
A Defender’s Perspective on Modern
Android Malware

Federico Crippa

Master Thesis

Università di Genova, DIBRIS Via Opera Pia, 13 16145 Genova, Italy
https://www.dibris.unige.it/

MSc Computer Science
Software Security and Engineering Curriculum

A Defender’s Perspective on Modern
Android Malware

Federico Crippa

Advisors: Giovanni Lagorio and Simone Aonzo

Examiner: Luca Demetrio

September, 2023

Abstract

Before Android’s release, the mobile market had too many different operating systems and
the opportunities to monetize anything from them were not enough to motivate bad actors
to make much malware. Android changed the scene, gaining a huge slice of the market,
unifying all those devices under a common operating system and allowing many people to
get online services which in turn made this also a good target for those who want to profit
from abusing all this access. Android has a more closed security model than computer
operating systems, sandboxing applications and not allowing to run anything at the kernel
level which both reduces access to unwanted applications but also limits what an antivirus
can do to analyze or prevent malicious behaviour.

This work delves into Android malware, explores the main categories and their capabilities,
verifies the efficiency of modern antivirus solutions and then proposes a possible solution
to improve the detection of new malware from their typical behaviour on modern version
of Android

Contents

Chapter 1 Introduction 6

Chapter 2 Technical Background 9

2.1 Android Package Kit (APK) . 12

2.2 APK Signing . 13

2.3 Permissions . 14

Chapter 3 The Evolution of Security in Android 15

3.1 First Features . 15

3.2 Evolution . 16

Chapter 4 Malware Types 18

4.1 Types . 18

4.2 Type-Permission Mapping . 21

4.3 Permission ranking . 22

Chapter 5 Malware Capabilities 24

5.1 Malware History . 24

5.2 Modern Malware . 25

5.3 Spreading mechanisms . 29

Chapter 6 Antivirus and Malware detection 32

4

6.1 Privilege level . 32

6.2 Antivirus response to edits of known detected apps 33

6.3 Current Antivirus response to new malware 40

6.4 Defender’s advantage . 42

Chapter 7 Conclusions 47

Appendix A findLastActivity method 48

Appendix B isAccessibilityWindow method 49

Appendix C Direct install method (Dropper) 50

Appendix D Indirect install method (Downloader) 51

Bibliography 52

5

Chapter 1

Introduction

In an increasingly interconnected world, mobile devices have become an integral part of
our daily lives. Android, as one of the most widely used mobile operating systems, plays
a pivotal role in shaping this mobile landscape. However, its popularity has also made
it a prime target for malicious actors seeking to exploit vulnerabilities and compromise
user security which nowadays could affect things like bank accounts or other sensitive
information.

This thesis delves into the realm of modern malware analysis on the Android platform,
adopting the perspective of defenders who want to protect the integrity and privacy of
users’ devices. The study starts with the historical development of security features in
Android, then to the intricate techniques employed by malware developers and ends in an
exploration of the defence mechanisms deployed by antivirus software.

The subsequent chapters of this thesis are structured as follows:

Capter 2: Background
This chapter gives the reader some necessary background knowledge needed to comprehend
the contents of this work. We introduce the Android software stack and each of its layers
moving next to the format used to package and install Android applications explaining
its structure and main files, after which we clarify how those files are signed and how
this contributes to the security of the platform. Finally, we spend some words on the
core Android feature of permissions. Section 2.1 talks about the APK file format showing
how it is structured and the files it contains, Section 2.2 instead introduces the current
possible ways to sign an APK and how they are used by Android while Section 2.3 shows
the permissions system that Android uses to limit and control the application access to
resources.

Chapter 3: The Evolution of Security in Android

6

This chapter provides an overview of the foundational security features that were initially
introduced in Android and traces the evolution of these features over time. By understand-
ing the historical context of Android security, we can better grasp the challenges faced by
early adopters and the subsequent improvements that have been made to mitigate emerg-
ing threats. Section 3.1 describes what was present initially on the first version, while
Section 3.2 explores its evolution.

Chapter 4: Malware Types
This chapter categorizes Android malware based on its functionality and impact. We
explore the different types of malware and delve into the relationship between malware
behaviour and the permissions they request. Additionally, we introduce the concept of
permission ranking, which aids in understanding the relative risks associated with differ-
ent permissions. Section 4.1 classifies the types of malware and presents their goals, then
Section 4.2 quickly introduces a mapping between the malware type and its required per-
missions and finally Section 4.3 gives a ranking of the most dangerous permissions that
malware usually requests.

Chapter 5: Malware Capabilities
Here, we delve into the history of Android malware, examining its early manifestations
and tracking its evolution into the sophisticated and multifaceted threats encountered
today. By analyzing the capabilities and techniques employed by modern malware, we
can gain insights into the strategies employed by malicious actors to infiltrate devices and
compromise user data. Section 5.1 shows the beginning and the evolution of Android
malware while Section 5.2 analyzes today’s malware general behaviour. Section 5.3 shows
instead how malware spreads to the victim’s devices.

Chapter 6: Antivirus and Malware Detection
This chapter focuses on the strategies employed by defenders to detect and mitigate An-
droid malware. We examine the current state of antivirus solutions, and discuss the ad-
vantages that defenders possess in the ongoing battle against malware and use a Proof-
of-concept application to propose a possible solution for the most dangerous categories of
malware. Section 6.1 provides the frame on what level antivirus software has to operate
on, while Section 6.2 takes a deep dive into current antivirus responses to all sorts of edits
of malware before Section 6.3 shows their response to new Proof-of-concept malware and
Section 6.4 proposes an idea to improve protection using the advantage of being already
present on devices when the malware arrives.

Chapter 7: Conclusions
In this chapter we draw some conclusions based on what we observed about modern mal-
ware and antivirus solutions and discuss further work.

Through this comprehensive analysis, we aim to provide researchers, practitioners, and
security enthusiasts with a thorough understanding of the evolving landscape of Android

7

malware from a defender’s perspective. By shedding light on the intricate interplay between
malware and defence mechanisms, we hope to contribute to the ongoing efforts to secure
Android devices and protect user privacy.

8

Chapter 2

Technical Background

In this chapter, we present to the reader some technical background needed to understand
the contents of this work.

Android is an open-source operating system based on a modified version of the Linux
kernel specifically designed for touchscreen devices but it has been adapted to work on a
multitude of devices including smart-watches and IoT devices.

Central to Android’s design is its layered software stack seen in Figure 2.1. At the base
of it, there is the Linux kernel as mentioned before, this allows device manufacturers to
develop drivers for a well-known kernel.

Above it, we have the Hardware Abstraction Layer (HAL) which exposes interfaces to the
higher-level Java API framework to access hardware capabilities.

Next, there is the Android runtime (ART) which is responsible for the execution of mul-
tiple virtual machines (each application has its instance of the ART) to run a bytecode
format (Dalvik Executable format or DEX for short) designed specifically for Android and
optimized for a minimal memory footprint. The ART is also responsible for Ahead-of-time
(AOT) or just-in-time (JIT) compilation, optimized garbage collection, the conversion of
DEX files to a compact machine code (only from Android 9.0 or later) and debugging.

Many components and services on Android are built from native code that requires native
libraries written in C or C++. Some of those libraries are accessible to application pro-
grammers both from the Java framework APIs or directly from their own native code, an
example is OpenGL which allows one to draw and manipulate 2D and 3D graphics.

Android exposes a Java API framework usable by application developers to access features
from the Android System such as the resource manager, notification manager, activity
manager, etc.

9

Android is equipped with a fundamental suite of pre-installed applications (system apps)
encompassing email, SMS messaging, calendars, internet browsing, contacts, and other
functionalities. However, any third-party application can assume the role of the default
web browser, SMS messenger or any of the system applications. Nevertheless, certain
exceptions exist, such as the system’s Settings app, which cannot be replaced. These
system applications not only serve as apps for the user but also provide key capabilities to
developers. For example, to deliver an SMS it is possible to invoke the SMS application
already installed to deliver a message to the wanted recipient. It is worth noting that while
third-party applications have access to the same APIs as system applications, the latter
have access to extra permissions allowing them to perform tasks potentially not possible
by third-party applications.

10

Figure 2.1: Major components of the Android software stack

11

2.1 Android Package Kit (APK)

To distribute and install applications on Android the Android Package Kit format is used,
sometimes also Application Package or Android Application Package and abbreviated with
APK. APK files are extensions of Jar files which are an extension of Zip files. Most notably
they inherit the signing method used for Jar files and discussed later in Section 2.2. The
structure of an APK is shown in Listing 2.1

1 root/

2 |-- AndroidManifest.xml

3 |-- classes.dex

4 |-- resources.arsc

5 |-- assets/

6 |-- lib/

7 | |-- arm64 -v8a/

8 | | \-- libapp.so

9 | \-- x86_64/

10 | \-- libapp.so

11 |-- META -INF/

12 | |-- CERT.RSA

13 | |-- CERT.SF

14 | \-- MANIFEST.MF

15 \-- res/

16 |-- anim/

17 |-- color/

18 |-- drawable/

19 |-- layout/

20 |-- menu/

21 |-- raw/

22 \-- xml

Listing 2.1: basic APK file structure

The AndroidManifest.xml (line 2) is the file that defines the package name, version compo-
nents, permissions, services and other information about the application contained in the
archive.

The classes.dex (line 3) file contains the aforementioned DEX bytecode.

The resources.arsc (line 4) file includes all the compiled resources like binary XML.

The assets (line 5) directory contains applications assets that can be used by the
AssetManager.

The lib (line 6) directory contains native code libraries in case the application ships with
some. It has a sub-directory for each architecture supported (In order from the listing,
ARMv8 and x86-64).

12

TheMETA-INF (line 11) directory contains the signing information. More preciselyMAN-
IFEST.MF contains all the Zip entries and it’s used to verify that only all of those entries
are present and signed by the same set of signers, CERT.SF lists all the files together with
their SHA-1 digest (an example can be found in Listing 2.1) and CERT.RSA contains the
signed contents of CERT.SF and is used to verify the application integrity with the public
key.

1 Signature -Version: 1.0

2 Created -By: 1.0 (Android)

3 SHA1 -Digest -Manifest: wxqnEAI0UA5nO5QJ8CGMwjkGGWE=

4 ...

5 Name: res/layout/exchange_component_back_bottom.xml

6 SHA1 -Digest: eACjMjESj7Zkf0cBFTZ0nqWrt7w=

7 Name: res/drawable -hdpi/icon.png

8 SHA1 -Digest: DGEqylP8W0n0iV/ZzBx3MW0WGCA=

Listing 2.2: Example contents of a CERT.SF file

Finally, the res (line 15) directory contains the resources referenced from Android code,u
usually through the usage of android.content.res.Resources or other APIs.

2.2 APK Signing

Application signing is a fundamental feature of Android, it allows for safer updates and
accountability on store applications towards the developer but also a certainty to the
developer that the application was not modified by the store. Furthermore, Android uses
the signed application certificate to assign to each application a different user in order to
sandbox the single application or, in case the developer specifies it, it can share the same
user with another application.

Android allows for multiple types of signatures, defined by the scheme version. Scheme v1
is based on Jar signing and utilizes the folders described above in Section 2.1.

Android later introduced Scheme v2 and then later its expansion in Scheme v3. These
schemes add the signature of the entire file, including the zip headers which were instead
not signed by the older Scheme v1. The schematic of how these signatures work is presented
in Figure 2.2

13

Figure 2.2: APK file structure before and after signing with a signature using Scheme v2

2.3 Permissions

Android has two main ways to control the access an application has to resources: appli-
cation sandboxing and permissions. While sandboxing is something that makes use of the
already present Linux kernel features, giving each app its user (UID) and group (GID),
permissions are something more specific to Android.

An application needs to declare its required permissions in the AndroidManifest.xml file.
Those permissions can allow for access to things like storage, camera, location, device
information, Wi-Fi controls, call logs, contacts, etc.

According to how invasive the permission can be regarding the user’s privacy, Android cat-
egorizes them in: install-time permissions and runtime permissions. As the name suggests,
install-time permissions are granted as soon as the app is installed. These permissions are
usually either not sensitive or they have additional checks. On the contrary, runtime per-
missions are considered invasive to privacy as they can either directly or indirectly identify
the user and they are only given to an application after they specifically request the user
to enable it using the Android API.

Except for some permissions deemed more dangerous and with more potential to be abused,
Android never revokes permissions from applications. This is not completely true anymore,
for example: the permission to show overlays over other apps has been made temporary
for apps installed without the use of Google’s proprietary store (Google Play Store) and
the pre-installed system app that serves as an antivirus from Google (Google Play Protect)
also has a feature that disables permissions for applications that the user has not actively
used for a long period.

14

Chapter 3

The Evolution of Security in Android

In this chapter, we explore Android’s evolution and how its security features changed over
time to adapt to new and emerging threats.

3.1 First Features

Android 1.0 was released on September 23rd, 2008 alongside the HTC Dream making it
the first Android smartphone. The first version of Android already had some security
features that we have today albeit with some issues and not nearly as refined. Some of
those features are:

• Lock screen PIN code: keeps the device from being unlocked easily from anyone.
Prevents unwanted installs from physical access to the phone or requires knowing
the PIN before any interaction.

• Per-application sandbox : Prevents applications from interfering with each other or
potentially accessing sensitive information (like cookies, tokens, etc.).

– Each application runs on behalf of a Linux user specially created for it

– The application had full control over all the files in its sandbox folder (located
in /data/data/package.name) but could not access to system files and files of
other apps

∗ Did not apply to memory cards and USB drives due to their FAT filesystem

– The only way to escape from the sandbox was to gain root privileges

15

• Manifest containing any permissions required by the app: Allows a systematic way
to screen or control access to what an application can obtain from the device, poten-
tially limiting the abuse of sensor data or requiring explicit consent before accessing
common directories.

– In this version, installing an application automatically grants all permissions in
the manifest.

– Early versions only allowed for the screening of such permissions before instal-
lation.

• Requiring applications to be signed : This prevents unwanted applications from faking
updates for others. If the developer’s signature on the update does not match the
one of the already installed application then the update cannot be applied

Applications however had easy access to SMS/MMS, calls and all versions until Android 6.0
had no concept of runtime permissions, therefore once an application was installed it would
have all the requested permissions specified in the manifest. On this version, it was already
possible to draw overlays over other applications through the usage of TYPE SYSTEM ERROR

and TYPE SYSTEM OVERLAY layout parameters for the window manager.

3.2 Evolution

We list here the main changes regarding security that have been introduced in Android
during its evolution

• Accessibility Services : In Android 1.6 [Goo23a] Google introduced the ability to
create your Accessibility service with further improvements in 4.4 (adding more
detailed events and more ways to read the screen).

• SELinux Enforcement : Since Android 4.2 SELinux was supported but Android 4.4
made it mandatory, thus improving security but introducing a significant manual
effort for third-party vendors when they have to customize Android for their devices.

• KeyStore: In versions from 4.0 to 5.0 Android slowly added the ability to generate
and securely store cryptographic keys through an API.

• Runtime Permissions : Android 6.0 also introduced a more granular way to request
permissions instead of the all-or-nothing install time request. Applications now re-
quest specific permissions at runtime making it more explicit to the user and less
overwhelming.

16

• ‘Draw over other apps’ permission: Android 6.0.1 made it so applications now have
to be allowed the permission to draw over other apps (overlays). This permission is
automatically granted to applications coming from the Play Store

• Google Play Protect : Introduced in Android 8.0, Google’s antivirus with System
permissions (needs to be pre-installed).

• Limiting Overlay Windows types : In Android 8.0 Google restricted the usage of
some window types like TYPE SYSTEM OVERLAY and TYPE SYSTEM ALERT trying to
reduce the surface for phishing attacks that used those permissions to draw fake
login inputs or to lure users into installing third-party packages by drawing other
instructions integrating the buttons from the PackageManager into their layout.

• Stronger restriction of overlays : As of Android 10 applications that use the
TYPE APPLICATION OVERLAY window type (introduced in Android 8.0 as a combina-
tion of multiple flags for convenience) will be somewhat limited: third-party (side-
loaded) applications will be revoked the permission after 30 seconds from obtaining
it, requiring it to be enabled again the next time the overlay needs to be shown. Play
Store apps will instead only lose it on reboot.

17

Chapter 4

Malware Types

In this chapter, we will clarify the malware categories, their goals and the associated
permissions that can help spot the malware. We will also have a ranking of the permissions
based on how dangerous it can be to allow malware to receive them and a quick summary
of how the permission is often abused.

4.1 Types

This section lists the main types of malware and their goals. This list will not contain
the explicit type of spyware as the category is too generic and features of it can be often
found within other categories. We instead explain Remote Access Trojan (RAT) malware
in the Banker section as the category is usually not used alone but as a tool to achieve
something.

Adware: It is the most common detection from all antivirus brands. Usually, it is considered
adware when an application shows ads in a malicious way, this could be by not asking for
any permissions from the user or not informing them correctly but some of the more
advanced ones show ads (and emulate clicks on them) in the background [Mal23]. This
category is barely considered malware as it just affects the infected user besides some
undesired popups, notifications or sometimes just battery usage.

Downloader : A downloader is usually the first stage of a more severe malware. The goal
of a downloader is to install a second package (second stage) that usually directly contains
the real malware. Downloaders get the extra application from some server, not always
controlled by the author as some use CDNs like GitHub or Discord. In some articles, this
category is often included with the category of droppers but we prefer to have a distinction
between them – discussed below. The main advantage of downloaders is that they can

18

have minimal permission requirements as they often download and consequently start the
installation of their target malware from a browser (see Figure 4.1 and Figure 4.2,4.3).

Dropper : A dropper is the offline version of a downloader. It has the same goals but
usually includes the extra package inside of its resources, most likely encrypted and only
used after certain conditions are met (time, call to C2, etc.)

Banker : Bankers (or banking malware) are specifically designed to commit bank fraud.
They can do anything from stealing credentials to giving the full control over the victim’s
device to the threat actor. Due to Android’s strengthening of its security most of all
bankers are moving away from simple overlays to abusing the Accessibility Services. Using
the Accessibility Services also allows the banker to implement RAT capabilities which allow
for the aforementioned full control.

Stalkerware (Commercial Spyware): There are some legitimate usages to track someone’s
location, activity and other details, for example for parents to control young children
or companies trying to reduce what an employee can do on a company-owned phone.
Stalkerware is a specific set of these applications that do not properly warn the user that
they are monitored and are usually used to either spy or extract personal information.
These malicious applications usually do not warn the user properly during installation and
do not show any notification during their tracking.

Ransomware: The most famous kind of ransomware just encrypts files on a machine,
Android however, if given the proper permissions, ransomware tends to prefer taking the
whole device hostage by changing the device’s lock screen password. This usually requires
the application to be given Device admin permissions [Goo23b]. Using such permission
the threat actor can also threaten the user to have all data lost (reset) if the demands are
not satisfied before a certain time. This is not the only method used for ransomware and
other methods may not need such strong permissions.

Billing fraud : A particularly popular kind of malware (See Joker family [Kup19]) which
goal is to subscribe the victim to premium/paid services owned by the malware author,
often combined with spyware features to access confirmation codes.

19

Figure 4.1: A manifest file taken from a downloader sample

Figure 4.2: A screenshot of Jadx showing a downloader contacting the Command and
Control server

20

Figure 4.3: A screenshot of Jadx showing a downloader opening the webpage received by
the C2 server

4.2 Type-Permission Mapping

Table 4.1 shows the mapping between malware types and the permissions that they com-
monly request.

21

Type Permissions

Dropper REQUEST INSTALL PACKAGES

Direct Downloader REQUEST INSTALL PACKAGES, INTERNET,
ACCESS NETWORK STATE

Indirect Downloader INTERNET, ACCESS NETWORK STATE

Banker with RAT BIND ACCESSIBILITY SERVICE

Banker with Overlay SYSTEM ALERT WINDOW

Adware INTERNET, ACCESS NETWORK STATE

Stalkerware INTERNET, ACCESS NETWORK STATE,
ACCESS FINE LOCATION or READ SMS or READ CALL LOG or
READ MEDIA IMAGES or READ MEDIA VIDEO

Ransomware INTERNET, ACCESS NETWORK STATE, BIND DEVICE ADMIN

and/or MANAGE EXTERNAL STORAGE

Billing Fraud SEND SMS or CALL PHONE, READ SMS, READ PHONE STATE

Table 4.1: Permissions that each type may request

4.3 Permission ranking

In this section, we give a ranking of permissions according to:

• How much control over the device the malicious application gains once it obtains
such permission

• How much the permission helps the malware towards its goal

• How much the malicious application can control other applications in ways that can
damage the user.

Generally, if one permission is ranked higher than another then that permission can have a
larger negative impact on the user, where the first can directly spy and control the device
for the user, potentially using any app as if it were the user and therefore allowing the
attacker to cause as much damage as they want, while on the last we have a permission
that while still useful for malware, doesn’t directly allow any malicious action or pose any
threat to a user’s security.

22

BIND ACCESSIBILITY SERVICE: Once obtained, this permission allows the application to
give itself all permissions it wants, monitor any field or user input and effectively acting
like the user.

BIND DEVICE ADMIN: Can be used to hide the application from launchers making it harder
for the user to delete or spot it. Can also be used to reset the password [Gooa] or restore
the phone to factory settings (essentially losing all the files).

REQUEST INSTALL PACKAGES: Droppers and Downloaders use this to install the final mal-
ware.

RECEIVE BOOT COMPLETED: Used for persistence to restart the malware after reboots.

MANAGE EXTERNAL STORAGE: Gives the application permission (after asking it at runtime)
to access all the external files, the same access as a file manager.

ACCESS BACKGROUND LOCATION: Usually requested in combination with other permissions
such as ACCESS COARSE LOCATION or ACCESS FINE LOCATION. Can be used to determine
whether the device running the malware is in a target country or could be used from
Stalkerware to obtain the position while in the background.

SYSTEM ALERT WINDOW: Used to make overlays, or windows that show over other applica-
tions in order to execute a phishing attack. To overlay specific apps, the application can
use either Accessibility services or the UsageStatsManager (Which requires
PACKAGE USAGE STATS).

REQUEST IGNORE BATTERY OPTIMIZATIONS: Used by malware as a form of evasion so be
able to continue running in the background or by spyware trying to gather information
and needing to stay active while not focused.

23

Chapter 5

Malware Capabilities

In this chapter, we discuss a brief history of malware on the Android platform starting
from the earliest rudimentary examples and then we take a look at what modern malware
can and tends to do.

5.1 Malware History

The first malware for Android was found in the wild in 2010. Named FakePlayer, this
malware targeted only Russian users by sending SMS messages to paid service numbers
with a cost of $6 per message. It was a trojan acting like a video player application and
circulating for the most part through adult content websites asking for its installation to
receive access to the website. This malware interfaced with Android 2.0, which meant
that permissions were granted completely upon installation; in addition, the websites it
pretended to act for often required a text message to access them, so that users would
think the application was legitimate.

In 2011, two main malware families appeared: DroidDream and SpyEye. SpyEye existed
before 2011 as a Windows-only malware targeting banks but in that year it added an
Android companion app to intercept SMS messages containing the 2 Factor Authentication
codes. DroidDream instead was the first large attack on the Play Store ecosystem. This
piece of malware, whose ultimate goal was to create a botnet, contained a rootkit allowing
it to gain full access to the phone, install extra applications and run any command the
author would send.

In the following years, the attacks moved to the abuse of the overlay Android feature to
harvest users’ credentials for targeted apps, usually banking apps. The most famous and
sophisticated malware family that used this is Exobot (Marcher), which appeared in 2016.

24

Up until this point, the malware scene was dominated by mostly adware, droppers and ran-
somware [Kas17]. The few existing bankers focused on stealing credentials and executing
the fraud part of the operation on the threat actor’s device.

In 2018 the new malware family of MysteryBot [Thr19] (a branch of the BankBot malware
source code) introduced some RAT (Remote Access Trojan) capabilities. Generally from
this date onwards, a lot more malware families started moving towards capabilities to allow
on-device fraud.

At the beginning of 2020 we have a specialization’ of the category known as ‘Dropper-as-
a-service where some threat actors started selling the ability to install custom malware
through their specially crafted applications. These applications are usually what’s known
as a Trojan which is a program that looks benign but has hidden malicious code (usually
executed only if some anti-analysis conditions are met). This gave the banker malware
authors an easier time acquiring targets and more time to focus on the actual malicious
application rather than finding a way to infect more people other than having the extra
advantage of coming from a source most users consider reliable (Google Play Store).

One of the first banker malware to take the on-device fraud concept to the next level
was Gustuff which in between 2020 and 2021 added to its functionalities an Automated
Transfer System (ATS). Before ATS, even for on-device fraud, the malware author relied
on VNC capabilities, VNC applications or Teamviewer (installed by the malware itself)
to control the device manually. ATS made it possible to automatically log into the target
bank app, verify the login with 2FA codes and automatically execute the transfer without
the authors’ intervention and possibly when the user is not using the device.

5.2 Modern Malware

According to statistics from Kaspersky [Kas22] (Figure 5.1), Avast [Ava23] (Figure 5.2)
and collected random samples (Figure 5.3) today’s malware scene is mostly composed of:
Adware, Downloaders/Droppers and Bankers.

25

Figure 5.1: Malware statistics from Kaspersky (Q3 of 2022)

26

Figure 5.2: Malware statistics from Avast (Q1 of 2023)

Figure 5.3: Malware Category statistics from 8959 samples, 2153 of which not defined.
Classified using VirusTotal + Avclass

The main goal of Droppers and Downloaders is to infect users through the Play Store and,
usually at a later point in time following an update, install another malicious application

27

onto the device, to do so they need to specify in the manifest the REQUEST INSTALL PACKAGES

permission. Due to somewhat recent changes to the Play Store developer policies [Goo22],
this permission can only be requested from applications with the following usages:

• Web browsing or search

• Communication services that support attachments

• File sharing, transfer or management

• Enterprise device management

• Backup & restore

• Device Migration / Phone Transfer

This has led developers of such malware to rely more and more on ways to proxy the
installation request to other apps, usually browsers, by opening a web page pretending to
be, for example, the official Play Store and often guiding the user through the process of
enabling third-party applications installation aided by the fact that the user is much more
likely to trust their browser when enabling permissions.

The opportunity to be installed through a Dropper or Downloader is often sold as a service
(known as the aforementioned Dropper as a service or DaaS) to threat actors aiming to get
their malware installed on targeted devices. Therefore services that offer a more selective
way to send data are often used by the Downloaders, an example would be Google Firebase
Cloud Messaging. These downloads or installs in general are frequently prompted as an
update or plugin to the existing app.

Once on the targeted device, the malware will have to try and convince the user to give
it the necessary permissions. The majority of malware distributed through droppers are
bankers [Tou22, Lak22, Mic22], most likely since they usually need to target the specific
countries for which they have target payloads.

Bankers are one of the most sophisticated Android malware categories as they usually rely
on a Command and Control (C2) server and some recent samples can completely execute a
bank transfer from previously stolen credentials even handling Two Factor Authentication
(2FA) and having a series of instructions executed based on conditions evaluated at runtime
with completely no intervention from the threat actor.

28

5.3 Spreading mechanisms

We will now see some of the ways malware spreads highlighting in which way bad actors
can monetize their service.

First, we see what are the three main ways for a device to get infected.

Threat actors can try to spam SMS containing deceptive text (known as SMiShing) to try
fooling the victim into installing an application. For example, they might impersonate a
delivery company and tell the victim that they need to use an application to claim their
package. Threat actors can pick the victims from leaked databases or other already infected
devices to target existing numbers or people who could be more likely to wait for packages
based on what information the leak included. A schematic for how this form of spread
works is given in Figure 5.4

Figure 5.4: Schematic of SMS phishing

In Figure 5.5 we see instead a common way that requires less spam from the threat actor.
Often they set up websites or other publicly accessible channels claiming to offer appli-
cations like a cracked version of a paid application or a grey area applications like video
downloaders for popular social media apps. These applications contain instead either a
trojanized version of the promised application or just malware that hides from the menu
to avoid getting uninstalled.

29

Figure 5.5: Schematic of social platform or website phishing

Lastly, we see in Figure 5.6 a more sophisticated way which is also often the most monetized
one, mentioned before as DaaS. This involves creating a convincing enough application that
can pass the Google Play store checks but still manage to act maliciously. This can be
achieved through either droppers or downloaders and the malicious behavior is most often
only pushed to the application on an update. In very rare cases, and usually only for less
intrusive apps, some malware can manage to slip directly into the Play Store without an
intermediate downloader or dropper (a common example of such is the malware family
Joker).

30

Figure 5.6: Schematic of malware uploaded to the Play Store

31

Chapter 6

Antivirus and Malware detection

In this chapter, we present the challenges and limitations that writing an antivirus ap-
plication for Android presents, a quick overview of current antivirus solutions and then
we present an idea to prevent malware from acquiring the Accessibility permission and
detecting both the dropper that deployed it and the malware itself.

The antivirus software chosen in this chapter was picked from the top 6 suggestions from
the Play Store on a fresh account from the same phone they were tested on in addition to
the preinstalled Google Play Protect.

6.1 Privilege level

On Microsoft Windows, antivirus software runs on the kernel level in order to be able
to intercept API calls, analyze each process’ behaviour and resources and eventually its
memory.

On Android, antiviruses are just as privileged as any other application installed without
special root operations or special signatures. This also means they have the same permis-
sion as the malware that they are trying to catch.

With the privilege level being the same and the sandboxing of Android, all antiviruses
can do is try to get desirable permissions before the malware does in order to monitor the
behaviour of applications as much as they can.

32

6.2 Antivirus response to edits of known detected

apps

In this section, we test the response of antiviruses to various modifications starting from
simple manual edits using hex editors and then moving to obfuscation techniques using
Obfuscapk [AGVM20].

Note that both AVG and Avast have slightly different behaviour when the application is
actively open in the background compared to when only the foreground service is running
where in the first case they also move the activity to the foreground and show more
evidently that the installed application is detected as malware whereas the second case
only shows a notification. We will only mention the notification in the subsequent list but
it is to assume that if the application was opened in the background it would have shown
the activity.

Android allows 3 different ways to sign APK files [Goob] (as of the time of writing). The
main difference that interests us is how much of the file we can change. In particular
version v1 allows us to change all the zip header content (APK files are zip files) without
breaking the signature.

We wrote a quick tool to find APK samples that only have v1 signing and from those, we
decided to use a sample 1 of the family Coper as our base test.

First, we test detection for the original sample:

Unsurprisingly all the antivirus tools recognize this version. We also report that 2 of the
antivirus solutions we are testing did not send an immediate notification upon package
installation while all others immediately raised attention and correctly identified it as
malware without any doubt. Out of all the tested solutions, Google Play Protect has the
highest privilege access since it runs as a system application and it completely prevents
us from installing the package or uninstalls it without a need for confirmation if already
present before the detection. The results are also reported in the Table 6.1

1sha256= 01edc46fab5a847895365fb4a61507e6ca955e97f5285194b5ec60ee80daa17c

33

Antivirus Detected Notification Detected as

Google Play Protect ✓ ✓ Malware

AVG (Free) ✓ ✓ Malware

Avast (Free) ✓ ✓ Malware

Avira (Free) ✓ ✓ Malware

AVL (Free) ✓ ✓ Malware

Kaspersky (Free) ✓ Malware

Malwarebytes
(Free)

✓ Malware

Table 6.1: Antivirus results to original sample

We then modify the zip headers of one single byte (number of this disk), just enough to
change the file hash but still allow a flawless installation as seen in Figure 6.1.

While most antivirus software still detected it perfectly, the most concerning result has been
from Google Play Protect which stopped detecting it completely without even a warning
for the installation of a third-party package. This result suggests the usage of a different
zip parser compared to the ones used on the operating system since the application will
open and work correctly. The results are also reported in the Table 6.2

Antivirus Detected Notification Detected as

Google Play Protect

AVG (Free) ✓ ✓ Malware

Avast (Free) ✓ ✓ Malware

Avira (Free) ✓ ✓ Malware

AVL (Free) ✓ ✓ Malware

Kaspersky (Free) ✓ Malware

Malwarebytes
(Free)

✓ Malware

Table 6.2: Antivirus results to the sample with a modified byte in the zip header

34

Figure 6.1: The original zip file, the highlighted byte is the target for the edit

35

Figure 6.2: The result of the byte modification

36

This simple modification of 1 byte on the zip headers was enough to make Google Play
Protect not detect the application and allows us to install the package even with the service
enabled.

The subsequent tests will use increasingly more obfuscated versions of the same package
using Obfuscapk. All versions however are signed with a freshly generated certificate to
avoid the simple detection of the default Obfuscapk certificate.

The first test will use the following obfuscation flags:

• RandomManifest: Reorders entries in the manifest file

• ClassRename: Rename classes and change the package name

• ResStringEncryption: Encrypt the string in the resources

• Rebuild: Rebuild the application

• NewAlignment: Align the application’s zip

• NewSignature: Sign the application with a new signature

Then we test the response of each antivirus software directly on the test device: From this
simple obfuscation, all antivirus products react well by detecting the sample and warning
us about the threat clearly with the usual two products which gives us no immediate
notification and require a manual scan before they mark it as malware. More concerningly,
Google Play Protect now gives us the option to install the package anyway as it is not as
certain of the detection anymore as we can see from the text ‘May be harmful’. The results
are also reported in the Table 6.3

Antivirus Detected Notification Detected as

Google Play Protect ✓ ✓ May be harmful

AVG (Free) ✓ ✓ Malware

Avast (Free) ✓ ✓ Malware

Avira (Free) ✓ ✓ Malware

AVL (Free) ✓ ✓ Malware

Kaspersky (Free) ✓ Malware

Malwarebytes
(Free)

✓ Malware

Table 6.3: Antivirus results to the first obfuscation attempt

37

On this test, we see Google Play Protect detecting the malware again and every other
antivirus keeps detecting it the same way suggesting some sort of signature check or more
likely the detection of a malicious library included in the APK.

We then move to testing with the following additional flags compared to the previous run:

• AssetEncryption: Encrypts the asset files

• Nop: Adds random no operation instructions within every method

• LibEncryption: Encrypts native libs

• ArithmeticBranch: Adds branches to the code with the condition based on arith-
metic computations

We test again on the same device. This time, two more antivirus solutions have become
less suspicious about the sample not marking it as a certain malware anymore but still
alerting the user. Google Play Protect keeps giving us the same alert with the option to
install it anyway. The results are also reported in the Table 6.4

Antivirus Detected Notification Detected as

Google Play Protect ✓ ✓ May be harmful

AVG (Free) ✓ ✓ Suspicious

Avast (Free) ✓ ✓ Suspicious

Avira (Free) ✓ ✓ Malware

AVL (Free) ✓ ✓ Malware

Kaspersky (Free) ✓ Malware

Malwarebytes
(Free)

✓ Malware

Table 6.4: Antivirus results to the second obfuscation attempt

Lastly, we test enabling all the available obfuscators with the addition to the previous flags
of:

• Reorder: Changes the order of the basic blocks of the program, inverting conditions
and uses goto instructions to reorder the code

38

• Reflection: Substitutes suitable method calls with reflection calls.

• MethodRename: Renames methods

• MethodOverload: Creates a new void method with the same name and arguments,
but it also adds new random arguments

• Goto: Inserts a goto instruction pointing to the end of the method and another goto
pointing to the instruction after the first goto

• FieldRename: Renames Fields

• DebugRemoval: Removes debug information

• ConstStringEncryption: Encrypts constant strings in code

• CallIndirection: Creates wrapper functions that call the original one

• AdvancedReflection: Uses reflection to invoke Android framework APIs

Even with all obfuscation techniques, we see the same situation as before where some
Antivirus solutions still report it as malware while others have some doubts. Such results
are then also summarized in the Table 6.5

Antivirus Detected Notification Detected as

Google Play Protect ✓ ✓ May be harmful

AVG (Free) ✓ ✓ Suspicious

Avast (Free) ✓ ✓ Suspicious

Avira (Free) ✓ ✓ Malware

AVL (Free) ✓ ✓ Malware

Kaspersky (Free) ✓ Malware

Malwarebytes
(Free)

✓ Malware

Table 6.5: Antivirus results to the third obfuscation attempt

39

6.3 Current Antivirus response to new malware

In this section, we will test some of the current antivirus’ responses to a pair of proof
of concept (POC) malware apps, one of which acts as a dropper for the second which
is a simple keylogger that grants itself some extra permissions through the usage of the
Accessibility services.

Antiviruses are installed while both applications are present on the device, they get given
any asked permission and run a first full scan of the device. Afterwards, if the antivirus has
any Accessibility service entry it gets activated. Next, the POC keylogger gets uninstalled
and reinstalled through the dropper, opened and given Accessibility permissions.

All of the tests were done on a physical Pixel 7 running Android 13, build number
TQ1A.221205.011

• AVG AntiVirus (Free)

– Asks for access to all files

– Asks for Notification permission

– Accessibility Service entries: ‘AVG Antivirus’, ‘Malware Uninstaller (AVG)’

– Upon POC Installation it warns about a potentially dangerous application

• Kaspersky Free

– Asks for access to all files

– Asks for Notification permission

– Asks for permission to ignore battery optimization

– Accessibility Service entry: ‘Kaspersky’

– Upon POC Installation it asks to scan the newly installed application within a
notification. No other warning.

• Avast Antivirus & Security (Free)

– Asks for Notification permission

– Asks for access to all files

– Initial scan says no threats found

– Accessibility Service entry: ‘Avast Mobile Security’

– Upon POC Installation it warns for ‘Suspicious application detected’ but the
application can still be opened and run.

40

• Avira (Free)

– Asks for Notification permission

– Asks for access to all files

– Initial scan says the device is virus-free

– Accessibility Services entries: ‘Avira Applock’, ‘Avira Camera Protection’, ‘A-
vira Web Protection’

– Upon POC Installation it warns for ‘Suspicious app detected’ but the application
can still be opened and run.

• Malwarebytes (Free)

– Asks for access to all files

– Asks for Notification permission

– Initial scan says reports no malware found

– Accessibility Services entry: ‘Accessibility Services’

– No warns upon POC malware installation through a POC dropper.

• AVL

– Asks for Notification permission

– Asks for access to all files

– Initial scan detects the malware POC and wrongly classifies it under Adware

– Has no entry for Accessibility Services

– Upon POC Installation it shows a notification stating MalwarePOC is a risky
app please use caution but the application can still be opened and run.

• Google Play Protect

– Comes pre-installed with the Play Store and is a System application (has access
to more permissions than normal apps)

– Automatically uninstalls known threats

– During the APK installation from the dropper POC, it warns of ‘Unsafe app
blocked’ allowing to install it only after showing a dropdown menu with the
clickable text ‘Install anyway’.

– After the installation of the app, it asks to send the sample to Google for
analysis.

41

6.4 Defender’s advantage

As the defender, the antivirus has the main advantage of, usually, arriving first. This
advantage in current antivirus seems to only be used to match hashes or package names
against known databases with a rare case of somewhat trying to guess malware (AVL, seems
to be doing static analysis) or intercept third-party application installs with warnings about
potential dangers (Play Protect).

An advantage that has not been utilized, despite some software having that as a service
already listed, is the usage of Accessibility services to monitor the behaviour of applications
using similar techniques to what malware does to spy on the user but in a benign way.

We have developed a POC Malware detection application that utilizes the fact that it
acquires the Accessibility permission before any malware to try and detect both the dropper
and the dropped malware as long as this second stage requests the Accessibility service.

The POC uses the accessibility event TYPE WINDOW STATE CHANGED to detect application
changes. Using a circular queue we keep a history of the applications shown to the user
and we act in the following cases:

• Package installer: a possible sign of a dropper trying to install a malicious app. It
can happen in two ways:

– directly from the app

– through another app, usually a web page on the browser

• Accessibility Service activation page: If following a third-party package install it is
likely that it was malware that is now trying to elevate its permissions.

More precisely, our malware detection application POC takes a list of system applications
on the device when it is first installed to use as part of a whitelist of applications not to
detect when walking backwards in the queue. This whitelist can be then extended with
other package names like common internet browsers or other commonly used apps. To
note that the package name alone is not enough in case of a generic implementation as the
package name is controlled by the attacker and as long as the real corresponding application
is not installed, it would be allowed and whitelisted on the device. It would be necessary to
check additionally if the signature corresponds to the real publisher.

Once the POC dropper gets installed and executed it shows two options: Direct install
and Indirect install. These options aim to simulate the two methods that droppers use to
request the installation of the dropped malware to the user:

42

• Direct install: Typical Dropper behaviour, simply starts an application installation
included within the dropper (Example in Appendix C)

• Indirect install: Behaves like a Downloader but requests the install through a POC
fake Play Store page (Example in Appendix D)

Once any of these options is triggered and the package manager installation request shows
up, our POC Malware Detection application walks backwards in the application queue
(See Appendix A for code snippet) until it finds something that is not whitelisted and
marks it as a potential dropper. At this point, an internal state machine (schematic shown
in Figure 6.3) also goes into a state of warning where if any application tries to request
access to the Accessibility Services (Detected using code in Appendix B), it will once
again enumerate the last application not whitelisted and mark it this time as malware.
Afterwards, we also start an Activity that will warn the user about the findings and give
them the option of uninstalling the applications from that screen.

Anticipating the malware in acquiring Accessibility access prevents them from employing
antivirus avoidance features that use those privileges to prevent the user from uninstalling
the malicious app.

This kind of runtime detection does not need any information about the malicious appli-
cation at install time and uses a similar technique to what the threat actors are using to
avoid being uninstalled or to spy on the device against them in a best-effort attempt to
stop them before they can start doing any damage.

Next, we show the results of a test on real malware2. The sample is from the family
Hydra, which is a banker family. In particular, It once installed, it immediately requests
the accessibility permission without doing any control on the Command and Control (C2)
server. We see in Figure 6.4 its activation screen which pretends to be a companion
application for a German bank and asks to enable Accessibility services for the application.

Once the user presses the ‘GO TO SETTINGS’ button they get redirected to the Acces-
sibility service activation screen which our POC Detection app recognizes and instantly
warns the user.

We can see from the detection screen that we successfully detected the malware package
while the dropper is empty (This malware sample was installed directly as any droppers we
tried were not active at the moment). This Activity could potentially do additional checks
on the package like the installation source or other metadata available from the Package
Manager3.

2sha256: c0e391e254b74359896d287069883652a4b8bfd9ce2fd20a3cd7b441e1cbd600
3InstallSourceInfo Documentation page

43

https://developer.android.com/reference/android/content/pm/InstallSourceInfo

Figure 6.3: Internal state machine to detect

44

Figure 6.4: Activation page of the chosen malware sample

45

Figure 6.5: Malware detection right after the redirect to the Accessibility page

46

Chapter 7

Conclusions

In conclusion, the evolution of the mobile market brought about a significant transforma-
tion with the introduction of the Android operating system. This innovation streamlined
a diverse array of devices under a unified platform, allowing widespread access to online
services. However, this shift also attracted the attention of malicious actors who sought
to exploit this newfound connectivity for personal gain. While Android’s security model
has its advantages, such as sandboxing applications and restricting kernel-level access, it
presents challenges for antivirus solutions aiming to analyze and prevent malicious activi-
ties effectively.

This thesis has delved comprehensively into the realm of Android malware, exploring its
various categories and the capabilities they encompass. We analyzed the response of current
antivirus solutions in the context of this dynamic threat landscape by trying both known
and new samples. On these results and given the insights on common malware behaviour
we built a proposed solution to enhance the identification of new malware by scrutinizing
their behavioral patterns on modern versions of Android.

As the digital landscape continues to evolve, the battle between security and exploitation
remains ongoing. The findings presented in this thesis shed light on the complex interplay
between technological advancements, security measures, and the persistent ingenuity of
malicious actors. By understanding the nuances of Android malware and refining antivirus
strategies, we can pave the way for a safer and more secure mobile ecosystem. This research
not only contributes to the academic discourse but also holds practical implications for
cybersecurity professionals, developers, and policymakers striving to protect users from
emerging threats in the ever-changing landscape of mobile technology.

47

Appendix A

findLastActivity method

9 synchronized public String findLastActivity () {

10 PackageManager pm = ctx.getPackageManager ();

11 List <PackageInfo > systemPackagesInfo =

12 pm.getInstalledPackages(PackageManager.MATCH_SYSTEM_ONLY);

13 List <String > systemPackages = systemPackagesInfo.stream ()

14 .map((e) -> e.packageName).collect(Collectors.toList ());

15 List <String > whitelist = new ArrayList <String >(Arrays.asList(

16 "com.example.pocmalwaredetection", // itself

17 "com.android.chrome")); // PACKAGE NAME ALONE IS NOT

ENOUGH , POC ONLY

18

19 whitelist.addAll(systemPackages);

20 ArrayList <HistoryEvent > queue = eventsQueue.getQueue ();

21 Log.d(TAG , queue.toString ());

22 for (int i = queue.size() - 1; i >= 0; i--) {

23 if (queue.get(i) == null) continue;

24 boolean isWhitelisted = false;

25 for (String packageName : whitelist) {

26 if (packageName.equals(queue.get(i).getPackageName ()))

{

27 isWhitelisted = true;

28 break;

29 }

30 }

31 if (! isWhitelisted) return queue.get(i).getPackageName ();

32 }

33 return null;

34 }

48

Appendix B

isAccessibilityWindow method

35 public static boolean isAccessibilityWindow(

36 @NonNull AccessibilityEvent event , @NonNull String

a11yWindowName)

37 {

38

39 if (event.getPackageName () == null || !event.getPackageName ().

equals("com.android.settings")) {

40 return false;

41 }

42

43 if (event.getSource () == null) {

44 return false;

45 }

46

47 String windowName = event.getSource ().getWindow ().getTitle ().

toString ();

48 return windowName.equals(a11yWindowName);

49 }

49

Appendix C

Direct install method (Dropper)

50 private void direct(View view) {

51 PackageInstaller.Session session = null;

52 try {

53 PackageInstaller packageInstaller = getPackageManager ().

getPackageInstaller ();

54 PackageInstaller.SessionParams params = new

PackageInstaller.SessionParams(

55 PackageInstaller.SessionParams.MODE_FULL_INSTALL);

56 int sessionId = packageInstaller.createSession(params);

57 session = packageInstaller.openSession(sessionId);

58 addApkToInstallSession(R.raw.malwarepoc , session);

59 // Create an install status receiver.

60 Context context = MainActivity.this;

61 Intent intent = new Intent(context , MainActivity.class);

62 intent.setAction(PACKAGE_INSTALLED_ACTION);

63 PendingIntent pendingIntent = PendingIntent.getActivity(

context , 0, intent , PendingIntent.FLAG_MUTABLE);

64 IntentSender statusReceiver = pendingIntent.

getIntentSender ();

65 // Commit the session (will start the installation).

66 session.commit(statusReceiver);

67 } catch (IOException e) {

68 throw new RuntimeException("Couldn ’t install package", e);

69 } catch (RuntimeException e) {

70 if (session != null) session.abandon ();

71 throw e;

72 }

73 }

50

Appendix D

Indirect install method (Downloader)

74 private void indirect(View view) {

75 Intent intent = new Intent(Intent.ACTION_VIEW);

76 intent.setData(Uri.parse("https ://6491 ab19ef4df400d3ead25b --

reliable -zuccutto -203807. netlify.app/"));

77 startActivity(intent);

78 }

51

Bibliography

[AGVM20] Simone Aonzo, Gabriel Claudiu Georgiu, Luca Verderame, and Alessio Merlo.
Obfuscapk: An open-source black-box obfuscation tool for android apps. Soft-
wareX, 11:100403, 2020. URL: https://www.sciencedirect.com/science/
article/pii/S2352711019302791, doi:10.1016/j.softx.2020.100403.

[Ava23] Avast. Avast q1/2023 threat report. Technical report, Avast,
2023. URL: https://decoded.avast.io/threatresearch/

avast-q1-2023-threat-report.

[Gooa] Google. DevicePolicyManager. URL: https://developer.

android.com/reference/android/app/admin/DevicePolicyManager#

resetPasswordWithToken(android.content.ComponentName,%20java.

lang.String,%20byte[],%20int).

[Goob] Google. DevicePolicyManager. URL: https://source.android.com/docs/
security/features/apksigning.

[Goo22] Google. Use of the request install packages permission. Technical re-
port, Google, 2022. URL: https://support.google.com/googleplay/

android-developer/answer/12085295?hl=en.

[Goo23a] Google. Create your own accessibility service. Technical report,
Google, 2023. URL: https://developer.android.com/guide/topics/ui/
accessibility/service.

[Goo23b] Google. Security: Secure passcode reset. Technical report, Google,
2023. URL: https://developer.android.com/work/dpc/security#

secure-passcode-reset.

[Kas17] Kaspersky. It threat evolution q3 2017. statistics. Techni-
cal report, Kaspersky, 2017. URL: https://securelist.com/

it-threat-evolution-q3-2017-statistics/83131/.

52

https://www.sciencedirect.com/science/article/pii/S2352711019302791
https://www.sciencedirect.com/science/article/pii/S2352711019302791
https://doi.org/10.1016/j.softx.2020.100403
https://decoded.avast.io/threatresearch/avast-q1-2023-threat-report
https://decoded.avast.io/threatresearch/avast-q1-2023-threat-report
https://developer.android.com/reference/android/app/admin/DevicePolicyManager#resetPasswordWithToken(android.content.ComponentName,%20java.lang.String,%20byte[],%20int)
https://developer.android.com/reference/android/app/admin/DevicePolicyManager#resetPasswordWithToken(android.content.ComponentName,%20java.lang.String,%20byte[],%20int)
https://developer.android.com/reference/android/app/admin/DevicePolicyManager#resetPasswordWithToken(android.content.ComponentName,%20java.lang.String,%20byte[],%20int)
https://developer.android.com/reference/android/app/admin/DevicePolicyManager#resetPasswordWithToken(android.content.ComponentName,%20java.lang.String,%20byte[],%20int)
https://source.android.com/docs/security/features/apksigning
https://source.android.com/docs/security/features/apksigning
https://support.google.com/googleplay/android-developer/answer/12085295?hl=en
https://support.google.com/googleplay/android-developer/answer/12085295?hl=en
https://developer.android.com/guide/topics/ui/accessibility/service
https://developer.android.com/guide/topics/ui/accessibility/service
https://developer.android.com/work/dpc/security#secure-passcode-reset
https://developer.android.com/work/dpc/security#secure-passcode-reset
https://securelist.com/it-threat-evolution-q3-2017-statistics/83131/
https://securelist.com/it-threat-evolution-q3-2017-statistics/83131/

[Kas22] Kaspersky. It threat evolution q3 2017. statistics. Techni-
cal report, Kaspersky, 2022. URL: https://securelist.com/

it-threat-evolution-in-q3-2022-mobile-statistics/107978/.

[Kup19] Aleksejs Kuprins. Analysis of joker - a spy & pre-
mium subscription bot on googleplay. Technical report,
Medium, 2019. URL: https://medium.com/csis-techblog/

analysis-of-joker-a-spy-premium-subscription-bot-on-googleplay-9ad24f044451.

[Lak22] Ravie Lakshmanan. These dropper apps on play store target-
ing over 200 banking and cryptocurrency wallets. Technical report,
The Hacker News, 2022. URL: https://thehackernews.com/2022/10/

these-dropper-apps-on-play-store.html.

[Mal23] Malwarebytes. Adware. Technical report, Malwarebytes, 2023. URL: https:
//www.malwarebytes.com/adware.

[Mic22] Trend Micro. Examining new dawdropper banking dropper
and daas on the dark web. Technical report, Trend Micro,
2022. URL: https://www.trendmicro.com/en_be/research/22/g/

examining-new-dawdropper-banking-dropper-and-daas-on-the-dark-we.

html.

[Thr19] ThreatFabric. Anubis ii - malware and afterlife. Technical report, Threat-
Fabric, 2019. URL: https://www.threatfabric.com/blogs/anubis_2_

malware_and_afterlife.

[Tou22] Bill Toulas. Android malware droppers with 130k installs
found on google play. Technical report, Bleepingcomputer,
2022. URL: https://www.bleepingcomputer.com/news/security/

android-malware-droppers-with-130k-installs-found-on-google-play/.

53

https://securelist.com/it-threat-evolution-in-q3-2022-mobile-statistics/107978/
https://securelist.com/it-threat-evolution-in-q3-2022-mobile-statistics/107978/
https://medium.com/csis-techblog/analysis-of-joker-a-spy-premium-subscription-bot-on-googleplay-9ad24f044451
https://medium.com/csis-techblog/analysis-of-joker-a-spy-premium-subscription-bot-on-googleplay-9ad24f044451
https://thehackernews.com/2022/10/these-dropper-apps-on-play-store.html
https://thehackernews.com/2022/10/these-dropper-apps-on-play-store.html
https://www.malwarebytes.com/adware
https://www.malwarebytes.com/adware
https://www.trendmicro.com/en_be/research/22/g/examining-new-dawdropper-banking-dropper-and-daas-on-the-dark-we.html
https://www.trendmicro.com/en_be/research/22/g/examining-new-dawdropper-banking-dropper-and-daas-on-the-dark-we.html
https://www.trendmicro.com/en_be/research/22/g/examining-new-dawdropper-banking-dropper-and-daas-on-the-dark-we.html
https://www.threatfabric.com/blogs/anubis_2_malware_and_afterlife
https://www.threatfabric.com/blogs/anubis_2_malware_and_afterlife
https://www.bleepingcomputer.com/news/security/android-malware-droppers-with-130k-installs-found-on-google-play/
https://www.bleepingcomputer.com/news/security/android-malware-droppers-with-130k-installs-found-on-google-play/

	Chapter Introduction
	Chapter Technical Background
	Android Package Kit (APK)
	APK Signing
	Permissions

	Chapter The Evolution of Security in Android
	First Features
	Evolution

	Chapter Malware Types
	Types
	Type-Permission Mapping
	Permission ranking

	Chapter Malware Capabilities
	Malware History
	Modern Malware
	Spreading mechanisms

	Chapter Antivirus and Malware detection
	Privilege level
	Antivirus response to edits of known detected apps
	Current Antivirus response to new malware
	Defender's advantage

	Chapter Conclusions
	Appendix findLastActivity method
	Appendix isAccessibilityWindow method
	Appendix Direct install method (Dropper)
	Appendix Indirect install method (Downloader)
	Bibliography

