
Machine learning model for bot and applications

detection on Web Application Firewall data

Simone Palladino

August 2023

Contents

1 Abstract 3

2 Acknowledgments 3

3 Introduction 4
3.1 General context . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

3.1.1 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.2 Specific context . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3.2.1 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.3 State of the art . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.4 Proposed solution . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.5 Innovative content . . . . . . . . . . . . . . . . . . . . . . . . . . 10

4 The development of the model 12
4.1 Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4.1.1 Problem definition . . . . . . . . . . . . . . . . . . . . . . 12
4.1.2 Formalization . . . . . . . . . . . . . . . . . . . . . . . . . 12
4.1.3 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.2.1 Technologies and Subjects involved . . . . . . . . . . . . . 16
4.2.2 The Concept of Session . . . . . . . . . . . . . . . . . . . 21
4.2.3 Features Selection and Design . . . . . . . . . . . . . . . . 22
4.2.4 Features Analysis . . . . . . . . . . . . . . . . . . . . . . . 32

4.3 Machine Learning Model . . . . . . . . . . . . . . . . . . . . . . . 50
4.3.1 Introduction to machine learning . . . . . . . . . . . . . . 50
4.3.2 Brief review of algorithms . . . . . . . . . . . . . . . . . . 52
4.3.3 Chosen algorithm . . . . . . . . . . . . . . . . . . . . . . . 54

5 Results 60
5.1 Cluster Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
5.2 Result Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

1



6 Conclusions and future developments 66

7 References 67

2



1 Abstract

The research question addressed by this thesis is whether the task of recognizing
offline bots is (1) characterized by inherent differences between the behavior of
legitimate users and that of automated software agents and (2) learnable by
standard machine learning methods, such that unsupervised analysis is able to
reveal meaningful and interesting information [4].

In this thesis, a new approach for addressing the problem of Web robot de-
tection from Web-server access logs is introduced, in particular HTTP requests
collected by a WAF. More specifically, a concept of session is first defined for
grouping HTTP requests, then it is studied which features can characterize bots
and which ones can characterize humans, and finally clustering alghoritms are
applied to disgtinguish programmatic from non-programmatic sessions.

The theoretical result of this research is a success and opens the door for a
concrete implementation of a solution to fight bots in online traffic.

2 Acknowledgments

I would first like to thank my thesis advisor Prof. Luca Oneto of the Computer
Engineering programme at University of Genoa, for his immense availability,
for his valuable lectures necessary for the accomplishment of this work, and for
getting me in touch with the company where I developed my thesis, aizoOn
Technology Consulting.

I would also like to thank the experts from aizoOn who were involved in this
research project, my referent Federica Bisio and my colleagues Ivan Russo and
Daniele Ucci, for their passionate participation and useful inputs.

I would also like to acknowledge my friend, colleague and mentor Dr. Paolo
Coletti, Researcher in Computational Finance at the Faculty of Economics and
Management of Free University of Bolzano, as the second reader of this thesis,
and I am grateful to him for his valuable comments on this work.

I take this opportunity to express gratitude to my friend and colleague
Roberto Gnisci, for sharing this entire college career with me from the first
day to the last one, for being a great study partner and for always being a loyal
friend.

Finally, I must express my very profound gratitude to my parents for provid-
ing me with unfailing support and continuous encouragement throughout my
years of study .

Thank you.

3



3 Introduction

3.1 General context

In the current era of wide proliferation of the Internet and mobile technologies,
many of our daily activities are moving to virtual platforms. Social life, commu-
nication, entertainment, shopping or searching for any kind of information are
just a few examples. Contextually, web analytics and online marketing tools are
increasingly being used to gain a competitive advantage in this newly outlined
market. The rapid development of these technologies has caused the increase in
web bot traffic, thanks to which advanced web-based applications can provide
users with up-to-date, accurate and personalized services.

A Web bot, also called an Internet robot, Web agent, or intelligent agent, is
a software tool that performs specific tasks on the Web, usually autonomously,
following the hyperlink structure according to a specific algorithm. Many bots
are benign and useful, such as search engine crawlers, shopping bots to gather
information for product search engines or price comparators, link checkers to
help website administrators detect broken and blacklisted links, or feed fetchers
that transport website content to mobile applications. However, the activities of
some bots raise concerns about the ethics and privacy of users, such as in the case
of email address collectors, spambots, or bots that steal content. In addition,
some bots are undoubtedly malicious: hacking bots used to steal sensitive data
or inject malware, bots to generate click fraud in pay-per-click advertisements,
or malware used for distributed denial of service (DDoS) attacks are just a few
examples.

A significant portion of overall web traffic is generated by bots, many of
which have clearly malicious objectives. Malicious bots tend to obscure their
true identities by assuming user agent strings typical of legitimate web browsers
and ignoring the robots.txt file that contains the website access rules for bots.
This makes it difficult to identify bot traffic on web servers. In practice, rela-
tively simple bot detection techniques are used, such as comparing an IP address
or user agent string with a blacklist of known bot data or investigating a few
keywords indicative of a bot in the user agent string. A request stream can also
be tested for some atypical statistical characteristics, such as extremely short
inter-arrival times, but these tests are often ineffective because bots tend to
mimic human behavior[1].

As a result, there is a growing need to distinguish robots from humans when
analyzing HTTP requests coming to web servers of interest, for a variety of
reasons:

• Typically, analysis of a web server’s HTTP interactions provides a wealth
of information about the functionality, usability, design, and popularity
of hosted sites and content. The basic premise is that HTTP interaction
patterns reflect the choices end-users (customers) make when navigating
within a Web site. In addition, reliable quantitative information that cap-
tures end-users’ browsing choices is the basis for pay-per-click advertising,

4



one of the most popular and successful Internet business models. Ac-
cording to company reports [7], pay-per-click advertising generates 80%
of Google’s revenues and is adopted by other search engine giants. How-
ever, there is growing concern that this business model could be seriously
damaged by click fraud, which involves, among other things, unwanted
or malicious repetitive retrieval of advertising links by web robots that
do not originate from known or stable IP addresses or Internet domains.
Click fraud involves higher rates paid by advertisers for essentially useless
HTTP requests and has raised concerns about the sustainability of the
search engine business model, leading Google’s CFO to declare that ”click
fraud is the ’greatest threat’ to the Internet economy!”.

• Automatic identification of malicious web robots based on their behavior,
rather than their (possibly transient) IP addresses, may also be useful in
an effort to address the problem of referral spam, which affects search
engine ranking results.

• There is also concern that crawler-induced traffic accounts for a large
portion of total HTTP traffic and that crawler activity may cause degraded
performance of busy Web servers and network infrastructure, as well as
increased error rates in Web caches. These concerns are supported by the
few published articles that have investigated the behavior of web robots
by analyzing the impact of known crawlers on different web servers [2].

• Finally, there is the need to distinguish between crawler and human traffic
in cases where it is important to protect information of a temporary or
sensitive nature, posted on intranet websites, from crawlers accidentally
discovering such information and posting it via search engine databases.

To address the concerns mentioned above, it is necessary to be able to isolate
the behavior of robots from that of the general population of web users (hu-
mans). Distinguishing web robots from humans will help marketing companies
obtain more accurate statistics about the impact of online advertising and the
interaction that real customers have with e-commerce sites. It will also help web
administrators estimate the real side effects of crawler activity on web server
performance. Finally, it can provide a basis for the development of intelligent
access control systems that will protect websites from aggressive or unwanted
crawlers[3].

3.1.1 Problems

The detection of web agents (bots) on the web presents several problems and
challenges:

• Camouflage of Bots: Bots often try to camouflage themselves as human
users by using fake or modified user agents. This makes it difficult to detect
their true identity and distinguish between bots and real users.

5



• Dynamic IPs: Some bots use dynamic IP addresses or proxy server
networks to hide their origin. This complicates detection, as IP addresses
cannot simply be blacklisted.

• False Positives and False Negatives: Detection techniques can some-
times generate false positives (misclassifying human users as bots) or false
negatives (not correctly detecting some bots). Finding a balance between
accuracy and coverage is a challenge.

• Evolution of Bots: Bots can be updated or modified to circumvent ex-
isting detection techniques. This race between bot innovation and coun-
termeasure development is an ongoing problem.

• Benign Bots: Not all bots are harmful. Some perform useful tasks such
as search engine indexing. Distinguishing between useful and harmful bots
is a challenge.

• Complexity of Behavior: Bots can mimic human behavior in increas-
ingly sophisticated ways, such as generating random requests or following
complex navigation paths.

• Privacy and Ethics: Disclosure techniques could violate users’ privacy
because they involve monitoring their online activities. It is important to
strike a balance between bot disclosure and respecting privacy.

• Real-Time Detection: Identifying bots in real time during active ses-
sions can be complex, as it requires quick decisions based on a limited
number of observations.

• Traffic Variation: Web traffic varies over time, both in terms of volume
and behavior patterns. Detection techniques must be able to adapt to
these variations.

• Resources and Performance: Implementing detection techniques can
require significant resources and could affect web server performance.

In summary, web bot detection is a complex challenge that requires the use of
advanced approaches and strategies to address the multiple dimensions of this
problem.

3.2 Specific context

The problem domain are logs containing HTTP requests captured by a WAAP
called Mithril, a product developed by the company aizoOn Technology Con-
sulting.

aizoOn Technology Consulting is a global technology consulting company
focused on innovation, which is structured in market areasincluding defense,
energy, finance, transportation, industrial goods, and cybersecurity.

6



Mithril
Mithril is a web application security service that offers several solutions to

protect websites from threats and attacks. Some of its main features include:

• Mithril Overview Dashboard: Provides an overview of website data
in a single view, including blocked attacks and alerts. It also shows the
total number of HTTP requests handled, blocked or served from the cache
in a customizable time interval.

• Blocked Requests View: Allows you to view all blocked requests and
alert events in a single view. You can filter and analyze each individ-
ual HTTP request, broken down by geolocation, device, browser type, or
operating system type.

• Data enrichment: Enriches each request or alert with additional in-
formation about geolocation, device, session ID, device type, operating
system type, and other details. It can correlate events and information
such as users logging in from different geographical locations or with the
same session ID.

• Mithril Solutions: Offers several cloud-based solutions, including web
application firewall (WAF) deployment, DDoS attack protection, and API
security.

• Caching and Always Online: Keeps the website always online and
provides content to users even when the website is down. Uses caching to
keep content available to users.

• DDoS Mitigation and Protection: Protects the website from DDoS
attacks, keeping the website safe and available to users.

• Virtual Patching: Identifies and resolves vulnerabilities in the website
and web application by patching without changing the source code.

The goal of this thesis is to develop an offline machine learning model capable of
distinguishing programmatic traffic (bots) from non-programmatic traffic (hu-
mans) by only analyzing HTTP requests. The thesis aims to demonstrate the
satisfiability of the goal, ignoring real time performance constraints.

3.2.1 Problems

Developing a machine learning model to distinguish programmatic from non-
programmatic traffic using only a dataset of HTTP request logs presents several
challenges and problems:

• Data labeling: Obtaining a properly labeled dataset can be difficult
and require detailed analysis of HTTP request logs to distinguish between
programmatic and nonprogrammatic traffic.

7



• Pattern variability: Programmatic traffic patterns can vary widely in
terms of behavior and patterns, making it difficult to identify a single
distinctive pattern.

• Noise in the dataset: HTTP request logs may contain noisy or irrelevant
data that could adversely affect the model’s ability to learn correctly.

• Relevant features: Identifying relevant features or variables in the dataset
to discriminate between programmatic and non-programmatic traffic may
require extensive analysis and domain expertise.

• Changing concept: The concept of programmatic traffic may evolve
over time with new technologies and approaches, making an adaptable
model necessary.

• Business desires: Criteria for distinguishing programmatic from non-
programmatic traffic may vary according to business objectives, making a
balance between accuracy and fault tolerance important.

• Generalization: The ability of the model to generalize correctly to new
data could be challenged by the variety and dynamism of Web traffic.

• Overfitting: A model might overfit noise or overly specific training data,
compromising its ability to generalize over new data.

• Privacy: Analysis of HTTP requests could involve sensitive or personal
data, leading to concerns about privacy and regulatory compliance.

3.3 State of the art

In recent years, advances in bot technologies to perform deception in popular
Web-based services have prompted research into specialized methods for bot de-
tection, targeted at specific applications. This problem affects most Web sites
and has direct economic implications for an online business. Many companies
rely on commercial cybersecurity services or have studied their own counter-
measures. However, academic literature can only account for methods that
have been publicly disclosed. In contrast, many of these are trade secrets or use
proprietary data, which does not contribute to the state of the art as it does
not allow for replication, experimentation, third-party validation or further de-
velopment.

In this paper, the focus will be on known methods described in academic
sources. Some studies investigate bot behaviors at the network level [8]. On
the other hand, many techniques are based on analyzing statistical differences
in the behavioral patterns of bots and humans regarding application-dependent
features. For example, [9] aims to detect fraud-prone apps in Google Play search
ranking by analyzing a set of relational, behavioral, and linguistic features. It
proposes click fraud detection in pay-per-click advertising by identifying du-
plicate clicks. Features derived from the analysis of user profiles and product

8



reviews are used to detect spammer groups and manipulation attacks in online
recommendation systems.

A large number of bot detection approaches use supervised classification
techniques to detect spambots, blog bots, shopping bots, and click fraud. Ma-
chine learning techniques have also proven effective in identifying fraud in on-
line social networks [10]. These approaches, developed for specific Web services,
rely on application-specific high-level features, which limits their application to
only certain types of Web sites. Challenges include relevant feature selection,
data collection and labeling, adaptation to new traffic patterns, and efficient
implementation on different Web sites. Approaches based on the HTTP char-
acteristics of traffic observed on Web servers without interfering with the Web
site or server software have proven effective in discriminating between bots and
legitimate users [11]. The difference in traffic patterns of bots and humans has
been widely investigated, typically based on data recorded in Web server access
logs.

However, all supervised learning approaches share a common disadvantage
related to the difficulty of preparing a reliable training dataset, particularly
in assigning accurate class labels to disguised robot sessions [4]. This disad-
vantage does not affect unsupervised learning, which consists of learning the
intrinsic properties of data from unlabeled training samples.

HTTP feature-based approaches employ traffic pattern analysis or machine
learning techniques. They often aim at offline bot detection, i.e., categorization
of historical HTTP data over entire sessions completed on the server. Traffic
pattern-based approaches use statistical properties of HTTP request charac-
teristics, such as types of resources downloaded or inter-arrival times, to build
probabilistic session models [3].

A limited fraction of bots can be identified by syntactic analysis of HTTP
fields extracted from log entries, i.e., by examining robots.txt file access in
sessions, inspecting specific keywords in user agent strings, or comparing IP
addresses with a blacklist. This simple approach allows detection of only well-
known and cooperative bots while remaining blind to new or evolving ones.
Because of these limitations, more sophisticated approaches for offline bot de-
tection have been proposed, including traffic pattern analysis and learning an-
alytics.

Traffic pattern analysis looks for known differences in the interaction style
between bots and legitimate users. Analytic learning, on the other hand, does
not look for known patterns, but uses statistical or machine learning techniques
to learn rules from browsing data and incorporate them into a probabilistic
or formal machine learning model. Examples of probabilistic models include
Bayesian approaches [12], as well as Markov models based on patterns of re-
quest arrival and types of resources requested.

Approaches exploiting machine learning techniques differ in the selection of
relevant session features, the techniques used, and the methodology of session

9



extraction and experimental classifier evaluation. Supervised session classifiers
have been implemented with decision trees [13], neural networks [14], logistic
regression [15], support vector machines [14] and ensemble methods [15], among
others.

Some work has been developed on session clustering to isolate bots. How-
ever, some of the unsupervised methods such as DBSCAN (Density-Based Spa-
tial Clustering of Applications with Noise) have left some sessions unclustered
and treated as noise [16]. Approaches such as SOM (Self-Organizing Map) and
Modified ART2 (Modified Adaptive Resonance Theory 2) were used to gain a
better understanding of the types and distribution of Web clients [17].

The challenge of detecting bots in real time has been addressed by only a few
studies [1]. Approaches developed to detect camouflaged bots require adding
traps or trap files to the site. Approaches that use HTTP-level characteristics of
observed traffic on Web servers without interfering with the site or server soft-
ware have been shown to be efficient discriminators between bots and legitimate
users [6].

3.4 Proposed solution

The proposed solution aims to develop an unsupervised machine learning model,
since the data domain on which it must operate are unlabeled HTTP request
logs.
The approach involved:

• Designing the session concept and implementing an algorithm capable of
grouping HTTP requests into these sessions.

• Identify meaningful features to distinguish human traffic from program-
matic traffic.

• Processing the dataset to extract the designed features.

• Study the extracted features to identify any correlations.

• Choose and implement an unsupervised machine learning algorithm.

• Verify and optimize the result.

The result is a K-Means clustering model that, from a session, classifies the
session according to the cluster it belongs to, then labels the cluster according
to the dominant user agents in the cluster.

3.5 Innovative content

The innovative content of this work is a model capable of classifying bot traffic on
a GENERAL domain. The state of the art offers solutions for specific domains,

10



for example, a model for a specific e-commerce [4], or a model for a specific
social-network, or a model for a specific game. In the case studied, however,
the domain is a dataset composed of HTTP requests collected by a firewall
that defends a wide range of different websites, including e-commerce, banking,
entertainment sites and so on. The model therefore has to recognize more
general and less heuristically definable patterns, having to recognize different
bots with different goals and behaviors from each other.

In addition, the model is of the unsupervised type, as the dataset contains
no labels. This approach is advantageous in that much more data collected by
the firewall can be exploited, as there is no need to manually insert labels to
the collected data.

Last, but not least, the model does not overweight the user-agent as a feature,
unlike other solutions present in the state of the art making it vulnerable to bots
with obscured or masked user-agents, but it exploits the user-agent to label the
defined clusters, instead giving weight to 20 other more meaningful features
extracted from the sessions.

11



4 The development of the model

4.1 Problem

4.1.1 Problem definition

The environment considered are traffic logs gathered by a WAAF, so all traffic
is based on the HTTP protocol, defined at the application layer of the ISO-
OSI stack. Interaction via the HTTP protocol occurs between Web clients and
Web servers. A single client-server transaction involves a request, issued by
the client, and a response sent by the server. The request indicates one of the
request methods, the most common of which are GET, POST, and HEAD, a
header, containing meta-information including a user agent string to identify the
client, a URI (Unified Resource Identifier) and a body. The response consists of
a status line describing the result of the transaction by means of a status code
and a verbal description, a header and a body containing the requested data.

Web clients are typically Internet browsers or mobile apps used by human
users, but they can also be automated agents. In the case of a browser, inter-
action with the server occurs by downloading consecutive Web pages, typically
linked together. For each new page, the browser generates a sequence of HTTP
requests, first for the page description file and then for embedded objects, such
as images. In the case of intelligent agents, however, a sequence of requests is
not limited by the structure of the Web site, since the bots tend to traverse the
site according to a given strategy, e.g., in depth or breadth, and can request
only selected types of server resources.

HTTP is a stateless protocol that defines no permanent server-client con-
nection. When it is necessary to maintain a session, such as during a customer’s
visit to a Web store, other mechanisms, such as cookies, are used. However,
unlike HTTP transaction data, such additional information is not necessarily
standardized among Web servers, nor easy to obtain by Web site administrators.
Therefore, given only a sequence of HTTP requests observed on the server, a
common practice is to define a session.

The goal is to design a method that is as universal as possible, one that
would not require analysis of Web site semantics, changes in Web site structure,
or a special data collection process on the server or client side. [1]

4.1.2 Formalization

Given an unlabeled dataset of HTTP request logs, the problem at hand is to de-
velop an unsupervised machine learning model that can accurately distinguish
between human traffic and programmatic (bot) traffic analyzing HTTP requests.

The following steps are involved in addressing this problem:

• Session Definition and Grouping Algorithm: Define and implement
a session concept that groups a sequence of HTTP requests into sessions.
Develop an algorithm capable of accurately identifying and grouping these

12



requests based on common attributes such as IP addresses, user agent
strings, and time intervals between requests.

• Feature Identification: Identify relevant and meaningful features that
can effectively differentiate between human and programmatic traffic within
the context of these sessions. These features may include characteristics
such as request frequency, types of resources accessed, request methods
(GET, POST, HEAD), and other relevant parameters.

• Feature Extraction: Process the unlabeled dataset of HTTP request
logs to extract the designed features from each session. This step involves
transforming the raw log data into a format suitable for analysis and
machine learning.

• Feature Analysis: Conduct an in-depth study of the extracted features
to identify potential correlations and patterns that distinguish human traf-
fic from bot traffic. This analysis aims to uncover inherent differences in
behavior that can be exploited for accurate classification.

• Unsupervised Machine Learning Algorithm: Choose and implement
an unsupervised machine learning algorithm to cluster sessions based on
the identified features. The algorithm’s objective is to group similar ses-
sions together while maintaining a clear distinction between human and
programmatic traffic.

• Model Verification and Optimization: Evaluate the performance of
the clustering model by assessing its ability to correctly classify sessions
into clusters. Fine-tune the model parameters and clustering configuration
to optimize its accuracy in distinguishing between human and bot traffic.

4.1.3 Dataset

The dataset is composed by traffic logs collected by a WAAP (a sort of firewall),
with the following header:
All the following examples are fictitious, they do not contain real data for privacy
reasons

Log Entry Details

• Timestamp - The log’s timestamp

– for example Mar 24, 2023 @ 17:07:41.000

• index - Elastic search index

– for example .ds-waap-logs-2023.03.23-000344

• customer - The name of the waap’s customer

13



– for example McDonald

• Geoip.city name - The name of the client’s city (ip)

– for example Rome

• Geoip.continent name - The name of the client’s continent (ip)

– for example Europe

• Geoip.country code2 - The country code of the client (ip)

– for example IT

• Geoip.country name - The country name of the client (ip)

– for example Italy

• Geoip.region iso code - The iso code of the client(ip)

– for example IT-RM

• Geoip.location - The coordinates of the client (ip)

– for example POINT(12.6843 56.1188)

• Nodename - The elasticsearch’s node

– for example ip-10-0-4-154.eu-central-1.compute.internal

• Real client ip - The client’s ip

– for example 134.30.168.24

• service-id - ID of a customer service

– for example 54fd94af-c2b7-492a-bd6d-617f36bfd0b2

Transaction Details

• transaction.producer.components - Components of the transaction
producer

– for example OWASP CRS/3.4.0-dev

• transaction.producer.secrules engine - Status of the security rules
engine

– for example Enabled

• transaction.request.body - Request body content

– for example (empty)

14



• transaction.request.headers json - Request headers in JSON format,

– for example {”user-agent”: ”Mozilla/5.0 (Windows NT 10.0; Win64;
x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/111.0.0.0
Safari/537.36”, ”X-Forwarded-Proto”: ”https”, ”sec-fetch-site”: ”same-
site”, ”access-control-request-headers”: ”authorization,storecode”, ”ac-
cept”: ”/”, ”access-control-request-method”: ”GET”, ”origin”: ”.cus-
tomername.it”, ”sec-fetch-mode”: ”cors”, ”X-Amzn-Trace-Id”: ”Root=1-
641dcacd-65d99e7800477fab69c2742e”, ”Host”: ”.customername.it”,
”X-Forwarded-Port”: ”443”, ”referer”: ”.customername.it/”, ”X-
Forwarded-For”: ”44.243.254.234”, ”sec-fetch-dest”: ”empty”, ”accept-
encoding”: ”gzip, deflate, br”, ”accept-language”: ”it-IT,it;q=0.9,en-
US;q=0.8,en;q=0.7”}

• transaction.request.headers map.content-lenght - Content length
of the request headers map

– for example 593

• transaction.request.headers map.host - Host in the request headers

– for example host.cloud.customer.it

• transaction.request.headers map.origin - Origin in the request head-
ers

– for example -

• transaction.request.headers map.referer - Referer in the request head-
ers map

– for example -

• transaction.request.headers map.user-agent - User agent in the re-
quest headers

– for example Amazon-Route53-Health-Check-Service (ref 293dce71-
3b67-498f-bd2c-4564e152a418; report amzn.to/1vsLAci)

• transaction.request.headers map.x-forwarded-for - X-Forwarded-For
in the request headers map

– for example 44.253.252.234

• transaction.request.headers map.x-forwarded-port - X-Forwarded-
Port in the request headers map

– for example 443

• transaction.request.headers map.x-forwarded-proto - X-Forwarded-
Proto in the request headers map

15



– for example https

• transaction.request.http version - HTTP version of the request

– for example 1.1

• transaction.request.method - HTTP method of the request

– for example GET

• transaction.request.uri - URI of the request

– for example /v1/craftsmen?storeCode=001

• transaction.request.uri path - Path of the URI in the request

– for example /v1/craftsmen

• transaction.response.body - Response body content

– for example (empty)

• transaction.reponse.headers json - Response headers in JSON format

– for example {”X-waap-Webapp-Group”: ”pub”, ”X-waap-Upstream-
Latency”: ”5”, ”ETag”: ”W/2̈-vyGp6PvFi4sFtPoIWeDReyIC8”̈, ”Con-
nection”: ”keep-alive”, ”X-Powered-By”: ”Express”, ”Content-Type”:
”application/json; charset=utf-8”, ”Content-Length”: ”2”, ”Date”:
”Fri, 24 Mar 2023 16:07:41 GMT”, ”X-waap-Proxy-Latency”: ”4”,
”Server”: ””}

4.2 Methodology

4.2.1 Technologies and Subjects involved

This thesis is an application of machine learning to computer security. In order
to develop the model and identify significant features, an in-depth study of
cybersecurity was required, particularly the HTTP protocol, WAF Mithril,
and the typical behavior of various types of existing bots.

The code to analyze and work with the data was written entirely in Python,
through the following libraries: Scikit-learn for machine learning, Pandas and
NumPy for handling data and Seaborn for plots.

Hypertext Transfer Protocol
The Hypertext Transfer Protocol (HTTP) is the foundation of communication

between clients and servers on the Internet. It is an application-layer protocol
that defines rules and conventions for the transfer of hypertext resources, such
as Web pages, images, and files, between a client, usually a Web browser, and
a Web server.

HTTP-based interactions follow a request-response model: the client sends
an HTTP request to the server specifying the desired action (e.g., obtaining a

16



Web page) and the server responds by providing the requested resource or a
status message. HTTP requests and responses are composed of a series of fields
and headers that contain important information, such as content type, data
length, and other metainformation.

A relevant aspect of the HTTP protocol is that it is stateless, which means
that each request is processed separately, with no memory of previous requests.
This has led to the widespread use of mechanisms such as cookies and sessions
to maintain state and consistency between successive requests.

The HTTP protocol consists of a number of fields and headers, each with a
specific description and functionality:

• Method: This field specifies the action to be performed on the server’s
resources. Common methods include GET (get a resource), POST (send
data to the server), PUT (update a resource), and DELETE (remove a
resource).

• URI (Uniform Resource Identifier): The URI identifies the requested
resource. It can be an absolute or relative path within the domain.

• HTTP Version: Indicates the version of the HTTP protocol used in the
request or response, e.g., HTTP/1.1.

• Headers: Headers contain additional information about the request or
response, such as content type, date and time, and other meta information.

• Message Body: This part carries the actual data of the request or re-
sponse, such as form data to be sent to the server or content to be returned
to the client.

• Status Code: This field is included in the server response and indicates
the result of the request. For example, status code 200 indicates that the
request completed successfully, while status code 404 indicates that the
requested resource was not found.

• Cookies: This field contains data sent by the server to the client and
retransmitted by the client in subsequent requests. Cookies are often
used to maintain state between requests and for user tracking.

• User-Agent: This header indicates the client that is making the request,
usually a Web browser. It can be used to tailor content to the character-
istics of the client.

• Host: This header specifies the domain of the requested URL.

• Content-Type: This field indicates the type of content in the message
body, such as text, image, or binary data.

17



WAF
A Web Application Firewall (WAF) is a critical component of information

security that plays a crucial role in protecting Web applications from a variety of
threats and attacks. The capabilities of a WAF are designed to identify, prevent,
and mitigate risks and vulnerabilities that could compromise the security and
integrity of Web applications. Some of the main functionalities of a WAF:

• Request Filtering: A WAF carefully analyzes incoming HTTP requests
and applies filters to identify and block suspicious or malicious requests.
This helps prevent attacks such as SQL injection, cross-site scripting (XSS)
and other common vulnerabilities.

• Data Validation: A WAF can perform in-depth validation of user-
submitted data, such as form input fields. This feature prevents malicious
or invalid data entry that could exploit vulnerabilities in the application.

• Protection of Sessions: WAFs can monitor and protect user sessions
to prevent identity usurpation, session fixation attack, and other session-
related threats.

• Content Filtering: A WAF can perform content filtering based on cer-
tain criteria, allowing it to block or limit access to unauthorized or mali-
cious content.

• Threat Detection: Using behavioral analysis techniques and attack sig-
natures, a WAF can proactively detect suspicious activity or abnormal
traffic patterns that could indicate an attack in progress.

• Protection from Forgeries: WAFs can detect and prevent cross-site
request forgery (CSRF) attacks, which attempt to perform unauthorized
actions on behalf of the user.

• Mitigation of Distributed Attacks: A WAF can protect web appli-
cations from Distributed Denial of Service (DDoS) attacks by identifying
and blocking malicious traffic that seeks to overload the application.

• Monitoring and Reporting: WAFs provide robust monitoring and re-
port generation capabilities, enabling administrators to keep track of de-
tected threats, security events, and user activity.

• Adaptability: A WAF can be configured to fit the specific needs of the
application, allowing administrators to define custom rules and security
policies.

• Updates and Patches: WAF vendors provide regular updates and patches
to address new threats and vulnerabilities, ensuring that the application
remains protected over time.

18



Different types of Bots
In the online environment, there are several types of bots, each with distinct

purposes, behaviors, and functionalities. These bots can be used for a variety
of purposes, both legitimate and malicious. Below, we will explore some of the
main types of bots along with their descriptions:

• Web Crawlers:
Purpose: Web crawlers, also known as spiders or indexing bots, are used
by search engines to explore the web and index pages. They can also be
used to collect data or monitor changes on web pages.

Behavior : Web crawlers automatically visit web pages, follow links, and
collect information for creating search indexes.

Functionality : Collecting data, indexing, monitoring changes.

• Chatbots:
Purpose: Chatbots are artificial intelligence programs designed to inter-
act with users through chats or messages. They can be used to answer
questions, provide assistance, process orders and more.

Behavior : Chatbots interpret users’ messages and respond with predeter-
mined or real-time generated responses.

Functionality : Interacting with users, assisting customers, processing or-
ders, providing information.

• Social Media Bots:
Purpose: Social media bots can be used for a variety of purposes, such as
increasing followers, automating publications, sharing content, or spread-
ing spam messages.

Behavior : Social media bots can automatically publish content, share
posts, follow or interact with other users.

Functionality : Automating social media activities, increasing engagement,
disseminating content.

• Malicious Bots:
Purpose: Malicious bots are designed to perform malicious activities, such
as spreading malware, performing DDoS attacks, stealing sensitive data,
or spreading spam.

Behavior : Malicious bots can exploit vulnerabilities to infiltrate, dis-
tribute malware, perform large-scale attacks, or exploit stolen data.

Functionality : DDoS attacks, spreading malware, data theft, spam.

• Price Comparison Bots:
Purpose: Price comparison bots, or price comparison crawlers, are used
to monitor the prices of products on different websites and compare them.

19



Behavior : These bots visit e-commerce websites, collect data on product
prices and compare them to provide users with comparison information.

Functionality : Monitoring prices, comparing products, assisting shoppers.

• Content Generators:
Purpose: Content generators automatically produce text, articles, reviews
or other written content. They can be used to create content quickly or
to fool ranking algorithms.

Behavior : These bots generate text using natural language algorithms or
word substitution algorithms.

Functionality : Automated content creation, filling in blanks.

• Web Scrapers:
Purpose: Web scrapers are automated tools or scripts that are responsible
for extracting data from web pages in a systematic and structured manner.
Their main purpose is to provide users with an efficient and accurate
way to collect information from websites in order to support analysis,
monitoring or other purposes.

Behavior : The behavior of web scrapers is based on a set of well-defined
actions. These tools navigate through web pages, downloading the content
of those pages by extracting specific elements or desired data. This data
can include text, images, links, tables and more. Once extracted, the data
can be processed, analyzed or archived for later use.

Functionality : Web scrapers can be developed using different program-
ming languages and libraries. For example, languages such as Python can
be used in conjunction with specialized libraries such as Beautiful Soup
or Scrapy. These tools have a wide range of capabilities that allow them
to extract data from various online sources.

The applications of web scrapers are diverse and span various sectors.
They can be used to collect product prices from e-commerce sites for
comparison purposes, monitor social media activity, track updates and
news from news sites, extract data from government websites for statisti-
cal analysis, and more. In essence, web scrapers offer a powerful means of
capturing meaningful data from the Internet in an automated and struc-
tured way, expanding opportunities for online information analysis and
use.

ElasticSearch
The logs collected by Mitrhil, thus the dataset for this thesis, are saved on

an innovative database called ElasticSearch. Elasticsearch is a powerful search
and analysis technology based on high-performance distributed data. Funda-
mentally, it is a search engine and analytics system that allows large volumes of
data to be explored quickly and efficiently. Its distributed architecture allows
it to scale horizontally across multiple nodes, enabling efficient data and query
management.

20



At the heart of Elasticsearch is the indexing engine that stores, organizes,
and analyzes data in a way that makes it easily searchable. The technology lever-
ages the inverted index technique, which allows terms and words to be quickly
associated with their relative positions in documents. This enables lightning-fast
searches on even large texts.

Elasticsearch supports a wide range of data types, from strings to num-
bers, from geospatial data to complex JSON structures. It also offers power-
ful full-text search capabilities, complex queries, aggregations, and analysis of
structured and unstructured data.

One of the distinguishing features of Elasticsearch is its RESTful API that
simplifies interaction with the system. Developers can create, manage and query
indexes, perform searches and obtain results through standard HTTP requests.
This makes Elasticsearch extremely versatile and easy to integrate into a variety
of applications.

To query the Elasticsearch database from Python, the official Elasticsearch-
Py library provided by Elastic was used. This library greatly simplifies the
interaction with an Elasticsearch cluster and offers a wide range of features for
querying and analyzing data.

4.2.2 The Concept of Session

Web client interactions with the Web site can be represented as sessions. A
Web session is defined as a sequence of HTTP requests from a client during
a single visit. The HTTP protocol is stateless, and session information at the
Web application level is not stored in access logs, so session identification at
this level remains uncertain and heuristics must be used [3].

Typically, session identification is performed by first grouping all HTTP re-
quests that originate from the same IP address and corresponding user agent
(user-agent), and then using a timeout-based approach to split this grouping
into several subgroups, such that the time interval between two consecutive
subgroups is longer than a predefined threshold. A drawback of this method is
that it is difficult to determine an appropriate threshold value because different
user agents exhibit different browsing behaviors. Usually, a 30-minute period is
adopted as a threshold in Web mining studies[5].

However, by performing experiments and finding support from research num-
ber [3], I noticed that using the 30-minute threshold as the sole criterion for
splitting the click stream into sessions was not sufficient. I observed the ex-
tracted sessions using the 30-minute value and noticed that, for longer sessions
(in terms of the number of requests), the click streams belonging to a semanti-
cally continuous browsing activity were being separated into distinct sessions.

To address this problem, I introduce a procedure that adjusts the threshold
value dynamically, based on the number of session requests so far. Specifically,
for sessions with less than rmax requests so far, I set the threshold value to t1.
When the number of requests reaches rmax, I increase the threshold value to

21



t2 > t1. In other words, I allow a longer time interval between consecutive re-
quests for larger sessions. By experimenting with various threshold values and
studying the resulting sessions, I determined that setting rmax to 100, t1 to 30
minutes and t2 to 60 minutes gave the best results[3].

Based on the HTTP request fields available in the logs, additional session
characteristics can be determined, such as total number of requests, session du-
ration, average time per page, and many others.

4.2.3 Features Selection and Design

User Agent
Each time a network request is made, the User Agent is sent from the Browser

to a Web server, so as to give more information about the system being used. It
is thus a kind of ”identification label” for the browser. The User Agent is a field
in the HTTP protocol through which more or less in-depth information can be
given about the device making the network request. This is done through the
HTTP Header, and this information can be used, for example, to send certain
elements only to those browsers that can actually process them.

To extract the user agent feature, I adopt the bag-of words expression ,
which is a general conversion process of text information[6]. The ”Bag of Words”
(BoW) representation is a common technique in natural language processing
that finds application in extracting features from ”user agents.” Briefly, this
technique involves analyzing and decomposing collected ”user agents,” which
represent the identities of clients accessing resources on the Internet, in order
to extract useful information.

It is important to perform a pre-processing step on these ”user agents,”
which may include such operations as removing special characters, normalizing
upper/lower case letters, and breaking text into individual words or ”tokens.”

Once pre-processed, the ”tokens” extracted from the ”user agents” are used
to create a unique vocabulary representing all possible words or ”tokens” in the
collected data. This vocabulary will serve as the basis for creating feature vec-
tors for each ”user agent.” Each vector will contain information on the frequency
with which each word or ”token” in the vocabulary appears in the corresponding
”user agent”.

In summary, the BoW technique allows ”user agents” to be represented
in numerical form, transforming them into feature vectors that can be used
for analysis and recognition. This representation provides an effective way to
extract important information from ”user agents” and can be used in various
contexts, such as client behavior analysis or access pattern recognition.

22



Initial State:
Mozilla/5.0 (Macintosh; Intel Mac OS X ) AppleWebKit/605.1.15 (KHTML,
like Gecko) Version/12.1 Safari/605.1.15
Transformed:
mozilla / macintosh / intel / mac / os / x / applewebkit / khtml / like / gecko
/ version / safari

Total Number Of Requests
The total number of requests in a session is a critically important feature

for machine learning models aimed at detecting bot-generated traffic. This
parameter provides a direct measure of overall activity during the interaction
of a user or automated agent with a Web application. In cases of bot traffic, it
is often characterized by a large number of requests made in a short period of
time, as bots are programmed to perform actions in rapid succession in order to
exploit or harm the application’s target. Consequently, the quantity of requests
may prove to be a crucial indicator for identifying such fraudulent or suspicious
activities.

A large number of requests in a single session might suggest the use of
scraping strategies, in which bots collect data in a massive way from websites.
In addition, the rapid accumulation of requests may be indicative of attacks
such as distributed denial of service (DDoS), in which numerous bots attempt to
overload a server with an intensive flow of traffic. Since real user behavior tends
to have a more balanced distribution of requests over time, the total number of
requests in a session can therefore serve as a key metric for identifying anomalies
and inauthentic traffic patterns.

Total Volume
The volume of data sent to the client is an important feature for machine

learning models dedicated to detecting bot-generated traffic. This parameter
measures the amount of data transmitted from the Web server to the client
(e.g., a browser) during a session. In cases of bot activity, there is often a high
volume of data transmitted out of proportion to the normal behavior of real
users.

Bots, designed to perform automated tasks, can generate excessive requests
that cause a large amount of data to be sent to the client. This can include the
massive collection of content from web pages, images, or resources, which can
be a sign of malicious activity such as scraping or data theft. In addition, DDoS
attacks may involve transferring an exceptionally large amount of data in order
to overload the target client or server.

Detecting the abnormal increase in the volume of transmitted data can there-
fore provide a significant indication of inauthentic or suspicious activity. By in-
tegrating this feature into machine learning models, algorithms can be created
that can identify bot traffic patterns based on the excessive amount of data sent
to the client.

23



Total Time
The total session duration provides valuable insight into the total duration

of a user’s or agent’s interaction with a Web site or Web application during a
single session.

In the context of legitimate user sessions, total session duration tends to
follow a specific range of values, reflecting typical user engagement patterns.
However, in the case of bot traffic, anomalies can occur that lead to extremely
short or unusually long session durations. Bots may generate rapid, automated
interactions that result in very short sessions, or they may engage in prolonged
interactions for malicious purposes, such as data scraping or other unauthorized
activities.

The inclusion of total session duration as a feature in machine learning mod-
els makes it possible to capture and distinguish between sessions of normal users
and bot-generated sessions. Deviations from the expected session duration in-
terval can serve as a strong indicator of the presence of bots. Short, quick
sessions may suggest automated interactions, while excessively long sessions
may indicate aggressive scraping or other suspicious behavior.

Average Time Between Requests
The average time between requests provides a valuable indication of the fre-

quency and pace at which requests are made during a Web session.
In the context of legitimate users’ sessions, it is common to observe a certain

temporal pattern between requests. Human users tend to browse more organ-
ically and follow consistent paths, which is reflected in a regular average time
between requests. In contrast, bots often generate requests in an automated
and continuous manner, resulting in significantly shorter average time between
requests.

Using ’Average Time Between Requests’ as a feature allows us to capture
such variations in the temporal behavior of requests. Abnormally short intervals
may suggest the presence of bot activity, such as trying to overload a server or
performing repetitive actions too quickly.

Standard Deviation Time Between Requests
The standard deviation time between requests offers an additional perspective

on the temporal pattern of requests within a Web session.
Human users tend to exhibit some variability in the time between requests, as

their browsing behavior can be influenced by multiple factors, such as reading
content, deciding which page to visit next, and interacting with interactive
elements. This variability reflects the dynamic and unpredictable nature of
human actions during online browsing.

On the other hand, bots often generate requests automatically and uniformly,
resulting in times between requests with a lower standard deviation. Using
the standard deviation time between requests as a feature allows the machine
learning model to detect these differences in time variations between requests.

The presence of an abnormally low standard deviation could indicate bot

24



activities, such as automating certain actions or attempting to exploit vulnera-
bilities through fast and regular requests.

Rate of Night Requests
The percentage of requests made between 2:00 a.m. and 6:00 a.m. (local

time) is a valuable feature for machine learning models dedicated to bot traf-
fic detection. This metric provides an important temporal perspective on the
activities of users and potential bots on the Web.

Human users tend to have distinct activity patterns during different times
of the day. Typically, the nighttime hours, between 2:00 a.m. and 6:00 a.m.,
are characterized by a significant reduction in human online activity. During
this period, most people are busy sleeping or inactive, which is reflected in the
reduced amount of web requests made. As a result, the percentage of requests
during these hours tends to be relatively low.

To calculate this feature, a conversion of the Timestamp field to local time
was made, referring to the Geoip.region iso code field.

Repeated
The reoccurence rate of file requests provides insight into file access behavior

by users and potential bots within a web session.
Human users tend to follow predictable browsing patterns during a web

session. Typically, a person accesses a variety of files related to a particular
activity or interest. This results in a high recurrence of requests for certain files
within a session. For example, a user visiting an e-commerce site might access
product images, descriptions, and detail pages multiple times during a single
session.

On the other hand, bots may exhibit different behavior. Depending on their
purpose, bots might request the same file repeatedly to exploit a vulnerability
or conduct an attack. This anomalous behavior will be reflected in a high
recurrence rate of file requests within a session.

Analysis of the reoccurence rate of file requests allows the machine learn-
ing model to identify significant inequalities in the frequency of file requests.
The presence of an unusually high recurrence rate could suggest bot behavior,
providing the model with an important indicator of suspicious activity.

Rate of Errors
In the context of HTTP requests, status codes indicate the outcome of the in-

teraction between the client and the server. Codes with value ≥ 400 correspond
to error or failure situations, such as ’404 Not Found’ or ’500 Internal Server
Error’. Human users generally generate only a small percentage of requests
with such high status codes, since normal interactions often involve successful
requests. In contrast, bots can cause a significant increase in the percentage of
requests with status codes ≥ 400 due to their aggressive or malicious behavior.

The analysis of the percentage of requests with status codes ≥ 400 allows the
machine learning model to detect situations where the session is characterized

25



by a disproportionate number of invalid or failed requests. This could indicate
the actions of malicious bots attempting to exploit vulnerabilities or overload
the server with malicious requests. The increase in such requests may be a
significant sign of suspicious activity.

Inclusion of this feature in the model makes it possible to effectively monitor
and capture anomalous patterns of requests with status code ≥ 400, providing
a strong clue about the presence of malicious bot traffic.

Rate of GET methods
The GET method is one of the main HTTP methods used to request resources

from a web server. Bots often differ from legitimate users in their use of HTTP
methods. Bots can generate a significant proportion of GET requests, as they
often try to extract information from web pages or perform scanning and data
collection tasks. In contrast, human users can generate a variety of HTTP meth-
ods, including POST, PUT, DELETE, etc., reflecting more dynamic interaction
with web applications.

Rate of POST methods
The POST method is widely used to send data to the web server, such as when

filling out forms or sending sensitive information. However, bots often behave
differently from legitimate users in using HTTP methods. POST requests are
commonly adopted by bots to submit large amounts of data, perform spam
activities, or attempt brute force attacks. Human users, in contrast, tend to use
the POST method in a more balanced and circumstantial way.

Rate of HEAD methods
The HEAD method is mainly used to obtain information about the header

of a resource without performing the actual data transfer. Although it is a
legitimate and valuable tool used by web developers to obtain quick details about
the resource, bots can exploit this method to perform suspicious or malicious
activities. For example, bots can use the HEADmethod to explore the content of
a website without downloading the entire page content, thus avoiding traditional
content-based detection.

Rate of OTHER methods
The percentage of requests with methods other than the usual ones, such

as GET, POST, and HEAD, is an important feature to consider in a machine
learning model aimed at detecting bot traffic. While standard methods are com-
monly used by legitimate users to interact with web resources, bots might use
less common or exotic methods to perform malicious or invasive activities. The
presence of a high number of requests using ”unconventional” methods could
suggest the activity of bots attempting to probe or exploit system vulnerabili-
ties.

26



Width
The ”Width” attribute is a key feature in the analysis of interactions within

a browsing session. This attribute reflects the horizontal extent of the paths
through which the user moves through the website. In other words, it measures
how many distinct branches develop from the root node of the representative
graph based on the URI names of the requested pages. When the amplitude
is low, it means that requests are mainly focused on a single path, suggesting
a more targeted or specific interaction with the site. In contrast, a higher
amplitude reflects a more diverse navigation through different subsections or
pages of the site.

For example, if a session contains requests for the following pages, { /A,
/A/B, /A/B/C }, then its width will be 1.Basically, the width attribute mea-
sures the number of leaf nodes generated in the graph while the depth attribute
measures the maximum depth of the tree(s) within the graph. Therefore, a
session that contains requests for { /A, /A/B, /C, /D } will have a width of 3.

Depth
The attribute of ”Depth” is equally significant in the evaluation of browsing

sessions. This attribute reflects the vertical extent of the paths through which
the user moves within the website. Depth measures how many hierarchical levels
are reached during navigation, indicating how deeply the user explores different
sections of the site. In the context of a graph based on the URIs of the requested
pages, depth represents the maximum level of a tree generated by the graph. A
greater depth may indicate a more detailed, engaging and complete navigation,
typical of human users. On the other hand, a shallower depth might suggest
more superficial or sequential behavior, often characteristic of automated tasks
or bots.

For example, if a session contains requests for the following pages, { /A,
/A/B, /A/B/C }, then its depth will be 3. Basically, the width attribute mea-
sures the number of leaf nodes generated in the graph while the depth attribute
measures the maximum depth of the tree(s) within the graph. Therefore, a
session that contains requests for { /A, /A/B, /C, /D } will have a depth of 2.

Rate of requests with Null Referrer
The referrer, or ”referrer header,” is an element of HTTP requests that pro-

vides information about the web page from which the request originated. In
the case where the referrer is null, it indicates that the request did not origi-
nate from a previous web page. This situation is particularly relevant in the
context of bot traffic identification, as bots often tend to execute direct requests
to servers without following a typical page-to-page navigation path as human
users do. Consequently, a significantly high percentage of requests with null re-
ferrers could suggest the presence of suspicious or automated activity, providing
a valuable signal to the machine learning model in its bot identification process.

27



Max Sustained Click Rate
A ”click” is configured as a request for an HTML file, and this feature identifies

the maximum number of requests for HTML files made within a specific time
window within a session. This approach is based on the intuition that there is
an upper limit to the maximum number of ”clicks” a human can make within
a defined time interval t, which is influenced by human factors.

To capture this feature, initially the value of time window t is established.
Then, a sliding window of length t within a given session is used in order to
measure the maximum rate of ”clicks” incurred in that session. For example,
suppose we set t at 12 seconds and note that the maximum number of ”clicks”
within a time window of 12 seconds in that session is 36. We can conclude
that the maximum sustained ”click” rate is 3 ”clicks” per second. This result
indicates a behavior more like that of a robot than that of a human being. The
sliding window approach starts from the first HTML-type request of a session
and records the maximum number of ”clicks” within each window, gradually
moving the window one HTML request at a time until the last request of the
session is reached. The maximum ”clicks” per window provides the value of this
feature. [3]

Robot.txt
The ”robots.txt” file is a crucial resource used by search engines and other

automated agents to understand the restrictions and permissions imposed by a
website on their indexing and crawling behaviors. Therefore, monitoring access
to this file can reveal valuable information regarding query behavior.

In the context of bot traffic detection, analysis of access to the ”robots.txt”
file reveals details about the client’s willingness to comply with or circumvent
website guidelines. Human agents tend to access the ”robots.txt” file in a limited
way, since the main purpose of this file is to communicate with search engines.
On the other hand, bots may frequently access this file to obtain information
about the structure and restrictions of the site before taking further actions.
Therefore, analysis of access to the ”robots.txt” file may reveal typical behavior
patterns of bots, thus contributing to the accurate identification of automated
activities.

Rate of Images requestes
Analysis of image requests within a Web site login session can reveal dis-

tinctive behaviors that are often associated with automated agents rather than
human users.

Image requests are an essential part of a human user’s browsing experience,
as they contribute to the visual appearance and interaction with the site. How-
ever, bots may have a different pattern when it comes to image requests. For
example, a bot might request a large number of images in a short period of time
to collect data or perform automated tasks, while a human user would have a
more varied and gradual behavior.

Measuring the ”rate of image requests” allows the machine learning model

28



to capture this behavioral discrepancy. If a session has an unusually high rate
of image requests relative to the total number of requests, it could be indicative
of automated activities. Also, a consistent and uniform rate of image requests
might suggest behavior more consistent with an automated agent.

The feature was extracted from the response header in the content-type entry

Rate of CSS elements requestes
Analysis of CSS style sheet requests within a Web site login session can re-

veal behavioral patterns that are often distinctive of automated versus human
activities.

CSS style sheets are essential to the presentation and visual appearance of
a web page, influencing formatting, layout, and graphical appearance. How-
ever, bots tend to behave differently than human users when it comes to CSS
requests. For example, a bot might request a large number of style sheets in
rapid succession in order to collect data or perform automated tasks, while a
human user often follows a more varied and gradual pattern.

Measuring the ”CSS request rate” allows the machine learning model to
capture these behavioral differences. A high or excessively constant rate of
style sheet requests might suggest the presence of an automated agent. On the
other hand, a more natural distribution of CSS requests might reflect legitimate
human behavior.

The feature was extracted from the response header in the content-type entry

Rate of JavaScript elements requestes
JavaScript scripts are critical to the interactivity and dynamism of Web pages,

enabling advanced features such as animations, data validations, and user inter-
actions. However, bots often behave differently than human users when it comes
to JavaScript script requests. For example, bots may request a large number of
scripts sequentially to collect data or perform automated actions or none at all,
while human users tend to follow more varied and natural patterns.

The feature was extracted from the response header in the content-type entry

Rate of PDF elements requestes
PDF files are often used for sharing and viewing documents, reports, and

online information resources. However, bots’ interest in PDF files may differ
considerably from human users. Bots may require numerous PDF files in se-
quence, for example, for content dragging or data extraction. This automated
behavior can be distinguished from that of human users, who tend to request
PDF files in a more random and variable manner.

The introduction of the ”PDF request rate” feature into the machine learning
model provides a powerful metric to detect such differences. A high or constant
rate of PDF file requests may indicate the presence of bot activity, while a more
diverse distribution reflects legitimate human behavior.

29



Twenty-two summary features descriptive of whole sessions were extracted
from HTTP data, listed in the following table:

30



Feature Name Feature Type Feature Description
userAgent String User agent representing the

client
noRequests int Total number of requests (ses-

sion length)
volume int Total volume of data sent to

the client [KB]
totalTime int Session duration expressed in

seconds [s]
avgTime int Average time between requests

[s]
stDevTime int Standard deviation of time be-

tween requests
Night double % of requests made between

2am to 6am (local time)
Repeated double Reoccurence rate of file re-

quests
Error double % of requests with code status

≥ 400
GET double % of requests made with GET

method
POST double % of requests made with POST

method
HEAD double % of requests made with HEAD

method
OTHER double % of requests made with other

methods
Width int Width of the traversal (in the

URL space)
Depth int Depth of the traversal (in the

URL space)
nullReferrer double % of requests with a null refer-

rer
MaxSustainedClickRate double Maximum number of requests

in a given window
Robot.txt bool True if robot.txt is accessed,

False otherwise
Image double % of requests requesting images

elements
cssRequests double % of requests requesting css el-

ements
jsRequests double % of requests requesting

JavaScript elements
pdfRequests double % of requests requesting PDFs

Table 1: Features

31



4.2.4 Features Analysis

The plot of feature pairs is shown in the following section to study their signifi-
cance and possible correlation. The plots refer to an experiment made taking a
subdataset consisting of two and a half hours of network traffic, totaling about
8000 sessions, where each point in space represents a session.

Number of Requests and Volume
The distribution of points shows two very definite behaviors: the first is that

as the volume of data transferred increases, the total number of requests remains
limited to very small numbers (range 1 - 100), and reciprocally, as the number
of requests increases, the volume remains limited in the vicinity of zero. The
second, on the other hand, denotes a linear and directly proportional trend
between the two features.

Figure 1: Number of Requests and Volume

32



Number of Requests and Total Time
As the number of requests increases, the total session time increases (as we

might expect), but below 1000 requests, we instead have an almost even distri-
bution on the axis of total time.

Figure 2: Number of Requests and Total Time

33



Number of Requests and Average Time
The insight this graph gives us is that as the number of requests increases, the

average time between requests is close to zero, thus indicating extremely fast
browsing, whereas as the average time increases we have a number of requests
contained below 100.

Figure 3: Number of Requests and Average Time

34



Number of Requests and Standard Deviation Time
The behavior of this graph is very similar to that of the ratio of number of

requests to average time, but in a more relaxed manner. The tendency is to
have a small number of requests as the standard deviation increases, and instead
a zero standard deviation as the number of requests increases.

Figure 4: Number of Requests and Standard Deviation Time

35



Number of Requests and Null Referrer
The behavior of this graph is different from the previous ones, in that as the

number of requests increases we can both have either a 0% rate of null referrers
or a 100% rate of null referrers. Instead with a number of requests around 100,
we can have a more even distribution on the null referrer axis

Figure 5: Number of Requests and Null Referrer

36



Number of Requests and Reoccurrence
The significance of this graph is that sessions with a number of requests

greater than 500 tend to have a recurrence rate between 80% and 100%,while
sessions with a lower total number of requests have may have any recurrence
rate

Figure 6: Number of Requests and Reoccurrence

37



Number of Requests and Images
The significance of this graph is that sessions with a high number of requests

have an image request rate of either zero or around 30%, whereas sessions with
a number of requests around 100, have an image request rate between 80% and
0%.

Figure 7: Number of Requests and Images

38



Number of Requests and GET
The insight that this graph gives us is that when a session has more than

1000 requests it tends to have a near 100% rate of GET method

Figure 8: Number of Requests and GET

39



Number of Requests and POST
This graph denotes a complementary behavior of the POST method compared

to the GET method, resulting in an almost mirrored graph compared to the
previous one. This is a predictable behavior since GET and POST methods are
two complementary methods and include almost all of the commonly used.

Figure 9: Number of Requests and POST

40



Number of Requests and Width
This graph shows us that as the number of requests increases, we have two

peaks regarding the ”width” of the paths explored, the first in the range 1-7, the
second in the range 19-23. Another significant finding is that very high widths
correspond to very low numbers of requests.

Figure 10: Number of Requests and Width

41



Volume vs Errors
The insight this graph gives us is that as volume increases we have a very

small error rate, in the range 10% - 0% . In addition, all sessions with an error
rate greater than 30% have a volume close to zero.

Figure 11: Volume vs Errors

42



Volume vs GET
This graph shows us that for volumes above 10GB, the rate of GET methods

is close to 100% except for a few outliers.

Figure 12: Volume vs GET

43



Volume vs POST
Again, this graph confirms for us the markedly complementary behavior of

the POST method versus the GET method, as studied in the previous graphs.

Figure 13: Volume vs POST

44



TotalTime vs Average Time
This graph has a more scattered behavior than the previous ones. There are

two very interesting behaviors, the first is that as the total time increases we
have a very narrow time average between one request and the next, which means
a rapid succession of requests for very long sessions. The second remarkable
behavior is that below 2000 seconds there is a linear and directly proportional
relationship.

Figure 14: TotalTime vs Average Time

45



TotalTime vs Recurrence
This scatterplot indicates to us that for a total time less than 2000 seconds

we have a recurrence rate almost equally distributed between 0% and 100%, but
above 2000 seconds we have a more pronounced density indicating a recurrence
rate greater than 50%, particularly in the range 80% - 100%

Figure 15: TotalTime vs Recurrence

46



Recurrence vs Errors
In the scatterplot regarding the relationship between recurrence rate and er-

ror rate, we have a result that I did not expect: at high recurrence rates we have
a more pronounced distribution around low error rate values, which is counter-
intuitive. But there is still a remarkable significance at error rates of 100%,
where the distribution of points coincides with a high recurrence rate, which is
the behavior I expected in the first instance.

Figure 16: Recurrence vs Errors

47



Recurrence vs Image
The result of this scatterplot shows us that at high recurrence rates, the image

request rate is limited in the 0%-40% range, and as the recurrence rate is lowered
we can find sessions with a much higher image request rate, up to 80%, with
some outliers at 100%.

Figure 17: Recurrence vs Image

48



Errors vs Referrer Null
This scatterplot did not reflect my expectations, I would have expected a

strong relationship between high error rates corresponding to high null referrers
in the sessions, instead this marked relationship was not found

Figure 18: Errors vs Referrer Null

49



4.3 Machine Learning Model

4.3.1 Introduction to machine learning

Machine learning is a subfield of artificial intelligence (AI). The goal of machine
learning generally is to understand the structure of data and fit that data into
models that can be understood and utilized by people.

Although machine learning is a field within computer science, it differs from
traditional computational approaches. In traditional computing, algorithms
are sets of explicitly programmed instructions used by computers to calculate
or problem solve. Machine learning algorithms instead allow for computers
to train on data inputs and use statistical analysis in order to output values
that fall within a specific range. Because of this, machine learning facilitates
computers in building models from sample data in order to automate decision-
making processes based on data inputs.

Any technology user today has benefitted from machine learning. Facial
recognition technology allows social media platforms to help users tag and share
photos of friends. Optical character recognition (OCR) technology converts im-
ages of text into movable type. Recommendation engines, powered by machine
learning, suggest what movies or television shows to watch next based on user
preferences. Self-driving cars that rely on machine learning to navigate may
soon be available to consumers.

In machine learning, tasks are generally classified into broad categories.
These categories are based on how learning is received or how feedback on
the learning is given to the system developed.

Two of the most widely adopted machine learning methods are supervised
learning which trains algorithms based on example input and output data that
is labeled by humans, and unsupervised learning which provides the algorithm
with no labeled data in order to allow it to find structure within its input data.

Supervised Learning In supervised learning, the computer is provided
with example inputs that are labeled with their desired outputs. The purpose
of this method is for the algorithm to be able to “learn” by comparing its
actual output with the “taught” outputs to find errors, and modify the model
accordingly. Supervised learning therefore uses patterns to predict label values
on additional unlabeled data.

A common use case of supervised learning is to use historical data to predict
statistically likely future events. For example it may use historical stock market
information to anticipate upcoming fluctuations, or be employed to filter out
spam emails.

Unsupervised Learning In unsupervised learning, data is unlabeled, so
the learning algorithm is left to find commonalities among its input data. As
unlabeled data are more abundant than labeled data, machine learning methods

50



that facilitate unsupervised learning are particularly valuable.
The goal of unsupervised learning may be as straightforward as discover-

ing hidden patterns within a dataset, but it may also have a goal of feature
learning, which allows the computational machine to automatically discover the
representations that are needed to classify raw data.

Unsupervised learning is commonly used for transactional data. You may
have a large dataset of customers and their purchases, but as a human you will
likely not be able to make sense of what similar attributes can be drawn from
customer profiles and their types of purchases.

Without being told a “correct” answer, unsupervised learning methods can
look at complex data that is more expansive and seemingly unrelated in order
to organize it in potentially meaningful ways. Unsupervised learning is often
used for anomaly detection including for fraudulent credit card purchases, and
recommender systems that recommend what products to buy next.
Clustering Clustering is basically a type of unsupervised learning method. It
is the task of dividing the population or data points into a number of groups
such that data points in the same groups are more similar to other data points in
the same group and dissimilar to the data points in other groups. It is basically
a collection of objects on the basis of similarity and dissimilarity between them.

Clustering is very much important as it determines the intrinsic grouping
among the unlabelled data present. There are no criteria for good clustering.
It depends on the user, and what criteria they may use which satisfy their
need. For instance, we could be interested in finding representatives for homo-
geneous groups (data reduction), finding “natural clusters” and describing their
unknown properties (“natural” data types), in finding useful and suitable group-
ings (“useful” data classes) or in finding unusual data objects (outlier detection).
This algorithm must make some assumptions that constitute the similarity of
points and each assumption make different and equally valid clusters.

Clustering Methods:

• Density-Based Methods: These methods consider the clusters as the dense
region having some similarities and differences from the lower dense region
of the space. These methods have good accuracy and the ability to merge
two clusters. Example DBSCAN (Density-Based Spatial Clustering of
Applications with Noise), OPTICS (Ordering Points to Identify Clustering
Structure), etc.

• Hierarchical Based Methods: The clusters formed in this method form a
tree-type structure based on the hierarchy. New clusters are formed using
the previously formed one. It is divided into two category:

– Agglomerative (bottom-up approach)

– Divisive (top-down approach)

51



4.3.2 Brief review of algorithms

DBSCAN
DBSCAN stands for Density-Based Spatial Clustering of Applications with

Noise. It groups ‘densely grouped’ data points into a single cluster. It can
identify clusters in large spatial datasets by looking at the local density of the
data points. The most exciting feature of DBSCAN clustering is that it is robust
to outliers. It also does not require the number of clusters to be told beforehand,
unlike K-Means, where we have to specify the number of centroids.

DBSCAN requires only two parameters: epsilon and minPoints. Epsilon
is the radius of the circle to be created around each data point to check the
density and minPoints is the minimum number of data points required inside
that circle for that data point to be classified as a Core point.

In higher dimensions the circle becomes hypersphere, epsilon becomes the ra-
dius of that hypersphere, and minPoints is the minimum number of data points
required inside that hypersphere.

DBSCAN creates a circle of epsilon radius around every data point and
classifies them into Core point, Border point, and Noise. A data point is a
Core point if the circle around it contains at least ‘minPoints’ number of points.
If the number of points is less than minPoints, then it is classified as Border
Point, and if there are no other data points around any data point within epsilon
radius, then it treated as Noise.

Figure 19: The above figure shows us a cluster created by DBCAN with min-
Points = 3. Here, we draw a circle of equal radius epsilon around every data
point. These two parameters help in creating spatial clusters.

All the data points with at least 3 points in the circle including itself are
considered as Core points represented by red color. All the data points with
less than 3 but greater than 1 point in the circle including itself are considered
as Border points. They are represented by yellow color. Finally, data points
with no point other than itself present inside the circle are considered as Noise
represented by the purple color.

For locating data points in space, DBSCAN uses Euclidean distance, al-

52



though other methods can also be used (like great circle distance for geograph-
ical data). It also needs to scan through the entire dataset once, whereas in
other algorithms we have to do it multiple times.

Parameter Selection in DBSCAN Clustering DBSCAN is very sensitive
to the values of epsilon and minPoints. Therefore, it is very important to un-
derstand how to select the values of epsilon and minPoints. A slight variation
in these values can significantly change the results produced by the DBSCAN
algorithm.

The value of minPoints should be at least one greater than the number of
dimensions of the dataset, i.e.,

minPoints >= Dimensions+ 1
It does not make sense to take minPoints as 1 because it will result in each

point being a separate cluster. Therefore, it must be at least 3. Generally, it is
twice the dimensions. But domain knowledge also decides its value.

The value of epsilon can be decided from the K-distance graph. The point
of maximum curvature (elbow) in this graph tells us about the value of epsilon.
If the value of epsilon chosen is too small then a higher number of clusters will
be created, and more data points will be taken as noise. Whereas, if chosen too
big then various small clusters will merge into a big cluster, and we will lose
details.

K-Means
K-means is a centroid-based clustering algorithm, where we calculate the

distance between each data point and a centroid to assign it to a cluster.
The goal is to identify the K number of groups in the dataset.

It is an iterative process of assigning each data point to the groups and
slowly data points get clustered based on similar features. The objective is to
minimize the sum of distances between the data points and the cluster centroid,
to identify the correct group each data point should belong to.

Here, we divide a data space into K clusters and assign a mean value to
each. The data points are placed in the clusters closest to the mean value of
that cluster. There are several distance metrics available that can be used to
calculate the distance.
The algorithm can be broken down into 4-5 steps:

1 Choosing the number of clusters The first step is to define the K
number of clusters in which we will group the data

2 Initializing centroids Centroid is the center of a cluster but initially,
the exact center of data points will be unknown so, we select random data
points and define them as centroids for each cluster

3 Assign data points to the nearest cluster Now that centroids are
initialized, the next step is to assign data points Xn to their closest cluster

53



centroid Ck. In this step, we will first calculate the distance between data
point X and centroid C using Euclidean Distance metric. And then choose
the cluster for data points where the distance between the data point and
the centroid is minimum.

4 Re-initialize centroids We will re-initialize the centroids by calculating
the average of all data points of that cluster.

5 Repeat steps 3 and 4 We will keep repeating steps 3 and 4 until we have
optimal centroids and the assignments of data points to correct clusters
are not changing anymore

Figure 20: K-Means Iterations

4.3.3 Chosen algorithm

In this work, DBSCAN and K-Means clustering algorithms were used and com-
pared. K-Means performances were extremely better than DBSCAN
ones, so in this section the implementation of this algorithm will be analyzed.

The K-Means algorithm was implemented in Python, through the scikit-
learn library. The code takes as input a dataset consisting of rows of ses-
sions and columns of features discussed in previous chapters. All features
are numeric, so they were normalized through the StandardScaler class of
Scikit-learn. In contrast, the user agent, having been saved as a Bag of Word
Expression, was normalized through the CountVectorizer class, again offered
by scikit-learn.

In K-means clustering, elbow method and silhouette analysis techniques
are used to find the number of clusters K in a dataset. The elbow method is
used to find the “elbow” point, where adding additional data samples does not
change cluster membership much. Silhouette score determines whether there are

54



large gaps between each sample and all other samples within the same cluster
or across different clusters.

StandardScaler
StandardScaler is used to resize the distribution of values so that the

mean of the observed values is 0 and the standard deviation is 1. StandardScaler
is an important technique that is mainly performed as a preprocessing step
before many machine learning models, in order to standardize the range of
functionality of the input dataset.

StandardScaler comes into play when the characteristics of the input dataset
differ greatly between their ranges, or simply when they are measured in different
units of measure.

StandardScaler removes the mean and scales the data to the unit vari-
ance. However, outliers have an influence when calculating the empirical mean
and standard deviation, which narrows the range of characteristic values.

These differences in the initial features can cause problems for many machine
learning models. For example, for models based on the calculation of distance,
if one of the features has a wide range of values, the distance will be governed
by that particular characteristic.

The idea behind the StandardScaler is that variables that are measured at
different scales do not contribute equally to the fit of the model and the learning
function of the model and could end up creating a bias.

So, to deal with this potential problem, we need to standardize the data
(µ = 0, σ = 1) that is typically used before we integrate it into the machine
learning model

CountVectorizer
CountVectorizer is a text preprocessing technique commonly used in nat-

ural language processing (NLP) tasks for converting a collection of text docu-
ments into a numerical representation. CountVectorizer operates by tokenizing
the text data and counting the occurrences of each token. It then creates a
matrix where the rows represent the documents, and the columns represent the
tokens. The cell values indicate the frequency of each token in each document.
This matrix is known as the “document-term matrix.”
These are the main advantages:

• Simplicity: CountVectorizer is easy to use and understand. It has specific
parameters and requires minimal configuration to get started with text
preprocessing.

• Speed and Efficiency: CountVectorizer is computationally efficient and
can handle large text datasets with many documents. It utilizes sparse
matrix representations to save memory and processing time, especially
when dealing with high-dimensional data.

• Versatility: CountVectorizer allows for flexible tokenization options, in-
cluding handling n-grams (consecutive sequences of words) and custom

55



token patterns. It also provides opportunities for filtering stop words and
controlling the vocabulary size.

• Interpretable Results: The resulting document-term matrix from Co-
untVectorizer provides interpretable results. Each cell in the matrix rep-
resents the count or frequency of a token in a specific document, allowing
for straightforward analysis and exploration

Elbow Method
The Elbow method is used to find the elbow in the elbow plot. The elbow is

found when the dataset becomes flat or linear after applying the cluster analysis
algorithm. The elbow plot shows the elbow at the point where the number of
clusters starts increasing.

Recall that the basic idea behind partitioning methods, such as k-means
clustering, is to define clusters such that the total intra-cluster variation
[or total within-cluster sum of square (WSS)] is minimized. The total wss
measures the compactness of the clustering, and we want it to be as small
as possible. The elbow method runs k-means clustering (K-Means number of
clusters) on the dataset for a range of values of K In the elbow method, we plot
mean distance and look for the elbow point where the rate of decrease shifts.
For each k, calculate the total within-cluster sum of squares (WSS). This elbow
point can be used to determine K.

Perform K-means clustering with all these different values of K For
each of the K values, we calculate average distances to the centroid across
all data points. Plot these points and find the point where the average distance
from the centroid falls suddenly (“Elbow”). At first, clusters will give a lot
of information (about variance), but at some point, the marginal gain will
drop, giving an angle in the graph. The number of clusters is chosen at this
point, hence the “elbow criterion”. This “elbow” can’t always be unambigu-
ously identified.

In this study, the elbow method was applied to estimate the number of K
clusters between 1 and 50. The algorithm was implemented in Python by it-
erating the K-Means and plotting the obtained inertia values. Inertia is the
sum of squared distances of samples to their closest cluster center. Finally, a
K-number of clusters of 12 was chosen, using the KneeLocator library.

We do not always have clear clustered data. This means that the elbow may
not be clear and sharp, like in our study case

56



Figure 21: Elbow Method

Silhouette Score
Silhouette score is a measure of how similar a data point is within-cluster

(cohesion) compared to other clusters (separation). The Silhouette score
can be easily calculated in Python using the metrics module of the scikit-
learn/sklearn library.

The equation for calculating the silhouette coefficient for a particular data
point:

S(i) =
b(i)− a(i)

max{a(i), b(i)}

• S(i) is the silhouette coefficient of the data point i.

• a(i) is the average distance between i and all the other data points in the
cluster to which i belongs.

• b(i) is the average distance from i to all clusters to which i does not belong.

57



Figure 22: Silhouette Score Variables

We will then calculate the average Silhouette Score for every k with the
formula:

AverageSilhouette = mean{S(i)}

Then plot the graph between Average Silhouette and K.

Points to Remember While Calculating Silhouette Coefficient:

• The value of the silhouette coefficient is between [-1, 1].

• A score of 1 denotes the best, meaning that the data point i is very compact
within the cluster to which it belongs and far away from the other clusters.

• Values near 0 denote overlapping clusters.

• The worst value is -1.

58



Figure 23: Silhouette Coefficient

In this study, the Silhouette Score was applied to estimate the number of
K clusters between 2 and 50. The algorithm was implemented in Python by
iterating the K-Means and plotting the obtained Silhouette Coefficients. Finally,
aK-number of clusters of 12 was chosen, confirming the result obtained with
the Elbow Method.

59



5 Results

5.1 Cluster Analysis

The results obtained from clustering were analyzed by plotting pairs and triples
of features against centroids with Python. To do this, the matplotlib library
was used , iterating over all possible combinations of pairs and triples.

I would have initially expected to see some feature points around the cen-
troids in a very pronounced way, but after analyzing the results, particularly
the sparsity of the points around the centroids, I realized that the algorithm
did not give more importance to some pairs or triples of features than others,
which is a very good behavior.

Below are some plots of the features versus centroids:

Figure 24: Centroids on Average Time vs Number of Requests

Figure 25: Centroids on Average Time vs Total Time

60



Figure 26: Centroids on Depth vs Recurrence

Figure 27: Centroids on Errors vs Average Time

Figure 28: Centroids on Errors vs Number of Requests

61



Figure 29: Centroids on Get vs Errors

Figure 30: Centroids on Get vs Number of Requests

Figure 31: Centroids on Get vs Recurrence

62



Figure 32: Centroids on Get vs Total Time

Figure 33: Centroids on Recurrence vs Number of Requests

Figure 34: Centroids on Standard Deviation vs Total Times

63



Figure 35: Centroids on Number of Requests vs Total time vs Average Volume

Figure 36: Centroids on Number of Requests vs Total time vs Volume

64



5.2 Result Analysis

In order to achieve the goal of this thesis, the result obtained from clustering
was not enough. The next step was to create a heuristic to assign a label
to each of the obtained clusters. This process was done through an algorithm
written in Python with the user agents library.
For each cluster, a binary label (Programmatic or Human) was assigned to
each contained session by analyzing only the user-agent, then assigning to the
cluster the label corresponding to the most frequent label for that cluster, and
then calculating an expected accuracy by taking the most frequent label as a
reference.

Table 2: Cluster Information

Cluster Label No of Bots No of Humans Expected
Accuracy

0 Human 23 1092 97.94%
1 Human 10 1789 99.44%
2 Programmatic 5 0 100.00%
3 Human 28 1904 98.55%
4 Programmatic 148 0 100.00%
5 Programmatic 72 0 100.00%
6 Programmatic 134 0 100.00%
7 Human 3 496 99.40%
8 Programmatic 1016 32 96.95%
9 Programmatic 11 3 78.57%
10 Programmatic 1281 0 100.00%
11 Programmatic 309 0 100.00%

The goal of the thesis is met when in a cluster labelled as ”Program-
matic” we find some sessions labelled as ”Human” (or when the expected accu-
racy is lower than 100%). This means that a session with a human user-agent
had bot behavior and was assigned to a programmatic cluster. In other words,
we uncovered a bot that was masking its user agent.

To make an example, in the previous table we found a total of 35 Bots, 32
belonging to cluster 8 and 3 belonging to cluster 9 respectively.

To verify that the result was reliable, for each of these 35 bots, the user-agent,
service-id and timestamp related to the sessions were reported to aizoOn’s
cybersecurity department in order tomanually check the behavior of those
35 users. The response was positive, confirming the successful detection of
these bots that were faking their user-agent.

65



6 Conclusions and future developments

In this thesis a novel method for Web bot detection based on HTTP requests
was proposed. The proposed K-Means algorithm, with the selected fea-
tures obtained from our definition of the ”session”, demonstrated very good
performance, obtaining no false positives within the programmatic clusters.

In contrast to other bot detection approaches, this method does not impose
the domain to be a specific one, but it offers a general solution for every kind
of domain, for example e-commerce traffic, banks traffic, personal web-sites and
so on.

In addition, the method provides a unsupervised machine learning so-
lution, which in this type of problem is a big advantage for two reasons. The
first reason is that it is very difficult to obtain a dataset of labeled HTTP re-
quests, as it would require human intervention. The second reason is that the
world of bots is constantly evolving, so a dynamic approach such as clus-
tering can remain valid over time.

The results provide a promising direction for future developments. With the
aizoOn cybersecurity department, we are currently investigating the implemen-
tation of this machine model into the WAF Mithril, with the goal of offering a
new service enhancing the product. The main challenges are to implement this
model while taking into account the computational and cost constraints
of Mithril, as it is a service that must operate on the order of milliseconds.
The paths that will be explored are respectively an offline approach, thus
without getting real-time results, and a live approach, looking for solutions to
parallelize the creation of real-time sessions, thus moving the storage of HTTP
requests from ElasticSearch to services such as Redis or Kafka.

66



7 References

• [1] Suchacka, G.; Cabri, A.; Rovetta, S.; Masulli, F. Efficient On-the-Fly
Web Bot Detection. Knowl.-Based Syst. 2021, 223, 107074

• [2] V. Almeida, D. Menascé, R. Riedi, F. Peligrinelli, R.Fonseca, W. Meira
Jr, Analyzing web robots and their impact on caching, in: Proceedings of
the Sixth International Workshop on Web Caching and Content Distribu-
tion, June 2001, pp. 299–310.

• [3] A. Stassopoulou, M. Dikaiakos, Web, Robot detection: A probabilistic
reasoning approach, Computer Networks 53 (2009) 265–278

• [4] S. Rovetta , G. Suchacka, F. Masulli , Bot recognition in a Web store:
An approach based on unsupervised learning, Journal of Network and
Computer Applications 157 (2020) 102577

• [5] J. Srivastava, R. Cooley, M. Deshpande, P.-N. Tan, Web usage mining:
discovery and applications of usage patterns from web data, SIGKDD
Explorations 1 (2) (2000) 12–23

• [6] T. Tanaka , S. Liaa, S. Nomura, Bot Detection Model using User Agent
and User Behavior for Web Log Analysis, 24th International Conference
on Knowledge-Based and Intelligent Information & Engineering Systems

• [7] https://fourweekmba.com/google-revenue-breakdown/

• [8] Zhang, Yang, Detecting malicious activities with user-agent-based pro-
files. International Journal of Network Management 25.5 (2015): 306-319

• [9] M. Rahman, M. Rahman, B. Carbunar, D.H. Chau, Search rank fraud
and malware detection in google play, IEEE Trans. Knowl. Data Eng. 29
(6) (2017) 1329–1342

• [10] V. Sharma, R. Kumar, W.-H. Cheng, M. Atiquzzaman, K. Srinivasan,
A.Y. Zomaya, NHAD: Neuro-fuzzy based horizontal anomaly detection in
online social networks, IEEE Trans. Knowl. Data Eng. 30 (11) (2018)
2171–2184

• [11] J. Lee, S. Cha, D. Lee, H. Lee, Classification of Web robots: An
empirical study based on over one billion requests, Comput. Secur. 28 (8)
(2009) 795–802

• [12] G. Suchacka, M. Sobków, 2015. Detection of Internet robots using
a Bayesian approach. Proceedings of IEEE 2nd International Conference
on Cybernetics. IEEE, pp. 365–370

• [13] C. Bomhardt, W. Gaul, L. Schmidt-Thieme, Web robot detection –
preprocessing Web logfiles for robot detection, in: New Developments in
Classification and Data Analysis, Springer, Berlin, Heidelberg, 2005, pp.
113–124

67



• [14] S. Rovetta, A. Cabri, F. Masulli, G. Suchacka, Bot or not? A case
study on bot recognition from Web session logs, in: Quantifying and Pro-
cessing Biomedical and Behavioral Signals, in: Smart Innovation, Systems
and Technologies, vol. 103, Springer, 2019, pp. 197–206

• [15] D.S. Sisodia, S. Verma, O.P. Vyas, Agglomerative approach for iden-
tification and elimination of web robots from web server logs to extract
knowledge about actual visitors, J. Data Anal. Inf. Process. 03 (2015)
1–10

• [16] M. Zabihi, M.V. Jahan, J. Hamidzadeh, A density based clustering
approach to distinguish between web robot and human requests to a Web
server, ISC Int. J. Inf. Secur. 6 (1) (2014) 77–89

• [17] D. Stevanovic, N. Vlajic, A. An, Detection of malicious and non-
malicious website visitors using unsupervised neural network learning,
Appl. Soft Comput. 13 (1) (2013) 698–708

68


