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Abstract

The problem addressed by this thesis is the detection and mitigation of Cross-Site

Scripting (XSS) attacks in web applications. The proposed approach leverages

unsupervised learning techniques, employing a One-Class Support Vector Ma-

chine (SVM) model to decipher patterns within unlabeled data. This approach is

founded on a comprehensive set of steps, including e�cient pre-processing tech-

niques, critical feature extraction, and model selection.

A pivotal innovation lies in the introduction of dual One-Class SVM models, spe-

cializing in the detection of XSS-related HTML and

JavaScript content. The ability to select between these models adds a layer of

adaptability, enabling tailored defense mechanisms based on threat scenarios.

To address ambiguity in model predictions, we propose two evaluation strategies,

providing 
exibility in security responses. An advanced pre-processing pipeline,

encompassing enhanced generalization and data re�nement techniques, signi�-

cantly elevates data quality, enhancing the classi�er's e�cacy.

The outcomes of this research enrich the possible solutions useful for combating

XSS attacks, enhancing traditional rule-based software solutions with the power

of machine learning techniques.
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Chapter 1

Introduction

1.1 General context

In today's interconnected and digitized world, the importance of cybersecurity

cannot be underestimated. As we delve into the heart of this master's thesis, it is

imperative that we �rst establish a comprehensive understanding of the general

context in which cybersecurity operates.

Cybersecurity, is the practice of safeguarding the digital systems, networks, and

data from a myriad of threats, ranging from cyberattacks by individuals and or-

ganized groups to the ever-changing landscape of technological vulnerabilities.

The interconnectedness of our modern society, driven by the proliferation of the

Internet and digital technologies, has given us unprecedented opportunities for

communication, innovation and e�ciency. However, it has also exposed us to a

new frontier of threats and risks. One need only glance at the headlines to recog-

nize the prevalence and severity of cyber-attacks. From state-sponsored espionage

to ransomware attacks against critical infrastructure, the stakes are higher than

ever. These attacks can lead to �nancial loss, the compromise of sensitive per-

sonal and business data, and even jeopardize national security.
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1.1 General context

The consequences of failing to respond to these threats are profound, a�ecting

not just individuals and organizations, but entire societies. Additionally, as we

continue to embrace emerging technologies such as the Internet of Things (IoT),

arti�cial intelligence, and blockchain, the attack surface for cyber threats expands

exponentially. The proliferation of devices and data in this increasingly intercon-

nected world ampli�es the importance of cybersecurity in safeguarding the digital

ecosystems.

However, the cybersecurity landscape is not solely de�ned by external threats.

Insider threats, human error, and ethical data privacy considerations further com-

plicate this arena. The balance between security and individual freedoms, par-

ticularly in the age of surveillance and data collection, is a critical aspect of the

cybersecurity discourse.

In this scenario, one of the most common and harmful threats in the cybersecu-

rity landscape are Cross-Site Scripting (XSS) attacks. According to the annual

security report by "OWASP", the organization for web application security,"27%

of all reported vulnerabilities in 2022 were related to XSS attacks".

Cross-Site Scripting is a type of security vulnerability that plagues web appli-

cations. It occurs when a website or web application unwittingly includes un-

trusted data in its content, which is then executed by a victim's web browser.

This untrusted code, often written in JavaScript, can lead to a range of malicious

activities, from data theft and session hijacking to defacing web pages.

XSS attacks come in several forms:

1. Stored XSS: In this scenario, the malicious script is permanently stored

on the target server, usually within a database. When a user accesses the

compromised page, the script is served and executed.

10



1.1 General context

Figure 1.1: XSS Stored schema.

2. Re
ected XSS: Contrary to stored XSS, re
ected XSS doesn't involve stor-

ing the malicious script on the target server. Instead, it relies on tricking a

user into clicking a malicious link that contains the script. The server then

re
ects this script back to the user, executing it in their browser.

Figure 1.2: XSS Re
ected schema.

3. DOM-based XSS:This variant occurs when the client-side script manipu-

lates the Document Object Model (DOM), leading to security vulnerabili-

ties.

11



1.1 General context

Figure 1.3: XSS DOM-based schema.

The consequences of XSS attacks are all too real. They have been responsible

for numerous high-pro�le data breaches, compromising user data and causing

signi�cant damage to organizations' reputations.

1.1.1 Open problems

While signi�cant progress has been made in understanding and mitigating XSS

attacks, several challenges and open problems persist in this �eld of cybersecurity.

Recognizing these unresolved issues is crucial for researchers, developers, and se-

curity professionals to further enhance the defenses against this threat, here are

some of the open problems and challenges associated with detecting XSS attacks:

1. Detection and Prevention of DOM-based XSS:Many XSS attacks are exe-

cuted in the client's web browser, making them challenging to detect and

prevent at the server level. Browser vendors have implemented various se-

curity features like Content Security Policy (CSP), but the e�ectiveness of

these mechanisms in real-world scenarios and their ease of implementation

are areas that require further exploration.

12



1.2 Speci�c context

2. Content Security Policy (CSP) bypasses:CSP is a security feature that

helps prevent XSS attacks by specifying which sources of content are al-

lowed to be loaded and executed. However, attackers are continually �nding

new ways to bypass CSP restrictions, and �nding robust CSP policies that

balance security and functionality is an ongoing challenge.

3. Zero-day vulnerabilities: They are previously unknown and unpatched se-

curity 
aws, can be exploited by attackers before developers have a chance

to release �xes. Detecting and mitigating zero-day XSS vulnerabilities in

real-time remains a pressing concern for the security community.

4. Context-aware XSS detection:Many XSS detection tools and mechanisms

rely on pattern matching or blacklist approaches. These methods can lead

to false positives and negatives. Developing context-aware XSS detection

mechanisms that can understand the context of the input and output in a

web application is a challenging problem.

5. Third-Party Dependencies and Supply Chain Attacks:Modern web appli-

cations often rely on third-party libraries and dependencies. Vulnerabilities

in these components can introduce XSS risks. Managing and securing the

entire supply chain of web applications presents challenges, especially in

large-scale development environments.

1.2 Speci�c context

In this case study, HTTP requests originate from a Web Application and API

Protection (WAAP) system, this software is called Mithril and is manufactured

and powered by AizoOn Technology Consulting.

The company specializes in o�ering advanced technology and digital solutions to

13
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improve business operations and operational e�ciency, providing strategic con-

sulting services, bespoke software development, data analytics, arti�cial intelli-

gence, automation and other digital solutions for a wide range of industries.

Mithril is a comprehensive Web Application and API Protection (WAAP) ser-

vice that goes beyond the traditional capabilities of a Web Application Firewall

(WAF). It o�ers cloud-delivered as-a-service deployment of WAF, bot mitigation,

DDoS protection, and API security, while also extending its functionality with

various modules to enhance web application or website protection and perfor-

mance. Mithril's WAF is based on the OWASP Core Rule Set (CRS), a set of

attack detection rules designed to safeguard web applications from a wide range

of common attacks, including SQL Injection, Cross-Site Scripting, Local File

Inclusion, and many others. Additionally, Mithril operates as a reverse proxy, in-

specting all web tra�c to detect and prevent attacks, and provides a user-friendly

web console for con�guring rules and modules in near real-time. It o�ers ongoing

support, access to new rules and modules, and a dedicated Security Operations

Center (SOC) to maximize web application protection.

The goal of this paper is the development of a machine learning model aimed at

classifying HTTP requests, e�ectively di�erentiating benign requests from poten-

tially malicious Cross-Site Scripting (XSS) attacks. I will demonstrate the ability

to contribute to web security by e�ectively implementing anomaly detection so-

lutions for real-world scenarios.

1.2.1 Open problems

Detecting cross-site scripting (XSS) attacks from HTTP requests using machine

learning classi�ers is a challenging problem, and there are several open issues

and research areas within this domain. Here are some of the open problems and

challenges associated with detecting XSS attacks using machine learning:

14
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1. Imbalanced Datasets:Datasets for XSS detection are often highly imbal-

anced, with a vast majority of legitimate requests and only a small fraction

of malicious ones. Handling this class imbalance while training machine

learning models e�ectively is a challenge.

2. Feature Engineering: Extracting relevant features from HTTP requests

that can capture the characteristics of XSS attacks is crucial. Determining

which features are most informative and designing e�ective feature extrac-

tion methods is an ongoing problem.

3. Data Preprocessing:Cleaning and preprocessing the data to remove noise

and irrelevant information is essential. Developing automated techniques

for data preprocessing that improve model performance is a research area.

4. Model Generalization: Ensuring that the trained model generalizes well to

di�erent web applications and environments is essential. Models should not

be overly speci�c to the training data and should work well in real-world

scenarios.

5. False Positives and Negatives:Reducing false positives (legitimate requests

misclassi�ed as attacks) and false negatives (missed detections) is an ongo-

ing challenge. Balancing these two aspects while optimizing model perfor-

mance is critical.

6. Real-time Detection: Developing models that can provide real-time or near-

real-time detection of XSS attacks without introducing signi�cant latency

into the web application is important.

7. Incremental Learning: Web applications and attack techniques evolve over

time. Developing techniques for incremental learning that can adapt to new

attack patterns and variations is important for long-term security.

15



1.3 State of the Art

8. Privacy and Ethical Considerations: As with any machine learning appli-

cation, there are privacy and ethical concerns in collecting and using data

for XSS detection. Research into privacy-preserving techniques and ethical

data handling is important.

1.3 State of the Art

In the world of cybersecurity, a slew of innovative solutions has emerged to coun-

teract the persistent threat of Cross-Site Scripting (XSS) attacks. To provide a

clearer understanding, we can categorize these solutions into two distinct groups:

Rule-Based Software and AI-Powered Software.

Rule-Based Software solutions:

In the realm of Rule-Based Software, Noxes, introduced by Kirda et al. [1],

is a standout solution. It acts as a potent client-side defense mechanism, set

to transform personal �rewalls' e�ectiveness against XSS attacks. Noxes excels

at assessing incoming HTTP web requests and can grant or deny access based

on prede�ned �rewall rules. These rules can be created manually, generated dy-

namically through Firewall Prompts, or automatically established using Snapshot

Mode.

Another player in Rule-Based Software is SessionSafe, introduced by Johns [2].

It implements server-side methods like deferred loading, one-time URLs, and

sub-domain switching to bolster web application security against XSS session hi-

jacking. Notably, SessionSafe adds a layer of security without requiring source

code modi�cations. For server-side XSS attack detection, consider XSSDS (XSS-

Dec) by Johns et al. [3]. It provides an e�ective passive approach by analyzing
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HTTP request-response variations to identify non-persistent XSS attacks. Per-

sistent XSS attacks are handled through a training-based approach, alerting to

potential attacks when unrecognized scripts are detected.

In the same category, XSS-Guard by Bisht and Venkatakrishnan [4] identi�es

scripts intended for HTML web requests and removes unauthorized scripts in the

HTTP response web page. It creates a shadow web page to understand the web

application's intent, allowing only legitimate scripts.

SWAP (Secure Web Application Proxy), proposed by Wurzinger et al. [5], coun-

ters XSS attacks using a reverse proxy approach, encoding static script calls into

script IDs. SWAP decodes these IDs when no malicious scripts are found and

alerts the client when malicious scripts are detected.

S2XS2 by Shahriar et al. [6] introduces an automated server-side XSS detec-

tion approach using "boundary injection" and "policy generation" to detect XSS

attacks, particularly in JSP programs. employ a server-side JavaScript code in-

jection technique based on randomly generated comment statements to detect

injected JavaScript code.

Innovating XSS attack prevention, Noncespaces by Gundy and Chen [7] uses

Instruction Set Randomization (ISR) techniques to randomize (X)HTML tags

and attributes, enhancing security by detecting malicious content and preventing

tampering with the Document Object Model (DOM) tree.

AI-Powered Software solutions:

The traditional method of XSS detection typically relies on rule-based matching

and the extraction of prede�ned features, but it struggles to identify increasingly

complex XSS attack sentences. However, with the rapid advancement of machine

learning techniques, researchers have turned to machine learning algorithms to
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address network security challenges, particularly in the domain of XSS attack

detection. Several notable approaches have surfaced in this context, contributing

to signi�cant progress in the �eld.

Mereani et al. [8] explores the applicability of three machine learning algorithms:

Support Vector Machines (SVM), k-Nearest Neighbors (k-NN), and Random

Forests, in the quest to identify and mitigate XSS attacks, whether they are

known or unknown, by developing classi�ers speci�cally designed for JavaScript

code. The research highlights the e�ectiveness of a unique feature set that com-

bines language syntax and behavioral characteristics, resulting in classi�ers that

achieve high levels of accuracy and precision when tested against extensive real-

world datasets.

Another noteworthy contribution comes from Wang et al. [9], who proposed

an XSS attack detection method rooted in Bayesian networks. Their approach

involves extracting 17 XSS attack characteristics and incorporating information

about malicious IP addresses and domain names. This strategy has demonstrated

e�cacy, particularly in identifying non-persistent XSS attacks.

The proliferation of Social Networking Services (SNSs) such as Twitter, Insta-

gram, and Facebook has brought billions of users into the digital realm, exposing

them to xss attack risk also on this environments, Rathore et al. [10] introduces

a machine learning-based approach tailored speci�cally for the detection of XSS

attacks within the context of Social Networking Services (SNSs), this approach

leverages three key features: URLs, webpage content, and the distinct characteris-

tics of SNSs. To create a robust dataset, the researchers collect and analyze 1,000

SNS webpages, extracting pertinent features from these pages. Subsequently, ten

di�erent machine learning classi�ers are applied to this dataset to classify web-

pages into two categories: XSS or non-XSS.

Mokbal et al. [11] used a robust arti�cial neural network-based multilayer percep-

18
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tron (MLP) scheme, detection scheme incorporates dynamic feature extraction

mechanisms and leverages a substantial real-world dataset, achieving outstanding

results, with an AUC-ROC score of 90.02%.

Fang et al. [12] with DeepXSS, presented a deep learning algorithm for the ef-

fective detection of Cross-Site Scripting (XSS) attacks. Leveraging word2vec for

feature extraction and Long Short Term Memory (LSTM) recurrent neural net-

works for training and testing, DeepXSS achieves remarkable precision (99.5%)

and recall (97.9%) rates in real-world datasets.

A fundamental challenge in the realm of machine learning-based XSS detection

is the automatic de�nition and extraction of features. This issue has prompted

signi�cant research e�orts to tailor deep learning models to the unique char-

acteristics of the security �eld. Additionally, while deep learning models have

demonstrated their potential, they often incur higher computational costs, espe-

cially when employing stacked models.

The integration of machine learning, into the XSS attack detection landscape

represents a promising avenue for enhanced security. These approaches o�er the

potential to adapt to evolving attack vectors and patterns, providing a valuable

tool in the ongoing battle against XSS attacks. However, they also bring chal-

lenges related to feature de�nition, computational e�ciency, and model training

that warrant continued research and innovation.

19



1.4 Proposed solution

1.4 Proposed solution

The proposed approach involves an unsupervised classi�er designed to understand

patterns within unlabeled data. This process encompasses several key steps:

ˆ Select an appropriate pre-processing pipeline to e�ectively cleanse the pay-

loads by removing extraneous elements.

ˆ Determine the most critical features for detecting XSS attacks.

ˆ Extract features from the payloads.

ˆ Opt for an unsupervised model that aligns well with the problem statement.

ˆ Train the model using the extracted features.

ˆ Evaluate the outcomes and optimize it.

The chosen model is One-Class SVM, renowned for its anomaly detection capa-

bilities, the underlying concept is to instruct the model on how to discern XSS

attacks. If the model fails to recognize a payload, it is considered benign.

1.5 Innovative content

This chapter explores the innovative aspects in building an XSS attack classi�er.

This research goes beyond conventional methods, incorporating several ground-

breaking elements that enhance the robustness and adaptability of the system.

1. Dual One-Class SVM Models:This approach introduces the use of two dis-

tinct One-Class Support Vector Machine (SVM) models. The �rst model is

tailored for detecting XSS-related HTML content, while the second focuses

on identifying XSS-related JavaScript content. This dual-model setup al-

lows us to specialize in capturing the unique characteristics of both HTML

20
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and JavaScript payloads, increasing the classi�er's accuracy and precision.

This specialization is a novel feature of the work, emphasizing the commit-

ment to addressing the diversity of potential XSS attacks.

2. Model Selection: One of the key innovations in this approach is the abil-

ity to select which of two One-Class SVM models to activate based on the

situation. This adaptive approach enhances the versatility of the classi-

�er. When faced with di�erent input payloads, one can choose between

the model that specializes in detecting HTML content and the one that

specializes in identifying JavaScript content. This model selection allows us

to tailor the defense mechanism to the speci�c threat scenario, maximizing

the accuracy and e�ectiveness of the classi�er.

3. Handling Ambiguity in Model Predictions: To address situations where the

two models produce con
icting results for the same input payload, i propose

two di�erent evaluation strategies. The �rst solution prioritizes the model

whose payload-to-hyperplane distance is greater. In the second solution,

if one of the two models has a positive classi�cation, than the payload is

considered as a malicious one. This approach to handling ambiguity allows

you to set the severity of the assessment, using the second model in which

case you want a more stringent assessment.

4. Advanced Pre-processing Pipeline:One of the innovative components of

this work is the development of an advanced pre-processing pipeline. This

pipeline is designed to cleanse and prepare input payloads comprehensively.

In addition to standard procedures like decoding and tokenization, i in-

troduce an improved concept of generalization. By re�ning the removal

of extraneous white spaces, eliminating redundant characters and unneces-

sary punctuation, converting text to lowercase, and stripping HTML com-
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ments, i ensure that input data is thoroughly sanitized. This enhanced

pre-processing pipeline signi�cantly improves the quality of data fed into

classi�cation models. The term "generalization" itself may not be entirely

novel, as it has been used in related work, but this approach represents a

substantial improvement in the way it is applied to preprocess input pay-

loads.

This research introduces several innovative elements, from an enhanced pre-

processing pipeline to dynamic model selection, dual SVM models, and an un-

supervised learning approach. These innovations collectively contribute to the

e�ectiveness, adaptability, and robustness of the XSS attack classi�er, making it

a valuable asset in the realm of web security.
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Chapter 2

Model development

2.1 Problem

2.1.1 Problem de�nition

The process begins with the HTTP request body, which is �ltered through the

Mithril WAAP service and subsequently stored in Elasticsearch, a distributed,

real-time, and full-text search and analytics engine. To lay a foundation for a

comprehensive understanding of the ensuing analysis, it is important to provide

an overview of what constitutes an HTTP request.

The Hypertext Transfer Protocol (HTTP) serves as the cornerstone of commu-

nication across the World Wide Web. It establishes a standardized framework

comprising rules and conventions for the exchange of data between web clients,

typically in the form of web browsers, and web servers. HTTP operates as a

request-response protocol, a�ording clients the ability to solicit resources from

servers and receive responses containing the requested resources. HTTP requests

represent the client's means of interaction with web servers, enabling the retrieval

of web pages, images, documents, or any other resources hosted on remote servers.
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An HTTP request comprises several pivotal components, each assigned a speci�c

purpose:

1. Request Method:The request method speci�es the type of action the client

wishes to perform on the resource. Common HTTP methods include:

ˆ GET: Requests data from the server, typically used for retrieving web

pages or resources.

ˆ POST: Submits data to the server, often used for form submissions or

data uploads.

ˆ PUT: Updates a resource on the server with the provided data.

ˆ DELETE: Requests the removal of a resource from the server.

2. Request URI(Uniform Resource Identi�er): The URI identi�es the resource

the client wants to interact with. It includes the server's domain name or

IP address and the path to the resource on the server. For example, in

the URI "https://www.example.com/page.html," "https" is the protocol,

"www.example.com" is the server's address, and "/page.html" is the path

to the resource.

3. Request Headers:HTTP headers provide metadata about the request and

can include information such as the client's user-agent, accepted content

types, and cookies. Headers are crucial for the server to understand how to

process the request and provide the appropriate response.

4. Request Body:The request body, often used in methods like POST and

PUT, contains data that the client wants to send to the server. This can

include form data, JSON payloads, or other types of structured or unstruc-

tured data.
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XSS attacks often exploit the way web applications handle user input in HTTP

requests. Malicious payloads are injected into request parameters, such as form

�elds or query strings, and then processed by the application. These payloads can

include JavaScript code that, when executed in the context of a user's browser,

can perform actions like stealing user data, hijacking sessions, or performing other

malicious actions. The objective is to develop a method capable of identifying

the presence of an XSS (Cross-Site Scripting) payload within any type of re-

quest body. This entails the training of a model that can accurately discern the

distinctive features indicative of such an attack.

2.1.2 Formalization

This chapter outlines the systematic steps taken to achieve the research objec-

tives, which include the creation of an e�ective XSS attack classi�er.

ˆ De�ne a Comprehensive Pre-processing Pipeline:The �rst crucial step in-

volves de�ning a robust pre-processing pipeline to cleanse the raw data

obtained from potential XSS attack payloads. This pipeline is meticulously

designed to remove extraneous and non-essential elements, ensuring that

the data is in an optimal format for subsequent analysis.

ˆ Feature Identi�cation: The process of feature identi�cation is pivotal. Here,

we meticulously determine the features that will be extracted from the

cleaned payloads. The selection of these features is a critical aspect of

our approach as it directly impacts the classi�er's ability to di�erentiate

between benign and malicious content.

ˆ Feature Extraction: Once the features have been identi�ed, we proceed

to extract them from the pre-processed payloads. This step involves the
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transformation of raw data into structured and meaningful feature vectors

that can be utilized by our classi�cation algorithm.

ˆ E�ectiveness Assessment: The e�ectiveness of the extracted features is

rigorously evaluated in this phase. We scrutinize potential correlations,

patterns, and statistical properties within the feature set. Understanding

the data characteristics is essential for building a robust classi�er.

ˆ Algorithm Selection and Implementation: After a comprehensive assess-

ment, we carefully select and implement an unsupervised learning algo-

rithm. This algorithm forms the core of our classi�cation system and plays

a vital role in detecting potential XSS attacks based on the extracted fea-

tures.

ˆ Model Training: The selected unsupervised learning algorithm is trained

on a representative dataset. During this phase, the model learns to identify

anomalies and distinguish between normal and potentially malicious content

based on the extracted features.

ˆ Performance Evaluation:To gauge the e�ectiveness of our classi�er, we con-

duct a thorough performance evaluation. This evaluation involves various

metrics and testing scenarios to assess the classi�er's ability to accurately

identify XSS attacks while minimizing false positives.
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2.1.3 Data

The dataset comprises a collection of strings representing potential XSS (Cross-

Site Scripting) attacks identi�ed by Mithril (WAAP). Many of these recorded

attacks are found within the HTTP request body, with the body exhibiting dis-

tinct characteristics:

1. Content Type: The content type, speci�ed in the HTTP request headers

using the "Content-Type" �eld, informs the server about the type of data

present in the request body. Common content types include:

ˆ application/x-www-form-urlencoded:Used for submitting form data.

ˆ application/json: Indicates that the body contains JSON data.

ˆ multipart/form-data: Typically used for �le uploads.

ˆ text/plain: Denotes plain text data.

2. Data Format: The format of the data within the request body depends on

the content type. For example:

ˆ In a application/x-www-form-urlencodedrequest, data is formatted as

key-value pairs separated by '&' symbols.

ˆ In a application/json request, data is structured as a JSON object or

array.

3. Size: The size of the request body indicates the amount of data being sent.

This is often measured in bytes and can impact server performance and

request processing times.

4. Encoding: The request body may be encoded in various ways, such as UTF-

8 or binary encoding. The encoding type should match the content type

and data format.
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5. Data Payload: This is the actual data being sent in the request body. It can

vary signi�cantly based on the purpose of the request. Common examples

include:

ˆ Form Data: Key-value pairs representing form �elds and their values.

ˆ JSON Payload: A structured data object or array containing relevant

information.

ˆ File Upload: Binary data representing the �le being uploaded.

However, the request body is not the sole source of payloads within our dataset.

There are additional avenues for injecting XSS attacks:

1. Request Parameters/Query Strings:XSS attacks can be injected into the

values of query parameters or form �elds sent as part of an HTTP request.

For example, if a web application allows users to input text into a search

box, an attacker might inject a malicious script as part of the search query.

2. Request Headers:Although less common, it's possible for XSS attacks to be

embedded in request headers, especially if the application processes header

values and re
ects them in responses without proper sanitization.

3. Request Cookies:Cookies sent with an HTTP request can potentially carry

XSS payloads if the application doesn't properly sanitize and validate cookie

values.

4. Request URL:In some cases, the URL itself can be manipulated to include

an XSS payload, typically within query parameters. However, this is less

common than other injection points.

5. Response Content: While not part of the request, XSS attacks become

e�ective when they are re
ected in the response content generated by the
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server. This occurs when the server echoes user-supplied input back to the

user without proper sanitization. The attacker tricks the server into serving

the malicious script to other users.

2.1.4 Methodology Selection

Overall schema of the project:

Figure 2.1: Project overall schema.

Figure 2.1 illustrates a crucial aspect of the research, where I leverage Mithril

WAAP to capture internet requests. Mithril WAAP operates as a gatekeeper,

making autonomous decisions regarding the admission of these requests into the

system. It's important to note that Mithril's capabilities extend beyond merely

identifying XSS attacks; it possesses the ability to detect various types of cyber
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threats. However, for this speci�c study, I focus on isolating and analyzing XSS

attacks from this broader spectrum of attacks, utilizing them to train the model.

The XSS payloads collected by Mithril undergo a necessary pre-processing phase.

During this phase, I aim to eliminate any extraneous information or noise sur-

rounding the payload, ensuring to retain only the pertinent data for analysis.

Once the payload emerges from this pre-processing pipeline, the next step is

feature extraction. These features are essential as they provide the model with

the necessary information to discern malicious payloads from benign ones. The

training dataset exclusively consists of malicious payloads, enabling the model to

discern the distinctive patterns associated with malignancy. To accomplish this

task, I have chosen the One-Class SVM model.

The selection of the One-Class SVM model represents a strategic decision driven

by the unique demands of this research in the realm of cybersecurity. This model

choice is not arbitrary; rather, it is a result of careful consideration of the speci�c

challenges and objectives associated with identifying and mitigating XSS attacks

within internet tra�c. It stands out as an apt choice primarily because of its

specialization in anomaly detection. In this context, where the goal is to separate

rare malicious payloads from a predominantly benign dataset, this model's ability

to establish a decision boundary that encapsulates normal tra�c is invaluable.

By doing so, it e�ciently pinpoints anomalies|malicious payloads that deviate

from the established norm. This focused approach aligns seamlessly with the

objective of identifying and countering XSS attacks within internet requests.

Upon the completion of the training phase, the model is well-prepared to enter the

testing phase. During this phase, the model evaluates new payloads, determining

whether they exhibit malicious characteristics or not. This evaluation process is a

critical step in enhancing the system's security and safeguarding against potential

cyber threats.
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2.2 Machine Learning Model

2.2.1 Introduction to Machine Learning

In the last century we have witnessed new discoveries in technology, notably in

1943 Warren McCullock and Walter Pitts realized that the brain "despite being a

soft, wet, gelatinous mass, the signaling in it is digital and, to be precise, binary,"

hence the �rst studies on the possibility of making machines learn.

Later in 1950 Alan Turing supported the same thesis with an article entitled

"Computing Machinery and Intelligence" in which he discussed the possibility of

making machines learn. In the 1950s and 1960s, Arti�cial Intelligence (AI) as a

�eld of study emerged, giving rise to the �rst attempts to develop programs that

could learn. Frank Rosenblatt's "Perceptron" and Arthur Samuel's "Checker-

playing program" represented the �rst examples of machine learning applied to

speci�c problems. Over the following decades, the �eld of machine learning un-

derwent signi�cant changes.

The 1970s and 1980s saw the development of more sophisticated learning algo-

rithms, such as decision trees and the partial least squares method. But it was

mainly in the 1990s and 2000s that machine learning began to 
ourish. During

this period, statistical machine learning algorithms were developed, leading to

remarkable advances in practical applications.

Since the 2010s, machine learning has experienced explosive growth. The com-

bination of huge amounts of data and the availability of powerful computational

resources has opened up new perspectives. Deep learning algorithms, based on

deep neural networks, have revolutionized the machine learning landscape, lead-

ing to amazing advances in �elds such as speech recognition, image recognition,

and natural language processing.

Today, machine learning is ubiquitous. We �nd it in search engines, product
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recommendations, virtual assistants, autonomous vehicles, and countless other

aspects of our daily lives. The applications are broad and constantly expanding,

helping to solve complex problems and adopting a central role in digital trans-

formation. It has come a long way, from its inception as a visionary concept

to becoming a fundamental pillar of modern technology, this dissertation will

further explore the �eld of machine learning, focusing on the integration of this

technology in cybersecurity.

2.2.2 One-Class Support Vector Machine

OCSVM is a machine learning technique that aims to identify "anomalous" or

"outlier" data in a data set, and is based on the principle of Support Vector

Machines (SVMs), one of the most powerful techniques for classi�cation and re-

gression. OCSVM is particularly useful when you have a data set in which one

of the classes (the "positive class") is much larger or dominant than the other

class (the "negative class" or the "outliers"). This approach �nds application in

a wide range of scenarios, such as fraud detection, complex systems monitoring,

and cybersecurity.

Basic principles of OCSVM:

To understand in detail how OCSVM works, it is useful to start with the basic

principles:

1. Positive class de�nition: In OCSVM, we begin by identifying the "positive

class," which is the class of interest to be identi�ed. Examples of this class

are called "support vectors." This choice is critical because the model will

focus on this class and try to identify outliers with respect to it.

2. Support Vectors: A crucial part of SVM in general is the discovery of
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"support vectors." These are the training examples closest to the decision

hyperplane. The hyperplane is the plane (in two-dimensional spaces) or

the hyperplane (in multidimensional spaces) that separates the two classes.

Support vectors de�ne the location of this hyperplane.

3. Margin: The main goal of the OCSVM is to �nd a hyperplane that maxi-

mizes the "margin." The margin is the distance between the decision hyper-

plane and the nearest positive class data point. This distance is important

because it indicates how safe the model is in its decision.

4. Decision function: Once the hyperplane is found, the model can be used to

classify new data points. The distance between a data point and the decision

hyperplane is calculated, and this value is compared with the margin. Data

points that fall within the margin are considered anomalous, while those

outside the margin are considered normal or belonging to the positive class.

5. Parameters: The OCSVM has parameters that need to be adjusted during

training. The most important parameter is the margin width, which can be

adjusted to �t the speci�c data and the tolerance level for outliers. Finding

the optimal values for these parameters is crucial for accurate performance.

How OCSVM works:

Now that we have an understanding of the basic principles, let's look at how

OCSVM works in practice:

1. Training: OCSVM training begins with de�ning the positive class and col-

lecting examples of this class. The examples of this class will constitute the

"support vectors" and will be used to �nd the decision hyperplane.

2. Calculating the decision hyperplane:Once the positive class examples have

been collected, the OCSVM uses optimization algorithms to �nd the deci-
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sion hyperplane that maximizes the margin between the hyperplane itself

and the support vectors. This process can be computationally intensive but

is essential to identify outliers accurately.

3. Data classi�cation: After training the model and �nding the decision hy-

perplane, the model can be used to classify new data points. The distance

between a data point and the decision hyperplane is calculated and com-

pared with the margin. If the distance is less than the margin, the data

point is classi�ed as an outlier; if it is greater than the margin, it is classi�ed

as normal or belonging to the positive class.

Mathematical formulation:

Two notable formulations of One-Class SVM are those proposed by Sch•olkopf

and Platt and the one by Tax and Duin. Let's discuss each of these formulations:

1. Sch•olkopf and Platt's Formulation: The One-Class SVM formulation by

Sch•olkopf and Platt is based on the idea of �nding a hyperplane that sep-

arates the data from the origin (the center of the data distribution) while

maximizing the margin.

Given a dataset with n data points x1; x2; : : : ; xn in a feature spaceRd,

the One-Class SVM seeks to �nd a hyperplane represented by the weight

vector w and the bias termb that maximizes the margin around the origin

while containing most of the data points. Additionally, it introduces a slack

variable � i for each data point to allow for some data points to fall within
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the margin. The optimization problem can be formulated as follows:

Minimize:
1
2

kwk2 +
1

�n

nX

i =1

� i � b

Subject to: w � � (x i ) � b� � i ; i = 1; 2; : : : ; n

� i � 0; i = 1; 2; : : : ; n

Where:

ˆ � (x i ) is the feature map that maps the input data point x i into a

higher-dimensional space (typically the same space as the original data

or a higher-dimensional space induced by a kernel function).

ˆ kwk is the Euclidean norm of the weight vectorw.

ˆ b is the bias term.

ˆ � i are slack variables.

ˆ � is a user-de�ned hyperparameter that controls the trade-o� between

maximizing the margin and tolerating inliers within the margin. It's

typically a value between 0 and 1.

The goal of the optimization problem is to �nd the weight vectorw and bias

term bthat minimize the objective function while satisfying the constraints.

Once these parameters are found, the decision function for classifying new

data points is given by:

f (x) = sign(w � � (x) � b)

Where f (x) returns +1 for inliers and -1 for outliers.
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2. Tax and Duin's Formulation: The formulation by Tax and Duin takes a

di�erent approach. It is based on �nding the minimum enclosing ball that

contains all the data points in the feature space. The objective is to min-

imize the radius of the enclosing hypersphere (ball) while maximizing the

number of data points inside it.

Minimize a cost functionR2 with the constraint that every point lies within

or on the hypersphere. Therefore, our constraint isjx i � aj2 � R2 for all i .

As it stands, outliers will greatly a�ect the tuning. Let's address this

by modifying the cost function to R2 + C
P

i � i and the constraint to

jx i � aj2 � R2 + � i for all i .

� i are the positive weights associated with each data point. The higher it is,

the less that particular data point a�ects the tuning of R. Also, C provides

a trade-o� between volume and classi�cation errors.

Combining this with the method of Lagrange Multipliers, we are left with

an optimization problem to solve:

L (R; a; � i ; 
 i ; � i ) = R2+ C
X

i

� i �
X

i

� i (R2+ � i � (jx i j2� 2a � x i + jaj2)) �
X

i


 i � i

where � i and 
 i are non-negative Lagrange multipliers.L should be max-

imized with respect to� i and 
 i , but minimized with respect to R, a, and

� i .
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Advantages of OCSVM:

1. Anomaly Detection Focus:One-Class SVM is renowned for its e�ectiveness

in anomaly detection. In the context of cybersecurity, our primary concern

is to identify malicious payloads among a sea of legitimate data. One-

Class SVM excels at this task by building a boundary that encapsulates

the malicious payloads while classifying outliers as normal (non-malicious)

payloads.Non-Linearity Handling: Cyber threats are increasingly sophis-

ticated and can exhibit complex, non-linear patterns. One-Class SVM is

well-suited to handle non-linear data distributions through the use of kernel

functions, which allows it to capture intricate relationships within the fea-

ture space. This 
exibility is crucial for identifying evolving and intricate

XSS attack patterns.

2. Non-Linearity Handling: Cyber threats are increasingly sophisticated and

can exhibit complex, non-linear patterns. One-Class SVM is well-suited to

handle non-linear data distributions through the use of kernel functions,

which allows it to capture intricate relationships within the feature space.

This 
exibility is crucial for identifying evolving and intricate XSS attack

patterns.

3. Robustness to Imbalanced Data:In cybersecurity, it's common to encounter

imbalanced datasets where the number of malicious samples is signi�cantly

smaller than benign ones. One-Class SVM is robust to imbalanced data,

making it ideal for this scenario. It does not require a perfectly balanced

dataset and can still e�ectively distinguish malicious samples from the be-

nign ones.

4. Scalability: Depending on the scale of internet tra�c and the number of

payloads, scalability can be a signi�cant concern. One-Class SVM is com-
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putationally e�cient and can handle large datasets without a substantial

increase in computational overhead, making it feasible for real-world, high-

tra�c applications.

5. Interpretability and Tunability: One-Class SVM provides interpretable re-

sults, allowing security experts to gain insights into the characteristics that

de�ne malicious payloads.

However, OCSVM also has some limitations:

1. Sensitivity to parameters: The e�ectiveness of OCSVM depends on the

choice of parameters, especially the width of the margin. The choice of

these parameters can be critical and requires careful optimization. Poor

parameter choice can lead to poor model performance.

2. Data representation: The e�ectiveness of OCSVM can be a�ected by data

representation. If the data are not represented properly, the model may

fail to correctly identify outliers. It is important to carefully examine the

data preparation stage to ensure that the model can take advantage of the

available information.

3. Limited to the positive class: Because the OCSVM focuses only on the

positive class, it may have di�culty identifying outliers that are very similar

to the positive class. If the outliers are structurally similar to the positive

class examples, the model may fail to detect them accurately.

Conclusions:

In summary, the One-Class Support Vector Machine is a powerful and versatile

machine learning technique for detecting outliers in datasets dominated by a sin-

gle class. However, it is important to understand the basic principles, experiment

with the parameters, and prepare the data accurately for optimal performance.
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Figure 2.2: One-Class SVM.

2.2.3 Decision-Making with Dual One-Class SVM

In this research, two One-Class SVM models have been introduced, capable of

working simultaneously if the user chooses to activate this mode. However, a

critical question arises when these two models provide con
icting results for the

same input payload. How should we make an informed decision about which result

to trust? To address this challenge, this study presents two distinct evaluation

modalities when utilizing both models together:

1. Aggressive assessment of attacks

ˆ In this evaluation mode, if at least one of the two models detects

the payload as a potential XSS attack, the payload is classi�ed as

malicious without further inspection. While this approach may lead
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to an increase in false positives, it signi�cantly reduces the occurrence

of false negatives.

ˆ Each model provides a prediction, with +1 indicating an inlier and

-1 indicating an outlier. Thus, when at least one of the two models

predicts +1, the payload is classi�ed as malicious.

2. Weighted assessment of attacks

ˆ In this evaluation modality, the decision is based on trusting the model

for which the feature representation of the payload is farthest from the

model's boundaries.

ˆ The degree to which the feature representation of the payload is distant

from the model's boundaries re
ects the robustness of the evaluation.

Consequently, this approach prioritizes the more robust evaluation.

2.3 Technical Implementation

2.3.1 Research Subjects and Technological Components

As we have to treat the technical part of the elaborate, it's fundamental to un-

derlying what are the subject of this work:

ˆ HyperText Transfer Protocol (HTTP)

ˆ Mithril WAAP

ˆ Cross-Site Scripting (XSS)
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HyperText Transfer Protocol:

The internet, in its present form, relies heavily on the Hypertext Transfer

Protocol (HTTP) for the transfer of information between clients and servers.

HTTP operates on a client-server model, where clients (e.g., browsers) send

requests to servers hosting web resources. Servers respond with requested

content or error messages. The statelessness of HTTP is maintained through

this model.

HTTP requests consist of a request line, headers, and an optional message

body. The request line contains the HTTP method, the requested resource

(Uniform Resource Identi�er or URI), and the protocol version.

Example request:

Figure 2.3: HTTP request example.

HTTP responses comprise a response line, headers, and an optional message

body. The response line includes the protocol version, a status code, and a

reason phrase.

HTTP headers provide detailed information about the request, including the

client's capabilities, preferences, and the context of the request. These headers

are crucial for servers to understand how to handle the request and respond

appropriately.

While not all HTTP requests include a message body, some methods, such as
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POST and PUT, do. The message body carries data to be sent to the server for

processing. The format and content of the message body depend on the speci�c

request and the server's expectations.

Example response:

Figure 2.4: HTTP response example.

HTTP responses, like requests, consist of a response line, headers, and an

optional message body. The response line serves as a crucial identi�er for the

server's reply and provides essential information for the client to interpret the

server's response.

The response linecomprises three primary components:

HTTP Version (this �eld indicates the version of the HTTP protocol being used

by the server to generate the response), Status Code (the status code is a

numeric three-digit code that succinctly communicates the result of the server's

attempt to satisfy the client's request), Reason Phrase (the reason phrase is a

human-readable description that provides further context for the status code.

While it aids human understanding, it is not used by clients to determine the

meaning of the status code).

HTTP response headerssupply detailed information about the server's reply,

including the content type, cache directives, and server information. These
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headers are crucial for clients to understand how to process the server's

response.

While not all HTTP responses include amessage body, it is commonly present,

especially in responses to GET requests or API calls. The message body carries

the resource or data sent by the server in response to the client's request. The

format and content of the message body depend on the speci�c response and

the server's con�guration.

Mithril WAAP:

A Web Application and API Protection (WAAP) solution is an advanced

security system designed to safeguard web applications and APIs against a wide

range of threats and vulnerabilities. It provides comprehensive protection for

both web applications and the APIs that support them. Here's a technical

explanation of how a WAAP solution functions:

1. Ingress and Egress Tra�c Inspection:

ˆ A WAAP solution sits between clients (e.g., web browsers or mobile

apps) and web applications or APIs, serving as a security gateway.

ˆ It inspects all incoming tra�c (requests) and outgoing responses to

and from web applications and APIs.

2. Request and Response Analysis:

ˆ When a client initiates an HTTP request or API call, the WAAP

solution performs a detailed analysis of the request.

ˆ It examines various attributes, including HTTP methods, headers,

parameters, payload content, and API endpoint URLs.

ˆ The WAAP uses a combination of signature-based detection,
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behavioral analysis, and machine learning to identify potential

threats, attacks, and anomalies.

3. Security Policies and Rule Enforcement:

ˆ WAAP solutions come with a set of prede�ned security policies and

rules that are designed to recognize known attack patterns and

malicious behavior.

ˆ Each incoming request and outgoing response is compared against

these policies and rules to detect and prevent attacks and

vulnerabilities.

ˆ Actions taken by the WAAP include blocking malicious requests,

modifying responses to remove sensitive information, and logging

incidents for further analysis.

4. Protection Against Various Threats:

ˆ WAAP solutions o�er protection against a wide array of security

threats and attacks, including:

{ SQL Injection: Detecting and mitigating attempts to inject

malicious SQL queries into input �elds.

{ Cross-Site Scripting (XSS): Preventing the injection of malicious

scripts into web pages.

{ API Abuse: Detecting and blocking excessive or unauthorized

API calls.

{ Brute Force Attacks: Throttling or blocking repeated login

attempts.

{ Data Ex�ltration: Identifying and preventing unauthorized data

leaks from APIs.
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{ Rate Limiting: Managing the rate of incoming requests to

prevent abuse and DDoS attacks.

5. Learning and Adaptation:

ˆ Many WAAP solutions have machine learning and adaptive

capabilities to learn the normal behavior of web applications and

APIs.

ˆ They adapt their security policies and rules based on the evolving

threat landscape and the changing patterns of application usage.

6. Logging and Reporting:

ˆ WAAP solutions maintain detailed logs of all tra�c, security

incidents, and actions taken.

ˆ Security administrators can analyze these logs to gain insights into

security posture, investigate incidents, and generate reports for

compliance purposes.

7. Customization:

ˆ WAAP solutions o�er customization options to tailor security policies

and rules to the speci�c requirements of web applications and APIs.

ˆ Security professionals can �ne-tune con�gurations to balance security

and functionality.

8. API Security:

ˆ WAAP solutions speci�cally address API security concerns, ensuring

that APIs are protected against threats such as injection attacks,

excessive API calls, and data leakage.
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Cross-Site Scripting:

Let's go back to the concepts previously illustrated and see in greater detail

what we are dealing with.

Cross-Site Scripting (XSS) is a prominent and highly exploitable web

application security 
aw. It arises due to inadequate input validation and

output encoding practices within web applications. Attackers leverage this

vulnerability to inject malicious scripts into web pages, causing the scripts to

execute in the browsers of unsuspecting users. The consequences of XSS attacks

can be devastating, ranging from data leakage to complete compromise of user

accounts. There are three primary types of XSS vulnerabilities:

1. Stored XSS (Persistent XSS):In Stored XSS, the malicious script is

permanently stored on the target server and executed whenever a user

retrieves the compromised content.

Example:

Consider a social media platform where users can create pro�les with

descriptions that are displayed to other users. An attacker creates a

pro�le with the following bio:

< s c r i p t >

// Ma l i c ious s c r i p t to s t e a l user cook ies

var maliciousURL = ' h t tps : / / a t t acke r . com/ s t e a l . php? cook ie ='

+ document . cook ie ;

var img = new Image ( ) ;

img . s r c = maliciousURL ;

< /s c r i p t >

2. Re
ected XSS: In Re
ected XSS, the malicious script is embedded in a

URL or form input, and it's re
ected o� the web server onto the victim's
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browser. It's typically a one-time attack.

Example:

Suppose a vulnerable search feature on a website re
ects the search query

in the page content without proper validation:

User's input:

">< s c r i p t > a l e r t ("XSS"); < / s c r i p t >< "

The resulting URL might look like this:

" h t tps : / / example . com/ search ? query=%22%3E%3Cscr ip t%3Ea le r t

(%22XSS%22)%3B%3C%2Fsc r i p t%3E%3C%22"

When a victim clicks on this URL, the script is executed in their browser,

triggering an alert with "XSS."

3. DOM-Based XSS:They occurs when the client-side scripts in a web page

manipulate the Document Object Model (DOM) in an insecure way,

leading to the execution of malicious code.

Example:

Imagine a web application that retrieves a user's name from the URL and

displays it on the page:

URL:

" h t tps : / / example . com/page ?name=

< s c r i p t > mal ic iousFunc t ion ()< / s c r i p t > "

The JavaScript code on the page might include:

// Ex t rac ts the name parameter

var name = window . l o c a t i o n . search . subs t r i ng ( 6 ) ;

document . getElementById (" welcome= message " ) . innerHTML =

"Welcome , " + name + " ! " ;
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In this case, if the URL is manipulated as shown, the script

"< s c r i p t > mal ic iousFunct ion ()< / s c r i p t > "

is executed in the user's browser, leading to a security breach.

The technological components utilized in this study can be summarized as

follows:

1. Python:

Python served as the cornerstone for the entire implementation process,

spanning from payload pre-processing to the �nal testing phase.

Renowned for its versatility and robust capabilities, Python proved to be

an ideal choice for addressing multifaceted challenges in the realms of

machine learning and cybersecurity. Within the scope of this project,

Python was harnessed to construct a One-Class Support Vector Machine

(OneClass-SVM) classi�er, designed speci�cally for discerning XSS

(Cross-Site Scripting) attacks from benign requests.

2. Machine Learning (ML) Libraries:

To lay the foundation for model development, training, and evaluation,

the Scikit-learn library was employed. This open-source machine learning

library for Python furnishes an extensive arsenal of tools tailored for data

analysis and modeling. Scikit-learn stands out due to several pivotal

attributes that �rmly establish its role as a linchpin in the machine

learning landscape. It o�ers an intuitive interface accommodating both

novices and experts, facilitating streamlined model development. The

library encompasses a wide array of machine learning algorithms spanning

classi�cation, regression, clustering, dimensionality reduction, and more,

e�ectively serving as a versatile toolkit. Additionally, Scikit-learn
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simpli�es essential data preprocessing tasks such as normalization and

feature scaling, thereby enhancing model performance. Furthermore, it

excels in model selection and evaluation, providing indispensable tools for

cross-validation, hyperparameter tuning, and metric assessment.

To ingest and manipulate data from the input ".csv" �le representing the

dataset, the Pandas library was harnessed. Pandas, an open-source

Python library, assumes a pivotal role in data manipulation and analysis

due to its core functionalities. Notably, Pandas introduces dataframes,

akin to tabular structures, facilitating the intuitive representation and

manipulation of structured data. The library excels in data import and

export, fostering seamless interaction with diverse data sources. It proves

invaluable in data cleaning and transformation endeavors, o�ering tools

for addressing missing values, duplicates, and outliers with consummate

ease. Furthermore, Pandas showcases remarkable prowess in data selection

and indexing, enabling the e�ortless extraction of speci�c data subsets. Its

potent grouping and aggregation functions bolster data summarization

and analysis. For time series data, Pandas emerges as the preferred choice,

armed with specialized features for time-related analyses. While not a

dedicated data visualization library, Pandas integrates seamlessly with

data visualization tools, thereby imbuing analyses with a layer of visual

insight.

For visualizing evaluation results, the Matplotlib library was employed.

Matplotlib, an open-source data visualization library for Python, bestows

a comprehensive suite of features for crafting compelling visualizations.

Its chief strength resides in generating publication-ready plots,

encompassing various types such as line plots, scatter plots, bar charts,

histograms, and more, all with a strong emphasis on customization. With
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support for multiple output formats, Matplotlib adapts e�ortlessly to

diverse presentation and publication requirements. Operating through an

object-oriented interface, it promotes modular and reusable code

development while granting precise control over plot elements.

Matplotlib's versatility extends to both 2D and 3D plots, granting users

the power to visualize data in three dimensions. The library seamlessly

integrates with other Python tools like NumPy and Pandas, thus

simplifying the transformation of data into graphical representations.

3. Elasticsearch:

The XSS attack payloads are securely archived within the Elasticsearch

database, which serves as the vital repository for the core data

underpinning our research e�orts. Elasticsearch, an open-source

distributed search and analytics engine developed by Elastic, serves as a

foundational component of this study. Originally conceived for full-text

search, Elasticsearch has evolved into a potent platform for data

exploration and analysis. It is celebrated for its exceptional speed,

scalability, and user-friendliness, rendering it a popular choice across a

broad spectrum of applications, ranging from website search engines to log

and event data analysis.

At its core, Elasticsearch constitutes an extraordinary search and analytics

engine that o�ers a plethora of features and capabilities. Its standout

feature lies in its lightning-fast full-text search capabilities across extensive

datasets. The distributed architecture designed by Elastic ensures

seamless scalability, promoting high availability and fault tolerance.

Real-time data ingestion is yet another hallmark feature, making it the

ideal choice for applications necessitating up-to-the-minute insights.

Elasticsearch's 
exible JSON-based document structure accommodates
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