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Introduction

The two biggest problems of theoretical physics nowadays concerns the research for a
theory of quantum gravity and the study of strong coupling field theories.

The first problem originates in the late 1970 when the Standard Model of particle physics
was decisively confirmed by experiments. The key theoretical concept underlying this the-
ory was gauge symmetry, i.e. the idea according to which the symmetry transformations
act independently at each point of spacetime. In the Standard Model three of the four fun-
damental forces of nature are described; the fourth force, gravity, is the weakest one and
does not fit into the same quantum description. The incompatibility of gravity with the
other three forces of nature comes from a theoretical problem concerning the theory of gen-
eral relativity, which actually provides our deepest understanding of gravitational physics
at the classical level. One of the biggest problem about this theory regard its apparent
incompatibility with quantum mechanics: when one tries to include quantum corrections
in general relativity one obtains naively divergent answers, and these divergences cannot
be cured with standard renormalisation techniques. In brief, the quantisation of general
relativity unfortunately does not lead to a renormalisable theory. It is generally believed
that the correct, fundamental description of all physical fields should undergo the general
framework of quantum mechanics. Gravitational physics should make no exception and
thus we have to look for a theory of quantum gravity that reduces to general relativity
in the infrared. The quantum gravity effects naively show up only at the Plank length,
which is a scale defined exclusively in terms of three universal physical constants c, ℏ and
the gravitational constant GN

lP =

√
ℏGN

c3
∼ 10−33cm.

The smallness of lP (at the present time we are able to probe physics up to a scale of
10−17 cm) is related to the weakness of the gravitational force, which is about 40 orders
of magnitude weaker than the electromagnetic force. The fact that lP is so remote makes
it difficult to gain any experimental evidence of quantum gravity. Of course one may ask
why then it can be useful to study quantum gravity; many of the answers for this question
are contained in the theory of general relativity and in the holographic principle which is
the subject of this thesis. In general relativity there are a lot of important solutions that
have singularities, namely regions of infinite curvature. The most famous example is the
Schwarzschild black hole (GN = 1)

ds2 = −
(
1− 2M

r

)
dt2 +

dr2

1− 2M
r

+ r2dΩ2,

where M is the mass of the black hole and dΩ2 is the differential angular element. This
geometry has a real singularity in r = 0, which is not related to a possible choice of in-
appropriate coordinates, and an in-falling observer can reach that point in a finite proper
time. Even more surprisingly at the Schwarzschild radius r = 2M the coordinates break
down but the underlying spacetime manifold remains perfectly smooth as is clear in other
coordinates. This means that crossing the Schwarzschild radius from the exterior region
is an irreversible process or, in other words, there is a one-way membrane that casually
divides spacetime into the external universe and the black hole interior; this is the black
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hole event horizon. One might not be very troubled that singular solutions to Einstein’s
equations exist but recent observations have shown that such objects are actually present
in nature and therefore we cannot simply turn a blind eye to the singularities that arise
in general relativity. Another very important singularity that we only mention and that
quantum gravity could explained is at the original Big Bang event in the Friedmann-
Robertson-Walker metric which best describes our universe on large scales.
In order to find a quantum theory of gravity over time many different solutions have been
proposed. It has been realised that a natural way to avoid the pathologies between quan-
tum mechanics and general relativity is to think of point particle as a non fundamental
but derived concept. The simple way of doing this is to consider extended one dimen-
sional objects, strings, as the fundamental ones. The dynamics of quantum relativistic
strings contains pointlike particles as oscillations modes of the strings among which is
the graviton: in this sense, string theory is a theory of quantum gravity. The propaga-
tion of bosonic strings is free of quantum anomalies only in 26 spacetime dimensions. In
order to include fermions in the string spectrum, one can introduce into the theory the
supersymmetry which is an enlargement of the symmetry group of spacetime obtained by
including spinorial generators in the Poincaré algebra. Supersymmetric string theories are
well defined “only’’ in 10 dimensions and the four dimensional physics is usually recovered
through reduction over a compact six dimensional manifold.
The second of the problems with which we opened the introduction is about the study of
strong coupling field theories. In general we are able to solve field theories exactly only
when they are free theories. However, when we introduce interactions the only way to
find an analytical solution is to use the perturbation theory which relies on expansions in
the interaction coupling constant. Some interactions, like strong interactions described by
QCD, are asymptotically free, meaning that they do not have a small coupling parameter
at large distances (or low energy) and therefore for these theories in general one cannot
perform a perturbative expansion. One possible approach is to use numerical simulations
on the lattice which, at the present time, is the best available tool to do calculations in
QCD at low energies.

A connection between the two introductory problems and, in particular, between string
theories and strong coupling field theories was first discovered by Gerard ’t Hooft in 1973
[1]. In order to study QCD with the canonical perturbation theory tools, ’t Hooft pointed
out that the gauge theories based on the group G = SU(N) simplifies in the limit N →∞
and to recover the physics one could perform a 1/N expansion down to N = 3 in the case
of QCD. The simplification rely on the fact that among all the possible Feynman dia-
grams, a subset dominate in this limit. In particular the dominant diagrams are those
which can be drawn flat on a plane, which are referred to as planar diagrams. This new
diagrammatic expansion of the field theory based on the topology of the Riemann surface
on which the diagram lies, suggests that the large N theory is indeed a string theory for
the following reason. Our best description of string theory comes from the worldsheet
formalism of a single string propagating through a fixed background. This is analogous to
the quantum mechanical description of a single particle, however the worldsheet descrip-
tion contains a lot more physics. Because the string worldsheet can have many different
topologies and excitations, we can actually describe interactions between many different
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string states studying how the topology of the worldsheet changes. String theories are
thus defined by a sum over topologies, with the sphere (or plain) giving the dominant
contribution at weak coupling, in analogy with what happens in the large N limit in the
SU(N) field theories. However, a deeper connection between the two theories was found
by Maldacena many years later.

The connection between gauge theories and string theories was made explicit by the so
called gauge/gravity duality. Gauge/gravity duality, as first realized by the AdS/CFT
correspondence of Maldacena in the late 1997 [2], is a very special holographic duality
that relates a string theory on spacetimes that asymptote AdSn×X, where AdSn stands
for Anti de Sitter space in n dimension (which is the maximally symmetric space with
negative curvature) and X is a generic compact manifold, with a n− 1 dimensional con-
formal field theory (CFT), i.e. a quantum field theory with the conformal symmetry,
defined on the conformal boundary of AdSn. The correspondence is a realisation of the
holographic principle because the two theories live in different dimensions and it is a dual-
ity in the sense that everything in one theory corresponds to something else in the other
according to the holographic dictionary. Despite not yet having a formal demonstration,
the correspondence is one of the greatest achievements of string theory since it provides
new methods to investigate strongly coupled systems. In fact, one crucial aspect of the
correspondence is that the perturbative regimes in the two dual theories are perfectly
incompatible in the sense that the limit in which one becomes hard to compute is the
limit in which the other simplifies, therefore in general it gives to us the possibility of
computing observables in a strongly coupled field theory using a classical gravitational
theory. For this reason holography became one of the most important discoveries of high-
energy theoretical physics in recent years. The fact that the field theory lives in a lower
dimensional space blends in perfectly with some previous speculation about quantum
gravity. In fact this “holographic’’ principle comes from thinking about the Bekenstein
bound, which states that the maximum amount of entropy in some region is given by
the area of the region in Planck units instead of its volume; the reason for this bound
is that otherwise black holes formation could violate the second law of thermodynamics.
Furthermore, the fact that string theory blends in naturally with holography is one of the
most valid reasons that drives us to study it regardless the problem about quantum grav-
ity. This theory was fundamental in the development of the AdS/CFT correspondence
because, besides closed and open strings, it contains other multi-dimensional extended
objects, called D-branes, which have two dual descriptions. From the point of view of the
open strings, D-branes are D-dimensional objects on which their end-points are confined
to move. The oscillations of the ends of the open strings give rise to gauge fields and it
is in fact possible to construct a CFT on the worldvolume of the D-branes. On the other
hand, from the point of view of the closed strings, D-branes are massive D-dimensional
objects and therefore they source the gravitational field curving the spacetime and giving
us a gravitational theory. In the so called decoupling limit the two theories decouple
and Maldacena realized that the two different descriptions of the D-branes have to be
equivalent.

Numerous dual theories have been found over the years. The one on which the thesis is
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focused, as well as the first to be discovered historically, is that between a gravitational
string theory on spacetimes which asymptote AdS5 × S5, and the so-called N = 4 su-
persymmetric SU(N) Yang-Mills theory on the four dimensional boundary of AdS5. It
is quite hard to find quantum field theories that are conformally invariant. In super-
symmetric theories it is sometimes possible to prove exact conformal invariance and the
N = 4 SU(N) SYM theory is an example of this. Another important duality that we will
consider is the one between string theory on spacetimes which asymptote AdS3×S3×T 4

and the two dimensional conformal field theory living on AdS3, called the D1-D5 CFT.
The latter is very useful in order to study black hole microstates.

According to the holographic dictionary each state of the CFT is linked to a particu-
lar geometry on the gravity side. The gravity theory becomes classical in the limit in
which the central charge of the CFT is large which is equivalent to the large N limit
discussed above. In this limit, “heavy’’ states, whose conformal dimension grows as the
central charge, should be described by non-trivial classical geometries that approximate
the Anti-de-Sitter (AdS) solution at large distances. The purpose of this thesis will be
to construct some examples of these geometries for the heavy states of the maximally
supersymmetric SU(N) gauge theory. The starting point in order to do this are the LLM
(Lin-Lunin-Maldacena) geometries, namely a particular class of solutions for the super-
gravity theory which tend asymptotically to AdS5 × S5. These solutions are dual to the
class of operators of the CFT we are interested in, namely operators preserving 1/2 of the
supersymmetries of the theory, and they are all uniquely determined once a particular
region has been fixed on the two dimensional LLM plane. For example, in this picture
the AdS5 × S5 geometry is the LLM solution related to a disk on the LLM plane, which
is dual to the vacuum state of the CFT according to the AdS/CFT correspondence. It is
natural to think the geometry dual to the “light’’ states of the CFT (namely, those with a
conformal dimension much smaller than the central charge) as the LLM solution related
to a small deformation of the disk on the LLM plane, which will be therefore linear in the
parameter that quantifies the deformation and which we will call ϵ. As we have already
said, the main purpose of this work is to find the geometries dual to the heavy states.
These states can be constructed by putting together a large number of light states and,
in the LLM picture, the problem of finding the dual geometry is equivalent to finding the
correct figure on the LLM plane, which will be a non-linear correction in the parameter ϵ
to that related to the light states.

This work is organized as follows. In the first five chapters we will give an overview of the
background material upon which the rest of the thesis rests. We begin by reviewing the
basic concepts of supersymmetry in chapter 1, we give a very basic introduction to string
theory in chapter 2 and supergravity seen as the low-energy limit of string theory in chap-
ter 3. Then in chapter 4 we will motivate the AdS/CFT conjecture using the arguments of
the first three chapters and in chapter 5 we will conclude the introduction describing some
special operators of the CFT which allow the correspondence to be applied regardless of
the energy scale; always in this chapter we will also give the basic recipe for applying
the holographic dictionary, i.e. the dictionary which allows us to relate operators in the
field theory with the corresponding fields in the theory of (super)gravity. Throughout
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this introduction to the holography we will always refer to the correspondence between
the maximally supersymmetric SU(N) Yang-Mills theory and type IIB supergravity on
AdS5×S5 since this is the protagonist of the present work. Nevertheless, in Chapter 6 we
will use the duality between the D1-D5 CFT and type IIB supergravity on AdS3×S3×T 4

as an example to construct geometries dual to heavy states and to the use the holographic
dictionary to check the state/geometry map. In particular we will consider some special
geometries on the gravity side and we will use the holographic dictionary in order to
describe the dual states on the CFT side. It is important to emphasize that the material
presented in these introductory chapters is insufficient for a complete understanding of
the topics covered, but cites the relevant literature and serves as review for the problem
that we are going to study. In chapter 7 we will describe the LLM solutions in general as
the class of geometries of type IIB supergravity which preserves half of the supersymme-
tries and tend asymptotically to AdS5×S5. Then in chapter 8 we will explicitly write the
LLM solution obtained by slightly deforming AdS5×S5 and we will see how this geometry
is related to what we will call “light’’ states of the CFT, i.e. the states with a “small’’
conformal dimension. We redevive in detail and confirm the analysis at linear order in ϵ.
In particular, we write explicitly the linear order solution (never written explicitly in lit-
erature). Finally, in chapter 9 we will generalise what we saw in chapter 8 by considering
the deformations of AdS5 × S5 up to the second pertubative order in the parameter that
quantifies the deformation. We will explicitly write the solution and we will try to say
something about the exact solution, which could in any case be the subject of any future
research. These geometries are dual to what we will call “heavy’’ states of the CFT, i.e.
the states with a “large’’ conformal dimension. The second order analysis covered in this
last chapter is new. We find that the “naive’’ LLM profile is not the one that maps to the
simplest heavy state (i.e. the multi-trace made by many equal single-trace components).
We find the proper profile at the second order.
Finally, the last chapter is devoted to a summary and discussion.
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1
An Introduction to Supersymmetry

Supersymmetry (SUSY) is a space-time symmetry mapping particles and fields of integer
spin (bosons) into particles and fields of half integer spin (fermions), so that its repre-
sentations are (super)multiplets containing both bosons and fermions. It was found that
the ultraviolet divergences of supersymmetric theories are less severe than in the stan-
dard model due to the cancelation between bosons and fermions in loop diagrams. For
this reason, the supersymmetric extension of the standard model and, of course gravity,
was developed. The supersymmetric extensions of gravity are called supergravity theories
(SUGRA).
An extended review of supersymmetry is far beyond the purposes of this work. Here we
will show only some basic aspects that will be useful in dealing with supergravity. We
refer to a complete reference such as [3], [4] and [5] for details.

1.1 The Super-Poincaré Algebra
Supersymmetric theories have a new conserved charge that is a left-handed Weyl spinor
QI
α, together with its right-handed counterpart Q̄I

α̇. This is known as the supercharge.
Here I = 1, · · · ,N , so it is possible to have multiple supercharges, a situation known as
extended supersymmetry (N > 1). From an algebraic point of view there is no limit to
N but, as we will see later, increasing N the theory must contain particles of increasing
spin and no consistent, interacting quantum field theory can be constructed with fields
that have spin greater than 2. At the heart of the supersymmetry algebra is the anti-
commutation relation

{QI
α, Q̄

J
α̇} = 2σµαα̇Pµδ

IJ , (1.1)

where σµ ≡ (I, σi) and later we also use σ̄µ ≡ (I,−σi). It is no surprise that a spinor
should have an anti-commutator. But the structure of this relation is interesting: it tells
us that the supercharges should be viewed as the square-root of spacetime translations. In
theories with local supersymmetry (i.e. where the spinorial infinitesimal parameter of the
supersymmetry transformation depends on xµ), the anti-commutator is an infinitesimal

1



CHAPTER 1. AN INTRODUCTION TO SUPERSYMMETRY

translation whose parameter depends on xµ. This is nothing but a theory invariant under
general coordinate transformation, namely a theory of gravity. The upshot is that theories
with local supersymmetry automatically incorporate gravity. The only two non-trivial
commutators with Poincaré generators are

[Jµν , QI
α] = (σµν)α

βQI
β, [Jµν , Q̄

Iα̇
] = (σ̄µν)

α̇
β̇Q̄

Iβ̇ (1.2)

that follows from the fact that σµν ≡ i
4
(σµσ̄ν − σν σ̄µ) and σ̄µν ≡ i

4
(σ̄µσν − σ̄νσµ) are

respectively the representation (1
2
, 0) and (0, 1

2
) of the Lorentz generator Jµν . Then we

have
[Pµ, Q

I
α] = 0, [Pµ, Q̄

I
α̇] = 0 (1.3)

and
{QI

α, Q
J
β} = ϵαβZ

IJ , {Q̄I
α̇, Q̄

J
β̇} = ϵα̇β̇(Z

IJ)∗, (1.4)

where ZIJ = −ZJI is the central charge of the algebra (i.e. it commutes with all gen-
erators) and ϵαβ = ϵα̇β̇ is the spinorial symplectic metric (note that for N = 1, the
anti-symmetry of Z implies Z = 0).
This, then, is the supersymmetry algebra: it comprises of the well known algebra of the
Poincaré group, together with the algebra of the supercharges (1.1)-(1.4). Since the latter
involves non-trivial relationships with Poincaré generators, this algebra is an extension
of the Poincaré algebra, and is called super-Poincaré algebra. So supersymmetry is a
space-time symmetry.

1.2 Representations of the Superalgebra in D = 4
The representetions of the superalgebra can be obtained by acting with supersymmetries
on the single-particle Poicaré representations. Now, as a particle is an irreducible repre-
sentation of the Poincaré algebra, we call superparticle an irreducible representation of the
supersymmetry algebra. Since the Poincarè algebra is a subalgebra of the supersymmetry
algebra, it follows that any irreducible representation of the supersymmetry algebra is a
representation of the Poincaré algebra, which in general will be reducible. This means
that a superparticle corresponds to a collection of particles, the latter being related by the
action of the supersymmetry generators QI

α and Q̄I
α̇ and having spins differing by units of

half. Being a multiplet of different particles, a superparticle is often called supermultiplet.
Since a Casimir of the superalgebra is the invariant mass P 2 = PµP

µ, particles in the
same supermultiplet have the same mass. Therefore we have to study the massive case
separately from the mass-less one. We will also work in D = 3 + 1 dimensions and we’ll

2



CHAPTER 1. AN INTRODUCTION TO SUPERSYMMETRY

say something on higher dimensions later.

1.2.1 Massless Supermultiplets

To study mass-less representations we choose a Lorentz frame in which the momentum
take the form P µ = (E, 0, 0, E), E > 0. The superalgebra relation (1.1) then reduces to

{QI
α, Q̄

J
α̇} =

[
4E 0

0 0

]
δIJ . (1.5)

The relations for α = α̇ = 2 and I = J , together with Q̄α̇ = Q†
α and the positivity

condition, implies
QI

2 |state⟩ = Q̄
I
2 |state⟩ = 0, ZIJ = 0, (1.6)

where ZIJ = 0 follow from (1.4). Therefore we can act on Poincaré particles only with
QI

1 and Q̄
I
1. From (1.2) follows that QI

1 lowers helicity by 1
2

and Q̄
I
1 raises helicity by 1

2
.

All the states in the representation may be obtained by starting from the highest helicity
state |hmax⟩ and applying products of QI

1 operators. The total number of states in a
multiplet will then be 2N . We shall only be interested in CPT invariant theories, such
as quantum field theories and string theories, for which the particle spectrum must be
symmetric under a sign change in helicity. If the particle spectrum obtained is not already
CPT self-conjugate, then we shall take instead the direct sum with its CPT conjugate.
The table below contain the multiplets hmax = 1, 1

2
, 2, 3

2
for some N .

N hmax = 1 hmax =
1
2

hmax = 2 hmax =
3
2

8 none none [2, 3
2
, 1, 1

2
, 0] none

6 none none [2, 3
2
, 1, 1

2
, 0] [3

2
, 1, 1

2
, 0]

5 none none [2, 3
2
, 1, 1

2
, 0] [3

2
, 1, 1

2
, 0]

4 [1, 1
2
, 0] none [2, 3

2
, 1, 1

2
, 0] [3

2
, 1, 1

2
, 0]

3 [1, 1
2
, 0] none [2, 3

2
, 1, 1

2
] [3

2
, 1, 1

2
, 0]

2 [1, 1
2
, 0] [1

2
, 0] [2, 3

2
, 1] [3

2
, 1, 1

2
]

1 [1, 1
2
] [1

2
, 0] [2, 3

2
] [3

2
, 1]

Table 1.1: Multiplets in D = 4.

We have not included the multiplicity of each state and CPT, for a more complete version
look for example [3]. Each supermultiplet contains an equal number of bosonic and
fermionic d.o.f.; this is a general result of supersymmetry. Supermultiplets with the
vector boson h = 1 are called gauge (or vector) multiplets, while the supermultiplets with
the graviton h = 2 are called supergravity multiplets. Finally, the multiplets with only
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CHAPTER 1. AN INTRODUCTION TO SUPERSYMMETRY

matter particles (h = 0, h = 1
2
) are called matter (or chiral) multiplets.

All theories with N > 4 are supergravity theories because in this case is not possible to
avoid gravity since there do not exist representations with helicity smaller than 3

2
. Finally,

it is interesting to note that N = 8 supergravity allows only one possible representation
with highest helicity smaller than 5

2
and that for higher N one cannot avoid states with

helicity 5
2

or higher. Therefore, N = 8 is an upper bound on the number of supersymmetry
generators in D = 4, as far as interacting local field theories are concerned. We will see
that in D = 11 the upper bound is N = 1 and in D = 10 is N = 2. So the maximum
allowed number of supersymmetry generators for non gravitational theories is 16 (which
is indeed N = 4 in four dimensions) and 32 for theories with gravity (which is N = 8 in
four dimensions). When we talk about supersymmetry in higher dimension, we will see
that this is true in general and not only in D = 4.

1.2.2 Massive Supermultiplets and BPS Bounds

The logical steps one should follow for massive representations are similar to previous
ones. There is however one important difference. Let us consider a state with mass m in
its rest frame Pµ = (m, 0, 0, 0). Equation (1.1) is now

{QI
α, Q̄

J
α̇} = 2mδαα̇δ

IJ (1.7)

and no supersymmetric generators are trivially realized. This means that, generically,
massive representations are longer than mass-less ones. For N = 1 the central charge is
zero. We define annihilation and creation operators satisfying the usual oscillator algebra

a1,2 ≡
1√
2m

Q1,2, a†1,2 ≡
1√
2m

Q̄1,2, (1.8)

where a†1 lowers the spin by half unit while a†2 raises it. As before all the states in the
representation may be obtained by starting from the state |m, j0⟩ annihilated by both
a1 and a2 and act with the creation operators to construct the corresponding massive
representations. In this case there are only two multiplets which contain massive particles
of spin lesser than 1: the matter multiplet j0 = 0→ (−1

2
, 0, 0′, 1

2
) and the gauge multiplet

j0 =
1
2
→ (−1,2×−1

2
,2× 0,2× 1

2
, 1).

For N > 1 the algebra contain non-trivial central charges. A change of basis in the space
of supersymmetry generators turns out to be useful for the following analysis. Since the
central charge N × N matrix ZIJ is antisymmetric, with a U(N) rotation one can put
it in the standard block-diagonal form. To do so, we split the label I into two labels:
I = (Î , Ī), where Î = 1, 2 and Ī = 1, · · · , r. Here N = 2r for N even (and we append a
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CHAPTER 1. AN INTRODUCTION TO SUPERSYMMETRY

further single label when N is odd). We then have

ZIJ =



0 Z1

−Z1 0

0 Z2

−Z2 0
. . .

0 Zr

−Zr 0

k


, (1.9)

where k = 0 for N odd and is absent for N even. The ZĪ are the central charges. We can
now defines the following linear combination of the supercharges

QĪα± ≡
1

2
(Q1Ī

α ± (σ0)αα̇Q̄
2Ī
α̇ ), (1.10)

which satisfy the oscillator algebra

{QĪα±, Q̄
J̄
α̇±} = δĪJ̄δαα̇(m± ZĪ). (1.11)

Due to the positivity of the scalar product with respect to which Q̄α̇ = Q†
α, we get

m ≥ |ZĪ |, (1.12)

that is called BPS bound. Whenever one of the values |ZĪ | equals m, the BPS bound is
(partially) saturated and the supercharges QĪα−(Q

Ī
α+

) must annihilate the state if ZĪ > 0

(ZĪ < 0). The supersymmetry representation then suffers multiplet shortening, and is
usually referred to as BPS. More precisely, if we have m = |ZĪ | only for Ī = 1, · · · , r0, the
corresponding representation is said to be 1

2(r−r0)+1BPS. In other words, the states that
are invariant under half of the supersymmetry algebra are half-BPS states. If r0 = r we
have an ultra-short multiplet, if 0 < r0 < r a short multiplet and if r0 = 0 a long multiplet.
The construction of the representations proceeds as before using the oscillatorsQĪα±, see [3]
for details. The existence of short multiplets, whose mass is fixed to an upper bound, turns
out to be a wonderfully powerful tool in the study of quantum field theories with extended
supersymmetry. The basic idea is that one can usually solve quantum field theories at
weak coupling. As one moves into the strong coupling realm, the short multiplets are
special because their mass is not affected by radiative corrections. The existance of BPS
solutions is one of the main reasons that makes the study of supergravity important.
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CHAPTER 1. AN INTRODUCTION TO SUPERSYMMETRY

1.3 Supersymmetry in Other Dimensions
There are essentially two parameters characterizing a supersymmetric theory: the dimen-
sion of the spacetime D, and the number of supersymmetries N . We have seen that
in D = 4, N = 1 is the minimal supersymmetry (4 supercharges), while N = 8 is the
maximal supersymmetry (32 supercharges). We now want to extend the analysis of super-
symmetric theories to higher dimensional spacetime, and the reason is that, as we will see,
the supergravity representing to the low-energy limit of string theory lives in D = 11 or
in D = 10. Furthermore supergravity in D = 4 naturally arises as dimensional reduction
of higher dimensional theories.
The extension is trivial if one considers only bosonic fields; in order to deal also with
fermions, one should first study spinor representations in dimensions greater than four.
This means studying the representations of Clifford algebra in higher dimensions

{γµ, γν} = 2ηµν , (1.13)

with µ, ν = 0, · · · , D− 1. If Jµν is the Lorentz generator, the Dirac spinor representation
is defined in terms of the standard Clifford matrices

UD(Jµν) =
i

4
[γµ, γν ] (1.14)

and its complex dimension is given by 2[D/2]. For D even the Dirac spinor representation
is always reducible because in that case there exists a chirality matrix γ̄, with square
γ̄2 = I, witch anti-commutes with all γµ

{γ̄, γµ} = 0 ⇒ [γ̄, UD(Jµν)] = 0. (1.15)

As a result, the Dirac spinor is the direct sum of two Weyl spinors of chirality ±1 UD =

UR ⊕ UL. The reality condition is
ψ = ψc, (1.16)

where
ψc ≡ Cγ0ψ

∗, (1.17)

here C is a matrix such that CγµC−1 = −(γµ)T . It can be shown that one can impose
such a condition only in dimensions D = 0, 1, 2, 3, 4(mod 8). In dimensions D = 0, 4(mod
8), a Majorana spinor is equivalent to a Weyl spinor, while in dimension D = 2(mod 8)
it is possible to impose the Majorana and Weyl conditions at the same time, resulting
in Majorana-Weyl spinors. The supercharges Qα transforms in the spinor representation
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CHAPTER 1. AN INTRODUCTION TO SUPERSYMMETRY

U , which could be a Dirac spinor, a Weyl spinor, a Majorana spinor or a Majorana-Weyl
spinor, depending on D. Thus, α runs over the spinor indices α = 1, · · · , dimU . We have
seen that for massless representations we can choose P µ = (E, 0, · · · , 0, E) and we have

{QI
α, Q̄

J
α̇} = 2δIJ

[
4E 0

0 0

]
. (1.18)

Half of the supercharges effectively vanish QI
α = 0 for α = 1

2
dimU +1, · · · , dimU . Half of

the remaining supercharges may be viewed as lowering operators, while the other half may
be viewed as raising operators. Thus, the total number of raising operators is 1

4
NdimU .

Each operator raising helicity by 1
2
, and total helicity ranging at most from −2 to +2, we

should have at most 8 raising operators and this produces an important bound

N · dimU ≤ 32. (1.19)

In other words, the maximum number of supercharges is always 32. The largest dimension
D for which the bound may be satisfied is D = 11 and N = 1, for which there are
precisely 32 Majorana supercharges. In D = 10, the bound is saturated for N = 2 and
16-dimensional Majorana-Weyl spinors. Many of the lower dimensional theories may be
constructed by Kaluza-Klein compactification on a circle or on a torus of the D = 11

theory as we will see.

7



2
An Introduction to String Theory

String theory is an ambitious project. It purports to be an all-encompassing theory of the
universe, unifying the forces of nature, including gravity, in a single quantum mechanical
framework. The premise of string theory is that the fundamental objects are not point-
like particles but extended one dimensional strings. From this slightly unconventional
beginning, the laws of physics emerge. However, they come with baggage. String theory
gives rise to a host of other ingredients, most strikingly extra spatial dimensions of the
universe beyond the three that we have observed. The quantization of the strings vibra-
tion modes corresponds to different particles of various masses and spins. The particles
spectrum contain also a massless spin-2 particle, the graviton. In this sense, string theory
is a theory of quantum gravity. The main purpose of this chapter is to introduce the main
aspects of the theory that will be relevant in the discussion of supergravity. In fact it
turns out that supergravity is the low-energy limit of string theory. Standard references
for the topic are, for example, [6], [7] and [8].

2.1 Bosonic Strings
The action for a relativistic point particle with mass m which moves in the Minkowski
space R1,D−1, is proportional to the lenght of its worldline

S = −m
∫
dτ

√
−dX

µ

dτ

dXν

dτ
ηµν , (2.1)

where ηµν = diag(−1,+1, · · · ,+1) is the Minkowski metric and Xµ(τ) are the coordinates
of the worldline parameterized by τ that the particle sweeps out. This action is invariant
under an arbitrary reparameterization of the worldline

τ̃ = τ̃(τ) (2.2)

8



CHAPTER 2. AN INTRODUCTION TO STRING THEORY

and under global Poincaré trasformation

Xµ → ΛµνX
ν + cµ (2.3)

as one can check using the definition property of the Lorentz transformations: ΛTηΛ = η.
It is pretty straightforward to generalize the action of the point particle for a string: while
a point particle sweeps out a worldline, a string sweeps out a 2-dimensional surface, called
the worldsheet of the string. We want to write the string action in term of the worldsheet
area; to this purpose we parameterized the surface with a time-like coordinate τ and a
space-like coordinate σ that we put into a single object σa ≡ (σ, τ), a = 1, 2 for later
convenience. The metric γab on the worldsheet is the pull-back of the Minkowski metric

(X∗η)ab ≡ γab =
∂Xµ

∂σa
∂Xν

∂σb
ηµν . (2.4)

So the action proportional to the worldsheet area is

SNG = −T
∫
d2σ
√
−det(γ) = −T

∫
d2σ
√
−det(∂aXµ∂bXνηµν) (2.5)

and it is called the Nambu-Goto action. The proportionality coefficient T is the string
tension, meaning the mass per unit length, which is related to the Regge slope parameter
α′ via

T =
1

2πα′ , α′ = l2s , (2.6)

where ls is the string length. The square root in the Nambu-Goto action makes the
quantization of the string more difficult. We can write an equivalent string action without
the square root at the expense of introducing a dynamical field gab on the worldsheet. This
is called Polyankov action

SP = − 1

4πα′

∫
d2σ
√
−det(g)gab∂aXµ∂bX

νηµν . (2.7)

To justify the equivalence between the two actions we write down the equations of motion
for Xµ

∂a(
√
−ggab∂bXµ) = 0, (2.8)

which coincides with the equations of motion obtained from the Nambu-Goto action with
the field gab instaed of γab. The equations for the dynamical metric on the worldsheet are

gab = f(σ)∂aX∂bX, (2.9)
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where f is left arbitrary by the equations of motion for gab (because of Weyl symmetry).
We see that gab differ from the pull-back metric (2.4) only by the conformal factor f(σ).
However, this doesn’t matter because, rather remarkably, f(σ) drops out of the equation
of motion (2.8). This is because the √−g term scales as f , while the inverse metric gab

scales as f−1. We therefore see that Nambu-Goto and Polyankov actions result in the
same equations of motion for Xµ. In fact, we can see more directly that the two actions
coincide by integrating away gab using its equations of motion.
The fact that the conformal factor f(σ) didn’t actually affect the equations of motion for
Xµ reflects the existence of an extra symmetry which the Polyankov action enjoys. In
particular the symmetries of the action are the following:

• Global Poincaré invariance

Xµ → ΛµνX
ν + cµ. (2.10)

• Reparameterization invariance

σa → σ̃a ⇒ Xµ(σ) = X̃
µ
(σ), g̃ab =

∂σc

∂σ̃a
∂σd

∂σ̃b
gcd(σ). (2.11)

• Weyl invariance (conformal invariance)

gab(σ)→ Ω2(σ)gab(σ) = e2ω(σ)gab. (2.12)

This is a gauge symmetry of the string, as seen by the fact that the parameter
Ω depends on the worldsheet coordinates σ. The property of Weyl invariance is
special to two dimensions, for only there does the scaling factor coming from the
determinant √−g cancel that coming from the inverse metric. If we wish to keep
Weyl invariance then we are strictly limited in the kind of interactions that can be
added to the action.

We can simplify the equations for Xµ (2.8) by fixing a particular gauge. Firstly, we can
use reparameterization invariance to fix two of the three metric independent components.
We will choose to make the metric locally conformally flat, meaning

gab = e2ϕηab, (2.13)

where ϕ = ϕ(σ) is some function on the worldsheet. Choosing a metric of that form is
known as conformal gauge. Now we can use Weyl invariance to remove the last indepen-
dent component of the metric and set ϕ = 0 such that

gab = ηab. (2.14)

10
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We end up with the flat metric on the worldsheet in Minkowski coordinates. With this
gauge fixing the Polyankov action (2.7) becomes the theory of D free scalar fields

SP = − 1

4πα′

∫
d2σ∂aX∂

aX, (2.15)

and the equations of motion for Xµ reduce to the free wave equation

∂a∂
aXµ = 0. (2.16)

The equations for gab, fixing gab = ηab, instead become

Tab = 0, (2.17)

where we have defined the energy-stress tensor

Tab = −
2

T

1√
−g

∂S

∂gab
. (2.18)

2.1.1 Closed Strings

For a closed string we take σ to be periodic, with range

σ ∈ [0, 2π), (2.19)

and we also require
Xµ(σ, τ) = Xµ(σ + 2π, τ). (2.20)

The equations of motion (2.16) are easily solved. We introduce lightcone coordinates on
the worldsheet

σ± ≡ τ ± σ, (2.21)

in terms of which the equations of motions simply read

∂+∂−X
µ = 0. (2.22)

The most general solution is

Xµ(σ, τ) = Xµ
L(σ

+) +Xµ
R(σ

−) (2.23)
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for arbitrary functions Xµ
L and Xµ

R. These describe left-moving and right-moving waves
respectively. The most general periodic solution can be expanded in Fourier modes

Xµ
L(σ

+) =
1

2
xµ +

1

2
α′pµσ+ + i

√
α′

2

∑
n ̸=0

1

n
α̃µne

−inσ+

,

Xµ
R(σ

−) =
1

2
xµ +

1

2
α′pµσ− + i

√
α′

2

∑
n ̸=0

1

n
αµne

−inσ−
,

(2.24)

where the variables xµ and pµ are the position and momentum of the center of mass of
the string. Reality of Xµ requires that the coefficients of the Fourier modes, αµn and α̃µn,
obey

αµn = (αµ−n)
∗, α̃µn = (α̃µ−n)

∗. (2.25)

Finally, the constraints (2.17), impose

Ln = L̃n = 0, (2.26)

where
Ln ≡

1

2

∑
m

αn−m · αm, L̃n ≡
1

2

∑
m

α̃n−m · α̃m. (2.27)

2.1.2 Open Strings

The spatial coordinate of an open string is parameterized by

σ ∈ [0, π]. (2.28)

The dynamics of an open string must therefore still be described by the Polyakov action.
But this must now be supplemented by something else: boundary conditions to tell us how
the end points move. Let’s consider the string evolving from some initial configuration at
τ = τi to some final configuration at τ = τf

δS = − 1

2πα′

∫ τf

τi

dτ

∫ π

0

dσ∂αX∂
αδX =

1

2πα′

∫
d2σ(∂α∂αX)δX + total derivative,

(2.29)
where the boundary contribution is given by the total derivative term

1

2πα′

[∫ π

0

dσẊ · δX
]τ=τf
τ=τi

− 1

2πα′

[∫ τf

τi

dτX ′ · δX
]σ=π
σ=0

, (2.30)
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where Ẋ ≡ ∂tX, X ′ ≡ ∂σX. The first term vanishes by requiring that δXµ = 0 at τ = τi

and τf as usual in the variational approach. To eliminate also the second term we have
to impose the condition

∂σX
µδXµ = 0, at σ = 0, π. (2.31)

There are two different types of boundary conditions that we can impose to satisfy this:

• Neumann boundary conditions

∂σX
µ = 0, at σ = 0, π. (2.32)

Because there is no restriction on �X�, this condition allows the end of the string to
move freely.

• Dirichlet boundary conditions

δXµ = 0, at σ = 0, π. (2.33)

This means that the end points of the string lie at some constant position, Xµ = cµ,
in space.

Let’s consider Dirichlet boundary conditions for some coordinates and Neumann for
the others. This means that at both end points of the string, we have

∂σX
i = 0, for i = 0, · · · , p; XI = cI , for I = p+ 1, · · · , D − 1. (2.34)

This fixes the end-points of the string to lie in a (p + 1)-dimensional hypersurface in
spacetime such that the SO(1, D − 1) Lorentz group is broken to

SO(1, D − 1)→ SO(1, p)× SO(D − p− 1), (2.35)

that is Lorentz invariance in the flat hypersurface and Lorentz invariance in the directions
transverse to the membrane. This hypersurface is called a D-brane or, when we want to
specify its dimension, a Dp-brane. Here D stands for Dirichlet, while p is the number of
spatial dimensions of the brane. So, in this language, a D0-brane is a particle; a D1-brane
is itself a string; a D2-brane a membrane and so on. The brane sits at specific positions cI

in the transverse space. It turns out that the D-brane hypersurface should be thought of
as a new, dynamical object in its own right: string theory is not just a theory of strings, it
also contains higher dimensional branes. Strings that have Neumann boundary conditions
in all directions, are free to move throughout spacetime or, in other words, the space is
completely covered by branes.
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2.1.3 A Nod to the Quantization

We will not discuss the quantization procedure of the Polyakov action, standard references
are [6] and [7]. It turns out that a consistent quantum theory of strings is possible only if
the dimension of spacetime is D = 26. The quantization of the vibration modes found in
the previous sections corresponds to different particles of various masses and spin. The
masses are integer multiples of 1

ls
and at distances much greater than the string length,

only the mass-less modes are relevant. Finally, the spectrum contains only bosons and,
for this reason, this type of strings are called bosonic strings.
The ground state is a tachyon while the first excited states correspond to mass-less parti-
cles and their respective fields for the closed string are:

• gµν(X), a massless spin two field, which we interpret as the metric1.

• Bµν(X), a 2-form called the Kalb-Ramond field.

• Φ(X), a scalar field called the dilaton.

while for the open string we have:

• Excitations polarized along the brane are described by a spin 1 gauge field Aa (with
a = 0, ..., p) living in the Dp-brane’s (p + 1)-dimensional worldvolume. We will see
later that this U(1) gauge theory plays a major role in the AdS/CFT duality.

• Excitations polarized perpendicular to the brane are described by scalar fields ϕI
(with I = p + 1, ..., D − 1). They can be interpreted as fluctuations of the brane
in the transverse directions, this gives us a hint that the D-brane is a dynamical
object.

These mass-less fields are common to all string theories, also to superstring theories
which we will discuss now.

2.2 A Nod to the Superstring Theories
Superstring theories solve the two main problems of the bosonic strings: the absence of
the fermions in the spectrum and the presence of a vacuum state with negative energy:
the tachyon. The main difference from the bosonic theory is the introduction of supersym-
metry on the worldsheet. While the bosonic string theory is unique, there are a number
of discrete choices that one can make when adding fermions. The most important one is

1There is an argument by Feynman [9] that shows that any theory of interacting massless spin two
particle must be General Relativity.
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whether to add fermions in both left-moving and right-moving sectors (obtaining Type II
superstring), or allow them to move in only one direction (obtaining Heterotic strings).
Strings without an orientation are called Type I superstring. However, later developments
have shown that they are all parts of the same framework, which goes by the name of
M-theory. Here we will discuss and use only Type II superstring.
We introduce D Majorana spinors ψµ = (ψµa ) (where µ = 0, ..., D − 1 is the spacetime
index and a = ± is a worldsheet spinor index), with action

Sψ =
i

4πα′

∫
d2σ
√
−γψ̄µρa∂aψµ, (2.36)

where ρa satisfy the 2-dimensional Clifford algebra. In the conformal gauge γab = ηab and
using light coordinates σ± = τ ± σ, the fermionic equations of motion read

∂+ψ− = 0 ⇒ ψ− = ψ−(σ
−),

∂−ψ+ = 0 ⇒ ψ+ = ψ+(σ
+).

(2.37)

Let’s now combine the Polyakov action (2.7) with the spinor action and introduce the
gravitino χα, the supersymmetric partner of gab, in such a way that the resulting action
is supersymmetric. The resulting action possesses reparameterization and conformal in-
variance. These symmetries can be used to fix some degrees of freedom: a useful choice
is the so-called superconformal gauge, in which gab = ηab and χa = 0. With this gauge
choice, the action for Type II superstring reads [10]

SII = −
1

4πα′

∫
d2σ
√
−γ[∂aXµ∂aXµ − iψ̄µρα∂αψµ]. (2.38)

The quantization of the theory proceeds analogously with the bosonic string case. One
can project out of the spectrum the tachyonic state that is present in the NS sector. This
can be done with the GSO projection, which keeps just the states constructed applying
an odd number of fermionic creation operators to a vacuum state and projects out the
others. This operation removes the tachyonic state from the Fock space, as it has an
even fermionic number. It turn out that the GSO projection has to be applied also to
the R sector: in this case, whether to keep the states with even or odd fermionic number
is a matter of choice, and this choice gives rise to two different theories. Consistency
requires that the dimension of spacetime must be D = 10. The mass-less spectrum can
be classified in 4 sectors according to the different possible boundary conditions of the
fermions:

• NS-NS sector: the field content is identical to the bosonic string. It consists in the
dilaton Φ, the Kalb-Ramond 2-form Bµν and the graviton gµν .
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• The NS-R sector contains two fermionic fields: the spin-1
2

dilatino and the spin-3
2

gravitino (supersymmetric partners of the dilaton and of the graviton respectively).

• The R-NS sector contatins the same spectrum of the NS-R sector.

• R-R sector: it contains bosonic fields, but its spectrum depends on the way one
makes the GSO projection. Two different theories arise: Type IIA and Type IIB
superstring theories. The former contains a 1-form and a 3-form; the latter a 0-form,
a 2-form and a self dual 4-form.

2.3 Toroidal Compactification
Even before the advent of string theory, the possibility of extra dimensions was discussed.
A few years after Einstein wrote down his theory of general relativity Kaluza attempted
to unify gravitation with electromagnetism by assuming that we live in a five-dimensional
universe. By considering an effective 4D theory where one keeps only the lowest harmonics
in the extra dimensions he managed to obtain the four-dimensional field equations of
both gravity and electromagnetism from a five-dimensional theory of pure gravity. He
also assumed that the extra coordinate was curled up as a circle, explaining why this
coordinate had never been observed in experiment. The same mechanism can now also
be used for ten-dimensional string theories, in order to try to obtain the four-dimensional
world as we observe it and make contact with experiment. The point is that all of the
dimensions need not to be infinitely extended: some of them can be compact. Consider,
for instance, a 5-dimensional spacetime in which 4 directions are flat (with coordinates
xµ, µ = 0, ..., 3) while the fifth direction is a circle of radius R (whose coordinate y is
periodic: y = y + 2πR). Consider now a mass-less scalar field ϕ(x, y); we can decompose
it as

ϕ(x, y) =
∑
n

ϕn(x)e
iny
R , (2.39)

where the integer-valued n labels the quantized momenta in the compact direction. The
equation of motion ∂M∂Mϕ(x, y) = 0 (where M = 0, ..., 4 is the index of the 5-dimensional
spacetime) gives

(∂µ∂
µ − n2

R2
)ϕn(x) = 0, ∀n. (2.40)

Thus, a single field in higher dimensions becomes an infinite tower of massive fields in
the non-compact world, with mass mn given by mn = |n|

R
. At energies much lower then
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1
R

, only the n = 0 mode can be excited, and at this scale we remain with only one scalar
field in the non-compact dimension ϕ0(x).
We can decompose the metric g̃MN of the 5-dimensional space into:

gµν , gµy, gyy, (2.41)

that is, in a metric on the non-compact dimensions, a vector gauge field and a scalar
matter field. In order to implement this we can parameterize the metric as

ds2 = g̃MNdx
MdxN = gµνdx

µdxν + gyy(dy + Aµdx
µ)2. (2.42)

This form still allows a reparameterizations x′µ(xν) and also the reparameterizations

y′ = y + λ(x). (2.43)

Under the latter

A′
µ = Aµ − ∂µλ(x), (2.44)

so gauge transformations arise as part of the higher-dimensional coordinate group. This
is the Kaluza-Klein mechanism. The action of pure gravity written in terms of the new
fields reads [7]

S =
1

2k25

∫
d5x
√
−g̃R5 =

2πR

2k2

∫
d4x
√
−geσ(R4 −

1

4
e2σFµνF

µν + ∂µσ∂
µσ), (2.45)

where F = dA and R4 is the Ricci scalar of gµν .
Let’s now consider the Kaluza-Klein reduction from the prespepctive of a (bosonic) string.
We want to study a string moving in the background R1,D−2 × S1. One effect of the
compactification is that the momentum along the circle direction py is quantized in integer
units

py =
n

R
, n ∈ Z, (2.46)

this is not specific to strings and it follows from the requirement that the standard wave
function eipyy be single valued on S1. Another consequence of the compactification, that
is peculiar to string theory, is that the boundary conditions for the string coordinates
become

Xy(σ + 2π)−Xy(σ) = 2πmR, m ∈ Z. (2.47)
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The integer m is the winding number of the string: it is the number of times the string
wraps the circle. The presence of a quantized momentum and winding number contribute
to the mass of the string: beside the 1

ls
oscillator contributions, it receives the correction

[6]

δM2 =
n2

R2
+
m2R2

l4s
. (2.48)
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3
Supergravity

Supergravity theories are supersymmetric extensions of general relativity and have a nat-
ural embedding in superstring theories, as supergravity corresponds to their low energy
limit. The low-energy string effective action describes the low-energy dynamics of a given
string theory: the low energy limit is equivalent to the limit α′ → 0, because at large
distances the string length can be ignored and a theory of particles is recovered. Moreover,
at low energies only the mass-less modes are relevant and their dynamics is described by
a theory of the corresponding mass-less fields. The low energy theory can be obtained
expanding in powers of α′ the action for the massless string spectrum and keeping only
the lowest terms. Historically, however, supergravity and superstring theories were dis-
covered independently. Before the advent of strings as a theory of quantum gravity, in
fact, there was an attempt to control loop divergences in gravity by making the theory
supersymmetric. The greater the number of supersymmetries, the better was the control
of divergences. Since no consistent interacting quantum field theory can be constructed
with fields that have spin greater than 2, in four dimensions the maximal number of su-
persymmetries is N = 8. We can also construct a D = 11 N = 1 theory by taking the
low energy limit of M-theory. Then we can construct a D = 10 N = 2 theory via the
process of dimensional reduction explained above. Among the various supergravity theo-
ries, 11-dimensional supergravity occupies a distinguished position; eleven is the maximal
space-time dimension in which a supergravity theory can be constructed for the reason
above. In this chapter we will introduce D = 11 supergravity, as well as Type IIA and
Type IIB 10-dimenional supergravity.

3.1 Basic Features of Supergravity
In this section we introduce some useful tools to deal with supergravity. The first is the
language of differential p-forms and the second is the tetrad formalism needed to put
spinors on curved spaces.
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3.1.1 Differential p-forms

A differential p-form is a type (0, p) tensor completely antisymmetric. Using the coordi-
nate differentials dxµ, we can construct differential p-forms for p = 1, · · · , D as

ω(D) =
1

p!
ωµ1...µp(x)dx

µ1 ∧ dxµ2 ∧ ... ∧ dxµp . (3.1)

The product ∧ between two p-forms is called wedge product and is defined as antisymmetric

dxµ ∧ dxν = −dxν ∧ dxµ. (3.2)

A p-form ω(p) and a q-form ω(q) can be multiplied to give a (p+ q)-form if p+ q ≤ D. The
product vanishes if p+ q > D for the antisymmetry and it satisfies

ω(p) ∧ ω(q) = (−)pqω(q) ∧ ω(p), (3.3)

where the minus sign is related to the fact that we have to swap the differentials. The
exterior derivative is a map between a p-form and a (p+ 1)-form:

dω(p) =
1

p!
∂µωµ1···µpdx

µ ∧ dxµ1 ∧ · · · ∧ dxµp , (3.4)

that satisfy the Leibniz rule

d(ω(p) ∧ ω(q)) = dω(p) ∧ ω(q) + (−)pω(p) ∧ dω(q), (3.5)

where the minus sign is related to the fact that dxµ must surpass p differentials. A p-form
that satisfies dω(p) = 0 is called closed. A p-form that can be expressed as ω(p) = dω(p−1)

is called exact. We also have
ddω(p) = 0 (3.6)

because partial derivatives commute. In a D-dimensional manifold, the number of inde-
pendent parameters of a p-form is

(
D
p

)
. Since p-forms and q-forms have the same number

of components when p + q = D, it is possible to define a map between them. This map
is called Hodge duality ⋆

⋆ : Λ(p)(M)→ Λ(q)(M), Ω(q) = ⋆ω(p) (3.7)

and it’s defined as
Ω

(q)
b1···bq =

1

p!

√
−gϵb1···bqa1···apωa1···ap . (3.8)
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This operator has an important involutive property; for a lorentzian metric

⋆(⋆ω(p)) = −(−)pqω(p). (3.9)

For even dimension D = 2m, it is possible to impose the constraint of self-duality (or
anti-self-duality) on forms of degree m

ω(m) = ±(⋆ω(m)). (3.10)

This condition is consistent only if duality is a strict involution, i.e.

−(−)m2

= +1. (3.11)

A self-dual F (5) is possible in D = 10 Lorentzian signature, and it indeed appears in Type
IIB supergravity. Finally, for general p-forms we have

λ(p) ∧ ⋆ω(p) = ω(p) ∧ ⋆λ(p). (3.12)

The equation of motion in any field theory are most conveniently packaged in the action
integral. In a gravitational theory this requires integration over the curved spacetime
manifold. We thus need a procedure for integration that is invariant under coordinates
transformations. The volume form is the key to this procedure.
On a D-dimensional manifold, one may choose any D-form ω(D) as a volume form and
define the integral

I =

∫
ω(D) =

1

D!

∫
ωµ1···µD(x)dx

µ1 ∧ · · · ∧ dxµD . (3.13)

So, with the forms we can define integral volume in curved spacetime without invoking
the metric explicitly. When the physical theory contains forms field, we can use them to
define the integral volume. It’s easy to show that the volume forms are invariant under
a general coordinate transformation. Since the the wedge product between a p-form and
its dual is a D-form, we can always define the integral as∫

⋆ω(p) ∧ ω(p) =
1

p!

∫
dDx
√
−gωµ1···µpωµ1···µp (3.14)

for any p-form ω(p). In this language the Maxwell equations for the 1-form vector potential
A(1) with field strength F (2) = dA(1) are

dF = 0, d ⋆ F = 0, (3.15)
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where the Bianchi’s identity dF = 0 follow from the fact that field strength is an exact
form. In dealing with supergravity we will generalize these equations of motion to generic
p-forms.

3.1.2 Tetrad Formalism: The Spin Connection

For practical reasons, when dealing with spinors in curved spacetime it is useful to in-
troduce a new basis on the manifold’s tangent space. The starting point is the Clifford
algebra in flat space, {γm, γn} = 2ηmn. In curved spacetime we have

{γµ(x), γν(x)} = 2gµν(x). (3.16)

Because the right-hand side depends on x, the object γµ on the left-hand side also depend
on x as we already have indicated. We can expand γµ(x) in terms of the constant Dirac
matrices γm of flat space as follows

γµ(x) = γmem
µ(x). (3.17)

The matrices emµ(x) are called the (inverse) vielbein fields1.
The substitution of (3.17) in (3.16) shows that the metric is the product of two vielbeins

ηmnem
µen

ν = gµν . (3.18)

Defining eµm as the (matrix) inverse we also have

gµν = eµ
meν

nηmn. (3.19)

This is the defining property of the vielbeins. Given a local Lorentz transformation, we
can construct another solution

e
′a
µ(x) = (Λ−1(x))abe(x)

b
µ. (3.20)

All choice of frame fields related by local Lorentz transformations are viewed as equivalent.
So we require that the geometrical quantities derived from it must be used in a way that is
covariant with respect to this transformation. Coordinate indices transforms as a covariant

1In the German literature they were called Vierbein fields where vier = four in German, and bein =
leg. In the English literature this became tetrads (tessara = four in Greek), or frame fields sometimes.
Gell-Mann coined the word vielbeins because viel = many in German.
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vector under diffeomorphism

e
′a
µ(x

′) =
∂xρ

∂x′µ
eaρ(x). (3.21)

We also have
eaµe

µ
b = δab , eµae

a
ν = δµν . (3.22)

So geometrically the frame fields eµn form an orthonormal set of vectors in the tangent
space of the manifold at each point. Any contravariant and covariant field has a unique
expansion in the new basis

V µ(x) = V a(x)eµa(x), V a(x) = V µ(x)eaµ(x);

ωµ(x) = ωa(x)e
a
µ(x), ωa(x) = ωµ(x)e

µ
a(x).

(3.23)

The V a(x) and ωa(x) transform as scalar fields under coordinate transformations, and as
a vector under Lorentz transformation. We can use the frame fields to define a new basis
in the tangent space

Ea = eµa∂µ. (3.24)

While the new local Lorentz basis of 1-forms is

ea = eaµdx
µ, (3.25)

that is the dual basis of the previous one: (Ea, eb) = δba. For 2-forms, basis consists of the
wedge products ea ∧ eb, and so on. In a field theory containing only bosonic fields, which
are always vectors or tensors, the use of local frames is unnecessary. Local frames are a
necessity to treat the coupling of fermion fields to gravity, because spinors are defined by
their special transformation properties under Lorentz transformations.
We can define a covariant derivative for the vectors in the frame bases in the same way
we construct the one for the vectors in the coordinate frames. We first observe that given
a 1-form ea, we have

dea =
1

2
(∂µe

a
ν − ∂νeaµ)dxµ ∧ dxν . (3.26)

The antisymmetric components don’t transform as a (0, 2) tensor under local Lorentz
transformation

de
′a = d((Λ−1)abe

b) = (Λ−1)abde
b + d(Λ−1)ab ∧ e

b. (3.27)
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The second term spoils the vector transformation property. To cancel it we add the
contribution involving the spin connection. We have

DµV
n = enνDµV

ν = enν∂µV
ν + enνΓ

ν
µλV

λ =

= enν∂µ(e
ν
aV

a) + enνΓ
ν
µλe

λ
aV

a =

= ∂µV
n + enν(∂µe

ν
a + Γνµλe

λ
a)V

a = ∂µV
n + ωµ

n
aV

a

(3.28)

where
ωµ

a
b ≡ eν

a(∂µe
ν
b + Γνµλe

λ
b) (3.29)

is called the spin connection. So, for a contravariant and a covariant vector, the local
Lorentz covariant derivative is

DµV
a = ∂µV

a + ωµ
a
bV

b,

DµVa = ∂µVa − Vbωµba = ∂µVa + ωµa
bVb.

(3.30)

from which we get ωµba = −ωµa
b. These relations can be generalized for a type (q, p)

tensor. In order to determine the spin connection one has to impose the tetrad postulate:
the covariant derivative of the vierbein field vanishes, Dµe

a
ν = 0. In fact

ωµ
a
beν

b = eσ
aeλbeν

bΓσµλ − eλbeνb∂µeλa = eσ
aΓσµν − ∂µeνa. (3.31)

Rearranging terms, we have the tetrad postulate

Dµeν
a = ∂µeν

a − eσaΓσµν + ωµ
a
beν

b = 0. (3.32)

We can define the torsion 2-form:

dea + ωab ∧ eb ≡ T a. (3.33)

In most application of gravity the torsion vanishes, and one deal with a torsion-free,
metric-preserving connection

T a = 0. (3.34)

From (3.32),(3.33) this is equivalent to the usual symmetry Γσµν = Γσνµ of Christoffel
symbols. In a gravitational theory, spinors must be described through their local frame
components. The local Lorentz transformation rule

Ψ′(x) = e−
1
4
λabγabΨ(x) (3.35)
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determines the covariant derivative

DµΨ(x) = (∂µ +
1

4
ωµab(x)γ

ab)Ψ(x), (3.36)

where ωµab = ηacωµ
c
b.

3.2 Supergravity in D = 11
This theory is not only more fundamental, but also much simpler than other supergravity
theories in lower dimension, because its field content is very simple. This is the reason
why it is often useful to work with this theory and then, if necessary, to obtain physical
results via dimensional reduction. Supergravity in D = 11 is the low energy limit of
M-Theory; its bosonic fields are:

• The eleven-dimensional metric GMN ; on shell this is a symmetric trace-less tensor
with 44 d.o.f.

• The 3-form A(3) = AMNPdx
M ∧ dxN ∧ dxP (84 d.o.f.), with field strength F (4) =

dA(3).

The fermionic content is given by the Majorana gravitino ψαM (128 d.o.f.), withM,N,P =

0, · · · 10. Eleven-dimensional supergravity is a maximal supergravity theory and so the
gravity supermultiplet is the only multiplet.
The bosonic part of the action is given by (the fermionic part is fixed by supersymmetry)
[8]

S11 =
1

2k211

∫
d11x
√
−G(R− 1

2
|F (4)|2)− 1

12k211

∫
A(3) ∧ F (4) ∧ F (4), (3.37)

where k11 ≡
√
8πG

(11)
N is the gravitational coupling constant in eleven dimensions. Here

and in the following we will avoid writing down the fermionic part of the action. This is
because we are interested in supersymmetric solutions with zero fermion fields2, which of
course have vanishing action for the fermionic part. The first term contains the Einstein-
Hilbert action and the kinetic term for A3. The second one is called Chern-Simons term,
and is required by supersymmetry; note that it does not contain the metric: it is a
topological term. The eleven-dimensional gravitational coupling constant k11 is related to

2With supersymmetryc solutions we mean solutions that are invariant under supersymmetry trans-
formations (BPS). By setting the fermions and their supersymmetry transformations to zero we obtain
pure bosonic solutions that are of course invariant under supersymmetry since the bosons transform into
fermions.
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the Planck length via k211 ∼ G
(11)
N ∼ l9P . This theory has no free dimensionless parameters:

there is only one scale, lP .

3.3 Supergravity in D = 10

3.3.1 Type IIA

Type IIA supergravity can be obtained from eleven-dimensional supergravity by compact-
ifying a coordinate, say y ≡ x10, on a circle of radius R (which is a new length scale of
the theory). The eleven dimensional metric can be written in terms of a ten-dimensional
metric gµν , a 1-form C(1) and a scalar σ (or, equivalently, the dilaton Φ ≡ 3

2
σ) as

ds211 = ds210 + e2σ(dy + C(1)
µ dxµ)2, (3.38)

where µ, ν = 0, · · · 9. The eleven-dimensional gauge fields can be decomposed into a
2-form B(2) and a 3-form C(3) via

A(3) = B(2) ∧ dy + C(3). (3.39)

So we have the correct bosonic fields content of Type IIA theory: the NS-NS sector
(Φ,B(2), gµν) and the R-R sector (C(1), C(3)). The action for Type IIA supergravity can
be obtained using (3.37), (3.38) and (3.39) [8]

SIIA =
1

2k210

∫
d10x
√
−g10(eσR10 + eσ∂µσ∂

µσ − 1

2
e3σ|F (2)|2)+

− 1

4k210

∫
d10x
√
−g10(e−σ|H(3)|2 + eσ|F̃ (4)|2)− 1

4k210

∫
B(2) ∧ F (4) ∧ F (4),

(3.40)

where we have introduced the field strengths F (p+1) = dC(p), H(3) = dB(2), and F̃
(4)

=

dC(3) − C(1) ∧ F (3). The dilaton Φ is related to the string theory coupling constant by

gs = eΦ∞ (3.41)

where Φ∞ is the value of the dilaton at spatial infinity. We can observe that in the strong
coupling limit we have σ → ∞, i.e. the radius of the 11-th direction y becomes large,
which means that we can describe Type IIA theory as a 11-dimensional theory. We say
that the strong coupling limit of Type IIA is M-theory.
Written in this frame, the action has an Einstein-Hilbert term that is not written in the
canonical form √−gERE. To get it in its canonical form we shall move in the so-called
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Einstein frame via
(gE)µν = e

Φ
6 (g10)µν . (3.42)

This is the frame one shall use when deriving physical results. Another useful frame, the
string frame, is given by

(gE)µν = e−
Φ
2 (gS)µν . (3.43)

With this choice the Einstein-Hilbert term reads √−gSe−2Φ; this is the frame one obtains
when one derives the action as the low energy limit of Type IIA superstring theory. In
this frame the action reads

SIIA = SNS−NS + SR−R + SCS. (3.44)

The explicit expressions are:

SNS−NS =
1

2k210

∫
d10x
√
−gSe−2Φ(RS + 4∂µΦ∂

µΦ− 1

2
|H(3)|2), (3.45)

SR−R = − 1

4k210

∫
d10x
√
−gS(|F (2)|2 + |F̃ (4)|2), (3.46)

SCS = − 1

4k210

∫
B(2) ∧ F (4) ∧ F (4). (3.47)

3.3.2 Type IIB: T-Duality

We have seen that Type IIA supergravity can be obtained by dimensional reducing the
eleven-dimensional theory. There is another ten-dimensional supergravity theory that is
the low energy limit of Type IIB superstring: Type IIB supergravity. This theory cannot
be derived via compactification, but it is related to Type IIA supergravity thanks to a
duality between the fields of the two theories: the T-duality. As we have seen, if we wrap
a IIA string on a circle of radius R it receives a mass contribution in units of R

l2s
from the

winding number and in units of 1
R

from the momentum modes. We can do the same for a
Type IIB string wrapping a circle of radius R̃. It turns out that if R̃ = l2s

R
the two theories

not only have exactly the same spectra (momentum modes map to winding modes and
vice versa) but they are also equivalent at the interacting level. To T-dualize the bosonic
fields of Type IIA supergravity into those of Type IIB, it is convenient to rewrite the
fields as:

ds2 = gyy(dy + Aµdx
µ)2 + ĝµνdx

µdxν

B(2) = Bµydx
µ ∧ (dy + Aµdx

µ) + B̂
(2)

C(p) = C(p−1)
y ∧ (dy + Aµdx

µ) + Ĉ
(p)

(3.48)
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The fields of the corresponding Type IIB supergravity are:

ds
′2 = g−1

yy (dy +Bµydx
µ)2 + ĝµνdx

µdxν

e2Φ
′
= g−1

yy e
2Φ

B
′(2) = Aµdx

µ ∧ dy + B̂
(2)

C
′(p) = Ĉ

(p−1)
∧ (dy +Bµydx

µ) + C(p)
y

(3.49)

The NS-NS sector has the same fields in Type IIA and Type IIB supergravity; the R-R
sector is again made of p-forms but, in Type IIB, p takes only even values (p = 0, 2, 4).
Thus the NS-NS term in the action SIIA is valid also for Type IIB supergravity. We have

SIIB = SNS−NS + SR + SCS (3.50)

where, in the string frame:

SNS−NS =
1

2k210

∫
d10x
√
−gSe−2Φ(RS + 4∂µΦ∂

µΦ− 1

2
|H(3)|2) (3.51)

SR−R = − 1

4k210

∫
d10x
√
−gS(|F (1)|2 + |F̃ (3)|2 + 1

2
|F̃ (5)|2) (3.52)

SCS = − 1

4k210

∫
C(4) ∧H(3) ∧ F (3) (3.53)

Here we have introduced the fields strengths F̃ (3)
= F (3) − C(0) ∧H(3) and F̃

(5)
= F (5) −

1
2
C(2) ∧H(3) + 1

2
B(2) ∧ F (3).

Matching of degrees of freedoms requires F̃ (5) to be self dual

⋆F̃
(5)

= F̃
(5)
, (3.54)

this is an additional condition that must be imposed in addition to the equations of
motion because there is no straightforward way to incorporate in the action this self-
duality condition on a middle rank (i.e. D

2
-form) field strength. In fact the kinetic term

of this field strength is proportional to∫
F̃

(5) ∧ ⋆F̃ (5)
=

∫
F̃

(5) ∧ F̃ (5)
= −

∫
F̃

(5) ∧ F̃ (5) ⇒
∫
F̃

(5) ∧ ⋆F̃ (5)
= 0,

where we used (3.3) with p = q = 5. So the naive kinetic term of a self-dual F (5)

vanishes. The introduction of a Lagrange multiplier field to implement the self-duality
condition does not help, because the Lagrange multiplier field itself ends up reintroducing
the components it was intended to eliminate. There are several different ways of dealing
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with the problem of the selfdual field. The original approach is the one we use: we don’t
construct an action, but only the field equations and the supersymmetry transformations.
The equations are highly overconstrained, so one obtains many consistency checks.

3.4 S-Duality
In the strong coupling limit R11 →∞ and the theory decompactifies: the strong coupling
limit of Type IIA is M-theory. Obviously, the same argument does not apply to Type
IIB theory as it cannot be obtained through dimensional reduction. It turns out that its
strong coupling limit is still a Type IIB theory, as it follows from S-duality. S-duality
is a duality under which the coupling constant changes non-trivially, and thus it relates
different Type IIB theories with different values of the coupling. In its simplest form, it
maps the content of one theory with coupling constant gs, into a dual theory of coupling
constant 1

gs

g′s =
1

gs
. (3.55)

From this relation we can relate two Type IIB theories, one with small coupling and one
with big coupling. We thus see that the strong coupling limit of Type IIB is again a Type
IIB theory. So this duality is important to study the strong coupling limit of Type IIB
theory and to generate solutions (one can S-dualize a solution, obtaining another one).
The full set of transformations on the type IIB fields is:

Φ′ = −Φ
g′µν = e−Φgµν

B
′(2) = C(2)

C
′(2) = −B(2)

(3.56)

The other fields (C(0) and C(4)) remain unchanged. Changing the sign of the dilaton
has the effect of inverting the coupling constant. This duality reflects the symmetry of
the theory under the action of the group SL(2,Z) on the axio-dilaton field defined as

τ ≡ C0 + e−iΦ. In particular the transformation
[
a b

c d

]
∈ SL(2,Z) act as τ → aτ+b

cτ+d
and

following the proportionality of the dilaton to the string coupling constant, this is again
a weak-strong coupling duality.

29



CHAPTER 3. SUPERGRAVITY

3.5 Branes in Supergravity
The fields of supergravity are the massless modes of the string. But strings are not
the only fundamental objects of string theory: there are also multidimensional objects,
called branes, that couple with the p-forms of supergravity and play the role of electric
and magnetic charges. Let’s review Maxwell theory: the 1-form A(1) couples to a point-
particle (which is a 0-dimensional object) with worldline xµ(τ) and charge q through the
interaction lagrangian

Lint = q

∫
dτAµ

dxµ

dτ
= q

∫
γ

A(1), (3.57)

where γ is the path of the particle. The electric charge of a particle can be computed
integrating the Hodge dual of the field strength F̃ (2)

= ⋆F (2) over a 2-sphere surrounding
the charge

qe =

∫
S2

⋆F (2), F (2) = dA(1). (3.58)

One can also introduce magnetic charges that are monopole sources for the magnetic field.
They can be defined as

qm =

∫
S2

F (2). (3.59)

In supergravity we have p-forms, thus we have to generalize this discussion to multidimen-
sional objects. The interaction lagrangian becomes

Lint = q

∫
γp

A(p), (3.60)

where γp is a p-dimensional worldvolume of a (p− 1)-dimensional object: a (p− 1)-brane.
The analog for the charges can be obtained computing the field strength of A(p), F (p+1) =

dA(p) and its Hodge dual F̃ (D−p−1)
= ⋆F (p+1): thus, each p-form couples electrically to

a (p− 1)-brane (with electric charge Qe) and magnetically to a (D − p− 3)-brane (with
magnetic charge Qm). The charges can be computed as

Qe =

∫
SD−p−1

F̃
D−p−1

, Qm =

∫
Sp+1

F (p+1). (3.61)

It is natural to include these multidimensional objects in supergravity theories: there
must be sources the p-forms couple to. In other words, just as the presence of an electric
charge generates the vector potential 1-form A(1), the presence of a p-brane generates a
potential p-form.
Solutions to supergravity with non-trivial A(p+1) charge are referred to as p-branes, after
the space-dimension of their source. For example in D = 11 supergravity the possible
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branes are very restricted because the only form of the theory is the 3-form A(3). So we
have a 2-brane, denoted M2, and its magnetic dual M5.
The branes in Type IIA/B theory are further distinguished as follows.

Theory IIA IIB
Forms B(2) C(1) C(3) B(2) C(2) C(4)

Electric F1 D0 D2 F1 D1 D3
Magnetic NS5 D6 D4 NS5 D5 D3

Table 3.1: Coupling of branes to p-form potentials in type IIA and IIB Supergravity.

As we have seen, in the presence of a compact direction, there is a 1-form gauge field in the
dimensionaly reduced theory. Its electric source is a momentum wave P and the magnetic
dual is KK monopole. When the form to which it couples is in the R-R sector, the brane
is referred to as a D-brane. On the other hand, the 1-brane that couples to the NS-NS
form B(2) is nothing but the fundamental string, denoted F1, whose magnetic dual is NS5.
The type IIA objects in table (3.1) can be obtained by reducing M-theory charges (M2,M5,KKm
and P) along the 11-th direction y:

KKm
⊥←− KKm

∥−→ D6 NS5
⊥←−M5

∥−→ D4

D2
⊥←−M2

∥−→ F1 P
⊥←− P

∥−→ D0
(3.62)

where the arrows denote whether the M-Theory objects point in the M-Theory direction
y upon which we reduce (∥) or not (⊥).
We can also see from eq.s (3.48) and (3.49) how T-duality exchanges the branes. The
exchange of the NS-NS fields Bµy and gµy under T-duality corresponds to the transfor-
mation of the string winding number (F1) with momentum (P) along the string in the
T-duality direction. From the transformation of the R-R fields C(p) we see that the di-
mension of Dp-branes changes under T-duality depending on whether the transformation
is performed on a circle parallel (∥) or perpendicular (⊥) to the brane worldvolume. In
summary:

F1
∥←→ P KKm

⊥←→ NS5 D(p+ 1)
⊥←− Dp

∥−→ D(p− 1) (3.63)

Using the T-duality rules and the relation between type IIB and type IIA one can derive
the brane content of type IIB given in table (3.1). Finally, from (3.56) it is easy to see
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how the branes change under S-duality:

F1↔ D1 NS5↔ D5 D3↔ D3 (3.64)

while KKm and P are unaffected.

3.6 Brane Solutions
Brane solutions are extensively studied solutions of the supergravity field equations, they
have a non-perturbative character and, as we saw earlier, they arise as electric and mag-
netic excitations of the (p + 1)-form gauge fields that appear in supergravity theories.
They are classified as elementary or solitonic, according to whether they are singular or
non-singular solutions of the supergravity field equations. A special class of brane solu-
tions are BPS-brane solutions; these are supersymmetric solutions, characterised by the
saturation of a BPS bound which equates their mass density to the p-form charge(s) they
carry. The BPS property ’shields’ the brane solutions against quantum corrections and
thus, allows the extrapolation of results obtained in the classical limit, to the quantum
level of string theory. The field equations of 11-dimensional supergravity admit two BPS
brane solutions: an elementary membrane solution M2 and a solitonic five-brane solution
M5, which arise as the electric and magnetic excitations of the 3-form gauge potential
respectively.
If we have only closed string we have a maximal supersymmetry (i.e. 32 supercharges).
Each brane carries open strings which require boundary conditions relating left and right
modes and thus reducing by half the supersymmetries. We say that each brane is realized
as a 1

2
BPS solution in supergravity. The geometry of these solutions will be important, and

we describe it now. A p-brane has a (p+ 1)-dimensional flat hypersurface, with Poincaré
invariance group SO(1, p) ⋉ Rp+1. The transverse space is then of dimension D − p − 1

and solutions may always be found with maximal rotational symmetry SO(D− p− 1) in
this transverse space. Thus, p-branes in supergravity may be thought of as solutions with
symmetry groups:

D = 11 → SO(1, p)⋉Rp+1 × SO(10− p)
D = 10 → SO(1, p)⋉Rp+1 × SO(9− p)

There are two different methods to derive solutions:

• The first one consists in solving the equations of motion of the supergravity the-
ory. As it happens for Einstein equations, this is difficult in general. However,
the presence of symmetries in the brane configuration and supersymmetry simplify
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the task. In this contest, BPS solutions are obtained imposing constrains on the
supersymmetry transformations of the fields. If we require that the configuration of
the fields is supersymmetric, the fields should be invariant under a supersymmetry
transformation δϵ. Bosonic fields transform into fermionic ones and, when the latter
are set to zero, bosonic fields are invariant. Consistency requires that also the super-
symmetric variation of the fermions vanishes, leading to the BPS equations. These
are typically first order equations and thus simpler than the equations of motion,
that are second order.

• The second method starts from some simple neutral solution, and derives other
solutions by means of boosts, T-duality and S-duality. One can add charges to the
starting solution, to get a BPS solution, making boosts along a compact direction
(the charge of the Kaluza-Klein gauge boson is the momentum in the direction
of the compact dimension). The resulting metric is still a supergravity solution
because the supergravity action is Lorentz invariant; but yet it is another solution
because the boost direction is compact: the boost is not a globally defined change
of coordinates and we are constructing a different solution. We will see later that,
in this contest, a BPS solution can be obtained imposing the extremality condition
(i.e. taking the so called BPS-limit M → 0 and β →∞, where M is the mass and
β the rapidity of the boost). The charge added by the boost is always momentum,
but it can be transformed into all other possible charges by appropriate chains of S
and T duality.

Now we are going to use both methods to find some solutions following [11],[12].

3.7 Solutions Generation: Some Examples

3.7.1 Direct Method

The first solution we are looking for is that corresponding to a M2 brane in 11-dimensional
supergravity. We know that such solution should exist, because the 3-form A(3) naturally
couples to this type of brane. We want this brane to extend over the directions xi with
i = 1, 2 and to be perpendicular to the directions xa with a = 3, · · · , 10. In the presence
of a membrane, the initial Poincaré invariance in eleven dimensions is reduced to P3 ×
SO(8) invariance i.e. Poincaré invariance in the flat world-volume of the membrane and
rotational invariance in the trasverse to the membrane directions. So let us start with the
following ansatz 

ds2 = Z(r)(−dt2 + dxidxi) + Y (r)dxadxa

A(3) = X(r)dt ∧ dx1 ∧ dx2

ψαµ = 0,

(3.65)
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where we used the fact that the 3-form gauge field couples electrically to the world-volume
of the membrane. Here we have assumed that the solution would depend only on the three
functions X, Y and Z, and SO(8) invariance requires that these functions depend only on
the radial coordinate r =

√
(xa)2, where we have understood a sum over a from 3 to 10.

We will now see that a solution of this form is really allowed in 11 dimensional supergravity.
First we want this solution to be invariant under supersymmetry transformations (BPS
condition); we will not derive their exact form, but only state that they are the following:

δeAµ = ϵ̄γAψµ

δAµνρ = −3ϵ̄γ[µνψρ]

δψµ = Dµϵ+
1

288
(γµ

νρστFνρστ − 8γνρσFµνρσ)ϵ

(3.66)

where, for simplicity, we have understood all spinor indices, and the local Lorentz frame
index A runs from 0 to 10. A γ with more than one index must be intended as the
antisymmetric product of γ matrices. The field strength F = dA has only few non-trivial
components, that are

Fa12t = ∂aX(r). (3.67)

The fact that our solution has a vanishing gravitino, implies that δeAµ and δAµνρ automat-
ically vanish. Thus we must only check that also the variation of the gravitino is zero.
We remember that the covariant derivative of a spinor is defined in terms of the spin
connection

Dµϵ = ∂µϵ+
1

4
ωµ

ABγABϵ. (3.68)

Our goal is to derive the spin connection, and we do this using the torsion-free condition
(3.34). From the definig property of vielbein fields (3.19) and from our ansatz (3.65), we
have

et =
√
Z(r)dt, ei =

√
Z(r)dxi, ea =

√
Y (r)dxa. (3.69)
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From the torsion-free condition, remembering that ωAB = −ωBA and ωAB = ηACω
C
B, we

have

det + ωti ∧ ei = ∂a
√
Z(r)dxa ∧ dt+ ωta ∧

√
Y (r)dxa = 0

⇒ ωta = −
1√
Y (r)

∂a
√
Z(r)dt,

dei + ωia ∧ ea = ∂a
√
Z(r)dxa ∧ dxi + ωia ∧

√
Y (r)dxa = 0

⇒ ωia =
1√
Y (r)

∂a
√
Z(r)dxi,

dea + ωab ∧ eb = ∂b
√
Y (r)dxb ∧ dxa + ωab ∧

√
Y (r)dxb = 0

⇒ ωab =
1√
Y (r)

∂b
√
Y (r)dxa − 1√

Y (r)
∂a
√
Y (r)dxb a ̸= b.

(3.70)

We now have to impose that the variation of the gravitino vanishes. Let us do it explicitly
for the index µ = 1

0 = ∂1ϵ+
1

4
(ω1)ABγ

ABϵ+
1

288
(4!γ1̂

â1̂2̂t̂Fa12t − 8 · 3!γ 2̂ât̂F12at)ϵ (3.71)

where hatted indices of the gamma matrices should be intended as curved indices: one
should express all in terms of gamma matrices with flat indices, by means of the appropri-
ate vielbein. Since ϵ inherits the symmetries of the geometry it is indipendent of (t, xi);
thus both the first and the third term trivially vanish and we are left with

0 = (
1

2
√
Y
∂a
√
Zγ1a − 1

6
√
Y
Z−1∂aXγ

2at)ϵ. (3.72)

Multiplying this expression with γ1a and using the Clifford algebra we arrive at

1

3Z
∂aXγ

012ϵ = ∂a
√
Zϵ. (3.73)

This is a sort of projection equation for the spinor ϵ: in fact we have that (γ012)2 = I.
Thus it must be γ012ϵ = ±ϵ: these two possibilities are both possible, and correspond to
a brane and its anti-brane. Here we choose the + sign, and the equation reduces to

X(r) = Z(r)
3
2 . (3.74)
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Solving the same equation for µ = a one gets a link between the functions Y and X, in
particular we have

0 = ∂aϵ+ (
1

4
√
Y
∂a
√
Y γab − 1

6
√
Y
Z−1∂aXγ

012)ϵ. (3.75)

The second term is again a projector for the spinor ϵ and taking again the + sign we
obtain

∂aϵ+ ∂a
√
Y ϵ = −1

3
Z−1∂aZ

3
4 ϵ. (3.76)

The well-defined solution of this equation, using (3.74), leads to

X(r) = Y (r)−3. (3.77)

This is all what we can say just using the supersymmetry. In order to go further, we
cannot avoid solving an equation of motion, which we choose to be the equation of motion
of the form A. It is simply the generalisation of Maxwell’s equations in 4-dimensional
electrodynamics, i.e.

d ⋆ F = 0. (3.78)

The Hodge dual of F is

(⋆F )µ1···µ7 =
√
−gϵµ1···µ7µ8···µ11Fµ8···µ11 . (3.79)

Thus we get ⋆F = X−2∂aXdx
a1 ∧ · · · ∧ dxa7 , with a1 · · · a7 ̸= a. The equation of motion

is then equivalent to the Laplace equation for X−1

∂a∂aX
−1 = 0. (3.80)

The solution of this equation is an harmonic function in 8 dimensions. We thus write
X−1 = 1+ Q

r6
, where the adding constant is fixed requiring that the metric is at at infinity.

The constant Q is precisely the electric charge corresponding to the M2 brane. We rewrite
here the complete solution we have found:
1
2
BPS M2 solution

ds2 = X(r)
2
3 (−dt2 + dxidxi) +X(r)−

1
3dxadxa

A(3) = X(r)dt ∧ dx1 ∧ dx2

ψαµ = 0

, X(r) =

(
1 +

Q

r6

)−1

(3.81)
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The fact that the metric and the A(3) field depend on one single function X(r) is due
to the presence of supersymmetry. However, for an asymptotically flat geometry the tt
component of the metric is related to the mass of the object generating that solution.
Having a single function that determines the metric and the 3-form means that there is
a precise relation between the mass and the charge of our solution as always happens in
BPS solutions. The recipe in order to extract the ADM mass from an asymptotically flat
geometry in arbitrary dimensions is given for example in [13]. In the asymptotic regime
our solution become

ds2 ≈ ηµν + hµν , hµν =
1

r6

[
−2

3
Q(−dt2 + dxidxi) +

1

3
Qdxadxa

]
(3.82)

and following [13] the mass M is related to htt by (G = 1)

htt ≈
16πM

A7r6
⇒ M =

π3Q

72
, (3.83)

where A7 =
π4

3
is the area of a unit 7-sphere. Once we have this M2 solution, it is quite

simple to derive suitable solutions of Type IIA supergravity via dimensional reduction.
There are two ways to do so, compactifying a coordinate xi or a coordinate xa. Let us
first choose y = x1; we have

ds211 = ds210 + e2σ(dy + C(1)
µ dxµ)2 µ ̸= 1, A(3) = B(2) ∧ dy + C(3), σ =

2

3
Φ (3.83)

So, we find the following solution (where we have made a slight change of notation
X(r)−1 ≡ Z(r)):
1
2
BPS F1 solution


ds2 = Z(r)−1(−dt2 + dx2dx2) + dxadxa

eΦ = Z(r)−
1
2

B(2) = −Z(r)−1dt ∧ dx2

C(p) = 0 (p = 1, 3)

(3.84)

Here we have already turned to the string frame, following (3.42),(3.43) ds2 = eσds210.
This solution corresponds to a F1 fundamental string parallel to the x2 direction because
B

(2)

tx2 ̸= 0. Obviously this is a Type IIA solution, because it was obtained via dimensional
reduction. Obtaining this solution was straightforward, in that our M2 brane was parallel
to the x1 direction; therefore the brane was invariant under translations along x1. If we
now want to do the same for a direction perpendicular to the M2 brane, say x3, we
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get some difficulties, because we have one single M2 brane located at x3 = 0. The
problem can be solved noting that the Laplace equation is linear, and so we can safely
take a superposition of branes at different locations as a correct supersymmetric solution.
Physically speaking, this is allowed because of the equality of mass and charge, that
balances the attracting gravitational force and the repulsive gauge force between parallel
branes. Suppose that we make a superposition of many branes, each one at position
x3i = yi and with charge Q; then the X function becomes

X(r)−1 = 1 +Q
∑
i

1

|x⃗− x⃗i|6
. (3.85)

Defining r′ =
∑10

a=4(x
a)2, and letting the branes be continuously distributed along x3, we

have
X(r)−1 = 1 +Q

∫ ∞

−∞

dy

[r′2 + (x3 − y)2]3
= 1 +

Q′

r′5
, (3.86)

where Q′ is proportional to Q (it is not important the right proportionality coefficient).
Thus the solution corresponding to an infinite superposition of M2 branes is formally
identical to the previous one with X a harmonic function in a 7-dimensional transverse
space. We can now safely make a dimensional reduction along the x3 direction. The result
is a solution corresponding to a D2 brane parallel to the directions x1 and x2 which, when
expressed in string frame, reads:
1
2
BPS D2 solution


ds2 = Z(r)

1
2 [−dt2 + (dx1)2 + (dx2)2] + Z(r)

1
2 (dxa)2.

eΦ = Z(r)
1
4

B(2) = 0 = C(1)

C(3) = Z(r)−1dt ∧ dx1 ∧ dx2

, Z(r) = 1 +
Q

r5
, (3.87)

Here r is the radial direction in the 7 dimensional space orthogonal to the brane. Starting
from these solutions for the F1 and the D2 brane, we can use T and S dualities in order
to find other supergravity solutions in 10 dimensions. For example we can find the D3

solution making a T duality along, say, x3 of (3.87) obtaining:
1
2
BPS D3 solution

ds2 = Z(r)−
1
2 [−dt2 + (dx1)2 + (dx2)2 + (dx3)2] + Z(r)

1
2 (dxa)2.

eΦ = Z(r)−
1
4

C(4) = Z(r)−1dt ∧ dx1 ∧ dx2 ∧ dx3
, (3.88)
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where now a = 4, ..., 10. We will return to this solution in the next chapter when we
discuss our application of the AdS/CFT correspondence.

3.8 Indirected Method
As anticipated, there is another method that can be used to derive the same supergravity
solutions. One starts from a well known, neutral solution, and applies symmetries and
dualities to construct the desired brane solutions. Let us now see an example. Let’s
consider a 10-dimensional spacetime, with topology R1,4×S1×T 4. Let’s denote with (t, xi)

the coordinates on the non-compact directions, with y the coordinate on the circle and
with za the coordinates on the 4-dimensional torus. The starting point is the Schwarzshild-
Tangherlini metric in the R1,4 directions, tensored trivially with S × T 4

ds2 = −
(
1− 2M

r2

)
dt2 +

(
1− 2M

r2

)−1

dr2 + r2dΩ3 + dy2 +
∑
a

(dza)2, (3.89)

where G = 1 and we have used polar coordinates in the 4 non-compact spatial direction

x1 = r sin θ cosϕ x2 = r sin θ sinϕ x3 = r cos θ cosψ x4 = r cos θ sinψ (3.90)

with θ ∈ [0, π
2
] and ϕ, ψ ∈ [0, 2π]. This solution is the generalisation of the Schwarzschild

solution, thus it is for sure a solution of the Einstein equations in vacuum, and then a
supergravity solution if all gauge fields vanish. It can also be seen both as a Type IIA or
IIB solution, because all the gauge fields are trivial.

3.8.1 The 1-charge Geometry

In our solution we have a mass M but no charge. To obtain a BPS solution we can add
a charge by performing a boost along the direction y of the circle

y′ = y coshα + t sinhα t′ = t coshα + y sinhα, (3.91)

where α ∈ (−∞,∞) is the rapidity. Renaming y′ ≡ y, t′ ≡ t the metric becomes

ds2 =

(
1 +

2M sinh2 α

r2

)
dy2 +

(
−1 + 2M cosh2 α

r2

)
dt2+

+ 2 coshα sinhα
2M

r2
dydt+

(
1− 2M

r2

)−1

dr2 + r2dΩ3 + dy2 + (dza)2.

(3.93)
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This solution corresponds to a wave carrying momentum Py. Let’s now apply a T-duality,
then result will be a solution of Type IIB supergravity describing a fundamental string
wrapping the circle, F1y. We rewrite the metric in the form (3.48)

ds2 =

(
1 +

2M sinh2 α

r2

)[
dy +

coshα sinhα2M/r2

1 + 2M sinh2 α/r2
dt

]2
+(

1 +
2M sinh2 α

r2

)−1(
−1 + 2M

r2

)
dt2 +

(
1− 2M

r2

)−1

dr2 + r2dΩ3 + dy2 + (dza)2

and applying the correspondence of eq. (3.49) with Bµy = 0, we obtain:
ds2 = S−1

α

[
dy2 +

(
−1 + 2M

r2

)
dt2
]
+
(
1− 2M

r2

)−1
dr2 + r2dΩ3 + dy2 + (dza)2

e2Φ = S−1
α

B(2) = 2M
r2

coshα sinhαS−1
α dt ∧ dy

(3.94)

where Sα ≡
(
1 + 2M sinh2 α

r2

)
. We define the charge of this solution by taking the BPS

condition, i.e. we take the limit

M → 0, α→∞ such that Me2α = 2Q, (3.95)

where Q is the charge of F1. In this limit Sα → 1+ Q
r2

and the solution in the string frame
becomes:
1
2
BPS F1y solution

ds2 = Z(r)−1(−dt2 + dy2) + dr2 + r2dΩ3 + (dza)2

e2Φ = Z(r)−
1
2

B(2) = −Z(r)−1dt ∧ dy

, Z(r) = 1 +
Q

r2
(3.96)

As we expected this is exactly the F1y solution (3.84) we found with direct method but
in polar coordinates.

3.8.2 The 2-charge Geometry

To add a second charge we can proceed as before and perform a second boost, with rapidity
β. Note however that a boost acts trivially on a BPS solution, thus we must go back to
the non-extremal solution (3.89). In this method, the BPS limit has to be taken only at
the end of the chain of boost and dualities. The result describes a string F1y wrapped in
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the y direction carrying momentum Py
ds2 = S−1

α Sβ(dy +
2M coshα sinhα/r2

1+2M sinhβ/r2
dt)2 + S−1

α S−1
β (−1 + 2M

r2
)dt2+

+(1− 2M
r2
)−1dr2 + r2dΩ3 + dy2 + (dza)2

e2Φ = S−1
α

B(2) = 2M
r2

coshα sinhαS−1
α dt ∧ dy

(3.97)

where Sβ is defined with the same structure of Sα. The BPS limit gives:
1
4
BPS F1yPy solution

ds2 = Z1(r) [−dt2 + dy2 +K(r)(dt+ dy)2] + dr2 + r2dΩ3 + (dza)2

e2Φ = Z(r)−
1
2

B(2) = −Z(r)−1dt ∧ dy

(3.98)

with Z1(r) = 1 + Q1

r2
and K(r) = ZP − 1 = QP

r2
.

We can obtain the 1
4
-BPS solution in an other duality frame: an interesting one is when

the charges are D1yD5yT4. Starting from the F1yPy, the D1D5 frame can be reached
performing a chain of dualities. They are schematically:

(F1yPy)
S−→ (D1yPy)

T along T 4

−−−−−−→ (D5yT 4Py)
S−→ (NS5yT 4Py)

T along y−−−−−→ (NS5yT 4F1y)
T along z1 and S−−−−−−−−−→ (D5yT 4D1y)

Note that the D5-brane has been constructed out of the fundamental string F1 and thus
its charge Q′

5 is related to the charge Q1 (and to the boost parameter α). Analogously
the charge of D1 Q′

1 derives from QP . The explicit D1-D5 solution can be obtained by
applying the duality rules explained above. We skip the details of the calculation, and
only give the final result:
1
4
BPS D1yD5yT4 solution
ds2 = Z1(r)

− 1
2Z5(r)

− 1
2 (dy2 − dt2) + Z1(r)

1
2Z5(r)

1
2 (dr2 + r2dΩ3) + Z1(r)

− 1
2Z5(r)

1
2 (dza)2

e2Φ = Z1(r)
−1Z5(r)

C(2) = −Q′
5 sin

2 θdϕ ∧ dψ + (1− Z5(r)
−1)dt ∧ dy

(3.99)
with Z1(r) = 1 +

Q′
1

r2
and Z5(r) = 1 +

Q′
5

r2
.

The geometries we have generated are guaranteed to be solutions of the supergravity
equations of motion (BPS or not) carrying the allowed charges of string theory. Their
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microscopic meaning, however, has to be clarified. Note that, due to the singularities of
the various harmonic functions, all the solutions generated until now are singular at r = 0.
Singularities are not necessarily a reason to discard a solution, as far as they correspond
to allowed microscopic sources: think for example at the well-known singularity of the
Coulomb potential of a point-like charge. Can the singularity of the F1-P solution in (3.94)
be linked to a fundamental string? The answer is no: that solution should represent a
string wrapped along the y circle and carrying momentum through a wave travelling along
y. However, since fundamental strings have no physical longitudinal vibration modes, the
momentum must be carried by vibrations transverse to y. This should make the string
bend away from its central axis and the singularity cannot be confined at r = 0. The al-
lowed microscopic solution for a vibrating string carrying momentum can be constructed
by specifying a transverse displacement profile F (t−y) and it is singular along this profile.
See [11], [12] for more details. Since the D1-D5 solution (3.95) has been obtained via a
chain of dualities from an unphysical one, one expects that even that solution does not
describe an allowed microscopic configuration of string theory. The fact that in (3.95) the
tt component of the metric vanishes at r = 0, suggests that that solution might represent
an extremal black hole with a horizon at r = 0. Even this interpretation is not completely
correct, since one can check that the area of the horizon vanishes for the metric in (3.95).
That solution thus represents a “degenerate” black hole, also knows as small black hole,
with a singular horizon of vanishing area.

In conclusion, we will refer to the solutions constructed in this chapter as “naive” so-
lutions: they carry the expected global charges, but they do not described the actual
microscopic configurations of string theory. The main goal of this thesis is to construct
solutions carrying D3 charge with a precise microscopic interpretation.
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4
The AdS/CFT Conjecture

The Anti-de Sitter/Conformal Field Theory (AdS/CFT) correspondence, is one of the
most important recent ideas that arose in theoretical physics, providing new ways of
performing calculations where more conventional methods are intractable. The corre-
spondence, roughly speaking, states the equivalence between a string theory containing
gravity living in a certain geometry, and a gauge theory living on the boundary of that
geometry. Here ’equivalence’ means that there is a one-to-one correspondence between
all aspects of the theories including the global symmetries, observables, and correlation
functions. The theories are thus considered to be dual descriptions of each other; this
notion of duality is an interesting one because it turns out that the regimes within which
it is possible to perform calculations easily do not coincide on the two sides of the corre-
spondence. In other words, when one theory is strongly coupled (and, thus, it is difficult
to treat) the dual one is weakly coupled, and vice versa. In this chapter we will introduce
the conjecture starting with a brief introduction of the two sides: CFT and AdS geometry.
A CFT is a field theory with the conformal symmetry, which is a specific type of symmetry
that describes how the theory remains the same under transformations that preserve an-
gles but not lengths. On the other hand the AdS geometry is the maximally symmetrical
solution of the Einstein equations with a negative curvature. As we’ll see AdS geometry
has the same isometry as conformal group and this will be very important in the context
of the AdS/CFT correspondence. After this general introduction we’ll describe the basic
properties of a particular CFT, namely the N = 4 CFT, which will be the one we will
focus on the most in the future. After that we’ll motivate the correspondence starting
with the “large N limit’’ which was historically the first link to be found between SU(N)

gauge theories and string theories and then we’ll give a stronger motivation through what
is called the “open/closed duality’’. Over time, numerous dualities have been found be-
tween different theories. For our purposes, we will focus uniquely on the original duality
due to Maldacena [14] between the 10-dimensional Type IIB superstring theory on the
product space AdS5 × S5 and the N = 4 super Yang-Mills (SYM) theory with gauge
group SU(N), living on the 4-dimensional boundary of AdS5.
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4.1 A Brief Introduction to CFT

4.1.1 The Conformal Transformations

Conformal Field Theories (CFTs) are the theories invariant under transformations of the
conformal group. The conformal group is the group of local transformations x→ x′ which
leaves the metric invariant up to an arbitrary scale factor

gµν(x)→ g′µν(x
′) = Ω2(x)gµν(x). (4.1)

Therefore geometrically a conformal transformation is locally equivalent to a (pseudo)
rotation and a dilatation (i.e. transformation that preserve angles). The conformal group
has the Poincaré group as a subgroup, since the latter corresponds to the special case
Ω(x) = 1. It also include, for example, dilatation xµ → λxµ and inversion xµ → xµ/x2.
If we follow an inversion by a translation by b and a second inversion, we arrive at the
special conformal transformation

xµ → xµ + x2bµ

1 + 2b · x+ b2x2
, (4.2)

which, in contrast to the inversion, can be expanded around the identity.
Under an infinitesimal transformation xµ → xµ + ξµ(x) the metric, at first order in ξ,
changes as follows

gµν → gµν − (∂µξν + ∂νξµ). (4.3)

The requirement that the transformation be conformal implies that

∂µξν + ∂νξµ = f(x)gµν . (4.4)

Taking the trace of this equation gives f(x) = 2
D
(∂ · ξ) and we have

∂µξν + ∂νξµ =
2

D
(∂ · ξ)gµν . (4.5)

One may show that in d > 2 the most general solution to this Killing equation is

ξµ = aµ + ωµ
νxν + λxµ − 2(b · x)xµ + x2bµ, (4.6)

where λ is a constant, aµ and bµ are constant vectors and ωµν = −ωνµ a constant
antisymmetric matrix. They parametrize infinitesimal traslations, Lorentz transforma-
tions, rescalings and special conformal transformations of xµ. So we have a total of
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d+ d(d−1)
2

+ 1 + d = (d+1)(d+2)
2

parameters.

4.1.2 The Conformal Algebra

The conformal transformations are generated by Pµ = ∂µ, Jµν = xµ∂ν − xν∂µ, D = x · ∂,
Kµ = −2xµx·∂+x2∂µ whose algebra is easily worked out. The non-vanishing commutators
are:

[D,Pµ] = −Pµ (4.7)
[D,Kµ] = Kµ (4.8)
[Pµ, Kν ] = −2gµνD + 2Jµν (4.9)
[Jµν , Pρ] = −gµρPν + gνρPµ (4.10)
[Jµν , Kρ] = −gµρKν + gνρKµ (4.11)
[Jµν , Jρσ] = −gµρJνσ − gνσJµρ + gµσJνρ + gνρJµσ (4.12)

So Kµ, Pµ are Lorentz vectors and D a Lorentz scalar. Furthermore (4.7),(4.8) shows that
Pµ and Kµ are raising and lowering operators respectively for the dilatation operator D.
Finally one can also interpret D as reading off the length dimension of the other operators
since Pµ, Kµ and Jµν have length dimensions −1,+1, 0 respectively.
If one defines Mµν = Jµν , Md(d+1) = −D, Mµd =

1
2
(Pµ−Kµ) and Mµ(d+1) = −1

2
(Pµ+Kµ)

the above commutation relations can be combined into the following single relation

[Mab,Mcd] = −ηadMbc + ηbcMad − ηacMbd − ηbdMac, (4.13)

where a, b, c, d = 0, 1, · · · , d+1 and ηab = diag(−1,+1, · · · ,+1,−1) is the invariant metric
of SO(d, 2). This establishes the isomorphism of the conformal algebra of d-dimensional
Minkowski space with so(d, 2), the Lie algebra of SO(d, 2)1 (O(d, 2) if we include inver-
sion).

Transformation Infinitesimal Finite Generator
Translation xµ + aµ xµ + aµ Pµ = ∂µ

Lorentz xµ + ωµνxν Λµνx
ν Jµν = xµ∂ν − xν∂µ

Dilatation xµ + λxµ λxµ D = x · ∂
Special xµ + bµx2 − 2(b · x)xµ xµ−x2bµ

1−2(b·x)+b2x2 Kµ = −2xµx · ∂ + x2∂µ

Table 4.1: Summary of conformal transformations
1Here we assume d > 2. In d = 2 the conformal algebra is infinite dimensional.
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4.1.3 General Features of CFT

Under a Poincaré transformation a field operator ΨA(x) transform as

ΨA(x)→ U(Λ)ABΨB(Λ
−1(x− a)), (4.14)

where A is the representation index. For a conformal transformation we have to specify
also how the field operator transform under a scale transformation. Under a dilatation
x→ λx we have

Ψ∆
A → λ−∆Ψ∆

A(λ
−1x), (4.15)

where ∆ is the scaling dimension (or conformal dimension) of the operator. It is an
eigenvalue of the dilatation operator

[D,Ψ∆
A ] = −∆Ψ∆

A . (4.16)

We mentioned previously that Pµ and Kµ act as raising and lowering operators for the
dilatation operator D. We can see this by considering an operator Ψ∆ of conformal
dimension ∆ and finding the conformal dimension of [Pµ,Ψ∆]. Using (4.7),(4.16) we have

[D, [Pµ,Ψ
∆]] = −(∆ + 1)[Pµ,Ψ

∆], (4.17)

showing that [Pµ,Ψ
∆] has dimension ∆ + 1 as claimed. An analogous proof shows that

[Kµ,Ψ
∆] has dimension ∆−1. For a representation to be unitary the conformal dimension

must have a lower bound (for scalar fields ∆ ≥ (d− 2)/2 which is the dimension of a free
scalar field), an thus there must be an operator in the representation of lowest dimension
(i.e. that is annihilated by Kµ). The lowest-dimensional operators are called primary
operators; they are defined by the condition

[Kµ,O]± = 0. (4.18)

All the other fields are obtained by the action of Pµ on primary fields and they are called
descendant fields. The primary operators define the full representation of the algebra
which is classified by the dimension ∆ and by the spin j of these operators (i.e. the
Casimir of the conformal group).
One of the basic properties of conformal field theories is the one-to-one correspondence
between local operators O and state |O⟩ in the radial quantization theory. If we consider
the conformal theory in the Euclidean space the conformal group is SO(d + 1, 1), and
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since Rd is conformally equivalent to Sd (after adding a point at infinity) the field on Rd

is isomorphic to the theory on Sd. In radial quantization the time coordinate is chosen
to be the radial direction in Sd, with the origin corresponding to past infinity, so that the
field theory lives on R× Sd−1. An operator O can then be mapped to the state

|O⟩ = lim
x→0
O(x) |0⟩ . (4.19)

All states in the theory can be created by operators which act locally in a small neighbor-
hood of the origin.That is to say that the entire Hilbert space of a CFT can be thought
of as living at a single point. The inverse mapping of states to operators proceeds by
taking a state which is a functional of field values on some ball around the origin and
using conformal invariance to shrink the ball to zero size.
Classically, a field theory is conformally invariant if there are no dimensionful couplings
constant in the action (e.g. mass terms); this is intuitive, since a dimensionful coupling
constant sets a scale, thereby breaking scale invariance. Upon quantization however, con-
formal invariance may be broken due to the renormalization process, which introduces
dimensionful constants into the theory. A necessary condition for a theory to be confor-
mally invariant quantum mechanically is the vanishing of the renormalization group beta
functions

β ≡ µ
∂g

∂µ
, (4.20)

where g is a coupling of the theory and µ the renormalisation scale.

4.2 N = 4 Super Yang-Mills Theory
As we have seen in Section 1.2.1 non gravitational theories with N = 4 are maximally
supersymmetric. So in N = 4 SYM the gauge multiplet is the only possible multiplet. It
is given by

(Aµ, λ
a
α, X

i) (4.21)

where Aµ is a spin-1 gauge field (µ is the index which transform in the (1
2
, 1
2
) representation

of SO(3, 1)), λaα (a = 1, ..., 4) are four complex Weyl spinors (in the 4̄ of SU(4)R), and X i

(i = 1, ..., 6) are six real scalars (in the 6 of SU(4)R). Under the global R-symmetry group
SU(4)R ≃ SO(6)R these transform as a singlet, a vector, and a rank-2 antisymmetric
tensor respectively. All fields transform in the adjoint representation of the SU(N) gauge
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group. The lagrangian for the so-called N = 4 super Yang-Mills theory is given by

L =Tr(− 1

2g2YM
FµνF

µν +
θI
8π2

FµνF̃
µν − iσaλ̄

a
σ̄µDµλa −

∑
i

DµX
iDµX i

+ gYM
∑
a,b,i

Cab
i λa[X

i, λb] + gYM
∑
a,b,i

C̄iabλ̄
a
[X i, λ̄

b
] +

g2YM
2

∑
i,j

[X i, Xj]2),

(4.22)

where gYM is the coupling constant, θI is the so-called instanton angle, Fµν is the dual
field-strength of the gauge field, Dµ is the usual covariant derivative, F̃ is the Hodge dual
of F , and Cab

i are the structure constants of SU(4)R. The trace is over the gauge indices
and is to ensure gauge invariance of the action. This theory is classically conformally
invariant since [gYM ] = [θI ] = 0. More strikingly, upon quantisation one finds that the
theory is UV finite; since no renormalisation scale is needed, the β-function vanishes to
all orders and thus the theory remains conformally invariant at the quantum level.
The combination of conformal symmetry SO(2, 4) ≃ SU(2, 2), N = 4 supersymmetry
and R-symmetry are part of a larger symmetry group, that is the superconformal group
SU(2, 2|4). Superconformal algebra in addition to generators of the conformal group and
supercharges, contains also the so-called conformal supercharges SIα with their complex
conjuagte S̄Iα̇. These are required to close the superconformal algebra [K,Q] ∼ S. In
addition the theory exhibits a further SL(2,Z) symmetry, i.e. it is invariant under S-
duality. This can be seen by using the two coupling constants of the theory gYM , θI to
define

τ ≡ θI
2π

+
4πi

g2YM
. (4.23)

The action of the theory is invariant under τ → aτ+b
cτ+d

with ad−bc = 1 and a, b, c, d ∈ Z. As
always this symmetry is very useful for studying large-coupled theory known the pertur-
bative regime and as the other things will feature later in the AdS/CFT correspondence.

4.3 Anti-de Sitter Space

4.3.1 Definition of Anti-de Sitter Space

A maximally symmetric space of d-dimensions has the maximum number of Killing vectors,
namely d(d+1)

2
(d translations and d(d−1)

2
rotations). The Riemann curvature tensor for this

spaces can be written as
Rµνρσ = C(gµρgνσ − gµσgνρ), (4.24)

for some constant C, and thus one finds by contracting that Rµν = (d − 1)Cgµν and
R = d(d− 1)C, i.e. maximally symmetric spaces have constant curvature scalars.
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We define the anti-de Sitter (AdS) space as a space of Lorentzian signature and constant
negative curvature. In a similar fashion to other constant curvature spaces, AdS space
may be defined as an embedding in a higher-dimensional space. If we consider a flat
embedding space R2,d−1 with coordinates Xa (a = 0, ..., d) and metric

ds2 = −dX2
0 − dX2

d +
d−1∑
i=1

dX2
i , (4.25)

then we may define AdSd as the hyperboloid

X2
0 +X2

d −
d−1∑
i=1

X2
i = R2, (4.26)

where R is known as the AdS radius. Euclidean AdS may be defined in an analogous way,
but embedded in R1,d and with the defining equation

X2
0 −X2

d −
d−1∑
i=1

X2
i = R2. (4.27)

It is obvious from the defining equations that the isometry group of lorentzian AdSd is
O(2, d−1) (or O(1, d) for the Euclidean case); so for example the isometry group of AdS5 is
O(2, 4). Since the dimension of O(2, d−1) is d(d+1)

2
we see that AdSd is indeed a maximally

symmetric space. By eliminating the final coordinate via (Xd)2 = R2 + ηµνX
µXν , where

µ = (0, 1, ..., d− 1) and ηµν is the d-dimensional Minkowski metric, we may provide a set
of coordinates for AdSd and write the metric as

ds2 =

(
ηµν −

ηµληνρX
λXρ

X ·X +R2

)
dXµdXν . (4.28)

Calculating the Riemann tensor with this metric we get C = − 1
R2 , therefore AdSd has

constant negative curvature scalar.

4.3.2 Coordinate Systems on AdS

Let us for convenience now set R = 1. We may introduce a set of coordinates on AdSd

by writing:

X0 = r̃ cos t

Xd = r̃ sin t

Xi = rxi

(4.29)
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where
∑d−1

i=1 x
2
i = 1, and the other coordinates range over r̃, r > 0 and t ∈ [0, 2π). The

defining equation (4.26) then clearly implies r̃2 − r2 = 1. Using (4.25) we thus find

ds2 = −dr̃2 − r̃2dt2 + dr2 + r2dΩ2
d−2. (4.30)

Using the constraint r̃2 − r2 = 1 we find that dr̃2 = r2

r̃2
dr2 and thus simple algebra gives

the metric
ds2 = −(1 + r2)dt2 +

dr2

1 + r2
+ r2dΩ2

d−2. (4.31)

We have thus eliminated r̃ and now have a set of d coordinates for AdSd. We see that t
acts as a time coordinate, yet from it’s definition in (4.29) this coordinate appears to be
periodic. To avoid the existance of closed timelike curves and causal inconsistencies, we
thus unwrap the time coordinate (technically, we move to the universal cover) and simply
define the space AdSd by equation (4.31) (which is, after all, a solution to the Einstein
field equations with negative cosmological constant) for t ∈ R. Note that the this metric
has the same form as the Schwarzschild metric

ds2 = −f(r)dt2 + dr2

f(r)
+ r2dΩ2

d−2, (4.32)

but here f(r) = 1 + r2 > 0, and thus we see that the anti-de Sitter space does not have
an event horizon.
We now make a further coordinate transformation in (4.31) given by r = sinh ρ for ρ > 0.
Using 1 + r2 = cosh2 ρ we easily find

ds2 = − cosh2 ρdt2 + dρ2 + sinh2 ρdΩ2
d−2. (4.33)

These are known as global coordinates (so-called because they cover the entire AdS space)
and are the coordinates that we’ll use in the future. Finally, we can make instead a
different coordinates substitution in (4.31) given by r = tan β for β ∈ [0, π/2). Using
1 + r2 = sec2 β we find the metric

ds2 =
1

cos2 β
(−dt2 + dβ2 + sin2 βdΩ2

d−2) =
1

cos2 β
(−dt2 + dΩ2

d−1). (4.34)

These are known as conformal coordinates, so called because AdSd is conformally equiv-
alent to the cylinder R× Sd−1.
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4.3.3 The Conformal Boundary of AdS

In the conformal coordinates metric (4.34) the coordinate β clearly plays the role of a
latitude; strangely, however, we saw from its definition that it ranges over the values
β ∈ [0, π

2
) rather than the usual [0, π]. So the spatial part really only covers the northern

hemisphere and not the full sphere. Thus, after a conformal transformation and neglecting
t, we have a hemisphere of Sd−1 with boundary at the equator that of course is topolog-
ically equivalent to the ball Bd−1. Since ∂(Bd−1) = Sd−2 which we commonly associate
with Rd−2 with spatial infinity identified as a single point, we arrive at the important
result (taking the time coordinate into account)

∂(AdSd) = R1,d−2, (4.35)

or, if one includes the point at infinity

∂(AdSd) = Rt × Sd−2. (4.36)

So AdSd is bounded by Minkowski space R1,d−2. This result is of crucial importance in
the AdS/CFT correspondence since it is at the heart of its holographic nature.

4.3.4 Poincaré Coordinates

We now introduce one further set of coordinates for AdSd which are particularly useful
in the AdS/CFT corrispondence. We will here restore the radius R. We introduce the
coordinates y > 0 and (t, x⃗) ∈ Rd−1 via:

X0 =
1

2y
[1 + y2(R2 + x⃗2 − t2)]

Xd = Ryt

Xd−1 =
1

2y
[1− y2(R2 − x⃗2 + t2)]

Xi = Ryxi

(4.37)

where (i = 1, ..., d − 2) and x⃗2 =
∑d−2

i=1 x
2
i . These coordinates satisfy (4.27) and give the

metric
ds2 =

R2

y2
dy2 +

y2

R2
ηµνdx

µdxν , (4.38)

51



CHAPTER 4. THE ADS/CFT CONJECTURE

where xµ = (t, x⃗). Making the coordinate substitution u = R2

y
we find

ds2 =
R2

u2
(du2 + ηµνdx

µdxν), (4.39)

which is the metric in Poincaré coordinates. So we see that AdSd is conformally equivalent
to Minkowski space R1,d−1. The slices of constant u are copies of Minkowski space R1,d−2,
in particular the conformal boundary is given by the slice u = 0 (i.e. y →∞). Finally, in
these coordinates one can also see that the dilatations

u→ λu,

xµ → λxµ,
(4.40)

for any λ ∈ R form an isometry of AdS space.

4.4 The Large N Limit
QCD is a gauge theory based on the SU(3) group, where 3 is the number of colors. While
the gauge theory description is very useful for studying the high-energy behavior of the
strong interactions, it is very difficult to use it to study low-energy regime. The difficulty
stems from the lack of a small, dimensionless parameter which we can use as the basis
for a perturbative expansion. Soon after the advent of QCD, ’t Hooft pointed out that
gauge theories based on the group SU(N) simplify in the limit N → ∞ (despite the
large number of degrees of freedom), and have a perturbation expansion in terms of the
parameters 1/N . First, we need to understand how to scale the coupling gYM as we take
N →∞. The confinement and the mass gap all occur at the strong coupling scale ΛQCD,
so it is natural to scale gYM so that ΛQCD remains constant in the large N limit. The
beta function equation for pure SU(N) YM theory is

µ
dgYM
dµ

= −11

3
N
g3YM
16π2

+ o(g5YM), (4.41)

where µ is the renormalisation scale. So the leading terms are of the same order for large
N if we take N →∞ while keeping λ ≡ g2YMN fixed (one can show that the higher terms
are also of the same order in this limit). We thus have the t’Hooft limit

N →∞, λ ≡ g2YMN fixed. (4.42)

This ensures that the physical scale ΛQCD also remains fixed and this limit can also be
applied to theories with β = 0, like the N = 4 SYM theory introduced before. Let’s see
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more closely at the Feynman diagrams that arise from the Yang-Mills action

SYM = − 1

2g2YM

∫
d4xTr (F µνFµν) = −

N

2λ

∫
d4xTr (F µνFµν) . (4.43)

Each gluon field is an N ×N matrix

(Aµ)
i
j i, j = 1, ..., N (4.44)

and the propagator has the index structure

⟨Aiµj(x)Akνl(y)⟩ = ∆µν(x− y)
(
δilδ

k
j −

1

N
δijδ

k
l

)
, (4.45)

where ∆µν(x) is the usual photon propagator for a single gauge field and the 1/N term
arises because we’re working with trace-less SU(N) gauge fields. At leading order in 1/N

we have
⟨Aiµj(x)Akνl(y)⟩ = ∆µν(x− y)δilδkj . (4.46)

The fact that the gauge field has two indices i, j suggests that we can represent it as two
lines in a Feynman diagram rather than one. Each line comes with an arrow, and the
arrows point in the opposite ways. This reflects the fact that the upper and lower lines
are associated to complex conjugate representations ([(Aµ)ij]† = (A∗

µ)j
i).

Figure 4.1

The propagator scales as λ/N as can be read off from the action (4.43). We have also
the cubic and the quartic coupling vertex; each vertex come with a factor N/λ.
The general scaling will be

diagram ∼
(
λ

N

)#propagators(
N

λ

)#vertices

N#index contractions (4.47)

where the index contractions come from the loops in the diagram. It turns out that, among
all the possible Feynman diagrams, a subset dominate in the large N limit. The dominant
diagrams are those which can be drawn flat on a plane in the double line notation. These
are referred to as planar diagrams. The key idea is that the planar diagrams can all be
drawn on the surface of a sphere. In contrast, the non-planar diagrams must be drawn
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on higher genus surfaces, for example a torus. In general we have

E ≡ # of edges = # of propagators
F ≡ # of faces = # of index loops
V ≡ # of vertices

and from (4.47) a given diagram scales as

diagram ∼ NF+V−EλE−V . (4.48)

The following combination determines the topology of the Riemann surface Σ

χ(Σ) = F + V − E, (4.49)

where χ is called Euler character and it only depends on the topology of Σ. It is related
to the number of handles H of the Riemann surface, also called the genus, by

χ(Σ) = 2− 2H. (4.50)

The sphere has H = 0, the torus has H = 1 and so on. In this way, the large N expansion
is a sum of Feynman diagrams, weighted by their topology

diagram ∼ NχλE−V . (4.51)

As an example of a planar diagram we can consider the vacuum bubbles

Figure 4.2: Vacuum bubbles: an example of a planar diagram

which using (4.47) scales as λN2. Instead a non-planar diagram is
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Figure 4.3: A non planar diagram cannot be drawn on a surface with H = 0

which scales as λ and therefore in the large N limit doesn’t contribute; more precisely
the relationship between the amplitudes is Anon-planar/Aplanar = N−2. This is true in
general for all non planar diagrams.
The fact that in this limit the perturbation theory is based on the topology of the Riemann
surface on which the Feynman diagram rests was the first hint of some sort of link between
field theories and string theory. In fact also in string theory the perturbation theory is
based on the Riemann surface topology. In particular the sum over Riemann surfaces is
weighted by the string coupling constant; by analogy we have

gs =
1

N
. (4.52)

We have thus seen that, in the t’Hooft limit of non-abelian gauge theories, perturbative
string theory seems to provide a dual description of the guage theory’s perturbation
expansion. This is just an idea: nothing tells us which gauge theory is associated with
which string theory. As we will see, the AdS/CFT correspondence realizes this idea.

4.5 The Open/Closed String Duality
Now that we have introduced the fundamental elements, let us motivate the conjecture
that we will enunciate in the next section. One of the strongest motivations for believing
the AdS/CFT correspondence (and the original one, due to Maldacena [14]) is to consider
it as a realization of the open/closed string duality. We have seen that superstring theories
contain multidimensional objects: D-branes. On one hand, these objects are considered
to be dynamical hyperplanes upon which the endpoints of open strings are fixed (but are
free to move parallel to the brane). On the other hand, D-branes are massive objects
and therefore can be considered as sources for closed strings; one can then consider closed
string propagating in such a background. That these points of view are equivalent is of
great importance, since by considering a particular physical set-up from each in turn, we
shall see that (in certain limits) there are two decoupled theories in both interpretations;
by recognising a common theory present, we are then led to identify the two theories as
equivalent or dual descriptions, which is exactly the AdS/CFT correspondence mentioned
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above. We now discuss the important subject of how gauge theories arise on the worldvol-
umes of D-branes. Then we consider the set-up from the open and closed strings points
of view in turn.

4.5.1 Gauge Theories on the Worldvolumes of D-branes

Let’s first consider D-branes from the open string prospective. As we have seen in Section
2.1.3, the quantization of the theory gives an open string spectrum that can be identified
with fluctuations of the brane. For a single D-brane, the massless spectrum consists in
scalar field ϕi describing fluctuations of the brane in the transverse direction and a U(1)
gauge field Aµ that lives on the brane. If we consider a stack of N coincident branes then
we must further label the string states by indices which denote which brane the endpoints
lie on. Open strings that have both endpoints on the same brane form U(1) gauge fields as
before, so that we have an overall gauge group U(1)N ; we will denote the gauge fields with
(Aµ)

a
a, where the upper (lower) index labels the brane on which the string starts (ends).

We can also have strings that have endpoints on different branes (Aµ)ab (with a ̸= b) that
are mass-less gauge fields if the branes are coincident. In this case the resulting theory is
a non-Abelian gauge theory with gauge group U(N). The U(N) gauge group is equivalent
to U(1)×SU(N); the diagonal U(1) degree of freedom describes the motion of the branes’
center of mass (i.e. rigid motion of the entire system of branes); we are not interested in
this trivial type of motion and we will focus only on the SU(N) gauge group.
D-brane breaks one half of the 32 supersymmetries of the D = 10 N = 2 superstring
theory and so, in particular, for a stack of N D3-branes, the brane dynamics is described
by D = 4 N = 4 SYM theory with gauge group SU(N).

4.5.2 The Open String Point of View

From the open string point of view, the action describing the physical set-up has the form

S = Sbulk + Sbranes + Sbulk-branes, (4.53)

where Sbulk is the ten-dimensional supergravity action, Sbrane is the brane action and
Sbulk-branes describes the interaction between the branes and the bulk theory that scales
with Newton’s constant

√
GN ∼ gsα

′2. In the low energy limit α′ → 0 and we thus see
that the interaction term drops out. We remain with two decoupled theories

(brane theory)⊕ (bulk theory) (4.54)
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The particular brane and bulk theories depend on the D-brane. If we consider as before
a stack of N D3-branes we have

(D = 4N = 4 SYM)⊕ (Type IIB SUGRA) (4.55)

If we introduce the t’Hooft coupling λ ≡ g2YMN , for λ≪ 1 we recover the weakly coupled
Yang-Mills theory, where the perturbative expansion is reliable.

4.5.3 The Closed String Point of View

Now we consider the same system from a different point of view. D-branes are massive
charged objects which act as a source for the various supergravity fields. The D3-brane
supergravity solution as derived in chapter 3 is

ds2 = H− 1
2ηµνdx

µdxν +H
1
2 (dr2 + r2dΩ2

5), (4.56)

where xµ are the coordinates parallel to the brane. We also have

H = 1 +
R4

r4
, (4.57)

where if we consider N branes the scale factor R is related to the string coupling costant
by R4 = 4πgsα

′2N . Note that the supergravity description is valid when the curvature
radius (which is set by the scale R) is large compared to the string length ls since otherwise
string effects are important and cannot be ignored. So the useful regime is given by
R ∼

√
α′(gsN)

1
4 ≫ ls ∼

√
α′ and thus we require λ ≡ gsN ≫ 1. We thus see that this is

the opposite regime to the one in which the gauge theory description is useful.
In the limit r ≫ R the solution (4.54) becomes that of 10-dimensional flat Minkowski
space. Instead, in the near horizon limit r ≪ R the metric becomes

ds2 → r2

R2
ηµνdx

µdxν +
R2

r2
dr2 +R2dΩ2

5. (4.58)

Using (4.38) we see that this is nothing but the metric for the product geometry AdS5×S5,
where the radius for both parts of the geometry is R.
Since (4.56) becomes flat at r → ∞, the coordinate t is the proper time for an observer
at infinity. In contrast, the proper time for an observer at some other point is given
by ∆τ =

√
−gtt∆t, and correspondingly the energies are related by E = 1√

gtt
E∞. In

particular, close to the brane we have (4.58) E∞ = rE
R

and thus the energy as observed
at infinity goes to zero as r → 0. For an observer at infinity there are two decoupled low
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energy regimes:

• 10-dimensional supergravity close to the observer, since gravity becomes free at low
energies/large distances.

• Full Type IIB string theory close to the branes (i.e. in the geometry AdS5 × S5);
due to the large red-shift, everything (i.e. all strings) becomes a low energy effect
close to the branes for an observer at infinity, and thus there is no need to restrict
to low energy massless modes.

We thus have two decoupled theories:

(Type IIB String theory on AdS5 × S5)⊕ (Type IIB Supergravity in 10D) (4.59)

4.6 Statement of the Correspondence
We finally reach the celebrated AdS/CFT correspondence; by looking at (4.55) and (4.59)
we see that both from the point of view of a field theory of open strings living on the brane,
and from the point of view of the supergravity description, we have two decoupled theories
in the low energy limit. In both case one of the decoupled systems is supergravity in flat
space. So, it natural to identify the second system which appears in both descriptions:

(Type IIB String theory on AdS5 × S5) ≡ (D = 4N = 4 SYM) (4.60)

The fact that D-branes have a dual interpretation has led us to identify these two theories
as dual descriptions of each other. Although not generally regarded as a proof, the
decoupling argument provides strong motivation for the above correspondence.
The parameters gs, R of the superstring theory are related to the parameters gYM , N of
the flat theory on the brane by

gs = g2YM , R4 = 4πgsNα
′2. (4.61)

The second equation as we have seen is related to the fact that we consider the geomtry
of a stack of N branes, while the first comes from the fact that the closed string coupling
constant is the square of the open string coupling constant. So we have the following
relations

λ ≡ g2YMN = gsN =
R4

4πα′2
=

R4

4πl4s
. (4.62)

We see that the supergravity regime R4/l4s ≫ 1 and the perturbative field theory regime
λ≪ 1 are perfectly incompatible. This is the reason that this correspondence is called a
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”duality”. The two theories are conjectured to be exactly the same, but when one side is
weakly coupled the other is strongly coupled and vice versa.
Let’s now consider the holographic nature of the correspondence. We saw in Section 4.3.3
that AdS5 has a boundary given by conformally invariant Minkowski space R1,3. So, it is
in fact possible to identify the branes as being in some sense on the boundary of AdS5,
and thus the gauge theory (which lives on the branes) can be said to live on the boundary
of AdS5. This is the sense in which the correspondence is a holographic principle, since
the 5-dimensional dynamics of Type IIB theory (after compactification on S5) can be
encoded in a gauge theory living on the 4-dimensional boundary.
This is the strong form of the correspondence as it is supposed to hold for all values of
the coupling constant. However this strong form is difficult to check due to the need of
defining the string theory on curved manifolds such as AdS5 × S5. We can state some
slightly less general forms. First we can note that it’s not possible to get into the gravity
regime by taking N small and gs very large because this would give a very quantum gravity
theory. So, it is always necessary, but not sufficient, to have large N in order to have a
weakly coupled supergravity description. We have the t’Hooft form of the correspondence,
by going to the t’Hooft limit

N →∞, gYM → 0, λ fixed. (4.63)

In the gauge theory side this corresponds to the perturbation theory topological expansion
in 1/N . On the string theory side one has a classical Type IIB string theory with small
coupling gs = λ/N . Finally we have the weak form of the correspondence which, after
taking the t’Hooft limit, involves taking the large λ limit. This corresponds to the strong
coupling (i.e. non perturbative) regime on the gauge theory, whereas on the string theory
side we have a classical Type IIB supergravity, with an expansion in small α′. This final
form turns out to be extremely powerful, since one may use classical gravity to perform
calculations in the non-perturbative gauge theory.

4.7 The Symmetry Map
As a first check of the correspondence we can show that there is a one to one map between
the symmetries of the two theories. In fact the bosonic part of D = 4 N = 4 SYM is
invariant under the conformal transformations in the conformal group SO(4, 2) and the
SU(4)R ∼ SO(6)R R-symmetry group. On the other hand the isometry group of AdS5 is
SO(4, 2) and for S5 it is SO(6). Furthermore SYM theory has also the S-duality simmetry
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group SL(2,Z), the same of Type IIB string theory. Finally, the N = 4 theory has 16
supersymmetries (Q) + 16 conformal symmetries (S) and the D3-brane breaks precisely
half of the Poincaré supersymmetries (i.e. 16 of the 32). On the other hand in AdS5×S5

near-horizon limit we have as usual 32 supersymmetries. We can therefore conclude that
the whole supergroup SU(2, 2|4) is the same for the N = 4 field theory and the AdS5×S5

geometry.

N = 4 SYM IIB on AdS5 × S5

Conformal group O(4, 2) Isometry group O(4, 2) of AdS5

R-symmetry SU(4)R Isometry group SO(6) ≃ SU(4) of S5

Supersymmetries = 16Q + 16S 32 supersymmetries

Table 4.2: Symmetry map between the two theories
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5
Chiral Operators and the Holographic

Dictionary

As described in the previous chapter, the AdS/CFT correspondence is a strong/weak
coupling duality. Since that correspondence is a conjecture without a formal proof, one
must test it by computing physical quantities such as correlation functions. This task is
generally not possible to do since we can only compute physical quantities perturbatively
in λ on the field theory side and perturbatively in 1√

λ
on the string theory side. It turns

out that there are several properties of some supersymmetric theories (such as the N = 4

SYM theory itself) which do not depend on the coupling λ, so they can be compared
to test the duality. In this chapter we’ll look at some of these quantities, namely the
chiral primary operators (CPOs) of the N = 4 SYM theory. These special operators
form a short (or chiral) multiplet of SU(2, 2|4) whose dimension is “protected’’ from the
quantum corrections. Later we will see how to associate a field in AdS to each of these
kind operator, i.e. we’ll give the holographic dictionary.

5.1 Chiral Operators
The operator spectrum of the N = 4 SYM theory consists of all possible gauge invariant
combinations of the elementary fields. Since the theory is (super)conformal we can limit
our analysis to the primaries. The descendants will be obtained by acting on the primaries
with the appropriate operators.
In a superconformal algebra the special conformal transformations Kµ do not commute
with the supercharges Q. Since both are symmetries, their commutator must also be a
symmetry, and these are the special supersymmetry transformations SIα with their complex
conjugates S̄Iα̇. The dimensions of the generators of the full superconformal algebra are
the following:

[D] = [Jµν ] = 0, [P µ] = +1, [Kµ] = −1, [Q] = +1/2, [S] = −1/2 (5.1)
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A superconformal primary operator generalizes the idea of a conformal primary operator
given in section 4.1.3. It is defined by

[S,O]± = 0, (5.2)

and it’s the lowest dimension operator in a given superconformal multiplet. It is important
to distinguish a superconformal primary operator from a conformal primary operator.
Since Kµ reduce the dimension by 1 and S by 1/2, the (5.2) is a stronger condition than
(4.18). Note also that since {S, S̄} ∼ K, the condition (5.2) implies (4.18). In addition, a
superconformal descendant operator O can be written as

O = [Q,O′]±. (5.3)

Again, since P µ raises the dimension by 1 and Q by 1/2, this condition is stronger than
that for the conformal descendant operators defined in section 4.1.3. We can observe that
O can never be a primary operator since the dimensions are related by ∆O = ∆O′ + 1/2.
So, a superconformal primary operator is not the Q-commutator of another operator.
Since the actions of the supercharges on the canonical fields are:

[QA
α , ϕ

I ] ∼ λαB

{QA
α , λβB} ∼ (σµν)αβFµν + ϵαβ[ϕ

I , ϕJ ]

{QA
α , λ̄

B
β̇ } ∼ (σµ)αβ̇Dµϕ

I

[QA
α , Aµ] ∼ (σµ)αα̇λ̄

A
β̇ ϵ

α̇β̇

(5.4)

a superconformal primary operator can involve neither the gauginos λ nor the gauge
field A. Moreover it can involve neither derivatives nor commutators of ϕ. As a result,
superconformal primary operators are gauge invariant scalars involving only traces of ϕ’s.
The simplest are the single trace operators, which are of the form

OI1...In ≡ Tr(ϕI1 ...ϕIn). (5.5)

Since in (5.4) the commutators of ϕ’s appear on the right side, if some of the indices are
antysimmetric the field will be a descendant (because we can write him in term of com-
mutators). Thus, only symmetric combinations of the indices (I1, ..., In) will be primary
operators. In the AdS/CFT correspondence one is interested in the operators whose di-
mension does not depend on the scale λ. These are the chiral primary operators, which are
in short representation of the superconformal algebra (this happens if they are annihilated
by some of the supercharges Q). In analogy to what happens in standard extended super-
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symmetry, where the mass of the short or BPS multiplets is determined by their quantum
numbers, chiral primary operators are also called BPS states. In general, using the su-
perconformal algebra, one can show that the simplest class of 1

2
BPS states is formed by

the operators (5.5) for symmetric and traceless combinations of the indices (I1, ..., In) [15].
They form a representation of weight (0, n, 0) of SU(4)R and their conformal dimension
is simply

∆ = n. (5.6)

In the case n = 2 we have ∑
I

Tr(ϕIϕI)→ Konishi multiplet, (5.7)

that is the lowest component of a long (unprotected) multiplet, called the Konishi multi-
plet, and

Tr(ϕIϕJ)− 1

6
δIJtr(ϕIϕJ)→ supergravity multiplet, (5.8)

that is the CPO of a short (protected) multiplet, called supergravity multiplet.
One can find the form of all fields in such a multiplet by using the algebra (5.4) starting
from this primary. Short multiplets have an important status in the AdS/CFT correspon-
dence which we have already mentioned: they have a “protected” conformal dimension.
In fact, given a CPO On, we have

0 = [Q,On] = [K,On] ⇒ 0 = [S,On] ∼ [[K,Q],On]. (5.9)

So, using the superconformal algebra [Q,S] = J +D +R we obtain

0 = [[Q,S],On] ∼ [J +D +R,On] = (Σ−∆+R)On, (5.10)

where Σ = 0 is the spin of the chiral primary operator and R it’s SU(4)R quantum num-
ber. So ∆ can only take discrete values and therefore does not depend on the parameter
λ of the theory. For this reason CPO’s remain in the spectrum at λ→∞ and so they are
dual to supergravity fields. Therefore these operators allow a reliable comparison between
quantities computed in the bulk versus quantities derived in the CFT.

5.2 The Field-Operator Map
As we just explained, there must be a map between individual fields on AdS5 and (chiral)
operators in the CFT. We now construct this map. For simplicity we only consider scalar
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fields on AdS but the argument can be generalised.
A basic point of the correspondence due to Witten [16] is the following statement: a scalar
field ϕ0 in AdS5 is associated with an operator O in the CFT via the following boundary
coupling ∫

boundary
ϕ0O. (5.11)

We can think of the source ϕ0 as the boundary value of a five dimensional field ϕ in AdS5.
Let’s now consider the equation of motion for the field ϕ in AdS5

(□AdS5 −m2)ϕ(x) = 0, (5.12)

for some mass m on AdS5. Using Poincaré coordinates of AdS5 (4.37) with R = 1 we
have

[u2∂2xϕ+ u5∂u(
1

u3
∂uϕ)−m2]ϕ = 0. (5.13)

In Fourier space x→ ip this becomes

[−u2p2 + u5∂u(
1

u3
∂uϕ)−m2]ϕ = 0. (5.14)

Let us see the asymptotic behavior at the boundary, u ∼ 0. The term with momentum
can be neglected, and the solutions are power-law

ϕ ∼ uα± , α± = 2±
√
4 +m2 (5.15)

The solution with α− dominates as u→ 0, and the solution with α+ always decays. Since
the one with α− could diverge we then impose

ϕ(x, u)u=ϵ = ϵα−ϕren0 (x). (5.16)

In such a way when we send ϵ → 0 the solution in the bulk has finite limit: ϕren0 (x)

is a renormalized boundary condition. If we perform a rescaling of coordinates in the
boundary theory, which is the AdS isometry

x→ λx, u→ λu, (5.17)

the bulk field ϕ remains invariant but ϕren0 (x) has to rescale with dimension α−. Since
we identify it with the source, from the Witten ansatz (5.11) we conclude that the corre-
sponding boundary operator O has dimension

∆ = 4− α− = α+ = 2 +
√
4 +m2. (5.18)
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So we have found that a scalar field of mass m2 in AdS5 is associated to an operator O
with conformal dimension ∆ according to the relation

m2 = ∆(∆− 4). (5.19)

Although the above discussion has been for scalars, similar correspondences exist for
higher spin fields. In table 5.1 there are all the relations between the dimensions and the
masses for different fields.

Field Relation
Scalars m2 = ∆(∆− 4)

Spin 1/2, 3/2 |m| = ∆− 2
p-form m2 = (∆− p)(∆ + p− 4)

Massive spin 2 m2 = ∆(∆− 4)
Massless spin 2 m2 = 0 iff ∆ = 4

Rank s symmetric traceless tensor m2 = (∆ + s− 2)(∆− s− 2)

Table 5.1: The field-operator map

5.3 Mapping the Representations
Since the two theories of the correspondence have the same superconformal symmetry
group SU(2, 2|4), not only are the individual fields related to the individual operators
according to the relationship m(∆) seen in the previous section, but so are all the entire
representations of the group. Since it is not known how to compute the full spectrum
of type IIB string theory on AdS5 × S5, one considers only the supergravity spectrum
obtained by compacting the theory on S5. This was done, for example, in [17] expand-
ing the ten dimensional fields in appropriate spherical harmonics on S5, plugging them
into the supergravity equations of motion, linearized around the AdS5 × S5 background,
and diagonalizing the equations to give equations of motion for free (massless or mas-
sive) fields on AdS5. In doing so, each field of the 10-dimensional SUGRA theory gives
rise to an infinite tower of fields one for each S5 spherical harmonic (the Kaluza-Klein
spectrum) that collectively organize into chiral multiplets of SU(2, 2|4). So there is a
complete correspondence between the Kaluza-Klein spectrum and the single-trace short
multiplets of N = 4 SYM theory: in each case we have precisely one short multiplet of the
superconformal algebra for every ∆ ≥ 2. In particular the multiplet A′

∆ on the gravity
side built on a lowest dimension scalar field in the (0,∆, 0) representation of SU(4)R with
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mass m2 = ∆(∆ − 4), corresponds to the multiplet A∆ on the gauge theory side built
on the chiral primary operator O∆ with dimension ∆. The lowest dimension scalar field
in each representation related to the CPO turns out to arise from a linear combination
of spherical harmonics modes on S5 which are components of the graviton haa (expanded
around the AdS5 × S5 vacuum) and the 4-form D

(4)
abcd, where a, b, c, d are indices on S5.

This will be described in detail in section 8.
We conclude the section by mentioning the fact that string theory on AdS5 × S5 is ex-
pected to have many additional states, with masses of the order of the string scale 1/ls.
Such state would correspond (using the mass/dimension relation described above) to sin-
gle trace operators in the field theory with dimensions of order ∆ ∼ (gsN)1/4 ∼ N1/4

for large N, gsN . Presumably none of these single particle states are in short multiplets
of the superconformal algebra (at least, this would be the prediction of the AdS/CFT
correspondence).
The CPO’s described in this section are single-trace operators whose conformal dimen-
sion does not scale with N. In the next sections we will consider multi-trace CPO’s with
a large number of traces, s.t. ∆ ∼ N2. We call this operators heavy and we’ll look for
their gravity description.
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6
D1-D5 CFT and Holography

Before obtaining the dual gravitational description for the heavy states of the N = 4

SYM CFT, let us consider the case of the D1-D5 CFT where the holographic dictionary
between heavy states and geometries has been extensively worked out in the literature.
This case will serve as a useful guide for the study of N = 4 heavy states.
In the first section we will describe some of the main aspects of the D1-D5 theory that
will be useful for our purposes (for a more exhaustive treatment see, for example, [18]).
Then we will use holography in order to obtain some informations about some specific
chiral operators of the theory from the corresponding gravitational description.

6.1 D1-D5 CFT and the Dual Description
In section 3.8 we have seen that starting from a 10-dimensional spacetime with topology
R1,4 × S1 × T 4 (the S1 direction is distinguished from the T 4 because we’ll consider the
S1 to be much larger than the T 4), the bound state of D5-branes wrapping the whole
compact space and D1-branes wrapping the circle S1, in the decoupling (or near horizon)
limit becomes AdS3×S3×T 4. Just as for the D3-brane system, according to the AdS/CFT
correspondence there is dual description and, in particular, we expect the dual theory to
be a 1+1-dimensional conformal field theory with 8 supercharges (as the D1-D5 breaks 1

4

supersymmetries) living on the conformal boundary of AdS3; this is the so called D1-D5
CFT. While the low energy field theory living on the D3 branes is simple to describe, as
there is a unique maximally supersymmetric SU(N) gauge theory, the D1-D5 brane system
is more complicated, and there are several methods to obtain the CFT. One method is to
consider only N5 D5-branes wrapping T 4×S1 which give rise to a 5+1-dimensional U(N5)

gauge theory with 16 supercharges. Embedded in this theory we can consider the N1 D1
branes as istantonic solutions, that is dynamical strings wrapping S1 that are localized
in T 4. These solutions break half of the 5-brane worldvolume theory’s supersymmetries.
From this point of view we therefore obtain a 2-dimensional sigma model on the D1-branes
worldsheet with target space the moduli space of N1 U(N5) istantons on T 4. In general
this space is complicated but one can show that in a particular configuration it reduces
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to
(T 4)N

SN
, N ≡ N1N5, (6.1)

where SN is the symmetric group of degree N permuting the N copies of T 4. This is the
so-called orbifold point of the CFT moduli space1. We will always work in this configu-
ration where we can visualize the CFT as a collection of N strings wrapping the circle
with target space T 4; the SN identification is required as there is no physical distinction
between permutations of the strings.
To summarize, we consider the correspondence between type IIB superstring theory de-
fined on an asympototically AdS3 × S3 × T 4 space and the D1-D5 CFT at the orbifold
point, i.e. a 1+1-dimensional sigma-model with target space given by (6.1). As always,
as a first check of the correspondence, we can see if the global symmetries of the two
theories are in agreement between each others. On the gravity side we have the SO(2, 2)
isometry group of AdS3, an SO(4)E ≃ SU(2)L×SU(2)R isometry group of S3 and another
SO(4)I ≃ SU(2)1×SU(2)2 isometry group of T 4 broken by the compactification. On the
CFT side, the conformal algebra in 2 dimensions is infinite-dimensional, with Virasoro
generators Ln, L̄n (n = −∞, · · · ,+∞). The vacuum state of the theory is invariant under
the subalgebra spanned by L0, L±1 which one can identify with the AdS3 isometry group.
The CFT has also an SO(4) R-symmetry group which we identify with the isometry group
of S3 and another SO(4) symmetry group which we identify with the isometry group of
T 4.

6.1.1 Field Content

We can parameterize the 2-dimensional worldsheet of the sigma model with a timelike
coordinate τ and a spacelike coordinate σ on S1. We find it more convenient to Wick
rotate to Euclidean time and map the cylinder to a complex plane, breaking the theory
into left and right-movers

z = eτE+iσ, z̄ = eτE−iσ. (6.2)

Functions of z are the “left-movers’’ while functions of z̄ are the “right-movers’’.
At the free orbifold point the CFT can be visualized as a collection of N strands, i.e.
maps from (τ, σ) to T 4, each one with 4 bosons and four doublets of fermions that we can
organise in the previous two sectors

∂X i
(r)(z), ∂̄X

i
(r)(z̄), ψ

αA
(r) (z), ψ̄

α̇A
(r) (z̄) (6.3)

1Moduli are the CFT deformations that preserve the superconformal symmetry. While theN = 4 SYM
CFT has only one complex modulus, parametrized by gYM and θI , the D1-D5 has a more complicated
20-dimensional space. The orbifold point correspond to a submanifold in this moduli space.
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where r = 1, · · ·N is a “copy’’ index. Since the target space is the symmetric product
of N T 4s, we have N copies of a sigma model with target space T 4. Moreover indices
correspond to the following representations

α, β fundamental of SU(2)L, α̇, β̇ fundamental of SU(2)R
A,B fundamental of SU(2)1, Ȧ, Ḃ fundamental of SU(2)2
i, j fundamenta of SO(4)I

Each of the N copies of the CFT contribute with c(r) = 4 + 2 = 6 to the central charge
(corresponding to 4 free bosons and 4 free fermions). Overall we have c = 6N .
The untwisted sector is composed of singly wound strand, i.e. by a collection of N inde-
pendent strands with winding one. In this case we have the following periodic boundary
condition for the scalars

∂X i
(r)(e

i2πz) = ∂X i
(r)(z), (6.4)

while for fermions we can have either Ramond (R) or Neveu-Schwartz (NS) boundary
conditions, which correspond, respectively, to periodic and antiperiodic boundary condi-
tions on the cylinder. Using complex coordinates z, z̄ there is a −1 factor coming from
the Jacobian of the transformation from (τ, σ) to (z, z̄) that switches the periodicity. So
in the R sector we have

ψαA(r) (e
i2πz) = −ψαA(r) (z), (6.5)

while in the NS sector
ψαA(r) (e

i2πz) = ψαA(r) (z). (6.6)

The R sector can be related to the NS sector via spectral flow (see later). If we have
a global AdS3 × S3 space, then the CFT is in the NS sector since global AdS3 has a
contractible cycle and going around S1 at the boundary looks like a 2π rotation at a point
in AdS space. So, since fermions are invariant under a 4π rotation, a 2π rotation gives a
minus sign and this identifies the NS sector. However, more complicated geometries such
as the one we’ll see are instead dual to the CFT in the R sector since the geometries have
non-trivial gauge fields that mix AdS3 and S3. So in order to obtain the NS sector we’ll
apply spectral flow after using the holographic dictionary.

6.1.2 Vacuum States and Chiral Primaries

Each state is labelled by the quantum numbers of SU(2)L × SU(2)R (j3L, j
3
R) ≡ (j, j̄) and

also by the conformal dimension ∆ = h + h̄. The NS vacuum state |0, 0⟩NS is the “real’’
vacuum of the theory: it is in the completely untwisted sector and the gravity dual is
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global AdS. For this state jNS = j̄NS = hNS = h̄NS = 0. The NS sector states can be
mapped to R sector states by spectral flow transformation, that is an automorphism of
the superconformal algebra acting on the charges and dimensions as

hR = hNS − jNS +
c

24
,

jR = jNS −
c

12
.

(6.7)

In the R sector there are many vacua. The NS vacuum maps under spectral flow to the R
vacuum with jR = j̄R = −N

2
, denoted as |−N

2
,−N

2
⟩, which correspond to N copy of the

state |−1
2
,−1

2
⟩ ≡ |−,−⟩. Note also that CPO states with jNS = hNS map under spectral

flow to R vacua with hR = c
24

(and −N/2 ≤ jR ≤ N/2).
It turns out that the region of moduli space of the CFT dual to the low-energy supergravity
regime in the bulk is distant from the solvable free orbifold point. In order to compute
quantities free from any radiative corrections at the free orbifold point we need to focus
on chiral operators of the CFT. From the CFT algebra one obtains that the chiral primary
operators satisfy

hNS = jNS. (6.8)

In the singly twisted sector there are four CPOs and the one that we’ll consider in the
future is

S1 = ϵAB
∑
r

ψ+A
(r) ψ̄

+B
(r) , (6.9)

with jNS = j̄NS = hNS = h̄NS = 1
2
. One can also make heavy operators with hNS ∼

h̄NS ∼ N2 by taking ∼ N2 copies of S1.

6.2 Holographic Dictionary
In this section we describe a specific class of geometries dual to heavy states of the D1-D5
CFT and then we motivate the holographic map looking at the asymptotic regime. In
particular we consider the 1

4
-BPS geometries which are the simplest one for a system with

two charges.
The general solution of type IIB supergravity compactified on T 4×S1 preserving the same
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supersymmetries as the D1-D5 system is [19]

ds2(10) = −
2α√
Z1Z2

(dv + β)[du+ ω] +
√
Z1Z2ds

2
4 +

√
Z1

Z2

dŝ24, (6.10)

e2ϕ = α
Z1

Z2

, (6.11)

B = − αZ4

Z1Z2

(du+ ω) ∧ (dv + β), (6.12)

C0 =
Z4

Z2

, (6.13)

C2 = −
α

Z1

(du+ ω) ∧ (dv + β), (6.14)

C4 =
Z4

Z2

vol4 −
αZ4

Z1Z2

γ2 ∧ (du+ ω) ∧ (dv + β), (6.15)

where α ≡ Z1Z2

Z1Z2−Z2
4
. Here ds24 is a (generically non trivial) Euclidean metric in the 4

spatial non compact directions that reduces asymptotically to flat R4 and dŝ24 denotes the
flat metric on T 4. We have also introduced light-cone coordinates

u =
t− y√

2
, v =

t+ y√
2
, (6.16)

where t is the time coordinate and y is the coordinate on S1, whose radius will be denoted
by R.
The simplest 2-charge solution is the naive superposition of D1 and D5 branes, which
corresponds to setting all functions to zero, except Z1 and Z2. In section 3.8 we have
derived this naive solution by applying boost and dualities to a simple neutral seed solu-
tion. It is easy to see that this naive solution fits with the ansatz above. We have also
anticipated that this solution is not dual to any proper D1-D5 microstates, but that the
microstate solutions can be obtained by giving a non-trivial transverse vibration profile
to the F1 string in the F1-P duality frame. From a geometrical point of view, to discuss
the most general F1-P state, we should start giving 8 functions gA(v) transverse to the
fundamental string in order to describe its profile; these functions can be split into four R4

components (A = 1, · · · 4) and four T 4 components (A = 5, · · · , 8). When the latter are
non-vanishing, invariance under rotation in the T 4 directions is broken. However, when
one applies the chain of dualities from the F1P frame to the D1D5 frame, it turns out
that in the latter frame geometries that have non trivial values of the profile gA(v) for
A = 1, · · · , 5 preserve rotational symmetry in the T 4 directions. This class of 2-charge
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solutions can be written in terms of the ansatz (6.10)-(6.15) by choosing

ds24 = dxidxi, (6.17)

Z2 = 1 +
Q5

L

∫ L

0

1

|xi − gi(v′)|2
dv′, Z4 = −

Q5

L

∫ L

0

ġ(v′)

|xi − gi(v′)|2
dv′, (6.18)

Z1 = 1 +
Q5

L

∫ L

0

|ġi(v′)|2 + |ġ(v′)|2

|xi − gi(v′)|2
dv′, dγ2 = ⋆4dZ2, dδ2 = ⋆4dZ4, (6.19)

A = −Q5

L

∫ L

0

ġj(v
′)dxj

|xi − gi(v′)|2
dv′, dB = − ⋆4 dA, (6.20)

β =
−A+B√

2
, ω =

−A−B√
2

, (6.21)

Here g(v) is the extra component of gA(v) ≡ g5(v) in the particular direction of T 4

necessary in order to preserve invariance under T 4 rotations. Furthermore the dot on the
profiles denote a derivative with respect to v and ⋆4 is the hodge dual with respect to the
flat metric ds24.
We are interested in the following profile

g1(v
′) = a cos

(
2πv′

L

)
, g2(v

′) = a sin

(
2πv′

L

)
, g(v′) = −b sin

(
2πv′

L

)
(6.22)

with all other components trivial. This choice yields a geometry that can be embedded in
the ansatz (6.10)-(6.15) with appropriate choice of coordinates (r, θ, ϕ, ψ) in R4 as follows
[19]

ds24 = (r2 + a2 cos2 θ)(
dr2

r2 + a2
+ dθ2) + (r2 + a2) sin2 θdϕ2 + r2 cos2 θdψ2, (6.23)

β =
Ra2√

2(r2 + a2 cos2 θ)
(sin2 θdϕ− cos2 θdψ), (6.24)

Z1 = 1 +
R2

Q5

a2 + b2

2

r2 + a2 cos2 θ
+
R2a2b2

2Q5

cos 2ϕ sin2 θ

(r2 + a2 cos2 θ)(r2 + a2)
, (6.25)

Z2 = 1 +
Q5

r2 + a2 cos2 θ
, a1 = 0, γ2 = −Q5

(r2 + a2) cos2 θ

r2 + a2 cos2 θ
dϕ ∧ dψ, (6.26)

Z4 = Rab
cosϕ sin θ√

r2 + a2(r2 + a2 cos2 θ)
, a4 = 0, (6.27)

δ2 =
−Rab sin θ√
r2 + a2

[
r2 + a2

r2 + a2 cos2 θ
cos2 θ cosϕdϕ ∧ dψ + sinϕ

cos θ

sin θ
dθ ∧ dψ], (6.28)

ω =
Ra2√

2(r2 + a2 cos2 θ)
(sin2 θdϕ+ cos2 θdψ), (6.29)

F = 0. (6.30)
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As we said in the previous section, our geometries are dual to the R sector of the CFT.
If one set b = 0 the 10-dimensional metric becomes simply that of the vacuum AdS3 ×
S3 × T 4 after the coordinate shift ϕ → ϕ + t/R, ψ → ψ + y/R which implements the
spectral flow from R to NS sector. In this case from (6.11)-(6.15) follows that the fields
C0, B2 and C4 are zero and the dilaton is constant

e2ϕ =
Z1

Z2

=
R2a20
Q2

5

with a20 ≡
Q1Q5

R2
. (6.31)

The 2-form C2 is also non vanishing and the associated field strength can be written as

F3 = −vol(AdS3) + vol(S3), (6.32)

where in our coordinates

vol(AdS3) =
r

Q1Q5

dr ∧ dt ∧ dy, vol(S3) = sin θ cos θdθ ∧ dϕ ∧ dψ. (6.33)

Thus at b = 0, the geometry is dual to the R sector vacuum |−,−⟩N . If we take the limit
b → 0, at linear order in b, we have a deformation of the vacuum geometry caused by
the fields B and C4 and it turns out that the operator dual to this linear deformations
is the chiral primary operator (6.9). The dual state at this slightly excited geometry is
obtained by acting once with this CPO on the N copies of the vacuum in the R sector,
schematically this state is

|0, 0⟩ (|−,−⟩)N−1. (6.34)

As we increase b, the geometry gets deformed further away from the vacuum |−,−⟩N and
this, intuitively, corresponds to the heavy state of the CFT obtained by acting not once,
but a number of times p ∼ N2 with the CPO (6.9) on the N copies of the vacuum state
in the R sector. To be more precise, since on the gravitational side we are working in the
classical regime, the dual state is a coherent superposition of the CPO, so the schematic
form of the dual state at the geometry with b ̸= 0 is

N∑
p=0

N (p)(|0, 0⟩)p(|−,−⟩)N−p ≃ (|0, 0⟩)p̄(|−,−⟩)N−p̄, (6.35)

where N (p) is a normalization factor and p̄ is the value on which, in a good approximation,
the sum over p which defines the coherent state is peaked. Superficially it seems that there
is a mismatch of parameters, since the CFT state depends on the single parameter p̄, while
the geometry contains the two parameters a and b. However the analysis of the regularity
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of the supergravity solution shows that absence of unphysical singularities requires the
constraint [19]

a2 +
b2

2
= a20, (6.36)

and thus only one parameter, which we could take to be b, can be freely varied. The
simplest way to find the relationship between the microscopic and the supergravity pa-
rameters p̄ and b, is to match the conserved quantities, like angular momenta. The
holographic recipe to extract the angular momenta (jR, j̄R) and the conformal dimension
(hR, h̄R) in the R sector from an asymptotically AdS geometry is given for example in
[20],[21]. Without considering the T 4 part, our six dimensional metric for the profile
(6.22) is

ds26 = −2
√
α

P
(dv + β)(du+ ω) +

√
Pαds4, (6.37)

where P ≡ Z1Z2 − Z2
4 . Using the data (6.23)-(6.30) it is possible to write it as

ds26 =
det(G(0))

det(G)
gµνdx

µdxν +Gαβ(dx
α + Aαµdx

µ)(dxβ + Aαµdx
µ), (6.38)

where G(0) is the background S3 metric, equal to G for b = 0. The det(G(0))
det(G)

factor is needed
so that gµν is the 3D Einstein frame metric. Here xµ denote the AdS3 coordinates, xα

denote the S3 coordinates and Aαµ are SO(4) gauge fields. For this 2-charge geometry
both gµν and Gαβ are diagonal, we have

ds23 = gµνdx
µdxν = −a

4 + a20r
2

a20R
2
AdS

dt2 +
r2

R2
AdS

dy2 +
R2
AdS

(r2 + a2)2
(r2 +

a4

a20
)dr2 (6.39)

with R2
AdS =

√
Q1Q5 and

Aθ = 0, Aϕ = − a2

a20R
dt, Aψ = −a2 r2 + a2

a20r
2 + a4

1

R
dy, (6.40)

Gθθ =
√
PΣ, Gϕϕ =

R4
AdS√
PΣ

sin2 θ, Gψψ =
R4
AdS√
PΣ

a20r
2 + a4

a20(r
2 + a2)

cos2 θ, (6.41)

with Σ ≡ r2 + a2 cos2 θ. In order to obtain the angular momenta one defines [20]

A± ≡ Aϕ ± Aψ, τ ≡ t

R
, σ ≡ y

R
(6.42)
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and, according to the holographic dictionary [20], in the R sector we have

jR =
N

4
(A+

τ + A+
σ ) =

N

2

a2

a20
, j̄R =

N

4
(A−

τ − A−
σ ) =

N

2

a2

a20
. (6.43)

This gives the gravity prediction for jR, j̄R, which should be compared to the CFT one,
that can be easily derived from (6.35)

jR = j̄R =
N − p̄

2
, (6.44)

since each |−,−⟩ carries jR = j̄R = 1/2. Comparing the gravity (6.43) and CFT (6.44)
predictions, and using the regularity constraint (6.36), one obtains the map between p̄

and b
p̄

N
=

b2

2a20
. (6.45)

As a further check of the holographic map, one can compute hR and h̄R. In order to
compute the conformal dimension is convenient to define dimensionless quantities

ρ ≡ r

a
, η ≡ a

a0
, (6.46)

in terms of which the 3D metric in the Einstein frame (6.39) becomes

ds23
R2
AdS

= −η2(ρ2 + η2)dτ 2 + η2ρ2dσ2 +
ρ2 + η2

(ρ2 + 1)2
dρ2. (6.47)

We want to define a coordinate z in terms of which, for z → 0

ds23
R2
AdS

=
dz2

z2
+

1

z2
(g(0)µν + z2g(2)µν ) + o(z2). (6.48)

By defining z such that
ρ =

1

zη
(1 + cz2) (6.49)

the equation (6.48) is satisfied if c = 1
4
(−2η2 + η4). In particular we have

g(0)µν dx
µdxν = dσ2 − dτ 2, g(2)µν dx

µdxν =
1

2
η2[(2− 3η2)dτ 2 + (−2 + η2)dσ2]. (6.50)
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According to the holographic dictionary the conformal dimension in the R sector [20]

hR =
N

4
[g(2)ττ + g(2)σσ +

1

4
(A+

τ + A+
σ )

2] +
N

4
(6.51)

h̄R =
N

4
[g(2)ττ + g(2)σσ +

1

4
(A−

τ − A−
σ )

2] +
N

4
(6.52)

which gives, using (6.43) and (6.50), hR = h̄R = N
4
= c

24
. This is the expected dimension

for a Ramond sector vacuum like the one in (6.35). By spectrally flowing to the NS sector,
this translates to jNS = hNS as follows from (6.7).
So, starting from a particular geometry, using the holographic dictionary we were able to
map the geometry to a CFT state by matching some of the simplest conserved charges
associated with the corresponding CFT operator. This chapter is meant to be an example
of how to proceed in the future. In particular, we will now return to consider the theory
of gravity on AdS5 × S5 and we’ll try to analyse the dual geometries of the CFT states
that interest us. We will describe these type of geometries in general in the next chapter.
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7
LLM Geometries

In this chapter we’ll discuss some special geometries constructed by Lin, Lunin, and
Maldacena in 2004 [22], which are called LLM geometries. These are all the 1

2
-BPS

excitations of AdS5 × S5 and are associated to the 1
2
-BPS operators in the dual CFT

following the AdS/CFT prescription. When the dimension of these operators is large,
of the order of c ∼ N2, the dual gravitational configuration is a large deformation of
AdS5 × S5 and LLM ansatz describes this most general geometry consistent with the
supersymmetries preserved by the state. Here we will briefly look at the general LLM
solution following [22] and we explicitly write the AdS5 × S5 background geometry from
the general ansatz. In the next chapter we will study some of these geometries in detail
by perturbing this background.

7.1 The LLM Solutions
The construction is based on the assumption that the geometries we are looking for have to
preserve the same amount of symmetries that the states in the CFT do. Being interested
in 1

2
-BPS states, we are looking for a type IIB geometry that is invariant under

SO(4)× SO(4)× R. (7.1)

BPS operators are built out of a complex combination of two of the six scalars: Z ≡ ϕ1 +

iϕ2. The first SO(4) is the rotation symmetry acting on the remaining four scalars. Since
BPS operators have the lowest dimension for their charge, they do not depend on the space
directions, which we can take to form a compact S3. The second SO(4) acts on this S3. A
1
2
BPS operator thus depends on time t and one of the S5 coordinates, ϕ̃, corresponding to

the R charge carried by the operator. However, the condition that the dimension is equal
to the charge implies that the operator only depends on the combination ϕ̃+ t, and this
leaves an extra U(1) Killing vector, which is the third factor in (7.1). Hence we can single
out two 3-spheres, Ω3 and Ω̃3, and a Killing vector, t. Assuming that only the five-form
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field strength is excited, the most general geometry with this symmetry is

ds2 = gµνdx
µdxν + eH+GdΩ2

3 + eH−GdΩ̃
2

3, (7.2)
F(5) = Fµνdx

µ ∧ dxν ∧ dΩ3 + F̃ µνdx
µ ∧ dxν ∧ dΩ̃3, (7.3)

where µ, ν = 0, ..., 3. The complete solutions of the supersymmetric equations which
impose the 1

2
-BPS condition have the following form [22]:

ds2 = −h−2(dt+ Vidx
i)2 + h2(dy2 + dxidxi) + yeGdΩ2

3 + ye−GdΩ̃
2

3 (7.4)
h−2 = 2y coshG (7.5)
y∂yVi = ϵij∂jz, y(∂iVj − ∂jVi) = ϵij∂yz (7.6)

z =
1

2
tanhG (7.7)

F = dBt ∧ (dt+ V ) +BtdV + dB̂ (7.8)
F̃ = dB̃t ∧ (dt+ V ) + B̃tdV + d̂B̃ (7.9)

Bt = −
1

4
y2e2G B̃t = −

1

4
y2e−2G (7.10)

dB̂ = −1

4
y3 ⋆3 d(

z + 1/2

y2
) d̂B̃ = −1

4
y3 ⋆3 d(

z − 1/2

y2
) (7.11)

where i = 1, 2 and ⋆3 is the flat space epsilon symbol in the three dimensions parametrized
by y, x1, x2. The full solution is determined in terms of a single function z = z(x1, x2, y)

that obeys the linear equation

∂i∂iz + y∂y

(
∂yz

y

)
= 0. (7.12)

This is a Laplace equation in the 6D space made by (y, x1, x2) plus three extra coordinates
on which z does not depend. Hence a solution of this equation is uniquely determined by
giving a boundary condition, which can be imposed on the plane y = 0. From (7.5),(7.7)
we see that in order to ensure the regularity of (7.4), we must have that h−2 = y√

1
4
−z2

remains finite as y approaches zero. This implies z = ±1
2

when y = 0 and therefore a
generic LLM solution can be specified by black(white) color-coding “droplets’’ attributed
to the regions in which z takes the values −1

2
(+1

2
) on the {x1, x2, y = 0} plane.
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Figure 7.1: This figure is taken from [22]. In (a) we have the droplet corresponding to
the AdS5 × S5 ground state geometry as we’ll see in the next section while in (b) and (c)
we have droplets which correspond to more complicated geometries.

The equation (7.12) is a 6D laplacian equation for the function z/y2 with y the radial
coordinate

∆6

(
z

y2

)
= 0. (7.13)

Using the spherical symmetry in four of the dimensions and the fact that the values of z
on the y = 0 plane play the role of sources for this laplacian equation, the solution can
be written as an integral over the droplet D and, integrating by parts, over the boundary
of the droplet ∂D

z(x1, x2, y) =
y2

π

∫
D

z(x′1, x
′
2, 0)dx

′
1dx

′
2

[(x− x′)2 + y2]2
= − 1

2π

∮
∂D
dl n′

i

xi − x′i
[(x− x′)2 + y2]

+ σ, (7.14)

where ni is the unit normal vector to the droplet and σ is the contribution from infinity
such that σ = ±1

2
when z = ±1

2
asymptotically. Using the first of (7.6) we can also write

the integral form for V

Vi(x1, x2, y) =
1

π

∫
D

z(x′1, x
′
2, 0)(xj − x′j)dx′1dx′2

[(x− x′)2 + y2]2
=

1

2π

∮
∂D

dx′j
[(x− x′)2 + y2]

, (7.15)

and it is immediate to see that the second of (7.6) is also satisfied.

7.2 AdS5 × S5 Geometry From the LLM Ansatz

The familiar ground state geometry AdS5×S5 corresponds to a circular droplet of radius
r0 = R2

AdS5
= R2

S5 on the (x1, x2) plane as shown in the figure 7.1 (a). In order to show
this it is convenient to introduce a function z̃ ≡ z− 1

2
and choose polar coordinates (r, φ)

in the (x1, x2) plane. Integrating on the disk one obtain the following solution of (7.12)
[22]

z̃(r, y; r0) =
r2 − r20 + y2

2
√

(r2 + r20 + y2)2 − 4r2r20
− 1

2
. (7.16)
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So, from (7.6) we read off that the 1-form V = Vrdr + Vϕdϕ has only the φ component

Vφ(r, y; r0) = −
1

2

(
r2 + y2 + r20√

(r2 + r20 + y2)2 − 4r2r20
+ 1

)
. (7.17)

Performing the change of coordinates:

y = r0 sinh ρ sin θ (7.18)
r = r0 cosh ρ cos θ (7.19)
ϕ̃ = ϕ− t (7.20)

from (7.7) we get

eG =

√
1 + 2z

1− 2z
=

sinh ρ

sin θ
, (7.21)

and from (7.5)
h−2 = y(eG + e−G) = r0(sin

2 θ + sinh2 ρ). (7.22)

Putting it all together in the ansatz (7.4) we get the standard AdS5 × S5 metric

ds2 = r0(− cosh2 ρdt2 + dρ2 + sinh2 ρdΩ2
3 + dθ2 + cos2 θdϕ̃

2
+ sin2 θdΩ̃

2

3), (7.23)

with r0 = R2
AdS5

= R2
S5 . In the future we will place r0 = 1. Finally, using (7.3),(7.8)-(7.11)

we get the 5-form

F̄ (5) = Vol(AdS5)+Vol(S5) = cosh ρ sinh3 ρdt∧dρ∧dΩ3+cos θ sin3 θdθ∧dϕ̃∧dΩ̃3. (7.24)

This is the background LLM solution associated to the vacuum state of the CFT. All
the others geometries are obtained by perturbing this background and for a droplet of
finite size, the geometry asymptotically approaches AdS5 × S5. In the next chapter we
will consider small fluctuations around this background whose dual CFT states are well
known.
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8
LLM Excitations Around the Background

In this chapter we’ll discuss some special LLM deformations of the AdS5×S5 background
corresponding to small ripples of the circular droplet already treated in [23]. The geome-
tries solve the supergravity equations at first order in the deformation parameter. Since
all the LLM solutions asymptotically approaches AdS5×S5 one can use AdS/CFT meth-
ods to extract holographic data from the geometries as we did in Chapter 6 and it turns
out that they all describe the CFT in a non-trivial state. In the case that we will study
in this chapter of small excitations the dual description is well known; in particular these
geometries are dual to 1

2
-BPS chiral primary operators Ok = Tr(Zk) with Z ≡ ϕ1 + iϕ2

described in chapter 5 whose conformal dimension k is small compared to the central
charge of the CFT c = N2

4
. Since the conformal dimension of an operator is dual to the

energy of the corresponding geometry, when the dimension grow to become comparable
to N2 we expect that the backreaction on the geometry is no longer negligible and we
get new geometries that represent exact, fully non-linear solutions of the supergravity
equations. In principle, since the LLM ansatz describes all the 1

2
BPS solutions, these ge-

ometries should correspond to some complicated droplet configuration, which reduces to
the small ripple in the small deformation limit. The dual description of these geometries
is not yet fully known and it is given by the heavy states of the CFT, i.e. by the states
whose conformal dimension is of the order of the central charge. Some of these states can
be constructed for example by taking p times the previous CPOs [Tr(Zk)]p with pk ∼ N2.
We will try to address the problem of finding the dual geometries of these heavy states in
the next chapter.
In [23] the deformations that we are going to study in this chapter were be found directly
by doing the LLM integrals of the previous chapter for z and V for small ripples of the
circular droplet. Instead, we’ll find them by using the deformations associated to the
CPOs Ok introduced in [17] and after that we’ll match the solution with the LLM ansatz
by calculating the integrals.
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CHAPTER 8. LLM EXCITATIONS AROUND THE BACKGROUND

8.1 Background Geometry and Deformations

The background geometry seen in the previous chapter is AdS5 × S5. We’ll use the
following coordinates

ds̄210 = − cosh2 ρdt2 + dρ2 + sinh2 ρdΩ2
3 + dθ2 + cos2 θdϕ̃

2
+ sin2 θdΩ̃

2

3. (8.1)

Apart from the metric, in this background only the 5-form is excited

F̄ (5) = vol(AdS5)+vol(S5) = cosh ρ sinh3 ρdt∧dρ∧dΩ3+cos θ sin3 θdθ∧dϕ̃∧dΩ̃3, (8.2)

which is self-dual since ⋆̄10vol(AdS5) = vol(S5) and ⋆̄10vol(S5) = vol(AdS5).
In the following we’ll use the bar to indicate quantities in this background, µ, ν, ... indices
for the AdS5 geometry and α, β, ... indices for the S5 geometry.
Following [17] the metric deformations of this background associated to our 1

2
BPS chiral

primary operators are

gµν = ḡµν + hµν = ḡµν + h′µν −
1

3
ḡµνh

α
α, (8.3)

gαβ = ḡαβ + hαβ = ḡαβ +
1

5
hααḡαβ, (8.4)

where the deformations are expanded in terms of scalar spherical harmonics on S5

h′µν = H(k)
µν (ρ, t)Y

(k)(θ, ϕ̃), (8.5)
hαα = π(k)(ρ, t)Y (k)(θ, ϕ̃). (8.6)

Here a sum over k is understood. Similarly, the deformation of the 5-form is given by

C(4) = C̄(4) + cAdS5

(4) + cS
5

(4), F(5) = dC(4), (8.7)

where

cAdS5

(4) = b
(k)
(4)(ρ, t)Y

(k)(θ, ϕ̃), (8.8)

cS
5

(4) = b(k)(ρ, t) ⋆S5 dY (k)(θ, ϕ̃). (8.9)

Excitation modes on AdS5 will only depend on ρ and t requiring the SO(4) symmetry of
the LLM geometries. For the same reason, the spherical scalar harmonics on S5 will only
depend on θ and ϕ̃. The extra U(1) symmetry requires that the solution only depends on
ϕ̃+ t, as we will see later.
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CHAPTER 8. LLM EXCITATIONS AROUND THE BACKGROUND

8.2 The Excitation Modes

The scalar spherical harmonics on S5 satisfy the following eigenvalue equation

□S5Y (k) =
1

vol(S5)d ⋆S
5 dY (k) = −k(k + 4)Y (k), (8.10)

where □S5 ≡ ḡαβDαDβ. In the S5 coordinates

ds2S5 = dθ2 + cos2 θdϕ̃
2
+ sin2 θdΩ̃

2

3, (8.11)

requiring SO(4) symmetry, the highest degree general solution is given by

Y ≡ Y (k,k)(θ, ϕ̃) ≡ Y (k)(θ, ϕ̃) = cosk θeikϕ̃. (8.12)

The 4-form excitation mode b
(k)
(4) is related to the scalar mode b(k) by the self-duality

condition F(5) = ⋆10F(5). It is immediate to see that this implies

b
(k)
(4) = − ⋆AdS5 db

(k). (8.13)

The scalar excitation modes π(k) and b(k) are also linked by the equations of motion. In
particular they satisfy [17]

□AdS5

[
π(k)

b(k)

]
−

[
k(k + 4) + 32 80k(k + 4)

4
5

k(k + 4)

][
π(k)

b(k)

]
= 0, (8.14)

where □AdS5 ≡ ḡµνDµDν . The matrix is diagonalisable. The eigenvalue and the corre-
sponding eigenvector we are interested in are

M2 = k(k − 4),

[
π(k)

b(k)

]
= b(k)

[
−10k
1

]
. (8.15)

This is the eigenvector related to our CPOs since M2 = ∆(∆− 4) implies ∆ = k. In this
one-dimensional eigenspace, we have the following conditions for the scalar modes

□AdS5π
(k) =

1

vol(AdS5)
d ⋆AdS5 dπ

(k) = k(k − 4)π(k)(ρ, t), π(k) = −10kb(k), (8.16)

which are therefore harmonic functions on AdS5. Using the following coordinates for AdS5

ds2AdS5
= − cosh2 ρdt2 + dρ2 + sinh2 ρdΩ2

3, (8.17)
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CHAPTER 8. LLM EXCITATIONS AROUND THE BACKGROUND

the previous equation is solved in a similar manner to that for the spherical harmonics.
The highest degree solution is given by

π ≡ π(k,k)(ρ, t) ≡ π(k)(ρ, t) = cosh−k ρeikt. (8.18)

The last excitation mode that we have to write is the two index symmetric tensor Hk
µν

that appears in (8.5). The explicit form of H(k)
µν is not given in [17], but the only natural

ansatz is
Hµν = αḡµνπ + βDµDνπ, (8.19)

where the covariant derivatives are made with the background metric of AdS5 (8.17). We
can derive the constants α, β using the 10-dimensional equations of motion. In particular
we have the following equations [17]

Hµµ =
16

15
π, (8.20)

DρHρµ −Dµ(
8

15
π + 16b) = 0. (8.21)

By contracting (8.19) with the background AdS5 metric ḡµν , using (8.20) one obtain the
following relation

16

15
π = 5απ + β□AdS5π = 5απ + βk(k − 4)π, (8.22)

which is the first equation for the coefficients. The second one is given by (8.21) which
using our ansatz becomes

αDµπ + β□AdS5Dµπ −Dµ(
8

15
π + 16b) = 0. (8.23)

We have

□AdS5Dµπ = ḡρσD
ρDσDµπ = ḡρσD

ρDµD
σπ = Dµ□AdS5π + ḡρσ[D

ρ, Dµ]D
σπ

= Dµ□AdS5π + ḡρσR
ρ
µ
σ
λD

λπ = k(k − 4)Dµπ − 4Dµπ,

where in the last equality we have used the explicit form of the Riemann tensor on AdS5

Rµνρσ = −(ḡµρḡνσ − ḡµσḡνρ). (8.24)
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CHAPTER 8. LLM EXCITATIONS AROUND THE BACKGROUND

So Dµπ is an eigenvector of the laplacian on AdS5 with eigenvalue k(k − 4) − 4. Using
this fact, from (8.22) and (8.23) we obtain

α =
2

15

k + 4

k + 1
, β =

2

5

1

k(k + 1)
, (8.25)

and the two index symmetric tensor becomes

Hµν =
2

5k(k + 1)

(
DµDνπ +

k(k + 4)

3
ḡµνπ

)
. (8.26)

We have therefore explicitly written down all the excitation modes. In particular, using
(8.12) and (8.18), the deformations will be defined in terms of the function

ϵπY ≡ ϵπ(k)(ρ, t)Y (k)(θ, ϕ̃) = −10kb(k)(ρ, t)Y (k)(θ, ϕ̃) = ϵeikϕ
(

cos θ

cosh ρ

)k
. (8.27)

Here we introduced ϕ ≡ ϕ̃+ t so that we confirm that BPS geometries depend on ϕ, but
are independent of t. Furthermore, we have introduced a small factor ϵ that quantifies
the deformation. Since we are interested in small deformations in the following we will
always work at the first order in this parameter.

8.3 The Excited Geometry
Using (8.7)-(8.9) and (8.13) we can explicitly write the perturbed 5-form. The 4-form is

C(4) = C̄(4) + b ⋆S5 dY − Y ⋆AdS5 db, (8.28)

and thus the 5-form is

F(5) = dC(4) = F̄ (5) + db ∧ ⋆S5dY + bd ⋆S5 dY − dY ∧ ⋆AdS5db− Y d ⋆AdS5 db =

= F̄ (5) + db ∧ ⋆S5dY − bY k(k + 4)vol(S5)− dY ∧ ⋆AdS5db− bY k(k − 4)vol(AdS5).

(8.29)

Similarly, using (8.3)-(8.6) with our ansatz (8.26), the perturbed metric is

ds210 = ds2AdS5

(
1 + 2k

k − 1

k + 1
bY

)
− 4

k + 1
(DµDνb)Y dx

µdxν + ds2S5(1− 2kbY ). (8.30)
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We have

(DµDνb)dx
µdxν =(∂2t b− cosh ρ sinh ρ∂ρb)dt

2 + ∂2ρb dρ
2 + cosh ρ sinh ρ∂ρb dΩ

2
3+

(∂t∂ρb− tanh ρ∂tb)dtdρ,

and using the explicit form of the excitation mode (8.27) the 10-dimensional perturbed
metric becomes

ds210 =dΩ
2
3(1 + 2kbY ) sinh2 ρ+ dΩ̃

2

3(1− 2kbY ) sin2 θ + dρ2[1− 2k(−1 + 2 tanh2 ρ)bY ]+

dt2[− cosh2 ρ− k(−3 + cosh 2ρ)bY ] + dθ2(1− 2kbY ) + dϕ̃
2
(1− 2kbY ) cos2 θ+

dρdt 4ki tanh ρbY. (8.31)

The self-duality condition of the 5-form at the first orderd in ϵ is

F(5) = ⋆10F(5) = ⋆̄10F(5) + δ ⋆10 F̄ (5), (8.32)

where ⋆̄10 is performed with the background geometry (8.1) and δ⋆10 with the perturbated
10-dimensional metric. To verify this condition, since F̄ (5) is a volume form in both AdS5

and S5, one can compute δ⋆10 by using only the diagonal part of the deformed metric.
This metric is obtained by placing β = 0 in the ansatz (8.19) and using again (8.3)-(8.6);
we have

ds2 = (1− 3

25
πY )ds2AdS5

+ (1 +
1

5
πY )ds2S5 ↔ ⋆10, (8.33)

δds2 = − 3

25
πY ds2AdS5

+
1

5
πY ds2S5 ↔ δ⋆10, (8.34)

ds̄2 = ds2AdS5
+ ds2S5 ↔ ⋆̄10. (8.35)

Using the 10 dimensional orientation vol10 = vol(AdS5) ∧ vol(S5) we have

⋆10 vol(AdS5) = (1 +
4

5
πY )vol(S5), ⋆10vol(S5) = (1− 4

5
πY )vol(AdS5), (8.36)

⋆̄ 10(db ∧ ⋆S5dY ) = − ⋆AdS5 db ∧ (⋆S5)2dY = − ⋆AdS5 db ∧ dY, (8.37)
⋆̄ 10(dY ∧ ⋆AdS5db) = − ⋆S5 dY ∧ (⋆AdS5)

2db = ⋆S5dY ∧ db, (8.38)

where we have used (⋆AdS5)
2 = −1 and (⋆S5)2 = 1. So the self-duality condition (8.32)

becomes

−4

5
π − bk(k + 4) = −bk(k − 4), (8.39)
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which confirms the relationship between the scalar modes that we have already obtained
from the equations of motion πk = −10kbk.

8.4 Match With the LLM Ansatz
The perturbed geometry we obtained in (8.29), (8.31) must be an LLM solution. In this
section we will make this explicit by comparing our solution with the LLM ansatz

ds2 = −h−2(dt′ + Vidx
i)2 + h2(dy2 + dr2 + r2dφ2) + yeGdΩ2

3 + ye−GdΩ̃
2

3, (8.40)

where we are using coordinates t′ and φ, instead of t and ϕ, to distinguish them from
the coordinates of (8.29), (8.31). We will determine the proper coordinate transformation
below. By comparing the spherical terms at the first order in the perturbation parameter
we can immediately derive

y = sinh ρ sin θ, (8.41)

and
eG =

sinh ρ

sin θ
(1− 1

5
πY ) =

sinh ρ

sin θ
(1 + 2kbY ). (8.42)

So, using (7.7) we get

z(ρ, θ, ϕ) =
1

2

eG − e−G

eG + e−G
≃ −1

2
+

1

1 + sin2 θ
sinh2 ρ

+
4k sin2 θ

sinh2 ρ(1 + sin2 θ
sinh2 ρ

)
bY. (8.43)

Similarly, using (7.5) we get

h−2(ρ, θ, ϕ) = y(eG + e−G) ≃ sin2 θ + sinh2 ρ− 2k(sin2 θ − sinh2 ρ)bY, (8.44)

h2(ρ, θ, ϕ) ≃ 1

sin2 θ + sinh2 ρ
+ 2k

sin2 θ − sinh2 ρ

(sin2 θ + sinh2 ρ)2
bY. (8.45)

To complete the matching, we must write the change of coordinates from the LLM coor-
dinates (y, r, t′, φ) to those of our perturbed geometry (ρ, θ, t, ϕ ≡ ϕ̃+ t). To this end, we
make the following ansatz

y = sinh ρ sin θ (8.46)
r = cosh ρ cos θ + ϵeikϕf(ρ, θ) (8.47)
t′ = t+ ϵeikϕg(ρ, θ) (8.48)
φ = ϕ+ ϵeikϕl(ρ, θ) (8.49)
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so that at the zero order we recover the change of cooordinates (7.15)-(7.17). Furthermore,
since the 1-form V has only a non zero φ component at the zero order (7.14), we also
make the following ansatz

Vφ = V (0)
φ + ϵeikϕvφ(ρ, θ), V (0)

φ =
2 cos2 θ

cosh 2ρ− cos 2θ
, (8.50)

Vr = ϵeikϕvr(ρ, θ). (8.51)

We have a total of five unknown functions to derive by performing the coordinate change
and comparing the result with our perturbed geometry (8.31).
With the coordinate change ϕ = ϕ̃+ t, the perturbed metric becomes

ds210 =dΩ
2
3(1 + 2kbY ) sinh2 ρ+ dΩ̃

2

3(1− 2kbY ) sin2 θ + dρ2[1− 2k(−1 + 2 tanh2 ρ)bY ]+

dt2[− cosh2 ρ+ cos2 θ − k(−3 + cosh 2ρ)bY − 2k cos2 θbY ] + dθ2(1− 2kbY )+

dϕ2(1− 2kbY ) cos2 θ − dϕdt2 cos2 θ(1− 2kbY ) + dρdt 4ki tanh ρbY. (8.52)

By writing the LLM metric (8.40) using the previous ansatz and comparing the result
with this perturbed metric, at the first order in ϵ we obtain:

f(ρ, θ) = − 2k

k + 1

(
cos θ

cosh ρ

)k+1

(8.53)

g(ρ, θ) = l(ρ, θ) =
2ik

cosh2 ρ(1 + k)

(
cos θ

cosh ρ

)k
(8.54)

vr(ρ, θ) =
4ik2 sec θsechρ

(1 + k)(cos 2θ − cosh 2ρ)

(
cos θ

cosh ρ

)k
(8.55)

vφ(ρ, θ) = −
4k[−1− k + cosh 2ρ+ cos 2θ(−1 + (1 + k) cosh 2ρ)]

(1 + k)(cos 2θ − cosh 2ρ)2

(
cos θ

cosh ρ

)k
. (8.56)

So our perturbed geometry is an LLM solution that corresponds to a certain boundary
condition on the (x1, x2) plane with y = 0. The droplet is a small perturbation of the
disk that correspond to the background geometry AdS5 × S5 as shown in figure 8.1.
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Figure 8.1: This figure is taken from [24]. This is the droplet associated to our small
deformations of AdS5 × S5. The boundary of the droplet is the wave r = 1 + ϵ cos kϕ.

To see this, we can for example calculate the 1-form V

Vi(x1, x2, y) =
1

2π

∮
∂D

dx′i
(x− x′)2 + y2

, (8.57)

integrating on the boundary of a disk of radius r = 1 + ϵ cos kϕ and then comparing the
result with our solution (8.55),(8.56). Using polar coordinates r, ϕ on the (x1, x2) plane
we have

x1 = r cosϕ, x2 = r sinϕ

x′1 = (1 + ϵ cos kϕ′) cosϕ′, x′2 = (1 + ϵ cos kϕ′) sinϕ′
(8.58)

and the one-form components are

Vr = cosϕV1 + sinϕV2,

Vφ = −r sinϕV1 + r cosϕV2.
(8.59)

It is convenient to define A ≡ 2r
1+r2+y2

and B ≡ 1 + r2 + y2. The zero order terms are

V (0)
r = − 1

2π

∫ 2π

0

dϕ′ sinϕ′

B − 2r cosϕ′ = 0,

V
(0)
ϕ =

r

2π

∫ 2π

0

dϕ′ cosϕ′

B − 2r cosϕ′ =
1

2

(
1√

1− A2
− 1

)
,

(8.60)

which are the ones discussed in section 7.2. The terms of order one are

V (1)
r =

1

2π

∫ 2π

0

dϕ′Bk cosϕ
′(−1 + A cosϕ′) sin[k(ϕ′ + ϕ)]− (B − 2) cos[k(ϕ′ + φ)] sinϕ′

B2(−1 + A cosϕ′)2
,

V
(1)
ϕ =

r

2π

∫ 2π

0

dϕ′Bk sinϕ
′(−1 + A cosϕ′) sin[k(ϕ′ + ϕ)] + (B − 2) cos[k(ϕ′ + ϕ)] cosϕ′

B2(−1 + A cosϕ′)2
.

(8.61)

These integrals can be calculated using the residue method. We pass in the complex plane
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by working in terms of complex exponentials. Defining z = eiϕ
′
, dz = izdϕ′ the poles are

Az2 − 2z + A = 0 ⇒ z± =
1±
√
1− A2

A
, (8.62)

and since z+z− = 1 only z− is contained in the unit circle over which we integrate. By
calculating the residual in the pole z− and multiplying it by 2πi one obtain

V (1)
r =

4ik2

(1 + k)B2A
√
1− A2

z−k− sin(kϕ),

V
(1)
ϕ =

2kr

(1 + k)B2(1− A2)3/2

[
(r − A) + k(r − A−1)

√
1− A2

]
z−k− sin(kϕ),

(8.63)

and using our change of coordinates (8.46)-(8.49) one obtain (8.55),(8.56) up to a normal-
ization factor as expected (for V (1)

ϕ one has to include also the terms of order one which
come from the change of coordinates on V

(0)
ϕ ). Note that since we are integrating over a

real profile, instead of complex exponentials we have the trigonometric factors. Since we
are working at linear order, it is of course immediate to switch between complex exponen-
tials and trigonometric functions.
In this chapter we have therefore understood which are the deformations of AdS5 × S5

dual to the chiral primary operators 1
2
-BPS Ok = Tr{Zk} with ∆ = k ≪ N2. In this sec-

tion we have also shown that these deformations correspond to LLM solutions defined by
small ripples of the disk associated to the background solution. In the next chapter we’ll
generalize this and we’ll try to say something about the solution at higher perturbative
orders in the parameter ϵ. These geometries are dual to the heavy states construced by
taking p times the previous light operators O = [Tr{Zk}]p with ∆ = pk ∼ ϵN2.
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Beyond the Linear Order

In the previous chapter we have studied linear deformations of AdS5 × S5 which are
dual to the light states of the N = 4 SU(N) CFT, namely the single-trace operators
Ok,p = (TrZk)p with p ∼ 1, k = 2, 3, 4, . . . finite and Z = ϕ1+ iϕ2 a complex combination
of the adjoint scalars ϕI with I = 1, . . . , 6. Now we would like to say something about
heavy operators, namely those with a conformal dimension that grows as the central
charge of the CFT: p ∼ c ∼ N2. On the CFT side these multi-trace operators are
products of the single-trace light operators and it is therefore intuitive to think of the dual
geometry as a large perturbation of the background in the heavy-classical supergravity
limit, defined by taking

c =
N2

4
≫ 1, p≫ 1,

p

N2
fixed. (9.1)

While the behavior of the geometry is the same as the one of the D1-D5 theory at the linear
order (in fact, as we have seen in chapter 6 and in chapter 8, in this limit both geometries
are small perturbations of the corresponding background) the situation is different for
great value of the perturbative parameter. In the D1-D5 theory the “stringy exclusion
principle’’ [25], put an upper bound on the possible values of p. The situation is different
in the case of AdS5 where the dual CFT is in D = 4 and such a limit on the possible
values of p does not exist. Furthermore, by studying the asymptotic limit of the linear
order geometry, it was shown in [24], that p ∼ ϵ2 and consequently we can deduce that
there is not an upper bound on ϵ either. From this discussion, it is natural to think
that for large values of ϵ one can in principle obtain arbitrarily complicated geometries
contrary to what happens with the theory on AdS3. In the LLM picture this is due to the
existence of infinitely many ways to choose the droplet that reduces to r = 1 + ϵ cos(kϕ)

at linear order in ϵ. We can also deduce that the profile on the LLM droplet must receive
corrections at orders higher than the first since for ϵ ≥ 1 it becomes singular and thus
does not provide a well-defined LLM geometry (this is hard to verify explicitly because
the LLM integrals are difficult to compute in closed form for finite values of ϵ).
The problem of finding the geometry at all perturbative orders in the heavy classical limit
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and determining the corresponding LLM droplet is left to future developments and one
possible way to approach this problem is better explained in the conclusive chapter. Here
we limit ourselves to borrow the solution up to the second perturbative order obtained in
a parallel development that will not be described in this thesis, and we prove that it falls
into the class of LLM solutions related to a specific droplet.

9.1 The Second Perturbative Order
As we just said in the introduction to the chapter, determining the solution at the second
perturbative order is beyond the scope of this work and hence we limit ourself to describe
it. This result comes from the consistent truncation of the equations of motion [26] which,
combined with the supersymmetry conditions, greatly simplifies the problem of solving
explicitly the equations of motion. The fundamental point is that the solution of these
equations is unique and consequently it is absolutely not trivial that it is dual to our
heavy states Ok,p instead that to some other more complicated heavy multi-traces. At
this stage this is just a conjecture motivated by the analogy with the case on AdS3 and
by the fact that the consistent truncation eliminates all of the d.o.f. apart from those
associated with the lightest CPOs O2. Consequently we assume that the following result
is dual to the heavy states O2,p. This assumption can however be confirmed through the
AdS/CFT correspondence by calculating the appropriate correlation functions as better
explained in the conclusions of this work. As we have seen in the previous chapters the
solution must have the SO(4)× SO(4)×R× Z2 symmetry (this symmetry must remain
at all perturbative orders). The 10-dimensional metric can be written as

ds210 = ∆1/2ds25 +∆−1/2T−1
ij Dµ

iDµj, (9.2)

where
∆ = Tijµ

iµj, Dµi = dµi + Aijµj (i, j = 1, . . . , 6). (9.3)

The coordinates µi are a parametrization of S5

µ1 + iµ2 = cos θeiϕ̃,

µI = sin θx̂I for I = 3, . . . , 6 with x̂I x̂I = 1.
(9.4)

The five dimensional metric is the asymptotically AdS5 Einstein metric given by

ds25 = dρ2 − (1 + 2ϵ2ω) cosh ρ2dτ 2 + sinh2 ρdΩ2
3 with ω = −cosh4 ρ

6
, (9.5)
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while the symmetric unimodular tensor Tij = Tji, det(T ) = 1 is

T =

1 + ϵλ− ϵ2(2µ− λ2

2
) 0

0 1− ϵλ− ϵ2(2µ− λ2

2
)

0
0 (1 + ϵ2µ)I4

 , (9.6)

with λ = cosh−2 ρ and µ = 1
6
cosh−2 ρ. Finally, the gauge fields Aij = −Aji that appear

in the covariant derivative are given by

A12 = (1 + ϵ2Φ)dτ with Φ = −1

2
cosh−2 ρ, (9.7)

with the other components null.
As a first check of this solution we note that the background geometry AdS5×S5 is recov-
ered at the zero order. Moreover, at first order this solution is the linearised metric (8.30)
of the previous chapter with k = 2 if we apply to the latter the following diffeomorphism

(ξµ, ξα) =
2

3
(∇µb

(2)Y (2),−b(2)∇αY
(2)), (9.8)

under which the perturbative terms of (8.30) transform as

hµν = hµν +∇µξν +∇νξµ,

hαβ = hαβ +∇αξβ +∇βξα.
(9.9)

Note that now we have to take only the real part of the harmonic functions, i.e. we
have Y (2) = cos2 θ cos(2ϕ) and b(2) = cosh−2 ρ. We can therefore conclude that this is
a solution only for the lighest CPO Ok=2. As we have done for the first order we can
demonstrate that this geometry is an LLM solution. Note that this check is highly non-
trivial since the comparison between the two metrics provides a system of 10 first-order
differential equations. Since we don’t know the second order correction of the LLM profile
used in the previous section we do the match with a generic LLM solution by finding the
appropriate change of coordinates instead of calculating the LLM integrals. By comparing
the spherical terms of (9.2) with those of the LLM solution (7.4) we find the second order
correction for y

y = sin θ sinh ρ− ϵ2

12

sinh ρ

cosh2 ρ
sin θ, (9.10)
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from which we can calculate also the second order correction for eG and h−2 using (7.5).
The most general change of coordinates up to the second order is

y = sin θ sinh ρ− ϵ2

12

sinh ρ

cosh2 ρ
sin θ, (9.11)

r = cos θ cosh ρ− ϵ

2

cos θ

cosh ρ
cos 2ϕ+ ϵ2(fr1(ρ, θ) cos 4ϕ+ fr2(ρ, θ)), (9.12)

t = τ + ϵ2ft(ρ, θ) sin 4ϕ, (9.13)

φ = ϕ+
ϵ

2
cosh−2 ρ sin 2ϕ+ ϵ2fφ(ρ, θ) sin 4ϕ, (9.14)

while the ansatz for the 1-form V is

Vφ =
2 cos2 θ

cosh 2ρ− cos 2θ
− ϵ 4 cos4 θ tanh2 ρ

(cos 2θ − cosh 2ρ)2
cos 2ϕ+ ϵ2(vφ1(ρ, θ) cos 4ϕ+ vφ2(ρ, θ)),

Vr =− ϵ
2 cos θsech3ρ

cos 2θ − cosh 2ρ
sin 2ϕ+ ϵ2vr(ρ, θ) sin 4ϕ,

(9.15)

where we have chosen the terms of the first order to match the LLM solution with (9.2)
(i.e. we have applied the diffeomorphism (9.9) to the coordinates (8.46)-(8.49)) and we are
using again the notation ϕ ≡ ϕ̃+ τ . By writing the LLM metric (7.4) under the previous
change of coordinates and comparing the result with (9.2) at the second order we obtain

fr1(ρ, θ) = −
1

16
cos θsech3ρ, (9.16)

fr2(ρ, θ) =
1

48
cos θ(5 + 4 cosh 2ρ)sech3ρ, (9.17)

ft(ρ, θ) = 0, (9.18)

fφ(ρ, θ) =
1

8
sech4ρ, (9.19)

vφ1(ρ, θ) = −
cos2 θ[cosh2 ρ(−2 + cos 2θ + cosh 2ρ) + 8 cos4 θ tanh4 ρ]

2(cos 2θ − cosh 2ρ)3
, (9.20)

vφ2(ρ, θ) =
cos2 θ[3 + cosh 2ρ− cos 2θ(1 + 3 cosh 2ρ)] tanh2 ρ

3(cos 2θ − cosh 2ρ)3
, (9.21)

vr(ρ, θ) = −
[−2 cos θ + (cos θ + cos 3θ) cosh 2ρ]sech5ρ

4(cos 2θ − cosh 2ρ)2
. (9.22)

The existence of a well-defined solution demonstrate that our second order geometry (9.2)
falls into the class of the LLM solutions and it is therefore associated to a certain droplet
in the LLM plane. As we have mentioned in the introductory part of the chapter, the
absence of a stringy exclusion principle for the N = 4 SU(N) theory, implies that the
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LLM profile we have used in the previous chapter for the linear solution must receive a
correction beyond the first order

r(ϕ) = 1 + ϵ cos(2ϕ) + o(ϵ2), (9.23)

where here we are using k = 2. We may ask whether such a correction is already present
at the second order. For this purpose, similarly to what we did in the previous chapter, we
can calculate the one form V with (8.57) by using the usual linear profile and compare the
result with (9.15) after applying the change of coordinates (9.11)-(9.14). By doing this we
find a result for the components of V that do not agree with (9.15) and consequently the
LLM profile must receive corrections also to this order. It is intuitive to think that this
correction is proportional to cos 4ϕ; in particular we have found that the correct profile
that reproduces the results (9.15) up to second order is

r(ϕ) = 1− ϵ

2
cos(2ϕ) +

3ϵ2

16
cos(4ϕ), (9.24)

where we have also inserted the correct normalization factor in the first order term.
To conclude, in this chapter we have found the geometry related to the heavy states up
to the second perturbative order and we have demonstrated that this solution falls into
the class of LLM solutions by finding the corresponding droplet on the LLM plane. The
second order correction of the LLM droplet (9.24) is the most important original result
of this thesis since in some works such as that of Skenderis et al. [24] it was not taken
into consideration. As we will explain better in the conclusive chapter, a possible future
development is to solve the 1

2
-BPS supersymmetry constraints starting from this solution

to find the exact one at all perturbative orders.
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Summary and Future Developments

In this work we have studied an important aspect of the relationship between the N = 4

SU(N) SYM theory and the supergravity theory on AdS5 × S5. In particular we have
used the AdS/CFT correspondence to find the geometries in the gravitational theory dual
to 1

2
-BPS operators of the CFT. We have started by studying geometries dual to such

operators with a small conformal dimension (light operators) and then we have done a
step forward in studying the geometries dual to operators with a conformal dimension of
the order of the central charge in the classical limit (heavy operators).

In order to find these geometries we have introduced some basic ingredients of the Ad-
S/CFT correspondence. Initially we have described the fundamental aspects of super-
symmetric field theories, then we have presented the first part of the correspondence
starting from string theory and arriving at its low-energy limit, i.e. supergravity, which
is the gravitational theory we worked with. In this context we have given more impor-
tance to the type IIB supergravity theory since it is the relevant one for the purposes of
our application; we have described its fields and their coupling with branes and then we
have provided some solutions that carry charges associated to these branes. Afterwards,
we have presented the latter side of the duality, introducing the basic principles of any
conformal field theory paying more attention to the theory of our interest, namely the
N = 4 SU(N) SYM theory. The motivation of the AdS/CFT correspondence was given
following the historical developments: we first showed the link between SU(N) gauge
theories in the large N limit and string theories, and then we have given a more concrete
justification through the argument of the open/closed string duality. After that we have
described the chiral primary operators, i.e. some special operators of the CFT whose
conformal dimension does not depend on the coupling. For this reason such operators can
be studied quantitavely on both sides of the duality and are used to test the AdS/CFT
correspondence on a practical level; for our application we have focussed on the 1

2
-BPS

operators. As an example of the application of the correspondence we have made a short
digression on the D1-D5/AdS3 duality and we have considered a particular well-known
geometry dual to a specific state of the D1-D5 CFT. Before considering the main problem
we have described the LLM geometries which are all the 1

2
-BPS excitations of AdS5 × S5

dual to the 1
2
-BPS operators of the CFT following the AdS/CFT correspondence. These

geometries are all uniquely specified by black and white color coding droplets on a 2-
dimensional plane and all the geometries we are interested in falls into this class. Finally,
we have explained the main problem that was approached in this work. We first wanted
to find the supergravity dual to the single-trace 1

2
-BPS light operators of the CFT

Ok = Tr(Zk), k = 2, 3, 4, . . . (10.1)
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where Z = ϕ1 + iϕ2 is a complex combination of the adjoint scalars ϕI with I = 1, . . . , 6.
We have written explicitly the dual geometry as a small deformation of the background
AdS5 × S5 working at the linear order in the perturbative parameter ϵ. Subsequently we
have proved that our linearised geometry falls within the class of the LLM solutions: at
first order in ϵ it coincides with the LLM geometry associated with a deformed circular
droplet with boundary

r(ϕ) = 1− ϵ

2
cos(kϕ), (10.2)

where ϕ is the angle in polar coordinates on the LLM plane and ϵ the parameter that
quantifies the fluctuations around the background geometry. After that, we have con-
sidered more complex operators constructed by taking products of these light operators
obtaining multi-traces heavy operators

Ok,p =
[
Tr(Zk)

]p
, (10.3)

with k finite and p ∼ N2 and we set ourselves the problem of finding the classical dual ge-
ometry (to be more precise the states that admit a classical supergravity dual are actually
coherent state superpositions of the states Ok,p, centered over some average value of p but
with a non-vanishing spread over a finite range of p’s). At this end in principle one must
start with the linear solution related to the light operators defined by the limit ϵ→ 0 and
explicitly solve the equations of motion of the supergravity theory to obtain the exact so-
lution at all perturbative orders. However, this approach encounters two difficulties: first
solving directly the equations of motion is complicated and second, the solution is not
unique, since at each order one can add an arbitrary solution of the homogeneous equa-
tions. To circumvent these problems, one can work in a consistent truncation (such that
any solution of the truncated theory also solves the full equations) and further simplify
the equations by using the supersymmetry constraints. This development will be carried
out elsewhere and it was not be described in this thesis. We have borrowed the second
order result obtained via the consistent truncation for the lightest heavy state with k = 2

and we have shown that this result is reproduced by an LLM geometry where the droplet
(10.2) is modified at second order

r(ϕ) = 1− ϵ

2
cos(2ϕ) +

3ϵ2

16
cos(4ϕ). (10.4)

This represent the most important and new result of this thesis since in some recent works
such as [24] this correction was not taken into consideration. Furthermore it provides a
link between the LLM droplet and multi-traces operators like the one in (10.3).
Future developments concern determining the exact geometry at all perturbative orders
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by imposing supersymmetry constraints. As we were able to see in Chapter 6, when we
have considered the case of the D1-D5 theory dual to the supergravity theory on AdS3,
for very small values of the fluctuation parameter ϵ the problem on AdS5 is analogous to
that on AdS3 in the sense that both geometries result to be small perturbations of the
corresponding background. However, one difference between the two theories is given by
the “stringy exclusion principle’’ of the D1-D5 CFT [25]. According to this principle in
2D CFT there is a maximum value for the parameter p in (10.3) related to the existence
of an upper limit on the U(1) charge of chiral primaries

Q ≤ c

3
with c ∼ N. (10.5)

The validity of the bound follows from general simmetry considerations of the CFT in
D = 2. As we have seen a chiral primary of the conformal field theory will be a single-
particle state on AdS3 and a second chiral primary can be constructed by squaring this
chiral primary. In general p-th power of the chiral primary corresponds to p particles
in the same mode. An upper bound on p translates into an exclusion principle limiting
the occupation numbers of bosonic BPS particle modes: for values of p of the order of
the central charge the chiral primary will vanish. From the geometrical point of view,
this principle means that for large values of the parameter ϵ ∼ p, we have pathological
geometries with closed time-like curves, as is well known (see, for example [19],[20] and
[21]). The situation is different in the case of AdS5 where such a limit does not exist
and consequently in the limits of large ϵ one expects to obtain arbitrarily complicated
geometries. In the LLM picture this complication is related to the existence of infinitely
many ways to choose the droplet that reduces to (10.2) at the linear order in ϵ. We can
also deduce that the profile on the LLM droplet (10.2) must receive corrections at orders
higher than the first; in fact for ϵ ≥ 1 the profile becomes singular and thus cannot pro-
vide a well-defined LLM geometry (however, this is hard to verify explicitly because the
integrals needed to write down the LLM metric are difficult to compute in closed form
for finite values of ϵ). Here we have found the correction up to the second order and in
the future it will be necessary to find the exact profile at all perturbative orders.
As usual, once we have obtained the exact geometry, which we symbolically denote by
ds2ϵ ←→ |H⟩ where |H⟩ is the dual (coherent superposition) heavy state, the correspon-
dence must be tested by calculating protected quantities, i.e. quantities that match in
the CFT and gravity sides. Such quantities are, for example, the correlation functions of
some CPO OL between two heavy states

⟨H(∞)|OL(1)|H(0)⟩ . (10.6)
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Such correlation functions can be calculated in both CFT and gravity theory by consider-
ing the asymptotic limit of ds2ϵ [24]. After that one can calculate unprotected quantities
such as

⟨H(∞)|OL(z1)O
′
L(z2)|H(0)⟩ , (10.7)

where z1 and z2 are two different points in the CFT theory in which we evaluate the
CPOs. Such quantities are unprotected since one can insert in the intermediate channel a
resolution of the identity,

∑
I |OI

L⟩ ⟨OI
L|, which is a sum over all possible CFT states, BPS

and non-BPS. In general such correlation functions have never been calculated; since it’s
complicate to calculate them in the CFT one must use the AdS/CFT correspondence by
solving a wave equation for the metric ds2ϵ and then by applying the holographic principle.
As we have already mentioned in the introduction of this work, one of the major appli-
cations of the holographic principle concerns also the study of black holes. Black holes
are singular solutions of Einstein’s equations that have an event horizon, i.e. a one-way
membrane that causally divides spacetime into the external universe and the black hole
interior. The quantum theory of black holes presents many paradoxes and the AdS/CFT
duality offers a useful guide towards their solution. One of the biggest problems is ob-
viously the information paradox that originates from the process of evaporation of black
holes into thermal radiation, which is a violation of the unitarity of quantum mechan-
ics. According to the fuzzball proposal [27], the microstates of a black hole manifest
themselves as regular and horizonless solutions of the supergravity theory. In our work,
however, black holes were never mentioned since in the gravity theory on AdS5 they are
1
16

-BPS solutions. This is a complication compared to the D1-D5 theory where black holes
are 1

4
-BPS solutions and for this reason, despite the CFT being more complicated than

our N = 4 SYM theory, it lends itself well to the study of these objects. However, since
the N = 4 SYM theory has a lagrangian formulation, it would be nice to explicitly write
the 1

16
-BPS solutions of this theory to be able to study black holes through it. A possible

future development therefore concerns using our 1
2
-BPS solutions to obtain the 1

16
-BPS

one by breaking the correct number of supersymmetries in a similar way to what is done
in the D1-D5 theory to go from 1

2
-BPS to 1

4
-BPS solutions. Once this is done, one can

use the holographic principle to describe the microstates of the black hole in terms of the
dual 1

16
-BPS heavy operators in the dual CFT description.
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