
Planning and Control of an
autonomous UAV for large-scale

photovoltaic plants inspection

Fabio Conti
DIBRIS - Department of Computer Science, Bioengineering,

Robotics and System Engineering
University of Genova

Supervisors: A. Sgorbissa, C. T. Recchiuto
Co-supervisor: G. Mottola, J. Callà

In partial fulfillment of the requirements for the degree of
Master’s degree thesis in robotics

October 26th, 2023

mailto:s4693053@studenti.unige.it
http://www.dibris.unige.it
http://www.dibris.unige.it
http://www.unige.it

Acknowledgements

I’d like to thank my thesis supervisor Prof. Antonio Sgorbissa, for
his assistance during the entire project. His expertise and insightful
feedback have been invaluable to the development of this thesis.
I’d also want to thank Dr. Jacopo Callà of JPDroni Srl., my corporate
supervisor, for allowing to work on this project with the best possible
equipment, as well as for his mentoring and practical insights. His
expertise and outstanding feedback on the practical aspects of the
drone-based inspection procedures have substantially expanded my
understanding of the entire UAV based inspection operation.
My co-supervisor, Giovanni Mottola, deserves special recognition and
heartfelt thanks for his outstanding patience and perseverance in
assisting me in overcoming the hurdles encountered during the course
of this thesis. Giovanni’s direction and consistent support were critical
in creating the final outcome of this project.
I would like to express my deep appreciation to my girlfriend, Alice, for
her support and understanding, despite the physical distance between
us during this academic year spent abroad. Her encouragement has
been a constant source of motivation.
I would like to extend my sincere thanks to my colleagues Alessandro,
Francesco, Luca, and Matteo for the great team work and sincere
friendship that brought us together to the end of our challenging
academic journey.
A special thanks goes to my life long friends Andrea, Filippo, Giacomo,
and Irene. Together, we have experienced crucial life moments and
taken decisions that contributed to both my academic and, more
significantly, my personal growth.
Furthermore, I would like to thank my entire family for their patience
and support shown throughout my academic journey up until now. A
special thanks goes to my mother who, with great commitment and
dedication, has helped me overcome numerous challenges encountered
in my studies and in various aspects of life, both academic and beyond.

“Just as a flower blooms after enduring the harsh winter cold, a
dream can only come true if one is prepared to endure the hardships
that accompany its realization and make all the necessary efforts.”

Daisaku Ikeda

Abstract

Unmanned Aerial Vehicles (UAVs), or drones, are a recent technology
that have proven to be valuable in various professional contexts de-
spite some limitations, particularly with regards to battery life. The
scientific community expects that their use in daily life will become
increasingly prevalent in the future. Research is currently advanc-
ing in multiple directions, with a focus on further developing their
autonomous flying ability, which is a complex issue in the field of
robotics. Even though they are still in the early stages of development,
autonomous flying drones are already used in a wide range of fields,
from the military to agriculture and commerce. This thesis explores a
potential use for a UAV platform in the context of a specific inspec-
tion task. The study delves into the use of drones for autonomous
monitoring and inspection of solar power installations by following
pre-determined paths. The thesis examines this application in depth,
breaking it down into two main sections. The first part is dedicated
to finding the most efficient path for the drone to cover the entire
solar plant by using satellite images and Machine Learning (ML) and
geo-localization techniques to geolocalize the facility and determine
the best path to cover it. The second portion is focused on identifying
the optimal method of controlling the UAV to efficiently gather data
along the designated path. Therefore, it will focus on the development
of a visual based algorithm that uses visual-servoing control techniques
and ML based features extraction to localize and detect solar panels,
allowing the drone to safely follow the predetermined path. Simula-
tions, in-lab tests validate the performance of the suggested strategies
and finally, the algorithm will be tested in a real word environment.

Keywords: Machine Learning, Solar Plants, Unmanned Aerial Vehi-
cles, Visual Serovoing.

Contents

Acronyms xiv

1 Introduction 1
1.1 JP Droni . 1
1.2 Background . 1
1.3 Problem statement . 2

1.3.1 Planning the route . 3
1.3.1.1 Panel lines recognition 4
1.3.1.2 Path calculation 5

1.3.2 Autonomous flight . 6
1.4 Contents . 7

2 State of the art 9
2.1 Drone classification . 9

2.1.1 Multirotors . 10
2.1.2 Fixed-wing drones . 10

2.1.2.1 Hybrid drones 11
2.2 Quadcopter regulation . 12

2.2.1 Categories of certificates 12
2.2.2 Open category . 13
2.2.3 Operational steps . 14

2.3 Applications for autonomous UAVs 14
2.3.1 UAV-based last mile delivery 14
2.3.2 Security and surveillance 15
2.3.3 Search and rescue . 15
2.3.4 Agriculture monitoring . 16

2.4 Introduction to ML . 16
2.5 Artificial neural networks . 17

2.5.1 Weights . 18
2.5.2 Activation function . 18

2.6 Convolutional neural networks . 19

iv

CONTENTS

2.7 Segmentation . 20
2.8 Applications of NNs for PV plants 21

2.8.1 FCN approach . 21
2.8.1.1 Model setup . 22
2.8.1.2 Results . 22

2.8.2 Semantic-Segmentation-Based approach 22
2.8.2.1 DL server for segmentation 22
2.8.2.2 Results . 24

2.8.3 U-net for satellite image segmentation 24
2.9 Path identification . 24

2.9.1 TSP . 25
2.9.1.1 Historical background 25
2.9.1.2 Definition and types of solutions 25

2.10 CPP for PV plants . 26
2.10.1 SPP and DPP . 27
2.10.2 Cell-based CPP algorithms 28

2.10.2.1 GBWC . 28
2.10.2.2 BECD . 28
2.10.2.3 GBSTC . 29

2.11 Drone flight and control . 29
2.11.1 Flight forces . 30
2.11.2 Quadrotor modeling . 30
2.11.3 Frames and states of the quadrotor 31
2.11.4 Geometric and kinematic models 32
2.11.5 Dynamic model . 32
2.11.6 Control model . 33

2.12 Autonomous flight for PV plant inspection 33
2.13 Vision-based inspection strategy 34

2.13.1 Lines and slope detection 35
2.13.1.1 Lines . 35
2.13.1.2 Slopes . 35

2.13.2 UAV velocity controller 36
2.13.2.1 Tracking procedure 36
2.13.2.2 Identification of the end of a strip 37

2.14 Combination of tasks . 37
2.14.1 Extended Jacobian . 37

2.15 Flight altitude . 39
2.15.1 Scale determination . 39
2.15.2 Experiments setup and results 39

2.16 Post processing IM . 40
2.16.1 IM techniques . 40

v

CONTENTS

2.17 Defects detection . 41

3 Software and hardware architecture 43
3.1 Hardware requirements . 43
3.2 Software requirements . 44

3.2.1 PC . 44
3.2.1.1 Route planning 45
3.2.1.2 Bridge application 46
3.2.1.3 UAV Control . 46

3.2.2 Android mobile phone . 47
3.3 ROS architecture and interfaces 47

3.3.1 Interfaces description . 47
3.3.2 UAV connection module inner interfaces 48
3.3.3 Drone control inner interface 49

3.4 Simulated interfaces and drone 50

4 Bridge application 52
4.1 Application development . 52
4.2 Application improvements . 53

4.2.1 Tilt gimbal angle data transmission 54
4.2.2 Flight across rows of panels 54

4.2.2.1 Indoor flight . 54
4.2.2.2 Outdoor flight 54
4.2.2.3 GPS position errors 55

5 Planning the flight route 57
5.1 Current solution to the problem 57
5.2 Automatic solution to the problem 58

5.2.1 Satellite image acquisition 60
5.2.1.1 Coordinates selection 60
5.2.1.2 Image extraction 60

5.3 Deep Learning Instance Segmentation 61
5.3.1 YOLO . 61

5.3.1.1 Object Detection Data-set 62
5.3.2 Detectron2 . 63

5.3.2.1 FPN + PointRend: Instance Segmentation . . . 64
5.3.2.2 Instance Segmentation Data-set 65

5.4 Image processing . 66
5.4.1 First OpenCV processing 66

5.4.1.1 FindContour . 66
5.4.1.2 MinAreaRect . 67

vi

CONTENTS

5.4.2 Filtering and Standardizing 67
5.4.3 OpenCV WP pixel coordinates identification 68

5.4.3.1 BoxPoints . 68
5.4.3.2 WP identification 68
5.4.3.3 Ordering the WPs within the panel lines 70

5.4.4 Post-processing step: geo-localization 72
5.5 Path optimization process . 73

5.5.1 TSP formulation . 73
5.5.1.1 Problem Formulation 74
5.5.1.2 Problem constraints 76
5.5.1.3 Additional solution methods 79

5.5.2 Input data . 79
5.5.3 Output data . 79

6 UAV flight control 82
6.1 Features extraction . 82

6.1.1 Detectron2 Panels segmentation 83
6.1.1.1 Data-set images and annotation 83
6.1.1.2 Model fine-tuning 84
6.1.1.3 Feature extraction 85

6.2 PID controller . 86
6.2.1 Feature interpretation . 86
6.2.2 Controller definition . 87

6.3 Non linear controller . 87
6.3.1 Feature interpretation . 87
6.3.2 Controller definition . 89

6.3.2.1 Reference system and Kinematic equations . . . 89
6.3.2.2 Proof of stability using Lyapunov criterion . . . 89

6.4 Task Stacking . 91
6.4.1 Pinhole model and camera calibration 91
6.4.2 Feature interpretation . 91
6.4.3 Controller definition . 92

6.4.3.1 Interaction matrix 93
6.4.3.2 UAV camera motion constraint 94
6.4.3.3 Task based control and minimization problem . . 95
6.4.3.4 Task stacking . 96

6.4.4 Inclined camera setting 97
6.5 Across the panel indoor movement 98

6.5.1 Trajectory controller . 99
6.5.2 Simple PID position based controller 99

vii

CONTENTS

7 Experiments 101
7.1 Semantic Segmentation evaluation 101

7.1.1 Satellite images segmentation 102
7.1.2 Aerial images segmentation 102

7.2 Path optimization test . 103
7.2.1 Fixed time evaluation . 103
7.2.2 Optimal solution time over different maps 104
7.2.3 Variation of path length given different time & iterations

limits . 105
7.3 Control algorithm tests . 106

7.3.1 Simulated environment set-up 107
7.3.2 Indoor test-room set-up 108
7.3.3 Outdoor test set-up . 109
7.3.4 Simulation Tests . 110

7.3.4.1 Straight configuration 110
7.3.4.2 Planar Rotation 111
7.3.4.3 Vertical Rotation 112

7.3.5 Indoor Tests . 113
7.3.5.1 PID controller; [Video Test 5] 114
7.3.5.2 Lyapunov controller; [Video Test 5] 115
7.3.5.3 Task Stacking controller; [Video Test 6] 118
7.3.5.4 Angled panel following [Video Test] 119
7.3.5.5 PID position based controller 120
7.3.5.6 Across the panel movement over multiple panels

[Video Test] . 121
7.3.6 Outdoor Tests . 123

7.3.6.1 20.5m / Aligned start / Non linear control [Video
Test] . 123

7.3.6.2 10.5m / Aligned start / Non linear control [Video
Test] . 124

7.3.6.3 23.8m / Angular off-set / Non linear control
[Video Test] . 125

7.3.6.4 22m / Linear off-set / Non linear control [Video
Test] . 126

7.3.6.5 20m / Linear off-set / Task Stacking [Video Test] 127
7.4 Links . 128

8 Possible improvements and conclusions 129
8.1 Possible improvements . 129

8.1.1 Improving NN segmentation from satellite images 129
8.1.2 Improving CPLEX optimization problem definition 130

viii

https://youtu.be/uKugrg64Ir0
https://youtu.be/DtzYR1kEhzE
https://youtu.be/2Tk-TND5spk
https://youtu.be/RXTMHEeZkJo
https://youtu.be/6SYh28fkWW4
https://youtu.be/-W3krIS3pxM
https://youtu.be/-W3krIS3pxM
https://youtu.be/inCPx4gH0Zg
https://youtu.be/inCPx4gH0Zg
https://youtu.be/lFhh4Qirmuc
https://youtu.be/yoWSaf9Ue9E
https://youtu.be/yoWSaf9Ue9E
https://youtu.be/bMub7nXpUME

CONTENTS

8.1.2.1 Constraint redefinition 130
8.1.2.2 Sub-tour embedded solutions 130
8.1.2.3 Human-based path finding tests 131

8.1.3 Pan-tilt gimbal control . 131
8.2 Conclusions . 132

A Hardware used 133
A.1 DJI Mavic Pro: specifications . 133
A.2 HP Omen computer . 134

References 144

ix

List of Figures

1.1 Picture of a drone inspecting a PV plant taken during a test in
Predosa (AL). 2

2.1 DJI models used in this thesis. 11
2.2 Fixed-wing UAV models. 11
2.3 YANGDA Nimbus VTOL Fixed Wing Drone [1]. 12
2.4 a: supervised learning of a CNN for the instance segmentation of

a set of containers from areal images (Chap. 5). b: unsupervised
learning for the K-means clustering of groups of solar panel rows
(Chap. 5). c: reinforcement learning approach for autonomous
UAV flight through gates [2]. 17

2.5 Schematic of a feed-forward NN. 18
2.6 A simple example of 2D convolution, with a 2⇥2 kernel and padding. 19
2.7 A simple example of pooling with a 2⇥ 2 filter. 20
2.8 Semantic segmentation for the identification of defects in PV panels

[3]. 20
2.9 Example images from the Amir database [4]. 21
2.10 Schematic of the data processing method in [5]. 23
2.11 U-Net network structure [5]. 23
2.12 Different steps of the SPP algorithm [6]. 28
2.13 .a The steps for the BECD algorithm [7]. .b: the GBSTC algorithm

[8]. .c: the GBWC algorithm [9]. 29
2.14 The quadrotor concept. The width of the arrows is proportional

to the angular speed of the propellers [10]. 31
2.15 Quadrotor reference frame [10] . 31
2.16 Schematic of the cascade control law for quadrotors. 34
2.17 Image pre-processing according to the steps in [11]. 36
2.18 Visual representation of a function hi, from [12] 38
2.19 Example of IM, showing sidelap and endlap [13]. 41
2.20 Image of an actual hot-spot from the Pedrosa (AL) solar plant. . 42

x

LIST OF FIGURES

3.1 Interfaces between the different hardware components. 44
3.2 High-level UML graph of the interfaces. 48
3.3 UML graph of the socket connection interfaces. 49
3.4 UML graph of the controller interfaces. 50
3.5 The quadrotor model. 51
3.6 Simulation environment. 51

4.1 Schematic of an inspection, with the drone velocity (in teal), camera
stream (magenta) and altitude (red) from the proximity sensor and
barometer . 53

4.2 In teal: the WP-based movement across the panel. 55

5.1 ROS node which processes the image. 57
5.2 Pictorial summary of the image processing carried out by the module. 58
5.3 UML Activity Diagram of the node. 59
5.4 .a: YOLOv8 Bounding Boxes;.b: YOLOv5 Oriented Bounding Boxes. 62
5.5 PointRend segmentation comparison [14]. 65
5.6 Point-Rend segmentation. 65
5.7 Oriented boxes. 68
5.8 Side by side figures . 69
5.9 Side by side figures with different Dub values. 70
5.10 Side by side figures with different path directions. 71
5.11 Incomplete panel line ending. 71
5.12 a.: TSP solution before the application of the constraint; .b: After

the application of the constraint. 77
5.13 K-menas clusterized PV plant. 77

6.1 FPN Mask R-CNN network framework [15]. 84
6.2 Filtering step of the center panel. 85
6.3 PID’s feature geometric interpretation. 86
6.4 Non linear controller feature geometric interpretation. 88
6.5 Frame of the DJI UAV. 89
6.6 Camera parameters, pinhole model. 92
6.7 (⇢, ✓) feature geometric interpretation. 93
6.8 Shift, geometric interpretation. 98

7.1 Average path length calculated by each of the algorithms on four
different maps. 104

7.2 Comparison of the average times to reach the optimal solution, for
the BR and ILS algorithms. 105

7.3 Path length over time for the BR algorithm and Path length over
number of iterations for the ILS algorithm. 106

xi

LIST OF FIGURES

7.4 Average time variation for different numbers of iterations, for the
ILS. 106

7.5 Three texture combinations. 107
7.6 Screenshot of a simulation for different panel setups. 108
7.7 Different iteration of the handmade simulated panel. 109
7.8 Different Types of ground surfaces and drone markers. 109
7.9 a.Error from the top-view; b. Error from the lateral-view; c. Rota-

tion error over time. 110
7.10 a.Error from the top-view; b. Error from the lateral-view; c. Rota-

tion error over time. 111
7.11 a.Error from the top-view; b. Error from the lateral-view; c. Rota-

tion error over time. 113
7.12 Top/lateral view | velocity of Optitrack data first PID test. 114
7.13 PID Gains first test set. 114
7.14 PID Gains second test set. 114
7.15 Top/lateral view | velocity of Optitrack data third test. 115
7.16 Top/lateral view | velocity of Optitrack data fifth test. 115
7.17 Top/lateral view | velocity of Optitrack data first Lyapunov con-

troller test indoor. 116
7.18 picture of the camera misalignment. 116
7.19 Top / lateral view | velocity of OptiTrack data second test. 117
7.20 Top / lateral view | velocity of Optitrack data fifth test. 117
7.21 Top / lateral view | velocity of Optitrack data second test. 119
7.22 Top / lateral view | velocity of Optitrack data fourth test. 119
7.23 Top / lateral view | velocity of Optitrack data sixth test. 119
7.24 Prospective, top ,lateral view of the shifted visit. 120
7.25 Position based controller graph from the top and lateral view. . . 121
7.26 Prospective,top and lateral view of the two panels visit. 122
7.27 ⇢, ✓ and z altitude values perception for the non linear controller. 123
7.28 ⇢, ✓ and z altitude values perception for the non linear controller

controller. 124
7.29 ⇢, ✓ and z altitude values perception starting from an angular

misalignment position | a. Image drone view at t1; b. Image drone
view at t2; c. Image drone view at t3. 125

7.30 ⇢, ✓ and z altitude values perception starting from a linear mis-
alignment position.|a. Image drone view at t1; b. Image drone view
at t2; c. Image drone view at t3 126

7.31 ⇢, ✓ and z altitude values perception for the Task stacking visual
based controller. 127

A.1 Mavic 2 Enterprise Dual . 133

xii

List of Tables

2.1 Some examples of activation functions [16]. 19
2.2 Table summarizing the different defects and faults detectable at

different heights [13]. 40

3.1 Libraries and packages required for the route planning. 45
3.2 Libraries and packages required for the bridge connection 46

4.1 Socket connections. 52

5.1 JSON comands . 81

7.1 Root Mean Square errors for each of the controllers in the linear
track. 110

7.2 Root Mean Square errors for each of the controllers in the Tilted
track variations. 111

7.3 Root Mean Square errors for each of the controllers in the Up and
Down track variations. 112

7.4 PID RMS errors for each of the tests. 114
7.5 RMS errors for each of the Lyapunov controller tests. 116
7.6 RMS errors for each of the Visual servoing controller tests. 118

A.1 DJI Mavic 2 Enterprise Dual specifications 134

xiii

Acronyms

AI Artificial Intelligence
AL Alessandria
AMO Adaptive Multi-scale Optimization
ANN Artificial Neural Network
BB Bounding Box
BECD Boustrophedon Exact Cellular Decomposition
BGWC Grid-Based Wavefront Coverage
BR Bottom Right
BVLOS Beyond Visual Line Of Sight
CNN Convolutional Neural Network
CoM Center of Mass
CPP Coverage Path Planning
CV Computer Vision
DBSCAN Density-Based Spatial Clustering
DC Direct Current
DM Distance Matrix
DoF Degree of Freedom
DL Deep Learning
DPP Dynamic Point algorithm
EE Earth Engine API
ENAC Ente Nazionale per l’Aviazione Civile (national institution for civil aviation)
FCN Fully Convolutional Neural Network
FPN Feature Pyramid Network
FPS Frames Per Second
GA Genetic Algorithm
GM Geometric Model
GNSS Global Navigation Satellite System
GPU Graphic Processing Unit
HSV Hue-Saturation-Value
IDE Integrated Development Environment
ILS Iterated Local Search
IM Image Mosaicking
IoU Intersection over Union
IP Image Processing
IS Instance Segmentation
IT Inference Time
LS Local Search

xiv

JPEG Joint Photo Expert Group
JSON Javascript Object Notation
KF Kalman Filter
KM Kinematic Model
KML Key-hole Markup Language
MA Memetic Algorithm
MAV Multirotor Areal Vehicle
MILP Mixed Integer Linear Programming
ML Machine Learning
NED North-East-Down
NN Neural Network
PID Proportional-Integer-Derivative
PNG Portable Network Graphic
PSR Photo Scale Reciprocal
RC Radio Controller
ReLU Rectified Linear Unit
ResNet Residual Network
RF Representative Fraction
RGB Red-Green-Blue
RMS Root Mean Square
RTK Real-Time Kinematics
SAM Segment Anything
SP Solar Panel
SPP Static Point algorithm
SW Software
TCP Transmission Control Protocol
TIP Traditional Image Processing
TL Top Left
TSP Traveling Salesman Problem
UAS Unmanned Aircraft System
HW Hardware
UAV Unmanned Aerial Vehicle
UDP User Datagram Protocol
UI User Interface
VLOS Visual Line Of Sight
VTOL Vertical Takeoff and Landing
WLAN Wireless Local Area Network
WP Way-Point
YOLO You Only Look Once
ZSL Zero Shot Learning

xv

Chapter 1

Introduction

1.1 JP Droni
The thesis work is carried out in partnership with JP Droni Srl, a high-tech
company that provides drone services to a wide range of clients, including industry
professionals and individuals. They specialize in providing technical inspections,
agriculture 4.0 solutions, LIDAR surveys, and video production services. Based
in Genoa (Italy), they operate throughout Italy and Europe, maintaining high
standards of quality and safety in all their activities. They have carried out flight
operations in various countries, both within and outside of Europe, and have
obtained the necessary certifications for these operations. In addition to their
regular business operations, JP Droni also engages in research collaborations with
universities and other research institutions to advance the field of UAV technology.
For more information about JP Droni, we refer to their website [17].

1.2 Background
Solar energy is a sustainable and non-depletable source of energy supply. Such
resource can be a viable substitute for fossil fuels and has the potential to
significantly contribute to meeting global energy demands [18]. Photovoltaic (PV)
solar panels are common and clean devices to harness this kind of renewable
energy from sunlight. Worldwide, large-scale solar power infrastructures are being
installed every day over very wide geographical areas where solar power can be
exploited in the most effective way. These Solar Power (SP) plant infrastructures
can cover many square kilometers of land where thousands of panels are installed
(Fig. 1.1) [19].

Companies that manage large installations understand the need for frequent
routine check-ups and extensive maintenance to keep the system running efficiently.

1

1.3 Problem statement

Figure 1.1: Picture of a drone inspecting a PV plant taken during a test in Predosa
(AL).

Certain defects in PV modules can be caused by factors such as solar radiation,
temperature changes, and environmental conditions, such as UV exposure, tem-
perature cycles, and chemical reactions [20]. Harsh environments like deserts,
with sand, wind and dust, can greatly reduce the performance of PV modules [21].
Recently, manufacturers have created thinner film solar cells with larger surface
area, which makes the cells more delicate during transportation and installation.
These thinner film solar cells are also highly sensitive and fragile [22]. Due to
the panels’ susceptibility to damage and their limited lifespan, it is often costly
and dangerous to conduct on-site inspections using human labor. This creates
an opportunity for using autonomous robotic inspection systems to improve the
monitoring of these installations, preventing drops in energy production [23].

1.3 Problem statement
In recent years, there has been a growing interest among researchers in developing
innovative methods for detecting degradation in photovoltaic plants. One approach
that has been proposed is to use indicators based on resistance, which can provide
valuable insights into the condition of these systems. As part of this research,
many scientists have also begun to explore the potential of unmanned technology
for monitoring and maintaining these large-scale power plants. Utilizing extensive
flight campaigns, scientists have been investigating the feasibility of using UAVs
to conduct regular inspections of PV plants, particularly those that are located in
hard-to-reach areas or are otherwise difficult to access using traditional manned
methods. As PV plants are getting larger, UAVs have become the go-to technology
for monitoring and inspecting power plants [24].
This work aims at creating the foundation for the development of a software
architecture capable of autonomously carrying out a full monitoring session of a

2

1.3 Problem statement

solar plant. The problem can be broadly summarized into 2 macro-sections, as
discussed in the following subsections.

1.3.1 Planning the route
The first problem tackled is related to the automatic definition of a proper route
for the drone to follow in order to cover up the entire PV plant area given a
satellite image. In the following Chapter 2 some examples related to this matter
are reported. This problem is taken care of in a very similar way in all the papers
regarding these concepts, as detailed below:

1. Image boundaries definition (Subsections 2.8.1 and 2.8.2): given a
satellite image of the solar plant, the first step is to extract the boundaries
of the area of interest, namely the area covered by the panels. The image
will then be transformed from a generic irregular shape to polygons [11].
This result is often achieved after multiple layers of image filtering, mainly
carried out by image processing programs based on the openCV Python
library using Traditional Image Processing (TIP) [6, 25] or Deep Learning
(DL) approaches [4].

2. Path calculation algorithm: this part implies the application of an
algorithm developed for path planning. This step is usually carried out
either by a standard formulation of a Coverage Path Planning (CPP) problem
or by a custom-made algorithm where global-coordinates-based (latitude-
longitude) waypoints (WPs) are defined on the basis of the perimeter
previously identified as the border of the PV plant (Sec. 2.10). It is
important to specify that such algorithms do not take into account neither
the position and orientation of the panels nor (for some cases) the battery
capacity of the UAV in use. Indeed, these algorithms are only based on the
geo-localization of the plant perimeter.

The company JP Droni performs PV plant inspections with DJI drones
[26]. Their DJI UAV fleet support GNSS (Global Navigation Satellite System)
sensors capable of identifying the position of a drone with higher or lower accuracy
depending on the model and the GNSS signal condition in a specific area. Therefore,
JP Droni takes advantage of the GNSS board to manually determine the global
WPs connection for identifying the final path of the drone.

Starting from satellite images of the solar plant, the WPs are selected at the
left and right (or top and bottom) extremes of the panels, depending on the plant
orientation. The global orientation of the PV plants is usually either horizontal
(west-east) or vertical (north-south). This implies that the photovoltaic panels
are organized as lines of photovoltaic modules all oriented in the same direction

3

1.3 Problem statement

[27]. Choosing the WPs at the panel extremes ensures that the drone passes right
on top of the panels. This feature is an advantage for the picture reconstruction
of a plant for the evaluation of the efficiency conditions of the panels. The photos
taken by the drone at a certain time stamp can be directly related to a specific
position on top of a specific line of panels, making it very easy to locate a potential
energy production issue.

However, this method intrinsically has three main disadvantages.

1. The manual connection of the WPs does not ensure to find the shortest
path, especially when considering geometrically intricate PV plants where
no trivial solution exists for connecting the points.

2. It does not take into account the battery life of the UAV.

3. Manually selecting all the WPs is long and tedious, especially when analyzing
PV plants with large footprints.

The novelties introduced by this thesis aim to address and resolve the limita-
tions associated with the already-established manual method. These advancements
are achieved by incorporating the key concept of the manual technique into an
automated solution that exploits Machine Learning (ML) and optimization algo-
rithms maximizing the benefits offered by the existing method while minimizing
the reliance on user commands. Additionally, the proposed approach takes into
account the battery levels of the drones and ensures the planning of the most
efficient and shortest flight path possible.

1.3.1.1 Panel lines recognition

Recognizing panel lines is an essential step for the inspection of PV plants. To
tackle the problem, an object recognition technique based on Neural Networks
(NNs) was explored in the first place. Object detection is a technology that falls
within the domains of computer vision and image processing. Its aim is to identify
and locate instances of specific semantic objects which can be part of a certain
class, such as humans, buildings, or cars, within digital images and videos [28].
This method can be applied exploiting the use of different neural networks capable
of performing such task. The first NN used for object detection was You Only
Look Once (YOLOv8), eighth version. This is the last version of the YOLO NN
proposed by the company Ultralytics. YOLO, using an end-to-end NN, makes
predictions of bounding boxes and class probabilities all at once [29]. The issue
with the use of this NN is related to the kind of output produced once an object is
detected. The returned mask identifying the object is just a squared box with the
same orientation as the image frame. Since the problem required a much higher
precision, a Convolutional Neural Network (CNN) for Instance Segmentation (IS)

4

1.3 Problem statement

was used instead. Leveraging CNNs has demonstrated to be the most promising
way to precisely detect objects from satellite images. Particularly, the Detectron2
project called Point Rend was employed, as it proved to be particularly suited for
addressing this problem [14]. Detectron2, developed by Meta researchers, is an
advanced library renowned for its exceptional capabilities in object detection and
segmentation [30]. Its integration into the thesis work has greatly enhanced the
accuracy and efficiency of panel lines recognition (Chap. 5).
Furthermore, post-processing Computer Vision (CV) techniques based on the
OpenCV library have been used for the identification of the drone’s WPs [31].

1.3.1.2 Path calculation

Starting from the WPs thus found, three important points had to be addressed to
determine the UAV’s path.

1. Geo-localizing the WPs: Keyhole Markup Language (KML) files are used
as a simple User Interface (UI) with Google Earth. The Google Earth Pro
application allows the user to introduce markup elements such as polygons,
polygonal lines and key-points on top of the satellite maps. The KML
file related to a map can then be saved separately. The user will only
have to create a folder within the KML file containing a polygon shape
covering up the PV site and a key-point representing the starting point.
This will be the only user interaction during the operation because all the
geographical information contained in the KML file will be sufficient to
locate the way-points and ensure the flight plan feasibility (Sec. 5.4.3).

2. Connecting the WPs efficiently: the connection of the WPs is carried out as
a case of the well-known optimization problem called the Traveling Salesman
Problem (TSP). The TSP is one of the most important and most studied
combinatorial problems. Applications of TSP can be found in a wide variety
of fields, from manufacturing to vehicle routing to integrated circuit design.
Mixed-Integer Linear Programming (MILP) formulations have been studied
extensively for TSP, yielding extremely effective results, to the extent that
advances in computing power have made it possible to solve exact TSP
instances with several thousand nodes [32]. However, one does not always
have the time and computational means to use such methodological and
algorithmic tools. For this thesis, the problem was approached from a
different angle, namely, not focusing on the search of the optimal solution
but considering time-saving approximate solutions. The algorithms used
in the final system thus do not necessarily offer the optimal solution to
the problem. Meta-heuristics, such as local search, Iterated Local Search,
simulated annealing, and rho-approximated algorithms (Sec. 2.9.1) are part

5

1.3 Problem statement

of this category of approaches. These schemes can be adapted to many
different optimization problems and have yielded excellent practical results
in recent years. A few considerations were also made regarding the search
of an optimal solution.

3. Addressing the battery constraints: considering the battery in the planning
process is a key step forward for the effectiveness of the final path. If the
battery level is too low to visit all the WPs in one tour, the drone will be
able to plan a clustered path where each cluster of WPs is guaranteed to
correspond to a feasible path. The key concept for addressing this problem
is the modeling of battery draining.
Thanks to the highly detailed satellite pictures retrieved from Google Earth,
combined with the localization process, it is possible to associate the pixels
side length to a measurement in meters. Therefore, it is straightforward to
associate a total distance value to the calculated path. Such value will be
compared to the drone’s maximum feasible distance with a fully-charged
battery pack. If the drone’s maximum distance is shorter than the required
distance for visiting every WP in one tour, the set of WPs is clustered in
two subgroups. The same process and comparison are executed for each
subgroup to check its feasibility. The feasible subgroups are added to the
final path permutation, while the same clustering process is iterated over
the non-feasible sub-tours.
The process of partitioning WPs into subgroups is implemented using the
K-Means clustering algorithm (Sec. 5.5.1.2). This ML-based classification
technique aims to cluster data points into n groups with equal variance,
while minimizing the within-cluster sum-of-squares criterion [33].

1.3.2 Autonomous flight
Thanks to the capability of DJI UAVs to connect geo-localized WPs through
Real-Time Kinematics (RTK) technology, the final WPs path permutation could
be enough for capturing panel images. As a matter of fact, the JP Droni company
performs this kind of operation during image acquisition campaigns of PV plants.
When the facility is on an area with a flat and regular surface, this method is very
effective as confirmed by experience. However, this technique shows some issues
when considering PV installations located on top of irregular terrain surfaces. In
such a setting, the panel lines may not always be as straight and regular as in the
previous case, given the highs and lows of the hills or the little shifts on the panels
setting due to the terrain. Such changes may prevent a drone’s camera to capture
a well-centered image of the panel lines, especially during low-altitude flights.

6

1.4 Contents

To address this issue, a new ROS controller architecture was presented (Chap.
3). The system aims at controlling the entire drone-based inspection process. It
manages the travel from one panel to the other through a basic WP connection.
The motion following a panel is defined through three different controllers: a
simple PID controller (Sec. 6.2), a Non linear controller (Sec. 6.3), and a visual-
servoing-/task-stacking controller (Sec. 6.4). All three algorithms are based on a
visual features extraction method (based on segmentation algorithms) and on the
altitude sensors data coming from the UAV drones (Sec. 6.1.1). The control is
capable of flying the drone at different heights, allowing it to identify different
types of features which cannot be spotted at the current standard flying heights
of 15 to 20 meters (Sec. 2.15). The data coming from the drone’s sensors and the
velocity controls sent to the drone are based on a connection established through
a bridge architecture developed and perfected during previous thesis work. Some
extra features were added to the bridge connection to perfect the given controls
(Chap. 4).

1.4 Contents
This section provides an overview of the thesis layout, highlighting the different
chapters and their contents and setting up the stage for diving into various
topics such as the state-of-the-art, the global architecture, planning and control,
experiments, and finally, the conclusions drawn, including some thoughts about
the future developments of this work.
State-of-the-art (Chap. 2): here, some context and introduction is given to

each of the topics touched throughout the thesis work, such as ML and DL
basics, path coverage problems and their optimization techniques, quadrotor
modeling and flight control, and image reconstruction strategies. Moreover,
a scoping review regarding the concept of this work was conducted. This
type of review method is particularly beneficial when seeking to gain a
comprehensive understanding of a topic that is complex or diverse, by
providing a clear overview of the available evidence [34]. After analyzing
52 papers, some of the most interesting ones were reported, together with
related approaches to similar topics, and then relevant concepts were adapted
to our specific applications.

Software and hardware architecture (Chap. 3): describing the software and
hardware architecture of the interface and the advancements with respect
to previous work.

Bridge application (Chap. 4): the bridge application is briefly explained and
the advancements related to the exchanged data are reported.

7

1.4 Contents

Planning the flight route (Chap. 5): describing the extraction and geo-
localization of satellite images, the localization of the WPs and the appli-
cation of DL and CV techniques for their extraction, and the optimization
techniques and strategies used for connecting the WPs.

UAV flight control (Chap. 6): three controller techniques (PID, Lyapunov
non linear, visual servoing and task stacking based) are explained, along
with the description of the visual feature extraction.

Experiments (Chap. 7): reporting the data collected during NN training and
in simulated and real flight tests.

Conclusions and possible improvements (Chap. 8): where a few hints to
new developments of this project are given.

The findings and contributions of this master’s thesis are presented in the following
sections, which provide additional depth about each of these topics.

8

Chapter 2

State of the art

The focus of this chapter is to gather and evaluate evidence from multiple study
designs and methods found in the published literature to contextualize and
explore the state of the art regarding the different aspects of the use of UAVs for
autonomous monitoring and inspection. The aim is twofold: first, to define the
basis of the DL-based method to identify the optimal UAV route, also including
an introduction to ML and DL and to their role for this kind of application.
Moreover, an overview is conducted on the different optimization techniques used
for multiple types of WP connections. Secondly, attention is given to the existing
visual control techniques applicable for controlling the drone flight, and also to the
general modeling and low-level control of quadrotor drones. In addition to this, a
section will be dedicated to the classification of drones based on function, size,
missions and other elements of interest, including some examples of monitoring
applications for drones. Regulations and limitations in relation to drone flight will
also be discussed in the following sections.

2.1 Drone classification
Given their adaptable form factor, simplicity of control by human operators,
autonomous capabilities, and a variety of possible applications, Multirotor Areal
Vehicles (MAVs) have been quickly established as a platform for robotics research.
Drones are useful in a wide range of sectors, including surveillance and monitor-
ing tasks [35], environmental research, search-and-rescue missions, infrastructure
inspections, precision agriculture, package delivery, and film-making. They are
essential tools for gathering information, carrying out tests, mapping and navigat-
ing areas, and pursuing new directions in robotics research due to their agility,
maneuverability, and capability to enter difficult-to-reach spaces [36].

There are many different ways to classify MAVs, depending on different aspects

9

2.1 Drone classification

of their platform. However, the most common classification is based on their
mechanical architecture. The UAV form factor can be distinguished based on
the propulsion strategy. Therefore, they can be classified as rotating-wing (or
multirotor) models and fixed-wing (or aircraft) models.

2.1.1 Multirotors
Multiple benefits of multirotor UAVs lead to their broad use. First, they are
extremely adaptable because of their ability to do Vertical Take-Off and Landing
(VTOL) maneuvers in tight places and difficult terrains. Aerial photography,
surveillance, delivery services, and disaster response are just a few of the areas in
which these UAVs are used. Because of their adaptability and scalability, they can
be manufactured in a variety of sizes, to accommodate different jobs or payloads.
However, they do have a few drawbacks compared to fixed-wing alternatives.
Indeed, multirotor UAVs have shorter flights and lower endurance, due to the
nature of their flight mechanics, which requires more energy. They have a limited
operating range and need frequent battery replacements or recharging periods,
which can interrupt continuous activities. Moreover, multirotors usually have
multiple points of failure. Components such as motors, propellers, electronic
speed controllers, and power systems are critical for flight operations. In the
event of any malfunction or failure in these components, the UAV’s ability to fly
can be compromised. These failures require regular maintenance and redundancy
measures, to ensure the safe and reliable operation of multirotor UAVs.

Quadcopter (or quadrotors) (Fig. 2.1a) have four rotor blades that lift the
drone off the ground through propulsion. This model has four actuators located
behind each propeller blade. These motors are generally brushless Direct Current
(DC), whose velocity can be controlled using basic Proportional-Integral-Derivative
(PID) controllers, or other more advanced control schemes [37]. The quadcopter
is the best-known mechanical architecture among multirotors, but many other
models have been studied as well, for example hexacopters (Fig. 2.1b), with 6
propeller blades.

2.1.2 Fixed-wing drones
Differently from quadcopters, fixed-wing drones resemble traditional jet planes
(Fig. 2.2). These drones require a runway or a launching platform to take off and
land due to their propulsion made for forward flight. Because of their effective
aerodynamic design, they provide advantages over multirotor alternatives like
wide ground coverage for tasks such as aerial mapping, agricultural surveys, and
animal monitoring. They also have higher battery autonomy and greater flying
endurance, allowing them to function for longer periods of time between battery

10

2.1 Drone classification

(a) Quadcopter used for the experi-
ments: DJI Mavic Enterprise 2 [26]
(App. A.1).

(b) Exacopter used for the experi-
ments: DJI Matrice 600 Pro [26].

Figure 2.1: DJI models used in this thesis.

(a) Albatross UAV [38]. (b) Delair UX11 UAV [39].

Figure 2.2: Fixed-wing UAV models.

changes. However, unlike multirotor UAVs, fixed-wing drones require wider space
for takeoff and landing, making them less suitable for deployment in confined or
densely populated areas. The need for a runway or specialized launching devices
can limit their accessibility and operational flexibility. Furthermore, their larger
form factors require careful consideration when it comes to transportation and
storage logistics [36].

2.1.2.1 Hybrid drones

There are VTOL-type fixed-wing drones, also known as hybrid drones, which can
perform forward flight like conventional fixed-wing drones while also being able to
hover at a constant height like quadcopters. For instance, the Nimbus model (Fig.
2.3) resembles ordinary fixed-wing drones, but has four upward-facing propellers
evenly spaced throughout its four quadrants. A forward-facing propeller and the

11

2.2 Quadcopter regulation

Figure 2.3: YANGDA Nimbus VTOL Fixed Wing Drone [1].

fixed wings create some lift, easing the strain on the upward-facing propellers.

Quadrocopters, fixed-wing, and hybrid drones can all use tilting rotors, which
increase adaptability by allowing for directional adjustments in rotor thrust. How-
ever, the addition of tilting motors increases the control and actuation complexity.
A thorough evaluation of the trade-off between versatility and complexity must be
done before deciding on whether to include these extra capabilities in any drone.

2.2 Quadcopter regulation
For the sake of completeness, the main Italian regulations in force for UAV drone
flight will be presented in this section. Note that these regulations vary from
country to country [40].

2.2.1 Categories of certificates
The current European Union regulation provides indications and limitations
to regulate and support remotely-controllable aerial vehicles and civil aviation.
The Regulation (EU) 2019/947 and Regulation (EU) 2019/945 [41] establish a
classification of Unmanned Aircraft System (UAS) operations based on risk level.
The Italian reference for UAS drone flight regulation is the “Ente Nazionale per
l’Aviazione Civile” (ENAC), the national institution for civil aviation. ENAC
acts as the single authority for technical regulation, certification, supervision and
control in the civil aviation sector in Italy, in compliance with the powers derived
from the Navigation Code [42].

There are three official categories of UAS activities, described below.

Open category: describes UAS activities that follow particular guidelines,
including operating inside the pilot’s Visual Line of Sight (VLOS) and

12

2.2 Quadcopter regulation

having a maximum take-off mass of less than 25 kg for privately-constructed
aircraft. This category is the most restrictive in terms of conditions and it
allows the user to fly only in predetermined circumstances.

Specific category: this is the most typical UAS operation type, including
complex tasks carried out by businesses or by independent specialists. This
category allows the user to fly more freely than the previous one; moreover,
operators with specific certificates may make specific requests to ENAC to
perform operations in places or conditions that are not normally accessible
or for which no explicit regulation exists.

Certified category: involves operations which entail protracted overflights over
people, the transportation of people or dangerous items, and a high level of
risk that can only be reduced by certifying the aircraft, the operator, and
the pilot. This category represents the highest level in the field of drone
piloting.

These categories all refer to certified drones, which must have geo-awareness and
identification functions [43]. To date, however, there are no certified UAVs, which
is why ENAC has extended the status of the limited categories (until 1 January
2024), allowing the piloting of non-certified drones.

2.2.2 Open category
The open category contains three sub-levels, regulated by two licenses. The three
different levels are [44]:

A1: The drone weighs less than 500 grams. This allows flight over individuals,
but not over crowds.

A2: Flight close to people. A minimum horizontal distance of 50 meters should
be maintained between the drone and individuals. Additionally, if the drone
is operated at a height above 50 meters, a horizontal distance at least equal
to the altitude must be maintained. Also, the weight of the drone may not
exceed 2 kilograms.

A3: The flight is allowed with a minimum horizontal distance of 150 m from
residential, commercial and industrial areas and away from people.

The first license that can be obtained is for the A1-A3 levels, and the second is for
the A2. These two licenses must be obtained to reach all three levels. Nevertheless,
only VLOS operations are permitted in the “open” category, while Beyond Visual
Line of Sight (BVLOS) operations are only allowed for the “specific” and “certified”
categories.

13

2.3 Applications for autonomous UAVs

2.2.3 Operational steps
Each country has to publish maps showing the particular geographic areas where
drone flights are either entirely forbidden or where operation permission is required.
In most countries, phone apps are developed to help users with such matters.
These apps make it easier to find legal flight zones and avoid interfering with
civilians and military aircraft. To provide a dedicated, low-altitude air traffic
management service for all varieties of UAVs and related operations, the D-Flight
portal has been developed for the Italian jurisdiction [45]. This application allows
the operator to register the UAV with an identification code recognizable by
Italian authorities and consult an aerial map for avoiding zones where flying is
forbidden.

The standards UAS.SPEC.050 and UAS.SPEC.060 are established by EU
Regulation 2019/947 and underline the crucial factors that operators should be
aware of before engaging in safe flying operations within the “open” and “specific”
categories. These criteria apply to all aerial vehicles, independently of weight,
function, and control mode (namely, whether it is autonomous or teleoperated).
Autonomous flying is prohibited except for research work. As reported in [46], the
law provides a thorough framework outlining the integration of automated control
technology within a fleet of drones. This framework ensures accountable fleet
management for a variety of tasks, including control management, surveillance,
and contingency assessment. This is particularly important given the growing
interest in autonomous driving, as it guarantees the responsible and successful
application of automated control technologies.

2.3 Applications for autonomous UAVs
Commercial UAV units have been growing in popularity for application in multiple
areas, including inspection, maintenance, controlled agriculture, and security
monitoring, given their reliability and ease of use. Generally, wherever manned
inspection is dangerous, uncomfortable, or simply inefficient, drones are a safer,
cost- and time-effective alternative. In this subsection, a few applications for
autonomous UAVs are briefly exposed.

2.3.1 UAV-based last mile delivery
During the last few decades, e-commerce and retail companies have been working
intensively on deploying more advanced ways to cut shipping time to customers.
Many newer companies, like Google and Amazon, as well as traditional logistics
providers such as UPS, USPS, DHL, and FedEx, have been experimenting with
drone delivery aiming at reducing costs and providing cheaper, faster, and more

14

2.3 Applications for autonomous UAVs

efficient service [47]. One of the most researched fields in this context is truck-
drone combined delivery. This feature adds the possibility of launching a UAV
drone capable of delivering a payload to a certain location from a typical delivery
truck. The aerial vehicle coupled with a standard ground vehicle provides multiple
advantages regarding mailing speed and planning [48].

Starting from this, the concept of a Smart Ambulance was introduced, namely a
medical ambulance equipped with a UAV. This feature allows launching the drone
for a last-mile delivery of medical payloads and providing additional information
regarding the rescued patients, making it easier to provide appropriate supplies
to promptly take care of the emergency once the ambulance gets to the rescue
site [49].

2.3.2 Security and surveillance
In the military, private, and public sectors, the use of UAVs for security and
surveillance has significantly increased over the years. Target following, track-
ing, and border control have all been investigated as potential uses for UAVs.
Researchers have created resource-usage management strategies like Adaptive
Multi-scale Optimization (AMO) to improve the efficiency of UAV surveillance
missions. Frameworks for UAV security systems have also been suggested, espe-
cially for marine and smart city applications. To find and follow small targets,
robot surveillance systems use network platforms, task plans, and ML algorithms
[50].

2.3.3 Search and rescue
Emergency services carry out Search And Rescue (SAR) operations to track
people’s positions during emergency situations in remote locations. Timing is
a key factor for the success of the mission. Automated UAVs can increase the
effectiveness of the operations. This application can be crucial during severe
weather conditions, especially in rural contexts where streets and routes could
get damaged. UAV units would completely change the timing and eventually
the outcome of a mission where people have to be located and rescued. The
application of drones, combined with an integrated data management architecture,
can save lives, since external infrastructure for navigation and communication is
usually unavailable during emergency situations of this kind [51]. The real-time
data provided by a flying unit to an on-ground task force may also compensate
the effects of street damage, traffic jams or generally hazardous terrain (typical
scenarios during catastrophic events), which could compromise the feasibility of
the rescue operation [52].

15

2.4 Introduction to ML

2.3.4 Agriculture monitoring
Drones are transforming the agricultural and farming industries and providing
multiple advantages in the field. Farmers can improve their production, decision-
making, and long term sustainability by integrating drones into their operations.
Drones for agriculture give farmers useful information that can enhance their
management decisions, maximize crop yields, and increase overall profitability.
UAV-based inspections can more precisely grasp current terrain problems and
provide targeted solutions based on highly accurate data by utilizing comprehensive
information [53].

Passive applications like terrain mapping and scanning are usually employed
for agricultural applications [17]. Moreover, active applications like crop spraying
[54] and cattle herding [55] are also employed.

2.4 Introduction to ML
ML is a subset of Artificial Intelligence (AI) that allows systems to learn from data,
without being explicitly programmed. This means that the system can improve
its performance over time by analyzing data and making predictions or decisions
based on that data. It is a method of teaching computers to recognize patterns
and make decisions based on those patterns [56]. The core idea behind ML is to
use algorithms that can learn from data, identify patterns and make decisions
with minimal human intervention. This can be achieved through three main types
of ML: supervised learning, unsupervised learning and reinforcement
learning [57].

Supervised learning: starts from a set of data where the correct output is
already known. The algorithm then attempts to identify the relationship
between the input and the output. These types of problems are further
divided into two categories: regression, where the output is a continuous
value, and classification, where the output is discrete [58].

Unsupervised learning: doesn’t have a predefined output. In this case, the
algorithm tries to find patterns and structures in the input data without
external guidance. These types of problems are mostly clustering problems,
where the input data are grouped and labeled based on their relationships
[59].

Reinforcement learning: involves an agent which learns a behavior through
trial and error interactions with a dynamic environment. The agent learns
by receiving rewards or penalties for certain actions and adapts its behavior

16

2.5 Artificial neural networks

Figure 2.4: a: supervised learning of a CNN for the instance segmentation of a
set of containers from areal images (Chap. 5). b: unsupervised learning for the
K-means clustering of groups of solar panel rows (Chap. 5). c: reinforcement
learning approach for autonomous UAV flight through gates [2].

accordingly. It is a method for teaching machines to make decisions in
complex, uncertain and dynamic environments [60].

ML algorithms commonly fall under one of these macro categories. However,
there are other, less commonly used types of ML, such as semi-supervised learning,
which lies between supervised and unsupervised methods. This thesis work focuses
on supervised and unsupervised learning applications. In Chap. 5, the specific
algorithms that fit with the final method for recognizing solar panels and UAV
path planning over satellite images will be described in more detail.

2.5 Artificial neural networks
Artificial Neural Networks (ANN) or NNs are a type of ML algorithms inspired
by the structure and function of the human brain. They consist of interconnected
nodes, or artificial neurons (modeled after the biological ones), that are able to
learn and adapt to new data [56]. In this brief discussion, we focus on feed-forward
NNs. The flow of information in the NN is then from the input layer (which
receives the input data) through the hidden layers (which process and transform
the input data) and finally to the output layer (which produces the final output
or prediction), without looping back. Each artificial neuron is connected to all
neurons in the next layer through weighted connections. The neuron receives as
input the weighted sum of the inputs from the previous layer (Fig. 2.5), adds a
bias term, and then applies an activation function before passing the information
to the next layer [61, 62]. Each neuron thus performs an elementary operation as
in the following equation [63]:

xm+1,k = f

n
X

i=1

wm,i,kxm,i + bm,k

!

(2.1)

17

2.5 Artificial neural networks

Figure 2.5: Schematic of a feed-forward NN.

In Eq. 2.1, xm,i is the ith neuron of layer m, wm,i,k is the ith weight of layer m
(for the kth node of the following layer), bm,k is the bias of layer m (again for the
kth node of the following layer), and f(•) is the activation function.

2.5.1 Weights
The weights assigned to the inputs are the parameters of the network that are
learned during training, which is an important step of any supervised learning
algorithm. This operation is needed to adjust the network weights to minimize the
loss function. By doing this, the NN learns to recognize patterns in the input data
and can make predictions on new (unseen) data. This is the essential principle of
an ANN training process [63]. In most ML methods, the goal is to minimize a
loss function [64]. For simplicity, the least-squares loss function can be considered
[65]:

L =
1

N

N
X

i=1

(yP � yT)
2 (2.2)

where L is the loss function, N is the number of total observations used to compute
the loss function, yP is the the predicted output for a specific sample and yT is
the correspondent true value.

2.5.2 Activation function
The activation function is used to introduce nonlinearity in the network. There
are several possible activation functions. The most common are the REctified
Linear Unit (ReLU), the step and the sigmoid function (Tab. 2.1) but there are
also many other ones [16].

18

2.6 Convolutional neural networks

Activation function Equation
ReLU max{0, x}

Step
(

1 if x � 0

0 if x < 0

Sigmoid 1
1+e−x

Table 2.1: Some examples of activation functions [16].

Figure 2.6: A simple example of 2D convolution, with a 2⇥ 2 kernel and padding.

2.6 Convolutional neural networks
CNNs are a type of NN that are designed specifically for image pattern recognition
tasks. They are different from traditional ANNs in that they use convolutional
layers that process the images with filters or kernels, creating 2D activation maps
that extract specific features from the images, such as edges and vertical lines
(Fig. 2.6). One of the main advantages of CNNs is that they can effectively
compress the amount of data to be processed [66]. For example, in a dataset of
256 ⇥ 256 color images, a single neuron in the first hidden layer would require
(256⇥256⇥3) = 196.608 weights, which would lead to a very large network which
is complex to train. Additionally, having many parameters increases the risk of
overfitting [67]. CNNs also employ a pooling layer which further compresses the
amount of data, making the network more efficient. There are two types of pooling
(Fig. 2.7):

• average pooling: returns pixel values within a specific region from the portion
of image covered by the filter (Fig. 2.6).

• max pooling: returns the maximum value from the portion. It is usually
preferred over average pooling (Fig. 2.7).

Finally, the last output is then flattened and sent to a standard NN.

19

2.7 Segmentation

Figure 2.7: A simple example of pooling with a 2⇥ 2 filter.

Figure 2.8: Semantic segmentation for the identification of defects in PV panels
[3].

2.7 Segmentation
Semantic segmentation and instance segmentation are two techniques used in
deep learning for image and video analysis. The goal of these algorithms is to
assign a semantic label to every pixel in an image. This allows for a much more
detailed and nuanced understanding of the scene, as opposed to just classifying
the entire image as a whole. It differs from classic object detection, since the latter
only draws a bounding box on the detected object. For the localization of the
PV panel rows, segmentation approaches are much more accurate that simple
bounding box detection, since with the former the actual outline of the panels
can be extrapolated; also, this approach can be used for the detection of defects
on the panels [3].

After the segmentation, it is necessary to localize a specific row in the given
image. The minimum rectangle containing the panel is calculated from the mask
that highlights the object in the image. Then, the center position and orientation
angle of the rectangle are calculated and the coordinates of the center are returned,
to locate the panel in the image [68].

20

2.8 Applications of NNs for PV plants

Figure 2.9: Example images from the Amir database [4].

2.8 Applications of NNs for PV plants
The main methods for extracting the boundaries of a PV plant identified in
research papers on the topic are as follows.

Fully CNN: a Fully Convolutional Neural network (FCN) based on a Mask-
RCNN deep network architecture is used for the boundary extraction [4].

Network-based architecture: a semi-automatic approach that uses image
processing (starting from a CNN built on a server) for efficiently and precisely
identifying the Region of Interest (RoI). An image processing layer is also
added to the whole process [25].

2.8.1 FCN approach
The identification of the boundaries of a PV plant is necessary for creating a
precise flight route that covers the entire area. FCNs are an efficient way to extract
such boundaries. The FCN method utilizes a modified version of the traditional
CNN architecture by replacing fully-connected layers with convolutional layers.
The input for this method is a Red-Green-Blue (RGB) image of a PV plant, while
the output is the predicted mask. In the first work presented, a Mask-RCNN
was employed with a VGG16 modified backbone. Mask-RCNNs are a method for
instance segmentation tasks, utilizing a two-phase approach. The initial phase
scans the image to generate potential object locations, while the second stage
categorizes these proposals and generates pixel-level masks [69]. The VGG16
backbone includes connections in various directions, including upward, downward
and lateral connections, resulting in the creation of diverse feature maps such as
pyramid maps.

Since FCN is a supervised ML algorithm, a large and comprehensive dataset
is required for training the algorithm [70]. The Amir dataset was thus presented,
containing 3580 orthophotos from various large-scale PV plants located in 12
different countries. The dataset is diverse, featuring PV plants with varying
capacities [4].

21

2.8 Applications of NNs for PV plants

2.8.1.1 Model setup

A typical approach for boundary extraction with the Mask-RCNN method involves
down-sampling the input image to obtain lower-resolution feature maps, which
are then up-sampled using transposing convolutions to produce a full-resolution
segmentation map. The weights of the model are initialized to values from
ImageNet, a technique known as transfer learning, to improve accuracy and reduce
losses during training and evaluation [4].

For the model optimization, the binary_crossentropy Python function eval-
uates the training loss. This function analyzes pixel by pixel the segmentation
data and it compares it to the values provided by the ground truth dataset’s data.
The problem then reduces to a Root Mean Square (RMS) optimization problem
[4].

2.8.1.2 Results

A comparison of TIP techniques against a new FCN method for boundary extrac-
tion of PV plants was conducted to implement an autonomous monitoring, aerial
photogrammetry, and path planning system for aerial robots. The FCN technique
was found to be more efficient and had higher accuracy than the TIP method;
also, FCN did not require site-specific tuning parameters [4].

2.8.2 Semantic-Segmentation-Based approach
The second method concentrates on developing an efficient strategy for coverage
path planning over PV plants using UAVs with the help of a semantic segmentation
algorithm (located on a server) to identify the region of interest [25]. The algorithm
is based on the following steps:

1. the raw satellite images (from Google Maps) of the PV plants are taken at
a pre defined altitude from the ground.

2. the image is entered in the DL server, which will obtain a mask of the PV
plant; this step is based on earlier work by the same group [5].

3. finally, a series of OpenCV functions are applied for post-processing.

The output masks were tested with a CPP method as shown in Fig. 2.10.

2.8.2.1 DL server for segmentation

A DL server is used to segment the plant (Sec. 2.7) and extract a mask from
the Google Maps image. Before the segmentation, training samples are collected

22

2.8 Applications of NNs for PV plants

Figure 2.10: Schematic of the data processing method in [5].

Figure 2.11: U-Net network structure [5].

from the Amir data-set. The samples are then converted into tagged image file
format (.JPG) and mask image file format (.PNG) with a resolution of 240⇥ 320
and are entered into the CNN. The model chosen for the CNN server is the U-net
network. This model uses two blocks (Fig. 2.11), respectively having decreasing
and increasing layer sizes, thus forming a U-shaped architecture. The decreasing
block is a typical CNN that reduces spatial information while increasing feature
information. The increasing block combines feature and spatial information
through up-sampling layers and transposed convolution. The platform used for
this study is Tensorflow with Keras as back-end. For the model optimization, the
binary_crossentropy function is used for the evaluation of the training loss.

The post processing involves a step-by-step image processing method using
OpenCV functions. The method starts by applying morphological operators
(Erode and Dilate) to the images, then uses the FindCountours function to
extract their contours. The ContourArea function is used to find the area of the
contour, then smaller areas (which may be false positives) are filtered out. The
ApproxPolyDP function is used to approximate the contour to a shape with fewer
vertices. Finally, the Erode operator is applied again to expand this shape, to

23

2.9 Path identification

compensate for inaccuracies due to the CPP method and false positives of the DL
server [25].

2.8.2.2 Results

The U-net network model was found to be effective in predicting the area of PV
plants compared to other techniques like the FCN method used in Sec. 2.8.1.
This method allows for faster processing and better performance in identifying PV
plant areas, filtering out false positives. Moreover, the post-processing refinement
step further improves the performance.

2.8.3 U-net for satellite image segmentation
As shown by the bibliographic analysis above, for satellite image segmentation
tasks U-Net models are typically used. They perform well in a variety of image
segmentation applications and are specifically created for semantic segmentation
tasks. Also, complex and varied patterns (like various types of land, structures,
roads, and water bodies) are frequently visible in satellite images. The U-Net
model is well suited to handle such complex scenes due to its capacity to capture
contextual information and small shapes [5].

2.9 Path identification
A goal of this thesis work is the determination of the most efficient route for UAV
coverage based on a satellite image. Since UAVs have endurance limited by their
batteries, an inspection method needs to deal with such limitation. For this, a
path planning system that generates the best possible route in terms of length
and time was implemented as an alternative to the standard (but slower) spiral
flight approach [6].

As mentioned in Sec. 2.10, some works on path identification are based on
connecting the WPs. For instance, the authors of [6] define a way to connect WPs
on the border of a PV plant to cover the whole facility (Fig. 2.12). Since the drone
flies at fairly high altitude in this application, the WPs are not correlated with
the lines of panels, their number is low and a simple points connection algorithm
can be applied. In this thesis, on the other hand, we set (at least) two WPs per
line, so defining an optimal connection among them may be nontrivial, especially
when the plant structure is irregular. Therefore, automatically finding the best
possible path becomes a case of the Traveling Salesman Problem (TSP).

24

2.9 Path identification

2.9.1 TSP
2.9.1.1 Historical background

The TSP can be described as follows: “a salesman has to visit each of n different
cities once and only once, starting from a base city and returning to it. Which
path minimizes the total distance traveled by the salesman?” [71]. This problem,
a classical one in Operations Research, has been approached in many ways
throughout the years. Starting from the simple question of establishing the best
route for a single agent and generalizing to multi-agent systems (for instance,
a combination of aerial and ground vehicles), the TSP is still an active area of
research, with many applications in goods delivery.

2.9.1.2 Definition and types of solutions

The TSP is an NP-hard problem in combinatorial optimization. NP-hard defines
a class of problems that are at least as computationally difficult as the hardest
problems in NP, the complexity class of those decision problems which are solvable
in polynomial time by a nondeterministic Turing machine. Despite its computa-
tional difficulty, various heuristics and exact algorithms have been developed for
the TSP. These approaches allow for the exact solution of instances with tens of
thousands of nodes and approximate solutions for millions of nodes.

There exist two types of TSPs: symmetric (where the length of the edges
connecting two nodes is the same regardless of the traveling direction) and
asymmetric (where the length of an edge depends on the direction).

The most studied approaches to solve the TSP are exact algorithms, which
solve problems optimally. However, in the worst case, an exact algorithm for an
NP-hard problem cannot run in polynomial time. Extensive research has been
conducted to develop exact algorithms with exponential running times but low
bases. One such method is the branch and cut, which involves solving integer linear
programming problems through a combination of branch and bound algorithms
and cutting planes that reduces the linear programming relaxations.

On the other hand, heuristic techniques are practical methods that do not
guarantee optimal solutions but provide satisfactory approximations in a fraction
of the time. Heuristics serve as shortcuts to reduce the computational load involved
in reaching a result. Important examples of heuristic methods for solving the TSP
are listed below [72].
Greedy method: it picks the locally optimal path, building a solution incre-

mentally by consistently picking the closest unexplored node. Although it is
one of the fastest algorithms, it frequently gets trapped in local minima and
produces sub-optimal solutions. It is typically applied to provide a starting
solution for more complex algorithms.

25

2.10 CPP for PV plants

Local search (LS) and Iterated local search (ILS): LS methods search
the neighborhood of the current solution to find an improving change.
Common neighborhood search moves are: two-opt (removing two edges
and reconnecting), three-opt (removing three edges) and Lin-Kernighan
(adaptive choice of the number of edges to remove). These methods are
simple but can slowly improve the solution. Hybrid methods that switch
neighborhoods (to regularly change the initial solution) or combine multiple
local searches are often more effective. One example of these algorithms is
ILS, which iterates the LS algorithm to get out of local minima.

Simulated Annealing (SA): a probabilistic technique, analyzes random changes
to the solution. With a decreasing likelihood of changes over time, it will
occasionally accept worse solutions to get away from local minima. SA can
use moves such as two-opt, three-opt, or swapping a random pair of nodes.
While slower, SA has been successful for many applications.

Memetic Algorithms (MA): combine LS with strategies like Genetic Algorithms
(GA). For TSPs, this can entail taking two solutions and combining them
(the crossover operator), then enhancing the result with a LS. MA seeks to
effectively integrate the local exploration of LS with the global exploration
of evolutionary approaches. MA can offer high-quality solutions but may
take many iterations to converge. ✏-approximate algorithms ensure that the
objective function for the solution is at most ✏ times the minimum. The
goal is to find algorithms where the approximation ratio ✏ is as close as
possible to 1 while maintaining a manageable computational complexity. A
relevant example is the 3/2-approximate Christofides’ algorithm.

In brief, there are many algorithms that can effectively solve the TSP, with
different trade-offs between solution quality, speed, implementation difficulty and
theoretical guarantees. Hybrid methods and MAs are currently the most successful
approaches [73].

2.10 CPP for PV plants
After obtaining the mask for the PV plant, the second objective of the coverage path
planning algorithm is to define the quickest route for scanning the infrastructure.
CPP algorithms are used to optimize the flight path of an UAV for inspection
tasks. Those algorithms plan the trajectory to ensure that the entire solar plant is
covered during the inspection while minimizing flight time. CPP algorithms take
into account factors such as the size and shape of the solar plant, the altitude and

26

2.10 CPP for PV plants

speed of the UAV, and the type of sensor or camera being used for the inspection.
The goal of CPP algorithms is to provide a systematic and efficient method
to ensure that any defects or problems are detected and addressed in a timely
manner [25]. The most common CPP algorithms are based on WP mapping. A
few examples are:

Static Point Algorithm (SPP) [6]: an optimal initial path is generated through
image processing techniques.

Dynamic Point Algorithm (DPP) [6]: checks if the UAV can complete the
initial path, otherwise it defines a new path based on UAV sensor data.

Boustrophedon Exact Cell Decomposition (BECD) [74]: involves covering
each cell in a boustrophedon pattern, moving back and forth until the entire
area is covered.

Grid-Based Spanning Tree Coverage (GBSTC) [8]: subdivides the work-
area into cells, then follows a spanning tree of the graph induced by the
cells, while covering every point exactly once.

Grid-Based Wavefront Coverage (GBWC) [9]: finds a solution using an
extension of the distance transform path planning method.

In the following, such techniques will be discussed evaluating the advantages
and disadvantages of each. We assume that the CPP is done over the same images
used to find the mask of the plant.

2.10.1 SPP and DPP
The SPP identifies the intersections where the border of the plant intersects a
number Hl of parallel and uniformly-spaced horizontal lines; it holds

Hl =
w

h⇥ f � c
(2.3)

where w is the solar plant width, h the UAV flight height, f is the portion of
landscape captured by the camera with respect to the flight height, and c is a
correction parameter introduced to increase precision. The distance Nr between
the lines is computed as

Nr =
yM � ym

Hl

(2.4)

where yM and ym are respectively the maximum and minimum y-axis coordinates
of the solar plant in the image.

27

2.10 CPP for PV plants

Figure 2.12: Different steps of the SPP algorithm [6].

These horizontal lines are then intercepted with the solar plant borders to
find the actual WPs. The process is repeated for different rotation angles of the
images: the path length is compared for every angle and the one corresponding
to the shortest path is selected. The WPs thus found are then transformed from
pixel coordinates in the image plane to actual coordinates [6].

The DPP begins on an initial path planned by SPP. The difference is in the
online flight operation. For the DPP, if a defect is detected, the motion stops to
let the UAV perform a closeup. Therefore, after every error-specific maneuver, the
algorithm will reprogram the flight by a method, similar to the SPP, that takes
into account the current battery level of the drone, thus finding an admissible
path.

2.10.2 Cell-based CPP algorithms
The three algorithms presented in this subsection are based on a cell decomposition
of the map.

2.10.2.1 GBWC

This is the earliest grid-based algorithm for CPP problems. This offline algorithm
aims at finding a connection between an initial cell i in the grid and a final one
f . An heuristic approach attributes a number to each cell of the grid through
a wavefront process from cell f to cell i. This process assigns the value 0 to
cell f and from there computes the grid distance of each cell from f (distance
transformation) by successive clusters [75]. This method is applied until the
assignment cluster reaches cell i. Once the distance transformation is calculated,
the agent’s path is determined starting from cell i and selecting at each step the
adjacent cell yet to be explored with the highest number [8, 9].

2.10.2.2 BECD

The BECD method takes the free space and the obstacles and divides them into
cells. These cells are then covered by the robot in a back-and-forth pattern,
switching direction with 90-degree maneuvers. This approach improves upon the

28

2.11 Drone flight and control

Figure 2.13: .a The steps for the BECD algorithm [7]. .b: the GBSTC algorithm
[8]. .c: the GBWC algorithm [9].

trapezoid decomposition technique by leveraging the structure of the polygon to
identify the beginning and end of an obstacle, resulting in fewer cells that don’t
require redundant steps, and allows for the coverage of areas with curved borders
[7, 74] (Fig. 2.13.a).

2.10.2.3 GBSTC

The area to be explored is decomposed into cells of side l and the agent can move
in perpendicular directions following the cell sides. Every cell is then divided into
smaller ones of l/2 side length. The algorithm eliminates from the map all the
occupied cells and those containing obstacles (Fig. 2.13.b).

The solution can then be found in different ways [8]:

off-line: the agent has complete knowledge of the surrounding environment.

on-line: the agent exploits sensor data to scan the environment and build a
spanning tree.

ant-like: no knowledge of the environment is given to the agent, which however
can leave markers during the coverage process to identify the already-visited
areas of the grid in a heuristic fashion.

2.11 Drone flight and control
We now examine the control mechanisms for guiding drone flights. The papers
discussed here analyze CV and DL models specifically designed for panel recog-
nition, to ensure that the drone can accurately identify and track the panels
using different visual servoing techniques. The aim is to extract essential visual
features that will guide the drone in maintaining a steady trajectory and executing
the pre-planned flight with the highest level of precision and efficiency. This
point is especially critical when dealing with larger PV installations, where the

29

2.11 Drone flight and control

complexity of the system and the potential errors can be significant. The analysis
of these advanced CV models and visual servoing techniques aims at minimizing
the potential for errors and ensure that drones can perform their inspections
efficiently and accurately [76].

2.11.1 Flight forces
For simplicity, let us consider cruise flight in a fixed-wing aircraft. When a system
is flying at a steady altitude and constant (non-zero) velocity, it is subject to four
forces [77].

Weight: due to aircraft and payload. This force is directed downwards.

Drag: opposite the direction of motion, generated from all surfaces affected by
the flow of air.

Lift: determined mainly by the wings, but also by all other lifting surfaces. It is
orthogonal to the direction of motion.

Thrust: generated by the propulsion system, which can be of any type (motor
propeller, turbojet, turbofan and so on).

In a steady flight, these forces cancel each other out.

2.11.2 Quadrotor modeling
The drone used in this thesis work is the DJI Mavic 2 Enterprise Duo (App. A.1),
a quadrotor model (Sec. 2.1.1).

In a multicopter configuration, each propeller generates thrust (due to lift),
orthogonal to the plane of rotation of the blades. During hovering (namely, when
the multicopter is at a fixed pose), the total thrust of all propellers balances
the weight. On the other hand, in stable flight conditions (namely, when the
multicopter is cruising at a constant altitude and speed), one component of the
thrust balances the weight, and the other component causes the motion in the
desired direction, balancing out the resistance that the multicopter experiences as
it moves forward. Each propeller also generates torque (due to drag) [10]; thus,
multicopters almost always have an even number of propellers, half of which rotate
clockwise while the others rotate counterclockwise. This way, when all propellers
have the same speed, the overall torque is zero and the drone does not rotate
along the z (yaw) axis; to change the yaw angle, different propeller speeds are set,
while the overall thrust keeps compensating for the weight (Fig. 2.14).

A quadrotor has six Degrees of Freedom (DoFs). There are 3 translational
DoFs (forward/backward, left/right, up/down) and 3 rotational DoFs (roll, pitch,

30

2.11 Drone flight and control

Figure 2.14: The quadrotor concept. The width of the arrows is proportional to
the angular speed of the propellers [10].

Figure 2.15: Quadrotor reference frame [10]

yaw). A quadrotor drone is however an underactuated robot, because it has more
DoFs than the number of actuators or control inputs (namely, the four rotor
speeds), meaning that it cannot control all of its DoFs independently. However, it
is still able to perform a wide range of maneuvers by controlling the amount of
force generated by each rotor.

In the following, the geometric, kinematic and dynamic models for quadrotor
UAVs will be briefly explained. Some assumptions are made here: all the compo-
nents (the drone frame and the propellers) are supposed to be rigid; the frame is
symmetric, and the Center of Mass (CoM) of the drone is at the center of the
frame; the thrust and drag of a propeller are proportional to the square of its
velocity [36].

2.11.3 Frames and states of the quadrotor
The convention used for defining the frames (Fig. 2.15) is the same as the one in
[10]. We introduce an earth-fixed frame E, having axes (X, Y, Z), and a body-fixed
frame B, with axes (x, y, z) and x pointing toward rotor 1. The position vector
c = [cx, cy, cz]

T of the drone CoM identifies the drone position in space. The
vector � = [�, ✓,]T is the vector of Euler angles from the mobile to the fixed
frame. The frame orientation is defined by a rotation matrix ERB 2 SO(3) from

31

2.11 Drone flight and control

B to E.

2.11.4 Geometric and kinematic models
We can write the 3⇥ 3 rotation matrix as

ERB =

2

4

c()c(✓) c()s(✓)s(�)� s()c(�) c()s(✓)c(�) + s()s(�)
s()c(✓) s()s(✓)s(�)� s()c(�) s()s(✓)c(�) + c()s(�)
�s(✓) c(✓)s(�) c(✓)c(�)

3

5 (2.5)

where c(•) = cos(•) and s(•) = sin(•). The square magnitude of the velocity for
any point is v2 = ṗ2x + ṗ2y + ṗ2z, where ṗ = [ṗx, ṗy, ṗz]

T is the velocity vector of any
point P on the drone in the global frame [10].

2.11.5 Dynamic model
In this work, the quadrotor dynamics are described through the Euler-Lagrange
formalism [36]. We first introduce the Lagrangian function

L(q, q̇) = K(q, q̇)� P (q) (2.6)

where K(q, q̇) and P (q) are respectively the kinetic and the potential energy of
the system and q is the control input. The equations of motion are then derived
from the Euler-Lagrange equations:

d

dt

✓

@L

@q̇

◆

� @L

@q
=

F

τ

�

(2.7)

where F and τ are the force and torque vectors, respectively. The dynamic model
of the quadrotor for the translational DoFs, expressed in the local frame, can be
written as:

mc̈+mgk = F (2.8)
where m is the drone mass, g the gravitational acceleration, and k = [0, 0, 1]T . In
matrix form, in the global frame we have [36]:

mc̈ =
⇥

0 0 �mg
⇤T

+ ERB

⇥

0 0 u
⇤T (2.9)

where u is the total thrust vector magnitude.
The torque components acting on the drone due to the drag torque on each

propeller is [10]:
8

>

<

>

:

⌧x = bl(Ω2
4 � Ω

2
2)

⌧y = bl(Ω2
3 � Ω

2
1)

⌧z = d(Ω2
1 � Ω

2
2 + Ω

2
3 � Ω

2
4)

(2.10)

32

2.12 Autonomous flight for PV plant inspection

where Ωi is the speed of motor i, d is a constant coefficient defining the reaction
torque due to rotor drag, b is a constant coefficient defining the thrust and l is the
distance between the CoM and the rotation axis of the propellers. Another torque
component is due to the rotation of the propellers, creating a gyroscopic effect:

(

⌧ 0x = Jr!y(Ω1 � Ω2 + Ω3 � Ω4)

⌧ 0y = �Jr!x(Ω1 � Ω2 + Ω3 � Ω4)
(2.11)

where Jr is the motor inertia; the rotational velocity of the drone is defined by
ω = [!x,!y,!z]

T .

2.11.6 Control model
We now briefly explain the control laws for controlling a quadrotor flight. To
overcome the DoF deficiency of quadrotor drones, a cascade control system
architecture will be used. In cascade control, two or more controllers operate in
series, with the output of one controller serving as the input to the next one. This
type of control architecture is often used in quadrotor control because it allows for
the implementation of separate controllers for different aspects of the motion, such
as position and orientation. This can make the control system more flexible and
efficient, allowing the quadrotor to respond more accurately to a wide range of
control inputs and disturbances. Additionally, cascade control can make it easier
to account for nonlinearities in the system and to compensate for uncertainties.
The following three control layers are then needed:

Mixer-matrix: computes the rotors velocities Ω1, Ω2, Ω3 and Ω4 from the
torques around the three axes and the thrust force of the quadrotor.

Attitude controller: sets the desired drone orientation using torque.

Position controller: enables the UAV to maintain a proper position by com-
puting the desired angle configuration to input into the Attitude controller.

An example of this control scheme is in Fig. 2.16, where [xd, yd, zd]
T is the

desired position, [d,�d, ✓d]
T are the desired Euler angles, F is the thrust force,

[⌧ψ, ⌧φ, ⌧θ]
T is the torque vector, and [!1,!2,!3,!4] are the angular velocities of

the rotors.

2.12 Autonomous flight for PV plant inspection
Another problem to tackle is creating a drone control system to inspect the PV
installation area while following the given path. In the bibliographic analysis, we

33

2.13 Vision-based inspection strategy

Figure 2.16: Schematic of the cascade control law for quadrotors.

gathered works for solving different related problems, which are discussed in the
following sections.

• Flight control

Vision based inspection strategy: in this section, a method is presented for
using real-time video frames to acquire the linear features detected as
the edges of single PV panel strings and then to calculate the flight
direction and offset, resulting in an automatic tracking of PV arrays
[11].

Combination of tasks: since the method in the previous work is not based on
a pre-defined trajectory, the combination between trajectory planning
and flight control part is investigated.

Flight altitude: discusses the correlation between the altitude of aerial
photography and the ability to identify defects [13].

• Image reconstruction

Post processing image mosaicking: develops an image post-processing tool
for building digital maps for defect detection combining an Image
Mosaicking (IM) algorithm with a CV module recognition algorithm
[78].

2.13 Vision-based inspection strategy
A typical UAV-based inspection system aims to obtain infrared and visible images
of solar panels to detect failures. Usually, the process of acquiring the images
is performed either manually or through autonomous flight control using pre-
determined WPs. The method presented here is a vision-based image acquisition
strategy that does not rely on predefined WPs [11]. The flight control system will
be used to help the drone follow the line of panels to accommodate variations in
the way the modules are organized in rows.

34

2.13 Vision-based inspection strategy

2.13.1 Lines and slope detection
The algorithm is based on the detection of the panel edges, which will be the
guidelines for the flight control. To extract this feature, the video from the
downward-looking camera is processed. The data extraction is conducted in the
Hue-Saturation-Value (HSV) color space, since the edges are more clearly visible
[79]. Some pre-processing steps are performed on the image, namely:

1. Resizing the UAV camera image to a smaller size;

2. Median filtering the image;

3. Screening of the pixels belonging to the edges in HSV color space;

4. Connecting adjacent panels though morphological methods;

5. Applying the Canny edge detector to identify all the edges [11, 80].

2.13.1.1 Lines

Once the final binary image is extracted, a Hough transform [81] is used to
identifying the straight lines in the image. The main concern with the application
of this algorithm is the fact that some lines will likely be detected that do not
correspond to the actual edges of the panels. A possible rejection strategy exploits
the fact that the panel edges correspond to the longest lines. Another important
feature is the line slope due to the tilted position of panels. Therefore, the lines
to be detected can be extracted using thresholds on the line length ll and slope kl
in the image frame:

⇢

ll > lth
|kl| < kth

(2.12)

where lth and kth are the thresholds on the panel length and slope [11].

2.13.1.2 Slopes

The average slope ka and the distance epix between the center of the image and of
the line are computed as follows (Fig. 2.17):

ka =

p
X

i=1

kupp +

q
X

i=1

klow

!

/(p+ q)

epix =

p
X

i=1

dupp

!

/(2p) +

q
X

i=1

dlow

!

/(2q)� himg

(2.13)

35

2.13 Vision-based inspection strategy

Figure 2.17: Image pre-processing according to the steps in [11].

where p is the number of upper edge lines, q is the number of the lower edge ones,
himg is the height of resized video images, kupp and klow are the upper and lower
edge lines, and dupp and dlow are the pixel distances between the kupp and klow
centers with respect to the center of the image [11].

2.13.2 UAV velocity controller
This control action is be used over lines of PV panels and concerns the yaw angle
of the camera’s gimbal and the velocity of the UAV unit [11].

2.13.2.1 Tracking procedure

The coordinate frame considered fllows the North East Down (NED) convention.
The direction of the PV panel strip is determined as:

✓ = ✓1 + ✓2 + ✓3 (2.14)

where ✓1 is the yaw angle of the UAV, ✓2 is the yaw angle of the camera gimbal,
and ✓3 = arctan(ka) is the inclined angle of PV string in frame. In a standard
configuration of the UAV, ✓ = 0. The distance between the center of the image
and of the strip is

derr =
epix

himgh tan(0.5f)
(2.15)

The control objective is to minimize both the deviation of the gimbal yaw and derr
while keeping the UAV speed constant. The gimbal yaw is adjusted by an angle

∆✓2 = ✓3 (2.16)

The control action can be written as
⇢

vx = �v0 sin ✓ + kderr
vy = v0 cos ✓

(2.17)

where v0 is a velocity value and the parameter k is

k =
b

a+ |derr|
(2.18)

36

2.14 Combination of tasks

where a and b are positive constants. The parameter k is added to limit the value
of derr [11].

2.13.2.2 Identification of the end of a strip

The identification of the panel strip is based on the pixel value of the binary image
after the HSV conversion. The UAV has crossed the strip boundary if the mean
value of the pixel values xi 2 {0, 1} is greater than a threshold; the mean value
depends on the amount of white pixels in the binary image, which in turn depends
on the drone position [11]. With a similar method, one can also check if the UAV
has reached the end of a panel line.

2.14 Combination of tasks
In a visual servoing approach, the simplest way to combine all tasks at once is
through task stacking [12]. We define a minimization problem as follows:

argmin
u

kJu� ė⇤k2 =
X

i

kJiu� ė⇤i k2 (2.19)

where u is the input vector, ė⇤ = [ė⇤1 ė⇤2 . . .]
T is the matrix of the time derivatives

of the desired errors for all the tasks that we want to perform (defined as e⇤i =
ui � u⇤

i), and J = [J1 J2 . . .]
T is the extended Jacobian matrix which combines

the interaction matrix L of the camera and the Jacobian J of the UAV.
This approach is a compromise between all the tasks that the UAV is required

to do. The UAV thus tries to fulfill every task as well as possible, but the
constraints cannot be all respected exactly, since all DoFs are constrained [12] due
to the dimension of the control input for the trajectory tracking; here, we set the
same task priority among the considered tasks.

2.14.1 Extended Jacobian
This method exploits the concept of prioritization of tasks with a variable hierarchy-
based approach. Visual features are created based on the images captured by the
drone that constrain the UAV movement when necessary. An example of this
is maintaining a certain 2D image feature inside the camera field of view; here,
we want to keep the line previously detected within defined bounds of the image.
Considering one such feature s, an inequality constraint is set as s� s s+,
with s� and s+ being the lower and upper bounds for feature s. We then define

s⇤ =
s+ + s�

2
(2.20)

37

2.14 Combination of tasks

Figure 2.18: Visual representation of a function hi, from [12]

as the desired value of the feature, midway between the bounds. The derivative
ė⇤ of the desired error between the current position of the feature and the desired
one is then ė⇤ = ṡ⇤. This new task will simply be stacked on top of the others.

The objective is to create a control action capable of keeping the feature
within the desired bounds but acting only if the feature approaches them. To
do so, matrix H is introduced within the stacking approach [12]. The derivative
of the current feature vector can be written as ṡ = ė = Ju. Both sides are then
pre-multiplied by matrix H, obtaining Hė = HJu. The desired error, defined as
ė⇤ = ��e is also pre-multiplied by H, which is defined as:

H =

Im 0n

0m h(s)

�

(2.21)

where m is the number of DoFs of the robotic system carrying the camera, n the
number of extra constraints to keep it on track, and Im is the m ⇥ m identity
matrix. Matrix h(s) = diag (h1(s), h2(s), . . .) contains n functions hi(s) whose
values increase (Fig. 2.18) as the feature gets closer to the bounds of the area
that it can occupy within the field of view.

The dimensions of matrix J need to be adapted to the dimensions of H,
thus J is stacked on top of an identity matrix In. This structure lets matrix H

regulate the importance of the correction tasks, since the values of the hi(s) will
be much higher than those in the Jacobian, which guides the UAV flight along the
predefined trajectory [12]. The optimization problem is then redefined as follows:

argmin
u

kHJu+ �Hek2) u = �(HJ)+�He (2.22)

This type of flight correction can be optimal to ensure a good scanning of long
strips of PV panels, since the extra control action will interfere with the flight
exclusively when needed.

38

2.15 Flight altitude

2.15 Flight altitude
One of the main focuses of this work is to apply UAV inspection techniques at
a lower flight altitude with respect to the state of the art. Here, we discuss the
correlation between flight height and defect detection.

Aerial visual photography has been intensively exploited for defects detection
in PV panel monitoring. Multiple types of defects and failures can be detected
by visual sensors. These are generally not standardized: UAV units can carry
different sensor sets and cameras depending on the inspection type. Another key
difference is in the height at which a drone can fly. It is important, then, to define
the advantages and disadvantages of flying at different heights [13].

2.15.1 Scale determination
Before inspection, one needs to be aware of the scale of aerial photography, to
identify defects at an appropriate altitude, count the number of panels, and plan
the mapping of the plant. The scale is used to correlate measurements from aerial
images to actual measurements on the ground. Typically, the scale is determined
using three main methods:

Representative Fraction (RF): ratio of the distances between two points,
measured in the image and on the ground.

Photo Scale Reciprocal (PSR): inverse of the previous scale.

Relationship between the altitude from the camera lens and the focal length.

For all cases, the scale can be calculated based on the relationship between the
altitude from the ground and the focal length of the camera lens [13].

2.15.2 Experiments setup and results
For the experiments conducted in [13], a small UAV platform (PLP-610) equipped
with a Nikon 1-v1 sensor and an onboard GPS was used to determine the lowest
possible altitude for detecting specific failures and defects on PV modules in a
real environment. The UAV flew at various altitudes to capture aerial photos. In
[13], the UAV flew at heights ranging from 1 m to 20 m (in multiple increments of
1 m) above the PV modules. This provides insight into the relationship between
the flight altitude and the detection of defects. Additionally, this experimental
information is useful for determining the optimum height for calculating the scale.

Tab. 2.2 shows at what height different defects can be detected. The results
indicate that the correlation between altitude and detection depends on various

39

2.16 Post processing IM

Component Defects and failures Detection height
module Snail trail 0-5 m
module Dirty 10-15 m
module White spot 15-20 m
module Encapsulant discoloration 15-20 m
module Different glasses 15-20 m

cell Day4 technology 5-10 m
cell Num. interconnect ribbon 10-20 m

Table 2.2: Table summarizing the different defects and faults detectable at different
heights [13].

characteristics of the defect, such as its shape, size, color and location. As a
result, specific defects can be detected at different altitudes during aerial visual
inspection.

Low altitude flight is nowadays of key importance for industrial applications.
In particular, for JP Droni, the objective is to develop an architecture capable of
autonomously capturing all the bar codes of the PV panels. Since these codes
are only a few millimeters in size, a very low flight altitude profile has to be kept
during operation.

2.16 Post processing IM
When a UAV inspection is complete, a large image dataset is retrieved. This
section shows how the IM processing algorithm provides more in-depth information
regarding the analyzed plant. IM is a technique that combines multiple images,
resulting in a more comprehensive view compared to individual ones; it can be used
for various applications, such as resolution enhancement and motion detection.
The algorithm provides important data from a PV plant analysis, like the number
and location of the PV panels and the list of damaged ones [82].

2.16.1 IM techniques
Basically, IM techniques involve blending multiple overlapping aerial images to
create a seamless, radiometrically balanced image without any visible internal
boundaries. There are three types of IM:

1. Uncontrolled mosaicking: no horizon control is performed when patching
the images together.

40

2.17 Defects detection

Figure 2.19: Example of IM, showing sidelap and endlap [13].

2. Semi-controlled mosaicking: images are enlarged and reduced to change the
scale of the map and assembled with no rectification [83].

3. Controlled mosaicking: perspective distortion is removed before patching
the images together.

According to industrial experience, to achieve good performances in PV plants
(especially in large ones), sidelap (lateral image overlap) should be from 15% to 45%,
while endlap (end of the picture overlap) should be from 55% to 65%. Generally,
at least 40% endlap is necessary to obtain a decent overview of the string. For this
reason, a vertically mounted camera is generally preferred over oblique mounting
[82], as images taken along the vertical direction have significantly more overlap,
which will help with the mapping and the 3D reconstruction of the environment
[13]. Errors during image capture can heavily compromise its reconstruction. Two
typical errors are drift (lateral displacement due to external causes like wind) and
crab (alignment displacement due to incorrect sensor positioning).

2.17 Defects detection
The detection of defects is based on the processing of the image data captured by
the drone. The identification of faults can be carried out based on CNN models
trained specifically for this type of recognition. These models are either based
on thermal [84] or RGB imaging [85]. This topic is deemed to be outside the
scope of this thesis. Nevertheless, a defects detection system could easily be added
afterward by either creating new classes (related to different types of defects)
within the NN already in use or by training a specific NN for the identification of
such faults.

41

2.17 Defects detection

Figure 2.20: Image of an actual hot-spot from the Pedrosa (AL) solar plant.

42

Chapter 3

Software and hardware
architecture

The software and hardware components for the project are described in this chapter.
The following sections focus on the hardware equipment, software components,
and ROS architectures that incorporate the parts of the system design.

3.1 Hardware requirements
The hardware components that run the software architecture are as follows.

DJI Drone: the drone which performed all the tests is the DJI Mavic 2
Enterprise Dual model (App. A.1). This drone supports the DJI mobile
SDK. The bridge between the drone and the computer is an Android
application based on this SDK. Thus, any DJI drone supporting this SDK
could interface with the software architecture developed here.

Radio controller (RC): it is the first interface with the drone. It communicates
using a wireless connection with OcuSync technology, a transmission system
developed by DJI.

Android mobile phone: once connected via USB to the RC, the Android
mobile phone exchanges data between the drone and the laptop through a
WiFi-based socket connection created by the custom app developed.

Linux-based Laptop: the data from the UAV is processed by the computer
unit (App. A.2). The image processing is based on the segmentation driven
by a NN running on the PC. This processing technique is computationally
expensive and the use of a Graphic Processing Unit (GPU) is required. The
Detectron2 package used for detection requires graphics data-processing

43

3.2 Software requirements

based on NVIDIA GPU boards driven by CUDA for the exploitation of
parallel programming capabilities.

Figure 3.1: Interfaces between the different hardware components.

3.2 Software requirements
This section explains the apps, software versions, and libraries required to run the
whole system. It is divided into subsections based on the hardware component on
which the software is installed.

3.2.1 PC
The architecture can be conceptually divided into three sections, dedicated to
route planning, the ROS bridge, and UAV control. Given the heavy computational
load, a powerful computer is needed for such tasks. The computer specifications
are listed in the (App. A.2) appendix. The computer has the following setup:

Linux: the version is UBUNTU 20.04 LTS. This distribution of is the only one
fully compatible with the chosen ROS version;

Python 3: the last Python 3 version (3.11.4) is required;

ROS: the system runs the Noetic version of ROS ;

44

3.2 Software requirements

CUDA: CUDA is a software layer that gives direct access to the parallel
computational capabilities of the GPU. It can be installed only on devices
supporting NVIDIA graphic cards. The installed version of CUDA is 1.17.

In the following, we present the installed libraries for running the system, which
is divided in two parts that can work independently.

3.2.1.1 Route planning

The libraries and packages necessary for the architecture are reported in Tab. 3.1.

Name Library/Package description Version
PyTorch PyTorch is a ML framework based on the torch library. It is the

framework on which the library Detectron2 is based.
1.10, CUDA
1.11.

Detectron2 A Meta project, evolved from Detectron and maskrcnn-benchmark.
It is a Pytorch-based object detection and object segmentation
library and allows fine-tuning many state-of-the-art, pre-trained
NNs. The version has to match the PyTorch and CUDA ones.

0.6 with:
Torch 1.10,
CUDA 1.11.

Numpy A Python library for scientific computing, defining multidimen-
sional arrays, derived objects, and array operations.

1.25.0

Matplotlib Matplotlib is a comprehensive library for creating static, animated,
and interactive visualizations in Python.

3.7

scikit-learn A ML library based on NumPy, SciPy, and matplotlib. It is a
simple and efficient tool for predictive data analysis.

1.2

Python-tsp A library written in pure Python for solving TSPs. It can work
with symmetric and asymmetric versions.

0.3.1

Rasterio This library uses GeoTIFF format data to organize and store
gridded raster datasets such as satellite imagery. In this project it
was used for retrieving altitude information from a .TIFF file.

1.3

Pillow A fork of the PIL library for Python image processing. 9.5.0
Pykml A package for creating, parsing, manipulating, and validating KML

files. KML is a language for managing geographic data.
0.1.0

JSON A Python package for creating, parsing, manipulating, and validat-
ing JavaScript Object Notation (JSON) files, a lightweight format
inspired by JavaScript object literal syntax.

3.11.4

OpenCV A Python for computer vision, it includes hundreds of algorithms.
The arrays are managed through the NumPy format array.

3.4.19

CPLEX A high-performance mathematical programming solver for linear,
mixed-integer and quadratic programming by IBM, it can solve
huge optimization problems.

22.1.0

Table 3.1: Libraries and packages required for the route planning.

45

3.2 Software requirements

3.2.1.2 Bridge application

The bridge application is a communication channel first introduced in previous
thesis work. It works as a data-bridge between the drone and the computer. It is a
socket-based architecture where the RC, connected to a mobile phone, exchanges
information from the UAV to the computer and viceversa. The communication
interfaces are explained in Chap. 4. For the communication among these devices,
multiple libraries, packages, and applications have been installed, as detailed in
Tab. 3.2.

Name Library/Package description Version
Android Stu-
dio

The official Integrated Development Environment (IDE) for An-
droid development by Google, it provides a set of tools and features
for developers to create, debug, and deploy Android apps.

2021.1.1.19

CoppeliaSim
| V-REP

A robotics simulator (formerly V-REP), it is based on a distributed
control architecture: each object/model can be individually con-
trolled via an embedded script, a plugin, a ROS node, a remote
API client, or any other custom solution.

4.5.1 EDU

Numpy See Tab. 3.1. 1.25.0
OpenCV See Tab. 3.1. 3.4.19
Json See Tab. 3.1. 3.11.4
Detectron2 See Tab. 3.1. 0.6

Table 3.2: Libraries and packages required for the bridge connection

3.2.1.3 UAV Control

The UAV control is based on two different control strategies depending on the
type of flight. The UAV is required to either fly over the panels and conduct an
image acquisition process, or to fly from a panel line to another without acquiring
pictures of the plant. Accordingly, the control is divided in two ROS actions:

A WP connection-based controller for flights from one panel line to another.
This implies implementing a connection between two WPs based on their
geographical coordinates. This could be automatically carried out by the DJI
software embedded in the drone system. However, for the indoor tests setup
(chap.7) the GNSS signal necessary for the WPs connection was not reliable.
Therefore, to simulate this capability, a PID controller was developed, both
inside the V-REP simulation environment and in the OptiTrack motion
capture system [86]. To interface with ROS, the Optitrack ROS pakage
mocap [87] was added to the architecture.

46

3.3 ROS architecture and interfaces

Three different vision based controllers were developed and tested. To
properly use them, an additional ROS package for camera calibration was
installed.

All the control messages and techniques are based on the Numpy library and on
the ROS libraries included in the packages.

3.2.2 Android mobile phone
The Android mobile phone is a key component for the bridge communication
channel. Once connected to the RC (by a USB cable), it opens a two-way
communication between the computer and the UAV for data exchange. The
capability is provided by the Android app installed on the device through Android
Studio. For compatibility reasons, the device needs a version of Android between
5.0 and 11.0.

3.3 ROS architecture and interfaces
The UML graph in Fig. 3.2 describes the structure of the software. The substruc-
tures are examined in further detail in the following subsection.

3.3.1 Interfaces description
Satellite data The data flow for the high-level architecture starts with the
extraction of geo-coordinates for the identification of the WP positions. The
satellite data module identifies latitude-longitude coordinate pairs and send them
to the drone control module through a ROS based service-client connection on a
service called /wp_coords.

Drone control The drone control module, then, starts sending commands
to the UAV socket connection module through a publish-subscribe ROS topic.
These commands are based on the data extracted by the subscription to the UAV
connection module which sends back the sensors data containing the information
related to the current altitude and tilt camera angle (Chap. 4). The location data
is the estimated position of the panel to be followed.

UAV connection The data extracted by the UAV connection is sent to the rest
of the system on a publish-subscribe basis. The altitude information is calculated
by two sensors, namely, a barometer and a proximity sensor, both of which stream
on their own topic connection. The connection opens up the stream of images

47

3.3 ROS architecture and interfaces

Figure 3.2: High-level UML graph of the interfaces.

from the drone camera to the PC. The image data is streamed with a compressed
format which has to be decoded and then republished to another topic. The
decompressed image is then published on the Image stream topic.

Panels detection Through multiple processing steps, this module calculates
the panel position based on the aerial image and publishes it on the location data
topic. Depending on which controller is activated and on the image modification
required, the panels detection module subscribes to different image-streaming top-
ics (Sec.6.4.1). Then, the Drone control module extracts the necessary information
to compute the correct control input.

3.3.2 UAV connection module inner interfaces
Each box in Fig. 3.3 represents a ROS node contained in the UAV socket
connection portion of the architecture. The following summary analyzes the
sub-structures and connections.

Img Listener UDP This node receives the video stream from the bridge
application and it republishes it to the topic /output/image_raw/compressed with

48

3.3 ROS architecture and interfaces

Figure 3.3: UML graph of the socket connection interfaces.

a JPEG compression. The Republish node from the ROS library then decompresses
the image to a raw format on the /output/image_raw topic.

UDP server This node opens the communication for the sensor data to be
streamed on the ROS topics of the architecture. On a previous implementation of
the bridge app, only the data related to the drone altitude was streamed. This
information is published on the /barometer and ground_distance topics. For this
thesis work, the tilt angle of the camera gimbal was added.

Command publishers Commands are sent to the drone in two steps. First,
the commands are passed to the Cmd velocity Publisher node which republishes
the commands retrieved on the topic /command to the topic /cmd_vel at a rate
of 15 Hz. This is required by the drone to accept the command (the drone accepts
commands at frequencies from 5 to 25hz). The command publisher node then
takes the stream from the cmd_vel topic and publishes it through a TSP socket
connection to the drone.

3.3.3 Drone control inner interface
The interfaces within the drone controller portion of the architecture are based on
two ROS custom actions for managing the autonomous movements of the drone
(Fig. 3.4).

49

3.4 Simulated interfaces and drone

Figure 3.4: UML graph of the controller interfaces.

Flight client This node behaves as a single task parser for the controller. It
receives the WP coordinates identified by the satellite data extraction node and
executes an action to move the drone either along a single panel line (follow_line
action) or from one panel line to another (go_pose action).

Along panels controller This is the visual servoing node; three different nodes
can be used, depending on the control technique desired by the user (Fig. 3.4).
All three nodes gather information from the sensors to create a control input
published on the /commands topic.

Across panels controller This node has similar interfaces as the previous
one, but here the movements are not based on image data but only on telemetry
and altitude information. This information is served to the controller through
the OptiTrack data configuration managed by the dedicated package. This node
could also be replaced by the WP-based DJI controller already included in the
DJI mSDK (Sec. 4.2.2.2).

3.4 Simulated interfaces and drone
Preliminary flight tests were conducted in simulation on the latest version of
CoppeliaSim. This simulator can simulate many types of robots, including UAVs.

50

3.4 Simulated interfaces and drone

The drone models can be controlled with different methods, such as embedded
scripts, plugins, ROS nodes, and many others [88]. The drone model chosen for
the simulation is the quadcopter.ttm, to which an ideal weightless camera and
proximity sensor were added, to simulate the actual sensors of the real UAV (Fig.
3.5).

Figure 3.5: The quadrotor model. Figure 3.6: Simulation environment.

The ROS interfaces are coded in the Lua programming language. The script
publishes to the designated ROS topics the following data:

/output/image_raw The image stream, already formatted in a raw standard,
simulating the image stream of decompressed images from the actual drone.

/ground_distance The altitude data from the simulated proximity sensor.

/barometer_altitude The same message as the one published on the /ground_dis-
tance topic.

/quadrotor_pose Publishing a geometry_msgs/Pose data containing the x
and y coordinates of the quadrotor position, for simulating the telemetry data of
the OptiTrack system.

To complete the network simulation of the socket connection, a subscription
to the /command topic is defined. Thanks to this configuration, the commands
calculated by the actual controller used in the real-world simulation were sent to
the simulated drone.

51

Chapter 4

Bridge application

The bridge app is a socket-based data bridge installed on a phone attached to the
RC and connected to the computer managing the drone control. In the first part
of this chapter, an outline of the already existing app is given. The second part
describes the newly introduced features needed for the control techniques of Chap.
6.

4.1 Application development
Part of a previous thesis work was the further development of an already existing
Android bridge_DJI_ROS mobile app, which establishes the bridge connection.
This section introduces the main features of the app and how it works. The
application was developed in Java using the Android Studio IDE. It is based on
the mobile SDK developed to allow programmers to interface with DJI products
(App. A.1).

The application develops a socket connection network for communication
between the PC and the phone, exchanging sensor information and commands
regarding the UAV flight. The socket connection is established on a Wireless
Local Area Network (WLAN), opening the socket connections listed in Tab. 4.1.

Data Type Dimension Rate Protocol Client/Server
Ground distance Float 4 B 20 Hz UDP Phone/PC

Barometer altitude Float 4 B 20 Hz UDP Phone/PC
Frame JPEG 50 KB Max UDP Phone/PC

Command Custom 16 B 15 Hz TCP PC/Phone
Gimbal tilt Float 4 B 5 Hz UDP Phone/PC

Table 4.1: Socket connections.

52

4.2 Application improvements

Figure 4.1: Schematic of an inspection, with the drone velocity (in teal), camera
stream (magenta) and altitude (red) from the proximity sensor and barometer

.

Tab. 4.1 shows the type, dimension, direction, protocol, and stream rate of every
data entity for each open socket. The difference between the types of transport
layer protocol is due to the different nature of the messages exchanged between
the two platforms.

Transmission Control Protocol (TCP): it ensures reliable, ordered, and
error-checked data transmission between devices over networks. In case the
received data is not correct, TCP re-sends the lost piece of information.
This reliability is exploited for the PC-to-phone velocity publishing, to never
lose velocity control signals.

User Datagram Protocol (UDP): it is a fundamental part of the Internet
Protocol Suite and offers a simple, connectionless way of communication
for networked devices. It offers speed and simplicity at the expense of data-
reception reliability. This protocol is exploited for the phone-to-PC data
transmission where sensors data (sampled at high frequency) is exchanged
and error checking is superfluous.

4.2 Application improvements
New features, required for the developments in drone control presented in this
thesis, were added to the socket connection network and to the application in
general. The following subsections explain these features and how they interface
with the already existing app.

53

4.2 Application improvements

4.2.1 Tilt gimbal angle data transmission
In Chap. 6, the visual-based control techniques for the UAV flight are explained.
The visual servoing based on task stacking requires further data to be exchanged
by the socket connection, namely, the tilt angle of the UAV. This information is
extracted through the DJI SDK and republished on a 5 Hz UDP. With this, it is
possible to adjust the control angle on tilted rows of panels for the task-stacking
control (Sec. 6.4).

4.2.2 Flight across rows of panels
After reaching the end of a panel row, the UAV has to fly between the end of
the line just tracked and the beginning of the following one. This flight across
rows of panels is not based on the image stream, but on the UAV location. The
following two subsections explain how this problem has been addressed in indoor
and outdoor environments.

4.2.2.1 Indoor flight

As explained in Chap. 7, the experimental setup for the evaluation of the control
algorithms proposed in this thesis work is in a protected indoor aviary inside
the EmaroLab at the University of Genova. Experiments based on GPS location
within indoor environments are not reliable due to signal corruption. To represent
the movement of the UAV inside the indoor environment, the OptiTrack motion
capture system installed in the test area was used (Sec. 6.5).

4.2.2.2 Outdoor flight

The outdoor UAV flight is based on the GPS signal. The current app collects
the velocity commands calculated within the ROS architecture and passing them
to the UAV, through a control mode called VirtualStickControlMode. The drone
movement based on the GPS data is managed instead by a different control mode,
called WaypointMission.

The TCP socket from ROS to the bridge app exchanges messages regarding
the four command velocities for DJI drones (vx, vy, vz and !z). For starting the
WaypointMission mode, the ROS controller sends to the app a known modified
version of the velocity message, where vx, vy and vz are equal to the latitude,
longitude, and altitude values of the objective point, and !z is equal to a specific
key-value used to switch between modes. The latitude, longitude, and altitude
values are then extracted to create a new WP instance, which is set as the
next target point of WaypointMission, along with other mission configuration

54

4.2 Application improvements

Figure 4.2: In teal: the WP-based movement across the panel.

parameters such as speed, heading, and actions. Then, the mission is started and
the VirtualStickControlMode is suspended until reaching the target WP.

This feature could replace the current node used for movement across panels:
an idle state in the node for moving along panels could wait for the end of the
WaypointMission. While this feature has already been developed, it has not yet
been tested because the indoor setup did not support GPS signal (Fig.4.2).

4.2.2.3 GPS position errors

From the specifications of the UAV model used for this thesis work (App. A.1),
when starting the WaypointMission, the position error from the GPS signal could
reach ±1.5 m during active flight and ±0.5 m during hovering. Therefore, the
following problems could arise during outdoor applications.

Misalignment errors: when reaching a new WP, there could be issues in seeing
the new panels inside the camera field of view, making it impossible to
automatically start the inspection.

Battery issues (Chap. 5): when the drone’s WP-based flight does not follow
accurately the intended trajectory many times in a single visit, the total
path length could be larger than the one considered while planning the
flight. For example, the trajectory across the panels could be longer, or the
UAV could be off the desired position, so a deviation is necessary during
the visual servoing portion of the flight. These issues could lead to battery
draining if not taken into account when choosing the maximum flight length
(Sec.5.5).

55

4.2 Application improvements

Most of these issues can be solved by changing the drone model used to one
supporting the RTK technology. This feature adds a high-precision positioning
solution to improve the accuracy of GNSS-based navigation systems, particularly
in applications such as mapping, where centimeter accuracy is required [26].

56

Chapter 5

Planning the flight route

This chapter presents a portion of the thesis project aimed at automating the
extraction of satellite images of PV installations from Google Earth servers and
generating an optimal path to visit them, considering the drones’ battery limita-
tions.
This portion of the project is developed both as a ROS node integrated in the
project’s software architecture (Fig.5.1) and also as a Python module which will
be integrated into the JPVision application. JPVision is an under development
application capable of autonomously plan and carry out all kinds of facilities and
infrastructural inspections through the use of DJI UAVs.

Figure 5.1: ROS node which processes the image.

5.1 Current solution to the problem
As mentioned in Sec. 4.2.2.2, DJI drones can follow pathways defined by geograph-
ical coordinate WPs. However, manually picking these points is time-consuming
and inefficient. Moreover, manual picking implies a lack of systematic analysis to
establish the best route for the drone since it is difficult to find a flight pattern
which is optimized to account for battery draining. Advanced drone software and
flight planning tools can be utilized to address these limitations.

57

5.2 Automatic solution to the problem

The application developed for this thesis uses algorithms and optimization tech-
niques to compute the most efficient path, taking into account aspects like battery
level, flying time, and distance between WPs. These solutions, can dramatically
improve the drone’s efficiency, productivity, and overall flying performance by
automating and optimizing the path planning process.

Figure 5.2: Pictorial summary of the image processing carried out by the module.

5.2 Automatic solution to the problem
In this section, the extraction, processing, and optimization of the data extracted
by the satellite imagery will be explained in detail. The following UML Activity
Diagram will schematize the whole process of extracting the images give specific
geo-coordinates to the acquisition of the set of geographical WPs (Fig.5.3). The
Activity diagram is a flowchart that represents the flow of control among the
activity of a system. This kind of representation is necessary for understanding
all the steps the node takes to extract the final information.

58

5.2 Automatic solution to the problem

Figure 5.3: UML Activity Diagram of the node.

59

5.2 Automatic solution to the problem

5.2.1 Satellite image acquisition
In this section the satellite-image acquisition will be discussed by focusing on the
important steps for performing the process.

5.2.1.1 Coordinates selection

The image extraction process starts with the user’s manual parsing of a .kml
file. .kml is a XML based extension which displays geographic data of an Earth
browser, such as Google Earth. The data which the file contains is:

A polygon: A closed polygonal line geo-localized in the world map. The user
is required to create a polygonal shape around a certain geographical area
containing the PV plant of interest.

A key-point:A geo-localized point in the world map. The user is required to set
a key-point in a certain geographical location which identifies the starting
point and charging-pit of the UAV.

The second step involves collecting the data for the image extraction from
the .kml file. The top-left (TL) (corresponding to the lowest and highest latitude
and longitude of the polygon) and bottom-right (BR) (corresponding to the corre-
sponding to the highest and lowest LAT, LON of the polygon) coordinates are
collected. These points define a rectangle containing every panels of the plant in
the extracted image.

5.2.1.2 Image extraction

Once the TL and BR coordinates are extracted, the sat-img.out will execute the
extraction of the satellite images. This executable was provided by the partner
JP Droni as part of the JPVision project.
Given the TL and BR coordinates, the executable is capable of extracting the
portion of land that lies within the two points from the Google Earth servers.
The application developed by JP Droni is based on the Earth Engine APIs
(EE). Google Earth Engine is a Google project that blends planetary-scale analysis
capabilities with a multi-petabyte database of satellite photos of an accessible
geographical datasets [89].
Google Earth and Google Maps export pictures using rectangular tiles each of
which represents a different part of the Earth’s surface. The zoom level of these
image instances, goes from level 0 to level 20. The side length corresponding to
one pixel between the 21 levels of zoom spans from 156km at level 0 all the way
to 0.15m at level 20. The given application is able to download a tile-stitched
image with a zoom level of20 which returns the highest detailed image possible.

60

5.3 Deep Learning Instance Segmentation

5.3 Deep Learning Instance Segmentation
This section is dedicated to describing how to extract a binary image which
distinguishes pixels depicting panel rows from background pixels within the
previously found PV plant satellite image.
The following subsections will focus on explaining the steps that led to the choice
of the NN model used, how it was trained, and how the training dataset was
created.

5.3.1 YOLO
You Only Look Once (YOLO) is a popular object detection and image segmentation
model. It was first developed by Joseph Redmon and Ali Farhadi at the University
of Washington for their company Ultralytics [29]. It is one of the fastest and the
most used algorithms for object detection porpoises. Due to its proven speed it
was the first method exploited for the identification of the panels.

YOLO v8: Object Detection: Evolving from YOLOv5, YOLOv8 is the state-
of-the-art NN model supporting object detection, image classification, and
instance segmentation capabilities. The choice of this model comes from the
first idea of identifying the position of the panels in the image through object
detection Bounding Boxes (BBs). However, BBs do not account for any
kind of object rotation in the image meaning that the boxes would always
have to be parallel to the image frame. After discovering that photovoltaic
plants are not perfectly aligned with the general configurations North-South
or East-West (Roof installations are an example of this misalignment) this
method was discarded since the final aim was to perfectly identify the
extremes of the rows. However, during the first developments of the project,
this issue was not considered as a big limitation because most of the PV
pants are built following the correct orientations anyways. Therefore, the
post processing steps were already able to roughly identify the end points
of the lines of panels (Fig.5.4). The development of the Path optimization
for the UAV flight was then conducted on the output of this first model.
Since YOLOv8 supports a segmentation models, one of the NNs tested was
the YOLOv8m-seg model. However, the obtained masks were not enough
tight on the actual rows bounds.

YOLO v5: Rotated boxes Object Detection: TheYOLOv5-Oriented Bound-
ing Boxes (YOLOv5-OBB), is designed to yield predictions that better fit
objects that are positioned at an angle in an image. Using YOLOv5-OBB
is possible to detect lines of panels that are rotated on a given frame more
tightly and accurately. YOLOv5-OBB is a single-stage rotation detector

61

5.3 Deep Learning Instance Segmentation

based on the RetinaNet. The identification of the orientation is based on a
regression-based prediction branch and a CSL-based prediction branch. More
on this can be found inside the related paper [90].
The results obtained with the fine tuning of this model were way better
than the results obtained with YOLOv8 but the bounding boxes were still
not very tight on the panels contours and some OBBs were not very much
aligned with the rows they were identifying.

Figure 5.4: .a: YOLOv8 Bounding Boxes;.b: YOLOv5 Oriented Bounding Boxes.

5.3.1.1 Object Detection Data-set

Since no dataset of satellite images of photovoltaic rows of panels was found on the
internet, a manual image annotation process was necessary to create a fairly big
dataset for training the DL models. For training both the YOLO v8 and YOLO v5
models a bounding box dataset was created using the LabelBox online application.
For the sake of this project, the tool was used uniquely for the annotation process
and not for training the model.
In supervised learning, data annotating is the process of identifying raw data (in
this case images) and adding one or more meaningful and informative labels to
provide context so that a ML model can learn from it. To create a data-set two
steps are necessary:

• Collecting a good amount of satellite images representing large scale solar
plants.

• Labeling the images. Therefore, manually identifying the object drawing
tight closed bound lines around them.

62

5.3 Deep Learning Instance Segmentation

For the training of the YOLO models, the image acquisition process was
skipped since an open-source data-set for the identification of PV plants contours
was found on Zenodo [91]. However, a manual labeling process had to be carried
out to locate the rows of panels in the images.
This first iteration of the dataset counts a total of 229 labeled images divided
into the three sub-sets: Train set (70%), Validation set 20%, Test set 10%. The
dataset was then stored on the Roboflow database [92]. Roboflow is an online
applicaiton that lets you store your own dataset on their platform. Thanks to an
easy-to-use API interface it is possible to download it before the training step.
Thanks to this application, it is possible to resize the images and augment the
dataset.

Resizing: The resizing to a standard image resolution is an advantage when
training a NN since it increases the over all memory efficiency of the process.
This implies a faster convergence during training process. Moreover, having
consistent image sizes ensures that augmentation operations can be applied
uniformly across the entire dataset.

Augmentation: Image augmentation is a data processing technique for training
NNs. It involves applying various transformations to the original training
images, such as rotation, scaling, flipping, and brightness adjustments, to
create new augmented versions of the data-set. This technique expands
the size of the data-set without requiring additional labeling. It introduces
more robustness to the model reducing overfitting. However, Augmentation
can also lead to an increase in training time since each training epoch has
to process a larger number of images. Moreover, excessive augmentation
or inappropriate transformations may introduce unrealistic artifacts in the
images which could mislead the NN training, leading to worse performances
of the model itself.

The resizing for this data-set was set to an image resolution of 640⇥ 640.
The augmentation involved: 90° Rotate: Clockwise, 90° Rotate: Counter-Clockwise,
Image Flip. Resulting in a data-set three times bigger than the original.

5.3.2 Detectron2
Detectron2 is an open-source deep learning framework developed by Facebook
AI Research that mainly focuses on computer vision tasks, specifically object
detection, instance/semantic/pan-optic segmentation, and key-point detection. It
is based on PyTorch and provides a modular architecture, making it easy to
customize and extend for different research needs and applications. Detectron2

63

5.3 Deep Learning Instance Segmentation

offers state-of-the-art implementations of various cutting-edge object detection
algorithms, such as Faster R-CNN, RetinaNet, and Mask R-CNN. The Detectron2
repository [30] also includes a directory named projects where some Facebook
research works are collected. One of these projects oriented towards segmentation
is called PointRend which was used intensively to train a neural network capable
of perfectly identify the orientation and the contour of the panels.

5.3.2.1 FPN + PointRend: Instance Segmentation

As aforementioned in Sec. 2.8.3, the U-net is a typical approach when it comes
to the precise segmentation of small elements within satellite images. However,
the article [93] of the famous repository [94] on satellite images and deep learning
proposes a comparison between The U-net and the Basic FPN + PointRend model
[14], which is reported to significantly improved segmentation performances over
this type of imaging.
PointRend is capable of recognizing that different areas of the output mask which
may require a different amount of information, in contrast to conventional CNNs
that operate with regular grids of features. The regular grid representation of CNNs
distributes Computational effort uniformly across all spatial positions, leading to
excessive amounts of computation for easier areas and an under-balanced detail for
complex regions. Additionally, PointRend makes predictions for a set of sampled
points using an implicit function technique, gradually improving the prediction
just for the subset of points (Fig.5.5). Moreover, it uses bi-linear interpolation
to gradually enhance the resolution by starting with a coarse prediction that
can be computed efficiently and only tweaking predictions for points that need
higher resolution. With the help of these additional features, high-resolution
segmentation can be added to current CNN-based image segmentation models,
resulting in improvements in quantity as well as quality [14].
As a matter of fact, the studies’ findings of the article [93] demonstrated that
Detectron2 FPN + PointRend outperformed even the U-Net by a 15% increase
in accuracy when comparing the results on the same validation dataset after the
same fine tuning. These results demonstrate that using PointRend over U-Net
may be beneficial in terms of output performance.

Therefore, two of the instance segmentation models were compared on a new
data-set created for such task: Mask_rcnn_R_50_FPN and pointrend_rcnn_R_50_FPN
both pre-trained on the COCO data-set.
As explained in the experiments Chap7, the best performing model with the coco
validation resulted to be the pointrend_rcnn_R_50_FPN. Therefore, the fine
tuned weights for the new class were used for the identification of the lines of
panels.
Using this setup turned out to be a grate improvement in terms of tightness of the

64

5.3 Deep Learning Instance Segmentation

Figure 5.5: PointRend segmentation comparison [14].

masks (Fig.5.6). Thanks to the following image processing steps, the identification
of the WPs turned out to be perfect in terms of positioning with respect to the
panel lines.

Figure 5.6: Point-Rend segmentation.

5.3.2.2 Instance Segmentation Data-set

The dataset was developed in a similar way compared to the previously mentioned
one. However, the labeling and the storing of the dataset were both carried
out directly on RoboFlow. The most recent update of the RoboFlow software
included a new key-feature regarding the labeling of segmentation based data-sets
annotation. The newest Meta AI project called Segment-Anything (SAM) was
included in the Roboflow workspace right after release.
SAM is an instance segmentation model released on April, 2023. SAM was trained
on 11 million images and 1.1 billion segmentation masks. This model is addressed

65

5.4 Image processing

as a Zero-Shot Learning (ZSL) model. It is possible to generate segmentation
masks of any object without any prior training on any class [95]. This result is
obtained by pre-training the model on a set of known classes and then giving it
the task of generalizing to a specific collection of unknown classes without any
additional training [92]. However, since the lines of panels in the images are very
small compared to the picture of the PV plant, the SAM poly-line had to be
corrected quite often.
Differently from before, the image collection was carried out manually. Thanks
to a dataset from the solar inspection conducted by JP Droni back in 2020, it
was possible to quickly locate many photovoltaic plants on the Italian territory
from which the pictures of satellite images were collected at different satellite
magnitudes. To improve the robustness of the neural network with respect to
false positives, images without any solar panel were added.
The final dataset was composed of 470 images including more than 10000 an-
notations. Just like before, the dataset was split into the three sub-sets: Train
set(70%), Validation set 20%, Test set 10%.
The resizing for this data-set was set to an image resolution of 640⇥ 640.
The augmentation involved: 90° Rotate: Clockwise, 90° Rotate: Counter-Clockwise,
Image Flip, Rotate: Between -20° and +20°, Brightness: Between -20% and +20%.
Resulting in a data-set three times bigger than the original with a total of 1112
images split in the sub-sets with the same percentages.

5.4 Image processing
As aforementioned in the previous sections of this chapter, the image processing
step aims at filtering and extracting the set of WPs in geo-coordinates for visiting
the entire PV plant. The following steps will explain how such activity is carried
out in the code.

5.4.1 First OpenCV processing
5.4.1.1 FindContour

The first step is to identify the contours of the panel rows of each mask. This
operation is based on the contour identification of an objects and it is carried out
by the OpenCV function called FindContour. After its application computation
a set of contour elements will be collected and sent to the following processing
step.

66

5.4 Image processing

5.4.1.2 MinAreaRect

The following step will concern the approximation of each of the just found
contours into an oriented bounding box. The MinAreaRect is capable of executing
such processing step. The oriented box element is composed by three different
parameters: Center point described by a pair of (x, y) pixel coordinates, the
Width and Height of the box, and the Orientation Angle of the box in the
image.
Depending on the Orientation Angle the Width and Height of the boxes the
identification of the correct orientation with respect to the image may not always
be intuitive. The orientation value lies within [�90, 0) deg with respect to the
rectangle side representing its width, which lies the farthest to the right side of
the image. If that side is rotated more than 90 deg, then the adjacent edge is
considered as the width side, therefore it is used to calculate the angle from the
horizontal. Therefore, a farther step is introduced to force the solutions into three
different categories depending on the orientation-configurations:

East-West: In this case, regardless of the orientation, the Height value will be
set as the smallest one between the given width and the Height values. This
configuration is the most common among the Italian plants.

North-South: In the case of this configuration, the Width value will be the
smallest and the height the highest.

Roof plants: Since the panels orientation follows the orientation of the building
one of the two configurations will be adopted based on the average angle of
the panels.

5.4.2 Filtering and Standardizing
The following step consists in adjusting the overall orientation of the rectangles
obtained. Generally, the global orientation of the plant’s rows remains constant
through out the whole facility. This fact was exploited for filtering and refining
the MinAreaRect output.
Taken every orientation of every panel of the set, the Standard deviation � and
Average µ were calculated. Thanks to this data, the following two steps where
taken:

1. Filtering any wrongly identified shapes for the DL process.

2. Standardizing the remaining angles to have a similar orientation angle.

67

5.4 Image processing

The filtering consists in eliminating from the collection the rectangles whose angle
is out of a ±2⇤� bound from the average only if the � value is over a predetermined
threshold of 3 deg. If the � value is under this threshold value, no filtering of this
kind is applied.
The Standardizing process consists into taking the remaining panels and calculating
both standard deviation and average. Once obtained, a final average of the elements
in the ±� bound is collected. This angle is then given to all the elements that
lie within the initially set bound. This adjustment will make the angle of the
panels more coherent to the initial assumption of having them all arranged with
the same global orientation.

Figure 5.7: Oriented boxes.

5.4.3 OpenCV WP pixel coordinates identification
After managing the data contained in the rectangles representing the panels, the
last few steps for the identification of the global WPs begin.

5.4.3.1 BoxPoints

Starting from the information stored in the rectangle elements, it is possible to
identify the coordinates of the corners of the rectangles thanks to the OpenCV
function BoxPoints. Given the rectangle data as input to this function, four x, y
pixel coordinates are given each one related to the rectangle’s corners.

5.4.3.2 WP identification

The four corners of each rectangle are separated in two groups depending on the
panels configuration:

Left-Right for E-W : Where the two points with the smallest x pixel coordinate
and the two with the highest are coupled.

Top-Bottom for N-S : Where the two points with the smallest y pixel coordinate
and the two with the highest are coupled.

68

5.4 Image processing

(a) Two lines path. (b) Three lines path.

Figure 5.8: Side by side figures

(For the rest of this section, only the East-West configuration will be described.
The North-South one works exactly in the same way just by switching East with
North and West with South).
One imaginary segment is drawn between the two points of the left group. De-
pending on how many times does the drone have to pass over a single lines of
panels the segment is divided into n_pass sub-segments. The WPs identify-
ing the segments splits are then be projected on the opposite side’s segment to
identify the pixel WP coordinates necessary for the flight. The fact that the
UAV may have to pass more than one time over the panel lines depends on the
different type of information the user wants to extract from the visit. More specifi-
cally, the multiple passages are needed for the identification of the panels’bar-codes.

The standard flight height for a normal plant visit is around 15 to 20 meters
depending on how wide the line of panels is. at this height it would be impossible
to spot those numbers which are identifiable only at an altitude of around 1.5 to
3 meters.
The issues with such flights plan is also related to how the modules have been
arranged and oriented within the panel lines and where the bar-code is printed on
the module.
Since there is not a pre determined way to install such panel lines, the flight plan
has to change accordingly to the plant’s panel lines configuration and bar-codes
disposition. To accommodate such arrangements, the dub variable is introduced.
This variable lets the user choose among two different types WPs distancing for
flight plans with more than one single flight over the panel line. Focusing on one
side of the line of panels, depending on the value of the dub Boolean two different
configuration may take place:

dub variable set to 0: The side line is divided into n_pass+1 equal sub segments.

dub variable set to 1: The side line is divided into 2⇤n_pass sub segments.

69

5.4 Image processing

(a) Dub = 0 WPs. (b) Dub = 1 WPs.

Figure 5.9: Side by side figures with different Dub values.

These WPs are then divided into two sub-sets of accepted and rejected WPs.
The Fig. 5.9 highlights the criteria of inclusion and exclusion of such WPs.
The two accepted sets of n_pass WPs on each side of the panel line are
going to be the actual flight WPs of the plan.

In the case of the dub = 1 the spacing closer to the edges of the row is smaller
than the spacing between the inner WPs, whereas for the dub = 0 the spacing is
exactly the same. By combining different values of the dub and n_pass variables
the majority of the rows arrangements will always be covered by the UAV flight.

5.4.3.3 Ordering the WPs within the panel lines

The TSP optimization step only considers either the left (even n_pass) or both
(odd n_pass) extremes of the line of panels. Therefore, in the case of n_pass > 1,
the WPs visiting order within the same row has to be decided.
For ordering the WPs the drone cannot go back to the charging station during an
image capturing acquisition session of one line. Therefore, it has to approach the
visit of one panel in a single top-to-bottom or bottom-to-top run (Fig.5.10). The
choice between these two modalities is based on the following factors:

1. The position of the previous row visited,

2. the evenness or oddness of the n_pass value.

If n_pass is Even the only side considered during the WPs connection is the
left side. Therefore, the decision on how to approach the panel is based exclusively
on the position of the previous WP visited. If the y coordinate of the previous
WP is higher than the y-coord of the center of the row, the visit will be of the
top-to-bottom kind. The opposite thing holds in the case where the previous
y-coord is lower than current one.

70

5.4 Image processing

(a) Even paths. (b) Odd paths. (c) Odd paths.

Figure 5.10: Side by side figures with different path directions.

If n_pass is Odd there are more option for entering and exiting the single row.
Calling the previous visited point (xp, yp) and the row’s center one (xc, yc) the
four different approaches are:

• Top-Left/Bottom-Right: When yp > yc and xp < xc.
• Bottom-Right/Top-Left: When yp < yc and xp > xc.
• Top-Right/Bottom-Left: When yp > yc and xp > xc.
• Bottom-Left/Top-Right: When yp < yc and xp < xc.

These predetermined orders make the optimization for the shortest path way
more efficient since the WPs considered will be n_pass times less than the total.
The WPs are then shifted 1m outside the lateral bound of the row’s BB. This
additional step provides an higher confidence of covering the entire line of panels
since sometimes the initial boundary is not very tight on the bound. This kind of
issue often happens with rows ends missing some modules as in Fig. 5.11.

Figure 5.11: Incomplete panel line ending.

The identification of the 1m shift the Haversine formula, which takes into
account the curvature of the Earth, to calculate the distance in meters between
the geo-localized WPs of the image. This distance is calculated between two well
known couples of points TL-BL and TL-TR.
Since the pixel coordinates of these three points is known by the definition of the
.kml file, and given these two distances in pixels, the average size of pixel side in
meters is calculated. Finally, the value in pixel units of 2m is added to the width

71

5.4 Image processing

value of every panel in order to make them a meter wider on each side.
the pixel side length in meters will also be exploited to measure the distance
traveled by to connect for the computation of the optimal path. The Haversine
formula is commonly used in navigation and is expressed in terms of spherical
trigonometry. Here is the formulation of the equation:

a = sin2

✓

∆�

2

◆

+ cos(�1) · cos(�2) · sin
2

✓

∆�

2

◆

(5.1)

c = 2 · atan2
�p

a,
p
1� a

�

(5.2)
distance = R · c (5.3)

Where: ∆� is the difference in latitude between the two points, ∆� is the
difference in longitude between the two points, �1 and �2 are the latitudes of the
two points, R is the radius of the Earth (in this case, it is multiplied by 1000 to
get the distance in meters), atan2 is the two-argument arc-tangent function that
calculates the angle from the x-axis to a point given its coordinates.

5.4.4 Post-processing step: geo-localization
Given that the image extraction of the satellite images is based on the top-left
and bottom-right coordinates of the picture, the geo-localization of every other
pixel in the map should be any easy task. However, some finer details have to be
considered. The formulation to find the geographical coordinates of a given pixel
is:

x = tl[1] +
wp[0]� shift_x

img.size[0]� 256
(br[1]� tl[1])

y = tl[0] +
wp[1]� shift_y

img.size[1]� 256
(br[0]� tl[0])

(5.4)

Where: tl[i] and br[i] are the known Lon-Lat coordinates of the TL and BR points,
wp[i] is the pixel coordinate of the point of interest, img.size[i] is the x, y pixel
size of the image, shift_x and shift_y are x, y coordinates shift factor.

The Image extractor application provided by JP Droni has the limitation
of have access only to satellite images up to may 2021. Eventually, whenever
updated pictures of the territory are added to the Google Earth servers, some
minor coordinate shifts happen from previous years image localization. This is
due to multiple factors such as satellite misalignment. The adding of a shift
factor was necessary to fix such issue. The �256 added to the calculation accounts
for a pixel image padding carried out by the image extractor to include bigger
margins of the image. This extra room added to the image frame accounts for

72

5.5 Path optimization process

possible maps changes. The shift_x and shift_y are needed to fix such issue.
Depending on the year of acquisition of the image, the value of such shift can be
changed to fit the current map in the best way possible (Sec.5.5.2).
The inverse of this function is applied to extract the geo-coordinates of starting
point information extracted by the .kml to turn them into pixel coordinates. The
formulation is:

pix[0] = shiftx +
(st[1]� tl[1])(img.size[0]� 256)

br[1]� tl[1]

pix[1] = shifty +
(st[0]� tl[0])(img.size[1]� 256)

br[0]� tl[0]

(5.5)

Where the pix[i] indicates the pixel coordinates of the starting point.
Once all the pixel coordinates are transformed to geographic coordinates, a
dedicated function transfers these information to a .kml file to view the path on
Google Earth. This file will then enter the application that JP Droni uses to pass
the geographical path to the UAV and compute the WPs connection with the
custom JPVision app.

5.5 Path optimization process
Once all the WPs are collected, the following step is to optimize the path that
connects them. The objective of the optimization is to minimize the flight time
needed to complete the visit. The drone will have to strictly pass over the row
of panels and it will have to keep track of the battery draining up as it is one
of the most common limitations of electric vehicles. To approach the optimization
of the connection, the Traveling Salesman Problem emerged as a viable solution.
As aforementioned in Sec. 2.9.1, the objective of the TSP is to find the shortest
possible route to connect multiple WPs and return to the starting point. For the
problem formulation analyzed for this thesis work, the aforementioned additional
constraints had to be included in the problem formulation. The definition of the
modified problem will be described in the following sections.

5.5.1 TSP formulation
First of all, the implementation for the modified version of the problem started
with a standard implementation of the TSP through the IBM CPLEX software.
CPLEX Optimizer is a software by IBM capable of providing, high-performance
mathematical programming solvers for linear, mixed-integer, quadratic, and

73

5.5 Path optimization process

quadratic constraint programming problems [96]. The definition of the prob-
lem through the CPLEX API, will find the WPs connection through the optimal
branch and cut method (Sec.2.9.1).

5.5.1.1 Problem Formulation

The problem instance is defined through the following variables:

C: as the set of all WPs to be visited.
ci: as the i-th node representing the WP.
xij : the binary decision variable, which represents moving from ci towards cj . As

a binary variable its values are xij = {1} _ {0}.
A: as the arcs formed between ci and cj.
dij: as the distance between ci and cj.

To solve the problem the following three steps will be taken:

Step 1 : after collecting all the necessary WPs, the first step is to calculate
the Distance Matrix (DM). The size of the matrix will be n ⇥ n (with n the
number of WPs) with each i, j matrix spot representing the euclidean distance
between the ci and cj WPs. Since this problem is defined as a symmetric TSP
instance, the distance between the WP ci and cj (dij) will be the exact same as in
the opposite direction dji.

DM =

2

6

6

6

6

6

4

0 d12 d13 . . . dn1
d12 0 d23 . . . dn2
d13 d23 0 . . . dn3
...

dn1 dn2 dn3 . . . 0

3

7

7

7

7

7

5

(5.6)

Step 2 : The CPLEX modeling of the traveling salesman problem instance is
based on two elements.

The Objective Function: Which represents the quantity that has to be minimize
or maximize in the problem instance. In the case of the TSP the total
distance Z has to be minimized.

MinZ =
X

8A

xijdij (5.7)

The Constraints: Which ensure that the problem is modeled accurately and
that the solution keeps into account the problem’s requirements. The tour

74

5.5 Path optimization process

constraint ensures that each way-point is visited exactly once in the single
tour.

n
X

j=1,j 6=i

xij = 1 for: i = 1, . . . , n (5.8)

This equation means that for each WP ci, the sum of the decision variables xij

(representing outgoing edges from ci) is equal to 1. It enforces that exactly one
edge must leave each way-point.
The Sub-tour Elimination Constraints or Big-M was first used in the Miller-
Tucker-Zemlin (MTZ) formulation of the TSP [97].

ui � uj + 1�M(1� xij) (5.9)
It ensures that the differences between the values ui and uj (non-negative integer
values representing the order of WPs i and j in the tour) are properly adjusted to
eliminate the possibility of creating sub-tours. Choosing the appropriate value for
M is important. It should be large enough that the constraint is always active
when needed but not so large that it causes numerical issues or overly tight bounds
in the optimization problem. For M = n, any tour could satisfy this constraint.

Step 3 : The CPLEX solver then uses its optimization algorithms to find the
values of the decision variables that minimize the objective function while satis-
fying the constraints, thus providing an optimal or near-optimal solution to the
TSP. To perform such solve, the optimization model previously defined is read and
initialized by CPLEX, encompassing the objective function, constraints, decision
variables, and their values. Based on the problem’s nature, size, and specified
solution approach (mixed-integer linear programming), CPLEX automatically
chooses the most suitable algorithm. Then, the problem instance is pre-processed
to reduce its complexity, minimize the size, and identify redundancies among the
problem definition enhancing solving efficiency.
Throughout this process, CPLEX utilizes the branch-and-bound algorithm, divid-
ing the problem into subproblems through branching and bounding the optimal
solution within predefined ranges. This involves exploring different branches of a
search tree to identify the best integer solutions.
whenever approaching the end of a solution for expiration time or because the
optimal solution is found, CPLEX refines the solution with cutting planes supple-
mentary constraints and heuristics as approximation methods. Once reached the
end of the solve, the program provides information about the solve, including if
the final permutation is optimal or not.

75

5.5 Path optimization process

5.5.1.2 Problem constraints

However, the problem faced in this project is not a simple WP connection which
a standard TSP solver could perform (Sec.5.5). Two extra constraint have to be
taken into account:

Edge forcing: WPs located at the two sides of one single panel have to
be consequently visited in order to ensure the passage over the rows. This
constraint is not considered when performing the flight plan for even passages
over the panels. In that case only the left side of the panel will be considered.
this assumption is coherent with the nature of the problem since the entrance
and exit side of the panel will always be the same.

Battery level: Meaning that the plan for the flight will have to take into
account the UAV’s need to be charged n times during the visit.

The following subsection will explain how these constraints were taken into account
within the project and how they are embedded in the final solution.

Flight over the row of panels constraint : So far, the implementation of
the TSP discussed in Sec. 5.5.1 matches a standard formulation of the Traveling
Salesman Problem where the variable to minimize is the total distance flown by
the UAV. At this stage the solution would have all the WPs connected without
taking into consideration the passage over the panel (Fig.5.12.a). Therefore, a
modification to the distance matrix was introduced alongside the introduction of
en extra problem constraint. This new features penalize the UAV if it doesn’t
pass through these constrained WPs. The idea is to make the cost of not passing
through the panels higher than the cost of the longest possible path in the original
distance matrix. This is achieved by adding the maximum distance from the
original matrix to the distances between all pairs of nodes that do not include a
constraint. additionally, the problem constraint:

X

k 6=i,k 6=j

xik � xij
X

k 6=i,k 6=j

xjk for i, j constrained WPs (5.10)

ensures that if an edge from i to j is included in the tour, then for any other
WP k, the path to k should go through j if an edge from i to j is chosen. This
indicator constraints approach enforces a specific order among the constrained
WPs in the tour, ensuring that they are visited in the desired sequence. This
modification effectively makes the total cost of any path that does not pass through
the constrained WPs higher than any path that does.

Electric vehicle constraint: Generally UAVs utilized for inspection porpoises
are powered by batteries. Therefore, it is necessary to incorporate a constraint

76

5.5 Path optimization process

Figure 5.12: a.: TSP solution before the application of the constraint; .b: After
the application of the constraint.

related to drone’s autonomy into the task of determining the flight route. To this
day, the inspections carried out by JP Droni do not take this constraint into
account.
The solution proposed for this project is developed based on the concept of WPs
clustering where the total amount of points is divides into sub-groups which are
feasible to be visited within a single UAV charge. The algorithm at the base of
the WPs clusterization process is k-means.

Figure 5.13: K-menas clusterized PV plant.

The k-means clustering algorithm represents a basic technique in unsupervised
learning for addressing clustering tasks. It adheres to a straightforward proce-
dure of categorizing a given dataset into k clusters, defined by the parameter k
established in advance. This algorithm is categorized as centroid-based, wherein
each cluster is linked to a centroid. Its principal objective is to minimize the total
distances between data points and their corresponding clusters. The procedure

77

5.5 Path optimization process

accepts an unlabeled dataset as input, divides the dataset into k clusters, and
iterates until optimal clusters are identified.
In the process of finding the best UAV route, the K-means algorithm was iterated
according to the assumption that in the case where the best WPs permutation
found considering the full set of WP was longer than the maximum UAV flight
endurance, sooner or later a charging pit-stop has to be performed. Therefore,
the K-means algorithm would be applied with K = 2 only if it is not possible to
cover the entire plant in a single go. The WPs connection will then be performed
on both the two new sub-clusters. At this stage the following outcomes could take
place:

1. Both sub-paths distances are independently compliant with the
full UAV charge: In this case both the sub-tours will be added to the
final WPs-permutation and the search would terminate.

2. Only one sub-path is independently compliant with the full UAV
charge: Only the feasible cluster would be assigned to the final permutation
while the other will be divided into K = 2 sub-clusters with a K-means
clusterization.

3. Both sub-paths distances are not independently compliant with
the full UAV charge: This case implies that the algorithm will be run
again on the full set of WPs but with K = 3.

For the last two cases, the new sub-tours will then be checked again for feasibility
to keep this iteration going. Once all the sub-clusters are checked as feasible, the
permutation with the shortest flight-tours and the lowest charging pit-stops will
be obtained.
Three assumption were considered for calculating the sub-clusters with the K-
means algorithm:

1. The charging point is unique and it coincides with the starting position.

2. The drone’s battery is represented as the overall operational flight distance,
measured in meters. This value is determined by various factors, including
weather, wind conditions, current battery level, drone type, and more. Users
have the flexibility to input a specific endurance value before the flight,
considering these factors, to plan the most suitable route that aligns with
the available battery capacity. As mentioned in Sec. 5.4.3, the length in
meters is calculated through the number of pixels covered by the path-line
connecting the WPs of a sub-tour.

3. The total distance covered by the sub-tour path takes into consideration
every connection among the WPs including the starting point.

78

5.5 Path optimization process

4. The points considered for the clusterization vary depending on the number
of passages over the panels. If the n-pass is odd, the point considered for
the clusterization is the center point of the panel. In the case where the
n-pass is even the left side point will be considered as the point to cluster
since it matches with the point considered during the TSP WPs connection.

The K-means algorithm was implemented in the project through the library
Scikit-Learn [33].

5.5.1.3 Additional solution methods

The solution achieved with the CPLEX TSP model is not the only one usable
in the code to solve the WPs connection. The user can choose among two other
solution algorithms: the Iterated local search and the Simulated Annealing.
Both of these algorithms take the modified Distance Matrix for odd n_pass and the
normal one for the even case. Since these are heuristic algorithms, the problem’s
solution cannot be guaranteed to be optimal. However, they are designed to
find good solutions in a reasonable amount of time. Thus, while these heuristic
methods can offer effective solutions, they may not always produce the absolute
best solution for the problem at hand (Sec.2.9.1). These functions are provided
by the library python-tsp [98].

5.5.2 Input data
Before using this module, the user must prepare two files first:

input.KML: which has to be an input file including the polygon shape encap-
sulating the entire solar plant and the starting location data marked as a
Key-point all inside the same folder.

config.JSON : The JSON file is a flight settings file which has to be modified
before every planning session in order to tweak every parameter of the
system (tab.5.5.3).

5.5.3 Output data
Once the process is finished and the final permutation is found, three Outputs will
be produced:

<Name of the project>_output.kml file: The .kml file given as output will
include all the information related to the path the drone will take to cover
the whole plant. The array of WP coordinates is stored into a poly-line
instance which identifies the position of all the WP’s as their vertices. The

79

5.5 Path optimization process

information on the WPs also include the altitude asked by the user. The
information related to the altitude can be stored in a .tiff file within the
project. If this information is required the user has to insert this file in the
folders of the project. This information has to geographically match with
the coordinates corresponding to the WPs in order to include such data in
the final file.

<Name of the project>_output.csv file: This file identifies all the infor-
mation related to the flight in a .csv table. Other then the coordinates of
the WPs and their order of visit, it includes also the following extra data
related to the WP itself:

• The panel number to which that WPs correspond to,
• The position number of the way-point with respect to the order of visit

of the WPs covering the single panel,
• The altitude data if required by the user,
• The charging pit-stops if any.

ROS message: with all the coordinates to the following nodes of the project.

80

5.5 Path optimization process

Table 5.1: JSON comands

paths UAV type Flight Detection Plot altitude TSP
Dir name Batterya n_passb th_dete shift_xg altitude h tsp_type i

Input name thc th_overlapf shift_yg th_time l

tif name dubd opened m

csv name n_loopsn

Table note
a Battery level of the UAV expressed as a quantity in meters.
b Number of passages over the panels.
c Lateral distance in meters from the panels.
d Type of distancing between the passage over the panel.
e Percentage of confidence of the panels detection.
f Percentage of overlapping among the panels detected.
g X-axis Y-axis coordinates image shifting for adjusting to new satellite acquisitions.
h
1 if the altitude is included in the collected data. 0 otherwise. An extra .tiff with the altitude
information of the portion of land analyzed has to be included

i Type of TSP solution: branch_and_cut_solution, iterated_local_search, simulated_annealing.
l Time in seconds implied for the search of the optimal path for the branch and cut solution.
m
1: if the trip doesn’t take into account the fact that the drone has to go back to a certain
location for charging and finishing the loop.
0: if it cares about going back to the starting position at the end of every sub-trip.
Option valid only for Heuristic searches (Iterated local search or simulated annealing)

n How many iterations the iterated local search has to perform?

81

Chapter 6

UAV flight control

As products meant for commercial use, neither of the models of the DJI fleet has
the possibility to let the programmer have access to low-level hardware controls
such as the rotational velocity of the quadrotor’s motors.
The commands received by the UAV are only higher level velocity inputs related
to the linear velocity along all three axis and the angular velocity along the
z-axis. On top of this assumption, three control techniques were developed for the
Visual based UAV flight: A Simple PID Controller, a Lyapunov non linear
Controller, and a Visual servoing and task stacking based controller. All
of them are based on a visual features extraction and sensors data coming from
the UAV through the DJI-ROS Bridge application (Chap.4).
In this chapter, all of these control techniques, including the trajectory based
control employed for the indoor coordinates based movements are explained.

6.1 Features extraction
To create the control input on a visual servoing bases, the first step is to find
and extract reliable features from the image stream. The extracted features will
have to identify a reliable representation of the positioning of the panels row to
compute the correct control input capable of make the UAV positioning it self
correctly with respect to the followed line. The required row image characteristics
are the following:

1. The depicted panel will have to be as much as possible horizontally-aligned
and centered within the image frame.

2. The images will have to be taken approximately at the same height in order
to keep similar proportions.

3. The images must not have motion blurred effects.

82

6.1 Features extraction

4. For optimal performance of Image Mapping in PV plants, the image overlaps
must meet specific criteria: sidelap (lateral image overlap) should range
from 15% to 45%, and endlap (end of the picture) should range from 55%
to 65%. Typically, a minimum total endlap of 40% is essential to achieve a
satisfactory string overview (Sec.2.16).

The control input will be computed according to these requirements.

6.1.1 Detectron2 Panels segmentation
For identifying the position of the panel in the image, a Detectron2 instance
segmentation NN was used. The following subsection will explain how the images
collection and labeling campaign took place for the custom data-set, why the
Mask R50-FPN R-CNN model was used over the Mask R101-FPN R-CNN, and
how the feature were extracted from the segmentation data.

6.1.1.1 Data-set images and annotation

The custom data-set is composed of 1368 labeled pictures coming from different
sources:

• Robflow free data-sets of areal images of solar plants [92],

• Imaging from collection campaigns conducted by JP Droni:

– The first one captured by their DJI mavic 3 with a vertical image
setting on a country side PV plant. The panels’ vertical alignment
is a result of their previous method of capturing images, where the
drone used to fly linearly over the panels instead of the current lateral
approach.

– The second one captured with their Matrice 300 RTK on a roof top
PV plant. In this case, the panels are horizontal with respect to the
camera frame.

• Spear online images of solar panels and panels rows in order to make the
dataset more complete and versatile.

• Images coming from the Coppelia simulation. These images enhanced the
ability of the drone to identify panels during the simulation tests.

All of these images weren’t labeled as segmentation data-sets. Therefore, all the
annotation was again conducted manually. Thankfully, just like with the data-set
for the satellite images segmentation, the MetaAI SAM model helped accelerating

83

6.1 Features extraction

the annotation process by a lot [95].
To enhance the segmentation capabilities of the models the following data-set
augmentation steps were applied: 90° Rotate: Clockwise, 90° Rotate: Counter-
Clockwise, Image Flip, and ±30% brightness variation. The final data-set was
three times bigger than the original. The images are then divide in the three sets
with a division of 80%, 20%, and 10% for the Train,Validation, and Test set. An
image resizing to the square dimension of 640x640 was also applied.

6.1.1.2 Model fine-tuning

The R50-FPN Mask R-CNN and R101-FPN Mask R-CNN models were initially
tested for the fine tuning. The R50 and the R101 are the short names for the two
different backbone architectures of the models. The R refers to a specific type of
CNN called ResNet (Residual Network). 50 and 101 represent the number of layers
of the NN. For both networks have the the same feature extraction technique
called Feature Pyramid Network (FPN). It is a CNN feature capable of enabling
better segmentation results across different resolution by creating and combining
a pyramid of feature maps. The Mask R-CNN is the extension of the the faster
R-CNN which combines the object detection with semantic segmentation capa-
bilities to add the ability of the network to to predict instance segmentation masks.

Figure 6.1: FPN Mask R-CNN network framework [15].

The main difference between the two models is the backbone. Because the
ResNet-101 has more layers and capacity, it is potentially more capable of dis-
tinguishing fine features in images, which could lead to better segmentation
performances especially with complex scenes [15].
However, the trade-off of using such network over the ResNet-50 is an higher

84

6.1 Features extraction

computational effort and and a longer training time since deeper network require
more memory for computation and training. Moreover, for the same hardware
capabilities, these issues lead also to a longer inference time. Therefore, given the
resource intensive behavior of the R101 was rejected for the R50 even though it
performed better in terms of score-evaluation (More on the evaluation in Chap 7).

6.1.1.3 Feature extraction

The feature extracted from the segmentation is a line passing through the middle
of the row of panels of the image. In order to make the drone’s camera capture
the row, the features representing the panels had to be detailed enough to make
the UAV fly aligned with the row (Fig. 6.2.a).
The extraction of this feature comes from an OpenCV post-processing step. In
the same fashion as the post-processing step explained in Sec. 5.4.1, from the
panels’ segmentation masks provided by the NN (Fig. 6.2.b), the FindContour
(Fig. 6.2.c) and MinAreaRect CV2 function2 (Fig. 6.2.d) will approximate the
contour of the mask into a rectangle. From there, they will extract the reliable
information related to the row of interest which are:

• (x, y) coordinates of row’s center with respect to the center of the image.

• ✓ angle of the row with respect to the horizontal line of the image.

For each of the following sections related to the visual servoing techniques, the
different interpretations to the line representation in relation to the control tech-
niques will be explained.

Figure 6.2: Filtering step of the center panel.

85

6.2 PID controller

Each visual-based control technique deals with the crucial issue of the simulta-
neous observation of multiple panels. Considering that the flight tour generally
takes place at an altitude between 15 to 20 meters, it’s possible that the image
frame will include multiple rows of panels arranged in parallel (Fig. 6.2.a). Since
it is not possible to occlude the view of the surrounding panels, the problem had
to be fixed during through a processing step.
The one line that has to be followed is the one closer to the center line of the
image frame. Starting from this assumption, the masks excluded from the image
frames are the ones that are the farther away from the center line. To measure
this distance, the absolute value |y| of the y coordinate of the center of each panel
was compared (Fig. 6.2.e). The smallest one of all will determine the considered
mask-coordinate (Fig. 6.2.f).

6.2 PID controller
6.2.1 Feature interpretation
In the case of the PID controller, the data extracted from the run time image of
the panels mentioned in the previous section is not modified. This means that the
[ys, ✓] coordinates are use directly for the control. The following picture depicts
this geometrical interpretation.

Figure 6.3: PID’s feature geometric interpretation.

in Fig. 6.3, Cs represents the center of the line feature with xs and ys its pixel
coordinates in the image frame and ✓s the angle the panel makes with respect to the
x-axis. In order to make the control input based on this coordinates independent
from the image resolution, the (xs, ys) couple are normalized respectively to the
pixel width and pixel height of the image.

86

6.3 Non linear controller

6.2.2 Controller definition
For computing the control input, the PID controller uses only the ys and ✓s
values from the image evaluation and the z value directly measured from the DJI
sensors. Independently from the vy of the drone, the PID controller will take care
of each one of the three measurements independently. Therefore, the ys, z, and
✓s, coordinates misalignment will be controlled exclusively on the drone’s vx, vz,
and !z velocities with PID terms (Eq.6.1).

8

>

>

>

>

<

>

>

>

>

:

vx = Kp,xys +Ki,x

R t

0
ysd⌧ +Kd,x

dys
dt

vz = Kp,zz +Ki,z

R t

0
zd⌧ +Kd,z

dz
dt

! = Kp,θ✓s +Ki,θ

R t

0
✓sd⌧ +Kd,θ

dθs
dt

(6.1)

This control strategy ensures the alignment of the drone’s camera with the
rows but it does not take into consideration the continuous lateral movement which
is fundamental for capturing the entire surface of the row of panels. Therefore,
setting the vx velocity value as dependent to the ys and ✓s miss-alignment could
be a good start for ensuring the system stability.

The vy velocity is then set as inversely proportional to the combination of the
ys and !s coordinates. The UAV velocity will be equal to the maximum chosen
speed only during perfect alignment. This caution improves the ability of the
drone to align with the panels but at the same time it does not ensure a constant
velocity profile along the visited row. This issue could cause problems when trying
to perform a timed capture of the panel images.

6.3 Non linear controller
6.3.1 Feature interpretation
The distance between the center and the line considered for this control action is
not the difference between the center of the box encapsulating the panel and the
center of the image, but rather the shortest distance between the center of the
image and the panel line as shown in Fig. 6.4.

Where the l vector is defined as l = Pmin �O with Pmin being the closest point
of the line to the center of the image frame and the center of the image frame
with coordinates (0, 0).
In order to uniquely define the point Pmin the following steps have be taken:

Defining the panel line equation: Starting from the given angle ✓s and the
center point Cs of the line, the first step is to find the angular coefficient m

87

6.3 Non linear controller

Figure 6.4: Non linear controller feature geometric interpretation.

of the line as:
m = tan(✓) (6.2)

Given the center point of the rectangle encapsulating the panel (xs, ys) which
is by definition laying on the line, the equation turns out to be:

y = m(x� xs) + ys (6.3)

Find intersection: The Pmin point is then found as the intersection of the panel
line with its perpendicular line passing through the origin, namely:

8

<

:

y = m(x� xs) + ys

y = � x
m

(6.4)

solving for (x, y) we find the intersection point as:

xmin =
m(mxs � ys)

1 +m2

ymin =
mxs � ys
1 +m2

(6.5)

Vector length: Once the coordinates of point Pmin are found, it is trivial to
calculate the length of vector l as the distance between Pmin and the origin
O:

|l| =
p

(xmin � 0)2 + ymin � 0)2 (6.6)

88

6.3 Non linear controller

Figure 6.5: Frame of the DJI UAV.

6.3.2 Controller definition
The algorithm used in this section exploits the concept of the Lyapunov stability
theorem [99] and the reinterpretation of the work proposed in [100] and re-proposed
in a previous thesis work.

6.3.2.1 Reference system and Kinematic equations

As explained in Sec. 2.11.2, the kinematic equations of any quadrotor model derive
from the differentiation of the geometric equations. The kinematic equations of
the DJI model are:

8

>

>

<

>

>

:

ẋ = vx cos(✓)� vy sin(✓)
ẏ = vx sin(✓) + vy cos(✓)
ż = vz
✓̇ = !

(6.7)

6.3.2.2 Proof of stability using Lyapunov criterion

The main concept of the Lyapunov stability criterion [99] states that:
Given a non-linear system of the kind:

ẋ = f(x,u) (6.8)

The point x = 0 is asymptotically stable if there exists a Lyapunov function V (x)
such that:

• V (x) > 0: positive definite.

• V̇ (x) < 0: negative definite.

89

6.3 Non linear controller

This criterion is the basis of the proof of stability of the system taken into
consideration.
The state variables of the system are x, y, ✓ as the information coming from the
image stream and z as the altitude coming directly from the altitude sensors. The
idea is to stabilize the x and ✓ coordinates around 0 and the z coordinate around
a constant altitude value while keeping the the y-velocity ẏ constant in time. To
simplify the calculations the z state variable will be considered as z̃ = z � z0 with
z0 the altitude threshold to maintain during flight.
Staring from the positive definite V (x) Lyapunov function:

V (x) =
✓2

2
+

z̃2

2
+

x2

2
(6.9)

We can compute the derivative as:

V̇ (x,u) = ✓̇✓ + ˙̃zz̃ + ẋx

= ✓! + z̃vz + x[vxcos(✓)� vysin(✓)]
(6.10)

The proposed input is then going to be defined to ensure the V̇ (x,u) to be negative
definite. Therefore, the following composite inputs are defined:

⇢

Vx = ẋ = vx cos(✓)� vy sin(✓)
Vy = ẏ = vx sin(✓) + vy cos(✓)

(6.11)

Thanks to these composite inputs, the system can be now be written as:
8

>

>

<

>

>

:

ẋ = Vx

ẏ = Vy

ż = vz
✓̇ = !

(6.12)

By imposing asymptotically stable inputs we then obtain:
8

>

>

<

>

>

:

ẋ = Vx = �Kxx
ẏ = Vy = V0

ż = vz = �Kz z̃ = �Kz(z � z0)

✓̇ = ! = �Kθ✓

(6.13)

By substituting the values of the the Vx and Vy composite inputs and solving for
u, the control input will ensure the V̇ (x,u) to be negative definite, namely:

u =

8

>

>

<

>

>

:

vx = �xKx cos(✓) + v0 sin(✓)
vy = v0 cos(✓) + xKx sin(✓)
vz = �Kz z̃
! = �Kθ✓

(6.14)

90

6.4 Task Stacking

Combining eq. 6.14 with eq. 6.10:

V̇ (x,u) =�Kθ✓
2 �Kz z̃

2+

+ x[(�xKx cos(✓) + v0 sin(✓)) cos(✓)�
� (v0 cos(✓) + xKx sin(✓)) sin(✓)] =

=�Kθ✓
2 �Kz z̃

2 �Kxx
2 < 0

(6.15)

Therefore, ensuring the stability of the system.

6.4 Task Stacking
6.4.1 Pinhole model and camera calibration
The pinhole camera model simplifies the relationship between real-world 3D scenes
and 2D images using triangle similarity principles. It’s based on the concept that
light from objects passes through the camera’s pinhole and reaches the sensor.
This establishes a mathematical connection between object size in the image
measured in pixels and their actual physical dimensions measured in meters. This
connection is determined by a coefficient, which represents the ratio between
the sensor-to-pinhole distance and the pinhole-to-object distance. Despite its
simplicity, this correlation can be employed to deduce information about the real
world. This is achievable by utilizing known camera parameters and calibrating
the recognition system [83].

Thanks to a previous camera calibration conducted with the camera_calibration
ROS Package for a previous thesis project, the camera parameters of interest are
saved inside of a YAML file. Moreover, a visual servo calibrate package, has been
developed for setting up the camera parameters and compensate the distortion.
The two nodes of the package will first extract and publish the calibration data
contained in the YAML file, and the second node will subscribe to the /CameraInfo
topic and provide an undisturbed video stream with a suitable aspect ratio.

6.4.2 Feature interpretation
Traditional image-based control schemes use the image-plane coordinates of a set
of points to define the set of visual features s. The image measurements are the
pixel coordinates of the set of image points, and the camera intrinsic parameters
are used to go from image measurements expressed in pixels to the features.
Exploiting the Pinhole model we can establish the connection between the real
3D world feature to the 2D image plane, namely for a 3D point with coordinates

91

6.4 Task Stacking

Figure 6.6: Camera parameters, pinhole model.

X = (X, Y, Z) in the camera frame, which projects in the image as a 2D point
with coordinates x = (x, y) we have:

⇢

x = X/Z = (u� u0)px
y = Y/Z = (v � v0)/py

(6.16)

Where (u, v) are the coordinates of the image point expressed in pixel unit,
(u0, v0, px, py) are camera parameters describing the center of the image in pixel
coordinates (u0, v0), and (px, py) the ration between the focal length f and the
size of the pixel (↵x,↵y) (Fig.6.6).
Then, in the image plane the (⇢, ✓) features are extracted. These two features will
uniquely define the panel line in the image plane. In Fig. 6.7 the polar coordinates
⇢, ✓ represent respectively the module of the l vector found in Sec. 6.3.1 and the
angle it makes with the horizontal line.

6.4.3 Controller definition
Visual servoing techniques involve utilizing data from one or multiple cameras to
govern the motion of a robotic system. This enables a broad spectrum of tasks
aimed at determining what the system should see with respect to what it actually
sees. This control can encompass any subset of the system’s n degrees of freedom.
Regardless of the sensor’s arrangement, which may span from a camera attached
to the robot’s end effector to several cameras observing the scene, the objective
is to select a set of k visual data points to track during the control. Therefore,
a control law is then developed to guide the visual data s(t) towards a desired

92

6.4 Task Stacking

Figure 6.7: (⇢, ✓) feature geometric interpretation.

value s⇤, which defines the successful completion of a task [12].
With an ideal feature extraction, the camera feedback could be directly fed into
the control system considering the sensor feedback as ground truth feature. In
a real system where the detection is not guaranteed to be precisely identified,
some precaution have to be taken in order to avoid any kind of issues on the
given control whenever a false detection is encountered. To manage such issues, a
possibility would be to average out every element of the image data over a given
detection interval. This approach would partially mitigate the effect of wrong
detections. However, the best approach to such a problem would be to use a well
suited implementation of the Kalman-filter capable of discern genuine features
from erroneous detections. One of the key advantages of using it is related to its
capability to account for the expected behavior of the feature evolution in time
allowing the system to filter out noise or false positives that may be detected. By
continuously updating its estimate value based on the incoming camera feedback
and the expected feature behavior, the Kalman-filter would provide a robust
mechanism for maintaining accurate feature values through adapting to changing
conditions over time considering the possibility of features evolving in time. Its
ability to handle time-varying dynamics ensures that the control system remains
responsive and reliable in the face of changing circumstances.

6.4.3.1 Interaction matrix

The interaction matrix L is a key concept for visual servoing. It represents how
the changing of position and orientation of the camera relates to changes in the
visual features, namely:

s = s(p(t)) (6.17)

93

6.4 Task Stacking

Where p(t) represents the the pose at the instant t between the camera and its
environment. The differentiation of s enables the possibility to determine the
connection between changes in the visual data and the relative movements between
the camera and the scene:

ṡ =
@s

@p
ṗ = Lvc (6.18)

Where L is a k ⇥ 6 matrix (with k equals to the features DoFs), referred to as
the interaction matrix associated with s and vc is the is the velocity twist of an
ideally free to move camera, with respect to the scene.
The matrix L can be written based on any visual feature constructed from config-
urable geometric primitives. This is done by defining the equation representing
the primitive’s nature and configuration in the scene, its projection onto the image
plane, and the relation between the 3D primitive and its image.
In the case of a line feature described with the polar coordinates (⇢, ✓) (minimal
representation with k = 2) the L2⇥6

l matrix can be written as:

Ll =

"

Lρ =
⇥

�ρ cos(✓) �ρ sin(✓) ��ρ⇢ (1 + ⇢2) sin(✓) � (1 + ⇢2) cos(✓) 0
⇤

Lθ =
⇥

�θ cos(✓) �θ sin(✓) ��θ⇢ �⇢ cos(✓) �⇢ sin(✓) �1
⇤

#

(6.19)
With:

�θ =A sin(✓) +B cos(✓)

�ρ =A⇢ cos(✓)� B⇢ sin(✓)� C
(6.20)

Where A, B, C and D(6= 0) represent the parameters used to describe the equation
of a plan in the camera frame, namely:

AX +BY + CZ +D = 0 (6.21)

More on this in[12].

6.4.3.2 UAV camera motion constraint

Since, the camera used for this thesis project is mounted on a drone, the relation
between s and the UAV twist cannot simply be the same as eq.6.18. Therefore, it
is necessary to find the relationship between the camera twist and the UAV twist
and adapt it to the degrees of freedom of the drone. The aim of this will be to
map the camera velocity vc to the control input u = [vx, vy, vz,!z].
The first step will be to find the transformation cWb that allows for the change of
reference for two twists rigidly connected, namely:

cW
(6⇥6)
b =

cRb (ctb)x
cRb

0 cRb

�

(6.22)

94

6.4 Task Stacking

With:
cRb =

2

4

0 �1 0
1 0 0
0 0 1

3

5

ctb =

2

4

0.14
0

�0.04

3

5 [m] (6.23)

Where cRb and ctb are respectively the fixed rotational matrix and translational
vector between the body frame of the drone < b > and the camera frame < c >.
The next step is to map v

(6⇥1)
b to the control input u(4⇥1). Therefore, the A(6⇥4)

Adapter matrix is introduced.

vb = Au =

2

6

6

6

6

6

6

4

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0
0 0 0 0
0 0 0 1

3

7

7

7

7

7

7

5

2

6

6

4

vx
vy
vz
!z

3

7

7

5

(6.24)

The Js matrix will encapsulate all the steps to create the relationship between
the variation of the feature line in the image frame and the UAV velocity input u,
namely:

ṡ(2⇥1) = Lvc = L cWbvb = L(k⇥6) cW
(6⇥6)
b A(6⇥4)u(4⇥1) = J(k⇥4)

s u (6.25)

6.4.3.3 Task based control and minimization problem

Generally, the control of mobile robots is based around the inference of the robot’s
state based on the platform’s sensors feedback. This kind of applications imply
the use of sensor fusion methods, such as the Kalman filter which in this case,
would provide an accurate estimation of system’s state (the robot’s position with
respect to the environment).
Unlike this type of position control, task based control computes the control action
directly within the sensors space (task space). This concept entails that the robot
knows what its sensor perceptions should ideally be. Given this assumption,
the robot no longer deduces its position from sensor data but, it computes a
proportional control action aimed at driving its sensor perceptions towards the
goal sensor values, namely:

e = s� s⇤ (6.26)
Where s⇤ is the desired feature value, s is the current sensor’s perception, and e

the error between the two. Since s⇤ is a fixed desired value, the time derivative of
e will be equal to ṡ. As aforementioned in Sec. 6.4.3.1 ṡ can also be written as:

ṡ = ė = Jsu (6.27)

95

6.4 Task Stacking

To obtain a proportional control law it is possible to impose a desired behavior of
the time derivative of the error as:

ė⇤ = ��e (6.28)

which implies a controlled behavior of the error as:

e(t) = e(�λt) (6.29)

To impose such behavior the following control input minimization problem is
computed:

argmin
u
||ė� ė⇤||2 = ||Jsu+ �e||2 (6.30)

In the ideal case, the solution to the problem is found as:

Jsu+ �e = 0 (6.31)

obtaining the minimal control input:

u = ��J+
s (6.32)

6.4.3.4 Task stacking

To achieve the final objective of following the row of panels, the UAV had to take
care of the following three tasks:

1. Aligning the camera frame with the the row of panels,

ė⇤1 = ��

⇢� ⇢⇤

✓ � ✓⇤

�

= ��

⇢

✓ � ✓⇤

�

J1|ė∗
1
= Js with L = Ll (6.33)

2. Keeping the flight at a constant height,

ė⇤2 = ��[z � z⇤] J2|ė∗
2
= [0 0 1 0] (6.34)

3. Moving along the row of panels.

ė⇤3 = [v⇤y] J3|ė∗
3
= [0 1 0 0] (6.35)

This means that the objective vector s⇤ can be written as:

s⇤ =

2

6

6

4

⇢⇤

✓⇤

z⇤

v⇤y

3

7

7

5

(6.36)

96

6.4 Task Stacking

since the dimensions of s⇤(4⇥ 1) are equal to the number of degrees of freedom
the problem is considered as perfectly constrained. This means that all the tasks
can be satisfied simultaneously. Therefore, the three tasks can be regrouped in a
single one without any kind of compromise in the UAV’s movement, namely:

ė⇤ =

2

6

6

4

��⇢
��(✓ � ✓⇤)
��(z � z⇤)

v⇤y

3

7

7

5

J =

2

6

6

4

Jρ|1

Jθ|1

J2

J3

3

7

7

5

=

2

6

6

4

Jρ|0 Jρ|1 Jρ|2 Jρ|3
Jθ|0 Jθ|1 Jθ|2 Jθ|3
0 0 1 0
0 1 0 0

3

7

7

5

(6.37)

The control input corresponding to the new task can be computed by solving the
minimization problem discussed in Sec. 6.4.3.3.

6.4.4 Inclined camera setting
Solar panels are not positioned parallel to the ground. They are rather disposed at
an angle towards the sun’s path. This configuration, allows them to receive more
direct sunlight throughout the day optimizing the amount of solar energy that the
panels can capture [101]. A new objective for JP Droni would be to capture panel
images with a camera angle that corresponds to the tilt of the solar panels on the
plants. The following adjustments will accommodate the control techniques to
this new image acquisition setting which will capture the row’s modules with a
90 deg relative angle.
Given the new camera tilt angle, the drone will have to partially shift the previous
trajectory in order to keep the row of panels centered in the image frame as shown
in Fig.6.8. To find the value of such Shift the following trigonometric computations
are computed.

The first part involves finding the c1 cathetus of Fig.6.8. Since the ↵ angle
and the b1 length correspond respectively to the panels’ tilt angle and the flight
altitude, the two dimensions are known. Therefore, it becomes easy to deduce the
length of c1 as:

c1 = b1 tan↵ (6.38)
The second step is to remove the c2 cathetus’ length to obtain the total length of
the backwards shift.
Given the knowledge of the angle ↵ the length of the panel (L) and the lowest
point of the panel from the ground (H0) are known, it is possible to find the length
of b2 as:

c3 =L/2 sin↵

b2 =c3 +H0

(6.39)

97

6.5 Across the panel indoor movement

Figure 6.8: Shift, geometric interpretation.

To then find c2 as:
c2 = b2 tan↵ (6.40)

The backwards shifting is then computed as a perpendicular distance in meters
from the previous line of panel as Shift = c1 � c2. This value is then converted
into geographical coordinates to adjust the planned trajectory (Chap.5).
Some adjustments were made also on the controller since the rigid complex
UAV+camera previously considered, has undergone some geometrical changes.
Specifically, the camera is not pointing to the ground with a 90 deg angle but it’s
pointing towards the panel with a specific angle ↵. Therefore, the only thing that
will change will be the rotation matrix cRb in the transformation cWb that allows
for the change of reference for two twists rigidly connected, namely:

cRb =

2

4

0 �1 0
cos(↵) 0 sin(↵)
� sin(↵) 0 cos(↵)

3

5 (6.41)

6.5 Across the panel indoor movement
As aforementioned in Sec. 4.2.2.1, the set-up for a portion of the tests were made
in a indoor environment. Therefore, the GNSS signal cannot be sufficiently reliable
to conduct the Way-Point mission to move to the following point (as explained in

98

6.5 Across the panel indoor movement

Sec. 4.2.2.2). This section will briefly describe how such movement was achieved
during the indoor tests.
To represent the location based movement of the UAV inside the indoor environ-
ment, the OptiTrack motion capture system installed is the test area was used.
The OptiTrack system is a 8 infrared camera setup capable of providing real-time
data on the position and the orientation of the sensorized objects located within
the calibrated area. Thanks to the OptiTrack Motive application [86] installed
on the computer managing the position data, it will be possible to stream the
information via socket and publish it as a ROS topic thanks to the optitrack
ROS package [87]. The Across panels control node will simulate the WP mission
through the design of a simple position based flight controller to move the UAV
to the desired location.

6.5.1 Trajectory controller
The first thing to do is to find the WPs that map the solar system. Thanks
to the Motive software (capable of creating rigid bodies instances within the
environment), the locations of the handmade rows of panels were identified in the
environment 7.3.2. The two ends locations were then raised up to the height of
the UAV flight cruise in order to simulate the acquisition of a coordinate.
Once the UAV finishes inspection of one of the rows, the ROS Action client will
conclude the Vision Based action and it will start the Position Based one. Thanks
to the just recovered positions, the drone will be controlled to go to the following
panels-end.
To address this problem a trajectory to move from the current position of the drone
to the end of the following line of panels is planned. The trajectory generation
was first based on the definition of a quintic poly-line capable of connecting the
two specified points [102]. Subsequently, the velocity profile was sampled at a
rate of 15Hz and then sequentially transmitted to the UAV.
However, the drawback of employing this straightforward approach is that the
velocity signals are sent to the drone in an open-loop way.
A different approach is based on a simple PID position based controller.

6.5.2 Simple PID position based controller
The PID controller relies on the run time position continuously streamed by the
Optitack system onto a given socket. The Optitack ROS package installed on the
computer will read on the UDP socket providing a /StampedPose message on the
/<name_robot>/world topic. Therefore, once the UAV_rigidbody is created, The
absolute position of its frame with respect to the world frame is published in the
architecture.

99

6.5 Across the panel indoor movement

The final-goal position is identified as a Goal frame with respect to the world
frame. Since both the UAV’s and goal frames are described with respect to the
world frame, it was easy obtain the position of the goal frame with respect to the
current drone frame as:

dTg =
wT�1

d
wTg (6.42)

Where dTg is the transformation matrix between goal frame seen from drone’s
frame, wTd is the transformation matrix between the drone’s frame seen from
world frame, and wTd is the transformation matrix between the goal frame seen
from world frame.
The the goal of the control action will be to align the two frames to make the
UAV reach the final destination. To achieve this alignment, the PID controller
comes into place.
The dTg matrix represents the position error between the current position of the
drone with respect to the goal position. Therefore, the position error used for the
controller are directly extracted from it. The controller will be represented as:

8

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

:

vx = Kp,xxe +Ki,x

R t

0
xed⌧ +Kd,x

dxe

dt

vy = Kp,yys +Ki,y

R t

0
yed⌧ +Kd,y

dys
dt

vz = Kp,zze +Ki,z

R t

0
zed⌧ +Kd,z

de
dt

! = Kp,θ✓e +Ki,θ

R t

0
✓ed⌧ +Kd,θ

dθe
dt

(6.43)

Where the position vector is extracted as [xe, ye, ze]
�1 = dTg[:, 3] and ✓e is

calculated as ✓e = arctan((dTg[1, 0])/(
dTg[0, 0])) (given the Yaw, Pitch, Roll

rotation matrix representation where R[1, 0] = cos(Pitch) sin(Y aw) and R[0, 0] =
cos(Pitch) cos(Y aw)). The goal will be considered reached whenever the origin
of the UAV frame enters an area of 10cm radius around the goal point.

100

Chapter 7

Experiments

This chapter discusses the steps for the setup of the experiments and the evaluation
of the results. The first part discusses the evaluation of the NNs used, while the
second one focuses on the evaluation of the control algorithms used to guide the
UAV flights.

7.1 Semantic Segmentation evaluation
When creating ML applications, it is a standard approach to partition the dataset
into three sub-sets: train set, validation set, and test set. As explained later,
this division is meant to compare and evaluate how different NNs perform when
fine-tuned over the same dataset. The evaluation of the results is usually based
on the confusion matrix. Since this evaluation was not available within the
setup used, an alternative technique was exploited for assessing the semantic
segmentation accuracy, namely, the Intersection over Union evaluation (IoU). It
is equal to the intersection of the predicted segmentation surface and the ground
truth segmentation surface (in the manually segmented image), divided by the
union of said areas, namely:

IoU =
|A \ B|

|A [B|
=

TP

TP + FP + FN
(7.1)

where TP , FP , and FN represent respectively the true positive, the false positive,
and the false negative areas. The IoU is calculated using the validation set and
the results are compared between the fine-tuning of different NNs performed
exclusively on the train set. The best performing one will be retrained over the
combination of the train set with the validation set and tested on the test set.

The results are then reported with the following metrics:
• the mean average precision (mAP), which denotes the average percentage

of accurate predictions across all the evaluation prediction;

101

7.1 Semantic Segmentation evaluation

• the AP50, which is the percentage of accurate predictions, with a minimum
IoU of at least 50%;

• the AP75, the percentage of predictions having IoU � 75%;

• mAPs, mAPm, and mAPl, which are respectively the average precision
for small, medium, and large detected objects [103].

7.1.1 Satellite images segmentation
After evaluation, the final NN chosen for the satellite image segmentation (Chap.
5) was the pointrend_rcnn_R_50_FPN, pre-trained on the COCO data-set [93].
Evaluating this NN against the Mask_rcnn_R_50_FPN model showed that
the former has better performance than the unmodified version of the network
(Sec.5.3.2). The evaluation results are listed in the following table: The evaluation

mAP AP50 AP75 mAPs mAPm mAPl

PointRend 72.1936 90.1970 84.4292 53.3027 79.8116 85.5761
Mask 47.973 74.922 56.733 30.070 59.457 47.249

difference is clearly noticeable also in a visual comparison between the two set of
segmented photos.

After the training of the PointRend network was performed on the train set
and validation set, the results for the test carried out on the test set are as in
Tab. 7.1.1. The results of the test seem worse than the previous ones. A possible

mAP AP50 AP75 mAPs mAPm mAPl

70.6961 91.6826 83.1612 51.5163 76.1567 80.4988

explanation could be that, when a NN is only trained on the training set, it can
be expected to overfit to the training data. Overfitting to the train set means
that the NN “memorizes” the data rather than catching the underlying patterns
(which is the real goal of the training). Adding the validation set during training
provides the model with a broader range of examples, enabling the acquisition of
more robust features, therefore reducing the risk of overfitting.

7.1.2 Aerial images segmentation
A similar comparison has been done over the NNs for the run-time detection of the
panels from the areal images. The performances of the mask_rcnn_R_50_FPN
and mask_rcnn_R_101_FPN pre-trained on the COCO data-set [30] were evalu-
ated.

102

7.2 Path optimization test

mAP AP50 AP75 mAPs mAPm mAPl

50 94.9457 98.8106 97.8568 85.0495 77.0602 96.0152
101 96.5157 98.8516 98.8516 92.5253 81.8912 97.0473

The evaluation table is in Tab. 7.1.2. It is easy to see that the mask_rcnn_R_101_FPN
model performed slightly better than the mask_rcnn_R_50_FPN network. How-
ever, since the camera feedback is essential for the control action, the Inference
Time (IT) had to be considered. The IT represents how much time it takes to
apply the segmentation mask on an image. This consideration is not taken into
account when choosing the NN in the previous section, because the computational
time for the path optimization is orders of magnitude larger than the time needed
to infer the mask; therefore, the PointRend network was chosen there, given the
large difference in terms of performance evaluation (IoU).

In this case, the frame rates of the two NNs are 15 Frames Per Second
(FPS), for the R_50, and 5 FPS, for the R_101. Given the small difference
between the segmentation quality and the large difference in the fps rate, the
mask_rcnn_R_50_FPN was chosen over the mask_rcnn_R_101_FPN. The
NNs inference time was based on the results obtained with the PC described in
appendix A.2.

7.2 Path optimization test
As mentioned in Chap. 5, the TSP for connecting the given WPs can be solved
using CPLEX (mixed integer linear programming), iterated local search, or
simulated annealing. This section evaluates the performance of the three different
algorithms in different scenarios, based on the number of panel rows of the plants
and the UAV endurance.

7.2.1 Fixed time evaluation
The first evaluation is based on fixing the solve time of each of the three solvers and
then comparing the results among four different PV plants of different dimensions.
For the data collection, each algorithm has been run 30 times over each map.
The box plots in Fig. 7.1 represent the collected data. Since there is no control
on the time it takes to solve the TSP with the simulated annealing algorithm
implementation used, the solving time was fixed with respect to the average time
taken to solve the problem with this method.

From the graphs, it is easy to see how the CPLEX solution is outperformed by
the heuristic ones. That is because the branch-and-cut method takes a considerable
amount of time to explore the entire solution space of the problem instance aiming

103

7.2 Path optimization test

Figure 7.1: Average path length calculated by each of the algorithms on four
different maps.

to find the optimal solution. In contrast, the heuristic solvers are designed to
quickly find a solution which is not guaranteed to be optimal. The CPLEX
solution starts its optimization process from an initial solution. If the initial
solution is the same (or very similar) in each run, it can lead the solver to explore
the same or similar regions of the solution space. This fact is noticeable in the
given data, where the standard deviation of each branch-and-cut solution is null.

When comparing the two heuristic solutions, the iterated local search seems
to find solutions with lower variance compared to the SA. Moreover, the average
solutions of the ILS are better than the SA in three cases out of four. ILS
normally performs a local search from n starting solutions (with n being the
number of iterations), which can lead to better solutions for space exploration.
SA, on the other hand, explores the space using probabilistic acceptance criteria,
and its performance can be more susceptible to initial conditions and parameter
settings. The higher variance of the SA algorithm could also be due to the
algorithm’s probabilistic nature, since it involves unpredictability in its search
process. Therefore, SA outcomes may vary more throughout several runs, whereas
ILS tends to be less sensitive to initial conditions.

7.2.2 Optimal solution time over different maps
Given that the ILS is the best performing heuristic algorithm, the time to optimally
solve the TSP over the same PV plant (with an increasing number of panel rows)
was compared with the time it takes for the optimal CPLEX solver to find the
optimal solutions. The values shown in Fig. 7.2 represent the time-averages (over
30 runs) of the ILS and B&C solvers for each problem instance.

The semilogarithmic graph clearly shows how quicker the ILS solver is on

104

7.2 Path optimization test

Figure 7.2: Comparison of the average times to reach the optimal solution, for
the BR and ILS algorithms.

average. Since all the problem instances used for this comparison were composed
of relatively few WPs, the ILS was capable of finding the global minima of the
problem. However, given the heuristic approach of the solver, it is not possible
to be always sure of finding the global minimum with such approach. Especially
with larger instances of the problem, the ILS could eventually find local minima.
Therefore, solving the problem with the CPLEX solver ensures the identification
of the optimal solution, at the expense of an higher solving time. However, the
issue with the B&C CPLEX solution is shown in the trend of the graph: the
exponential increment in the number of possible solutions leads to an exponential
growth of the number of branches, resulting in an exponentially-growing solve
time.

7.2.3 Variation of path length given different time & iter-
ations limits

The B&C and ILS can return different solutions when given, respectively, a
different solve time limit and a fixed number of iterations. The two graphs in Fig.
7.3 show the trends for both algorithms, going respectively from 1 second and 1
iteration to the respective values needed to find the optimal solution.

Given the heuristic nature of the ILS algorithm, the best path does not always
correspond to the highest number of iterations. Since the two graphs are in
different units, it is hard to compare them. Therefore, the average solve time
for each iteration step is reported. Once again, the ILS solve time is drastically
shorter than the CPLEX one, confirming the conclusions drawn in Sec. 7.2.2.

105

7.3 Control algorithm tests

Figure 7.3: Path length over time for the BR algorithm and Path length over
number of iterations for the ILS algorithm.

Figure 7.4: Average time variation for different numbers of iterations, for the ILS.

7.3 Control algorithm tests
This section is dedicated to the description of the data acquisition and results of
the flight trail runs performed in the simulated, indoor, and outdoor environments.
The first subsections will be dedicated to the description of the physical and
simulated set-ups while the second one to the data evaluation of the test-flights.

106

7.3 Control algorithm tests

(a) Ground and panel tex-
ture 1.

(b) Ground and panel tex-
ture 2.

(c) Ground and panel tex-
ture 3.

Figure 7.5: Three texture combinations.

7.3.1 Simulated environment set-up
In the simulation experiments, many different environments where a solar plant
may be placed are represented, by combining eight different ground textures (three
types of gravel, sand, dirt, mud, and two types of grass) below eight different 25
by 15 meter panels (Fig. 3.6). The panels are defined as a (17/40)⇥ 2⇥ 0.1 meter
prismatic object at an angle of 30 deg with respect to the ground. This inclination
can vary for different solar plants, but is usually the same for every panel line
inside the same plant. The simulated panel lines have four different textures, to
simulate multiple panel types (Fig. 7.5).

Since this environment represented a real disposition of solar panels, is was
used to deploy and tests the entire software architecture combining the vision
based control to the position based one. An example of this could be checked out
in this video.
Moreover, another simulated environment was arranged to test the capabilities of
the three controllers in different simulated settings. The surface over which the
flights were performed was dividend into 9 rows of panels each one containing a
different configuration of two contiguous lines of panels (Fig.7.6), namely:

• A straight row between the two lines.

• ±5 deg and ±10 deg of angle with respect to z-axis of the world frame
between the first and second line. This configuration represents a possible
variation of the panels arrangement.

• ±5 deg and ±10 deg of angle with respect to y-axis of the world frame
between the first and second line. This configuration simulates a plausible
change of slope of the terrain.

107

https://youtu.be/-SZw5Kpt7hA

7.3 Control algorithm tests

Figure 7.6: Screenshot of a simulation for different panel setups.

7.3.2 Indoor test-room set-up
The tests have been conducted inside of the UAV flight dedicated area in the
university’s EMARO-LAB. The dimensions of the area are 5⇥ 4⇥ 2.7 and it was
equipped with the aforementioned OptiTrack system (Fig.7.7, 7.8). However, the
motion capture sensors did not completely cover the region. As a result, sometimes
the drone found itself in this shadow area during some test flights. Moreover, a
few issues regarding the DJI embedded obstacle detection raised up. The DJI
security control layer is a precaution system embedded in the DJI software which
allows the drone to avoid hitting the obstacles that it could encounter during
flight. Whenever the direction of the command would drive the UAV towards an
obstacle, the protection layer would not proceed with the given input resulting
with the robot stopping its flight therefore interfering with the tests performances.
To test out the the control algorithm inside the environment, a few elements had
to be added to the test area to simulate a real world application. Some fabricated
rows of panels have been made to mimic a real-world application. The first panel
prototype was made from platified sheets of paper printed on both sides with
the texture of different panel modules (Fig.7.7.b). These textures were identical
to those used in the V-REP simulation: One represented a darker panel with
no reflections and the other, a lighter color with some light artifacts indicating
the possible light flares caused by the sun’s reflection (Fig.7.7.c)). The Sheets of
paper were then arranged in lines to represent the rows of panels.
The second version of the handcrafted panels were then made by printing the
same two textures on both sides of a continuous sheet of plastic for advertising
banners (Fig.7.7.c). This improvement made the detection much more reliable
during tests.

For simulating the tilted panels, a scaled down rack was built as well. The
objective was to tilt platified sheet panels to a constant angle. Therefore, the
sheets have been stick onto a plastic surface into groups of three. This sheet
was then tilted with an hand cut plastic stand. The issue with this hand made
solution was related to the coupling between the panels and the stand. Since
part of the stands would partially stick out from the front of the rows of panels,

108

7.3 Control algorithm tests

Figure 7.7: Different iteration of the handmade simulated panel.

Figure 7.8: Different Types of ground surfaces and drone markers.

they interfered with the detection resulting in some issues with the control. To
simulate the different types of ground some of the tests have been carried out on
different color surfaces (Fig.7.8).

7.3.3 Outdoor test set-up
As a last proof for the performance capabilities of the system, a few outdoor tests
were conducted during a one day field trip to an actual PV plant. The facility is
located in a rural location called Predosa(AL). JPDroni has a special partnership
with the owner of the site who lets them carry out tests simulations in exchange
of periodical inspections of the facility status.
The plant is the one depicted in the satellite image (Fig.5.7). It is composed of 28
rows of panels distributed in a east-west communication each one built as a 2 lines
of solar panels modules. The tilt angle of the rows is fixed to 30 deg (Fig.7.7.a).

109

7.3 Control algorithm tests

7.3.4 Simulation Tests
The following graphs will represent the position and orientation of the camera
for the three different algorithms applied at constant lateral speed and constant
altitude with respect to the ground. This representation will help identifying the
algorithm most capable of following the row of panels regardless of the variations
on the configurations. The Root Mean Square (RMS) of the errors in the [X,Z]
top-view plane and [X, Y] lateral-view plane registered during the tests of the three
controllers is calculated on the performances of the previously mentioned tests.
The Performance of the controllers could be improved by tuning the controller
gains and consequently improving their ability of convergence. A manual recursive
approach was exploited to tune these parameters. However, manual tuning can be
time-consuming, and the benefits obtained may only be ideal for certain operating
situations. Furthermore, environmental conditions such as wind, temperature, and
humidity might alter manual adjustment, causing the system to operate differently
than planned. Alternatively, more standardized tuning procedures, such as the
Ziegler-Nichols method, can be employed without personal tuning to obtain the
optimal gains for a given system [104].

7.3.4.1 Straight configuration

[mm] [X,Z] err [X,Y] err
Lyap PID VIS Lyap PID VIS

Linear 0.0431 0.0471 0.0434 0.0081 0.0120 0.0120

Table 7.1: Root Mean Square errors for each of the controllers in the linear track.

Figure 7.9: a.Error from the top-view; b. Error from the lateral-view; c. Rotation
error over time.

110

7.3 Control algorithm tests

From the error graphs (Fig.7.9) and the RMS reported on Tab. 7.1, it is
possible to see how all of the control algorithms kept the position of the camera
stable over the line of panels. The only slightly noticeable difference is related to
the (Fig.7.9.b) graph related to the altitude profile. As it is possible to see the
Lyapunov controller results to have a slightly less variable altitude trajectory with
respect to the other two algorithms which they show a less linear profile. The
constant off-set shown for all of the algorithms is related to the structure of the
simulated Drone. Since there is a small offset between the position of the camera
and the position of the altitude sensor on the drones’ body frame, the alignment
of the camera of the drone with the mid-line of the panel, prevents the altitude
sensor to also be aligned with the panel’s mid-line. Therefore, a constant altitude
offset is noticeable for every algorithm.

7.3.4.2 Planar Rotation

[mm] [X,Z] err [X,Y] err
Lyap PID VIS Lyap PID VIS

+10 deg 0.0510 0.0423 0.0482 0.0081 0.0119 0.0121
�10 deg 0.0390 0.0608 0.0388 0.0082 0.0120 0.0121
+5 deg 0.0508 0.0436 0.0515 0.0081 0.0120 0.0120
�5 deg 0.0301 0.0393 0.0309 0.0082 0.0120 0.0120

Table 7.2: Root Mean Square errors for each of the controllers in the Tilted track
variations.

Figure 7.10: a.Error from the top-view; b. Error from the lateral-view; c. Rotation
error over time.

Since the graphs of all four of the tests of this section were very similar, only
the test with the 10 deg panel rotation was reported (Fig.7.10).

111

7.3 Control algorithm tests

The biggest difference among the three graphs is visible in the rotation angle
(Fig.7.10.c). The visible variation represented in the graph is given by the sudden
change of angle of the panels configuration. Eventually, all three of the algorithms
drive the drone to change the camera orientation to the tilted direction. However,
as it is noticeable for all four panel configuration, The Lyapunov non linear
controller with the Task stacking visual based controller are the fastest to reach
the new configuration with respect to the PID controller. The slow angle correction
of the PID controller may be due to a wrongly chosen gain values combination
which leads to a slow convergence of the angle. Moreover, given the different
nature of the two controllers, it is possible to notice how The Lyapunov one has a
smoother convergence to the desired angle compared to the Task stacking based
one. Concerning the top-view graph (Fig.7.10.a), all coordinates controllers have
similar behavior. At first glance, all controllers seam to have an initial off-set
along the y-axis. This is due to the line detection algorithms. The CV algorithm
would detect the panel mid-line by drawing the tightest rectangular shape around
the detected panel contour. In the case of a curved panel, the approximation into
a rectangle does not match the tight angle of the panel configuration. Therefore,
the linear error with respect to the panel’s mid-line is due to a combination of
the starting off-set of the drone and the gradual rotational adjustment of the
trajectory to adapt to the approximated detected mid-line.

7.3.4.3 Vertical Rotation

[mm] [X,Z] err [X,Y] err
Lyap PID VIS Lyap PID VIS

" 10 deg 0.0605 0.0613 0.0663 0.1845 0.1844 0.1848
10 deg 0.0466 0.0428 0.0577 0.0770 0.0765 0.0778
" 5 deg 0.0366 0.0393 0.0381 0.0949 0.0947 0.0952
5 deg 0.0336 0.0403 0.0387 0.0825 0.0822 0.0827

Table 7.3: Root Mean Square errors for each of the controllers in the Up and
Down track variations.

Also for the case of the ground altitude variation, the difference between the
graphs was very small. Therefore, only the +5deg graph was reported for brevity.
The starting position of the camera drone was right at 180 deg for all four of the
tests. The visual difference between the three algorithms in Fig.7.11.c is to be
considered acceptable since the degree’s minimal increment is equal to ±1 deg
and the difference between the goal and the angle oscillations range around the
1 deg. The most noticeable difference is related to the second graph (Fig.7.11.b)

112

7.3 Control algorithm tests

Figure 7.11: a.Error from the top-view; b. Error from the lateral-view; c. Rotation
error over time.

representing the vertical trajectory of the drone over the lateral movement. In
this view all three of the algorithms behave in a similar way but they all seam
to induce a constant off-set on the x-axis with respect to the position of the
panels setting. The difference was most likely due to a wrong identification of the
construction of the second portion of the panel. During the creation of the scene
the panel was slightly shifted towards the negative side of the x-axis with respect
to the previously decided position of the panel reported in the graph.

7.3.5 Indoor Tests
The indoor tests were conducted, to check if the given gains were accurate even in
a real world setting, to verify if the drone was properly moving accordingly to the
given inputs, to simulate the across the panel movement and the tilted camera
variation.
These evaluation were possible thanks to the run time feedback received from the
OptiTrack system. The following subsection will summaries the results of the most
representative tests for each of the controllers. The different tests were conducted
with different initial conditions to check if the algorithms would properly work. An
evaluation of the RMS error on the position of the Optitrack UAV frame during
the flight tests with respect to the goal position was also conducted. This method
of measurement is representative of the flight quality considering a constant shift
between the camera position and the the Optitrack reference system relative to
the global frame. The error will be represented as (⇢e,ye) where ⇢e represents the
error on the plane (X,Z) of the simulation environment and ye the error on the
vertical axis Y with respect to the altitude goal position.

113

7.3 Control algorithm tests

7.3.5.1 PID controller; [Video Test 5]

[mm] Test1 7.12 Test2 Test3 7.15 Test4 Test5 7.16
⇢e 34.51 33.68 26.43 41.31 18.36
ye 16.93 23.44 51.00 47.20 30.53

Table 7.4: PID RMS errors for each of the tests.

Figure 7.12: Top/lateral view | velocity of Optitrack data first PID test.

vx vz !z

P 0.001 0.01 0.06
I 0.002 0.001 0.001
D 0.002 0.001 0.001

Figure 7.13: PID Gains first test set.

vx vz !z

P 0.02 0.06 0.05
I 0.01 0.003 0.0054
D 0.001 0.012 0.01

Figure 7.14: PID Gains second test set.

The first three tests of the PID controller were made with the set of gains
listed in Tab. 7.13.
As it is possible to notice in the graph 7.12, the flight stopped in the middle of the
panel. The reason for this was the detection of an obstacles around the trajectory.
The embedded DJI control layer would first induce some ripples in the movement
(visible in the graph) and then the complete passage to an hoovering state. To
avoid such issue the second test flight was conducted at the same lateral speed
goal of 0.2m/s but with an altitude goal of 1.5m compared to the previous 1.6m.
Regardless of the new flight altitude the same issue happened again. The same
thing happened once again with the third try where the goal was set to the higher
altitude of 1.9m (Fig.7.15). From the footage recorded during the tests it was
possible to notice that the table and tripod that were holding up the recording

114

https://youtu.be/uKugrg64Ir0

7.3 Control algorithm tests

Figure 7.15: Top/lateral view | velocity of Optitrack data third test.

phone were interfering with the obstacle avoidance layer. Therefore, two other
tests were conducted on a shorter and farther panel from the construction.

For brevity, only the graphs of the best RMS values test (Tab.7.4) were
reported (Fig.7.16). The set of gains associated to the best performing are the
ones listed in Tab.7.14. The lateral goal velocity was again 0.2m/s at a 1.8m
goal height. The minimal increment for the altitude barometer sensor is ±0.1m
and it was noticed to not always be very precise since the very accurate altitude
recorded by the OptiTrack sensors were several times different compared to the
ones reported by the sensor it self.

Figure 7.16: Top/lateral view | velocity of Optitrack data fifth test.

7.3.5.2 Lyapunov controller; [Video Test 5]

The first few test with the Lyapunov controller were made in similar conditions
as the PID tests. The initial gains for the non linear controller were Kx = 0.01,
Kz = 0.01, and Kθ = 0.01. As it is shown in the graphs in Fig. 7.17, the test with

115

https://youtu.be/DtzYR1kEhzE

7.3 Control algorithm tests

[mm] Test1 7.17 Test2 7.19 Test3 Test4 Test5 7.20
⇢e 55.62 178.83 94.64 35.87 33.25
ze 49.01 11.52 52.18 51.12 10.84

Table 7.5: RMS errors for each of the Lyapunov controller tests.

speed goal equal to .2m/s and altitude goal at 1.7m recorded the same ripples
and sudden stop of the trajectory as the PID test. However, since the RMS of this
test was fairly low and the both the trajectories seam to be converging two other
tests were carried out on the same panel configuration taking into consideration
only the first part of the flight. The second test at the lower altitude of 1.6m

Figure 7.17: Top/lateral view | velocity of Optitrack data first Lyapunov controller
test indoor.

showed a very interesting behavior of the drone. In the graph 7.19 referring to
the top-view A trajectory completely wrong is reported. A more accurate analysis
of the body of the drone showed a strange behavior of the drone’s gimbal camera;
After a few continuous flight the gimbal would reset to an offset-ed initial position
corresponding to a pan angle as shown in picture 7.18.

Figure 7.18: picture of the camera misalignment.

116

7.3 Control algorithm tests

Since this issue kept happening, it became the cause of many delays in the
multiple test sessions because the only way to reset this issue was to turn off the
UAV and therefore connecting it again to ROS through the Bridge app.

Figure 7.19: Top / lateral view | velocity of OptiTrack data second test.

Few more tests with the same gains but different goal heights were then
performed (see table for the RMS of the third test in Tab. 7.5). As it is visible in
the graphs the second set of gains seams to have brought even more stability to the
UAV flight. The gains are for the following case equal to Kx = 0.02, Kz = 0.01,
and Kθ = 0.05. In the 7.20 test, the lateral velocity was set to be again equal to
0.2m/s and the altitude 1.8m. In this case the panel used for the test was farther
from the obstacle. Therefore, the control input didn’t stop the drone from passing
over the middle of the panel finishing the visit of the entire row. The altitude
was kept stable at the give goal accordingly to the ±0.1m barometers minimum
threshold. However, it is possible to notice a slight miss alignment towards the
end on the trajectory. This behavior might be due to a wrongly detected panel
which ruined the final trajectory.

Figure 7.20: Top / lateral view | velocity of Optitrack data fifth test.

117

7.3 Control algorithm tests

7.3.5.3 Task Stacking controller; [Video Test 6]

[mm] Test1 Test2 7.21 Test3 Test4 7.22 Test5 Test6 7.23
⇢e 50.23 41.46 32.61 33.77 40.69 39.80
ze 31.32 30.25 59.58 46.64 49.29 10.70

Table 7.6: RMS errors for each of the Visual servoing controller tests.

Also for the first few tests conducted with the Visual Servoing Controller, the
flight was stopped by the presence of the obstacle. The � gain matrix for the
proportional control was equal to:

� =

2

6

6

4

0.1 0 0 0
0 1 0 0
0 0 0.01 0
0 0 0 0.005

3

7

7

5

The following graphs will show first the best test performed on the panel close
the obstacle (Fig.7.21), a test performed at an higher velocity goal (Fig.7.22), and
the last test will show a clear detection error on a panel farther from the obstacle
(Fig.7.23).
By looking at the first graph 7.21 it is possible to notice how the trajectory of the
drone was stable around mid-line of the panel ensuring a good picture acquisition
of the row. The goal velocity was again set to 0.2m/s and the altitude 1.6m which
has been kept stable during the flight within the sensor’s threshold of ±0.1m.

The second reported test (Fig.7.22) shows the best performance in terms of
the line following. This was the first case where the goal velocity was set at an
higher value of 0.4m/s. Regardless, of the good results obtained in this test, the
velocity for the remaining indoor tests was set back to 0.2m/s for safety reasons.
The goal altitude for this test was 2.2m to try to avoid the obstacle stopping the
test at mid-flight. Though, since the test started at a lower altitude, the RMS
was high throughout the test. However, it is shown how the goal altitude was
finally reached once reached the goal of the panel.

The last graph shows the flight data obtained for the last test conducted on
the shorter panel. As it is possible to see from the position graph (Fig.7.23), the
z-axis deviation brought the drone out of the trajectory because of a clear a wrong
panel identification. This is probably due to the shape of the custom panel which
sometimes was mistaken by the network given the not so representative nature of
the panel modules.

118

https://youtu.be/2Tk-TND5spk

7.3 Control algorithm tests

Figure 7.21: Top / lateral view | velocity of Optitrack data second test.

Figure 7.22: Top / lateral view | velocity of Optitrack data fourth test.

Figure 7.23: Top / lateral view | velocity of Optitrack data sixth test.

7.3.5.4 Angled panel following [Video Test]

This flight test represents the best performance of the Visual Seroving controller
for the visit of an angled panel. To simulate the actual tilt of the solar panels,

119

https://youtu.be/RXTMHEeZkJo

7.3 Control algorithm tests

the row had an angle of +30 deg around the x-axis. Therefore, having the UAV’s
height goal set at 1.6m, the distance along the z-axis was chosen accordingly to
the geometry explained in Sec. 6.4.4.
The following graphs show the entire flight tour of the drone during the visit
(Fig.7.24).

Figure 7.24: Prospective, top ,lateral view of the shifted visit.

7.3.5.5 PID position based controller

The (Fig.7.25) graph shows the position based controller used to simulate the
GPS-driven control for across the panels movements.
The graph represents the entire WP mission where three WPs had to be reached.
The green circles in the top and lateral view show the three goal areas the drone
had to reach. To make sure that the goal position was properly reached, the drone
had to record the presence of the drone inside of a spherical goal area of 1[dm]
radius around the goal position for more than 2[s]. If such position was reached,
the ROS action managing the drone movement would have set the following point
of the list as the goal position. The PID gains used were exactly the same as the
ones used for the PID visual based controller in Tab. 7.14.

120

7.3 Control algorithm tests

Figure 7.25: Position based controller graph from the top and lateral view.

7.3.5.6 Across the panel movement over multiple panels [Video Test]

The following graph representation shows the combination of the lateral movement
of the drone based on the OptiTrack data simulating the GPS and the Visual
Servoing controller. Both of the panels were visited at the lateral speed of 0.2m/s
and at the altitude of 1.8m and 1.6m. This difference makes it easy to distinguish
well the three different trajectories in the lateral view (Fig.7.26).

121

https://youtu.be/6SYh28fkWW4

7.3 Control algorithm tests

From the top view is possible to see how well the first panel was followed
compared to the following one. Given the initial starting offset given by the across
the panels movement, the second panel had a noticeably different trajectory given
the fact that it had to impose a correction due to the drone’s starting location.
The switch between the across the panels movement and the Visual servoing
controller was controlled by the custom ROS action depicted in Chap. 3.

Figure 7.26: Prospective,top and lateral view of the two panels visit.

The video link Here shows the same test with a tilted panel visit in the
simulated environment described in Chap. 3.

122

https://youtu.be/6SYh28fkWW4

7.3 Control algorithm tests

7.3.6 Outdoor Tests
These tests focused on conducting a trail run of the Lyapunov and Task stacking
controller making the drone’s flight start at different relative initial positions with
respect to the panel and conducting the flight inspection at different flight heights
and and different lateral velocities.

7.3.6.1 20.5m / Aligned start / Non linear control [Video Test]

These are the results of the first experiment of the session. The flight was
performed at the altitude of 20.5m and at a lateral velocity of 1.5m/s. As it is
possible to see from the graphs representing the ⇢ and ✓ image position error of
the perceived panel, that the detections were very stable during the analyzed
portion of the visit. Therefore, it was possible for the drone to align pretty quickly
with the panel ensuring a good image capturing. The DL network worked way
better outside compared to the performance indoor. This is because the NN was
trained on actual areal images captured in real life settings (Chap.6).

Figure 7.27: ⇢, ✓ and z altitude values perception for the non linear controller.

123

https://youtu.be/-W3krIS3pxM

7.3 Control algorithm tests

7.3.6.2 10.5m / Aligned start / Non linear control [Video Test]

From the graph, it is possible to see how this performance was not as clean as
the previous one. Since the drone was so close to the panel the CV processes
extracting the goal line of the panel have often mistaken the alignment of the
panel to be vertical instead of horizontal. Since the objective would be to fly lower
on the panels, these detection errors are crucial for the functioning of the setup at
lower altitudes. Therefore, a solution would be to both train the NN on images of
the panels taken at a lower height or implementing the Kalman filter for rejecting
the wrong detections.

Figure 7.28: ⇢, ✓ and z altitude values perception for the non linear controller
controller.

124

https://youtu.be/inCPx4gH0Zg

7.3 Control algorithm tests

7.3.6.3 23.8m / Angular off-set / Non linear control [Video Test]

This test had the objective of showing how the drone would behave when staring
the visit of from a rotated position with respect to the desired line. As reported in
the title of the section, the test was conducted at the fixed height of 18m with a
constant lateral speed of 1.5m/s. As it is possible to see from the graph, by using
the Lyapunov non linear controller, the drone was capable of perfectly aligning
its angle with the line of panels in around 10 seconds since the beginning of the
test. The sudden oscillations visible in the ⇢ error graph are mainly due to small
detection errors coming from the identification of the panels location. To deal
with such detection error two solution concerning the application of filtering layers
are reported in Sec. 6.4.3.

Figure 7.29: ⇢, ✓ and z altitude values perception starting from an angular
misalignment position | a. Image drone view at t1; b. Image drone view at t2; c.
Image drone view at t3.

125

https://youtu.be/lFhh4Qirmuc

7.3 Control algorithm tests

7.3.6.4 22m / Linear off-set / Non linear control [Video Test]

This test had a staring condition concerning a linear offset from the panel line.
As it is visible from the first graph of picture 7.30, the linear offset was gone after
just 3 seconds of the Lyapunov controller action. Since the initial offset did not
concern any angle misalignment the graph is arguably stable around a very small
constant value.

Figure 7.30: ⇢, ✓ and z altitude values perception starting from a linear misalign-
ment position.|a. Image drone view at t1; b. Image drone view at t2; c. Image
drone view at t3

126

https://youtu.be/yoWSaf9Ue9E

7.3 Control algorithm tests

7.3.6.5 20m / Linear off-set / Task Stacking [Video Test]

A similar task was performed for the Visual servoing controller As it is possible
to see, with a few oscillations the controller was able to stabilize the flight around
the mid-line of the panel just like for the non linear controller.

Figure 7.31: ⇢, ✓ and z altitude values perception for the Task stacking visual
based controller.

127

https://youtu.be/bMub7nXpUME

7.4 Links

7.4 Links
The following links will connect to the YouTube videos, GitHab repositories, and
Roboflow datasets related to the project:

Idoor tests
1. PID control single panel: https://youtu.be/uKugrg64Ir0.
2. Non Linear control single panel: https://youtu.be/DtzYR1kEhzE.
3. Task Stacking control single panel: https://youtu.be/2Tk-TND5spk.
4. Double panel: https://youtu.be/6SYh28fkWW4.
5. Task Stacking Tilted Panel: https://youtu.be/RXTMHEeZkJo.

Outdoor tests
1. High altitude, Non Linear controller: https://youtu.be/-W3krIS3pxM.
2. Low altitude, Non Linear controller: https://youtu.be/inCPx4gH0Zg.
3. Linear off-set, Non Linear controller: https://youtu.be/yoWSaf9Ue9E.
4. Linear offset, Task Stacking controller: https://youtu.be/bMub7nXpUME.
5. Angular offset, Non Linear controller: https://youtu.be/lFhh4Qirmuc.
6. Demo Flight with external cameras: https://youtu.be/4BKfuR4rpHI.

Simulation environment test Click https://youtu.be/-SZw5Kpt7hA to see
the test of the entire project running in simulation. In the scene it will be possible
to see both the coordinates based and the visual servoing control in action.

GitHub links (Not all repositories are updated at their last iteration).
1. Drone control: https://github.com/Fabioconti99/insp_panels.
2. Route planning: https://github.com/Fabioconti99/planning_routes.
3. NN training: https://github.com/Fabioconti99/Train_script_detectron2.
4. V-rep environment: https://github.com/Fabioconti99/V-rep_UAV_envi-

ronment.

Roboflow Datasets
1. Satellite Data-set: https://universe.roboflow.com/fabio-conti/solar-panles-

instance-segmentation.
2. Aerial Data-set: https://universe.roboflow.com/fabio-conti/solar-panels-

mavic.

128

https://youtu.be/uKugrg64Ir0
https://youtu.be/DtzYR1kEhzE
https://youtu.be/2Tk-TND5spk
https://youtu.be/6SYh28fkWW4
https://youtu.be/RXTMHEeZkJo
https://youtu.be/-W3krIS3pxM
https://youtu.be/inCPx4gH0Zg
https://youtu.be/yoWSaf9Ue9E
https://youtu.be/bMub7nXpUME
https://youtu.be/lFhh4Qirmuc
https://youtu.be/4BKfuR4rpHI
https://youtu.be/-SZw5Kpt7hA
https://github.com/Fabioconti99/insp_panels
https://github.com/Fabioconti99/planning_routes
%20https://github.com/Fabioconti99/Train_script_detectron2
%20https://github.com/Fabioconti99/V-rep_UAV_environment
%20https://github.com/Fabioconti99/V-rep_UAV_environment
https://universe.roboflow.com/fabio-conti/solar-panles-instance-segmentation
https://universe.roboflow.com/fabio-conti/solar-panles-instance-segmentation
https://universe.roboflow.com/fabio-conti/solar-panels-mavic
https://universe.roboflow.com/fabio-conti/solar-panels-mavic

Chapter 8

Possible improvements and
conclusions

8.1 Possible improvements
The following section outlines future developments that could improve the perfor-
mance of the presented project, highlighting how these enhancements would take
advantage of different system capabilities to increase the efficiency.

8.1.1 Improving NN segmentation from satellite images
As mentioned in Section 5.3.2, the dataset for the pointrend_rcnn_R_50_FPN
NN has a bit under 500 images. Regardless of the data augmentation, such
a short dataset can significantly limit the fine-tuning process and the overall
performance of the NN. DL models, especially complex ones like PointRend,
require a substantial amount of data to generalize different inputs and capture
meaningful patterns in the given data. With a limited dataset, the network
may struggle to learn representative features, leading to overfitting and poor
generalization on unseen data. To achieve better performances, it would also be
necessary to optimize the hyperparameters to fine-tune model weights.

Another strategy to improve the segmentation performance is to start the
fine-tuning from a different NN. Many satellite image segmentation techniques are
known [105], such as the CloudRCNN model. This NN outperforms earlier models
thanks to added auxiliary branches, such as a deconvolution decoder, feature fusion
module, and spatial attention module to enhance semantic segmentation and
improve mean IoU compared to Mask R-CNN and PointRend [106].

129

8.1 Possible improvements

8.1.2 Improving CPLEX optimization problem definition
8.1.2.1 Constraint redefinition

In the modified TSP considered in this work, the distance matrix is modified to
force the passage over predefined edges. However, problems with irregular node
distributions may be more difficult to solve, resulting in more complex patterns
in the optimal tour, making it more difficult for the optimization algorithms
to identify effective solutions and possibly increasing solution time. Thus, the
constrained edge between the WPs on a single panel may be represented more
efficiently to overcome this limitation.

A simpler problem instance with fewer WPs would be much easier for CPLEX
to solve. Instead of interpreting each row of panels as a pair of WPs, the solution
could incorporate the WP coupling and the cost of entering and exiting each WP.
The constrained connection between a couple of WPs must be explicitly defined
within the problem formulation. The new solution approach would involve two
new features:

1. calculating the weight of an unvisited constrained WP, considering both the
actual Euclidean distance from every other WP and the distance between
the current WP and its coupled WP;

2. embedding a constrained travel to the WP couple.

This approach avoids considering this extra connection as an option based on
the modified distance matrix, ultimately reducing the computational effort of the
solver.

8.1.2.2 Sub-tour embedded solutions

To respect battery constraints, the k-means clustering method was employed.
While this tactic can be very efficient, it is not necessarily the optimal approach.
Introducing the docking station instance within the CPLEX problem definition
could be beneficial. A possible modeling of energy expenditure is in [107], where
a relationship is defined between the power consumption of the DJI Mavic 2
Enterprise (App. A.1) and relevant quantities such as weight, distance, and flight
speed, using a polynomial curve fit based on the angular speed of the propellers.
This model was then embedded within a CPLEX instance which represented
multiple charging stations that would charge the batteries during the operation.
Adding such a feature to the problem interpretation in this thesis work would
allow finding the optimal routing of the UAV within the given plant.

Finally, another possible advancement is to identify the optimal placement for
the recharging station.

130

8.1 Possible improvements

8.1.2.3 Human-based path finding tests

Experiments involving a group of participants could be valuable for further
assessing the effectiveness of the optimization algorithms presented. Volunteers
would be asked to manually connect WPs, taking into account aspects such as the
battery level and the forced edges. An app would be created for administering
the test and keeping track of the results. This program would assist the users in
choosing different paths while adhering to the stated rules. The gathered data
would be analyzed with a focus on two critical aspects: the total path distance and
the time required for human operators to find a solution. Comparing the results
with those from the optimization algorithms will provide additional evidence of
the efficiency of this work over manual approaches.

8.1.3 Pan-tilt gimbal control
For the visual servoing, the pan and tilt velocity controls of the camera gimbal
could be added to the input vector. Indeed, the DJI Mavic 2 is equipped with
a gimbal mount that connects the camera to the body of the UAV. This mount
adds two DoFs to the camera velocity twist, allowing to control the pan and tilt.
These allow to add new control capabilities such as:

1. automatically adjusting the camera tilt angle and the drone position, given
the tilt angle of the panel rows;

2. helping to follow the lateral rotation of the panel rows.

This implies that new image features representative of such tasks have to be found
and extracted from the RGB camera stream.

The new DoFs add two values to the control input vector namely, the velocity
values of the camera angles: [q̇p, q̇t]. The control input vector finally becomes
u = [vx, vy, vz,!z, q̇p, q̇t]; compare with Eq. (6.14). The camera velocity vc then
becomes

vc =
cWbvb + Jqq̇ =

= cWbA

2

6

6

4

vx
vy
vz
!z

3

7

7

5

+ Jqq̇ =

=
h

cW
(6⇥6)
b A(6⇥4) J(6⇥2)

q

i

u(6⇥1) =

= J(6⇥6)
u u̇(6⇥1)

(8.1)

131

8.2 Conclusions

where matrix Jq represents the extra lines needed for the transformation between
the camera frame and the drone body frame. The L(6⇥6) interaction matrix can
now include the two additional DoFs, thus

ṡ = L(6⇥6)J(6⇥6)
u u̇(6⇥1) = J(6⇥6)

s u̇(6⇥1) (8.2)

8.2 Conclusions
The goal of this thesis work was to create a prototype of a comprehensive software
architecture capable of autonomously carrying out the planning and UAV flight
control stages for a solar plant inspection mission. From user input through the
finished mission, the software gives a rapid, precise, and optimized solution to the
problem.

Planning and control are the two main elements of this work, which is meant
as a proof of concept for the final design of the software. Nonetheless, the overall
approach works nicely under the test conditions. JP Droni will also utilize a
modified version of the stand-alone planning app for their WP-based inspection
operations. The upgraded version of the application includes a manual step that
allows the user to visualize and alter the .KML file defining the rectangles that
contain the panel rows. This adds another layer of control to the NN detection,
which sometimes can identify the panels rows incorrectly in the photos.

The autonomous flight control architecture, together with the different con-
troller methods, provides the foundation for an alternative solution to the inspec-
tion issues caused by uneven terrain surfaces and disalignments in the panel lines.
This system has proven capable of performing accurate image capturing during
flight inspections, overcoming the constraints of the WP-based method already in
use.

The experiments conducted proved the practicality and viability of the proposed
methods. The thesis work, including NN training, simulated tests, and physical
flight experiments, provides a good example of the system capabilities in a real-
world setting.

Finally, the work emphasizes the necessity of UAV-based autonomous flight
for improving monitoring and maintenance of solar plants and other facilities.
The software architecture for route planning and autonomous flight control lays a
basis for the complete automation of this procedure. While the current regulatory
landscape presents some constraints, it is anticipated that, as technology evolves
and demand for intelligent systems grows, autonomous inspection techniques
similar to those proposed here will gain relevance and acceptance in the renewable
energy sector, encouraging a sustainable and efficient energy future.

132

Appendix A

Hardware used

A.1 DJI Mavic Pro: specifications

Figure A.1: Mavic 2 Enterprise Dual

The relevant specifications for the drone used in this thesis work (from the
datasheet by DJI) are reported in Tab. A.1.

DJI offers a mobile SDK for custom programming their products, which
however are only compatible with mobile devices and limit the applicability of
any apps thus built to other DJI systems. Additionally, using machine learning
methods for visual recognition operations is difficult, as it requires a level of GPU
performance which is not provided by the SDKs. To address this issue, a software
interface has been developed using the mobile SDK to bridge data between the
DJI controller and a Linux computer via socket connections [108].

133

A.2 HP Omen computer

Aircraft Camera
Weight (no accessories) 899 g Max bit-rate 100 MB/s
Max take-off weight 1100 g Field of view 85°
Max speed 72 km/h Photo format JPEG
Max ascent speed 5 m/s Video format MP4, MOV
Max descent speed 3 m/s Image size:
Max angle 35° 4:3 4056⇥ 3040
Max wind speed 38 km/h 16:9 4056⇥ 2280
Temperature range From �10 to 40 °C
Max operating height 6000 m
Max distance:
FCC transmission 8 km
CE transmission 5 km
Battery life (hovering) About 29 minutes
Charging time About 90 minutes

Table A.1: DJI Mavic 2 Enterprise Dual specifications

A.2 HP Omen computer
The computer used for this application is part of the OMEN line by HP (model:
17-ck1026nl) and has the following specifications:

• CPU : Intel Core i9� 12900HX

• Solid state memory: 2 TB

• SDRAM : SODIMM DDR5 32 GB

• GPU : NVIDIA GeForce RTX 3080 Ti, 16 GB of RAM

134

References

[1] Yangda. Yangda pictures. url = https://www.yangdaonline.com/, 2023. x,
12

[2] Yunlong Song, Mats Steinweg, Elia Kaufmann, and Davide Scaramuzza. Au-
tonomous drone racing with deep reinforcement learning. In 2021 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), pages
1205–1212. IEEE, 2021. x, 17

[3] A. Greco, C. Pironti, A. Saggese, M. Vento, and V. Vigilante. A deep
learning based approach for detecting panels in photovoltaic plants. In ACM
International Conference Proceeding Series, 2020. x, 20

[4] Amir Mohammad Moradi Sizkouhi, Mohammadreza Aghaei, Sayyed Majid
Esmailifar, Mohammad Reza Mohammadi, and Francesco Grimaccia. Auto-
matic boundary extraction of large-scale photovoltaic plants using a fully
convolutional network on aerial imagery. IEEE Journal of Photovoltaics,
10(4):1061–1067, 2020. x, 3, 21, 22

[5] Andrés Pérez-González, Álvaro Jaramillo-Duque, and Juan Bernardo Cano-
Quintero. Automatic boundary extraction for photovoltaic plants using the
deep learning u-net model. Applied Sciences, 11(14):6524, 2021. x, 22, 23,
24

[6] A.M. Moradi Sizkouhi, S. Majid Esmailifar, M. Aghaei, A.K. Vidal
De Oliveira, and R. Ruther. Ieee photovoltaic specialists conference. In
Autonomous Path Planning by Unmanned Aerial Vehicle (UAV) for Precise
Monitoring of Large-Scale PV plants, pages 1398–1402, 2019. x, 3, 24, 27,
28

[7] Howie Choset, Kevin M Lynch, Seth Hutchinson, George A Kantor, and
Wolfram Burgard. Principles of robot motion: theory, algorithms, and
implementations. MIT press, 2005. x, 29

135

REFERENCES

[8] Yoav Gabriely and Elon Rimon. Spanning-tree based coverage of continuous
areas by a mobile robot. Annals of mathematics and artificial intelligence,
31(1):77–98, 2001. x, 27, 28, 29

[9] Alexander Zelinsky, Ray A Jarvis, JC Byrne, Shinichi Yuta, et al. Planning
paths of complete coverage of an unstructured environment by a mobile
robot. In Proceedings of international conference on advanced robotics,
volume 13, pages 533–538, 1993. x, 27, 28, 29

[10] Samir Bouabdallah. Design and control of quadrotors with application to
autonomous flying. Technical report, Epfl, 2007. x, 30, 31, 32

[11] Z. Xi, Z. Lou, Y. Sun, X. Li, Q. Yang, and W. Yan. International symposium
on distributed computing and applications for business engineering and
science. In A Vision-Based Inspection Strategy for Large-Scale Photovoltaic
Farms Using an Autonomous UAV, pages 200–203, 2018. x, 3, 34, 35, 36, 37

[12] François Chaumette, Seth Hutchinson, and Peter Corke. Visual servoing.
In Springer Handbook of Robotics, pages 841–866. Springer, 2016. x, 37, 38,
93, 94

[13] A. Di Tommaso, A. Betti, G. Fontanelli, and B. Michelozzi. A multi-stage
model based on YOLOv3 for defect detection in PV panels based on ir and
visible imaging by unmanned aerial vehicle. Renewable Energy, 193:941–962,
2022. x, xiii, 34, 39, 40, 41

[14] Alexander Kirillov, Yuxin Wu, Kaiming He, and Ross Girshick. Pointrend:
Image segmentation as rendering. In Proceedings of the IEEE/CVF confer-
ence on computer vision and pattern recognition, pages 9799–9808, 2020. xi,
5, 64, 65

[15] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick. Mask r-cnn.
In Proceedings of the IEEE international conference on computer vision,
pages 2961–2969, 2017. xi, 84

[16] Andrinandrasana David Rasamoelina, Fouzia Adjailia, and Peter Sinčák. A
review of activation function for artificial neural network. In 2020 IEEE
18th World Symposium on Applied Machine Intelligence and Informatics
(SAMI), pages 281–286. IEEE, 2020. xiii, 18, 19

[17] Paolo Scuteri Jacopo Callà. JP droni online web page. https://www.
jpdroni.it, 2023. 1, 16

136

https://www.jpdroni.it
https://www.jpdroni.it

REFERENCES

[18] Gail E Tverberg. Oil supply limits and the continuing financial crisis. Energy,
37(1):27–34, 2012. 1

[19] Ehab Salahat, Charles-Alexis Asselineau, Joe Coventry, and Robert Mahony.
Waypoint planning for autonomous aerial inspection of large-scale solar
farms. In IECON 2019-45th Annual Conference of the IEEE Industrial
Electronics Society, volume 1, pages 763–769. IEEE, 2019. 1

[20] Edson L Meyer and E Ernest Van Dyk. Assessing the reliability and degra-
dation of photovoltaic module performance parameters. IEEE Transactions
on reliability, 53(1):83–92, 2004. 2

[21] Timothy M Walsh, Zhengpeng Xiong, Yong Sheng Khoo, Andrew AO Tay,
and Armin G Aberle. Singapore modules-optimised PV modules for the
tropics. Energy Procedia, 15:388–395, 2012. 2

[22] Paula Mints. The commercialization of thin film technologies: Past, present
and future. In 2010 35th IEEE Photovoltaic Specialists Conference, pages
002400–002404. IEEE, 2010. 2

[23] Ricardo A Marques Lameirinhas, João Paulo N Torres, and João P
de Melo Cunha. A photovoltaic technology review: History, fundamen-
tals and applications. Energies, 15(5):1823, 2022. 2

[24] M. Aghaei, F. Grimaccia, C.A. Gonano, and S. Leva. Innovative auto-
mated control system for PV fields inspection and remote control. IEEE
Transactions on Industrial Electronics, 62(11):7287–7296, 2015. 2

[25] Andrés Pérez-González, Nelson Benítez-Montoya, Álvaro Jaramillo-Duque,
and Juan Bernardo Cano-Quintero. Coverage path planning with semantic
segmentation for UAV in PV plants. Applied Sciences, 11(24):12093, 2021.
3, 21, 22, 24, 27

[26] DJI. DJI pictures. “url:https://www.dji.com/it”, 2023. 3, 11, 56

[27] A. Barbón, C. Bayón-Cueli, L. Bayón, and V. Carreira-Fontao. A method-
ology for an optimal design of ground-mounted photovoltaic power plants.
Applied Energy, 314:118881, 2022. 4

[28] Stamatia Dasiopoulou, Vasileios Mezaris, Ioannis Kompatsiaris, V-K Papas-
tathis, and Michael G Strintzis. Knowledge-assisted semantic video object
detection. IEEE Transactions on Circuits and Systems for Video Technology,
15:1210–1224, 2005. 4

137

REFERENCES

[29] Glenn Jocher. YOLOv8 - Ultralytics. https://ultralytics.com/yolov8,
2023. 4, 61

[30] Yuxin Wu, Alexander Kirillov, Francisco Massa, Wan-Yen Lo, and Ross Gir-
shick. Detectron2. https://github.com/facebookresearch/detectron2,
2019. 5, 64, 102

[31] G. Bradski. The OpenCV Library. Dr. Dobb’s Journal of Software Tools,
2000. 5

[32] David L Applegate, Robert E Bixby, Vašek Chvátal, William Cook, Daniel G
Espinoza, Marcos Goycoolea, and Keld Helsgaun. Certification of an optimal
tsp tour through 85,900 cities. Operations Research Letters, 37(1):11–15,
2009. 5

[33] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Pas-
sos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-
learn: Machine learning in Python. Journal of Machine Learning Research,
12:2825–2830, 2011. 6, 79

[34] Hilary Arksey and Lisa O’Malley. Scoping studies: towards a methodological
framework. International journal of social research methodology, 8(1):19–32,
2005. 7

[35] Samuele Depalo, Carmine Tommaso Recchiuto, and Antonio Sgorbissa. Ap-
plications of unmanned aerial vehicles in maritime transportation industry:
A scoping review. Available at SSRN 4334518, 2023. 9

[36] Isabelle Fantoni. Modelling of terrestrial and aerial vehicles. Technical
report, IEEE, 2016. 9, 11, 31, 32

[37] Vitaliy Sigarev, Tatiana Kuzmina, and Alexey Krasilnikov. Real-time control
system for a dc motor. In 2016 IEEE NW Russia Young Researchers in
Electrical and Electronic Engineering Conference (EIConRusNW), pages
689–690. IEEE, 2016. 10

[38] Appliedaeronautics. Applied aeronautics pictures. “url = https://www.ap-
pliedaeronautics.com/”, 2023. 11

[39] Delair. delair pictures. “url = https://delair.aero/delair-commercial-
drones/professional-mapping-drone-delair-ux11/”, 2023. 11

[40] Therese Jones. International commercial drone regulation and drone delivery
services. Technical report, RAND Santa Monica, CA, USA, 2017. 12

138

https://ultralytics.com/yolov8
https://github.com/facebookresearch/detectron2

REFERENCES

[41] Raphaela Chakravarti, Seira Iwai, and Suhara Wijewardane. Strategies to
improve the social acceptability of drones. Book print, 2021. 12

[42] Enac. Enac definition. “url:https://www.enac.gov.it/”, 2023. 12

[43] Claudia Stöcker, Rohan Bennett, Francesco Nex, Markus Gerke, and Jaap
Zevenbergen. Review of the current state of UAV regulations. Remote
sensing, 9(5):459, 2017. 13

[44] Ente Nazionale per l’Aviazione Civile. Direzione centrale regolazione aerea.
dispense enac patente a1-a3, regolamento uas-it edizione 1 del 4 gennaio
2021. Online resurce, 2021. 13

[45] National aviation authorities. D-flight, 2023. 14

[46] Sergio Bemposta Rosende, Javier Sánchez-Soriano, Carlos Quiterio
Gómez Muñoz, and Javier Fernández Andrés. Remote management ar-
chitecture of UAV fleets for maintenance, surveillance, and security tasks in
solar power plants. Energies, 13(21):5712, 2020. 14

[47] V Bryan. Drone delivery: DHL’parcelcopter’flies to German isle. Reuters,
1(September 24), 2014. 15

[48] Joanna Stern. Like amazon, ups also considering using unmanned flying
vehicles. ABC News, Dec, 3, 2013. 15

[49] University of Genoa. Smart Ambulance project. https://life.unige.it/
progetto-smart-ambulance, Year Accessed. 15

[50] Irwin O. Reyes, Peter A. Beling, and Barry M. Horowitz. Adaptive multi-
scale optimization: Concept and case study on simulated UAV surveillance
operations. IEEE Systems Journal, 11(4):1947–1958, 2017. 15

[51] Haris Balta, Janusz Bedkowski, Shashank Govindaraj, Karol Majek, Pawel
Musialik, Daniel Serrano, Kostas Alexis, Roland Siegwart, and Geert De Cub-
ber. Integrated data management for a fleet of search-and-rescue robots.
Journal of Field Robotics, 34(3):539–582, 2017. 15

[52] Teodor Tomic, Korbinian Schmid, Philipp Lutz, Andreas Domel, Michael
Kassecker, Elmar Mair, Iris Lynne Grixa, Felix Ruess, Michael Suppa, and
Darius Burschka. Toward a fully autonomous UAV: Research platform for
indoor and outdoor urban search and rescue. IEEE robotics & automation
magazine, 19(3):46–56, 2012. 15

139

https://life.unige.it/progetto-smart-ambulance
https://life.unige.it/progetto-smart-ambulance

REFERENCES

[53] Paolo Tripicchio, Massimo Satler, Giacomo Dabisias, Emanuele Ruffaldi, and
Carlo Alberto Avizzano. Towards smart farming and sustainable agriculture
with drones. In 2015 international conference on intelligent environments,
pages 140–143. IEEE, 2015. 16

[54] Cancan Song, Zhiyan Zhou, Ying Zang, Lingli Zhao, Wenwu Yang, Xiwen
Luo, Rui Jiang, Rui Ming, Yu Zang, Le Zi, et al. Variable-rate control system
for UAV-based granular fertilizer spreader. Computers and Electronics in
Agriculture, 180:105832, 2021. 16

[55] Kate J Yaxley, Nathan McIntyre, Jayden Park, and Jack Healey. Sky
shepherds: A tale of a UAV and sheep. Shepherding UxVs for Human-Swarm
Teaming: An Artificial Intelligence Approach to Unmanned X Vehicles, pages
189–206, 2021. 16

[56] Tom M Mitchell and Tom M Mitchell. Machine learning, volume 1. McGraw-
hill New York, 1997. 16, 17

[57] Taiwo Oladipupo Ayodele. Machine learning overview. New Advances in
Machine Learning, 2:9–18, 2010. 16

[58] Pádraig Cunningham, Matthieu Cord, and Sarah Jane Delany. Supervised
learning. In Machine learning techniques for multimedia, pages 21–49.
Springer, 2008. 16

[59] Horace B Barlow. Unsupervised learning. Neural computation, 1(3):295–311,
1989. 16

[60] Leslie Pack Kaelbling, Michael L Littman, and Andrew W Moore. Rein-
forcement learning: A survey. Journal of artificial intelligence research,
4:237–285, 1996. 17

[61] Zhi-Hua Zhou. Machine learning. Springer Nature, 2021. 17

[62] Oludare Isaac Abiodun, Aman Jantan, Abiodun Esther Omolara, Kemi Vic-
toria Dada, Nachaat AbdElatif Mohamed, and Humaira Arshad. State-
of-the-art in artificial neural network applications: A survey. Heliyon,
4(11):e00938, 2018. 17

[63] Shai Shalev-Shwartz and Shai Ben-David. Understanding machine learning:
From theory to algorithms. Cambridge university press, 2014. 17, 18

[64] Russell C Eberhart. Neural network PC tools: a practical guide. Academic
Press, 2014. 18

140

REFERENCES

[65] Katarzyna Janocha and Wojciech Marian Czarnecki. On loss functions for
deep neural networks in classification. arXiv preprint arXiv:1702.05659,
2017. 18

[66] Keiron O’Shea and Ryan Nash. An introduction to convolutional neural
networks. arXiv preprint arXiv:1511.08458, 2015. 19

[67] Jiuxiang Gu, Zhenhua Wang, Jason Kuen, Lianyang Ma, Amir Shahroudy,
Bing Shuai, Ting Liu, Xingxing Wang, Gang Wang, Jianfei Cai, et al. Recent
advances in convolutional neural networks. Pattern recognition, 77:354–377,
2018. 19

[68] Panqu Wang, Pengfei Chen, Ye Yuan, Ding Liu, Zehua Huang, Xiaodi Hou,
and Garrison Cottrell. Understanding convolution for semantic segmentation.
In 2018 IEEE winter conference on applications of computer vision (WACV),
pages 1451–1460. Ieee, 2018. 20

[69] Jeremiah W Johnson. Adapting mask-rcnn for automatic nucleus segmenta-
tion. arXiv preprint arXiv:1805.00500, 2018. 21

[70] Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully convolutional
networks for semantic segmentation. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 3431–3440, 2015. 21

[71] Richard Bellman. Dynamic programming treatment of the travelling sales-
man problem. Journal of the ACM (JACM), 9(1):61–63, 1962. 25

[72] Silvano Martello and Maria Grazia Speranza. Ricerca operativa per l’econo-
mia e l’impresa. Società Editrice Esculapio, 2022. 25

[73] Christian Nilsson. Heuristics for the traveling salesman problem. Linkoping
University, 38:00085–9, 2003. 26

[74] Howie Choset and Philippe Pignon. Coverage path planning: The boustro-
phedon cellular decomposition. In Field and service robotics, pages 203–209.
Springer, 1998. 27, 29

[75] Heinz Breu, Joseph Gil, David Kirkpatrick, and Michael Werman. Linear
time euclidean distance transform algorithms. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 17(5):529–533, 1995. 28

[76] G. Roggi, A. Niccolai, F. Grimaccia, and M. Lovera. A computer vision
line-tracking algorithm for automatic UAV photovoltaic plants monitoring
applications. Energies, 13(4), 2020. 30

141

REFERENCES

[77] Robert Thomas Jones. Classical aerodynamic theory. Number 1050 in 1.
National Aeronautics and Space Administration, 1979. 30

[78] F. Grimaccia, S. Leva, and A. Niccolai. PV plant digital mapping for
modules’ defects detection by unmanned aerial vehicles. IET Renewable
Power Generation, 11(10):1221–1228, 2017. 34

[79] Dongqing Li. Encyclopedia of microfluidics and nanofluidics. Springer
Science & Business Media, 2008. 35

[80] Lijun Ding and Ardeshir Goshtasby. On the canny edge detector. Pattern
recognition, 34(3):721–725, 2001. 35

[81] John Illingworth and Josef Kittler. A survey of the hough transform.
Computer vision, graphics, and image processing, 44(1):87–116, 1988. 35

[82] M. Aghaei, S. Leva, and F. Grimaccia. PV power plant inspection by image
mosaicing techniques for ir real-time images. In Photovoltaic Specialists
Conference, volume 2016-November, pages 3100–3105, 2016. 40, 41

[83] Richard Hartley and Andrew Zisserman. Multiple view geometry in computer
vision. Cambridge university press, 2003. 41, 91

[84] Álvaro Huerta Herraiz, Alberto Pliego Marugán, and Fausto Pedro García
Márquez. Photovoltaic plant condition monitoring using thermal images
analysis by convolutional neural network-based structure. Renewable Energy,
153:334–348, 2020. 41

[85] X. Li, Q. Yang, J. Wang, Z. Chen, and W. Yan. Intelligent fault pattern
recognition of aerial photovoltaic module images based on deep learning
technique. In International Multi-Conference on Complexity, Informatics
and Cybernetics, volume 1, pages 22–27, 2018. 41

[86] shaikh Aslam. OptiTrack Motive. https://optitrack.com/software/
motive/, 2023. 46, 99

[87] shaikh Aslam. ros-drivers/mocap_optitrack. https://github.com/
ros-drivers/mocap_optitrack, 2023. 46, 99

[88] Eric Rohmer, Surya P. N. Singh, and Marc Freese. V-rep: A versatile and
scalable robot simulation framework. In 2013 IEEE/RSJ International
Conference on Intelligent Robots and Systems, pages 1321–1326, 2013. 51

142

https://optitrack.com/software/motive/
https://optitrack.com/software/motive/
https://github.com/ros-drivers/mocap_optitrack
https://github.com/ros-drivers/mocap_optitrack

REFERENCES

[89] Noel Gorelick, Matt Hancher, Mike Dixon, Simon Ilyushchenko, David
Thau, and Rebecca Moore. Google earth engine: Planetary-scale geospatial
analysis for everyone. Remote Sensing of Environment, 2017. 60

[90] Xue Yang and Junchi Yan. Arbitrary-oriented object detection with circular
smooth label. In Computer Vision–ECCV 2020: 16th European Conference,
Glasgow, UK, August 23–28, 2020, Proceedings, Part VIII 16, pages 677–694.
Springer, 2020. 62

[91] Jiang Hou, Yao Ling, and Liu Yujun. Multi-resolution dataset for photo-
voltaic panel segmentation from satellite and aerial imagery, 2021. 63

[92] B. Dwyer, J. Nelson, J. Solawetz, and et al. Roboflow (version 1.0) [software].
https://roboflow.com, 2022. computer vision. 63, 66, 83

[93] Akasapu Hemanthika. Detectron2 FPN + PointRend model for amazing
satellite image segmentation, 2023. Medium. 64, 102

[94] Robin M. Cole. satellite-image-deep-learning, 2023. 64

[95] Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland,
Laura Gustafson, Tete Xiao, Spencer Whitehead, Alexander C Berg, Wan-
Yen Lo, et al. Segment anything. arXiv preprint arXiv:2304.02643, 2023.
66, 84

[96] IBM ILOG CPLEX. V12. 1: User’s manual for CPLEX. International
Business Machines Corporation, 46(53):157, 2009. 74

[97] C. E. Miller, A. W. Tucker, and L. R. Zemlin. Integer programming formu-
lations and traveling salesman problems. Journal of the ACM, 7:326–329,
1960. 75

[98] Fillipe Gonçalves. python-TSP: Python library for travelling salesman
problem. https://github.com/fillipe-gsm/python-tsp, 2023. 79

[99] Alan SI Zinober. Variable structure and Lyapunov control, volume 193.
Springer, 1994. 89

[100] Alexandre S Brandao, Felipe N Martins, and Higor B Soneguetti. A vision-
based line following strategy for an autonomous UAV. In 2015 12th Inter-
national Conference on Informatics in Control, Automation and Robotics
(ICINCO), volume 2, pages 314–319. IEEE, 2015. 89

143

https://roboflow.com
https://github.com/fillipe-gsm/python-tsp

REFERENCES

[101] Sun Jianping. An optimum layout scheme for photovoltaic cell arrays using
PVSYST. In 2011 International Conference on Mechatronic Science, Electric
Engineering and Computer (MEC), pages 243–245. IEEE, 2011. 97

[102] Luigi Biagiotti and Claudio Melchiorri. Trajectory planning for automatic
machines and robots. Springer Science & Business Media, 2008. 99

[103] Jan Hosang, Rodrigo Benenson, Piotr Dollár, and Bernt Schiele. What
makes for effective detection proposals? IEEE transactions on pattern
analysis and machine intelligence, 38(4):814–830, 2015. 102

[104] Vishakha Vijay Patel. Ziegler-nichols tuning method: Understanding the
pid controller. Resonance, 25(10):1385–1397, 2020. 110

[105] Neha Bagwari, Sushil Kumar, and Vivek Singh Verma. A comprehen-
sive review on segmentation techniques for satellite images. Archives of
Computational Methods in Engineering, pages 1–34, 2023. 129

[106] Gonghe Shi and Baohe Zuo. Cloudrcnn: a framework based on deep
neural networks for semantic segmentation of satellite cloud images. Applied
Sciences, 12(11):5370, 2022. 129

[107] Luca Morando, Carmine Tommaso Recchiuto, and Antonio Sgorbissa. Social
drone sharing to increase the UAV patrolling autonomy in emergency sce-
narios. In 2020 29th IEEE International Conference on Robot and Human
Interactive Communication (RO-MAN), pages 539–546. IEEE, 2020. 130

[108] Daniel V Ruiz, Leonardo A Vidal, and Eduardo Todt. For the thrill of it
all: A bridge among linux, robot operating system, android and unmanned
aerial vehicles. arXiv preprint arXiv:2006.11656, 2020. 133

144

	Acronyms
	1 Introduction
	1.1 JP Droni
	1.2 Background
	1.3 Problem statement
	1.3.1 Planning the route
	1.3.1.1 Panel lines recognition
	1.3.1.2 Path calculation

	1.3.2 Autonomous flight

	1.4 Contents

	2 State of the art
	2.1 Drone classification
	2.1.1 Multirotors
	2.1.2 Fixed-wing drones
	2.1.2.1 Hybrid drones

	2.2 Quadcopter regulation
	2.2.1 Categories of certificates
	2.2.2 Open category
	2.2.3 Operational steps

	2.3 Applications for autonomous UAVs
	2.3.1 UAV-based last mile delivery
	2.3.2 Security and surveillance
	2.3.3 Search and rescue
	2.3.4 Agriculture monitoring

	2.4 Introduction to ML
	2.5 Artificial neural networks
	2.5.1 Weights
	2.5.2 Activation function

	2.6 Convolutional neural networks
	2.7 Segmentation
	2.8 Applications of NNs for PV plants
	2.8.1 FCN approach
	2.8.1.1 Model setup
	2.8.1.2 Results

	2.8.2 Semantic-Segmentation-Based approach
	2.8.2.1 DL server for segmentation
	2.8.2.2 Results

	2.8.3 U-net for satellite image segmentation

	2.9 Path identification
	2.9.1 TSP
	2.9.1.1 Historical background
	2.9.1.2 Definition and types of solutions

	2.10 CPP for PV plants
	2.10.1 SPP and DPP
	2.10.2 Cell-based CPP algorithms
	2.10.2.1 GBWC
	2.10.2.2 BECD
	2.10.2.3 GBSTC

	2.11 Drone flight and control
	2.11.1 Flight forces
	2.11.2 Quadrotor modeling
	2.11.3 Frames and states of the quadrotor
	2.11.4 Geometric and kinematic models
	2.11.5 Dynamic model
	2.11.6 Control model

	2.12 Autonomous flight for PV plant inspection
	2.13 Vision-based inspection strategy
	2.13.1 Lines and slope detection
	2.13.1.1 Lines
	2.13.1.2 Slopes

	2.13.2 UAV velocity controller
	2.13.2.1 Tracking procedure
	2.13.2.2 Identification of the end of a strip

	2.14 Combination of tasks
	2.14.1 Extended Jacobian

	2.15 Flight altitude
	2.15.1 Scale determination
	2.15.2 Experiments setup and results

	2.16 Post processing IM
	2.16.1 IM techniques

	2.17 Defects detection

	3 Software and hardware architecture
	3.1 Hardware requirements
	3.2 Software requirements
	3.2.1 PC
	3.2.1.1 Route planning
	3.2.1.2 Bridge application
	3.2.1.3 UAV Control

	3.2.2 Android mobile phone

	3.3 ROS architecture and interfaces
	3.3.1 Interfaces description
	3.3.2 UAV connection module inner interfaces
	3.3.3 Drone control inner interface

	3.4 Simulated interfaces and drone

	4 Bridge application
	4.1 Application development
	4.2 Application improvements
	4.2.1 Tilt gimbal angle data transmission
	4.2.2 Flight across rows of panels
	4.2.2.1 Indoor flight
	4.2.2.2 Outdoor flight
	4.2.2.3 GPS position errors

	5 Planning the flight route
	5.1 Current solution to the problem
	5.2 Automatic solution to the problem
	5.2.1 Satellite image acquisition
	5.2.1.1 Coordinates selection
	5.2.1.2 Image extraction

	5.3 Deep Learning Instance Segmentation
	5.3.1 YOLO
	5.3.1.1 Object Detection Data-set

	5.3.2 Detectron2
	5.3.2.1 FPN + PointRend: Instance Segmentation
	5.3.2.2 Instance Segmentation Data-set

	5.4 Image processing
	5.4.1 First OpenCV processing
	5.4.1.1 FindContour
	5.4.1.2 MinAreaRect

	5.4.2 Filtering and Standardizing
	5.4.3 OpenCV WP pixel coordinates identification
	5.4.3.1 BoxPoints
	5.4.3.2 WP identification
	5.4.3.3 Ordering the WPs within the panel lines

	5.4.4 Post-processing step: geo-localization

	5.5 Path optimization process
	5.5.1 TSP formulation
	5.5.1.1 Problem Formulation
	5.5.1.2 Problem constraints
	5.5.1.3 Additional solution methods

	5.5.2 Input data
	5.5.3 Output data

	6 UAV flight control
	6.1 Features extraction
	6.1.1 Detectron2 Panels segmentation
	6.1.1.1 Data-set images and annotation
	6.1.1.2 Model fine-tuning
	6.1.1.3 Feature extraction

	6.2 PID controller
	6.2.1 Feature interpretation
	6.2.2 Controller definition

	6.3 Non linear controller
	6.3.1 Feature interpretation
	6.3.2 Controller definition
	6.3.2.1 Reference system and Kinematic equations
	6.3.2.2 Proof of stability using Lyapunov criterion

	6.4 Task Stacking
	6.4.1 Pinhole model and camera calibration
	6.4.2 Feature interpretation
	6.4.3 Controller definition
	6.4.3.1 Interaction matrix
	6.4.3.2 UAV camera motion constraint
	6.4.3.3 Task based control and minimization problem
	6.4.3.4 Task stacking

	6.4.4 Inclined camera setting

	6.5 Across the panel indoor movement
	6.5.1 Trajectory controller
	6.5.2 Simple PID position based controller

	7 Experiments
	7.1 Semantic Segmentation evaluation
	7.1.1 Satellite images segmentation
	7.1.2 Aerial images segmentation

	7.2 Path optimization test
	7.2.1 Fixed time evaluation
	7.2.2 Optimal solution time over different maps
	7.2.3 Variation of path length given different time & iterations limits

	7.3 Control algorithm tests
	7.3.1 Simulated environment set-up
	7.3.2 Indoor test-room set-up
	7.3.3 Outdoor test set-up
	7.3.4 Simulation Tests
	7.3.4.1 Straight configuration
	7.3.4.2 Planar Rotation
	7.3.4.3 Vertical Rotation

	7.3.5 Indoor Tests
	7.3.5.1 PID controller; [Video Test 5]
	7.3.5.2 Lyapunov controller; [Video Test 5]
	7.3.5.3 Task Stacking controller; [Video Test 6]
	7.3.5.4 Angled panel following [Video Test]
	7.3.5.5 PID position based controller
	7.3.5.6 Across the panel movement over multiple panels [Video Test]

	7.3.6 Outdoor Tests
	7.3.6.1 20.5m / Aligned start / Non linear control [Video Test]
	7.3.6.2 10.5m / Aligned start / Non linear control [Video Test]
	7.3.6.3 23.8m / Angular off-set / Non linear control [Video Test]
	7.3.6.4 22m / Linear off-set / Non linear control [Video Test]
	7.3.6.5 20m / Linear off-set / Task Stacking [Video Test]

	7.4 Links

	8 Possible improvements and conclusions
	8.1 Possible improvements
	8.1.1 Improving NN segmentation from satellite images
	8.1.2 Improving CPLEX optimization problem definition
	8.1.2.1 Constraint redefinition
	8.1.2.2 Sub-tour embedded solutions
	8.1.2.3 Human-based path finding tests

	8.1.3 Pan-tilt gimbal control

	8.2 Conclusions

	A Hardware used
	A.1 DJI Mavic Pro: specifications
	A.2 HP Omen computer

	References

