph Construction:

(a) Construct a weighted k-nearest neighbour graph.
(b) Apply certain transformations to the edges to obtain a local ambient

distance.
(c) Address the intrinsic asymmetry of the k-nearest neighbour graph.

2. Graph Layout:

(a) Define an objective function that preserves desired features of this k-
nearest neighbour graph.

(b) Find a low-dimensional representation that optimizes this objective func-
tion [54].

Some notes:
1. For the construction of the graph, it is crucial to note that membership

strengths to fuzzy sets decline as one moves away from them, eventually becoming
negligible. Therefore, it is enough to compute them for the nearest neighbours of

10

each point. To achieve this, an algorithm that quickly (although approximately)
calculates nearest neighbours in any dimensional space is vital. This can be ac-
complished with any nearest neighbour search algorithm or approximate nearest
neighbour algorithm, however, the Nearest Neighbour Descent algorithm [56] has
been selected. Calculations will only be performed locally for each point at this
stage, resulting in high efficiency.

2. For the optimization process, we employed Stochastic Gradient Descent (SGD)
[57]. In order to simplify the gradient descent problem, it is necessary for the final
objective function to be differentiable. To achieve this, we have utilized a suitably
versatile family of functions to approximate the actual membership strength function
in the low-dimensional representation. The selected family of functions is of the form

1
1+ax2b , where ‘a’ and ‘b’ represent the weights (and probabilities of existence) of the
arcs of two edges.

To avoid addressing every potential boundary, the negative sampling technique
(also utilized by other dimension reduction algorithms, such as word2vec and LargeVis)
is utilized to sample negative examples as required (Yang et al., 2020). Finally, the
use of spectral embedding techniques [58] is required to initialize the low-dimensional
representation in a favourable state because the Laplacian of the topological repre-
sentation approximates the Laplace-Beltrami operator [59] of the manifold.

3.1.1 Hyper-parameters
Hyper-parameter tuning is a persistent issue in machine learning, which is why it’s
worth discussing:

The UMAP algorithm has the option to choose four hyperparameters:

1. The number of neighbours to consider when approximating the local metric,
n;

2. The target inclusion dimensionality, d;

3. The desired separation between neighbouring points in the embedding space,
min-dist;

4. The number of training epochs to use for optimizing the low-dimensional rep-
resentation, n-epochs;

The effects of d and n-epochs are easily understood, however, the effects of n and
min-dist are not as clear.

The value of n represents the number of nearest neighbours to consider before
their membership strengths are negligible, as previously explained. Choosing a low
value for n retains the local manifold structure on a small scale but sacrifices a
degree of accuracy in overall view. On the other hand, if the number of neighbours
is increased, then the large-scale manifold structures are retained, but this results
in some loss of small-scale structures.

As for the min-dist parameter, it is mainly aesthetic and more beneficial for
UMAP’s visualisation purposes. This parameter replaces the distance to the nearest

11

neighbour, which is used to ensure local connectivity and governs how closely points
can group together in the low-dimensional representation. Low values result in
densely populated regions, which may lead to potential overlaps, while preserving
the manifold’s structure with greater accuracy. Higher values, however, distribute
the points more, resulting in less preserved structure but facilitating visualization.

The impact of varying these two hyperparameters on the representation of a
series of randomly sampled values from a three-dimensional colour cube is visualized
in Figure 3.1. Using lower values for parameter ‘n’ can result in the algorithm
detecting clusters that may not actually exist, leading to an incomplete perspective.
Similarly, opting for higher values for the ‘min-dist’ parameter can help maintain
the overall perspective of the analysis. Therefore, it is advisable to use higher values
for the ‘neighbors’ parameter. Similarly, opting for higher values for the ‘min-dist’
parameter can help maintain the overall perspective of the analysis.

Figure 3.1: Variation in the representation of randomly sampled data from
a three-dimensional color cube based on the parameters n and min-dist.
For easier visualization, the three-dimensional coordinates are represented
using RGB coloring.

In Figure 3.2, the same methodology is applied to the PenDigits dataset [60]
[61]. As clusters exist within the dataset, and we aim to retain them, we would
choose a moderate-to-small value for neighbours. The decision for min-dist would
then depend on the extent to which one wants to enlarge the cluster structure to

12

depict its density.

Figure 3.2: Variation in the representation of the PenDigits dataset based
on the parameters n and min-dist. Each point is an 8x8 grayscale image of
a hand-written digit.

3.1.2 Weaknesses
Finally, let’s analyse some issues of the algorithm or scenarios where it might be less
efficient:

• Interpretability of results in reduced dimensions: If interpretability is a top pri-
ority, UMAP may not be the most suitable option. Therefore, UMAP may not
be the best choice for scenarios where interpretability is crucial. Unlike other
algorithms, such as Principal Component Analysis (PCA), the dimensions in
the embedding space do not carry specific meanings, and the algorithm relies
on distances between observations rather than the original features.

• Need for manifold structures in data: In cases where small datasets contain
noisy data or there are large-scale manifold structures, it is possible for the
algorithm to mistakenly identify manifold structures within the dataset’s noise.

• Preference for local distances over long range distances: UMAP, along with t-
SNE and LargeVis, tends to prioritize local distances over long-range distances.

13

While UMAP is likely to preserve better overall structure compared to the
other two algorithms mentioned previously, it may not be the best choice if
the main focus is on global structure.

• Maintenance of nearest neighbour structure not explicitly preserved: The omis-
sion of explicitly maintaining nearest neighbour structure in high-dimensional
spaces may result in the emergence of ”reverse-nearest neighbours” in the con-
ventional k-nearest neighbour graph. Moreover, since UMAP prioritizes the
preservation of topology instead of purely metric structures, the algorithm’s
performance may not be optimal when handling datasets that heavily rely on
preserving metric structures.

• UMAP attempts to discover a manifold where data is uniformly distributed:
This implies a desire to maintain ambient distances within the data. In sce-
narios where preserving ambient distances is crucial, UMAP might not be the
most suitable choice.

• Importance of Large Datasets: It is crucial to ensure a sufficiently large dataset
to obtain optimal outcomes. UMAP utilizes approximations to improve com-
putational efficiency. However, this may lead to inadequate results for datasets
with less than 500 samples [54].

3.2 Logic Learning Machine (LLM)
Logic learning machine (LLM) is a machine learning method based on the generation
of intelligible rules. It is an efficient implementation of the Switching Neural Network
(SNN) [62] paradigm, developed by Marco Muselli and created by Rulex (https://
www.rulex.ai/rulex-explainable-ai-xai/), Senior Researcher at the Italian National
Research Council CNR-IEIIT in Genoa.

An LLM aims to construct a classifier g(x), described by a set of rules, structured
in the form

if <premise> then <consequence>

where <premise> is a logical product (AND) of conditions on the input features,
while <consequence> corresponds to the output class.

The model generation goes through three steps:

1. Latticization (discretization and mapping to a Boolean lattice) [63]: Each vari-
able is transformed into a string of binary data in a designated Boolean lattice
using the inverse only-one binarization. Finally, for each sample, all these
strings are concatenated into one large string.

2. Shadow Clustering: A set of binary values (implicants) is generated, facilitating
the identification of groups of data points associated with specific classes.

3. Rule generation: All the implicants are converted into a collection of simple
conditions and eventually combined to form a set of comprehensible rules.

14

https://www.rulex.ai/rulex-explainable-ai-xai/
https://www.rulex.ai/rulex-explainable-ai-xai/

In rule-based models, conditions for a rule are constructed by considering all
the involved variables at the same time. This leads to interdependent conditions
within the rules. Specifically for LLMs, implicants (binary strings within a Boolean
lattice, as previously explained) are used to build conditions. These implicants
define unique data point groups associated with a specific class. The groups of
points in the Boolean space are later turned into regulations that combine a portion
of joint variables. It is easy to generate a clear rule from an implicant that shows
a logical product of threshold conditions found through the discretization phase.
When generating implicants using the Shadow Clustering technique in LLMs, which
examines the complete training set, the resulting rules may overlap and represent
distinct important aspects of the phenomenon under study[64][65].

3.2.1 Feature and Value Ranking
An eXplainable Artificial Intelligence (XAI) model enables the examination of its
results through feature and value ranking.

Consider a set of m rules rk, k = 1, . . . ,m, each comprising dk conditions clk, lk =
1k, . . . , dk. Let X1, . . . , Xn be the input variables, such that Xj = xj ∈ X ⊆ R for
all j = 1, . . . , n. Let ŷ also represent the class assigned by the rule and yj the actual
output of the j-th instance.

A condition clk involving the variable Xj can take one of the following forms:

Xj > s, Xj ≤ t or s < Xj ≤ t.

where s, t ∈ X .
For each rule, it is possible to define a confusion matrix that consists of four

indices: TP (rk) and FP (rk), defined as the number of instances (xj , yj) that satisfy
all the conditions in rule rk with ŷ = yj and ŷ ̸= yj respectively; TN(rk) and
FN(rk), defined as the number of examples (xj , yj) that do not satisfy at least one
condition in rule rk, with ŷ ̸= yj and ŷ = yj , respectively.

Consequently, we can derive the following metrics:

C(rk) =
TP (rk)

TP (rk) + FN(rk)

E(rk) =
FP (rk)

TN(rk) + FP (rk)

The covering C(rk) is adopted as a relevance measure for a rule rk; in other words,
the greater the covering, the more general the corresponding rule is considered. The
error E(rk) measures how many data points are incorrectly covered by the rule.
Both covering and error are used to define feature ranking and value ranking.

Feature ranking (FR) offers a ranking of the features utilized in the rule condi-
tions based on a relevance measure. To obtain the relevance R(clk) for a condition,
we consider rule rk in which condition clk appears, and the same rule without con-
dition clk , denoted as r′k. Since the premise part of r′k is less restrictive, we deduce
that E(r′k) ≥ E(rk), and thus the quantity R(clk) = (E(r′k) − E(rk)) · C(rk) can
be used as a measure of relevance for the specific condition clk . Each condition clk
pertains to a specific variable Xj and is verified by certain values νj ∈ X . In this

15

way, a relevance measure Rŷ(νj) for every value assumed by Xj is derived using the
following equation:

Rŷ(νj) = 1−
∏
k

(1−R (clk)) ,

where the product is computed over the rules rk that include a condition clk
verified when Xj = νj . As Rŷ(νj) takes values in [0, 1], it can be interpreted as
the probability that the value νj occurs in predicting ŷ. The same argument can be
extended to intervals I ⊆ X , thus defining the Value Ranking (VR). Relevance scores
are then ranked, revealing the most sensitive interval of the feature with respect to
each class [66].

3.3 Out-of-Distribution Detection Algorithm
The algorithm belongs to the category of groupwise methods which utilise an entire
collection of data points for evaluation instead of classifying each individual one as
IN or OUT, unlike pointwise methods. This approach guarantees accuracy as outlier
data points won’t cause errors in the overall trend of the data.

The algorithm can be divided into 4 parts:

1. Feature Reduction: The first step involves train a UMAP model using the
training dataset and then apply that model to the operational one or reducing
the number of features in the dataset containing both training and operational
data (as we did during the tests). This step is crucial to simplify and reduce
the computational cost of subsequent steps. However, it’s important that the
feature reduction doesn’t lead to information loss in the dataset.

2. Rule Creation: The second step involves creating rules for each output class
using the Rulex program as if training a classifier using the training dataset.
The program generates a set of rules describing the classes we consider ID.
In the case of very simple classes or classes with few images, it might happen
that Rulex generates only one rule for that specific class. Having just one rule
could pose problems for the algorithm, as we will see later.

3. Rule Hits Tables Creation: Once rules for ID classes are obtained, rule hits
tables are created. Two types of tables are generated: one for training and
one for operational purposes. Training tables use the dataset used to generate
rules, divided by each output class. Operational tables are generated from a
dataset containing data that our algorithm must recognize as ID or OOD. For
both datasets, random splits are created by randomly selecting data from the
respective dataset (randomly selected data can appear in multiple splits but
not multiple times in the same split). Rule hits tables are matrices n x m,
where n is the number of splits, and m is the number of rules. The training
table for each class is created as follows, starting from the first split:

(a) For each image in the current split, the algorithm checks if it satisfies
each rule generated for that class.

16

(b) The algorithm counts how many times each rule is satisfied by the images
in the split and divides this number by the total number of images in the
split (resulting in 1 if a rule is satisfied by every image in the split).

(c) If there are multiple images in that split or if there are multiple splits,
the process continues with the next image or split.

Operational tables are created similarly to training tables, except that rules
are compared with images from the operational dataset. In the end, for each
rule class, we will have a training rule hits table and an operational one.
In a more mathematical vein, let Rtr represent a set of rules generated from
a training set, where Nr signifies the number of rules it comprises. Let Ntr

and Nop denote the number of splits in the training domain and operational
domain, respectively, resulting in a total of Nh = Ntr + Nop splits. Consider
ns as the quantity of data samples within a split. Within each split, samples
may or may not satisfy individual rules a specific number of times, which we
term the “number of hits” for that rule. Consequently, Nh vectors are defined,
the value of which will be normalised by the split size ns:

hj =
{
hji

}
, hji ∈ [0, 1], i = 1, . . . , Nr, j = 1, . . . , Nh

Each vector hj is a table [6]. The structure of training and operational tables
is as shown in Table 3.1 and 3.2.

tr1 . . . trNtr

r1 htr11 . . . h
trNtr
1

r2 htr12 . . . h
trNtr
2

· · · ·

· · · ·

rNr htr1Nr
. . . h

trNtr
Nr

Table 3.1: Training numbers of hits table. Each column refers to a training
split tri and each row to a rule ri ∈ Rtr.

4. Out-of-Distribution Detection: Once all the required tables have been acquired,
the algorithm moves onto the ODD algorithm. For each class, the algorithm
compares the corresponding training table with the operational table by com-
paring the divisions of the two tables. If the observed difference surpasses a
certain interval, the pair of divisions currently being analysed is deemed un-
satisfactory. If more than half of the analysed pairs are deemed unsatisfactory,
the table is considered unsatisfactory itself.
The OOD algorithm can be split into three phases, commencing from the first
class.

17

op1 . . . opNop

r1 hop11 . . . h
opNop

1

r2 hop12 . . . h
opNop

2

· · · ·

· · · ·

rNr hop1Nr
. . . h

opNop

Nr

Table 3.2: Operational numbers of hits table. Each column refers to an
operational split opi and each row to a rule ri ∈ Rtr.

(a) Interval Determination: The first step of the algorithm involves finding
the interval that determines whether a calculated distance between a split
of the training table and the operational table is considered IN or OUT.
To do this, we use the lp norm with p = 1 or 2:

lp(tri, trj) =

[
Nr∑
r=1

(
|htrir − h

trj
r |

)p
] 1

p

, ∀i, ∀j

for each combination of splits within the training table. Once all distances
between splits are calculated, the algorithm selects the maximum and
minimum. These two values form our ID interval.

(b) Operational Table Evaluation: Using the lp norm again, we calculate dis-
tances between splits of the training table and those of the operational
table. Each time a distance is calculated, it’s compared with the maxi-
mum and minimum found in step (a). If more than 50% of the calculated
distances fall outside the maximum and minimum interval, the table is
considered OOD.

(c) Class Iteration and Evaluation: At this point, there are three possible
options:

i. If the table that has just been calculated is in-distribution for that
specific class, the algorithm terminates. If this happens, the opera-
tional dataset is considered In-Distribution.

ii. If the table that has just been calculated is out-of-distribution for
that specific class and there are other classes, the algorithm returns
to step (a) with the next class.

iii. If the table that has just been calculated is out-of-distribution for that
specific class and there are no other classes, the algorithm terminates.
If we have reached this point, the dataset is then considered Out-of-
Distribution.

N.B.: In the explanation above, a single method of evaluating the “distance”
between tables (l_1 or l_2 norm) was considered. It’s possible to use multiple
methods simultaneously (alongside other methods not covered in this study).

18

Please refer to Chapter A.1 for further explanation by analysing an example of
code used in the study.

Figure 3.3 illustrates a summary diagram of the initial implementation of the
ODD algorithm, demonstrating The chart illustrates the separation between the de-
sign time and operation time. If applied in real-time settings, subsequent iterations
would replace the ’design time’ portion of the chart with some incremental technique
for incorporating new frames.

Figure 3.3: Summary diagram of the ODD algorithm.

19

Chapter 4

Performance Evaluation

4.1 Datasets
During this study, the following two datasets were used:

1. MNIST : The MNIST (Modified National Institute of Standards and Technol-
ogy database) Digits is a widely used dataset of handwritten digits for training
and testing in the field of machine learning. Created from the NIST database,
it was modified by reducing the number of data points to 60.000 for the train-
ing set and 10.000 for the test set: the number of distinct writers to 250, and
by normalizing and centering each digit. Each image is composed of 28x28
pixels [67]. In the specific case, two versions of the dataset were used. The
first one is from the Scikit-Learn library [68] (we will refer to it as ”small
MNIST”) which further reduces the number of images to 1797 and their di-
mensions to 8x8 pixels, resulting in a dataset size of 1.797,65 (64 columns for
pixels and 1 column for the target) with approximately 180 images per digit.
The other one (we will refer to it simply as ”MNIST”), downloaded from
https://www.kaggle.com/datasets/oddrationale/mnist-in-csv, contains, as al-
ready mentioned, 60.000 images for the training set (we will only use this
dataset), composed of 28x28 pixels, resulting in a dataset size of 60.000,785,
with 6.000 images per digit.

2. CIFAR-10: The CIFAR-10 (Canadian Institute For Advanced Research) is
a dataset containing images of 10 different subjects: automobiles, airplanes,
birds, cats, deer, dogs, frogs, horses, ships, and trucks. Along with its larger
version, CIFAR-100, CIFAR-10 is also extensively used in the field of machine
learning, similar to MNIST. The dataset consists of 60,000 small images with
dimensions of 32x32 pixels. Unlike MNIST, CIFAR-10 is in colour, with 1024
pixels for each colour channel (RGB), resulting in a total of 3072 pixels per
image. The total size of the dataset is therefore 60.000,3073. In the specific
case, the version of the dataset from the Keras [69] library was used. In this
version, the dataset is already split between the training set and the test set.
The training set consists of a total of 50.000 images (5.000 per class), and it
will be the dataset used for testing purposes.

20

Figure 4.1: Small MNIST dataset example

Figure 4.2: Example of the digit ”0” with size 8x8 (Small MNIST) and
28x28 (MNIST) pixels.

3. Hazards&Robots: The third and final dataset used is the Hazard&Robots
dataset from the University of Lugano (USI-SUPSI) [70]. This dataset dif-
fers from the other two mentioned as it is a ”real” dataset. Unlike MNIST and
CIFAR-10, this dataset consists of images that have not been pre-processed
to make them easier to identify. In fact, the collection of images is nothing
more than a set of frames obtained from a recording made by a robot moving
within various environments. The dataset contains three types of scenarios:
Tunnel, Factory, and Corridors, each of them structured into training sets,
validation sets, and test sets. Among the three available versions, the most
recent version was chosen, which contains only the final version of Corridors.
It consists of 324.408 frames, each measuring 521x521 pixels, and is divided
into 21 classes of various corridors. These 21 classes include one ”normal” class
and 20 classes that represent anomalies in the robot’s path: box, cable, cones,
debris, defects, door, floor, human, misc, tape, trolley, clutter, foam, sawdust,
shard, cellophane, screws, water, obj. on robot, obj. on robot2. Similar to the

21

Figure 4.3: CIFAR-10 dataset example

CIFAR-10 dataset, only the training set containing 144.603 frames was used
in this case. Unlike the other two datasets, in this case, the 512 features of the
images had already been extracted using a CLIP ViT-B/32 model [71], and
individual pixels will not be used.

4.2 Experiments settings
During the study, numerous tests were conducted, which were also useful for refin-
ing and perfecting the technique. In this section and the next, we will analyse 8
experiments that I consider the most significant and interesting. Therefore, tran-
sient examples in which only a few classes were used will be omitted. For reasons
of speed and code reusability, it has always been chosen to exclude the last class
of each dataset from the training distribution (and therefore it will be used as an
operational class). The 8 tests that we will analyse are as follows:

1. Small MNIST False Negatives rate: In this experiment, classes 0 to 8 were
considered as in-distribution classes, and class 9 was used as an OOD class.
We may encounter FN if an image sub-dataset for class 9 is deemed to be
incorrectly ID in relation to any training class. Using UMAP, the original 64
features (4.6) were reduced to only 3 (in 4.7, you can see the graph of the
reduction to two features/dimensions). The goal of the experiment is for the
dataset of class 9 to be recognized as OOD compared to each of the other
8 classes. Once it was certain that the algorithm was functioning correctly,

22

Figure 4.4: Example of a ”dog” class 32x32 pixels image in CIFAR-10.

the number of times, despite the correct classification as OOD, the algorithm
calculated that a distance between the training and operational rule hit tables
was in-distribution was calculated. Indeed, it will be the majority of results
that classify a split as IN or OUT, and it will be the majority of splits that
consider a table as IN or OUT. Considering a distance classified as OOD as
positive, we will call this value the False Negatives rate.

Number of generated rules per class: {”0”, 1 rules; ”1”, 2 rules; ”2”, 3 rules;
”3”, 2 rules; ”4”, 1 rules; ”5”, 2 rules; ”6”, 1 rules; ”7”, 1 rules; ”8”, 2 rules.}

2. Small MNIST False Positives rate: After observing that the algorithm cor-
rectly classified an OOD class, it was necessary to ensure that it did not
consider everything as OOD. For this reason, in this experiment, all 10 classes
were used, and approximately 1/5 of the images from each dataset (before be-
ing used to generate the rules) were extracted and used as operational datasets.
Since the images for each class were only about 180, the operational datasets
were very small (approximately 35 images), and it was not possible to conduct
too many experiments by changing the number of data for splits and the num-
ber of splits themselves. Having modified the training dataset, the generated
rules may differ from those of the previous experiment. In this case, instead of
creating operational rule hit tables with an operational dataset and rules for
all classes, the various sub-datasets previously extracted, along with the rules
of their respective classes, will be used and subsequently compared with their
corresponding training tables. The result of these comparisons should obvi-
ously result in in-distribution. This time, we will examine when a distance
is mistakenly considered as OOD and will then calculate the False Positives
value. We will therefore regard it as a False Positive when a set of images

23

Figure 4.5: Example of a frame from the Hazard&Robots dataset.

from any given class is erroneously labelled as OOD when compared with the
corresponding training class.

Number of generated rules per class: {”0”, 1 rules; ”1”, 2 rules; ”2”, 2 rules;
”3”, 2 rules; ”4”, 2 rules; ”5”, 2 rules; ”6”, 1 rules; ”7”, 1 rules; ”8”, 2 rules;
”9”, 4 rules.}

3. MNIST False Negatives rate: We then moved on to a larger dataset, the
complete MNIST. The original 784 features were reduced to 5 using UMAP. In
this case, since it is not possible to visualize a graph in more than 3 dimensions,
the value 5 was chosen by trial and error. In Section 5, we will talk about how
to determine the number of features to reduce an image based on the number
of original pixels. Here too, it was chosen to create the rules with classes from
0 to 8 and use class 9 as the operational class to be classified as OOD and
calculate the False Negatives rate.

Number of generated rules per class: {”0”, 5 rules; ”1”, 4 rules; ”2”, 11 rules;
”3”, 10 rules; ”4”, 7 rules; ”5”, 8 rules; ”6”, 7 rules; ”7”, 6 rules; ”8”, 13 rules.}

4. MNIST False Positives rate: In this case, as well, it was also checked that
the algorithm did not fail to recognize a class as in-distribution. Once again,
it was decided to extract 1/5 of the 6.000 images from each class to create
operational rule hit tables. The operational tables were then compared with
their respective training tables, and the value of False Positives was calculated.

Number of generated rules per class: {”0”, 5 rules; ”1”, 4 rules; ”2”, 11 rules;
”3”, 11 rules; ”4”, 7 rules; ”5”, 8 rules; ”6”, 7 rules; ”7”, 8 rules; ”8”, 14 rules;
”9”, 9 rules.}

24

Figure 4.6: Original Small MNIST dataset features.

5. CIFAR-10 False Negatives rate: The 3072 features were reduced to 10 with
UMAP. For CIFAR-10, it was chosen to use the class of ”truck” as the oper-
ational class, being the last class in the dataset. The goal was to classify the
”truck” dataset as OOD and calculate the False Negatives rate with a dataset
even larger than MNIST. We shall therefore consider a False Negative when a
collection of images of the class ’truck’ is considered to be wrongly ID when
compared with any training class.

Number of generated rules per class: {”Airplane”, 24 rules; ”Automobile”,
26 rules; ”Bird”, 27 rules; ”Cat”, 29 rules; ”Deer”, 24 rules; ”Dog”, 26 rules;
”Frog”, 24 rules; ”Horse”, 25 rules; ”Ship”, 20 rules.}

6. CIFAR-10 False Positives rate: For CIFAR-10 as well, it was ensured that
there were no issues with in-distribution classification. Operational rule hit
tables were still created using 1/2 of the original datasets for each class. Again,
we will therefore regard it as a False Positive when a set of images from any
given class is erroneously labelled as OOD when compared with the corre-
sponding training class.

Number of generated rules per class: {”Airplane”, 19 rules; ”Automobile”,

25

Figure 4.7: Small MNIST dataset features reduction to a 2-dimensional
space and related rules.

23 rules; ”Bird”, 24 rules; ”Cat”, 24 rules; ”Deer”, 23 rules; ”Dog”, 23 rules;
”Frog”, 20 rules; ”Horse”, 24 rules; ”Ship”, 18 rules; ”Truck”, 23 rules.}

7. H&R False Negatives rate: The 512 features extracted using the CLIP ViT-
B/32 model were reduced to 4 using UMAP. Since it is a ”real” dataset, we
wanted to maintain its original purpose without altering it. This is why only
the ”normal” class was used as IN, and the 20 anomaly classes were used as
OUT. Having only one IN class required splitting it into two (”normal1” and
”normal2”) in order to generate rules. This division couldn’t be done arbitrar-
ily within the dataset, as two nearly identical images (two consecutive frames)
belonging to different classes could potentially confuse our LLM (Language
Model). Therefore, it was decided to split the dataset after the first 3,185
frames, which is the point of the first scenario change. The aim of this test is
to classify each anomaly class as OOD (Out-of-Distribution) and calculate the

26

False Negative rate in a ”real” dataset with a different approach to features.
We shall therefore consider a False Negative when a collection of images of
one of the ”abnormal” classes (like the frame of Image 4.5) is considered to be
wrongly ID when compared with ”normal” classes.

Number of generated rules per class: {”normal1”, 16 rules; ”normal2”, 5 rules.}

8. H&R False Positives rate: For this last dataset as well, it was ensured that
the algorithm did not make any misclassifications in the in-distribution class.
Unlike the other datasets where all classes were used, in this case, the decision
was made to use only the ”normal” class (once again divided as in the previous
case) to preserve the original intent of the authors. Consequently, only four
rule hit tables were created: two for training and two for operational purposes.
The operational tables were still created using half of the original datasets for
the two classes. Finally, we will therefore regard it as a False Positive when
a set of images from any ”normal” class is erroneously labelled as OOD when
compared with the corresponding class.

Number of generated rules per class: {normal1”, 15 rules; ”normal2”, 4 rules.}

For the three datasets containing multiple images (MNIST, CIFAR-10, and
H&R), it was decided to use the same values for the number of splits and the
number of images per split in all six tests. This decision was made to facilitate a
more accurate comparison of the results across the different tests. In the case of
Small MNIST, this was not possible due to the small number of images. Neverthe-
less, it was a useful test to observe the behaviour of the algorithm even with limited
training data.

After performing these tests, further tests were performed considering a single
operational split, similar to how it would be in a real application case where only
the last n images would be chosen as the operational dataset and placed in a single
split. The purpose of these tests was to see if the algorithm would also work correctly
using only one operational split and, if necessary, to see how many images would be
needed to perform well. For all tests, 50 splits and 300 images per split were used as
base values for training. It was also chosen not to perform these tests with the Small
MNIST dataset. Both False Negatives and False Positives rates are performed for
each dataset.

1. MNIST : For the MNIST dataset it was decided to start with 100 images per
split in operational and then decrease the number to find the minimum value.

2. CIFAR: For the CIFAR dataset it was also decided to start with 100 images per
split into operational. Due to the values obtained, tests were then performed
with different values in training, which will be discussed in the 4.3 section.

3. H&R: Finally, also for the H&R dataset it was decided to start from 100 images
per split in operational and then decrease the number to find the minimum
value.

N.B.: All tests were performed several times for each value used to ensure that
the result was reliable and did not depend only on the data that had been selected
for the operational dataset.

27

4.3 Results
In this section, we will present and analyse the individual results of all the tests
described earlier in Section 4.2. For a more general discussion of all the compared
results, please refer to Section 4.3.1. Before analysing the results, I would like to
remind you of how they were generated: during the comparison between the training
and operational rule hit tables, distances between every possible combination of
splits are calculated using some metrics (in this case, L1 and L2 norms). If the
calculated distance falls within the minimum and maximum values obtained from
comparing the distances of the training table splits with themselves, it is considered
in-distribution; otherwise, it is considered OOD. In cases where we need to classify
a dataset as OOD, we count how many times the distance resulted in IN out of the
total calculated distances (False Negatives rate). Conversely, if our intention is to
consider a given dataset as in-distribution, we calculate how many times a distance
resulted in OOD relative to the total.

In Figure 4.8, the results of the test with the Small MNIST dataset, considering
the class of digit 9 as OOD, are presented. It can be seen that in this case, the
l_2 norm performs slightly better than the l_1 norm. The highest error percentage
occurs in cases where there are few images per split, reaching a peak of approximately
7-8%. This error may be due to the fact that each split will easily contain all
the images that the others do not, creating tables with many differences between
columns. I would like to clarify that, despite the relatively high error with few
images per split, there were no classification errors for any class. The number of
splits also seems to influence the result. Tests with 20 splits had more errors in 3
out of 4 cases compared to their 10-split counterparts. Again, this could be related
to the previous explanation. Once the threshold of 30 images per split is exceeded,
the error becomes 0.

• Best case: from 30,10 onwards (0% error) with both norms.

• Worst case: 10,20 with L1 norm (7.6% error).

In Figure 4.9, the results of the test with the Small MNIST dataset, in which
the algorithm should have recognized the operational datasets as in-distribution,
are presented. In this case, as well, there were no classification errors. Due to the
scarcity of data, only a few tests could be performed, and the only case with no
errors at all was 30,10, the test was conducted with the maximum possible amount
of data. For fewer splits, sporadic errors occurred, except for the 10,10 case, where
the error still settled at around 3-4%. In the previous test case, the error settled at
0 starting from 30,10, but since there was no possibility to increase the number of
images per split further, we can only speculate that it would have followed a similar
trend. The fact that errors, more or less significant, occur below the 30,10 case could
be due to the randomness of the images selected for each test.

• Best case: from 30,10 (0% error) with both norms.

• Worst case: 10,10 (approximately 3% error) with both norms.

28

Figure 4.8: L1 and L2 norms errors for the Small MNIST dataset with an
operational dataset that should be classified as OOD.

In Figure 4.10, the results of the test with the MNIST dataset, considering the
class of digit 9 as OOD, are presented. With a much larger dataset available, tests
with many more images and splits were conducted. The algorithm consistently
managed to correctly classify the dataset, achieving 0% error in almost all tests.
The only cases that differed from this behaviour were the ones where fewer images
were used. However, even in these cases, classification was correct, and the error
did not exceed 3% of the calculations on split distances. In this case, too, the error
could be attributed to the variance between splits due to the small number of images
selected for each split compared to the total number used to generate the rules.

• Best case: from 200,20 onwards (0% error) with both norms.

• Worst case: 10,10 (3% error) with L2 norm.

In Figure 4.11, the results of the test with the MNIST dataset, in which the
algorithm should have recognized the operational datasets as in-distribution, are
presented. This is also a unique case. Overall, the L1 norm performed better than
the L2 norm, but there was never a case with 0 errors. However, errors were always
very low, never exceeding 1.6%, and there were no classification errors. It is easily
noticeable that, in all cases with 50 splits, the error approached 0, while the peaks
were due to cases with only 20 splits. This could be due to the fact that, with 50
splits instead of 20, there is a higher probability of finding wider maximum and
minimum values, causing the distances between training and operational rule hit
tables to fall within this range. In this case, it seems that the number of images per
split is not relevant.

• Best case: 200,50 with L1 norm, 700,50, and 1000,50 with both norms (error
< 0.1%).

29

Figure 4.9: L1 and L2 norms errors for the Small MNIST dataset with an
operational dataset that should be classified as In-Distribution.

• Worst case: all cases with 20 splits (error ≤ 1.6%).

In Figure 4.12, the results of the test with the CIFAR-10 dataset, considering
images of trucks as OOD, are presented. Passing to an even larger dataset (in terms
of features), one would expect a greater number of errors, which partially did not
occur. Except for the two cases where only 50 images were used, cases that also
resulted in many classification errors, once 200 images per split were reached, the
error dropped below 2%, eventually reaching 0 from 300 images per split.

• Best case: from 300,50 onwards with both norms (0% error).

• Worst case: 50,50 with both norms (error ≥ 60% and classification errors).

In Figure 4.13, the results of the test with the CIFAR-10 dataset, where the
algorithm should have recognized the operational datasets as in-distribution, are
presented. This is also a rather peculiar case because it is the only case where the
error increases as the number of images increases. The case with fewer images and
fewer splits, 50,20, is also the case with the lowest error percentage. However, the
error remains very low until the 300,50 case, after which it rises (without causing
classification errors) to about 5% in cases with 700 images. In the 1.000,20 case,
the error exceeds 20%, causing a classification error with one of the classes. Finally,
in the 1.000,50 case, the error drops to about 10%, without causing classification
errors. The number of splits also seems to contribute to the results, as cases with
fewer splits have higher errors. This is perhaps the most complex behaviour to
explain due to the greater complexity of the dataset compared to the previous ones.

• Best case: 50,50 with both norms (error ≤ 0.1%).

30

Figure 4.10: L1 and L2 norms errors for the MNIST dataset with an oper-
ational dataset that should be classified as OOD.

• Worst case: 1000,20 with both norms (error > 20% and classification errors).

In Figure 4.14, the results of the test with the H&R dataset, considering the
”normal” class as IN and all the anomalies classes as ODD. Although it appears
that the L2 norm performs slightly better, the results are almost the same as in
previous cases. With a small number of images (50) per split, the algorithm makes
some errors, even committing classification errors. As for the classification errors,
they are due to the fact that only one rule was generated for the classes that led
to errors. Having only one rule generated makes it highly likely that the training
images all satisfied that rule, which is not obvious even for those that were removed
from the dataset before rule generation. In this case, even though the difference is
very small, having a training rule hit table with all values equal to 1 leads to both
the maximum and minimum distances between splits being 0. With a maximum and
minimum distance of 0, any value that is not exactly 1 in the operational table is
considered OOD. The error becomes 0 from the case of 200 images per split onwards.

• Best case: from 200,20 onwards with both norms (0% error).

• Worst case: 50,50 with both norms (error ≥ 5% and classification errors).

In Figure 4.15, the results of the test with the H&R dataset, where the algorithm
should have recognized the operational datasets as in-distribution, are presented. In
general, the error rate is very low in all the analysed cases, never exceeding 1%. As
in the previous case of FN for H&R, some errors can be explained by the presence
of certain classes for which only one rule was generated. Nevertheless, even in this
case, the tests with 50 splits yielded better results than those with 20.

• Best case: 50,50 and 200,50 with both norms (error ≤ 0,07%).

31

Figure 4.11: L1 and L2 norms errors for the Small MNIST dataset with an
operational dataset that should be classified as In-Distribution.

• Worst case: all cases with 20 splits (error ≥ 0,2%).

Let us now examine the experiments carried out using a single operational di-
vision. It was observed that the outcomes from these tests were consistent, hence,
they will be scrutinised together. Based on the conducted tests, it was inferred that
in order for the algorithm to be effective with only one operational split, the count
of operational images should coincide (or slightly differ) from that of the training
splits. Initially, FN rates underwent assessment for all three datasets using 50 splits
and 300 images per split for training and 100 for operational, yielding no errors.
Even with reduced numbers of operational images, no errors occurred in the false
negative rate tests.

However, the FP rate tests proved varied in results. Despite operating with 100
images, depending on randomly selected images, the algorithm either functioned
perfectly or misclassified one of the ID classes. In the following tests, implementing
identical amounts of images for each split during both the training and operational
phases eliminated errors, even in high FP rate instances. Upon conducting trials
with 300 images per split, we lowered the number to 50 images, which produced the
same outcome.

The limitation may be due to greater variance in splits with fewer images. In
the aforementioned tests with 1000 images per split, the values of each split were
almost identical, resulting in an almost equal value distribution across all splits.
Consequently, the maximum value obtained from the rule hit table during training
was lower than in a scenario with only 300 images, where variability between the
splits was higher. Hence, if one were to choose a varying number of images per split
during training and operation, the comparison would entail splits with differing
degrees of variability. This may result in erroneous classifications.

32

Figure 4.12: L1 and L2 norms errors for the CIFAR-10 dataset with an
operational dataset that should be classified as OOD.

4.3.1 Summary of Results

In order to establish best practices for algorithm usage, it is necessary to examine
whether a general behaviour can be identified from the tests conducted. The tests
show that a low number of images per split consistently results in a high error rate.
However, in my opinion, the magnitude of this error appears to be quite random.
The degree of resulting error is impacted by the selection of images for the training
and operational diagrams, which introduces randomness. When a limited number
of images are used, splits within the same table can differ considerably, thereby
leading to significantly greater disparities between the minimum and maximum dis-
tances. Another clear cause of errors was the classes generated with only one rule,
as previously explained, which may easily result in classification errors.

It should be noted that during all conducted tests, particularly around and
exceeding 30 images for the Small MNIST dataset and around 200/300 images for
the other datasets, the error rate is generally very low. However, this figure will be
dependent on the specific dataset in question. Additionally, it is evident that the
results are influenced by the number of splits used; an increased number of splits
provides better outcomes. This is demonstrated in tests of MNIST with respect to
False Positives, as well as in the CIFAR-10 test, where once again False Positives
are concerned.

Cases where only one rule per class is generated can be problematic. As explained
previously, when only one rule describes a class, it often results in all images in
the training dataset of that class satisfying the rule. Consequently, the resulting
table will consist of only one row of ’1’s. This suggests that the distance between
the individual segments of the training histogram will always be zero. Hence, an
operational table that is not composed only of ’1’s will lead to an incorrect OOD,
even with a minimal error. When considering a scenario where a dataset mainly
comprises images that are considered to be in-distribution, a single image within

33

Figure 4.13: L1 and L2 norms errors for the CIFAR-10 dataset with an
operational dataset that should be classified as In-Distribution.

the segments is enough to classify the segment as OOD.
Regarding tests conducted with a single operational split, the previous section

has discussed the topic comprehensively, so I will only provide a summary of the
findings. To avoid any discrepancies while comparing rule hit tables created with
different variability indices, it is recommended to use an identical number of images
in both training and operational sets (or a similar number). If we aimed to obtain
100 images for the operational dataset (2 seconds for a 50 frames per second camera),
we would need to allocate an equivalent quantity of images for the training tasks.
Moreover, we may need to augment the number of subsections if we aspire to employ
a more extensive dataset for training.

34

Figure 4.14: L1 and L2 norms errors for the H&R dataset with an opera-
tional dataset that should be classified as OOD.

Figure 4.15: L1 and L2 norms errors for the H&R dataset with an opera-
tional dataset that should be classified as In-Distribution.

35

Chapter 5

Conclusions

The obtained results validate the effectiveness of the algorithm developed for this
thesis, as it performs well on both benchmark and real datasets, and with either
multiple or single operational splits. Notably, the H&R dataset with only one oper-
ational split is the most intriguing scenario for a potential future deployment, as it
yielded impeccable outcomes when limiting the number of images per split.

Regarding potential real-world applications, further steps must be taken that
were not taken in this study due to time constraints and the inability to conduct
real-time camera testing. Initially, all tests were conducted by selecting images for
the operational dataset and determining whether they were ID or OOD at that mo-
ment. In a practical scenario, evaluating datasets must be done continuously and
in real-time by continually updating them. The oldest frame should be removed
to make way for the latest recording captured by the camera. To avoid reapply-
ing the algorithm from scratch, it is better to use some incremental method that
changes only the operational rule hits table while keeping the rules and training
table constant. Contrary to the approach taken during testing, a model should be
trained using the UMAP library and then applied to every new frame captured by
the camera. The previous frame’s contribution to the operational rule hits table is
subtracted, and the new frame’s contribution is added.

Moving onto the issues that arose during testing, they require further investiga-
tion for future improvements.

Let us proceed systematically and start from UMAP. The investigation con-
ducted insufficient tests on datasets, rendering it incapable of deriving any rule or
mathematical model indicating the number of features to which original features
could be reduced. In this study, we reduced the number of features in the Small
MNIST from 64 to 3 (yet, even 2 would have sufficed (cf. Figure 4.7)), in the MNIST
from 784 to 5, in the CIFAR-10 from 3072 to 10 and in the H&R from 512 to 4. Fu-
ture research may explore varying the quantity of features to evaluate performance.
Our aim was to minimize computational expenses by utilizing the smallest num-
ber of features possible. Moreover, similar to the H&R dataset, in cases where the
pixel count is excessive, implementing a pre-processing technique is recommended
to generate an initial reduction in features.

In the preceding hapter 4.3.1, it became evident that restricting the generation
of only one rule per class can result in significant algorithmic errors. During the
initial stages of the research, we attempted to force Rulex to produce an increased

36

number of rules beyond those it would naturally generate. Notably, when Rulex
generates rules, it frequently generates more than it displays, subsequently filtering
only those rules that surpass a certain threshold of coverage on the provided data.
By applying a fixed number of rules, the program initially displays these rules with
minimal coverage before producing rules that are essentially just modifications of the
previous ones. It is evident that if only one rule is generated for a class, even with
additional rules enforced, there will be no significant deviation from the initial rule.
The methodology utilised in the initial stages resulted in a less accurate algorithm
compared to the current version. This was due to the application of enforced rules
which caused classification errors to occur. The issue of classes containing only one
rule remains unresolved and can only be tackled by using larger datasets, which will
enable Rulex to generate multiple rules.

Finally, the tests always used an operational dataset consisting entirely of one
class. Currently, datasets with more than one class and where no class constitutes
more than 50% of the dataset are not correctly classified. For instance, if an oper-
ational dataset contained 100% ID images but 33% of those images belonged to 3
different ID classes, the algorithm would consider it an OOD dataset as none of the
ID classes reaches 50%. A technique must therefore be developed to identify such
cases and ensure the algorithm remains operational.

37

Appendix A

Appendix

A.1 Code example
In this section, an example of code using Python and Matlab will be presented,
analysed, and explained. The example will refer to the usage of the CIFAR-10
dataset. In this case, after reducing the number of features of the images from
1024 RGB pixels (3072 total pixels) to 10 using UMAP, rules will be generated
using Rulex. These rules will then be transformed into functions usable in Python
through a dedicated script. Subsequently, training and operational rule hit tables
will be created, and their similarity will be evaluated. Out of the 10 classes in
CIFAR-10, for simplicity, the first 9 (automobiles, airplanes, birds, cats, deer, dogs,
frogs, horses, and ships) will be considered in-distribution, and the last one (trucks)
will be considered out-of-distribution.

To avoid making the section overly lengthy and more accessible, library imports
will not be included, and only essential code will be presented.

A.1.1 UMAP code
The code for reducing the number of features using the UMAP library is as follows:

1 (x_train, y_train), (x_test, y_test) = keras.datasets.cifar10.load_data()
2 assert x_train.shape == (50000, 32, 32, 3)
3 assert x_test.shape == (10000, 32, 32, 3)
4 assert y_train.shape == (50000, 1)
5 assert y_test.shape == (10000, 1)
6 x_train = np.reshape(x_train,(50000,3072))
7 x_train = x_train.astype('float32')
8 x_train /= 255
9 reducer_10D = umap.UMAP(n_components = 10, random_state = 42)

10 embedding_10D = reducer_10D.fit_transform(x_train)
11 CVS1 = pd.DataFrame(embedding_10D)
12 CVS1["Target"] = y_train
13 CVS1.to_csv(r'C:\Users\...\CIFAR10D.csv', index=False)

After downloading the entire CIFAR-10 dataset from the Keras library, the por-
tion to be used (x_train) is reshaped from its original shape (5000, 32, 32, 3) to

38

the shape (5000, 3072). Then, the values of its features are normalized by dividing
them by 255 (which corresponds to the number of colour levels for each pixel).

At this point, using UMAP, the features are reduced to 10 while setting a ran-
dom_state for reproducibility of the reduction. Of course, reducing to a higher
number of features would have worked equally well, while a lower number might
lead to more confused and less isolated clusters. Since we cannot visualize more
than 3 dimensions graphically, we will rely on the coverage that Rulex will pro-
vide us later on the data to understand whether the chosen number of features was
sufficient to enable effective classification.

Finally, the newly reduced dataset is stored in a CSV file.

A.1.2 Training and operational datasets creation
For the creation of the rule hit tables, as already explained, we will need to have
a training dataset (a dataset containing all images of the classes we consider in-
distribution), which will be used to generate the rules, and an operational dataset
(a dataset containing the images that our method should consider out-of-distribution
in this specific example). Additionally, to create the tables, we will also need the
datasets for each class. By taking all the data from the same dataset, we will create
a dataset for each class (including the one we will use as OOD) and then create a
unique dataset with all classes except the OOD class.

1 name_list = ["Airplane", "Automobile", "Bird", "Cat", "Deer", "Dog", "Frog"
, "Horse", "Ship", "Truck"]

2 for j in range(0,10):
3 data_train = pd.read_csv("CIFAR10D.csv")
4 data = pd.DataFrame(data_train)
5 OUTdata=pd.DataFrame()
6 for i in range(len(data)):
7 if data.Target[i] == j :
8 OUTdata = OUTdata.append(data.iloc[i], ignore_index = True)
9 name = '{}_Dataset.xlsx'.format(name_list[j])

10 print(name)
11 writer = pd.ExcelWriter(name, engine='xlsxwriter')
12 OUTdata.to_excel(writer, index = False)
13 writer.close()
14 INdata=pd.DataFrame()
15 for i in range(len(data)):
16 if data.Target[i] != 9:
17 INdata = INdata.append(data.iloc[i], ignore_index = True)
18 print('No_Truck_Dataset.xlsx')
19 writer = pd.ExcelWriter('No_Truck_Dataset.xlsx', engine='xlsxwriter')
20 INdata.to_excel(writer, index = False)
21 writer.close()

The code just shown will create a dataset for each class (including the OOD
class) and then a combined dataset (excluding the OOD class) and save them all in
separate files.

39

A.1.3 From Rulex C-like rules to Python rules

Starting from the dataset containing images of all classes (except the OOD class),
Rulex creates a C-like formatted file containing the rules explaining the character-
istics of each class. Since the file is created in a C-like format and the next steps of
the algorithm are written in Python, the rules need to be transformed into a usable
form. The following code has been written for this purpose:

1 import os
2 ruleset_C="No_forzature_rules.txt" #INSERIRE NOME FILE
3 i=0
4 newlines=[]
5 rules = 0
6 with open(ruleset_C,"r") as inf:
7 lines = inf.readlines()
8 lines = [e.replace("\n","") for e in lines]
9 for l in lines:

10 if l.startswith("#include"):
11 continue
12 elif l.startswith("const char *"):
13 newl=l.replace("const char *ApplyRules","def ApplyRules"+str(i)

).replace("float ","").replace("{",": \n i=0")
14 newlines.append(newl+"\n")
15 input_func = l.replace("const char *ApplyRules", "").replace("

float ","").replace("{","")
16 elif l.startswith(" if"):
17 if not ("return \""+str(i)+"\"" in l):
18 print("Class "+str(i)+", "+str(rules)+" rules")
19 rules=1
20 i+=1
21 newl=l.replace("if"," return count_array \ndef ApplyRules"

+str(i)+""+str(input_func)+":\n i=0\n if").
replace("&&","and").replace("))",")):").replace(";","")
.replace("return \""+str(i)+"\"","\n count_array
[i]=count_array[i]+1 \n i+=1 \n else: \n
 i+=1")

22 else:
23 rules+=1
24 newl=l.replace("if"," if").replace("&&","and").replace("))

",")):").replace(";","").replace("return \""+str(i)+"\"
","\n count_array[i]=count_array[i]+1 \n
i+=1 \n else: \n i+=1")

25 newlines.append(newl+"\n")
26 elif l.startswith("}"):
27 print("Class "+str(i)+", "+str(rules)+" rules")
28 newl=l.replace("}", " return count_array")
29 newlines.append(newl)
30 else:

40

31 continue
32

33 fout = open(ruleset_C[:-2]+"_converted.txt","a")
34 fout.writelines(newlines)
35 fout.close()

The code requires as input only the name of the file created by Rulex. It trans-
forms the format in which the rules were written by Rulex into the form of Python
functions that will just need to be copied and pasted. Then, the code, prints on the
screen the number of rules per class. The highest number of generated rules will be
useful later in the code. Once the code is executed, the rules will have the following
format:

1 def ApplyRules0(umap_0, umap_1, umap_2, umap_3, umap_4, umap_5, umap_6,
umap_7, umap_8, umap_9) :

2 i=0
3 if ((umap_2 <= 7.526021) and (umap_3 > 3.257704 and umap_3 <= 5.543810)

and (umap_8 <= 2.269972)):
4 count_array[i]=count_array[i]+1
5 i+=1
6 else:
7 i+=1
8 if ((umap_2 <= 7.526021) and (umap_3 > 3.180035 and umap_3 <= 5.556519)

and (umap_8 <= 2.269213)):
9 count_array[i]=count_array[i]+1

10 i+=1
11 else:
12 i+=1
13 if ((umap_2 <= 7.526021) and (umap_3 > 3.184740 and umap_3 <= 5.561359)

and (umap_8 <= 2.269213)):
14 count_array[i]=count_array[i]+1
15 i+=1
16 else:
17 i+=1
18 if ((umap_2 <= 7.526021) and (umap_3 > 3.206564 and umap_3 <= 5.562153)

and (umap_8 <= 2.269213)):
19 count_array[i]=count_array[i]+1
20 i+=1
21 else:
22 i+=1
23 if ((umap_2 <= 7.544176) and (umap_3 <= 5.243007) and (umap_8 <=

2.269213)):
24 count_array[i]=count_array[i]+1
25 i+=1
26 else:
27 ...
28 return count_array

41

To avoid needlessly extending the section, only a small part of a single function
has been presented. However, since the dataset consists of 9 classes that we have
considered in-distribution, 8 more functions similar to the one above will be created,
each with its specific rules. The purpose of these functions is simply to act as
counters to determine within a split how many times each rule is satisfied by the
images in that split.

Figure A.1: Rulex processes scheme

A.1.4 Rule hits tables building
Once the functioning of the ApplyRules functions is understood, let’s now see how
rule hits tables are actually created. The following code generates the tables for the
training data:

1 for z in range(0,9):
2 nome1 = '{}_Dataset.xlsx'.format(name_list[z])
3 data_1 = pd.read_excel(nome1)
4 #Crea i subset
5 lista_set_training=[];
6 set_size = 300;
7 contatore=0
8 while contatore<20:
9 lista_set_training.append(data_1.sample(n=set_size,replace=False))

10 lista_set_training[contatore]=lista_set_training[contatore].
reset_index(drop=True)

11 contatore=contatore+1;
12 lista_array_conteggi=[];

42

13 for j in np.arange(contatore):
14 count_array=np.zeros(26)
15 for i in range(set_size):
16 if z == 0:
17 array_conteggio=(ApplyRules0(lista_set_training[j]["umap_0"

][i], lista_set_training[j]["umap_1"][i],
lista_set_training[j]["umap_2"][i],lista_set_training[j
]["umap_3"][i],lista_set_training[j]["umap_4"][i],
lista_set_training[j]["umap_5"][i],lista_set_training[j
]["umap_6"][i],lista_set_training[j]["umap_7"][i],
lista_set_training[j]["umap_8"][i],lista_set_training[j
]["umap_9"][i]))

18 elif z == 1:
19 array_conteggio=(ApplyRules1(lista_set_training[j]["umap_0"

][i], lista_set_training[j]["umap_1"][i],
lista_set_training[j]["umap_2"][i],lista_set_training[j
]["umap_3"][i],lista_set_training[j]["umap_4"][i],
lista_set_training[j]["umap_5"][i],lista_set_training[j
]["umap_6"][i],lista_set_training[j]["umap_7"][i],
lista_set_training[j]["umap_8"][i],lista_set_training[j
]["umap_9"][i]))

20 elif z == 2:
21 array_conteggio=(ApplyRules2(lista_set_training[j]["umap_0"

][i], lista_set_training[j]["umap_1"][i],
lista_set_training[j]["umap_2"][i],lista_set_training[j
]["umap_3"][i],lista_set_training[j]["umap_4"][i],
lista_set_training[j]["umap_5"][i],lista_set_training[j
]["umap_6"][i],lista_set_training[j]["umap_7"][i],
lista_set_training[j]["umap_8"][i],lista_set_training[j
]["umap_9"][i]))

22 elif z == 3:
23 array_conteggio=(ApplyRules3(lista_set_training[j]["umap_0"

][i], lista_set_training[j]["umap_1"][i],
lista_set_training[j]["umap_2"][i],lista_set_training[j
]["umap_3"][i],lista_set_training[j]["umap_4"][i],
lista_set_training[j]["umap_5"][i],lista_set_training[j
]["umap_6"][i],lista_set_training[j]["umap_7"][i],
lista_set_training[j]["umap_8"][i],lista_set_training[j
]["umap_9"][i]))

24 elif z == 4:
25 array_conteggio=(ApplyRules4(lista_set_training[j]["umap_0"

][i], lista_set_training[j]["umap_1"][i],
lista_set_training[j]["umap_2"][i],lista_set_training[j
]["umap_3"][i],lista_set_training[j]["umap_4"][i],
lista_set_training[j]["umap_5"][i],lista_set_training[j
]["umap_6"][i],lista_set_training[j]["umap_7"][i],
lista_set_training[j]["umap_8"][i],lista_set_training[j

43

]["umap_9"][i]))
26 elif z == 5:
27 array_conteggio=(ApplyRules5(lista_set_training[j]["umap_0"

][i], lista_set_training[j]["umap_1"][i],
lista_set_training[j]["umap_2"][i],lista_set_training[j
]["umap_3"][i],lista_set_training[j]["umap_4"][i],
lista_set_training[j]["umap_5"][i],lista_set_training[j
]["umap_6"][i],lista_set_training[j]["umap_7"][i],
lista_set_training[j]["umap_8"][i],lista_set_training[j
]["umap_9"][i]))

28 elif z == 6:
29 array_conteggio=(ApplyRules6(lista_set_training[j]["umap_0"

][i], lista_set_training[j]["umap_1"][i],
lista_set_training[j]["umap_2"][i],lista_set_training[j
]["umap_3"][i],lista_set_training[j]["umap_4"][i],
lista_set_training[j]["umap_5"][i],lista_set_training[j
]["umap_6"][i],lista_set_training[j]["umap_7"][i],
lista_set_training[j]["umap_8"][i],lista_set_training[j
]["umap_9"][i]))

30 elif z == 7:
31 array_conteggio=(ApplyRules7(lista_set_training[j]["umap_0"

][i], lista_set_training[j]["umap_1"][i],
lista_set_training[j]["umap_2"][i],lista_set_training[j
]["umap_3"][i],lista_set_training[j]["umap_4"][i],
lista_set_training[j]["umap_5"][i],lista_set_training[j
]["umap_6"][i],lista_set_training[j]["umap_7"][i],
lista_set_training[j]["umap_8"][i],lista_set_training[j
]["umap_9"][i]))

32 elif z == 8:
33 array_conteggio=(ApplyRules8(lista_set_training[j]["umap_0"

][i], lista_set_training[j]["umap_1"][i],
lista_set_training[j]["umap_2"][i],lista_set_training[j
]["umap_3"][i],lista_set_training[j]["umap_4"][i],
lista_set_training[j]["umap_5"][i],lista_set_training[j
]["umap_6"][i],lista_set_training[j]["umap_7"][i],
lista_set_training[j]["umap_8"][i],lista_set_training[j
]["umap_9"][i]))

34 lista_array_conteggi.append((array_conteggio/set_size));
35 df_training=pd.DataFrame()
36 for i in np.arange(20):
37 df_training['ID'+str(i)]=lista_array_conteggi[i]
38 df_training.to_excel('{}_IN.xlsx'.format(name_list[z]), index=False)

A for loop iterates through the datasets of individual classes. For each class,
splits are created (the number of splits is defined by the contatore variable) consisting
of n elements (set_size). For each created split, another ’for’ loop iterates through
the individual images, creating a matrix of the size of the class with the most rules

44

(even if a class were to have 10 rules and the matrix were created with 15 rows,
the last 5 rows would always be 0, both for the training and operational table,
therefore not causing any issues), and for each image, the corresponding ApplyRules
function for the image’s class is called. Once the counts are completed, everything
is normalized based on the set_size. After all splits are finished, the table is saved
to a xlsx file, and the process proceeds with the next class.

After the creation of training tables is completed, the process continues with
operational ones.

1 for z in range(0,9):
2 data_1 = pd.read_excel('Truck_Dataset.xlsx')
3 #Crea i subset
4 lista_set_training=[];
5 set_size = 300;
6 contatore=0
7 while contatore<20:
8 lista_set_training.append(data_1.sample(n=set_size,replace=False))
9 lista_set_training[contatore]=lista_set_training[contatore].

reset_index(drop=True)
10 contatore=contatore+1;
11 lista_array_conteggi=[];
12 for j in np.arange(contatore):
13 count_array=np.zeros(26);
14 for i in range(set_size):
15 if z == 0:
16 array_conteggio=(ApplyRules0(lista_set_training[j]["umap_0"

][i], lista_set_training[j]["umap_1"][i],
lista_set_training[j]["umap_2"][i],lista_set_training[j
]["umap_3"][i],lista_set_training[j]["umap_4"][i],
lista_set_training[j]["umap_5"][i],lista_set_training[j
]["umap_6"][i],lista_set_training[j]["umap_7"][i],
lista_set_training[j]["umap_8"][i],lista_set_training[j
]["umap_9"][i]))

17 elif z == 1:
18 array_conteggio=(ApplyRules1(lista_set_training[j]["umap_0"

][i], lista_set_training[j]["umap_1"][i],
lista_set_training[j]["umap_2"][i],lista_set_training[j
]["umap_3"][i],lista_set_training[j]["umap_4"][i],
lista_set_training[j]["umap_5"][i],lista_set_training[j
]["umap_6"][i],lista_set_training[j]["umap_7"][i],
lista_set_training[j]["umap_8"][i],lista_set_training[j
]["umap_9"][i]))

19 elif z == 2:
20 array_conteggio=(ApplyRules2(lista_set_training[j]["umap_0"

][i], lista_set_training[j]["umap_1"][i],
lista_set_training[j]["umap_2"][i],lista_set_training[j
]["umap_3"][i],lista_set_training[j]["umap_4"][i],
lista_set_training[j]["umap_5"][i],lista_set_training[j

45

]["umap_6"][i],lista_set_training[j]["umap_7"][i],
lista_set_training[j]["umap_8"][i],lista_set_training[j
]["umap_9"][i]))

21 elif z == 3:
22 array_conteggio=(ApplyRules3(lista_set_training[j]["umap_0"

][i], lista_set_training[j]["umap_1"][i],
lista_set_training[j]["umap_2"][i],lista_set_training[j
]["umap_3"][i],lista_set_training[j]["umap_4"][i],
lista_set_training[j]["umap_5"][i],lista_set_training[j
]["umap_6"][i],lista_set_training[j]["umap_7"][i],
lista_set_training[j]["umap_8"][i],lista_set_training[j
]["umap_9"][i]))

23 elif z == 4:
24 array_conteggio=(ApplyRules4(lista_set_training[j]["umap_0"

][i], lista_set_training[j]["umap_1"][i],
lista_set_training[j]["umap_2"][i],lista_set_training[j
]["umap_3"][i],lista_set_training[j]["umap_4"][i],
lista_set_training[j]["umap_5"][i],lista_set_training[j
]["umap_6"][i],lista_set_training[j]["umap_7"][i],
lista_set_training[j]["umap_8"][i],lista_set_training[j
]["umap_9"][i]))

25 elif z == 5:
26 array_conteggio=(ApplyRules5(lista_set_training[j]["umap_0"

][i], lista_set_training[j]["umap_1"][i],
lista_set_training[j]["umap_2"][i],lista_set_training[j
]["umap_3"][i],lista_set_training[j]["umap_4"][i],
lista_set_training[j]["umap_5"][i],lista_set_training[j
]["umap_6"][i],lista_set_training[j]["umap_7"][i],
lista_set_training[j]["umap_8"][i],lista_set_training[j
]["umap_9"][i]))

27 elif z == 6:
28 array_conteggio=(ApplyRules6(lista_set_training[j]["umap_0"

][i], lista_set_training[j]["umap_1"][i],
lista_set_training[j]["umap_2"][i],lista_set_training[j
]["umap_3"][i],lista_set_training[j]["umap_4"][i],
lista_set_training[j]["umap_5"][i],lista_set_training[j
]["umap_6"][i],lista_set_training[j]["umap_7"][i],
lista_set_training[j]["umap_8"][i],lista_set_training[j
]["umap_9"][i]))

29 elif z == 7:
30 array_conteggio=(ApplyRules7(lista_set_training[j]["umap_0"

][i], lista_set_training[j]["umap_1"][i],
lista_set_training[j]["umap_2"][i],lista_set_training[j
]["umap_3"][i],lista_set_training[j]["umap_4"][i],
lista_set_training[j]["umap_5"][i],lista_set_training[j
]["umap_6"][i],lista_set_training[j]["umap_7"][i],
lista_set_training[j]["umap_8"][i],lista_set_training[j

46

]["umap_9"][i]))
31 elif z == 8:
32 array_conteggio=(ApplyRules8(lista_set_training[j]["umap_0"

][i], lista_set_training[j]["umap_1"][i],
lista_set_training[j]["umap_2"][i],lista_set_training[j
]["umap_3"][i],lista_set_training[j]["umap_4"][i],
lista_set_training[j]["umap_5"][i],lista_set_training[j
]["umap_6"][i],lista_set_training[j]["umap_7"][i],
lista_set_training[j]["umap_8"][i],lista_set_training[j
]["umap_9"][i]))

33 lista_array_conteggi.append((array_conteggio/set_size));
34

35 df_training=pd.DataFrame()
36 for i in np.arange(20):
37 df_training['ID'+str(i)]=lista_array_conteggi[i]
38

39 df_training.to_excel('Truck_{}_OUT.xlsx'.format(name_list[z]), index=
False)

The procedure is very similar: In this case, as well, splits are created just like
in the previous code. However, in this case, the initial for loop serves the purpose
of comparing the operational dataset with the rules of each class. Unlike before,
we won’t have a dataset for each class to compare with their corresponding rules.
Instead, the operational dataset will be compared with the rules of each class to
determine if it belongs to any of them. Similarly, once the counts are completed,
everything is normalized based on the number of elements in the set_size. Finally,
all the data is written to a xlsx file.

A.1.5 ODD
The last code provided is for the ODD.

1 filename = "Results_L1_Norm_noTruck.txt";
2 name_list = ["Airplane", "Automobile", "Bird", "Cat" , "Deer", "Dog", "Frog

", "Horse", "Ship", "Truck"];
3 for z = 0:8
4 table = "_IN.xlsx";
5 newtable = insertBefore(table,'_IN.xlsx',name_list(z+1));
6 table1 = "_OUT.xlsx";
7 newtable1 = insertBefore(table1,'_OUT.xlsx',name_list(z+1));
8 data=readtable(newtable);
9 data=data{:,:};

10 data=array2table(data);
11 data1=readtable(newtable1);
12 data1=data1{:,:};
13 data1=array2table(data1);
14

15 n_h=size(data,2);

47

16 ix34=1:n_h;
17 iy34=1:n_h;
18 for i=1:length(ix34)
19 hitx=data{:,ix34(i)};
20 for j=i:1:n_h
21 hity=data{:,iy34(j)};
22 mi34(i,j)=norm(abs(hity-hitx),1);
23 end
24 end
25 minimo=min(mi34(:));
26 massimo=max(mi34(:));
27 ---
28 ix=ix34;
29 somma1=0;
30 somma2=0;
31 for k=1:size(data1,2)
32 somma1=0;
33 for i=1:length(ix)
34 hitx=data{:,ix(i)};
35 hity=data1{:,k};
36 mi(i)=norm(abs(hity-hitx),1);
37 if mi(i)<minimo || mi(i)>massimo
38 somma1=somma1+1;
39 end
40 MImatrix(i,k)=mi(i);
41 end
42 if somma1>fix(size(data,2)/2)
43 somma2=somma2+1;
44 end
45 end
46 ---
47 if somma2<fix(size(data,2)/2)
48 result = "In-Distribution"+name_list(z+1)
49 return;
50 else
51 result = "Out-of-Distribution"+name_list(z+1)
52 end
53 line = name_list(z+1)+"_IN VS "+name_list(z+1)+"_OUT:";
54 writelines(line,filename,WriteMode="append")
55 line=name_list(z+1)+": out somma1 = "+somma1+", somma2 = "+somma2;
56 writelines(line,filename,WriteMode="append")
57 end

As previously explained in the preceding chapter (3.3), the ODD algorithm can
be divided into three distinct parts (marked with − − −). In the first part, for
each class, only the training table will be utilized: a nested double for loop will
iterate through the columns of the table and apply a norm (in this example, the L1

48

norm, but it could also be the L2 norm or a combination of multiple methods) to all
possible split combinations, saving the results. Among these results, the maximum
and minimum values will be selected, which will be used to determine whether the
subsequently analysed data is in-distribution or not. The second part of the code
involves both the training and operational tables. In this case, the nested double for
loop will ensure that the norm is applied to every combination of columns between
the two tables. If the calculated difference for each split exceeds the range defined by
the previously computed minimum and maximum values, the data will be considered
OOD, and the variable sum1 will be incremented by one. At the end of the inner
for loop, if more than 50% of the splits are determined to be OOD, the first split of
the operational table will be considered OOD. At the conclusion of all the others for
cycles, if more than 50% of the splits are deemed OOD, the table will be considered
OOD. The third and final part’s sole purpose is to terminate the program in case
the table is found to be in-distribution for the currently analysed class, or otherwise
confirm that the analysed table is OOD concerning that class and continue the loop
for subsequent classes if present.

There is a slight modification that could be made to the code. As it’s currently
written, the calculated minimum value in the first part of the code is redundant:
since the norm is computed between every split combination, it will also be calculated
when comparing a split to itself, resulting in 0. Since norms cannot produce negative
values, it’s evident that the condition where a distance would be smaller than the
minimum value during the comparison of training and operational tables in the
second part is impossible.

One potential modification would be to avoid applying the norm between a split
and itself. However, this modification could lead to false positives if an operational
table is used that is based on the same dataset used to create the training table.
Nonetheless, it has been decided to retain it, as it might prove useful if a different
method for calculating distance other than norms were to be used.

49

Bibliography

[1] Kaiming He et al. “Delving deep into rectifiers: Surpassing human-level perfor-
mance on imagenet classification”. In: Proceedings of the IEEE international
conference on computer vision. 2015, pp. 1026–1034.

[2] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. “Imagenet classifica-
tion with deep convolutional neural networks”. In: Advances in neural infor-
mation processing systems 25 (2012).

[3] Nick Drummond and Rob Shearer. “The open world assumption”. In: eSI
Workshop: The Closed World of Databases meets the Open World of the Se-
mantic Web. Vol. 15. 2006, p. 1.

[4] Jingkang Yang et al. “Generalized out-of-distribution detection: A survey”. In:
arXiv preprint arXiv:2110.11334 (2021).

[5] EASA Concept Paper First usable guidance for Level 1 machine learning ap-
plications - Proposed Issue 01.pdf | EASA — easa.europa.eu. https://www.
easa.europa.eu/en/easa-concept-paper-first-usable-guidance-level-1-machine-
learning-applications-proposed-issue-01pdf. [Accessed 05-08-2023].

[6] Giacomo De Bernardi et al. “Rule-based out-of-distribution detection”. In:
arXiv preprint arXiv:2303.01860 (2023).

[7] Agnieszka Mikołajczyk and Michał Grochowski. “Data augmentation for im-
proving deep learning in image classification problem”. In: 2018 international
interdisciplinary PhD workshop (IIPhDW). IEEE. 2018, pp. 117–122.

[8] Kimin Lee et al. “A simple unified framework for detecting out-of-distribution
samples and adversarial attacks”. In: Advances in neural information processing
systems 31 (2018).

[9] Julian Bitterwolf et al. “Breaking down out-of-distribution detection: Many
methods based on ood training data estimate a combination of the same core
quantities”. In: International Conference on Machine Learning. PMLR. 2022,
pp. 2041–2074.

[10] Yiyou Sun et al. “Out-of-distribution detection with deep nearest neighbors”.
In: International Conference on Machine Learning. PMLR. 2022, pp. 20827–
20840.

[11] Anh Nguyen, Jason Yosinski, and Jeff Clune. “Deep neural networks are easily
fooled: High confidence predictions for unrecognizable images”. In: Proceedings
of the IEEE conference on computer vision and pattern recognition. 2015,
pp. 427–436.

50

https://www.easa.europa.eu/en/easa-concept-paper-first-usable-guidance-level-1-machine-learning-applications-proposed-issue-01pdf
https://www.easa.europa.eu/en/easa-concept-paper-first-usable-guidance-level-1-machine-learning-applications-proposed-issue-01pdf
https://www.easa.europa.eu/en/easa-concept-paper-first-usable-guidance-level-1-machine-learning-applications-proposed-issue-01pdf

[12] Abhijit Bendale and Terrance Boult. “Towards open world recognition”. In:
Proceedings of the IEEE conference on computer vision and pattern recognition.
2015, pp. 1893–1902.

[13] Dan Hendrycks and Kevin Gimpel. “A baseline for detecting misclassified and
out-of-distribution examples in neural networks”. In: arXiv preprint arXiv:1610.02136
(2016).

[14] Shiyu Liang, Yixuan Li, and Rayadurgam Srikant. “Enhancing the reliability
of out-of-distribution image detection in neural networks”. In: arXiv preprint
arXiv:1706.02690 (2017).

[15] Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell. “Simple
and scalable predictive uncertainty estimation using deep ensembles”. In: Ad-
vances in neural information processing systems 30 (2017).

[16] Weitang Liu et al. “Energy-based out-of-distribution detection”. In: Advances
in neural information processing systems 33 (2020), pp. 21464–21475.

[17] Jimmy Lin and Xueguang Ma. “A few brief notes on deepimpact, coil, and a
conceptual framework for information retrieval techniques”. In: arXiv preprint
arXiv:2106.14807 (2021).

[18] Haoran Wang et al. “Can multi-label classification networks know what they
don’t know?” In: Advances in Neural Information Processing Systems 34
(2021), pp. 29074–29087.

[19] Peyman Morteza and Yixuan Li. “Provable guarantees for understanding out-
of-distribution detection”. In: Proceedings of the AAAI Conference on Artificial
Intelligence. Vol. 36. 7. 2022, pp. 7831–7840.

[20] Yiyou Sun, Chuan Guo, and Yixuan Li. “React: Out-of-distribution detection
with rectified activations”. In: Advances in Neural Information Processing Sys-
tems 34 (2021), pp. 144–157.

[21] Rui Huang, Andrew Geng, and Yixuan Li. “On the importance of gradients for
detecting distributional shifts in the wild”. In: Advances in Neural Information
Processing Systems 34 (2021), pp. 677–689.

[22] Haoqi Wang et al. “Vim: Out-of-distribution with virtual-logit matching”. In:
Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition. 2022, pp. 4921–4930.

[23] Rui Huang and Yixuan Li. “Mos: Towards scaling out-of-distribution detection
for large semantic space”. In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition. 2021, pp. 8710–8719.

[24] Kimin Lee et al. “Training confidence-calibrated classifiers for detecting out-
of-distribution samples”. In: arXiv preprint arXiv:1711.09325 (2017).

[25] Taewon Jeong and Heeyoung Kim. “OOD-MAML: Meta-learning for few-shot
out-of-distribution detection and classification”. In: Advances in Neural Infor-
mation Processing Systems 33 (2020), pp. 3907–3916.

[26] Joost Van Amersfoort et al. “Uncertainty estimation using a single deep de-
terministic neural network”. In: International conference on machine learning.
PMLR. 2020, pp. 9690–9700.

51

[27] Jingkang Yang et al. “Semantically coherent out-of-distribution detection”. In:
Proceedings of the IEEE/CVF International Conference on Computer Vision.
2021, pp. 8301–8309.

[28] Jiefeng Chen et al. “Atom: Robustifying out-of-distribution detection using
outlier mining”. In: Machine Learning and Knowledge Discovery in Databases.
Research Track: European Conference, ECML PKDD 2021, Bilbao, Spain,
September 13–17, 2021, Proceedings, Part III 21. Springer. 2021, pp. 430–445.

[29] Hongxin Wei et al. “Mitigating neural network overconfidence with logit nor-
malization”. In: International Conference on Machine Learning. PMLR. 2022,
pp. 23631–23644.

[30] Yifei Ming, Ying Fan, and Yixuan Li. “Poem: Out-of-distribution detection
with posterior sampling”. In: International Conference on Machine Learning.
PMLR. 2022, pp. 15650–15665.

[31] Julian Katz-Samuels et al. “Training ood detectors in their natural habitats”.
In: International Conference on Machine Learning. PMLR. 2022, pp. 10848–
10865.

[32] Petra Bevandić et al. “Discriminative out-of-distribution detection for seman-
tic segmentation”. In: arXiv preprint arXiv:1808.07703 (2018).

[33] Andrey Malinin and Mark Gales. “Predictive uncertainty estimation via prior
networks”. In: Advances in neural information processing systems 31 (2018).

[34] Dan Hendrycks, Mantas Mazeika, and Thomas Dietterich. “Deep anomaly
detection with outlier exposure”. In: arXiv preprint arXiv:1812.04606 (2018).

[35] Yonatan Geifman and Ran El-Yaniv. “Selectivenet: A deep neural network
with an integrated reject option”. In: International conference on machine
learning. PMLR. 2019, pp. 2151–2159.

[36] Matthias Hein, Maksym Andriushchenko, and Julian Bitterwolf. “Why relu
networks yield high-confidence predictions far away from the training data and
how to mitigate the problem”. In: Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition. 2019, pp. 41–50.

[37] Alexander Meinke and Matthias Hein. “Towards neural networks that provably
know when they don’t know”. In: arXiv preprint arXiv:1909.12180 (2019).

[38] Sina Mohseni et al. “Self-supervised learning for generalizable out-of-distribution
detection”. In: Proceedings of the AAAI Conference on Artificial Intelligence.
Vol. 34. 04. 2020, pp. 5216–5223.

[39] Xuefeng Du et al. Unknown-Aware Object Detection: Learning What You Don’t
Know from Videos in the Wild. 2022. arXiv: 2203.03800 [cs.CV].

[40] Xuefeng Du et al. VOS: Learning What You Don’t Know by Virtual Outlier
Synthesis. 2022. arXiv: 2202.01197 [cs.LG].

[41] Jihoon Tack et al. “Csi: Novelty detection via contrastive learning on distri-
butionally shifted instances”. In: Advances in neural information processing
systems 33 (2020), pp. 11839–11852.

[42] Jim Winkens et al. “Contrastive training for improved out-of-distribution de-
tection”. In: arXiv preprint arXiv:2007.05566 (2020).

52

https://arxiv.org/abs/2203.03800
https://arxiv.org/abs/2202.01197

[43] Vikash Sehwag, Mung Chiang, and Prateek Mittal. “Ssd: A unified frame-
work for self-supervised outlier detection”. In: arXiv preprint arXiv:2103.12051
(2021).

[44] Ting Chen et al. “A simple framework for contrastive learning of visual rep-
resentations”. In: International conference on machine learning. PMLR. 2020,
pp. 1597–1607.

[45] Prannay Khosla et al. “Supervised contrastive learning”. In: Advances in neural
information processing systems 33 (2020), pp. 18661–18673.

[46] Yifei Ming et al. “How to Exploit Hyperspherical Embeddings for Out-of-
Distribution Detection?” In: arXiv preprint arXiv:2203.04450 (2022).

[47] Jing Tian, Michael H Azarian, and Michael Pecht. “Anomaly detection using
self-organizing maps-based k-nearest neighbor algorithm”. In: PHM society
European conference. Vol. 2. 1. 2014.

[48] Puning Zhao and Lifeng Lai. “Analysis of knn density estimation”. In: IEEE
Transactions on Information Theory 68.12 (2022), pp. 7971–7995.

[49] Liron Bergman, Niv Cohen, and Yedid Hoshen. “Deep nearest neighbor anomaly
detection”. In: arXiv preprint arXiv:2002.10445 (2020).

[50] Taurus T Dang, Henry YT Ngan, and Wei Liu. “Distance-based k-nearest
neighbors outlier detection method in large-scale traffic data”. In: 2015 IEEE
International Conference on Digital Signal Processing (DSP). IEEE. 2015,
pp. 507–510.

[51] Xiaoyi Gu, Leman Akoglu, and Alessandro Rinaldo. “Statistical analysis of
nearest neighbor methods for anomaly detection”. In: Advances in Neural In-
formation Processing Systems 32 (2019).

[52] Catarina Pires et al. “Towards knowledge uncertainty estimation for open
set recognition”. In: Machine Learning and Knowledge Extraction 2.4 (2020),
pp. 505–532.

[53] Matteo Guarrera et al. “Class-wise thresholding for robust out-of-distribution
detection”. In: Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition. 2022, pp. 2837–2846.

[54] Leland McInnes, John Healy, and James Melville. “Umap: Uniform mani-
fold approximation and projection for dimension reduction”. In: arXiv preprint
arXiv:1802.03426 (2018).

[55] Laurens Van der Maaten and Geoffrey Hinton. “Visualizing data using t-SNE.”
In: Journal of machine learning research 9.11 (2008).

[56] Wei Dong, Charikar Moses, and Kai Li. “Efficient k-nearest neighbor graph
construction for generic similarity measures”. In: Proceedings of the 20th in-
ternational conference on World wide web. 2011, pp. 577–586.

[57] Nikhil Ketkar and Nikhil Ketkar. “Stochastic gradient descent”. In: Deep learn-
ing with Python: A hands-on introduction (2017), pp. 113–132.

[58] Quan Zheng and David B Skillicorn. “Spectral embedding of signed networks”.
In: Proceedings of the 2015 SIAM international conference on data mining.
SIAM. 2015, pp. 55–63.

53

[59] Guoliang Xu. “Discrete Laplace–Beltrami operators and their convergence”.
In: Computer aided geometric design 21.8 (2004), pp. 767–784.

[60] F. Alimoglu. “Combining Multiple Classifiers for Pen-Based Handwritten Digit
Recognition”. In: (1996).

[61] F. Alimoglu and E. Alpaydin. “Methods of Combining Multiple Classifiers
Based on Different Representations for Pen-based Handwriting Recognition”.
In: (1996).

[62] Marco Muselli. “Switching neural networks: A new connectionist model for
classification”. In: Italian Workshop on Neural Nets. Springer. 2005, pp. 23–
30.

[63] Stefano Parodi et al. “Identifying environmental and social factors predispos-
ing to pathological gambling combining standard logistic regression and logic
learning machine”. In: Journal of Gambling Studies 33 (2017), pp. 1121–1137.

[64] Stefano Parodi et al. “Differential diagnosis of pleural mesothelioma using
Logic Learning Machine”. In: BMC bioinformatics 16 (2015), pp. 1–10.

[65] Stefano Parodi et al. “Logic Learning Machine and standard supervised meth-
ods for Hodgkin’s lymphoma prognosis using gene expression data and clinical
variables”. In: Health Informatics Journal 24.1 (2018), pp. 54–65.

[66] Marco Muselli. Switching Neural Networks: A New Connectionist Model for
Classification. Jan. 2005.

[67] Li Deng. “The mnist database of handwritten digit images for machine learning
research [best of the web]”. In: IEEE signal processing magazine 29.6 (2012),
pp. 141–142.

[68] F. Pedregosa et al. “Scikit-learn: Machine Learning in Python”. In: Journal of
Machine Learning Research 12 (2011), pp. 2825–2830.

[69] Francois Chollet et al. Keras. 2015. url: https://github.com/fchollet/keras.
[70] Dario Mantegazza et al. “An Outlier Exposure Approach to Improve Visual

Anomaly Detection Performance for Mobile Robots.” In: IEEE Robotics and
Automation Letters 7.4 (2022), pp. 11354–11361. doi: 10 .1109/LRA.2022.
3192794.

[71] Greg Brockman et al. “Openai gym”. In: arXiv preprint arXiv:1606.01540
(2016).

54

https://github.com/fchollet/keras
https://doi.org/10.1109/LRA.2022.3192794
https://doi.org/10.1109/LRA.2022.3192794

Acknowledgements

Giunto alla conclusione di questo lungo percorso di studi, vorrei porgere i miei più
sentiti ringraziamenti, in primo luogo, alle persone che mi hanno accompagnato
durante il tirocinio ed infine nella stesura della mia tesi, permettendomi di scoprire
questo campo davvero interessante di ricerca, a cui ho avuto modo di appassionarmi,
nonostante il breve periodo di tirocinio.

In particolare vorrei ringraziare i dottorandi Giacomo De Bernardi e Sara Narteni,
miei correlatori, per la loro disponibilità, per avermi sempre coinvolto nello svolgi-
mento del progetto e per avermi fornito utili consigli, chiarimenti e supporto nella
stesura del mio elaborato, nonchè per la fiducia che hanno riposto nei miei confronti.

Rivolgo poi un caloroso e doveroso ringraziamento ai miei relatori: Maurizio
Mongelli, per avermi guidato durante questo percorso, facendomi sentire davvero
parte integrante del progetto, e Agostino Bruzzone per aver gentilmente approvato
la mia tesi e per avermi concesso di entrare a far parte del team del CNR di Genova.
Per me è stato un piacere ed una grande soddisfazione.

Colgo inoltre l’occasione per ringraziare anche le persone che mi sono state vicino
con affetto durante tutto il mio percorso di studi, soprattutto i miei genitori, per
aver sempre creduto in me, mia sorella, la nonne e tutti i miei zii e cugini. Senza di
voi il periodo universitario sarebbe stato molto più duro.

Infine, ringrazio la mia compagna, che da ormai un anno si prede cura di me con
amore e tanta voglia di cucinare.

55

	Abstract
	Notations
	Introduction
	Out-of-Distribution
	Contribution

	Related Works
	Materials and Methods
	Uniform Manifold Approximation and Projection for Dimension Reduction (UMAP)
	Hyper-parameters
	Weaknesses

	Logic Learning Machine (LLM)
	Feature and Value Ranking

	Out-of-Distribution Detection Algorithm

	Performance Evaluation
	Datasets
	Experiments settings
	Results
	Summary of Results

	Conclusions
	Appendix
	Code example
	UMAP code
	Training and operational datasets creation
	From Rulex C-like rules to Python rules
	Rule hits tables building
	ODD

	Bibliography
	Acknowledgments

