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Introduction

Due to advancements in technology that have made data acquisition easier and
more cost-effective, we are currently dealing with a massive influx of data. This
data necessitates efficient analysis and processing. The magnitude of this chal-
lenge is apparent not just from the big volume of data but also from the diversity
of data types, and the range of processing tasks required. In order to address
tasks that span from analyzing features to classifying and compressing data, ad-
vanced mathematical and computational methods are required. A fundamental
characteristic of nearly all data encountered in real-world applications is that the
essential information that needs to be extracted is sparse. In other words, the
crucial information of a datum is often situated on low-dimensional structures. In
principle, this allows us to efficiently represent the important information using
only a small number of terms from a suitable dictionary. Moreover, discovering a
dictionary that can efficiently represent a specific class of data in a sparse man-
ner requires a deep understanding of the main characteristics of that data class,
which are typically linked to their geometric features. For example, in natural
two-dimensional images the essential of their information is contained along its
edges, which, in general, are described by one dimensional curves. Hence, to ef-
fectively analyze and represent these data, we need to use a dictionary which is
able to truly understand and characterize their geometric structures.

Applied harmonic analysis has become the central field within applied math-
ematics dedicated to the analysis and the representation of data. The primary
task of this discipline is the practice of analyzing an object, to acquire a deeper
understanding of it. For instance, if we aim to study signals from a class of data
D in a separable Hilbert space H, we need to choose a countable collection of
analyzing functions {ψi}i∈I ⊆ H such that, for every element f ∈ D, we have

f =
∑
i∈I

ai(f)ψi.

This equation not only offers a way to break down the signal f into a set of mea-
surements {ai(f)}i∈I , but also illustrates the procedure of reconstruction of f from
its coefficients. Here, there is an important occurrence to note. If the dictionary
{ψi}i∈I is an orthonormal basis, then the coefficients sequence is uniquely deter-
mined, and the reconstruction is stable. If we allow more flexibility, for example,
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by opting for a redundant dictionary, we no longer have the uniqueness of the
sequence {ai(f)}i∈I . On one hand, this allows us to choose a sparser coefficients
sequence, but, on the other hand, it could generate instability while reconstruct-
ing. This bottleneck has been overcome thanks to frame theory, indeed frames
systems are redundant dictionaries which guarantee stability in signal reconstruc-
tion, and for this reason are widely used in applied harmonic analysis and signal
processing. Once the appropriate system to analyze a certain class of data is cho-
sen, we aim to study its sparsifying properties. The degree of sparsity is measured
as the decay rate of the error of best N-term approximation. Roughly speaking,
this approximation consists in approximating f by selecting the indices associated
with its N largest amplitude coefficients ai(f).

The first analyzing dictionaries we introduce in the thesis are one-dimensional
wavelet bases. In this case, the system is obtained by dilating and translating a
generating function ψ, called a mother wavelet,

{ψj,n = 2
j
2ψ(2j · −n) : j, n ∈ Z}.

Chapters 1 and 2 are dedicated to formally introduce continuous wavelet systems,
discrete wavelet systems, and the corresponding wavelet transforms. A wavelet
system allows us to decompose a signal at different scales, and locations. This
behaviour is mathematically explained by the link between wavelet bases and
multiresolution analysis; an increasing sequence of closed subspaces of L2(R), in-
variant for translations and generated by dilations, which enable the construction
of orthonormal wavelets. In addition, these chapters aim to underlie the main fea-
tures we require a wavelet to possess in order to have better sparsifying properties:
vanishing moments, and compact support.

In Chapter 3, we describe the non-linear approximation on a general Hilbert
space H, and then we present the main results for non-linear approximation
of one-dimensional piecewise regular functions through wavelet bases, Theorem
3.3. Vanishing moments and compact supports enable to strongly compress these
types of signals. Indeed, the first property guarantees that, if the wavelet is
supported within an interval where the signal is regular, then the corresponding
coefficient will be negligible. The second property allows us to control the number
of wavelets whose supports intersect a singularity of the signal, i.e it guarantees
that the number of relevant coefficient cannot be too large. These results empha-
size that wavelet systems efficiently deal with one-dimensional signal possessing
a finite number of pointwise singularities. In a natural way, one can extend the
construction of wavelets to Rn, n > 1, and study the corresponding approxima-
tion problem on higher dimensions. It comes out that the isotropic features of
wavelet systems do not allow to obtain the same decay rate of the error as the
one-dimensional case (see Theorem 3.4). Indeed, multidimensional wavelets are
supported on cubes that, through the dilation parameter, can only be enlarged
or reduced without changing their shape. This makes multidimensional wavelets
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unable to efficiently deal with singularities distributed along curves, or in general,
manifolds.

A research branch, focused on building new function systems capable of solv-
ing this problem, has emerged. In particular, in [Donoho, 2001], Donoho demon-
strated that for every cartoon-like image f , i.e. a function that is C2 away of a C2

curve (Definition 4.1), and for any N , there exists a triangulation of [0, 1]2 with
N triangles so that the piecewise linear interpolation fN of these triangles obeys

∥f − fN∥22 ≲ N−2, N → +∞.

Moreover, it can be proved that this result is optimal. Therefore, on one hand,
we have multidimensional wavelet bases, which are easy to handle numerically,
but provide a poor error estimate. On the other hand, Donoho’s theorem offers
an optimal error estimate, but it is not very useful in applications. Nevertheless,
the argument presented by Donoho shows that the capability of elongating and
orienting the supports of the functions in the dictionary along the singularity set
of the function we are analyzing is fundamental in order to achieve the optimal
error decay estimate. This means that anisotropic dilations are crucial in order
to obtain a good error estimate. Among the various attempts made in the early
2000s, curvelets [Candès and Donoho, 2004], and shearlets [Labate et al., 2005]
are those which allow us to nearly obtain the best error estimate. Indeed, it has
ben proved that for a cartoon-like image f , the non-linear approximation error,
carried out by selecting the N largest amplitude coefficients, satisfies

∥f − fN∥22 ≲ N−2 log3(N), N → +∞.

Compared to Donoho’s method, shearlets and curvelets have the advantage of
being nonadaptive, which means that the system we choose to analyze does not
depend on the particular signal we are analyzing. Therefore, they are more useful
in applications. In particular, in the thesis we present the construction of shearlet
systems, and their non-linear approximation properties.

In Chapter 4, following the line of the first two chapters, we define shearlet con-
tinuous systems, shearlet discrete systems, and the shearlet transform. Then, we
focus on the construction of a slightly different system which is the cone-adapted
shearlet system. This latter was introduced in order to overcome a directional
bias possessed by ordinary shearlet systems, which is discussed in Section 4.2.
In Section 4.3, we present the main results about non-linear approximation of
cartoon-like images.

As explained above, shearlet systems provide optimal error rate when approx-
imating a function which is C2 away of a C2 curve, and so they are really efficient
in sparsely representing these types of signals. For many purposes, it is not only
interesting to know that images can be faithfully represented by sparse vectors,
but it is of great interest also to study the structure of the set of the index cor-
responding to the largest coefficients. A priori, when carrying out a non-linear

5



approximation, we only know that if we choose the largest coefficients, then we
get a good approximation of the signal, but we do not know anything about their
location. The multiresolution properties of the one-dimensional wavelets allow us
to think that it is possible to characterize more precisely the set of the relevant
coefficients. Indeed, as previously mentioned, if we analyze a piecewise regular
function, the largest coefficients are individuated by the location of the singular-
ities. Therefore, when analyzing the signal through different scales, it is possible
to define hierarchical relations between coefficients at scale j and those at scale
j + 1 with the property that: if a coefficient at scale j + 1 is relevant, then so
is its parent. These structures are referred to as trees, and in this case we speak
of tree approximation, we refer the interested reader to [Cohen et al., 2001] and
[Kekkonen et al., 2023]. Analogously, in the case of shearlet frames, their mul-
tiresolution properties, and their geometric structure invite us to a deeper study
the locations of the relevant shearlet coefficients. One of the works that delves
deeper into the tree structure in the case of shearlets is [Grohs, 2012]. In this
paper, the author introduces a parent-child relation, and then he analyzes the
corresponding tree approximation. Although it is shown that the error is optimal,
the proofs presented do not involve the structure defined. In Chapter 5, we pro-
pose to explicitly exploit this structure in the case of a particular function, where
the singularity curve is a straight line, and it is constant away of this line. We
execute a quantitative analysis of its shearlet coefficients, and we prove that the
relevant ones satisfy the hierarchical relations introduced in Definition 5.1, and so
that the set of their location is a tree.
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Chapter 1

Continuous Wavelet Transform

In this chapter we briefly introduce mother wavelets, the associated wavelet
transforms, and we discuss the main results related to these tools. In particular,
we focus on those results that state under which conditions on the mother wavelets
we are able to reconstruct functions in L2(R).

We refer to [Mallat, 1999] for the detailed proofs of the section and for further
details about the topic.

Before starting the central part of this chapter, keep in mind that throughout
the thesis we use the following normalization for the Fourier transform on Rn

Ff(ξ) :=
∫
Rn
f(x) e−iξx dx, ξ ∈ Rn,

where the product ξx is to be understood, for n > 1, as a scalar product. Let us
also recall that this normalization leads to the following Plancharel identity

⟨f, g⟩ = 1

2π
⟨Ff,Fg⟩, f, g ∈ L2(R).

Definition 1.1. A function ψ ∈ L2(R) such that ∥ψ∥2 = 1 is said to be a
mother wavelet if

Cψ :=

∫ ∞

0

|Fψ (ξ)|2

ξ
dξ < +∞. (1.1)

From a mother wavelet we can define the family of functions

ψu,s (t) =
1√
s
ψ

(
t− u

s

)
, (u, s) ∈ R× R+.

The condition ∥ψ∥2 = 1 ensures, by a simple change of variable, that ∥ψu,s∥2 = 1.
One can think of ψ as a function supported in a neighborhood of the origin, so the
family ψu,s can be used to analyze signal structures at different scales and time
intervals through the continuous wavelet transform.
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Definition 1.2. Let ψ ∈ L2(R) be a mother wavelet. For all f ∈ L2(R) the
continuous wavelet transform is defined as

Wψf(u, s) := ⟨f, ψu,s⟩ =
∫
R

f(t)
1√
s
ψ

(
t− u

s

)
dx, (u, s) ∈ R× R+. (1.2)

The continuous wavelet transform can be reformulated as a convolution prod-
uct

Wψf(u, s) = f ∗ ψ̃s (u) ,
where ψ̃s (t) :=

1√
s
ψ
(−t
s

)
.

The technical condition (1.1), also known as admissibility condition, or Calderón
condition is useful to reconstruct a signal f ∈ L2 (R) via its wavelet coefficients.

Theorem 1.3. [Mallat, 1999] Let ψ ∈ L2(R) be a real valued mother wavelet.
Every function f ∈ L2(R) satisfies the following reconstruction formula

f(t) =
1

Cψ

∫ +∞

0

∫ +∞

−∞
Wψf (u, s)ψu,s (t) du

ds

s2
, a.e. t ∈ R. (1.3)

Moreover ∫ +∞

−∞
|f(t)|2 dt = 1

Cψ

∫ +∞

0

∫ +∞

−∞
|Wψf (u, s)|2 du

ds

s2
. (1.4)

While the continuous wavelet transform can be defined for every ψ ∈ L2(R),
the previous theorem shows that is important to choose wavelets that satisfy the
admissibility condition (1.1). Hence, it is useful to find sufficient conditions that
ensure (1.1). It is obvious that a necessary condition for (1.1) is that Fψ (0) = 0
(i.e. ψ has zero average), but unfortunately it is not sufficient. In order to obtain
a sufficient condition, we require also that Fψ is C1 in a neighborhood of the
origin, i.e. there exists ϵ > 0 such that Fψ ∈ C1 (−ϵ, ϵ). Indeed, we have that
there exists M > 0 such that∣∣∣∣dFψdξ (ξ)

∣∣∣∣ ≤M for every ξ ∈
[
0,
ϵ

2

]
.

Hence, for each ξ ∈
[
0, ϵ

2

]
,

|Fψ (ξ)| ≤
∫ ξ

0

∣∣∣∣dFψdω (ω)

∣∣∣∣ dω ≤Mξ.

Now, by splitting the integral in (1.1), we obtain

Cψ =

∫ ϵ
2

0

|Fψ (ξ)|2

ξ
dξ +

∫ +∞

ϵ
2

|Fψ (ξ)|2

ξ
dξ

≤M2 ϵ
2

8
+

∫ +∞

ϵ
2

|Fψ (ξ)|2

ξ
dξ < +∞,
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due to the Hölder inequality applied to the functions ξ 7→ 1
ξ
, which is bounded over[

ϵ
2
,+∞

)
, and |Fψ|2, which belongs to L1

([
ϵ
2
,+∞

))
. Moreover, we can use the

time decay of ψ as a sufficient condition for the regularity of its Fourier transform.
In particular, one has that Fψ is C1 over R if∫

R
(1 + |t|) |ψ (t)|dt < +∞.

So, if
∫
R ψ (t) dt = 0, and

∫
R (1 + |t|) |ψ (t)|dt < +∞, then (1.1) holds.

An important function associated to a mother wavelet is the scaling function.
When the wavelet transform is known only for s < s0 for a certain s0 > 0, to
recover completely f we need the complement information contained inWψf (u, s)
for s ≥ s0. The scaling function helps us to obtain this information.

Definition 1.4. Let ψ be a mother wavelet. A scaling function ϕ ∈ L2 (R) is a
function that satisfies

|Fϕ (ξ)|2 =
∫ +∞

ξ

|Fψ (ω)|2

ω
dω, (1.5)

and whose complex phase can be arbitrarily chosen.

Obviously (1.1) implies

lim
ξ→0

|Fϕ (ξ)|2 = Cψ, (1.6)

and it is easy to verify that ∥ϕ∥2 = 1.
Let us define

Lf (u, s) := ⟨f, ϕu,s⟩ = f ∗ ϕ̃s (u) . (1.7)

Following the scheme of the proof of Theorem 1.3, one can prove that, for every
f ∈ L2 (R), the following formula holds:

f (t) =
1

Cψ

∫ s0

0

Wψf (·, s) ∗ ψs (t)
ds

s2
+

1

Cψs0
Lf (·, s0) ∗ ϕs0 (t) a.e. t ∈ R, (1.8)

where ψs (t) =
1√
s
ψ
(
t
s

)
.
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Chapter 2

Orthonormal Wavelets

Having discussed the continuous transform and its reconstruction properties,
we now want to introduce a discretised version of it. Indeed, since wavelets are
widely used in applications to efficiently represent signals, we need to discuss
wavelets properties in a discrete setting and to understand when these discrete
collections of wavelets are useful to represent signals.

In this chapter, we define an orthonormal wavelet as a function such that the
family

{ψj,n := 2
j
2ψ
(
2j · −n

)
: j, n ∈ Z}

forms an orthonormal basis of L2(R). Then, we note that it can be related to a
multiresolution analysis as pointed out in Section 2.1, and we discuss a general
way for constructing orthonormal wavelets. From the wavelet construction in
Section 2.1.1, we can understand that exist wavelets of such a different nature.
Hence, we want to better understand which types of wavelets we are interested
in, in particular which properties they have to satisfy in order to be efficient in
signal representation. In Section 2.2, we address this question, and we discuss
the main properties, such as vanishing moments, and compact support, and the
main related results. We conclude the chapter by briefly presenting construction
schemes for wavelet bases on intervals, and on multidimensional spaces. This
chapter follows the topics covered in [Mallat, 1999, Hernández and Weiss, 1996,
Adcock and Hansen, 2021]. Whenever the detailed proofs are not presented, we
will provide the exact reference.

Definition 2.1. An orthonormal wavelet is a function ψ ∈ L2 (R), ∥ψ∥2 = 1 such
that the family of the translated and dilated functions

{ψj,n := 2
j
2ψ
(
2j · −n

)
: j, n ∈ Z}

is an orthonormal basis of L2 (R).

If ψ is supported in a neighborhood of the origin, then ψj,n is supported in
a neighborhood of n

2j
with the support size of the order of O (2−j). Hence, at
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fixed j ∈ Z, the wavelet coefficients ⟨f, ψj,n⟩ of a signal f ∈ L2 (R) carry local
information of f near n

2j
at scale 2−j through its average with ψj,n. We can say

that the sequence {⟨f, ψj,n⟩}n∈Z contains the details of f at scale 2−j, and a signal
f is reconstructed by adding its details at scale 2−j for each j ∈ Z

f =
∑
j,n∈Z

⟨f, ψj,n⟩ψj,n. (2.1)

Similarly to the continuous wavelet transform, if we only have access to the details
of f for j ≥ j0, then it is possible to retrieve the information for j ≤ j0 by
considering a scaling function φ ∈ L2(R) such that the projection of f onto the
space generated by

{φj0,n = 2
j0
2 φ
(
2j0 · −n

)
: n ∈ Z}

provides an approximation of f at scale 2−j0

f = fj0 +
+∞∑
j=j0

∑
n∈Z

⟨f, ψj,n⟩ψj,n, (2.2)

where
fj0 =

∑
n∈Z

⟨f, φj0,n⟩φj0,n.

Example 2.2 (The Haar wavelet). A classical example of orthonormal wavelet
is the Haar wavelet, introduced by Alfréd Haar in 1909. We will use this wavelet
as an example to illustrate the results in the next sections. The Haar wavelet is
defined by

ψ(x) :=


1 if x ∈ [0, 1

2
),

−1 if x ∈ (1
2
, 1],

0 otherwhise.

(2.3)

It is associated to a scaling function

φ(x) :=

{
1 if x ∈ [0, 1),

0 otherwhise.
(2.4)
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Figure 2.1: On the left the Haar wavelet ψ, on the left its scaling function φ.

The elements of the Haar basis are

ψj,n(x) =


2
j
2 if x ∈ [ n

2j
, n
2j

+ 1
2j+1 ),

−2
j
2 if x ∈ ( n

2j
+ 1

2j+1 ,
n+1
2j

],

0 otherwhise.

(2.5)

It is easy to prove that they form an orthonormal system. The fact that they are
also a basis is a consequence of Theorem 2.9 below, see Example 2.10.

We can think of orthonormal wavelets as a way of analysing a signal at different
resolutions; indeed the concept of orthonormal wavelets can be naturally related
to a multiresolution analysis (MRA) that formalises the ideas expressed above.
Moreover, an MRA provides a general method for constructing an orthonormal
wavelet.

2.1 Multiresolution Analysis

Definition 2.3. A multiresolution analysis (MRA) is a sequence {Vj}j∈Z of closed
subspaces of L2(R) such that

(a) Vj ⊆ Vj+1 for all j ∈ Z,

(b) f ∈ Vj if and only if f(2·) ∈ Vj+1 for all j ∈ Z,

(c)
⋂
j∈Z Vj = {0},
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(d)
⋃
j∈Z Vj = L2(R),

(e) There exists a scaling function φ ∈ V0, such that {φ(· − n) : n ∈ Z} is an
orthonormal basis of V0.

Example 2.4 (The MRA of the Haar wavelet). Let us define the spaces Vj as

Vj := {f ∈ L2 (R) : f |[ n
2j
,n+1

2j
] is constant, n ∈ Z} (2.6)

It is easily verified that the family {Vj}j∈Z satisfies property (a) − (d) of the
definition above. Moreover, it is clear that the family of the integer translations
of φ as in (2.4) forms an orthonormal basis of V0.

An MRA is an increasing sequence of closed subspaces that are invariant by
translations (property (e)), and generated by dilations (property (b)). Property
(d) is useful because it allows us to approximate with arbitrary accuracy a function
f ∈ L2(R) by its orthogonal projection on Vj. As an immediate consequence of
(b) and (e), we also observe that

{φj,n := 2j/2φ(2j · −n) : n ∈ Z}

is an orthonormal basis for Vj.
The next Lemma, shows that the five properties of an MRA are not completely

independent. Nevertheless, it is useful to enumerate them all to make the role of
the Vj spaces clearer.

Lemma 2.5. Properties (a), (b) and (e) imply property (c).

Proof. Suppose that there exists a non-zero function f ∈
⋂
j∈Z Vj. Without loss

of generality we can assume that ∥f∥2= 1. In particular, f ∈ V−j for every j ∈ Z.
By using property (b) of the previous definition, we have that fj = 2

j
2f(2j·) ∈ V0

and, by a change of variable, we have that ∥f∥2= ∥fj∥2= 1.
Given that {φ(· − k) : k ∈ Z} forms a basis of V0, we have that there exists a

unique sequence {αjk}k∈Z ⊂ ℓ2(Z) such that

fj =
∑
k∈Z

αjkφ(· − k),

with convergence in L2(R), and such that∑
k∈Z

|αjk|
2= ∥fj∥22= 1.

By taking the Fourier transform, we have

Ffj(ξ) = 2−
j
2Ff

(
ξ

2j

)
,

Ffj(ξ) = F

(∑
k∈Z

αjkφ(· − k)

)
(ξ) =

∑
k∈Z

αjkF(φ(· − k))(ξ) =
∑
k∈Z

αjke
−ikξFφ(ξ).
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By setting

mj(ξ) :=
∑
k∈Z

αjke
−ikξ,

we obtain
Ff(ξ) = 2

j
2mj(2

jξ)Fφ(2jξ). (2.7)

Observe that mj is 2π-periodic, and, since {αjk}k∈Z ⊂ ℓ2(Z), it is also square-
integrable on the one-dimensional torus T := R/Z. In particular, it obeys

∥mj∥2L2(T)≤
∑
k∈Z

|αjk|
2= 1,

where for each m ∈ L2(T)

∥m∥2L2(T):=
1

2π

∫ π

−π
|m(x)|2dx.

Therefore, from (2.7), we obtain∫ 4π

2π

|Ff(ξ)|dξ ≤ 2
j
2

(∫ 4π

2π

|Fφ(2jξ)|2dξ
)1/2(∫ 4π

2π

|mj(2
jξ)|2dξ

)1/2

.

By the change of variable ξ 7→ 2−jξ, we have∫ 4π

2π

|Ff(ξ)|dξ ≤ 2−
j
2

(∫ 2j+2π

2j+1π

|Fφ(ξ)|2dξ

)1/2(∫ 2j+2π

2j+1π

|mj(ξ)|2dξ

)1/2

≤
(∫ ∞

2j+1π

|Fφ(ξ)|2dξ
)1/2

(
1

2j

∫ 2j+2π

2j+1π

|mj(ξ)|2dξ

)1/2

.

Observe that∫ 2j+2π

2j+1π

|mj(ξ)|2dξ =
2j−1∑
l=0

∫ 2j+1π+2(l+1)π

2j+1π+2lπ

|mj(ξ)|2dξ ≤ 2j+1π.

Hence, ∫ 4π

2π

|Ff(ξ)|dξ ≤
(
2π

∫ ∞

2j+1π

|Fφ(ξ)|2dξ
)1/2

.

Taking the limit for j → ∞, we can conclude that Ff = 0 on [2π, 4π] due to the

fact that Fφ ∈ L2(R). We can apply the same argument to 2
l
2Ff(2l·) to obtain

that Ff = 0 on 2l[2π, 4π] for each l ∈ Z. So Ff = 0 on (0,∞). Applying the
same argument to [−4π,−2π], we obtain Ff = 0 on (−∞, 0).

Moreover, there exists a characterisation of property (d) in terms of the Fourier
transform of φ.
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Lemma 2.6. [Hernández and Weiss, 1996] Let {Vj}j∈Z be a sequence of closed
subspaces of L2(R) satisfying properties (a), (b) and (e). If φ is such that |Fφ| is
continuous at 0, then the following are equivalent:

(a)
⋃
j∈Z Vj = L2(R),

(b) Fφ(0) ̸= 0.

Moreover, when either is the case, |Fφ(0)| = 1.

2.1.1 Wavelet Construction from a Multiresolution Anal-
ysis

We now show a general method for constructing orthonormal wavelets from
MRAs. Let us describe the construction.

First of all, we define the space W0 as follows:

W0 := {g ∈ V1 : g ⊥ f for each f ∈ V0}.

So W0 is the orthogonal complement of V0 in V1, namely

V1 = V0 ⊕W0.

Hence, due to the property (b) of an MRA, we have that

Wj := {g(2j·) : g ∈ W0} = {g ∈ Vj+1 : g ⊥ f for each f ∈ Vj}.

In other words, for each j ∈ Z, we have

Vj+1 = Vj ⊕Wj.

This means that the spaces Wj contain the details that are lost when a function
in Vj+1 is approximated by its projection on Vj. Hence, for any j0 ≤ j,

Vj+1 = Vj0 ⊕Wj0 ⊕Wj0+1 ⊕ · · · ⊕Wj. (2.8)

Therefore properties (c) and (d) of an MRA imply the following decomposition
formulae

L2 (R) = Vj0 ⊕Wj0 ⊕Wj0+1 ⊕ . . . (2.9)

L2 (R) =
⊕
j∈Z

Wj. (2.10)

Observe that (2.9) is equivalent to the decomposition of f in (2.2), and (2.10) is
equivalent to the decomposition in (2.1). In particular, due to (2.10), we have

15



that finding an orthonormal wavelet is equivalent to finding a function ψ ∈ W0

such that the family of its translates

{ψ0,n = ψ (· − n) : n ∈ Z} (2.11)

forms an orthonormal basis of W0. Indeed, similarly to the scaling function, if
(2.11) is an orthonormal basis of W0, then

{ψj,n := 2
j
2ψ
(
2j · −n

)
: n ∈ Z}

is an orthonormal basis of Wj. Therefore, due to (2.10),

{ψj,n : j, n ∈ Z}

is an orthonormal basis of L2(R).
Let us now consider the function

1√
2
φ
( ·
2

)
∈ V−1 ⊂ V0.

Due to (e), we have

1√
2
φ
( ·
2

)
=
∑
n∈Z

hnφ(· − n),

where

hn =
1√
2

∫
R
φ
(x
2

)
φ(x− n)dx. (2.12)

The sequence h = (hn)n∈Z is referred to as the filter associated to φ, and hn
are the filter coefficients. Applying the Fourier transform, and using

F (φ (· − n)) (ξ) = e−inξ Fφ (ξ) ,

F
(
φ
( ·
2

))
(ξ) = 2Fφ (2ξ) ,

we obtain

Fφ (2ξ) =
1√
2

∑
n∈Z

hn e
−inξ F (φ) (ξ) = m0(ξ)Fφ (ξ) , (2.13)

where

m0(ξ) =
1√
2

∑
n∈Z

hn e
−inξ (2.14)

is the so-called transfer function associated to the filter h. The transfer function
m0 satisfies the following property:
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Lemma 2.7. The function m0 is 2π-periodic and satisfies the following partition
of unity formula:

|m0(ξ)|2 + |m0(ξ + π)|2 = 1, a.e. ξ ∈ R. (2.15)

The proof of this lemma relies on the following lemma that we do not prove.

Lemma 2.8. [Adcock and Hansen, 2021] Let g ∈ L2(R). Then the following are
equivalent

(a) {g(· − n) : n ∈ Z} is an orthonormal system ;

(b)
∑

n∈Z |Fg (ξ + 2nπ)|2 = 1, a.e. ξ ∈ R.

Proof Lemma 2.7. The previous Lemma, and property (e) of an MRA imply∑
n∈Z

|Fφ (2ξ + 2nπ)|2 = 1, a.e. ξ ∈ R.

Using (2.13) we have

1 =
∑
n∈Z

|Fφ (ξ + nπ)|2|m0 (ξ + nπ)|2 a.e. ξ ∈ R.

By splitting the sum over the even and the odd integers, we get

1 = |m0 (ξ)|2
∑
n∈Z

|Fφ (ξ + 2nπ)|2 + |m0 (ξ + π)|2
∑
n∈Z

|Fφ (ξ + (2n+ 1) π)|2.

We complete the proof by applying Lemma 2.8 once more.

We are now ready to present the following theorem that shows how to construct
an orthonormal wavelet from an MRA.

Theorem 2.9. Let {Vj}j∈Z be an MRA with scaling function φ and transfer func-
tion m0 defined as in (2.12) and (2.14). Let ψ ∈ L2 (R) be the function

ψ =
√
2
∑
n∈Z

(−1)n−1hnφ (2 ·+n− 1) , (2.16)

and define
W0 := span{ψ0,n = ψ (· − n) : n ∈ Z}.

Then

(a) ψ ∈ V1;

(b) {ψ0,n : n ∈ Z} is an orthonormal basis of W0;
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(c) V0 ⊕W0 = V1;

(d) ψ is an orthonormal wavelet.

Proof. By definition of an MRA, it is clear that (2.16) defines a function in V1.
In order to prove (b), we observe that, due to Lemma 2.8, {ψ0,n : n ∈ Z} is an

orthonormal basis of W0 if and only if∑
n∈Z

|Fψ(2ξ + 2nπ)|2 = 1, a.e. ξ ∈ R.

By applying the Fourier transform to (2.16), we obtain

Fψ(ξ) = − e−i
ξ
2 m0

(
ξ

2
+ π

)
Fφ

(
ξ

2

)
. (2.17)

Now, using this expression, and arguing as in the proof of Lemma 2.7, we obtain∑
n∈Z

|Fψ(2ξ + 2nπ)|2 = |m0(ξ)|2 + |m0(ξ + π)|2 = 1.

We now prove (c). In order to do that, we first show that V0 ⊥ W0. Since
{φ0,n : n ∈ Z} and {ψ0,n : n ∈ Z} are respectively bases of V0 and W0, this is
equivalent to prove

⟨ψ, φ0,k⟩ = 0, k ∈ Z.

⟨ψ, φ0,k⟩ =
∫
R
ψ(x)φ(x− k)dx =

1

2π

∫
R
Fψ(ξ)Fφ(ξ) eikξ dξ

=

∫ 2π

0

(∑
n∈Z

Fψ(ξ + 2nπ)Fφ(ξ + 2nπ)

)
eikξ dξ.

By proving ∑
n∈Z

Fψ(ξ + 2nπ)Fφ(ξ + 2nπ) = 0, a.e. ξ ∈ R,

we can conclude the proof of the orthogonality between V0 and W0. Let consider
the 2π-periodic function defined by g(ξ) = e−iξm0(ξ + π). By using (2.13), and
(2.17), we have∑

n∈Z

Fψ(ξ + 2nπ)Fφ(ξ + 2nπ) =
∑
n∈Z

g(ξ + nπ)m0(ξ + nπ)|Fφ(ξ + nπ)|2.

Splitting the sum into even and odd integers, and proceeding as in Lemma 2.7,
we get ∑

n∈Z

Fψ(ξ + 2nπ)Fφ(ξ + 2nπ) = g(ξ)m0(ξ) + g(ξ + π)m0(ξ + π),
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where the right-hand-side is 0 for definition of g. To conclude the proof of (c), it
remains to prove that V0 +W0 = V1. This is equivalent to showing that for every
sequence a ∈ ℓ2 (Z) there exist sequences b, c ∈ ℓ2 (Z) such that

2
∑
n∈Z

anφ(2x− n) =
∑
n∈Z

bnφ(x− n) +
∑
n∈Z

cnψ(x− n).

Applying the Fourier transform, we obtain∑
n∈Z

an e
−in ξ

2 Fφ
(
ξ

2

)
=
∑
n∈Z

bn e
−inξ Fφ(ξ) +

∑
n∈Z

cn e
−inξ Fψ(ξ).

Let introduce the functions A(ξ) =
∑

n∈Z an e
−inξ, B(ξ) =

∑
n∈Z bn e

−inξ, and
C(ξ) =

∑
n∈Z cn e

−inξ. Due to (2.13), and (2.17), we can conclude the proof if

A

(
ξ

2

)
= B(ξ)m0

(
ξ

2

)
+ C(ξ)g

(
ξ

2

)
.

Hence, given A ∈ L2 (T), we have to find B,C ∈ L2 (T) such that the previous
equality holds. By using the definitions of g, and Lemma 2.7, we can verify that
the choices

B(ξ) = A

(
ξ

2

)
m0

(
ξ

2

)
+ A

(
ξ

2
+ π

)
m0

(
ξ

2
+ π

)
,

C(ξ) = A

(
ξ

2

)
g

(
ξ

2

)
+ A

(
ξ

2
+ π

)
g

(
ξ

2
+ π

)
,

allow us to conclude this part of the proof.
Finally, (d) follows from (b), and (2.10).

Example 2.10. Let us consider the MRA defined in (2.6), as explained in Exam-
ple 2.4, it is associated to the scaling function (2.4). Therefore, one can compute
the filter coefficients hn using (2.12). An easy calculation shows that h0 = h1 =

1√
2
,

and hn = 0 otherwise. In particular, the corresponding transfer function is

m0(ξ) =
1√
2

(
1 + e−iξ

)
.

Now, by applying (2.16) with the filter coefficients computed above, we obtain
the Haar wavelet as in (2.3)

ψ(x) = −φ(2x− 1) + φ(2x) =


1 if x ∈ [0, 1

2
),

−1 if x ∈ (1
2
, 1],

0 otherwhise.
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2.2 Wavelet Design

From the previous sections of this chapter, one can infer that it is possible to
construct a large range of wavelet bases generated by orthonormal wavelets with
different features. In this section, we want to understand what type of wavelets
we want to construct. In particular, we ask ourselves which properties we would
like an orthonormal wavelet to satisfy. Our aim is to construct wavelets that allow
signals to be represented by compressible sequences, i.e. such that most wavelet
coefficients are close to zero, so that they can be ignored during reconstruction.
In this way, we can think that the most information of the signal is contained in
few of its wavelet coefficients. Hence, we can efficiently represent signals in L2 (R)
through sparse vectors.

As will be clear from the next sections, the idea is that wavelet coefficients are
small when the support of ψj,n does not intersect any singularity of the signal,
while the relevant coefficients are those relative to the elements of the wavelet basis
whose support intersects a singularity of the signal. The key features we require an
orthonormal wavelet to have are vanishing moments and compact support, with as
small a support as possible. The first property is useful to obtain small coefficients
in the smooth regions of the signal, while the second to minimize, at fine scales,
the number of elements of the basis with support containing a singularity of the
signal.

In the next sections we discuss these properties and show some results to obtain
wavelets with these features.

2.2.1 Vanishing Moments

Definition 2.11. A function ψ ∈ L2 (R) has p vanishing moments if∫
R
xkψ(x)dx = 0 for each k = 0, . . . , p− 1.

Having p vanishing moments means, for an orthonormal wavelet ψ, being
orthogonal to polynomials of degree lower than p, i.e.

⟨P, ψ⟩ = 0 for each P ∈ C[x] such that deg (P ) ≤ p− 1. (2.18)

By a change of variable, we obtain that (2.18) holds for ψj,n for each j, n ∈ Z.
Considering a piecewise regular function f ∈ L2 (R), we have that in its smooth
regions, it is well approximated by a Taylor polynomial of degree m, Pm

f . Hence,
if we choose a wavelet with p > m vanishing moments, we have that

⟨f, ψj,n⟩ ∼ ⟨Pm
f , ψj,n⟩ = 0.

This observation makes clear the fact that the number of vanishing moments is
useful to get small coefficients in the smooth regions of a signal.
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Example 2.12. Let us consider the Haar basis (2.5). The support of ψj,n is
increasingly localized around x = n

2j
. Let f ∈ L2(R) be sufficiently smooth on a

neighborhood of the point x = n
2j
. Observe that

∫
R ψ(z)dz = 0, and

∫
R zψ(z)dz =

−1
4
. Then one has

⟨f, ψj,n⟩ =
∫
R
f(x)ψj,n(x)dx = 2−

j
2

∫
R
f
( z
2j

+
n

2j

)
ψ(z)dz

∼ 2−
j
2

∫
R

(
f
( n
2j

)
+
z

2j
f ′
( n
2j

))
ψ(z)dz = −1

4
2−

3
2
jf ′
( n
2j

)
.

(2.19)

Therefore, the wavelet coefficients of the smooth regions of f decay as O
(
2−

3
2
j
)
.

On the other hand, if f is bounded, one always has

|⟨f, ψj,n⟩| ≤ ∥f∥∞∥ψj,n∥1 ≤ 2−
j
2∥f∥∞. (2.20)

This shows that the wavelet coefficients of the nonsmooth regions of f may have

magnitude of the order O
(
2−

j
2

)
.

The next result gives equivalent conditions for a wavelet ψ to have p vanishing
moments.

Proposition 2.13. Let φ ∈ L2 (R) be a scaling function of an MRA, and ψ ∈
L2 (R) be the corresponding wavelet. Suppose that

|φ(x)| ≲ (1 + |x|)−p−2 ,

|ψ(x)| ≲ (1 + |x|)−p−2 .

Then the following statements are equivalent

(a) ψ has p vanishing moments,

(b) dkFψ
dξk

(0) = 0 for every k = 0, . . . , p− 1,

(c) dkm0

dξk
(π) = 0 for every k = 0, . . . , p− 1.

Proof. The assumptions of the theorem imply that Fψ and Fφ are p times con-
tinuously differentiable. Hence, we have

dkFψ
dξk

(ξ) =

∫
R
(−ix)k ψ (x) e−ixξ dx.

Therefore, by evaluating in zero, we obtain the equivalence between (a) and (b).
In order to prove that (b) implies (c), consider (2.16), and apply the Fourier

transform

Fψ(ξ) = − e−i
ξ
2 m0

(
ξ

2
+ π

)
Fφ

(
ξ

2

)
.
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Since Fφ(0) ̸= 0 due to Lemma 2.6, by setting ξ = 0, we have m0(π) = 0. Now,
by computing the derivative of the expression above,

dFψ
dξ

(ξ) =
1

2
e−i

ξ
2

[
m0

(
ξ
2
+ π
) (

Fφ
(
ξ
2

)
− dFφ

dξ

(
ξ
2

))
− dm0

dξ

(
ξ
2
+ π
)
Fφ

(
ξ
2

)]
,

and by setting ξ = 0, we obtain that dm0

dξ
(π) = 0. Observe that when computing

the k-th derivative of this expression, the only factor that multiplies dkm0

dξk

(
ξ
2
+ π
)

is Fφ
(
ξ
2

)
, hence we can recursively apply Lemma 2.6 to conclude the proof. By

using the same process it is easy to prove that (c) implies (b).

An immediate consequence of this theorem is that an orthonormal wavelet
that arises from an MRA satisfying the assumptions of the theorem has at least
one vanishing moment. Indeed, by setting ξ = 0 in (2.13), and by Lemma 2.6, we
have that m0(0) = 1. Hence, applying Lemma 2.7, we obtain m0(π) = 0.

2.2.2 Compact Support

While vanishing moments give compressible coefficients in the smooth regions
of a signal, they are not sufficient on their own. In order to get a sparse representa-
tion, we also want that the number of relevant coefficients, i.e. those intersecting
singularities, cannot grow too far along the scales. Hence, by choosing an or-
thonormal wavelet with a small support size, we have that at fine scales, i.e. for
j growing, the support size of ψj,n is getting smaller and smaller. Therefore, the
majority of the dilated wavelets do not intersect any singularity of the signal.

The following result gives a characterization of compact support for a wavelet
and scaling function.

Theorem 2.14 ([Adcock and Hansen, 2021]). Let N1, N2 be integers such that
N1 ≤ N2.

If the scaling function φ of an MRA has compact support in [N1, N2], then the
transfer function m0 defined in (2.14) is a trigonometric polynomial of the form

m0 (ξ) =
1√
2

N2∑
n=N1

hn e
−inξ . (2.21)

Conversely, if (2.21) holds, and m0(0) = 1, then the scaling function φ has support
contained in [N1, N2].

In either case, the corresponding wavelet ψ given by (2.16) has support con-
tained in [N1−N2+1

2
, N2−N1+1

2
].

Given the previous proposition, our aim is to construct orthonormal wavelets
that have compact support. We do this by constructing a transfer function m0

with suitable properties.
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Theorem 2.15. Suppose that m0 (ξ) =
1√
2

∑N2

n=N1
hn e

−inξ satisfies the following
properties

(a) |m0(ξ)|2 + |m0(ξ + π)|2 = 1, a.e. ξ ∈ R;

(b) m0(0) = 1;

(c) m0(ξ) ̸= 0 for all |ξ| ≤ π
2
.

Then the function φ with Fourier transform

Fφ (ξ) =
+∞∏
j=1

m0

(
ξ

2j

)
, ξ ∈ R, (2.22)

is well defined and in L2 (R). Moreover, φ has support in [N1, N2] and is the
scaling function of an MRA with transfer function m0. The corresponding wavelet

ψ =
√
2

N2∑
n=N1

(−1)n−1hnφ (2 ·+n− 1) (2.23)

has support contained in [N1−N2+1
2

, N2−N1+1
2

].

Let us observe that conditions (a) − (c) are not so unreasonable. Indeed,
condition (a) is essential for ensuring that m0 can be a transfer function of an
MRA, as mentioned in Lemma 2.7. Moreover, we should remember that (b) is
satisfied when the scaling function φ is such that |Fφ| is continuous at 0, making
it essentially necessary. Regarding (c), one can prove that if it does not occur,
then {φ(· − n) : n ∈ Z} need not to be an orthogonal system. Furthermore, by
applying recursively (2.13) N times, we have that

Fφ(ξ) = Fφ
(
ξ

2N

) N∏
j=1

m0

(
ξ

2j

)
, ξ ∈ R.

Therefore, it is natural to expect a construction of Fφ as in (2.22).

2.2.3 Vanishing Moments Versus Support Size

The previous two sections explain the importance of vanishing moments and
compact support to obtain sparse representation of signals via its wavelet coeffi-
cients. A priori, these properties seem to be independent, and one may wish to
construct orthonormal wavelets with an arbitrary number of vanishing moments
and a very small support. Unfortunately this is not possible, and the next theorem
shows that there is a dependence between these two features.
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Theorem 2.16. Let ψ be an orthonormal wavelet with p vanishing moments.
Then ψ has support size at least 2p− 1.

Therefore, when analysing a signal and choosing the wavelet, we always face a
trade-off between the number of vanishing moments and the support size of ψ. In
particular, if the signal to analyze has a few number of isolated singularity, and
it is regular between them, then it is more important to have a lot of vanishing
moments than a small support size. Indeed, in this case the signal is mostly
regular, so it is very important to have many vanishing moments to cancel out
all the coefficients related to the smooth regions. While, even if the wavelet does
not have a very small support, the isolated singularities will still be well localised.
Conversely, if the signal has a lot of close singularity, then it is more important to
have as small the support as possible, than a large number of vanishing moments.

A natural question that arises from the statement in Theorem 2.16 is: are there
orthonormal wavelets with p vanishing moments satisfying the optimal bound on
the support size? The answer to this question is positive, a famous example
of such wavelets are the Daubechies wavelets. These wavelets were constructed
by Daubechies in [Daubechies, 1992], the orthonormal wavelet with p vanishing
moments (DBp) has support equal to [0, 2p − 1], and the corresponding scaling
function has support equal to [−p + 1, p]. Except for the case p = 1, which pro-
vides the Haar wavelet, we do not have an explicit expressions for the Daubechies
wavelet. However, it is possible to use them in applications because their filter
coefficients allow us to perform numerical computations.
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Figure 2.2: From top-left to bottom-right are plotted the Daubechies wavelets for
p = 1, 2, 3, 4.

2.3 Wavelet basis of L2[0, 1]

In many applications, the signals to study are compactly supported within an
interval that, without loss of generality, could be supposed to be [0, 1]. Hence,
the construction of wavelet bases of L2[0, 1] has a remarkable relevance. In this
section, we briefly present the main ideas to obtain such bases from orthonormal
wavelet bases of L2 (R), and we refer to [Mallat, 1999, Adcock and Hansen, 2021]
for further details. Let us start by analysing the Haar basis (2.5); in this case the
process is straightforward. Indeed, the elements of the basis are either entirely
supported within [0, 1] or entirely supported outside of it. Consequently, the Haar
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basis on the interval [0, 1] is simply obtained by keeping only those wavelets with
support contained in [0, 1].

Unfortunately, this is a special case regarding only the Haar basis. In general,
in a wavelet basis there are also elements whose supports intersect the boundary of
[0, 1], but are not fully supported inside the interval. To construct an orthonormal
basis of L2[0, 1], we have to modify these boundary functions. We present two
ways of doing this.

2.3.1 Periodic Wavelets

The most direct approach is periodizing an othonormal wavelet defined on the
real line. Consider the periodizing operation

g 7−→ gper :=
∑
n∈Z

g(·+ n).

Observe that gper is a 1-periodic function. By utilizing wavelets ψj,n, and scaling
functions φj,n, we can construct φper

j,n = (φper)j,n, and ψ
per
j,n = (ψper)j,n, and define

the spaces
V per
j := span{φper

j,n : n = 0, . . . , 2j − 1},

W per
j := span{ψper

j,n : n = 0, . . . , 2j − 1}.

Notice that in this case there is a finite number of elements since φper
j,n = φper

j,n+2j
,

and likewise for ψper
j,n . These spaces satisfy the same property of the original MRA,

and so provide the analogous decomposition of L2[0, 1] as in 2.9

L2[0, 1] = V per
j0

⊕W per
j0

⊕W per
j0+1 ⊕ . . . , (2.24)

for any j0.
In particular, we have that

{φper
j0,n

: n = 0, . . . , 2j0 − 1} ∪ {ψper
j,n : j ≥ j0, n = 0, . . . , 2j − 1} (2.25)

is an orthonormal basis of L2[0, 1] for each j0.
When analyzing a signal f : [0, 1] −→ C with a periodizated wavelet basis of

L2[0, 1], we are treating f as a 1-periodic signal on the real line, this procedure
can generate discontinuities at x = 1, and so also in every x ∈ N. Therefore,
by periodizing, we add artificial discontinuities to the signal, which affects its
compressibility. This behaviour is undesirable, so we now present another way of
constructing wavelets on intervals, that avoid to create new discontinuities in the
signal.
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2.3.2 Boundary-Corrected Wavelets

This type of wavelets are introduced in order to overcome the problems arising
from the periodization method.

Their construction is based on modifying those wavelets whose supports inter-
sect the boundaries of the interval [0, 1]. For example, beginning with the DBp
wavelet basis, it is possible to define functions φleft

n , φright
n , ψleft

n , ψright
n that modify

the wavelets and scaling functions at the left and right endpoints. [Mallat, 1999],
and [Cohen et al., 1993] provide further details about the construction. Then, we
consider new wavelets and scaling functions as

ψint
j,n(x) =


2
j
2ψleft

n (2jx), if 0 ≤ n < p

2
j
2ψ(2jx− n), if p ≤ n < 2j − p

2
j
2ψright

n (2jx), if 2j − p ≤ n < 2j

and

φint
j,n(x) =


2
j
2φleft

n (2jx), if 0 ≤ n < p

2
j
2φ(2jx− n), if p ≤ n < 2j − p

2
j
2φright

n (2jx), if 2j − p ≤ n < 2j

We omit the details of this construction. Similarly to the periodized case, the
functions ψint

j,n, and φ
int
j,n provide orthonormal bases for

V int
j := span{φint

j,n : n = 0, . . . , 2j − 1},

W int
j := span{ψint

j,n : n = 0, . . . , 2j − 1}.
Moreover, we always get the same properties, and the same space decomposi-

tion as in (2.9), applied to V int
j , W int

j , and L2[0, 1]

L2[0, 1] = V int
j0

⊕W int
j0

⊕W int
j0+1 ⊕ . . . . (2.26)

for any j0. Therefore, the corresponding wavelet basis is

{φint
j0,n

: n = 0, . . . , 2j0 − 1} ∪ {ψint
j,n : j ≥ j0, n = 0, . . . , 2j − 1}. (2.27)

Unlike periodizated wavelets, the boundary-corrected wavelets preserve van-
ishing moments. Indeed, the restriction of polynomials of degree less than p to
the interval [0, 1] belongs to V int

j , hence it is orthogonal to the detail space W int
j .

Therefore, this construction allows us to have fast decay of the coefficients relating
to smooth regions, even if the support of the wavelet intersects [0, 1].

2.4 Multidimensional Wavelets

Having constructed wavelets bases for the analysis of one-dimensional signal,
we now want to extend this construction to higher dimensions. We present the
two-dimensional case, which will be the one of our interest in the next chapters.
The constructions described below are simply generalisable to higher dimensions.
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2.4.1 Wavelet Bases of L2
(
R2
)

Let us consider a wavelet basis {ψj,n : j, n ∈ Z} of L2 (R) arising from an
MRA {Vj : j ∈ Z} with scaling function φ. A possible approach to obtain an
orthonormal basis of L2 (R2) is by considering the tensor product of the spaces Vj

V
(2)
j := Vj ⊗ Vj = span{g ⊗ h : g, h ∈ Vj} ⊆ L2

(
R2
)
, (2.28)

where (g ⊗ h)(x1, x2) = g(x1)h(x2).

One can verify that the sequence {V (2)
j }j∈Z defines a two-dimensional MRA,

i.e. a sequence of closed subspaces of L2 (R2) verifying

(a) V
(2)
j ⊆ V

(2)
j+1 for all j ∈ Z,

(b) f ∈ V
(2)
j if and only if f(2·) ∈ V

(2)
j+1,

(c)
⋂
j∈Z V

(2)
j = {0},

(d)
⋃
j∈Z V

(2)
j = L2(R2),

(e) the set {φ0,n := φ0,n1 ⊗ φ0,n2 : n = (n1, n2) ∈ Z2} forms an orthonormal

basis of V
(2)
0 .

Similar to the one-dimensional case, we define the detail spacesW
(2)
j as the orthog-

onal complement of V
(2)
j within V

(2)
j+1. Hence, we get the following decompositions

L2
(
R2
)
= V

(2)
j0

⊕W
(2)
j0

⊕W
(2)
j0+1 ⊕ . . . (2.29)

L2
(
R2
)
=
⊕
j∈Z

W
(2)
j , (2.30)

for any scale j0 ∈ Z.
Now we can construct wavelet bases for L2 (R2). First observe that, due to

properties (b) and (e),

{φj,n = φj,n1 ⊗ φj,n2 : n = (n1, n2) ∈ Z2} (2.31)

is an orthonormal basis of V
(2)
j . Now, one has

V
(2)
j ⊕W

(2)
j = V

(2)
j+1 = Vj+1 ⊗ Vj+1 = (Vj ⊕Wj)⊗ (Vj ⊕Wj)

= (Vj ⊗ Vj)⊕ (Vj ⊗Wj)⊕ (Wj ⊗ Vj)⊕ (Wj ⊗Wj)

= V
(2)
j ⊕ (Vj ⊗Wj)⊕ (Wj ⊗ Vj)⊕ (Wj ⊗Wj).

Therefore,
W

(2)
j = (Vj ⊗Wj)⊕ (Wj ⊗ Vj)⊕ (Wj ⊗Wj),
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so the functions φj,n1 ⊗ ψj,n2 , ψj,n1 ⊗ φj,n2 , and ψj,n1 ⊗ ψj,n2 provide a basis for
these spaces. It is now useful to introduce some notation, let

Ψ
(0)
j,n = φj,n , Ψ

(1)
j,n = ψj,n (2.32)

denote the one-dimensional wavelet and scaling functions. Then we set

Ψ
(e)
j,n = Ψ

(e1)
j,n1

⊗Ψ
(e2)
j,n2

, e = (e1, e2) ∈ {0, 1}2, n = (n1, n2) ∈ Z2, j ∈ Z.

Hence, orthonormal bases of V
(2)
j , and W

(2)
j are respectively given by

{Ψ(0,0)
j,n : n ∈ Z2},

and
{Ψ(e)

j,n : e ∈ {0, 1}2\{(0, 0)}, n ∈ Z2}.
Therefore, using (2.29), and (2.30), we obtain for any j0 ∈ Z

{Ψ(0,0)
j0,n

: n ∈ Z2} ∪ {Ψ(e)
j,n : j ≥ j0, e ∈ {0, 1}2\{(0, 0)}, n ∈ Z2}, (2.33)

and
{Ψ(e)

j,n : e ∈ {0, 1}2\{(0, 0)}, n ∈ Z2, j ∈ Z} (2.34)

are orthonormal bases of L2 (R2).

2.4.2 Wavelet Bases of L2([0, 1]2)

In order to construct wavelet bases of L2([0, 1]2), we can define the spaces

V
type,(2)
j , W

type,(2)
j by following the construction in the previous section, where

type denotes either the periodic (per), or the boundary-corrected (int) wavelets.
Then, we get the decomposition of L2([0, 1]2)

L2([0, 1]2) = V
type,(2)
j0

⊕W
type,(2)
j0

⊕W
type,(2)
j0+1 ⊕ . . . (2.35)

for any j0. Now let

Ψ
type,(e)
j,n = Ψ

type,(e1)
j,n1

⊗Ψ
type,(e2)
j,n2

, e = (e1, e2) ∈ {0, 1}2, j ∈ Z, n1, n2 = 0, . . . , 2j−1.

Similarly to the R2-case, we have that

{Ψtype,(0,0)
j,n : n = 0, . . . , 2j − 1},

and
{Ψtype,(e)

j,n : e ∈ {0, 1}2\{(0, 0)}, n = 0, . . . , 2j − 1}

form bases of V
type,(2)
j and W

type,(2)
j respectively.

Then, due to (2.35), we have that

{Ψtype,(0,0)
j0,n

: n = 0, . . . , 2j − 1} ∪

{Ψtype,(e)
j,n : j ≥ j0, e ∈ {0, 1}2\{(0, 0)}, n = 0, . . . , 2j − 1}

(2.36)

is an orthonormal basis of L2([0, 1]2).
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Chapter 3

Non-Linear Approximation

In signal processing, orthonormal bases are of interest because they can be used
to efficiently approximate signals with just a few of their vectors. Approximation
theory studies the error produced by different schemes of approximation.

A linear approximation projects the signal over M vectors of the basis chosen
a priori. For instance, in the wavelets case, a linear approximation can be carried
out by fixing a scale parameter j, and projecting the signal over the related space
Vj. In general, given H an Hilbert space, B = {gm}m∈N an orthonormal basis of
H, and a signal f ∈ H, we can make a linear approximation by projecting f over
the space generated by {gm}Mm=1, namely

fM =
M∑
m=1

⟨f, gm⟩gm.

In doing so, we bring in a linear approximation error

ϵl[M ] = ∥f − fM∥2H =
+∞∑

k=M+1

|⟨f, gm⟩|2. (3.1)

Another approximation scheme is to choose the M vectors depending on the
signal f to analyze. This means that we have to choose a set IM ⊆ N of cardinality
M , and projecting f over the space generated by {gm}m∈IM

fM =
∑
m∈IM

⟨f, gm⟩gm.

With this procedure, we are projecting f over the space of the M -sparse vectors,
i.e. those elements f ∈ H such that

f =
∑
m∈I

⟨f, gm⟩gm,
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for some I ⊆ N, |I| ≤M . Since this space is not a linear subspace of H, we speak
of non-linear approximation. In this case, the error is

ϵ[M ] =
∑
m/∈IM

|⟨f, gm⟩|2.

To minimize the error, we have to choose IM corresponding to the M vectors
having the largest inner product amplitude |⟨f, gm⟩|. These are the vectors that
contain the main features of f . The resulting error is necessarily smaller than the
linear approximation error (3.1).

To simplify the notation, let us sort the sequence {|⟨f, gm⟩|}m∈N in decreasing
order. We denote with fB[k] = ⟨f, gmk⟩ the coefficient of rank k:

|fB[k]| ≥ |fB[k + 1]| for all k ∈ N.

Hence, the best non-linear approximation is

fM =
M∑
k=1

fB[k]gmk , (3.2)

and the corresponding non-linear approximation error is

ϵn[M ] = ∥f − fM∥2H =
+∞∑

k=M+1

|fB[k]|2. (3.3)

The next theorem shows a characterization of the decay of the non-linear
approximation error through the decay of the sorted coefficients.

Theorem 3.1. Let s > 1
2
. If there exists C > 0 such that

|fB[k]| ≤ Ck−s,

then

ϵn[M ] ≤ C2

2s− 1
M1−2s. (3.4)

Conversely, if ϵn[M ] satisfies 3.4, then

|fB[k]| ≤ C

(
1− 1

2s

)−s

k−s. (3.5)

Proof. Let us suppose that |fB[k]| ≤ Ck−s, then, from 3.3, we have

ϵn[M ] ≤ C2
∑
k>M

k−2s ≤ C2

∫ +∞

M

t−2sdt =
C2

2s− 1
M1−2s.
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Let us now observe that, for α < 1,

ϵn[⌈αM⌉] =
+∞∑

k=⌈αM⌉+1

|fB[k]|2 ≥
M+1∑

k=⌊αM⌋+1

|fB[k]|2 ≥ |fB[M + 1]|2M(1− α).

Therefore,

|fB[M + 1]|2 ≤ ϵn[⌈αM⌉]
M(1− α)

.

Now, by using 3.4, we have

|fB[M + 1]|2 ≤ C2

2s− 1

α1−2s

1− α
M−2s.

Choosing α = 1− 1
2s
< 1, and k =M + 1, we obtain

|fB[k]| ≤ C

(
1− 1

2s

)−s

(k − 1)−s = C

(
1− 1

2s

)−s(
k

k − 1

)s
k−s.

The fact that k
k−1

≤ 2 for k ≥ 2 allows us to obtain 3.5.

The decay of the sorted inner products can be evaluated from the ℓp norm

∥f∥pB,p :=
∑
m∈N

|⟨f, gm⟩|p.

The following theorem relates the decay of the non-linear error approximation
to the ℓp norm defined above.

Theorem 3.2. Let p < 2. If ∥f∥B,p < +∞, then

|fB[k]| ≤ ∥f∥B,pk−
1
p , (3.6)

and ϵn[M ] = o
(
M1− 2

p

)
.

Proof. We prove 3.6 by observing that

∥f∥pB,p =
∑
n∈N

|fB[n]|p ≥
k∑

n=1

|fB[n]|p ≥ k|fB[k]|p.

Now, by setting

S[k] :=
2k−1∑
n=k

|fB[n]|p ≥ k|fB[2k]|p,

we obtain

|fB[k]| ≤ S

[
k

2

] 1
p
(
k

2

)− 1
p

.
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Hence,

ϵn[M ] =
+∞∑

k=M+1

|fB[k]|2 ≤
+∞∑

k=M+1

S

[
k

2

] 2
p
(
k

2

)− 2
p

≤

(
sup
k>M

2

S[k]
2
p

)
+∞∑

k=M+1

(
k

2

)− 2
p

≤

(
sup
k>M

2

S[k]
2
p

)∫ +∞

M

(
t

2

)− 2
p

dt

≤ C

(
sup
k>M

2

S[k]
2
p

)
M1− 2

p .

Since ∥f∥pB,p < +∞, we have

lim
M→+∞

sup
k>M

2

S[k]
2
p = 0,

and so ϵn[M ] = o
(
M1− 2

p

)
.

This theorem provides spaces of functions whose elements are well approxi-
mated by a few vectors of a basis B

BB,p := {f ∈ H : ∥f∥B,p < +∞}.

If f ∈ BB,p, then the previous theorem shows that ϵn[M ] = o
(
M1− 2

p

)
. Conversely,

if ϵn[M ] = O
(
M1− 2

p

)
, then the inequality (3.5) for s = 1

p
shows that f ∈ BB,q for

any q > p.

3.1 Non-Linear Wavelets Approximation

We are now interested in applying these results to the case of wavelet bases.
We consider the Hilbert space L2[0, 1], and an orthonormal wavelet basis, such as
(2.25), or (2.27), with compactly supported wavelets that are Cq, with q vanishing
moments

B = {φJ,n : n = 0, . . . , 2J − 1} ∪ {ψj,n : j ≥ J, n = 0, . . . , 2j − 1}.

Therefore, for any f ∈ L2[0, 1], we have

f =
2J−1∑
n=0

⟨f, φJ,n⟩φJ,n +
+∞∑
j=J

2j−1∑
n=0

⟨f, ψj,n⟩ψj,n.

To simplify the notation, let ψJ−1,n = φJ,n. Hence, the best non-linear approx-
imation of f using M elements of B is

33



fM =
∑

(j,n)∈IM

⟨f, ψj,n⟩ψj,n,

where IM is a set of cardinality M that contains the indices corresponding to the
M wavelet coefficients having the largest amplitude. The approximation error is

ϵn[M ] =
∑

(j,n)/∈IM

|⟨f, ψj,n⟩|2.

A class of functions that are well approximated by a non-linear wavelets ap-
proximation, i.e. such that their non-linear approximation error ϵn[M ] has fast
decay as M increases, is the class of piecewise regular functions. In fact, there are
a few wavelet coefficients affected by isolated discontinuities, and the error decay
rate depends on the uniform Lipschitz regularity (see Appendix A) of the func-
tion in its smooth areas. The next theorem formalizes such behaviour. Observe
that, following the proofs presented in [Mallat, 1999], since we cannot control
the scaling coefficients magnitudes, we assume to select them in the non-linear
approximation.

Theorem 3.3. If f ∈ L2[0, 1] is a piecewise regular function, with a finite number
of discontinuities, and is uniformly Lipschitz α < q between these discontinuities,
then

ϵn[M ] = O
(
M−2α

)
.

Proof. In the following, we present the main ideas of the proof. We will prove
that fB[k] = O(k−α−

1
2 ), this allows for the application of the first part of Theorem

3.1, and this concludes the proof.
Let us split the wavelet coefficients into two families; we consider type one

coefficients, related to those wavelets whose supports contain at least one sin-
gularity of the signal, and type two coefficients, related to those wavelets whose
supports are contained in regions where the signal f is uniformly Lipschitz α.
Consider now the associated decreasing sequences fB,1[k], and fB,2[k]. We demon-

strate fB[k] = O(k−α−
1
2 ), by proving fB,1[k] = O(k−α−

1
2 ), and fB,2[k] = O(k−α−

1
2 )

separately. The principal result we need in order to conclude the proof is Theorem
6.3 in [Mallat, 1999] applied to the sample of the continuous wavelet transform
Wψf(2

−jn, 2−j). This theorem states that, if f is uniformly Lipschitz α on the
support of ψj,n, then there exists a constant A > 0 such that

|⟨f, ψj,n⟩| ≤ A2−j(α+
1
2
). (3.7)

Let us now consider type two coefficients. Fix an integer l < 0, and consider the
scale parameter −l > 0. At coarser scales 2−j > 2l there are at most 2−l type two
coefficients. At finer scales 2−j ≤ 2l, due to (3.7), we have

|⟨f, ψj,n⟩| ≤ A2l(α+
1
2
).
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Hence, since the coefficients decrease for the scale parameter growing, we have
that, for k ∼ 2−l,

fB,2[k] ≤ A2l(α+
1
2
),

and this concludes the proof in this case. Let us now consider type one coefficients.
Since f is uniformly Lipschitz α between the discontinuities, in particular f has
to be uniformly bounded on [0, 1], and so it is uniformly Lipschitz 0 over [0, 1].
Hence, (3.7) implies that

|⟨f, ψj,n⟩| ≤ A2−
j
2 .

Let us suppose that the orthogonal wavelet ψ is supported within [0, L] for some
L > 0, and suppose that the function f has D discontinuities. At each scale 2−j,
the wavelets are supported within [ k

2j
, L+k

2j
], so every time k increases by 1, we

shift the support to the right by 1
2j
. Since the length of the support is constant

L
2j
, we have that, for a fixed abscissa v ∈ [0, 1], there are at most L wavelets whose

supports contain it. Since there are D discontinuities, then there exist at most
LD wavelets whose supports contain at least one singularity. Fix an integer l < 0,
and consider the scale parameter −l > 0. Since the coefficients decrease for the
scale parameter growing, in the sequence fB,1[k] we find the coefficients at scale
2l for k ∼ −lLD. Moreover, at finer scales 2−j ≤ 2l every type one coefficient is
lower than A2

l
2 . Therefore, we can conclude that

fB,1[−lLD] ≤ A2
l
2 .

This implies that
fB,1[k] = O(k−β−

1
2 ),

for every β > 0, and this concludes the proof.

This theorem shows that a finite number of discontinuities does not influence
the decay rate of the non-linear error, which only depends on the regularity be-
tween the singularities; the higher the regularity, the faster the error decays.

Let us now consider a piecewise regular image, i.e. a piecewise regular function
that belongs to L2 ([0, 1]2), such as a cartoon-like image, which will be introducted
formally in Chapter 4.

Figure 3.1: Cartoon-Like Image.
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It has discontinuities along curves of dimension one, which create a non-
negligible number of high magnitude wavelet coefficients. The next result shows
that, if we consider the prototype of a piecewise regular image, than the non-linear
error cannot decay faster than M−1.

Proposition 3.4. If f = 1Ω is the indicator function of a set Ω whose boundary
has a finite length, then

|fB[k]| ∼ ∥f∥V k−1, (3.8)

and hence
ϵn[M ] ∼ ∥f∥2V M−1, (3.9)

where ∥f∥V :=
∫
[0,1]2

|∇f(x)|dx is the total variation norm.

Proof. We give the main idea of the proof without all the details, and we refer
to [Mallat, 1999] for more details. When analyzing the function f with a two-
dimensional wavelet at a fixed scale parameter j, we are portioning the unitary
square into dyadic squares of side length 2−j. Since the boundary of Ω, ∂Ω, has
finite length L, one can prove (see Appendix C) that, for each scale parameter j,
there are on the order of L2j wavelets whose supports intersect ∂Ω. Now, if the
wavelet does not intersect ∂Ω, since f is constant there, we can conclude that the
corresponding coefficient is 0. If the wavelet support intersects the boundary of
Ω, we can prove that the corresponding wavelet coefficient has magnitude of the
order of 2−j. Since the amplitudes of these coefficients decrease as the scale 2−j

decreases, i.e. for j → +∞, and since there are on the order of L2j significant
wavelet coefficients at coarser scales, then we meet the coefficients at scale 2−j for
k ∼ L2j. This means that |fB[k]| ∼ 2−j for k ∼ L2j, which is

|fB[k]| ∼ Lk−1.

To conclude the proof of (3.8), one can prove ∥f∥V = L. Finally, we can conclude
the proof of the theorem by substituting (3.8) into the definition of non-linear
approximation error (3.3) to obtain (3.9).

In particular, this theorem shows that despite the strong regularity of the
function in its regular areas (in this case it is even C∞), the non-linear error
cannot decay arbitrarily fast as in the one-dimensional case. Therefore, while
wavelets bases are optimal for non-linear approximation of one-dimensional signal,
in higher dimensions they do not provide the same error decay results.

The reason why this happens lies in the geometry of the set of the signal singu-
larities. Whereas in one dimension it is a finite collection of points, in dimension
two it forms a curve, so the geometry of this curve also comes into play. The
fact is that the support of a two-dimensional wavelet, (construction in Section
2.4.2) arising from a compactly supported one-dimensional wavelet, is a square
that can only be translated or enlarged, but cannot change shape adaptively to
the curvature of the curve.
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Chapter 4

Shearlets

In Proposition 3.4, it is shown that wavelet bases are not optimal for non-linear
approximation of multivariate functions. The underlying explanation for this is
that wavelets possess isotropic features. In fact, wavelet bases are constructed by
translating, and isotropically dilating a generating function. This makes wavelets
unable to effectively dealing with multidimensional piecewise regular function such
as the so-called cartoon-like images (see Figure 3.1).

Definition 4.1. The class E (R2) of cartoon-like images is the set of functions
f : R2 −→ C of the form

f = f0 + f11B,

where fi ∈ C2 (R2) is supported in [0, 1]2, with ∥fi∥C2 :=
∑

|α|≤2∥D
α fi∥∞ ≤ 1 for

i = 0, 1, and B ⊂ [0, 1]2 is a set with C2 boundary ∂B.

In this case, the isotropic features of wavelet bases do not allow then to cap-
ture most of the signal information with a few coefficients. These limitations have
motivated the study of new techniques for non-linear approximation of multivari-
ate functions in order to outperform the error rate relative to multidimensional
wavelets. The best result to date was proved in [Donoho, 2001]; it provides an
error rate of the order of N−2, but it has evident practical limitations since it
requires to construct adapted triangulations of the unitary square. However, it
provides a benchmark for optimally sparse approximation of cartoon-like images.
Moreover, the argument in the proof indicates that to obtain the most efficient
sparse representation, it is necessary to use analyzing elements with elongated
and orientable supports. Throughout these years, starting from the concept of
wavelets and the need to incorporate directional sensitivity, several attempts were
carried out in order to achieve Donoho’s error rate. In 2005, Kutyniok, Labate,
Lim and Weiss introduced shearlets in [Labate et al., 2005]. Shearlet systems cur-
rently represent the finest generalization of one-dimensional wavelets since they
offer a distinctive combination of the following desired attributes:

• A finite set of generating functions;
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• Anisotropic dilations;

• Directional sensitivity which preserve the discrete lattice;

• Asymptotic optimal error rate.

In particular, the first property allows easy handling of shearlet systems in appli-
cations. The second and third properties enable to adaptively modify the supports
of shearlets to the singularity curve. The fact that the discrete lattice is preserved
is useful in applications when transitioning from the continuum to the discrete
setting. Finally, as it will be shown in Theorem 4.15, shearlet systems reach, up
to a logarithmic factor, the optimal asymptotic error decay of N−2.

4.1 Continuous Shearlet Systems

Before providing the technical construction of shearlet systems, let us discuss
the intuitive ideas that are at the core of the construction. We refer the interested
reader to [Kutyniok and Labate, 2012] and [Labate et al., 2005]. As explained in
the introduction of the chapter, we want to construct systems whose elements
must be functions spanning over different locations, scales, and orientations. This
necessitates the compositions of three different operators that are capable to trans-
late, dilate, and orientate the supports of the generating functions. In order to
translate, we use the standard translation operator Tt defined, for any t ∈ R2, as

Ttψ := ψ(· − t).

For the dilation, since we need to anisotropically dilate the supports, we use the
family of parabolic scaling matrices

Aa :=

(
a 0

0 a
1
2

)
, a > 0,

where the corresponding operator is defined by

DAaψ(x1, x2) := |detAa|−
1
2ψ

(
A−1
a

(
x1
x2

))
= a−

3
4ψ(a−1x1, a

− 1
2x2).

Now, we need an orthogonal operator to orientate the support of the generat-
ing functions. The most straightforward choice is to use rotations, such as in
the curvelet construction (see [Candès and Donoho, 2004]), but unless we rotate
by π

2
, π, 3

2
π, or 2π, these operations destroy the integer lattice structure of Z2.

This issue becomes a problem when transitioning to the discrete setting in ap-
plications. The alternative approach proposed for shearlet systems involves using
shearing matrices,

Ss :=

(
1 s
0 1

)
, s ∈ R.
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The shearing matrices have the advantage of preserving the integer lattice struc-
ture provided s is an integer. Likewise the parabolic scaling operators, the shearing
operators are defined by

DSsψ(x1, x2) := |detSs|−
1
2ψ

(
S−1
s

(
x1
x2

))
= ψ(x1 − sx2, x2).

Combining these three operators, we can define a continuous shearlet system gen-
erated by a function ψ ∈ L2(R2). For any a > 0, s ∈ R, t = (t1, t2) ∈ R2 we
define

ψa,s,t(x1, x2) = TtDAaDSsψ(x1, x2) = a−
3
4ψ

(
A−1
a S−1

s

(
x1
x2

)
−
(
t1
t2

))
.

Definition 4.2. For ψ ∈ L2 (R2), the continuous shearlet system is defined by

SH (ψ) := {ψa,s,t : a > 0, s ∈ R, t ∈ R2}. (4.1)

Similarly to the wavelet case, the continuous shearlet transform is the map
that associates to a function f ∈ L2 (R2) its components along SH (ψ).

Definition 4.3. For ψ ∈ L2 (R2), the continuous shearlet transform of f ∈ L2 (R2)
is

SHψf (a, s, t) := ⟨f, ψa,s,t⟩, for a > 0, s ∈ R, t ∈ R2. (4.2)

We now seek to find suitable generating functions ψ such that the system
SH (ψ) satisfies a reproducing formula for L2 (R2), i.e. the mapping SHψ is a
multiple of an isometry.

To state this result precisely, we need to point out some group structure of
SH (ψ). Let us introduce the Shearlet group S defined as the semi-direct product

(R+ × R)⋉R2,

equipped with the multiplication

(a, s, t) · (a′, s′, t′) :=
(
aa′, s+

√
as′, t+ SsAat

′) .
It is easy to see that dµ := da

a3
dsdt is a left Haar measure on S. Let us define the

representation σ : S 7−→ U (L2 (R2)) as

σ(a, s, t)ψ := TtDAaDSsψ, ψ ∈ L2
(
R2
)
,

where U (L2 (R2)) is the group of the unitary operators on L2 (R2). Using this
notation we can represent the shearlet system as

SH (ψ) = {σ(a, s, t)ψ : (a, s, t) ∈ S}.

Hence, we search for sufficient conditions on ψ ensuring that the continuous shear-
let transform SHψ is a multiple of an isometry.
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Definition 4.4. A function ψ ∈ L2 (R2), ψ ̸= 0, such that∫
R2

|Fψ (ξ1, ξ2)|2

ξ21
dξ2dξ1 < +∞, (4.3)

is referred to as admissible shearlet.

The next result shows that an admissible shearlet gives that SHψ is a multiple
of an isometry.

Theorem 4.5. [Kutyniok and Labate, 2012] Let ψ ∈ L2 (R2) be an admissible
shearlet, and define

C+
ψ :=

∫ +∞

0

∫
R

|Fψ (ξ1, ξ2)|2

ξ21
dξ2dξ1,

C−
ψ :=

∫ 0

−∞

∫
R

|Fψ (ξ1, ξ2)|2

ξ21
dξ2dξ1.

If Cψ := C+
ψ = C−

ψ < +∞, then, for every f ∈ L2(R2), SHψ satisfies∫
S
|SHψf(a, s, t)|2dµ = 2πCψ

∫
R2

|f(x1, x2)|2dx1dx2.

In particular, if Cψ = 1
2π
, then SHψ is an isometry.

An important class of admissible shearlets satisfying the assumption of the
theorem is the class of the so-called classical shearlets.

Definition 4.6. A function ψ ∈ L2 (R2) is said to be a classical shearlet if it is
defined by

Fψ(ξ1, ξ2) = Fψ1(ξ1)Fψ2

(
ξ2
ξ1

)
,

where ψ1 ∈ L2 (R) satisfies the discrete Calderón condition∑
j∈Z

|Fψ1

(
2−jξ

)
|2 = 1 a.e. ξ ∈ R, (4.4)

with Fψ1 ∈ C∞ (R), and suppFψ1 ⊆
[
−1

2
,− 1

16

]
∪
[

1
16
, 1
2

]
, and ψ2 ∈ L2 (R) satisfies

1∑
n=−1

|Fψ2 (ξ + n)|2 = 1 a.e. ξ ∈ [−1, 1], (4.5)

with Fψ2 ∈ C∞ (R) , and suppFψ2 ⊆ [−1, 1].
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Hence, a classical shearlet can be described as a function possessing wavelet
properties along one axis, and bump-like properties along the other. There exist
several constructions of classical shearlets. One possible choice is to consider ψ1 to
be a Lemariè-Meyer wavelet (see [Hernández and Weiss, 1996], Section 1.4), and
Fψ2 to be a spline.

Figure 4.1: Lemariè-Meyer wavelet, and Lemariè-Meyer scaling function

As said above, the classical shearlets verify the assumption of the theorem.

Lemma 4.7. Let ψ ∈ L2 (R2) be a classical shearlet, then C+
ψ = C−

ψ = 1
2π
.

4.2 Discrete Shearlet Systems

By sampling the continuous shearlet systems, various discrete shearlet systems
can be constructed. Throughout the following sections, we will use the sampling
scheme proposed in [Guo and Labate, 2007].

Let us introduce the matrices

A :=

(
4 0
0 2

)
, S :=

(
1 1
0 1

)
. (4.6)

We consider the shearlet system

SH (ψ) = {ψj,l,k = 2
3
2
jψ
(
SlAj · −k

)
: j, l ∈ Z, k ∈ Z2}, (4.7)

where

Aj =

(
4j 0
0 2j

)
, Sl =

(
1 l
0 1

)
, j, l ∈ Z.
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It is useful to observe that applying the Fourier transform, we obtain

Fψj,l,k (ξ) = 2−
3
2
jFψ

(
ξA−jS−l) e−iξA−jS−lk . (4.8)

As in the wavelet case, we are interested in shearlet systems forming an orthonor-
mal basis or, more in general, a Parseval frame (see Appendix B) for L2 (R2). In
particular, in applications, classical shearlet systems are not frequently used. In-
deed, although they have an elegant group structure, they also posses a directional
bias.

Figure 4.2: Classical shearlet support in the frequency domain.

In order to show the impact of this bias, consider a function f that is con-
centrated along the ξ2 axis in the frequency domain. As shown in Figure 4.2,
the shearlets are supported in pairs of trapezoids, and the slope of their edges is
l
2j
. Therefore, we can observe that the energy of f is mostly concentrated in the

shearlet components for the shearing parameter l → ∞. Hence, it is clear that
this can be a significant constraint for some applications. Here, the main prob-
lem is the fact that the shearing parameter l takes on values on an unbounded
set. Therefore, to address this problem, we have to restrict the set over which
the shearing parameter can take on values. The most common approach is to
partition the frequency domain into four cones, and a square centered around the
origin (see Figure 4.3).

Figure 4.3: Partition of the frequency domain.
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This strategy gives rise to the so-called cone-adapted shearlet system, where a
frame of L2(R2) is constructed by defining three different frames corresponding to
the three regions Ch, Cv, and R. Specifically, in the following, we consider R to be
the square centered at the origin of side length 1

8
, Ch = {(ξ1, ξ2) : |ξ1| ≥ 1

8
, | ξ2

ξ1
| ≤

1} the horizontal cones, and Cv = {(ξ1, ξ2) : |ξ2| ≥ 1
8
, | ξ1

ξ2
| ≤ 1} the vertical ones.

Then, we construct a Parseval frame of L2 (Ch)∨, a Parseval frame of L2 (Cv)∨,
and one of L2 (R)∨, where, for A ⊂ R2,

L2(A)∨ = {f ∈ L2
(
R2
)
: supp (Ff) ⊆ A}.

Finally, the union of this three Parseval frames will provide a Parseval frame of
L2(R2).

We start by constructing a Parseval frame of L2 (Ch)∨. On this matter, we
consider ψ ∈ L2(R2) given by

Fψ(ξ1, ξ2) = Fψ1(ξ1)Fψ2

(
ξ2
ξ1

)
, (ξ1, ξ2) ∈ R2, ξ1 ̸= 0, (4.9)

where Fψ1,Fψ2 ∈ C∞(R), suppFψ1 ⊆
[
−1

2
,− 1

16

]
∪
[

1
16
, 1
2

]
, and suppFψ2 ⊆

[−1, 1]. In particular, it implies that Fψ ∈ C∞ (R2), with supp (Fψ) ⊆
[
−1

2
, 1
2

]2
.

Moreover, we assume that∑
j≥0

|Fψ1(2
−2jξ)|2 = 1, a.e. |ξ| ≥ 1

8
, (4.10)

and
1∑

l=−1

|Fψ2(ξ + l)|2 = 1, a.e. |ξ| ≤ 1. (4.11)

We refer to Appendix D for an explicit construction of a function satisfying these
properties.

Lemma 4.8. Let f : R −→ C be a function such that supp f ⊆ [−1, 1]. Suppose
that

1∑
l=−1

|f(x+ l)|2 = 1, a.e. |x| ≤ 1,

then for any integer j ≥ 0

2j∑
l=−2j

|f
(
2jx+ l

)
|2 = 1, a.e. |x| ≤ 1.

Proof. The proof proceeds by induction on j. For j = 0 it is trivial. Now, for
any j ≥ 1, we suppose that the thesis holds for j − 1, and we demonstrate it for
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j. Let us first show the proof for a.e. x ∈
(
−1

2
, 1
2

)
. In this case, we have that

2jx+ l ∈ (l − 2j−1, l + 2j−1). Hence, since f is supported within [−1, 1], we have

2j∑
l=−2j

|f
(
2jx+ l

)
|2 =

2j−1∑
l=−2j−1

|f
(
2jx+ l

)
|2.

By the change of variable y = 2x ∈ (−1, 1), we can conclude due to the inductive
hypothesis

2j−1∑
l=−2j−1

|f
(
2jx+ l

)
|2 =

2j−1∑
l=−2j−1

|f
(
2j−1y + l

)
|2 = 1.

Now, we show the result for x ∈
[
1
2
, 1
)
. The proof for the symmetric case x ∈(

−1,−1
2

]
is analogous. Let us consider the following partition

[
1

2
, 1

)
=

2j−1−1⋃
k=0

[
1

2
+
k

2j
,
1

2
+
k + 1

2j

)
Let us prove the thesis for x ∈

[
1
2
+ k

2j
, 1
2
+ k+1

2j

)
. This implies that 2jx + l ∈

[l + 2j−1 + k, l + 2j−1 + k + 1). Therefore, since f is compactly supported within
[−1, 1], we have

2j∑
l=−2j

|f
(
2jx+ l

)
|2 =

−2j−1−k+1∑
l=−2j−1−k−1

|f
(
2jx+ l

)
|2.

By the change of variable y = 2jx− 2j−1 − k ∈ [0, 1), we can conclude the proof

−2j−1−k+1∑
l=−2j−1−k−1

|f
(
y + l + 2j−1 + k

)
|2 =

1∑
l=−1

|f (y + l)|2 = 1.

Proposition 4.9. The system

SH (ψ) = {ψj,l,k = 2
3
2
jψ
(
SlAj · −k

)
: j ≥ 0, −2j ≤ l ≤ 2j, k ∈ Z2} (4.12)

is a Parseval frame of L2(Ch)∨.

Proof. Lemma 4.8 applied to f = Fψ2 shows that, for any integer j ≥ 0,

2j∑
l=−2j

|Fψ2

(
2jξ + l

)
|2 = 1, a.e. |ξ| ≤ 1. (4.13)
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By using (4.10), (4.13), and observing that ξA−jS−l = (2−2jξ1, 2
−jξ2 − 2−2jlξ1),

we obtain

+∞∑
j=0

2j∑
l=−2j

|Fψ
(
ξA−jS−l)|2 = +∞∑

j=0

2j∑
l=−2j

|Fψ1

(
2−2jξ1

)
|2|Fψ2

(
2j
ξ2
ξ1

− l

)
|2

=
+∞∑
j=0

|Fψ1

(
2−2jξ1

)
|2

2j∑
l=−2j

|Fψ2

(
2j
ξ2
ξ1

− l

)
|2 = 1,

(4.14)

for ξ = (ξ1, ξ2) ∈ Ch. The fact that, for any f ∈ L2(Ch)∨,

+∞∑
j=0

2j∑
l=−2j

∑
k∈Z2

|⟨f, ψj,l,k⟩|2 = ∥f∥22,

is a consequence of (4.14), and the fact that supp (Fψ) ⊆
[
−1

2
, 1
2

]2
. Indeed, due

to Plancharel identity, using (4.8) we have

+∞∑
j=0

2j∑
l=−2j

∑
k∈Z2

|⟨f, ψj,l,k⟩|2 =
1

(2π)2

+∞∑
j=0

2j∑
l=−2j

∑
k∈Z2

|⟨Ff,Fψj,l,k⟩|2

=
1

(2π)2

+∞∑
j=0

2j∑
l=−2j

∑
k∈Z2

|
∫
DC

Ff (ξ) 2−
3
2
jFψ

(
ξA−jS−l) e−iξA−jS−lk dξ|2.

Now, by the change of variable ω = ξA−jS−l, we obtain∫
DC

Ff (ξ) 2−
3
2
jFψ

(
ξA−jS−l) e−iξA−jS−lk dξ

=

∫
[− 1

2
, 1
2 ]

2
Ff
(
ωSlAj

)
Fψ (ω) 2

3
2
j e−iωk dω.

Therefore,

+∞∑
j=0

2j∑
l=−2j

∑
k∈Z2

|⟨f, ψj,l,k⟩|2

=
1

(2π)2

+∞∑
j=0

2j∑
l=−2j

∑
k∈Z2

|
∫
[− 1

2
, 1
2 ]

2
Ff
(
ωSlAj

)
Fψ (ω) 2

3
2
j e−iωk dω|2

=
1

(2π)2

+∞∑
j=0

2j∑
l=−2j

23j
∑
k∈Z2

|
∫
[− 1

2
, 1
2 ]

2
Ff
(
ωSlAj

)
Fψ (ω) e−iωk dω|2.
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By using the Parseval identity, we have∑
k∈Z2

|
∫
[− 1

2
, 1
2 ]

2
Ff
(
ωSlAj

)
Fψ (ω) e−iωk dω|2 = 2π

∫
[− 1

2
, 1
2 ]

2
|Ff

(
ωSlAj

)
|2|Fψ (ω)|2dω.

Hence,

+∞∑
j=0

2j∑
l=−2j

∑
k∈Z2

|⟨f, ψj,l,k⟩|2 =
1

2π

+∞∑
j=0

2j∑
l=−2j

∫
[− 1

2
, 1
2 ]

2
23j|Ff

(
ωSlAj

)
|2|Fψ (ω)|2dω.

Applying the change of variable ξ = ωSlAj, we have∫
[− 1

2
, 1
2 ]

2
23j|Ff

(
ωSlAj

)
|2|Fψ (ω)|2dω =

∫
DC

|Ff (ξ)|2|Fψ
(
ξA−jS−l)|2dξ.

Now, using (4.14), we can conclude the proof

+∞∑
j=0

2j∑
l=−2j

∑
k∈Z2

|⟨f, ψj,l,k⟩|2 =
1

2π

+∞∑
j=0

2j∑
l=−2j

∫
DC

|Ff (ξ)|2|Fψ
(
ξA−jS−l)|2dξ

=
1

2π

∫
DC

|Ff(ξ)|2dξ = 1

2π
∥Ff∥22 = ∥f∥22.

To obtain a Parseval frame of L2 (R2), we need to construct a Parseval frame
of L2 (Cv)∨, and a Parseval frame of L2 (R)∨. The first one can be constructed
similarly to the one constructed for Ch reversing the roles of ψ1, and ψ2. Namely,

we can define F ψ̃(ξ1, ξ2) = Fψ1(ξ2)Fψ2

(
ξ1
ξ2

)
, where ψ1, ψ2 are defined as above.

Then, following the proof of the previous proposition, it can be proved that the
system

SH
(
ψ̃
)
= {ψ̃j,l,k = 2

3
2
jψ̃
(
S̃lÃj · −k

)
: j ≥ 0, −2j ≤ l ≤ 2j, k ∈ Z2}, (4.15)

where

Ã :=

(
2 0
0 4

)
, S̃ :=

(
1 0
1 1

)
,

is a Parseval frame of L2 (Cv)∨ . The second one can be constructed through a
shearlet scaling function φ such that its Fourier transform is C∞ and compactly
supported near the origin, so that the family of its translated {φ (· − k) : k ∈ Z2}
forms a Parseval frame of L2(R)∨. More details about the construction can be
find in [Easley et al., 2008, Kutyniok and Labate, 2012]. With this in hand, we
can represent a function f ∈ L2(R2) as a sum of three components,

f = fCh + fCv + fR, (4.16)
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where each component is the orthogonal projection of f onto one of the three
subspaces, namely

fCh = F−1[F(f)1Ch ],

fCv = F−1[F(f)1Cv ],

fR = F−1[F(f)1R].

4.3 Non-Linear Shearlets Approximation

In this section, our focus is on investigating the non-linear representation of
cartoon-like images using the shearlet decomposition. Given that the primary
goal of this thesis is to examine the hierarchical connections between the indices
associated with significant shearlet coefficients across various scales (as explained
in Chapter 5), our attention is directed towards analyzing the non-linear approx-
imation specific to the shearlet elements exclusively. This section is based on the
arguments presented in [Guo and Labate, 2007].

Let f ∈ E (R2) be a cartoon-like imagage, introduced in Definition 4.1, and
consider its decomposition as the sum of fCh , fCv , and fR. The next results
analyze the best N term approximation of fCh + fCv . Because the construction of
the shearlet on the vertical cones is symmetrical to that of the horizontal cones, it
is sufficient to investigate the non-linear approximation for the horizontal cones.

Let M = {(j, l, k) : j ≥ 0,−2j ≤ l ≤ 2j, k ∈ Z2}, and {ψµ}µ∈M be the
Parseval frame defined in (4.12). The sequence of the shearlet coefficients of f is
s(f) = {⟨f, ψµ⟩ : µ ∈M}. We rearrange this sequence in a decreasing way, and we
denote by |s(f)|(N) the N -th entry of the reordered sequence, i.e. the N -th largest
shearlet coefficient. In order to analyze the sparsity of the shearlet coefficients,
we will use the weak-ℓp-quasi-norm. Let us consider s = (sµ) a sequence, and let
|sµ|(N) be its N -th largest entry. The weak-ℓp-quasi-norm is defined as

∥s∥wℓp :=
(
sup
ϵ>0

|{µ : |sµ| > ϵ}|ϵp
) 1

p

.

Equivalently, it can be defined as

∥s∥wℓp = sup
N>0

N
1
p |sµ|(N).

Further details about the weak-ℓp-norms can be found in [Grafakos et al., 2008].
We first analyze the decay of the coefficients at a given scale 2−j. In order to do

that, we need to localize the function on dyadic squares. Fix the scale parameter
j ≥ 0, and consider the sequence of shearlet coefficients at scale 2−j, denoted by
sj(f) = {⟨f, ψµ⟩ : µ ∈ Mj}, where Mj = {(j, l, k) : −2j ≤ l ≤ 2j, k ∈ Z2}. Let
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us partition R2 in dyadic squares with side length of 2−j, i.e. squares of the form
Q = [k1

2j
, k1+1

2j
]× [k2

2j
, k2+1

2j
], k1, k2 ∈ Z. Let us consider a smooth partition of unity∑
Q

wQ(x) = 1 for every x ∈ R2,

where wQ(x1, x2) = w(2jx1 − k1, 2
jx2 − k2), and w is a C∞ non-negative function

supported within [−1, 1]2. Let Qj be the collection of the 22j dyadic squares
contained in [0, 1]2. Now we study the decay of the shearlet coefficients of localized
function fQ = fwQ. Since f is compactly supported within [0, 1]2, the only
squares that matter are those in Qj. We will see that there is a different decay
rate of the coefficients depending on whether Q intersects or not the boundary
of B. Let us split Qj into two disjoint families Q0

j and Q1
j , where Q0

j is the
collection of those squares such that the support of wQ intersects ∂B, and Q1

j =
Qj\Q0

j . In particular, we have that |Q0
j | ≤ C02

j (see Appendix C), while obviously
|Q1

j | ≤ 22j. Let us consider the sequence of the localized shearlet coefficients

sQj (f) = {⟨fQ, ψµ⟩ : µ ∈ Mj} for some Q ∈ Qj. Then the following lemmas hold.
Their proofs are omitted.

Lemma 4.10. [Guo and Labate, 2007] Let f ∈ E(R2). For Q ∈ Q0
j , the sequence

sQj (f) obeys

∥sQj (f)∥wℓ 23 ≤ C2−
3
2
j,

for some positive constant C independent of Q and j.

Lemma 4.11. [Guo and Labate, 2007] Let f ∈ E(R2). For Q ∈ Q1
j , the sequence

sQj (f) obeys

∥sQj (f)∥wℓ 23 ≤ C2−3j,

for some positive constant C independent of Q and j.

As a consequence, we obtain the following result.

Corollary 4.12. Let f ∈ E(R2). The sequence sj(f) obeys

∥sj(f)∥wℓ 23 ≤ C,

for some positive constant C independent of j.

In order to prove this corollary, we need to recall a property of the weak-ℓp-
quasi-norm.

Lemma 4.13. Consider (X,µ) a measure space, 0 < p < 1, and f1, . . . , fm
measurable functions defined on X. Then

∥
m∑
j=1

fj∥pwℓp ≤
2− p

1− p

m∑
j=1

∥fj∥pwℓp ,
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where
∥f∥pwℓp = sup

α>0
αpµ ({x ∈ X : |f(x)| > α}) .

Proof. Observe that, if ∥fj∥pwℓp = +∞ for some j, then the proof is trivial. Hence,
we suppose that ∥fj∥pwℓp < +∞ for every j. Firstly, we prove that, for any s > 0,
and for any measurable function f on X,∫

Es

|f(x)|dµ(x) ≤ s1−p

1− p
∥f∥pwℓp , (4.17)

where Es = {x ∈ X : |f(x)| ≤ s}. By definition of Lebesgue integral and weak ℓp

norm, we can observe that∫
Es

|f(x)|dµ(x) =
∫ +∞

0

µ({x ∈ Es : |f(x)| > α})dα

≤
∫ s

0

µ({x ∈ X : |f(x)| > α})dα

≤ ∥f∥pwℓp
∫ s

0

α−pdα =
s1−p

1− p
∥f∥pwℓp .

Now, we prove that, for any α > 0,

αpµ(Eα) ≤
1

1− p

m∑
j=1

∥fj∥pwℓp , (4.18)

where

Eα = {x ∈ X : |
m∑
j=1

fj| > α, max
j=1,...,m

|fj(x)| ≤ α}.

Due to (4.17), we note

αµ(Eα) = α

∫
Eα

dµ(x) ≤
m∑
j=1

∫
{x∈X:maxi=1,...,m|fi(x)|≤α}

|fj(x)|dµ(x)

≤
m∑
j=1

∫
{x∈X:|fj(x)|≤α}

|fj(x)|dµ(x) ≤
α1−p

1− p

m∑
j=1

∥fj∥pwℓp .

By multiplying both sides for αp−1, we conclude the proof of (4.18). Let us also
note that

µ({x ∈ X : max
j=1,...,m

|fj(x)| > α}) ≤
m∑
j=1

µ({x ∈ X : |fj(x)| > α}). (4.19)
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In order to prove the statement, we observe that, due to (4.18), and (4.19),

αpµ({x ∈ X : |
m∑
j=1

fj(x)| > α}) ≤ αpµ(Eα) + αpµ({x ∈ X : max
j=1,...,m

|fj(x)| > α})

≤ 1

1− p

m∑
j=1

∥fj∥pwℓp +
m∑
j=1

αpµ({x ∈ X : |fj(x)| > α}).

By taking the sup over all the positive number α, we conclude the proof.

Proof of Corollary 4.12. Using the previous lemmas, and writing the coefficients
for µ ∈Mj as

⟨f, ψµ⟩ = ⟨f
∑
Q

wQ, ψµ⟩ =
∑
Q∈Qj

⟨fQ, ψµ⟩

=
∑
Q∈Q0

j

⟨fQ, ψµ⟩+
∑
Q∈Q1

j

⟨fQ, ψµ⟩,

we obtain

∥sj(f)∥
2
3

wℓ
2
3
≲
∑
Q∈Q0

j

∥⟨fQ, ψµ⟩∥
2
3

wℓ
2
3
+
∑
Q∈Q1

j

∥⟨fQ, ψµ⟩∥
2
3

wℓ
2
3

≤ C1|Q0
j |2−j + C2|Q1

j |2−2j.

We complete the proof by using the upper bounds on the cardinalities of Q0
j , and

Q1
j .

With these results in mind, we can now state and prove the main results of
this section.

Theorem 4.14. We have

sup
f∈E(R2)

|s(f)|(N) ≤ CN− 3
2 log

3
2 (N).

Proof. For each ϵ > 0 and j ∈ N, define

R(j, ϵ) := |{µ ∈Mj : |⟨f, ψµ⟩| > ϵ}|.

By Corollary 4.12, we have that

C1 ≥ ∥sj(f)∥
2
3

wℓ
2
3
≥ R(j, ϵ)ϵ

2
3 ,

therefore
R(j, ϵ) ≤ C1ϵ

− 2
3 .
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Moreover, for each µ ∈Mj

|⟨f, ψµ⟩| = |
∫
R2

f(x)2
3
2
jψ
(
SlAjx− k

)
dx| ≤ 2−

3
2
j∥f∥∞

∫
R2

|ψ(x)|dx ≤ C ′2−
3
2
j.

In particular, we have that

C ′2−
3
2
j ≤ ϵ ⇐⇒ j ≥ 2

3

(
log2(C

′) + log2

(
1

ϵ

))
=: jϵ.

Hence, we can conclude that R(j, ϵ) = 0 for every j > jϵ. Let us define

R(ϵ) := |{µ ∈M : |⟨f, ψµ⟩| > ϵ}|,

we can observe

R(ϵ) ≤
∑
j≥0

R(j, ϵ) ≤ C2ϵ
− 2

3 log2

(
1

ϵ

)
,

which is equivalent to

R(ϵ)ϵ
2
3 log−1

2

(
1

ϵ

)
≤ C2.

Let us consider the function g(t) = t log
− 3

2
2

(
1
t

)
for t > 0. It is a positive, strictly

increasing function such that limt→0+ g(t) = 0+. Fix η = g(ϵ), hence we have

R(g−1(η))η
2
3 ≤ C2.

By observing that

R(g−1(η)) = |{µ ∈M : |⟨f, ψµ⟩| > g−1(η)}| = |{µ ∈M : g(|⟨f, ψµ⟩|) > η}|,

we can conclude ∥g(|⟨f, ψµ⟩|)∥wℓ 23 ≤ C2. Therefore, by applying the equivalent
definition of weak-ℓp-norm, we have

g(|s(f)|(N)) ≤ C1N
− 3

2 .

Up to rescaling, we can assume without loss of generality ∥s(f)∥∞ ≤ 1
2
. Notice

that, if 0 < t ≤ 1
2
, and y = t log

− 3
2

2

(
1
t

)
, we have log

3
2
2

(
1
t

)
≥ 1, and t = y log

3
2
2

(
1
t

)
≥

y. In particular, log
3
2
2

(
1
t

)
≤ log

3
2
2

(
1
y

)
. Thus,

g−1(y) = t = y log
3
2
2

(
1

t

)
≤ y log

3
2
2

(
1

y

)
.

Finally, using the monotonicity of g, we can conclude

|s(f)|(N) ≤ g−1(C1N
− 3

2 ) ≤ CN− 3
2 log

3
2 (N).
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Theorem 4.15. Let f ∈ L2(Ch)∨ be the horizontal cones component of a cartoon-
like image, and fN be its best N term approximation with respect to the Parseval
frame (4.12), namely

fN :=
∑
µ∈IN

⟨f, ψµ⟩ψµ, (4.20)

where IN ⊂M is the set of indices corresponding to the N largest entries. Then

∥f − fN∥22 ≲
∑
m>N

|s(f)|2(m) ≤ CN−2 log3(N) as N → +∞.

Proof. By using Theorem 4.14, and the fact that the function t 7→ log3(t)
t

decreases
for t ≥ e3, we have

∥f − fN∥22 =
∑
m>N

|s(f)|2(m) ≤ C
∑
m>N

m−3 log3(m)

≤ C
log3(N)

N

∑
m>N

1

m2
≤ C

log3(N)

N

∫ +∞

N

t−2dt

= CN−2 log3(N).

Now, let f ∈ E(R2), and consider its decomposition (4.16). Let us define the
following N term approximation of f :

fN = fR + fCh∪Cv,N ,

where fCh∪Cv,N is the best N term approximation of fCh + fCv with respect to the
union of the Parseval frames (4.12), and (4.15). In other words, we define

fCh∪Cv,N :=
∑

(j,l,k)∈Iψ

⟨fCh , ψj,l,k⟩+
∑

(j,l,k)∈Iψ̃

⟨fCv , ψ̃j,l,k⟩,

with Iψ, Iψ̃ corresponding to the N largest coefficients, and such that |Iψ|+ |Iψ̃| =
N . The previous results ensure that

∥f − fN∥22 ≲
∑

(j,l,k)/∈Iψ

|⟨fCh , ψj,l,k⟩|2 +
∑

(j,l,k)/∈Iψ̃

|⟨fCv , ψ̃j,l,k⟩|2 ≤ CN−2 log3(N).
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Chapter 5

Shearlets Trees

5.1 Introduction

The non-linear approximation results presented in the previous chapters show
that certain types of functions can be efficiently represented through sparse vec-
tors, by decomposing them with respect to wavelet, or shearlet frames. This
means that the sequences of the coefficients have just a few relevant components.
In various mathematical fields, such as Compressed Sensing [Foucart et al., 2013],
it is of great interest not only to know that the functions admit sparse represen-
tations, but also to have an indication about where the relevant components are
located.

In this section, we aim to study this property with a deeper focus in the
case of shearlet frames. Since two-dimensional shearlets are based on the idea
of orthogonal wavelets, let us start by describing the problem in this latter case.
As explained in Chapter 3, the number of vanishing moments of an orthogonal
wavelet enables to compress the coefficients corresponding to a smooth region of
the function, while its support size is helpful to localize the singularity, and to
control the number of wavelets whose support intersects a singularity at each scale.
Therefore, we have that the relevant coefficients correspond to those wavelets
whose support intersects a singularity. As we can observe in Figure 5.1, this
suggests that it is possible to construct structures, in the literature referred to
as trees, which contain the indices related to the coefficients corresponding to a
singularity. The trees are based on hierarchical relations parent-child between the
indices of the coefficients at scale j, and those at scale j+1. Given such a relation,
a tree is defined as a set T of indices satisfying the property:

if an index belongs to T , then its parent belongs to T.
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Figure 5.1: Multiscale analysis of a piecewise regular , [Mallat, 1999].

The non-linear approximation forcing the set of indices being a tree is called
tree approximation. Intuitively, one can think that the set of the N largest co-
efficients (or, equivalently, the set of the coefficients larger than some threshold
η > 0) is a tree itself, and so, that the best N -term approximation, and the tree
approximation are equivalent. Unfortunately, this is not the case. Indeed, al-
though the coefficients decrease to 0 for the scale parameter j growing, they do
not decrease monotonically. In other words, it could happen that the amplitude
of a child is larger than the parent’s one. Therefore, by fixing a threshold η > 0
and selecting only the coefficients larger than η, there is no guarantee that the
set of the indices forms a tree. An easy example of this phenomenon is given by
the Haar wavelet (2.3), and the function f = 1{ 1

5
≤x≤1}. In this case, since at each

fixed scale j the Haar basis partition the interval [0, 1] into dyadic intervals, the
only reasonable parent-child relation is:

(j, k) is the parent of (j + 1, 2k), and (j + 1, 2k + 1).

An easy computation shows that

1

5
= |⟨f, ψ0,0⟩| ≤ |⟨f, ψ1,0⟩| =

√
2

5
.

More generally, in the case of a piecewise constant function with discontinuity in
x = a ∈ (0, 1), and the Haar wavelet, it is possible to explicitly characterize the
parent-child relations. It can be observed that, when the discontinuity point is
sufficiently close to the edge of the support of the parent, then the magnitude of the
child coefficient will be

√
2 times that of the parent. The situation could be even

worse. Indeed, the Haar wavelet does not have any oscillation. Let us consider,
for instance, the Daubechies wavelet with 2 vanishing moments ψ (see Figure
2.2), and a piecewise constant function fa = 1{x≥a}, a ∈ (0, 3). The oscillations
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of ψ cause zeros in the function a 7→ |⟨fa, ψ⟩|. This gives rise to undesirable
phenomena. Indeed, as we can observe in Figure 5.1, there exist values of a such
that the parent coefficient is zero (blue line), and the child is at its maximum (red
line).

Figure 5.2: Plots of the functions a 7→ |⟨fa, ψ0,0⟩| (blue line), and a 7→ |⟨fa, ψ1,1⟩|
(red line).

From this argument, we can conclude that it is reasonable to expect that the
relevant coefficients are contained in a tree, but also that they do not form a tree
themselves in general. This means that forcing the indices in the approximation
to belong to a tree, leads to selecting also negligible coefficients. Following this
philosophy, in [Cohen et al., 2001], it is proved that the tree approximation is as
efficient as the classical non-linear approximation. There, the strategy is:

• Fix a threshold η > 0,

• Select the coefficients larger than η,

• Consider the smallest tree containing these coefficients,

• Estimate the error brought in by approximating only with the coefficients
contained in the tree.

Another approach is to suppose that, if a wavelet does not intersect a singularity,
then the associated coefficient has to be negligible, and so all its descendants. In
this case, since it is studied the structure of the negligible coefficients, we speak
of zero-trees. Based on this idea, in [Shapiro, 1993], an efficient coding algorithm
for images is presented .
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Let us now switch to the shearlets case. The multiresolution and geometric
properties of the shearlets suggest that an analogous argument could be used in or-
der to get a better understanding of the set of the relevant indices also in this case.
One of the works that delves deeper into the tree structure in the case of shear-
lets is [Grohs, 2012]. The strategy used follows that used in [Cohen et al., 2001],
where the tree is formed by adding all the missing parents to the set of the relevant
coefficients. This strategy has the advantage of leading to an optimal error for
any cartoon-like image, but it has some limitations that we intend to delve into
further. Let us observe Figure 5.3, that shows the parent-child relation considered.

Figure 5.3: Tree structure on a shearlet frame: the shearlet essentially supported
in the black parallelogram in the left is the parent of those essentially supported
on the blue and red smaller parallelograms. [Grohs, 2012].

With this definition we have that if the edge curve overlaps some of the chil-
dren, then it overlaps also the parent. This makes the structure defined extremely
reasonable, but the argument, used by the author to obtain the approximation
result, does not involve it in any way. The only property used is the uniqueness
of the parent for every index. In this regard, we want to introduce a method that,
through a more quantitative analysis of the coefficients, leads more naturally to
the construction of a tree.

In the following, we work with the shearlet frame generated by a shearlet
of the form (4.9). We recall that it is C∞, and compactly supported in the
frequency domain. Therefore, in the spatial domain, it cannot be compactly
supported, but it has fast decay. This allows us to suppose that the shearlet ψ
is essentially supported within a unit square. In other words, the decay of the
shearlet outside of this square will depend on the particular choice of ψ, and,
in general, it is not possible to claim that, outside of the square, the shearlet is
very close to 0. For instance, if ψ is similar to a gaussian with a small variance,
then the approximation made above is good; if the variance is larger, then this
approximation is worse. Since we want to analyze the tree approximation for a
general ψ, we have to consider the worst case scenario, i.e. the second one. In this
case, when analyzing the magnitude of the coefficients, we have to keep in mind
that there can be overlaps between shearlets essentially supported in adjacent
regions of the space, see Figure 5.4. Hence, if the edge curve of a cartoon-like
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image overlaps the essential support of a shearlet, then it is not obvious that the
adjacent shearlets have to be insignificant.

Figure 5.4: The black parallelograms represent the essential supports of adjacent
shearlets. The blue line represents the edge curve of a cartoon-like image.

In the next sections, we consider the cone-adapted shearlet frame introduced
in Chapter 4. In Section 5.2, we define the tree structure we will consider in the
following. It is worth to observe that we will define parent-child relations only
on the shearlet components, without considering the scaling components. This
is motivated by the fact that there is no relation between the scaling coefficients
and the shearlets coefficients at scale zero, hence it is not interesting to define a
tree structure on this set of indices. Moreover, we will introduce the structure
only on the horizontal cones. Because of the symmetry between horizontal and
vertical cones, the relations on the vertical ones will be analogous. In Section 5.3,
we present the main results of the thesis, concerning the construction of a tree
which allows optimal approximation, motivated by a quantitative analysis of the
coefficients. In the last section, we provide all the proofs needed.

5.2 Tree Structure

In this section, we introduce and motivate the tree structure we will use in
this chapter. It is worth noting that it is the same as defined in [Grohs, 2012], the
difference being that in these results, it is obtained after a quantitative analysis of
the coefficients. Let us consider the shearlet Parseval frame introduced in Chapter
4, and consider the horizontal cones component

{ψj,l,k = 2
3
2
jψ(SlAj · −k) : j ≥ 0,−2j ≤ l ≤ 2j, k ∈ Z2}.

We observe that, by construction of ψ,

supp(Fψj,l,k) ⊆ {(ξ1, ξ2) : ξ1 ∈ [−22j−1,−22j−4] ∪ [22j−4, 22j−1], |2j ξ2
ξ1

− l| ≤ 1}.
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This implies that, in the frequency domain, the supports of the shearlets are
contained within the portion of plane contained between two lines of slope l−1

2j
, and

l+1
2j

. Since l ∈ {−2j, . . . , 2j}, at each scale j, the slopes of these lines constitute a
partition of the interval

[
−1− 1

2j
, 1 + 1

2j

]
. Therefore, if at scale j, the edge curve

is contained between the lines of slope l−1
2j

and l+1
2j

, i.e the relevant indices are
found at shearing parameter l, then, at scale j + 1, the edge curve is contained
either between the lines with slopes 2l−2

2j+1 and 2l
2j+1 , between those of slopes 2l−1

2j+1

and 2l+1
2j+1 , or between those with slopes 2l

2j+1 and 2l+2
2j+1 . This means that, at scale

j+1, the relevant indices are found at shearing parameter l′ ∈ {2l− 1, 2l, 2l+1}.
In order to avoid that an index has more than one parent, we select the shearing
parameters 2l, 2l + 1 as children of l. Observe that it is true that if the edge
curve overlaps the children supports, then it necessarily overlaps also the parent
support.

Let us now describe the relations between the position indices k = (k1, k2).
Following the idea explained in Section 5.1, let us reason in an ideal way for a
moment, and suppose that the shearlet ψ is supported within the unit square
[0, 1]2. If this is the case, then the shearlets ψj,l,k are supported within the region

{(x1, x2) : 0 ≤ 4jx1 + 2jlx2 − k1 ≤ 1, 0 ≤ 2jx2 − k2 ≤ 1}.

Therefore, we can observe that, at scale j, along the x2-axis, the unit interval
[0, 1] is divided into dyadic intervals

[
k2
2j
, k2+1

2j

]
of amplitude 2−j. Each of these

intervals, at scale j + 1, is divided into two intervals of length 2−j−1. Hence, it
is natural to consider as children of the sherlets supported within the horizontal
stripes k2

2j
≤ x2 ≤ k2+1

2j
, those supported within the stripes k2

2j
≤ x2 ≤ 2k2+1

2j+1 , and

those in 2k2+1
2j+1 ≤ x2 ≤ k2+1

2j
, which correspond to the position indices 2k2, 2k2 + 1.

Let us now describe the relations between the parameters k1. Along the x1-axis,
the supports are limited by the lines k1

4j
− l

2j
x2 ≤ x1 ≤ k1+1

4j
− l

2j
x2. This implies

that the relations between these parameters will depend also on the shearing
parameter l. If the shearing parameter at scale j+1 is the double of that at scale
j, then the lines which limit the supports are parallel, hence, it is sufficient just to
scale k1 with the parabolic scaling to obtain the positions {4k1+n : n = 0, 1, 2, 3}.
Whenever the shearing parameter is 2l + 1, then the lines limiting the supports
at scale j +1 have slopes l

2j
+ 1

2j+1 . We can observe that they are slightly rotated
with respect to the lines limiting the supports at scale j. Therefore, here the idea
is to apply a shearing operation also to the position parameters, namely(

1 1
0 1

)(
4 0
0 2

)(
k1
k2

)
=

(
4k1 + 2k2

∗

)
.

This argument leads to expecting that, in the case of shearing parameter equal to
2l + 1, the children are located within {4k1 + 2k2 + n : n = 0, 1, 2, 3}.

These ideas give rise to the following parent-child definition.

Definition 5.1. An index (j, l, (k1, k2)) is said to be a child of (j′, l′, (k′1, k
′
2)) if
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• j = j′ + 1,

• l ∈ {2l′, 2l′ + 1},

• k2 ∈ {2k′2, 2k′2 + 1},

• k1 ∈

{
{4k′1 + n : n = 0, 1, 2, 3} l even

{4k′1 + 2k′2 + n : n = 0, 1, 2, 3} l odd

We will write λ ≺ λ′, whenever the index λ is a descendant of λ′.

Definition 5.2. A set of indices T is said to be a tree if

λ ≺ λ′, λ ∈ T =⇒ λ′ ∈ T.

By the previous definition, for each index we have up to two families of children,
each one composed by 8 elements. Hence, each index has up to 16 children, and,
for construction, every index at scale j ≥ 1 has exactly one parent at scale j − 1.

Moreover, we can obtain the explicit expression of the unique parent of (j, l, (k1, k2))
depending on whether l is even or odd:

(j − 1,
l

2
, (⌊k1

4
⌋, ⌊k2

2
⌋)) if l is even,

(j − 1,
l − 1

2
, (⌊

k1 − 2⌊k2
2
⌋

4
⌋, ⌊k2

2
⌋)) if l is odd.

5.3 Main Results

In this section, we present the main results of the thesis. In the following, we
are going to analyze the structure of the relevant shearlet coefficients in the case of
a piecewise constant function, which has an edge curve coinciding with a straight
line. Unlike the approach in [Grohs, 2012], described in Section 5.1, our method
involves searching for relevant coefficients by excluding those that are certainly
insignificant.

Consider the functions f = 1
2
1{x≥0} − 1

2
1{x<0}, g = 1, and define the function

G(x1, x2) = f(x1)g(x2). Fix an angle θ ∈
(
π
4
, 3
4
π
)
, and consider the rotation matrix

P =

(
sin(θ) − cos(θ)
cos(θ) sin(θ)

)
.

The function we will analyze throughout this section is F (x1, x2) = G(P
(
x1
x2

)
).

Observe that its edge curve is distributed along the line sin(θ)x1−cos(θ)x2 = 0, see
Figure 5.5. The choice of this function was made to enable an explicit analysis of
the coefficients and to facilitate the identification of relevant indices. Furthermore,
it can be viewed as the fine-scale case of a generic cartoon-like image.
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Figure 5.5: The function F.

First of all, we aim to discard all the shearing parameters associated with
negligible coefficients. In this particular case, given the simple expression of the
function F , we will conclude that there are at most two shearing parameters at
each scale which can be associated to non-zero coefficients. Since we are working
with band limited shearlets, and the shearing parameters play an important role
in delimiting the shearlets supports, we analyze the scalar product at fixed scale j
in the frequency domain. Notice that, since F /∈ L2(R2), we interpret the Fourier
transform in the distributional sense. Let us compute the Fourier transform of F .
We start from the Fourier transform of the Heaviside function h = 1{x≥0}, which
is

Fh(ξ) = πδ(ξ)− iP.V.

(
1

ξ

)
,

where P.V.
(

1
ξ

)
is the principal value of 1

ξ
, i.e. the distribution acting on a test

function φ as

⟨P.V.
(
1

ξ

)
, φ⟩ = lim

ϵ→0+

∫
|ξ|≥ϵ

φ(ξ)

ξ
dξ.

Since

f =
1

2
h− 1

2
h∨,

F(h∨) = (Fh)∨,

where h∨(x) = h(−x), we can compute the Fourier transform of the function f

Ff(ξ) = −iP.V.
(
1

ξ

)
.
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Moreover, it is easy to see that Fg(ξ) = 2πδ(ξ). Therefore, since G(x1, x2) =
f(x1)g(x2), we have that

FG(ξ1, ξ2) = Ff(ξ1)Fg(ξ2) = −2πiP.V.

(
1

ξ1

)
δ(ξ2). (5.1)

Observe that G has discontinuity along the line x1 = 0, and its Fourier transform
is distributed along the orthogonal direction ξ2 = 0. Analogously, given that F =
G(P ·), it holds that FF = FG(P ·), hence the Fourier transform of the function
F is distributed along the line ξ1 cos(θ)+ ξ2 sin(θ) = 0, which is orthogonal to the
discontinuity line of F , x1 sin(θ)− x2 cos(θ) = 0. Since θ ∈

(
π
4
, 3
4
π
)
, we have that

the line ξ1 cos(θ) + ξ2 sin(θ) = 0 is completely contained in the horizontal cones,
hence we will analyze the decomposition of F with respect to the Parseval frame
(4.12). In the next lemma, we analyze the coefficients with the scale parameter j
fixed, and we show that most of the coefficients are definitely zero.

Lemma 5.3. Let j ≥ 0, l1j = ⌊−2j cotan(θ)⌋, l2j = ⌈−2j cotan(θ)⌉, Lj = {l1j , l2j},
and k ∈ Z2. Then, for every l /∈ Lj,

⟨F, ψj,l,k⟩ = 0.

Due to this lemma, we can discard from the set of the possible indices all the
indices corresponding to the scale j, and to a shearing parameter l /∈ Lj.

Now, we are interested in finding the right position parameters k1, k2. Given
that the edge curve has infinite length, we have infinitely many shearlets that lie
on the line. Therefore, to study the error, we need to restrict the set of the position
indices. Following the idea explained in the previous section, by supposing that
the shearlets are essentially supported within an unit square, we have that at
scale j the x2-axis is divided into horizontal stripes of amplitude 2−j. Hence, we
consider only the values (k1, k2) ∈ Z × {0, . . . , 2j − 1}. In the following, we fix
j ≥ 0, l ∈ Lj, and k2 ∈ {0, . . . , 2j − 1}. The next lemma shows the decay for
k1 varying in Z. Intuitively, we are studying the coefficients associated to the
shearlets lying within the same horizontal stripe.

Lemma 5.4. Let j ≥ 0, l ∈ Lj, and k2 ∈ {0, . . . , 2j − 1}. Then,

|⟨F, ψj,l,k⟩| ≤
C2−

3
2
j

|k1 − k2(2j cotan(θ) + l)|2
, k1 ∈ Z. (5.2)

This lemma suggests that the largest amplitude values on each stripe are those
for k1 ∼ k2(2

j cotan(θ)+ l). Now, we need to decide how many indices k1 to keep.
In order to do this, we fix a threshold η > 0. The idea, here, is to discard the
indices with amplitude that is certainly smaller than or equal to η. Let us study
when the upper bound in (5.2) is larger than η.

C2−
3
2
j

|k1 − k2(2j cotan(θ) + l)|2
> η ⇐⇒ |k1 − k2(2

j cotan(θ) + l)| < C2−
3
4
j

√
η

.
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Therefore, for every j ≥ 0, l ∈ Lj, k2 ∈ {0, . . . , 2j − 1}, and for a fixed threshold
η > 0, we choose the indices k1 ∈ Z such that

k1 ∈ Aj,l,k2(η) =

{
k ∈ Z : |k − k2(2

j cotan(θ) + l)| < C2−
3
4
j

√
η

}
. (5.3)

Observe that |Aj,l,k2(η)| ∼ 2−
3
4 j√
η
. Notice that the number of k1 we select at each

scales depends on j, but it is uniformly bounded by C√
η
. This ensures that we

are not selecting too many indices. So far, we have constructed a set that, for
every resolution scale parameter j, discards all those coefficients that are certainly
smaller than η. Since the amplitude of the coefficients has to decay along the
scales, we use the threshold η, in order to discard the scales that only contain
small coefficients. In other words, due to Hölder inequality and a simple change
of variable, we have

|⟨F, ψj,l,k⟩| ≤ ∥F∥∞∥ψj,l,k∥1 ≤ C ′2−
3
2
j,

and

C ′2−
3
2
j > η ⇐⇒ j <

2

3
log2

(
C ′

η

)
= jη.

This means that, for j ≥ jη, every coefficient has small amplitude with respect
to η, hence we discard all the coefficients for j ≥ jη. To summarize, we have
constructed the set of the most relevant indices T (η) as

T (η) =

⌊jη⌋⋃
j=0

Tj(η),

where

λ = (j, l, (k1, k2)) ∈ Tj(η) ⇐⇒ l ∈ Lj, k2 ∈ {0, . . . , 2j − 1}, k1 ∈ Aj,l,k2(η). (5.4)

The next lemma shows that the set T (η) is a tree, and provides an upper bound
on its cardinality.

Theorem 5.5. For every η > 0, T (η) is a tree, and |T (η)| ≲ η−
2
3 .

Our target, now, is to show that the error committed by selecting only the
indices in T (η) is optimal (see Theorem 4.15).

Since we are limiting the indices k2, we are not approximating exactly F , but
its projection over the space generated by

{ψj,l,k : j ≥ 0,−2j ≤ l ≤ 2j, 0 ≤ k2 < 2j, k1 ∈ Z}.
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Let us denote by PF this approximation, and consider the approximating function

S(F, η) =
∑
λ∈T (η)

⟨F, ψλ⟩ψλ.

The error committed is

∥PF − S(F, η)∥22 ≲
∑
λ/∈T (η)

|⟨F, ψλ⟩|2.

The next proposition shows that the error decaying is optimal.

Theorem 5.6. If |T (η)| ≤ N , then

∥PF − S(F, η)∥22 ≲ N−2.

5.4 Proofs

Proof of Lemma 5.3. First of all let us observe that, as a distribution, FF acts
on a test function φ as

⟨FF, φ⟩ = ⟨FG,φ(P T ·)⟩.

Therefore,

⟨F, ψj,l,k⟩ =
1

2π
⟨FF,Fψj,l,k⟩ =

1

2π
⟨FG,Fψj,l,k(P T ·)⟩.

From (4.8), and (4.9), we obtain that

Fψj,l,k
(
P T

(
ξ1
ξ2

))
= 2−

3
2
jFψ1(4

−j(ξ1 sin(θ) + ξ2 cos(θ))Fψ2

(
2j
ξ2 sin(θ)− ξ1 cos(θ)

ξ1 sin(θ) + ξ2 sin(θ)
− l

)
e−iα(ξ1,ξ2),

where α will depend on all the parameters. Consequently, using the expression of
FG given in (5.1), we obtain

⟨F, ψj,l,k⟩ = −i2−
3
2
jFψ2(−2j cotan(θ)−l) lim

ϵ→0+

∫
|ξ1|≥ϵ

Fψ1(4
−jξ1 sin(θ))

ξ1
e−iα(ξ1,0) dξ1.

Now, we recall that Fψ2 is C∞, and compactly supported within [−1, 1], and we
observe that

|−2j cotan(θ)− l| < 1 ⇐⇒ l ∈ Lj.

Therefore, we can conclude that if l /∈ Lj, then ⟨F, ψj,l,k⟩ = 0.
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Proof of Lemma 5.4. Let us notice that, by construction, Fψ(0, 0) = 0, so the
shearlet ψ has zero average. Moreover, we recall that ψ has fast decay in the
spatial domain. The idea, here, is that when k1 is sufficiently small, then ψ is
mostly concentrated on a region where F = −1

2
. Therefore, we use the zero

average property, and we add 1
2
to F . In this way, we have that the shearlet

coefficient coincides with the integral of ψ on the other side of the edge line,
where the shearlet has to be close to 0. Hence, we expect that small values of k1
generate small amplitude coefficients. We will argue in the same manner for k1
sufficiently large.

|⟨F, ψj,l,k⟩| = |⟨F +
1

2
, ψj,l,k⟩|

≤ 2
3
2
j

∫ +∞

−∞

∫ +∞

cotan(θ)x2

∣∣∣∣ψ(SlAj(x1x2
)
−
(
k1
k2

))∣∣∣∣ dx1dx2.
Due to the change of variable

(
y1
y2

)
= SlAj

(
x1
x2

)
−
(
k1
k2

)
, we obtain

|⟨F, ψj,l,k⟩| ≤ 2−
3
2
j

∫ +∞

−∞

∫ +∞

(2j cotan(θ)+l)(y2+k2)−k1
|ψ(y1, y2)|dy1dy2.

Let us suppose k1 < k2(2
j cotan(θ) + l). Consider the ball centered at the origin

of radius R, BR, tangent to the line y1 = (2j cotan(θ) + l)(y2 + k2) − k1. Since
k1 < k2(2

j cotan(θ) + l), we have that

{(y1, y2) ∈ R2 : y1 ≥ (2j cotan(θ) + l)(y2 + k2)− k1} ⊂ R2 \BR = BC
R .

y 1
≥
(2
j co

ta
n(
θ)
+
l)
(y

2
+
k 2
)
−
k 1R

y1

y2

64



Moreover, since ψ is fast decaying, we have that, for every N ∈ N, there exists
a constant CN > 0 such that

|ψ(y1, y2)| ≤
CN

1 + ∥y∥N2
, y = (y1, y2) ∈ R2.

Therefore, we have

|⟨F, ψj,l,k⟩| ≲ CN2
− 3

2
j

∫ +∞

R

ρ

1 + ρN
dρ ≤ CN

N − 2
2−

3
2
jR2−N , N > 2.

We can obtain the same estimate for k1 > k2(2
j cotan(θ) + l), indeed, subtracting

rather than adding 1
2
to F leads to the symmetric case that can be analyzed in

the same way.

|⟨F, ψj,l,k⟩| = |⟨F − 1

2
, ψj,l,k⟩| ≤ 2

3
2
j

∫ +∞

−∞

∫ cotan(θ)x2

−∞

∣∣∣∣ψ(SlAj(x1x2
)
−
(
k1
k2

))∣∣∣∣ dx1dx2
≤ 2−

3
2
j

∫ +∞

−∞

∫ (2j cotan(θ)+l)(y2+k2)−k1

−∞
|ψ(y1, y2)|dy1dy2 ≲ CN2

− 3
2
j

∫ +∞

R

ρ

1 + ρN
dρ

≤ CN
N − 2

2−
3
2
jR2−N , N > 2.

Observing that l ∈ Lj, we have

R =
|(2j cotan(θ) + l)k2 − k1|√

1 + (l + 2j cotan(θ))2
≥ 1√

2
|(2j cotan(θ) + l)k2 − k1|.

Therefore, we have

|⟨F, ψj,l,k⟩| ≤
C ′
N2

− 3
2
j

|(2j cotan(θ) + l)k2 − k1|N−2
.

The choice N = 4 concludes the proof, but we note that to prove Theorem 5.5,
one could select any N > 3.

Proof of Theorem 5.5. We start by showing the estimate on the cardinality of
T (η). By construction of Tj(η) given in (5.4), we can observe that

|Tj(η)| ≲
2
j
4

√
η
.

Therefore, by definition of T (η),

|T (η)| ≲ 1
√
η

⌊jη⌋∑
j=0

2
j
4 ≲

1
√
η
2
jη
4 ≲ η−

2
3 . (5.5)
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Let us now show that T (η) is a tree. We recall that we have an explicit expression
of the unique parent of the index (j, l, (k1, k2)) depending on whether l is even, or
odd. (

j − 1,
l

2
,

(⌊
k1
4

⌋
,

⌊
k2
2

⌋))
l even,(

j − 1,
l − 1

2
,

(⌊
k1 − 2

⌊
k2
2

⌋
4

⌋
,

⌊
k2
2

⌋))
l odd.

Observe that, in general, the parent has shearing parameter
⌊
l
2

⌋
. It is straight-

forward to see that

l ∈ Lj =⇒
⌊
l

2

⌋
∈ Lj−1,

k2 ∈ {0, . . . , 2j − 1} =⇒
⌊
k2
2

⌋
∈ {0, . . . , 2j−1 − 1}.

Let us suppose l even. We have to prove that

k1 ∈ Aj,l,k2(η) =⇒
⌊
k1
4

⌋
∈ A

j−1, l
2
,⌊ k22 ⌋(η).

Applying the definition of Aj,l,k2(η), it follows that

−C2
− 3

4
j

4
√
η

+ (2j−1 cotan(θ) +
l

2
)
k2
2

≤ k1
4

≤ (2j−1 cotan(θ) +
l

2
)
k2
2

+
C2−

3
4
j

4
√
η
.

Using
⌊
k2
2

⌋
≤ k2

2
≤
⌊
k2
2

⌋
+ 1, and 2j−1 cotan(θ) + l

2
≤ 1

2
, we have

−C2
− 3

4
j

4
√
η

+(2j−1 cotan(θ)+
l

2
)

⌊
k2
2

⌋
≤ k1

4
≤ (2j−1 cotan(θ)+

l

2
)

⌊
k2
2

⌋
+
C2−

3
4
j

4
√
η

+
1

2
.

Now, we use
⌊
k1
4

⌋
≤ k1

4
≤
⌊
k1
4

⌋
+ 1 to obtain∣∣∣∣⌊k14

⌋
− (2j−1 cotan(θ) +

l

2
)

⌊
k2
2

⌋∣∣∣∣ ≤ C2−
3
4
j

4
√
η

+1 = 2−
11
4
C2−

3
4
(j−1)

√
η

+1 ≤ C2−
3
4
(j−1)

√
η

,

where the last estimate is valid for C2−
3
4 (j−1)

√
η

≥ 2
11
4

2
11
4 −1

∼ 1.175. We observe that,

since C2−
3
4 (j−1)

√
η

≥ C2−
3
4 jη√
η

= C√
C′ , up to choosing C sufficiently large, the last

estimate holds. This concludes the first part of the proof.
Suppose, now, that l is odd. In the same way, we obtain

−C2
− 3

4
j

4
√
η

+(2j−1 cotan(θ)+
l

2
)

⌊
k2
2

⌋
≤ k1

4
≤ (2j−1 cotan(θ)+

l

2
)

⌊
k2
2

⌋
+
C2−

3
4
j

4
√
η

+
1

2
,
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which implies

− C2−
3
4
j

4
√
η

+ (2j−1 cotan(θ) +
l − 1

2
)

⌊
k2
2

⌋
≤
k1 − 2

⌊
k2
2

⌋
4

≤ (2j−1 cotan(θ) +
l − 1

2
)

⌊
k2
2

⌋
+
C2−

3
4
j

4
√
η

+
1

2
.

Now, we can argue as in the other case to conclude the proof.

Proof of Theorem 5.6. In order to prove this result, we use the argument pre-
sented in the proof of Theorem 4.1 in [Cohen et al., 2001]. Observe that, for
construction, if η1 ≤ η2, then T (η1) ⊇ T (η2). This implies

T (2−m−1η) ⊇ T (2−mη), m ≥ 1.

This, with the fact that

λ /∈ T (2−lη) =⇒ |⟨F, ψλ⟩| ≤ 2−lη,

and Proposition 5.5, implies that

∥PF − S(F, η)∥22 ≲
∑
λ/∈T (η)

|⟨F, ψλ⟩|2 ≤
+∞∑
m=0

∑
λ∈T (2−m−1η)\T (2−mη)

|⟨F, ψλ⟩|2

≤ η2
+∞∑
m=0

2−2m|T (2−m−1η)| ≤ η
4
3

+∞∑
m=0

2
−4m+2

3 ≲ η
4
3 .

By considering N a natural number such that N ∼ η−
2
3 , we have that |T (η)| ≲ N .

This allows to conclude the proof

∥PF − S(F, η)∥22 ≲ N−2.
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Appendix

A Lipschitz Regularity

In Section 3.1, we see that the regularity of a function is useful to character-
ize the non-linear error decay. In order to formalize this, we need to extend the
concept of regularity to non-integers. The starting point to do this is the Taylor
formula. Let f : R −→ C be a function, and suppose that it is m times differen-
tiable in a neighborhood I of a certain point x ∈ R. Let us consider the Taylor
polynomial of degree m− 1 at x

Px(t) =
m−1∑
k=0

1

k!

dkf

dtk
(x)(t− x)k.

The Lagrange error bound of a Taylor polynomial gives that

|f(t)− Px(t)| ≤
|t− x|m

m!
sup
s∈I

∣∣∣∣dmfdsm
(s)

∣∣∣∣ , t ∈ I.

The Lipschitz regularity generalizes this inequality to non-integer exponents.

Definition A.1. Let f : R −→ C be a function.

• f is said to be Lipschitz α ≥ 0 at x ∈ R if there exist a constant K > 0,
and a polynomial Px of degree m = ⌊α⌋ such that

|f(t)− Px(t)| ≤ K|t− x|α, t ∈ R;

• f is said to be uniformly Lipschitz α ≥ 0 over [a, b] ⊂ R if it is Lipschitz
α ≥ 0 at every x ∈ [a, b], with a constant K which does not depend on x;

• The Lipschitz regularity of f at x or over [a, b] is the supremum of the α
such that f is Lipschitz α.

The polynomial Px is uniquely defined, indeed if f is m = ⌊α⌋ differentiable
in a neighborhood of x, then Px is the Taylor polynomial of f at x. In particular,
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if 0 ≤ α < 1, then Px(t) = f(x), and the Lipschitz condition becomes the Hölder
condition with exponent α

|f(t)− f(x)| ≤ K|t− x|α, t ∈ R.

A function f that is bounded, and discontinuous at x is Lipschitz 0 at x. If α < 1,
then f is not differentiable at x, and the exponent α characterizes the singularity
type. If f is uniformly Lipschitz α > m in a neighborhood of x, then one can prove
that f is necessarily m times continuously differentiable in the neighborhood of
x.

B Frame Theory

When studying the decomposition of functions with respect to certain systems
of functions, it is sometimes necessary surpassing the concept of orthonormal
basis, and considering redundant systems. The concept of frame, introduced for
the first time in [Duffin and Schaeffer, 1952], often comes into play because it
guarantees stability while allowing redundancy. In this section, we recall the
main definitions and properties of frames, without providing all the proofs. We
refer the interested reader to Chapter 5 of [Mallat, 1999], and to Chapter 8 of
[Hernández and Weiss, 1996] for further details.

Definition B.1. Let H be an Hilbert space. A family of functions {ψi}i∈I ⊂ H
is said to be a frame if there exist constants A,B > 0 such that, for every f ∈ H,

A∥f∥2H ≤
∑
i∈I

|⟨f, ψi⟩H|2 ≤ B∥f∥2H. (B.1)

If A and B can be chosen with A = B, then {ψi}i∈I is said to be a tight frame.
If A = B = 1 is possible, then {ψi}i∈I is a Parseval frame.

We can analyze an element f ∈ H through its sequence of frame coefficients
(⟨f, ψi⟩)i∈I . In this regard, we consider the analysis operator

T : H −→ ℓ2(I)

defined as Tf := (⟨f, ψi⟩)i∈I . Its adjoint

T ∗ : ℓ2(I) −→ H

is the so-called synthesis operator, and its analytic expression is T ∗c =
∑

i∈I ciψi
for c = (ci)i∈I ∈ ℓ2(I). The third operator that comes into play is the frame operator

T ∗T : H −→ H,
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where, for each f ∈ H, T ∗Tf =
∑

i∈I⟨f, ψi⟩ψi. The frame condition (B.1) can be
written as

A∥f∥2H ≤ ⟨T ∗Tf, f⟩H ≤ B∥f∥2H,

this directly implies that the frame operator T ∗T is self-adjoint, positive, and such
that A IdH ≤ T ∗T ≤ B IdH . In particular, if the frame is tight, i.e. A = B, we
have

⟨T ∗Tf, f⟩H = A∥f∥2H.

This implies that, in case of a tight frame, T ∗T = A Id.
The reconstruction of f is calculated through the pseudo inverse. Let us ob-

serve that the frame property (B.1) guarantees that T is a bounded, injective
operator. On the other hand, there is no guarantee on the surjectivity of T .
Hence, in general, ImT⊥ ̸= {0}. We define the pseudo inverse of T ,

T † : ℓ2(I) −→ H,

as the left inverse of T assuming 0 on the orthogonal complement of ImT , namely

T †c = 0, c ∈ ImT⊥.

Theorem B.2. [Mallat, 1999] The pseudo inverse satisfies

T † = (T ∗T )−1T ∗.

Moreover, it is the left inverse with minimum norm, and

∥T †∥ = sup
c∈ℓ2(I),c ̸=0

∥T †c∥H
∥c∥ℓ2(I)

≤ A− 1
2 .

The pseudo inverse of a frame is related to a dual frame {ψ̃i}i∈I , where

ψ̃i := (T ∗T )−1ψi.

The next theorems specifies some of its properties.

Theorem B.3. [Mallat, 1999] The dual frame {ψ̃i}i∈I satisfies for f ∈ H

1

B
∥f∥2H ≤

∑
i∈I

|⟨f, ψ̃i⟩H|2 ≤
1

A
∥f∥2H, (B.2)

and
f = T †Tf =

∑
i∈I

⟨f, ψi⟩Hψ̃i =
∑
i∈I

⟨f, ψ̃i⟩Hψi. (B.3)

If the frame is tight, then ψ̃i = A−1ψi.
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In particular, in Sections 4.2, and 4.3 of Chapter 4, we deal with a Parseval
frame (A = B = 1) of the Hilbet space L2(R2). In this case, due to the previous
results, we have that

f =
∑
i∈I

⟨f, ψi⟩ψi, f ∈ H,

and
∥f∥2H =

∑
i∈I

|⟨f, ψi⟩|2, f ∈ H.

C Hausdorff MeasureH1 and the Notion of Length

The Hausdorff measure H1 is an efficient tool which allows to measure the
length of a curve without requiring a parametrization. In the following, we present
the definition of H1 on Rn, we discuss its relation with the notion of length, and
finally we discuss how we apply these arguments in sections 3.1, and 4.3. We refer
to [Maggi, 2012], and [Evans, 2018] for a more in-depth argumentation.

Given a set E ⊆ Rn, we define the diameter of E as

diam(E) = sup{∥x− y∥2 : x, y ∈ E}.

Definition C.1. Let E ⊆ Rn, and 0 < δ ≤ +∞. Set

H1
δ(E) = inf

{∑
i∈I

diam(Ei) : E ⊆
⋃
i∈I

Ei, diam(Ei) ≤ δ, |I| ≤ ℵ0

}
.

The Hausdorff measure H1 of E is defined as

H1(E) = lim
δ→0+

H1
δ(E).

Remark C.2. The Hausdorff measure H1 belongs to the family of Hausdorff
measures on Rn, Hk, which can be defined for every 0 ≤ k < +∞. Moreover, it
can be proved that the Hausdorff measures are Borel regular measures on Rn.

We are interested in the case k = 1, because it is strictly related to the length
of a curve. Let us briefly recall the main definitions.

A set Γ ⊂ Rn is said to be a curve if there exist a < b, and a continuous
injective function γ : [a, b] −→ Rn such that Γ = γ([a, b]). The function γ is said
to be a parametrization of Γ. The length of Γ is defined as

ℓ(Γ) = sup

{
N∑
i=0

|γ(ti)− γ(ti)| : a = t0 < t1 < · · · < tN−1 < tN = b,N ∈ N

}
.

The next result shows that the length of a curve in Rn is equal to its Hausdorff
measure H1(Γ).
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Theorem C.3. [Maggi, 2012] Let Γ ⊂ Rn be a curve. Then

H1(Γ) = ℓ(Γ).

Let us now consider a closed curve Γ of finite length L > 0. Without loss
of generality, we can suppose it to be supported inside the unitary square [0, 1]2.
Since Γ is compact, we can assume the covering {Ei}i∈I to be finite, and we set
N(δ) = |I|. Choosing δj ∼ 2−j, due to theorem C.3, we have that

lim
j→+∞

H1
δj
= L.

Therefore, in this case, we necessarily have

N(δj) ∼ L2j.

In particular, since a dyadic square Q of side length 2−j satisfies

diam(Q) ∼ 2−j, Q ∈ Qj,

we can apply the previous argumentation to a covering of dyadic squares. This
provides us the order of the number of dyadic squares intersecting a given curve
Γ.

D Classical Shearlet Construction

In this section, we show a particular construction of ψ1, and ψ2 satisfying the
properties (4.10), and (4.11) in Section 4.2.

Let us start with the construction of ψ1. Consider an even function h ∈ C∞(R),
supported within

(
−1

6
, 1
6

)
, and satisfying

∫
R h(t)dt =

π
2
. Now, define a function

Θ(ξ) =

∫ ξ

−∞
h(t)dt,

and a smooth bell function

b(ξ) :=


sin
(
Θ
(
|ξ| − 1

2

))
if 1

3
≤ |ξ| ≤ 2

3
,

cos
(
Θ
(

|ξ|
2
− 1

2

))
if 2

3
≤ |ξ| ≤ 4

3
,

0 otherwise.

From the previous definition, it is not difficult to see that

+∞∑
j=−1

b2(2−jξ) = 1, |ξ| ≥ 1

3
.
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Now, defining u2(ξ) := b2(2ξ) + b2(ξ), it follows that

+∞∑
j=0

u2(2−2jξ) =
+∞∑
j=−1

b2(2−jξ) = 1, |ξ| ≥ 1

3
.

Finally, we can define Fψ1(ξ) := u
(
8
3
ξ
)
. Therefore, we have that suppFψ1 ⊆[

−1
2
,− 1

16

]
∪
[

1
16
, 1
2

]
, and that equation 4.10 is satisfied.

Figure 6: [Guo and Labate, 2007]. On the left, the solid line represent the positive
side of the function |Fψ1|2, the negative side is symmetrical. On the right, the
function Fψ2.

Let us now discuss the construction of ψ2. Consider a C∞ function f1 com-
pactly supported inside (−1, 1), such that 0 ≤ f1 ≤ 1, and f1 = 1 on

[
−1

2
, 1
2

]
.

Now, consider the function f2(t) =
√

1− e
1
t , and define f(t) = f1(t)f2(t), for

t ∈ [−1, 0). Due to the properties of f1 and f2, we can observe that, in the limit

sense, d
kf
dtk

(−1) = 0 for k ≥ 0, f(0) = 1, and dkf
dtk

(0) = 0 for k ≥ 1. Since 0 ≤ f ≤ 1,

we can define the function g(t) =
√
1− f 2(t− 1) for t ∈ (0, 1). It is easy to see

that g has the same behaviour as f for t = 0. Moreover, since f(t) = f2(t) for

|t| ≤ 1
2
, then g(t) = e

1
2(t−1) for t ∈

[
1
2
, 1
)
, and dkg

dtk
(1) = 0 for k ≥ 0 in the left limit

sense. Finally, we can define

Fψ2(ξ) :=


f(ξ) if ξ ∈ [−1, 0),

g(ξ) if ξ ∈ [0, 1),

0 otherwise.

By construction, we have Fψ2 ∈ C∞(R) with compact support in [−1, 1]. More-
over, an easy computation shows that (4.11) holds.
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