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Abstract 

 

 
In recent decades’ literature, missing data occurrence represented a major 

issue in various fields of research. Considering that a partial loss of information 

affecting the dataset under analysis may represent a relevant constraint when 

conducting an inferential procedure, such topic has been in the recent years – and 

is still nowadays – a relevant and common topic of discussion in the literature. 

The first part of this work has the objective the provide a brief overview of 

the main types of missing data and of the mechanisms which may be responsible 

of such missing values. Given that the aim of an inference methodology is to 

obtain unbiased results, it is particularly relevant to analyze statistical methods 

which allow to handle missing data and to obtain such desired unbiased figures. 

The second section of this paper provides therefore an overview of the main 

single imputation techniques, which are able to fill in the missing values by the 

use of a number of different statistical techniques. A more complex and accurate 

imputation methodology is then represented by the multiple imputation 

procedure, presented in chapter III, which may also be applied to different types 

of data as explained in the last section of this paper.  
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Chapter I 

 

A general overview about the 

issue of missing data 

 
In various types of statistical and inferential analysis, a phenomenon that 

can frequently occur is the issue of missing data. It can appear in various forms 

and with different characteristics, based on which it is necessary to equip oneself 

in the best way to obtain unbiased results. 

 

1.1 Missing data: reasons and definitions 
 

In recent decades, the issue of missing data has acquired an increasingly 

important role within the analyzes conducted by researchers in various fields. The 

lack of some relevant information within a dataset can in fact easily lead, if not 

managed in the best way, to obtaining biased results. 

There are multiple possible reasons that can lead to missing data. In this 

framework, the use of the term "possible" is not casual but takes on a precise 

meaning: when the data is only partially observed, it is very difficult to have 

precise knowledge of the mechanisms that can lead to missing data. It is therefore 

possible to formulate a series of hypotheses regarding the mechanism of causality 

underlying the phenomenon, provided they are consistent with the data analysed. 

Moreover, in each dataset there are, as respondents, some units which are 

asked to provide information about a series of items. In a classic individual 

questionnaire, the unit consists of the individual while the item is represented by 

the answers to the questions asked. 

In this sense, it is important to distinguish between two types of missing 

data. The first one, called unit nonresponse, consists of a situation in which all 

the responses of a specific unit are missing: substantially, in the previous 

example, there will be no information available regarding a specific individual. 

The second typology is represented by the item nonresponse, in which one 
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or more units provide only a part of the requested information (e.g., an individual 

who does not respond to one or more questions in a questionnaire). 

In addition to correctly managing the presence of missing data within a 

dataset, it is particularly important to understand the origin of the phenomenon 

in question. 

Missing data can then be classified according to the assumptions 

underlying the “missingness” mechanism, that is, the assumed mechanisms that 

are believed as causing the data to be missing (Pampaka et al., 2016). 

Missing data mechanisms are described as falling into one of the three 

categories briefly described below (Allison, 2000), which sometimes are called 

“distribution of missingness” (Schafer and Graham, 2002): 

• Missing Completely At Random (MCAR): independence is 

assumed between the missingness and observed and missing 

responses. That is, every case is characterized by the same 

missingness probability. 

• Missing At Random (MAR): the missingness is assumed to be 

conditional independent of the missing responses, given the 

observed responses. Therefore, the probability of observing missing 

data regarding a particular variable of interest may depend on other 

observed variables, but not on such variable itself. 

• Missing Not At Random (MNAR): missingness depends on both 

observed and unobserved (missing) data. 

Missing data are called Missing Completely At Random (MCAR) if, given 

a certain value, the probability of it being missing is assumed to be unrelated to 

the observed and unobserved data on that unit (Carpenter and Kenward, 2013). 

When MCAR data occur, there is no relation between the chance of the data being 

missing and the values: the observed data are therefore representative of the 

population of interest but, of course, the fact that some information has been lost 

has to be taken into consideration. 

MCAR data, in real world experiments, may arise in a lot of potential 

situations. In medical research it may consist in a tube containing a blood sample 

of a study subject broken by accident (such that it is not possible to measure the 
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blood parameters of interest) or in an accidental loss of a questionnaire of a study 

subject (Donders et al., 2006), while in educational research we may observe a 

situation in which – conducting some sort of school study – some pupils might 

be missing from a sample because they might have been away for school for 

random and unpredictable reasons (Pampaka et al., 2016). 

  Data are said to be Missing At Random (MAR) if given, or conditional on, 

the observed data the probability distribution of the missing data is independent 

on the unobserved data (Carpenter and Kenward, 2013). 

In MAR data framework, missing data depend on known values and they 

are, consequently, fully described by the variables actually observed in the 

dataset. Missingness does not depend on the variable of interest: it could instead 

depend on the other variables which are observed. Therefore, accounting for 

values “causing” MAR data will result in obtaining unbiased results (Wayman, 

2003). 

In real world studies, Missing At Random data are likely to occur in a 

variety of different fields. In medical research, MAR data could take the form of 

older patients who might be more likely to miss “insurance” than younger ones: 

in this framework, “insurance” will be MAR if the study of interest has collected 

the age for all the subjects of the study (He, 2010). In educational research we 

may observe MAR data in a situation in which, in a school survey, a part of pupils 

may be missing because they are representing their school in some sort of 

competition. 

If in a dataset we observe missing data which cannot be classified as MCAR 

nor MAR, then these data are called Missing Not At Random (MNAR). In this 

framework, the probability of an observation being missing depends on the 

underlying value, and this dependence remains even given the observed data 

(Carpenter and Kenward, 2013). 

In this situation, the reason leading to missing data is not completely at 

random and is related to patient characteristics which are not observed. 

When a MNAR data mechanism occurs, it leads to a relevant loss of 

valuable information and there is no universal method of handling in a proper 

way the missing data (Donders et al., 2006).  
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This typology of missing data, in real world studies, reveals to be 

observable in many different fields. In the framework of a socio-economic study, 

MNAR data may occur in a situation in which asking for a subject for his or her 

income level missing data may be more likely to occur when the income is 

relatively high (Donders et al., 2006). In such case, the probability of nonresponse 

characterizing the income variable depends on values which might be missing. 

In educational research, we may observe MNAR data in a school study 

when pupils might not respond to sensitive questions about their special 

educational needs, supposed to be related to the outcome variable of interest 

(Pampaka et al., 2016). 

To conduct correct statistical inferences leading to unbiased results, it is 

crucial to understand of which class the missing data mechanism falls into. 

Under MNAR data mechanism, from the observed data something is not 

available to the researchers conducting the study of interest. Therefore, it is 

possible to state that MAR data can never be proved or falsified using data alone 

(He, 2010). 

In many situations, however, it is actually possible to test if missing data 

belong to MCAR class. If for some variable there exist meaningful differences 

between the subjects with and without missing data, it is possible to state that the 

missing data of interest are not driven by a MCAR mechanism. 

Under MAR assumptions (including MCAR as special case) it is possible 

to ignore missingness models and focus on the missing-data models, while in 

MNAR framework generally it is necessary to specify missingness models to 

obtain the correct inferences. 

When dealing with missing data, it is necessary to adopt adequate 

techniques in order to handle in a proper way the data issue. Moreover, in last 

decades literature have been provided some basic recommendations as to what 

should be done about missing data (Pampaka et al., 2016): 

• Always report details of missing data. 

• Adjust results for what is known about the missing data, if possible. 

• Report the sensitivity of the reported results to the distribution of 

missing observations. 
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1.2 Some examples and main implications for inference 
 

In real-world analyses, it may be necessary to deal with the issue of missing 

data in a plurality of situations belonging to various fields of research. In such 

contexts, it is therefore necessary to understand the possible mechanism driving 

to missing data and, consequently, to handle their presence in a proper way to 

obtain correct and unbiased results. 

In this perspective, in the last decades the literature has provided examples 

of real-world studies in which such issues are – or may be – present in different 

forms and with different classifications (MCAR, MAR, MNAR1). 

The aim of this section is to present a brief overview on some relevant 

missing data real-world reported – or potential – situations that the literature has 

provided in the last twenty years, for each of the main three categories of missing 

data cited above2. 

One of the main fields in which missing data reveals to be a common issue 

consists of the medical research. In this perspective, a first relevant work is the 

one by Donders et al. (2006, “Review: A gentle introduction to imputation of 

missing values). In the first section of the paper the authors explain the split of 

missing data in the three main categories, for which one of them they provide 

examples of real-world medical research situations in which data may miss due 

to specific reasons. 

According to the authors, typical examples in which MCAR missing data 

– characterized by the fact that subjects who have missing data are a random 

subset of the complete sample of subjects – are the accidental breaking of a tube 

containing a blood sample of a study subject (making it impossible to measure 

the blood parameters of interest) or an accidental loss of a questionnaire of a study 

subject. In these two situations it is possible to state that the reason for 

missingness is completely random and that the probability that an observation is 

missing is not related to any other patient characteristics. Therefore, the set of 

subjects with no missing data will undoubtedly be a random sample from the 

 
1 Missing Completely At Random, Missing At Random, Missing Not At Random 
2 MCAR, MAR, MNAR 
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source population. We may instead observe the occurrence of MNAR missing 

data – in the framework of which the probability that an observation is missing 

depends on information that is not observed – when, asking a subject about her 

or his income level, missing data may be more likely to occur when the 

underlying income level is high. In such framework the reason for missingness is 

therefore related to patient characteristics that cannot be observed. MAR missing 

data, which reason for missingness is based on other observed characteristics, 

need to be handle with care: missing data can indeed be considered random 

conditional on these other patient characteristics that determined their 

missingness and that are available at the time of analysis (Rubin, 1976). In this 

sense, Donders et al. provide a practical example: if, in a medical research 

framework, the aim is to evaluate the predictive value of a diagnostic test of 

interest and the results of the tests are known for all the diseased subjects but 

unknown for a random sample of non-diseased subjects, then such missing data 

fall into the classification of MAR because, conditional on observed patient 

characteristics, missing data are random (provided that missingness does not only 

depend on the outcome variable). 

He (2010, “Missing Data Analysis Using Multiple Imputation – Getting to 

the Heart of the Matter”), to explain the difference between the three main 

categories of missing data, considers the study of Huskamp et al. (2009), who 

investigated the patterns of hospice discussion with providers by patients with 

late-stage cancer. In this study, the authors use data collected from a multisite 

cohort study of care for patients with lung or colorectal cancer by the Can-CORS 

Consortium3. In such dataset, as typically happens in any large health or social 

dataset, a substantial amount of missing data may occur, characterized by no 

systematic pattern. In the example provided by the authors, the fractions of 

missing observations range from 0.04% to 19.48% for the variables, including 

both the predictors and the outcome. The relevance of this phenomenon is 

confirmed by the fact that removing from the dataset the patients with missing 

data would result in a loss of around 30% of the sample, inevitably leading to a 

massive issue about the validity of the obtained results.  

 
3 Cancer Care Outcome Research and Surveillance Consortium 
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Some lines of such dataset are shown in Table 1.1, in which the missing 

data are the elements that we do not observe, marked by question marks. 

 

 

Missing Data Matrix. 

 

 
Table 1.1. Source: He, 2010, “Missing Data Analysis Using Multiple Imputation – Getting to the Heart of the 

Matter” 

 

 

Moreover, the author provides, for each of the main three missing data 

classifications4, examples of reasons that can lead to missingness in the dataset 

of analysis. MCAR missing data, in the context of analysis, may be difficult to 

observe because most missingness is not completely random: older patients, for 

example, are more likely than younger ones to have nonresponse on either 

income or insurance questions. We may instead observe MAR missing data, 

which rely on the more general assumption that the probability a variable is 

missing depends only on the observed characteristics, in the case in which older 

patients might be more likely to miss “insurance” with respect to younger 

patients. In this framework, the variable “insurance” is said to be MAR if the 

study has collected information on age for all patients in the sample. MNAR 

missing data may instead arise when people with higher income are less likely to 

reveal them; therefore, the probability of nonresponse for the variable “income” 

depends on values that are or can be missing. 

 
4 Missing Completely At Random, Missing At Random, Missing Not At Random 
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One of the most important references in terms of missing data consists in 

the book “Multiple Imputation and its Applications”, published by James R. 

Carpenter and Michael G. Kenward (Department of Medical Statistics – London 

School of Hygiene and Tropical Medicine, UK) in 2013. 

In the first section of the book the authors provide an overview of the 

differentiation between the different categories of missing data with some 

examples of application. 

The first one consists of the so called “Mandarin tableau”: in Figure 1.1 it 

is shown part of the frontage of a senior mandarin’s house in the New Territories, 

Hong Kong.  

 

 

Detail from a senior mandarin’s house front in New Territories, Hong Kong. Photograph by H. 

Goldstein. 

 

 
Figure 1.1. Source: Carpenter and Kenward, 2013, “Multiple Imputation and its Application” 

 

 

Assuming that interest is about the figurines’ characteristics – such as their 

number, height, facial characteristics, and dress – unit nonresponse will 

correspond to missing figurines, while item nonresponse will arise in the case of 
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damages figurines. In this example, if the aim is to summarize facial 

characteristics of the figurines and missing heads are supposed to behave as 

MCAR missing data, from the observed heads a valid estimate is obtained, even 

if imprecise compared to an estimate obtained observing all the heads. On the 

other hand, a MAR classification would imply to assume that the distribution of 

head characteristics given body characteristics does not depend on whether the 

head is present. Therefore, under this assumption, it would be possible to estimate 

the distribution of the characteristics of the figurines with missing heads from the 

ones with similar body characteristics. Completely different scenario is the one 

in which we assume to have MNAR missing data: in this case, it would be 

possible that the figurines with missing heads were wearing some sort of head 

dress which identified them as a member of some class or group which was the 

cause for the heads to be smashed. Under this mechanism, it is not possible to 

state anything about typical characteristics of head dress without making 

assumptions (which, of course, cannot be verified) about the characteristics of 

the missing head dresses. Moreover, this type of assumption implies a different 

distribution of head dress given body dress for the figurines with and without 

heads. 

Carpenter and Kenward provide then another fundamental example of real 

missing data scenario. The framework is the one of YCS5 of England and Wales, 

an ongoing UK government funded representative survey of pupils at school-

leaving age (School year 11, age 16-17)6. The authors consider a harmonized 

dataset deposited by Croxford et al. (2007) that comprises YCS cohorts from 

1984 to 2002 and consider data from pupils attending comprehensive schools 

from five YCS cohorts and who reached the end of Year 11 in 1990, 1993, 1995, 

1997 and 1999. 

In Table 1.2 it is possible to observe the covariates from the YCS 

considered by the authors; the variables “cohort” and “boy” do not present any 

missing data. 

 

 
5 Young Cohort Study 
6 UK Data Archive, 2007 
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YCS variables for exploring the relationship between Year 11 attainment and social stratification. 

 

 
Table 1.2. Source: Carpenter and Kenward, 2013, “Multiple Imputation and Its Application” 

 

 

Moreover, the pattern of missingness for GCSE7 score and the remaining 

two variables are shown in Table 1.3. It is important to point out that, in this 

example, it is not possible to re-order the variables to obtain a monotone pattern. 

 

 

Pattern of missing values in the YCS data. 

 

 
Table 1.3. Source: Carpenter and Kenward, 2013, “Multiple Imputation and Its Application” 

 

 

In this study, if missing data are assumed to be of MCAR typology, it would 

be possible to obtain valid inference results from the 55145 complete records 

(Table 1.3). However, without having the data for the 8110 individuals 

characterized missing data, the partial loss information would lead to less precise 

results with respect to the case of no missing data. 

Another relevant real case of missing data provided by Carpenter and 

 
7 General Certificate of Secondary Education 
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Kenward is the “Randomized controlled trial of patients with chronic asthma”. 

In this framework, the authors consider data from a 5-arm asthma clinical trial to 

assess the safety and efficacy of budesonide, a second-generation 

glucocorticosteroid, on 473 patients with chronic asthma who were enrolled in 

the 12-week randomized, double-blind, multi-centre parallel-group trial, which 

compared the effect of a daily dose of 200, 400, 800 or 1600 mcg of budesonide 

with placebo. The principal outcomes of clinical interest include patients’ peak 

expiratory flow rate8 and their FEV1
9. The trial found a statistically significant at 

a 95% confidence level dose-response effect for the mean change from baseline 

over the study for both morning and evening peak expiratory flow and FEV1. 

 The aim of the study was to compare FEV1 across treatment arms at 12 

weeks; however, excluding 3 patients with intermittent participation in the study, 

only 37 out of 90 patients in the placebo arm, and 71 out of 90 patients in the 

lowest active dose arm, at twelve weeks had remained in the trial. 

The withdrawal pattern for the placebo and lowest active dose arms is 

shown in Table 1.4. It is possible to observe that the missingness pattern is 

monotone in both treatment arms. 

 

 

Asthma study: withdrawal pattern by treatment arm. 

 

 
Table 1.4. Source: Carpenter and Kenward, 2013, “Multiple Imputation and Its Application” 

 
8 The maximum speed of expiration in litres/minute 
9 “Forced Expiratory Volume”: the volume of air, in litres, the patient with fully inflates lungs can breathe 

out in one second 
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In this study, if missing data are assumed to be MCAR, it is possible to get 

a valid estimate of the overall mean in each group at 12 weeks by averaging the 

37 available observations in the placebo group and the 71 in the active group, 

obtaining respectively 2.05 litres (s.e.10 0.09) and 2.23 litres (s.e. 0.10) leading to 

a treatment effect of 2.23 – 2.05 = 0.18 litres. 

However, is a MNAR mechanism is assumed to drive the missing data, it 

is possible to assume a pattern mixture model and the treatment effect varies as 

we move away from the MAR mechanism assumption (Figure 1.2). Moreover, 

since the placebo group is characterized by many more missing patients, the 

treatment effect estimate reveals to be much more sensitive to departures for 

MAR in such group. 

 

 

Contour plot of the difference in average FEV1 (litres) between active and placebo groups, as we move 

away from MAR. Under MAR, the difference is 0.18 litres. 

 

 
Figure 1.2. Source: Carpenter and Kenward, 2013, “Multiple Imputation and its Application” 

 

 

Regarding the same topic, another relevant publication consists in the paper 

by Katherine J. Lee and Julie A. Simpson (2014, “Introduction to multiple 

 
10 Standard error 
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imputation for dealing with missing data”). Indeed, the aim of such work is to 

estimate whether current asthma status is associated with FEV1, after adjusting 

for some covariates as age, gender, socio-economic status, smoking status, 

height, and waist circumference by the means of a multivariable linear regression 

(Kasza and Wolfe, 2014). 

Lee and Simpson use a random data sample from the fifth decade of follow-

up from the TAHS11, a population-based longitudinal cohort study of 8683 

children born in 1961 and attending school in Tasmania in 1968. 

Considering such dataset, waist circumference data were not available for 

approximately one quarter of the subjects, leading to a material loss of relevant 

information. Moreover, the analysis is restricted to 316 TAHS participants with 

complete data on all the covariates except from waist circumference. A brief 

overview of the results obtained by Lee and Simpson will be provided later in 

this work, when various techniques to deal with missing data in large dataset will 

be analyzed. 

Maria Pampaka, Graeme Hutcheson and Julian Williams (2016, “Handling 

missing data: analysis of a challenging data set using multiple imputation) 

provide some real-world scenarios in which different forms of missing data may 

arise in educational research.  

The authors explain how, in the context of a school survey, different 

missingness mechanisms can lead to different missing data categories: if, for 

example, a researcher gets permission to administer a questionnaire about 

bullying to the students during class time, on the administration day there are 

various scenarios which could verify: 

• some students may not have been present at random without any 

predictable reason; 

• some pupils may have been absent because that day they might be 

representing their school in some sort of competition, being them 

the most engaged and keenest; 

• some students may choose not to respond to some particular 

questions, maybe because they are the ones being bullied or because 

 
11 Tasmanian Longitudinal Health Study 
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they may have special needs. 

Each one of the three situations above would therefore lead to a different 

category of missing data. MCAR missing data, for which all the cases are 

characterized by the same probability of being missing, may arise in the situation 

in which the students are missing from school for random and unpredictable 

reasons: the missingness is said to be independent of the observed and missing 

responses. In the second framework, in which some pupils may be absent because 

of representing their school in some sort of competition, missing data would be 

classified as MAR: missingness does not depend on the variable of interest but it 

could actually depend on other observed variables. In the last situation, in which 

a number of students choose not to respond to specific sensitive questions about 

their special educational needs (which are assumed to be also related to the 

outcome variable of interest), MNAR missing data would instead be observed 

because missingness would depend on both observed and unobserved 

information. 

Jeffrey C. Wayman, in the paper “Multiple Imputation For Missing Data: 

What Is It And How Can I Use It’”, presented at the 2003 Annual Meeting of the 

American Educational Research Association (Chicago, Illinois), provides 

another relevant example of missing data issue in the framework of educational 

research. 

 Wayman uses a dataset coming from a large United States school district; 

variable of interest are: a participant’s grade, gender, participation in special 

education, NCE12 on a nationally-administered reading test, and row score on a 

locally-administered reading test. The author explains how local test scores 

ranged between 232 and 430, however approximately 95% of the data points fell 

between 303 and 383 and therefore the sample was restricted to such observations 

in order to provide the clearest possible explanation. Moreover, it was decided to 

include participants with grades 6, 7, or 8, and with no missing responses for 

gender, special education status, and local reading test score. With these 

adjustments, the sample resulted in 19373 subjects, of which 2896 (15%) had 

missing information about the national test score (Table 1.5). 

 
12 Norman curve equivalent 
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Description of the sample. 

 

 
Table 1.5. Source: Wayman, 2003, “Multiple Imputation For Missing Data: What Is It And How Can I 

Use It?” 

 

 

Missing data bias reveals to be evident because special education students, 

males and pupils who had bad results on the local test typically reveal to do worse 

on the national test. Moreover, these groups of subjects are the ones who are more 

likely to present missing data. With this purpose, Table 1.6 reports a subset of 

participants from the dataset under analysis. 
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Selected data from the full dataset. 

 

 
Table 1.6. Source: Wayman, 2003, “Multiple Imputation For Missing Data: What Is It And How Can I Use It?” 

 

 

Having observed, through a general overview of recent relevant literature, 

how frequently missing data can appear in various types of analyzes belonging 

to a variety of research fields, it is also important to understand the impacts of the 

lack of information on the main statistical inference techniques. 

In a framework in which some sort of missing data arises, it is necessary to 

have some specific assumptions under which computational methods lead to 

valid inference. Therefore, in this context, it is easy to observe misleading 

inference processes. 

The missingness mechanism leading to missing data issue is usually 

unlikely to be definitively identified from the observed data, even if the latter 

may indicate possible plausible missing data mechanisms. Therefore, it is needed 

to take into account some sort of assumption about the missingness mechanism 

underlying the data in order to be able to draw statistical inference. 

Even if some assumptions can be made about the reason underlying missing 

information in the dataset, it is important to point out that the precise mechanism 

causing the missing data can rarely be definitively established: with the aim to 
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verify the robustness of an inference to a range of different possible missingness 

mechanisms, it can be useful to implement a process dubbed as sensitivity 

analysis (Carpenter and Kenward, 2013). 

An inference methodology in which there is some kind of missing data 

issue can be affected mainly by two problems: loss of efficiency and bias. The 

former is an inevitable missing data consequence and the extent of information 

loss is not directly linked to the proportion of incomplete records but instead it is 

said to be intrinsically linked to the question of interest. When dealing with a 

dataset characterized by missing data, most statistical software in an automatic 

way restricts the analysis to complete records; however, this loss of information 

leads to consequences which are not always easy to predict in advance. Moreover, 

many times the information deriving from partial complete records is 

fundamental for the study itself: it is therefore necessary to implement some 

techniques to handle in a proper way missing data and minimize the loss of 

information. 

The subset made of complete records may also not be representative of the 

whole population under analysis. In this case, a restriction of the sample to 

complete records may lead to a biased inferential procedure, where the extent of 

such bias depends on the statistical behavior of the missing data affecting the 

dataset under study. 

If a specific assumption about the reason leading to missing data is made, 

it is possible to implement a valid analysis that does not require to include the 

model for the missingness mechanism underlying. In this specific situation, such 

mechanism is dubbed as ignorable.  

In this context, it is relevant to explore the implications of missing data, in 

terms of loss of information and bias, in the response and/or in the covariates 

under different mechanisms driving missing data. 

The first case is the one in which we observe a partially observed response. 

In this sense, Carpenter and Kenward (2013) take into consideration the 

following regression model: 
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𝑌𝑖 =  𝛽0 + 𝛽1𝑥𝑖 + 𝑒𝑖 ,      𝑒𝑖 ~ 𝑁(0, 𝜎2),     𝑖 = 1, … , 𝑛 

 

 

In such model, Y (the outcome variable of interest) is only partially 

observed, and Ri indicates whether the outcome is observed or not for an 

individual, while the xi are supposed to be known without any error. Then, the 

contribution to the likelihood for β = (β0, β1) from unit i, conditional on xi, can be 

defined as the following: 

 

 

𝐿𝑖 = Pr(𝑅𝑖 , 𝑌𝑖|𝑥𝑖) = Pr(𝑅𝑖|𝑌𝑖 , 𝑥𝑖) | Pr (𝑌𝑖|𝑥𝑖) 

 

 

Assuming that the parameters of Pr(Yi|xi), β, are different from the 

parameters of Pr(Ri|Yi, xi), it is possible to state that the contribution to the above 

likelihood for an individual characterized by missing response can be obtained 

by integrating over all possible values of the missing outcome variable Yi, given 

xi: 

 

 

∫ Pr (𝑌𝑖|𝑥𝑖) 𝑑𝑌𝑖 = 1 

 

 

All individuals with missing Y, conditional on x, contribute 1 (the total 

probability, since it is an integration over all possible values of Yi  given β, xi) to 

likelihood for β. Therefore, it is possible to state that there is no effect on the 

maximum likelihood estimate of β. This is possible because the parameter space 

of the conditional distribution of Y given X is separate from the one of the 

marginal distribution of X. Then, as a direct consequence, the conditional 

distribution of Pr(Y|X) has not any information on the marginal distribution of X 

and does not place any restriction on it. 
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It is then relevant to consider the opposite framework, that is the one in 

which, considering a regression of Y on X, the former is fully observed while the 

latter is only partially observed. 

Letting Ri = 1 if Xi is observed and Ri = 0 otherwise, it is useful to consider  

the regression of Y on X estimated using only the complete records (that is, Ri = 

1): 

 

 

Pr(𝑌𝑖|𝑋𝑖 , 𝑅𝑖 = 1) =  
Pr(𝑌𝑖, 𝑋𝑖 , 𝑅𝑖 = 1)  

Pr (𝑋𝑖 , 𝑅𝑖 = 1)
=  

Pr(𝑅𝑖 = 1|𝑌𝑖 , 𝑋𝑖) Pr (𝑌𝑖, 𝑋𝑖)

Pr(𝑅𝑖 = 1|𝑋𝑖) Pr (𝑋𝑖)

=  {
Pr (𝑅𝑖 = 1|𝑌𝑖 , 𝑋𝑖

Pr (𝑅𝑖 = 1|𝑋𝑖)
}  Pr (𝑌𝑖|𝑋𝑖) 

 

 

When the mechanism underlying the missingness for the covariates 

involves the response variable Y, just restricting the sample to the complete 

records leads to obtain biased point estimator and, therefore, invalid inference 

methodology. This situation holds whether the missingness mechanisms only 

depends on Y (MAR, with MCAR as a special case) or when it also includes X 

(MNAR). 

In the context of the linear regression, there is one last possible case, that is 

the one in which missing data issue affects both the response variable and the 

covariates. Supposing (1) to have the three variables X, Y, Z and that (2) Y and X 

are MAR given Z, in a linear regression of Y on X, Z, units with X, Y missing will 

contribute to the likelihood of Pr(Y| β; X, Z) in the behavior described by the 

following integration: 

 

 

∫ Pr(𝑌|𝛽; 𝑋. 𝑍) 𝑑𝑌 = 1 
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Therefore, it possible to state the complete records analysis described above 

in this scenario will be unbiased. Additional variables predictive of Y and/or X, 

therefore, may be useful to recover more information about the missing values 

and, consequently, the estimate of β. 

Having presented and defined the different classifications of missing data, 

provided examples of real studies in which this issue has played an important 

role, and analyzed the consequences of having at disposal incomplete information 

in the context of statistical inference methodologies, the next chapters of this 

work aim to present different categories of techniques to handle missing data 

issue in the best possible way.
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Chapter II 

 

Methods of single imputation 

to handle missing data 

 
In the recent decades’ literature, it is possible to find several methodologies 

to treat missing data and the consequences deriving from such recurrent issue.  

Most of the above-mentioned methods have been developed to handle 

missing data issue in sample surveys; moreover, they have some drawbacks when 

applied to the Data Mining context. 

When dealing with the replacement of such missing data, it reveals to be 

fundamental to pay particular attention to three key factors (Patel, 2012): 

 

• estimated values should not be affected by bias; 

• the relation between attributes should be maintained; 

• the overall cost needs to be minimized. 

 

A very important role is inevitably played by the choice of the right 

technique, which depends on the problem domain, the data’s domain and the goal 

characterizing the data mining process (Somasundaram and Nedunchezhian, 

2011). 

In the following section of this work will be provided a general overview 

of some relevant methods to handle missing data issue in a proper way, with the 

aim to obtain unbiased inference results. 

 

2.1 Ignoring and discarding data 
 

The methodology of ignoring and discarding data is usually implemented 

when, assuming that the data mining aim is the classification, the class label 

reveals to be missing or many attributes (not just one) are missing from the 
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dataset row of interest. However, it is important to point out that, if the share of 

such rows is sufficiently high, the performance obtained by implementing the 

methodology will be poor. 

To discard data with missing values, it is possible to use two main 

techniques. 

The first one, known as complete case analysis, available in all statistical 

programs and used as default methodology in many of them, consists of 

discarding all instances with missing data. The second method, known as 

discarding instances and/or attributes, consists of determining the extent of 

missing data for each instance and attribute and, as second stage, deleting the 

instances and/or attributes characterized by an high level of missing data. 

However, before deleting any attribute, it is fundamental to control for its 

relevance to the analysis of interest: a relevant attribute should be kept even if 

characterized by a high share of missing values. 

A fundamental characteristic of the above-mentioned methods lies in the 

fact that they should both be applied only in the case in which missing data derive 

from a missingness mechanism allowing them to be classified as MCAR: missing 

data belonging to the other two main categories (MAR, MNAR) are characterized 

by non-random elements which may lead to have some bias in the obtained 

results. 

Somasundaram and Nedunchezhian (2011, “Evaluation of three Simple 

Imputation Methods for Enhancing Preprocessing of Data with Missing Values”) 

provide a brief example of discarding data application. 

The authors suppose to consider a database of students enrollment data 

(age, SAT score, state of residence, etc.) and a variable which classifies their 

success in college between “Low”, “Medium” and “High”. 

If the aim of the work is to build a statistical model able to predict the 

students’ success in college, data rows containing missing data for the outcome 

variable of interest (the success in college) are not useful to predict the success 

in college and, therefore, these rows could be ignored and removed from the 

dataset before starting the analysis (under the assumption that the underlying 

missingness mechanism leads to MCAR missing data). 
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2.2 Mean and median substitution 
 

Mean substitution is a single imputation technique which consists of 

replacing missing values on a covariate with the mean value of the observed data 

points. Therefore, this method involves the implementation of the replacement of 

the missing data for a given attribute by the mean (quantitative attribute) or mode 

(qualitative attribute) of all known values of that attribute. 

In this framework, the imputed missing values are said to be contingent 

upon one and only one variable – the between subjects mean for that variable 

based on the available data (Malarvizhi et al., 2012). 

Mean substitution may be implemented using two slightly different 

methodologies: question mean and individual mean. 

The question mean imputation method consists of imputing the overall 

mean of the specific question from the entire cohort (Shrive et al., 2006): if a 

subject is characterized by a missing value for question 17, the imputed value is 

the mean value computed from the completed question 17 for the entire cohort 

analyzed. 

Individual mean, instead, is a methodology which may also be used as a 

simple form of imputation in such scenarios: the imputed value is obtained by 

computing the mean of a given participant’s complete responses to other 

questions. Therefore, if a subject is characterized by two missing responses, the 

missing values will be filled using the calculated average of the remaining 

(completed) 18 questions. 

Regarding the framework of mean substitution, a further slight distinctions 

reveals to be relevant. Indeed, it is possible to use the overall attribute mean or 

the attribute mean for all samples belonging to the same class. 

Computing the imputed value based on the overall attribute mean, missing 

values for such attribute are replaced with its mean value of the whole database 

(Somasundaram and Nedunchezhian, 2011): considering for example a database 

of United States family incomes and assuming the average income of a US family 

to be X, it is possible to use X as value to replace the missing occurrences of the 

income. 
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Using the attribute mean for all samples belonging to the same class, the 

mean value to impute in order to fill the missing data is computed not with the 

mean of a certain attribute for all the rows of the given dataset. The calculation 

may indeed be limited to the relevant class to make the value more relevant for 

the data row of interest. In this framework, Somasundaram and Nedunchezhian 

(2011) provide the example of cars pricing database: among other things, it 

classified cars to “Luxury” and “Low budget” and missing values is dealt in the 

cost field. In such a situation, replacing the missing data about the cost of a luxury 

car with the average cost of all luxury cars would probably be way more accurate 

with respect to the value computed by the factor in the low budget cars. 

Median substitution of covariates and outcome variables, just like mean 

substitution, is still frequently used when missing data issue occurs in statistical 

inference procedures. It is possible to state that the median substitution 

imputation methodology reveals to be slightly improved: this improvement is 

obtained by first stratifying the data into subgroups and then using the average of 

the subgroup of interest. As a direct consequence, median imputation results in 

the median of the entire dataset being the same as it would be with case deletion, 

but the variability between subjects’ responses reveals to be decreased, causing a 

bias in the variances and covariances toward zero (Malarvizhi and Thanamani, 

2012, “K-Nearest Neighbor in Missing Data Imputation”). 

Even if the above-mentioned imputation methods are still very used, there 

are some issues that may arise when they are implemented in the framework of a 

statistical analysis. 

While mean substitution results in overall means equal to complete case 

values, the variances of these same covariates reveal indeed to be underestimated 

(Little, 1992) and such underestimation derives from two sources. 

First, by filling the missing data points with the same mean value one does 

not account for the variation that would likely arise in the case in which the 

variables of interest would instead be observed. Indeed, if the true values would 

be observed they would probably vary from the imputed mean. 

The other driver of the variances underestimation is the fact that the smaller 

standard errors obtained due to the increased sample size do not reflect 
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adequately the uncertainty characterizing the dataset under analysis in the 

research. 

Bias in the estimation of standard errors and variances are compounded 

when estimating multivariate parameters such as regression coefficients. 

Therefore, there is not any circumstance in which a mean substitution imputation 

may lead to obtain unbiased results (Pigott, 2001). 

 

2.3 Regression 
 

Regression imputation method is based on the assumption of linear 

relationship between the different variables. That is, it is assumed that the value 

of one variable changes in a linear way with the other ones. In the framework of 

this technique, the missing values are replaced using a linear regression function 

instead of imputing all missing data with some statistics of particular interest as 

the mean or the median. 

When implementing a regression-based imputation, the regression of each 

variable j is used to fill missing values. 

In detail, for each variable j present the dataset under analysis, regression 

imputation technique involves the following steps: 

 

(a) Remove the records characterized by missing values for the variable 

j. 

(b) Fit the regression of the reduced j (without missing values) on other 

variables. 

(c) Use the regression coefficients to fill the missing values in variable 

j. 

 

There are two main different regression techniques: the predictive 

regression and the random regression. 

In the predictive regression (deterministic regression or conditional mean), 

the linear regression is used for numeric variables while, when dealing with 

categorical missing data, a logistic regression is implemented. 
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The linear regression, by its nature, is characterized by a linear function 

based on probability; the logistic regression, instead, works on logistic function 

based on probability but is characterized by only two possibilities for probability. 

Moreover, the predictive regression may be characterized by the presence 

of an auxiliary variable to find the missing values which relates missing values 

Yi  to such auxiliary variable Xi and the predicted values used for the missing data 

in Y. 

Therefore, the aim of these methods is to create a predictive model able to 

estimate imputed values which will substitute the missing ones. The attribute 

affected by missing data, in this methodology, is used as class-attribute, while the 

remaining ones are used as input in the predictive model. 

It is important to point out, in favor of this methodology, that often it may 

occur that the different attributes in a model reveal to be correlated among 

themselves. These correlations could therefore be used to implement a resilient 

predictive model for classification or regression and some of the relationship may 

be maintained if captured by the constructed regression model.  

However, one has also to take into account that the model estimated values 

usually tend to be more well-behaved with respect to the true values which, 

unfortunately, are not observed in the reality. Being the missing values predicted 

from a set of attributes, it is likely to happen that the predicted values are more 

consistent with the set of attributes used than they would be with the unknown 

true attributes. 

Another relevant drawback regarding this imputation method consists of 

the requirement for correlation among the attributes of the model: in a situation 

in which there are no relevant relationships among one or more attributes of the 

dataset and the attribute affected by missing values, inevitably the regression 

model implemented will not lead to obtain a precise estimation of the missing 

values. 

The other main regression imputation method is the so-called random 

regression. This methodology has the aim to find missing values for any variables 

based on the conditional distribution.  

The random regression, therefore, leads to the imputation of the missing 
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value of interest based on the conditional distribution of Y given X. In concrete 

applications, this type of approach reveals to be more effective in situations in 

which numeric data are present (Patel, 2012).  

 

2.4 Hot deck and cold deck 
 

Hot deck and cold deck imputation methods are generally used when the 

components of the data under analysis are skewed (or twisted), that is they present 

a long tail of data point (usually on the right, “right-skewed data”). 

These methods involve the replacement of missing values of one or more 

variables for a non-respondent (called the recipient) with observed values taken 

from a respondent (the donor), who has to be similar to the non-respondent with 

respect to characteristics observed by both cases. 

The term “hot deck” derives from the use of computer punch cards for data 

storage. It refers to the deck of cards for donors available for a non-respondent. 

The deck was “hot” since it was currently being processed, opposed to the “cold 

deck” referring to the use of pre-processed data as the donors. 

When the donor is selected following a random procedure from a set of 

potential donors (the donor pool), the method is called random hot deck method. 

However, sometimes a single donor is identified and the missing values are 

imputed from that one case, usually the “nearest neighbour” based on some 

metric. When this happens, the imputation methodology is called deterministic 

hot deck method, since there is no any randomness present in the selection of the 

donor. 

It is important to point out that, in this framework, the term “deterministic” 

only describes the procedure under which a donor is selected; while in the general 

imputation framework the same term may be used to describe methods that 

impute the mean or other non-random relevant values. 

Hot deck is implemented, typically, through two stages. In the first stage 

there is a partition of the data into clusters, while in the second stage each instance 

characterized by missing data is associated with one cluster. Then, complete cases 

in a cluster are used to fill in the missing values: this can be implemented simply 
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by calculating the mean or mode of the attribute of interest within a certain 

cluster. 

The hot deck imputation method does not rely on model fitting for the 

variables characterized by missing values and that therefore needs to be imputed; 

therefore, this methodology is potentially less sensitive to model misspecification 

with respect to imputation methods based on parametric models, such as 

regression imputation (Andridge and Little, 2010). 

However, one needs to keep in mind that hot deck imputation method is 

characterized by implicit assumptions through the choice of metric to match 

donors to recipients, and the variables included in such metric.  

Another relevant feature of this imputation technique consists of the fact 

that, since values come from responses actually observed in the so-called donor 

pool, only plausible values may ne imputed.  

Moreover, since information in the incomplete cases is being retained, hot 

deck implementation may represent a gain in efficiency compared to complete-

case analysis.  

In the end, it is also possible to observe a reduction in non-response bias, 

to the extent that there is some sort of association between the covariates defining 

the imputation classes and both the propensity to respond to the questions and the 

variable which needs to be imputed. 

The hot deck imputation procedure is commonly used by United States 

government statistics agencies and survey organizations with the aim to provide 

rectangular dataset for users. For example, the NCES1 uses, even within a survey, 

different forms of hot deck and alternative imputation methods: out of twenty 

recent surveys, eleven used a form of adjustment cell hot deck while the 

remaining nine used a form of cold deck imputation, deterministic imputation, or 

a Bayesian method for MI2. Within the eleven surveys characterized by the hot 

deck imputation procedure, many of them used both random within sequential 

imputation and class imputation (NCES, 2002). 

Moreover, the hot deck method has been also applied in epidemiologic and 

 
1 National Center for Education Statistics 
2 Multiple Imputation 
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medical settings, even if parametric imputation methods still reveal to be more 

common. 

In literature it is possible to find applications of the hot deck and some 

comparisons with the other imputation methods in the works by Barzi & 

Woodward (2004) and Perez et al. (2002) regarding cross-sectional studies, while 

for longitudinal studies it is relevant to cite the papers by Twisk & de Vente 

(2002) and Tang et al. (2005). However, it is important to point out that the lack 

of software in commonly used statistical packages may deter applications of the 

hot deck methodology in these settings. 

Cold deck imputation slightly differs from hot deck because it involves 

imputing missing values of a record using anything other than reported values for 

the same variable in the current dataset. Therefore, cold deck imputation requires 

the availability of at least one additional dataset from which the donor will be 

selected. 

An application of cold deck imputation could consist of a framework in 

which one is using a company’s revenue for March from the previous year’s 

dataset to fill the missing revenue for March in the current year’s dataset to 

calculate the turnover of the current year (Figure 2.1). 
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Multiply imputed datasets (m = 3). 

 

 
Figure 2.1. Source: Narayan, 2017, “A nearest neighbor based cold-deck imputation for X-ray tube wear 

estimation” 

 

 

2.5 K-Nearest Neighbor 
 

A relevant imputation method for missing values in large dataset is the so-

called K-Nearest Neighbor Algorithm for Classification. 

Malarvizhi and Thanamani (2012, “K-Nearest Neighbor in Missing Data 

Imputation”) provide an exhaustive explanation regarding this imputation 

technique. 

The authors explain that, given a certain dataset, each sample has n 

attributes combined to form an n-dimensional vector such as: 

 

x = (x1, x2, .. , xn) 

 

Then, these n attributes are considered to be the independent variables 

within the analysis. 

Moreover, each sample is also characterized by another attribute, which is 
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denoted by Y and is called the dependent variable; with its value depending on 

the other n attributes x. 

Assuming that Y behaves as a categoric variable, it is possible to define a 

scalar function f such as: 

 

Y = f(x) 

 

This function, therefore, assigns a class to every above-mentioned vector.  

Supposing a set of T vectors given together with their corresponding 

classes:  

 

xi, yi                i = 1, 2, … , T 

 

Then, the set T is referred to as the so-called training set. 

The idea underlying the K-Nearest Neighbor methodology is to identify, in 

such training set, k samples whose independent variables x are similar to u, then 

to use the k samples previously identified to classify such new sample into a 

certain class, v.  

Assuming the function f to be characterized by a smooth behavior, it is 

reasonable to look for samples in the training set which are, in terms of the 

independent variables x, near it. Then, it is sufficient to compute v, for the samples 

of interest, from the values of Y.  

The so-called distance or dissimilarity measure can then be computed, 

between two different samples, by measuring distance using the Euclidean 

distance between points: 

 

 

𝐽 =  ∑ ∑ ‖𝑥𝑖
(𝑗)

− 𝑐𝑗‖
2

𝑛

𝑖−1

𝑘

𝑗−1
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In the simplest case, that is the one in which k = 1 and the sample in the 

training set is the closest (the so-called nearest neighbor) to u, v is equal to Y 

which is the class of the nearest neighboring sample (Malarvizhi and Thanamani, 

2012). 

When higher values of k occur, the instance is characterized by a major 

smoothing which reduces the over-fitting risk due to noise in the training data. 

However, in real applications usually it happens that k reveals to be in units or 

tens rather than in the order of hundreds or thousands. 

In practice, for handling missing values, the K-Nearest Neighbor 

methodology outperforms internally two well known Machine Learning 

Algorithms: C4.5 and CN2. These two algorithms induce propositional concepts: 

decision trees and rules, respectively. C4.5 algorithm seems to have a good 

internal algorithm for the treatment of missing data, while CN2 seems to use a 

simpler method to deal with missing values. 

C4.5 algorithm uses a probabilistic approach to handle missing data: 

missing values can arise in any attribute in training and test files, except the class 

attribute. 

CN2 algorithm, instead, uses a rather simple imputation method to treat 

missing values: each one of these if filled in with its attribute’s most common 

known value. 

Just like any other imputation technique, K-Nearest Neighbor method is 

characterized by both benefits and drawbacks. 

A first advantage of this approach relies in the fact that it is able to predict 

both the discrete attributes (which reveal to be the most frequent value among the 

K-Nearest Neighbors) and the continues attributes (the mean among the K-

Nearest Neighbors). 

Moreover, this technique is characterized by the fact that there is not any 

need to create a predictive model for each attribute of the study affected by 

missing values. Indeed, the K-Nearest Neighbor methodology does not 

implement any explicit model (like, for example, a set of rules or a decision tree), 

since the dataset is used as a “lazy” model (Batista and Monard, 2002).  

The K-Nearest Neighbor imputation method may also be adapted easily to 
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work with any attribute as class, simply modifying the attributes considered in 

the distance metric. It is therefore considered an approach which can easily 

handle situations in which multiple missing values are present. 

Even if the K-Nearest Neighbor approach looks to be characterized by 

many advantages, it is important to point out also a relevant drawback: whenever 

the running algorithm looks for the most similar instances, it searches through all 

the dataset under analysis. This may represent a very relevant issue, since often a 

researcher is analyzing very large datasets. 

In literature, it is possible to find several wors with the aim to deal with and 

solve this limitation affecting K-NN. 

One proposed method consists of the creation of the creation of a reduced 

training set for the K-Nearest Neighbor composed only by prototypical examples 

(Wilson and Martinez, 2000). 

Batista and Monard (2002) use, instead, an access method called M-trees, 

which can organize and search datasets based on a generic metric space. The 

authors explain how the M-trees methodology is able to reduce drastically the 

number of distance computations in similarity queries.  

 

2.6 Non-negative matrix factorization 
 

Non-negative matrix factorization approach consists of a matrix 

decomposition applied to decompose a non-negative matrix into two low-rank 

non-negative matrices (Li and Ngom, 2013), which has been successfully applied 

in the mining of biological data. 

The standard-NMF3decomposes a non-negative matrix X into two non-

negative factors A and Y, that is: 

 

 

 

 

 
3 Non-negative matrix factorization 
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𝑋+ =  𝐴+𝑌+ + 𝐸 

 

 

Referring to the above equation, the term E represents the error (or 

residual), while M+ indicates that the matrix M is, as assumed above, non-

negative. Then, the optimization for such matrix in the Euclidean space is 

formulated as follows: 

 

 

min
𝐴,𝑌

1

2
‖𝑋 − 𝐴𝑌‖𝐹

2 , 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝐴, 𝑌 ≥ 0 

 

 

From a statistical point of view, the above formulation is obtained, under 

the relevant assumption of a Gaussian error, from the so-called log-likelihood 

function. 

Moreover, assuming that the multivariate data points are arranged in the 

columns of X, then A becomes the so-called basis matrix while Y is called the 

coefficient matrix; therefore, each column of A is a basis vector. In this context, 

each data point is therefore a non-negative linear combination of the basis 

vectors.   

Since the above-mentioned optimization problem is a non-convex 

optimization problem, the main prescribed optimization technique to solve it is 

the so-called block-coordinate descent algorithm (Li and Ngom, 2013), which, 

even if relatively easy to implement, is not guaranteed to converge to a stationary 

point. 

A drawback of the standard-NMF method is that it only works for non-

negative data, obviously leading to limits in its applications. 

To this purpose, Ding et al. (2010) extended the framework to the so-called 

semi-NMF, which peculiarity is to remove the non-negativity constraint on the 

data X and the basis matrix A. Semi-NMF can therefore be expressed as follows: 
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min
𝐴,𝑌

1

2
‖𝑋 − 𝐴𝑌‖𝐹

2 , 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑌 ≥ 0 

 

 

Since semi-NMF can be applied to matrix of mixed signs, it allows to 

extend the framework of NMF to various fields. 

Brunet et al. (2004) and Kim & Park (2007) implemented a NMF 

methodology as a clustering method in order to discover the metagenes4 and 

interesting molecular patterns. 

Carmona-Saez et al. (2006) proposed an implementation of non-smooth 

NMF (NS-NMF) to study the biclustering of gene expression data; while Wang 

et al. (2006) provided a least-squares NMF (LS-NMF) to take into account the 

uncertainty of information characterizing the gene expression data. 

In the end, Li and Ngom (2012) proposed kernel-NMF for reducing 

dimensions of gene expression data. 

However, most authors provide their own NMF implementation with their 

publications so that the scientific community may use such implementations to 

re-perform such data mining tasks. However, it is important to point out some 

issues which prevent researchers and practitioners in the fields of data mining, 

biological, health medical and bioinformatics areas from using such 

implementations in a complete way. 

The first relevant issue consists of the fact that the above-mentioned NMF 

techniques usually reveal to be implemented in different programming languages, 

such as R, MATLAB, C++ and Java, with only one optimization algorithm 

usually provided in the publication. Therefore, for a researcher who wants to 

choose an appropriate and suitable mining method for the data under analysis it 

is difficult to choose the appropriate control parameters and criteria. 

Another relevant drawback derives from the way in which the authors 

usually provide their implementations: in most of the cases, scientific papers only 

provide NMF optimization algorithms at a basic level and not data mining 

 
4 E.g., groups of similarly behaving genes 
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implementation at higher level, making it harder for a researcher to properly 

investigate and understand the data under analysis. 

In the end, the currently existing in literature NMF implementations are 

application-specific: it does not exist a systematic NMF implementation or 

package with the aim to perform recurring data mining tasks on biological data. 

Even if there exists some NMF toolboxes, as of now there is not any of 

them which is able to solve the above-mentioned three issues altogether.
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Chapter III 

 

Techniques of multiple 

imputation 

 
Multiple imputation consists of more sophisticate techniques to handle the 

presence of missing data in large datasets in the framework of statistical 

inferential analyses. In the next section, an overview of such statistical 

methodologies will be provided together with some real examples of application. 

 

3.1 The multiple imputation procedure 
 

Multiple imputation methodology consists, substantially, of a two-stage 

process. 

In the first stage, the missing values that the researcher is dealing with are 

imputed by sampling from an imputation model. 

Such model should, therefore, include all variables characterizing the 

analysis model (outcome, exposure, confounders), as well as additional – at least 

partially – observed covariates which are not originally included in the model 

under analysis but that are assumed to be associated with the variables affected 

by missing data. These additional covariates are called, in this framework, 

auxiliary variables.  

Then, the above-mentioned imputation process is repeated multiple times: 

in this way, a number of completed datasets are implemented (Figure 3.1) with 

the aim to capture the uncertainty characterizing the missing values. 
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Illustration of the method of multiple imputation. 

 

 
Figure 3.1. Source: Lee and Simpson, 2014, “Introduction to multiple imputation for dealing with missing 

data” 

 

 

In such illustration, each box represents a given data point, characterized 

by columns representing variables and rows representing individuals. In the end, 

intuitively, blank spaces represent missing values. 

βi represents the estimate of interest characterizing a given completed 

dataset I, while βMI is the estimate obtained from multiple imputation. 

The second stage is characterized by the fact that the analysis of interest is 

performed on each one of the completed datasets, constituted by the observed and 

the imputed values. 

Then, the final MI1 estimate is defined as the average of the estimates 

derived from each completed dataset (Kasza and Wolfe, 2014). 

Moreover, it is possible to state that the standard error characterizing the 

multiple imputation estimates incorporates both the uncertainty in the estimate 

within the completed datasets and the uncertainty across the completed datasets 

due to the missingness (Lee and Simpson, 2014). 

When applying a multiple imputation method, it is necessary to consider 

that the results will be affected by two typologies of uncertainty: 

 
1 Multiple Imputation 
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• Uncertainty within imputation, represented by the confidence 

intervals; 

• Uncertainty between imputation, consisting of a horizontal shift 

between results. 

 

A standard procedure may consist of simply considering the mean of the 

results deriving from separate analyses: such method is called pooled point 

estimate. However, applying such technique, it is likely that the averages 

confidence intervals underestimate the total variation (made up by uncertainty 

within imputation and uncertainty between imputation). 

In such framework, Rubin (1987) proposed the so-called Rubin’s rules to 

pool results from analyses of multiply imputed data. In order to present such 

rules, it is necessary to define the following quantities: 

 

• m represents the number of imputed datasets; 

• Ql  is the quantity of interest from l-th imputation; 

• Ul  represents the variance of Ql. 

 

In such framework, the pooled parameter estimate is calculated as follows: 

 

�̅� =  
1

𝑚
∑ �̂�𝑙

𝑚

𝑙=1

 

 

Then, the variance characterizing the above pooled parameter estimate is 

obtained, from the within and between imputation variance, according to the 

following equation: 

 

𝐵 =  
1

𝑚 − 1
 ∑(�̂�𝑙 −  �̅�)𝑇 (�̂�𝑙 − �̅�)

𝑚

𝑙=1
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The total variance is, indeed, calculated as follows: 

 

𝑇 =  �̅� + 𝐵 + 𝐵 𝑚⁄  

 

As direct consequence of the presence of missing data, the variance will 

show an increase represented by the following parameter rm: 

 

𝑟𝑚 =  
(𝐵 + 𝐵 𝑚)⁄

𝑈
 

 

Moreover, it is possible to obtain confidence intervals characterizing 

pooled estimates by using the pooled standard error √𝑇 and a reference t 

distribution with the following degrees of freedom: 

 

𝑣 = (𝑚 − 1)(1 +  𝑟𝑚
−1)2 

 

Then, the 100% confidence interval is defined by the following expression: 

 

�̅�  ±  𝑡𝑣 (∝ 2⁄ )√𝑇 

 

Where 𝑡𝑣 represents the ∝ 2⁄  quantile of the t distribution characterized by 

v degrees of freedom. 

In such framework, the associated p-value is constituted by the following 

probability: 

 

Pr {𝐹1,𝑣  >  (𝑄0 − �̅�)2 𝑇⁄ } 

   

Where 𝐹1,𝑣 is a random variable characterized by an F distribution with 1 

and v degrees of freedom, while 𝑄0 represents the null hypothesis value (which 

is typically zero). 

Consequently, the multiple imputation methodology allows to produce a 

valid 95% confidence interval and p-value for the multiple imputation estimate 
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of the regression parameter under analysis. 

In a situation – the simplest case – in which missing data affect only a single 

continuous variable, the imputation model of interest simply consists of a linear 

regression model for the variable characterized by missing data, which is 

regressed on the other covariates used for imputation (therefore, the other 

variables present in the analysis plus the above-mentioned auxiliary variables). 

Instead, when missing data do not affect just a single variable, there are two 

main approaches which can be used to impute the missing values of interest. 

The first one consists of imputing the missing values by using a series of 

conditional regression models. In such framework, it is needed to set up a 

regression model for each variable affected by missing data, cycling through the 

regression models sequentially to impute the missing values for each variable, 

conditional on the imputed values for the other covariates characterized by the 

presence of missing data (Lee and Simpson, 2014). 

The second method consists, instead, of imputing all the covariates affected 

by missing values simultaneously, by using a joint normal distribution.  

It is important to point out that both the above-mentioned multiple 

imputation approaches are currently available in standard computerized statistical 

packages, such as Stata and SAS. 

Just like any of the above-mentioned single imputation methodologies, the 

multiple imputation procedure is characterized by both advantages and 

backwards. 

The first relevant benefit that multiple imputation procedure offers is 

reducing bias (Lee and Simpson, 2014). In some scenarios in which there may be 

differences among participants with and without missing data: for example, in 

medical research in the framework of a respiratory study, we may observe a 

situation in which the patients affected by asthma and/or allergies may be the 

ones to be more motivated to attend follow-up visits. In this case, conducting a 

simple complete case analysis may lead to obtain biased results, since it would 

be biased on a sub-sample which is not representative of the whole population of 

the study. 

If the missingness mechanism underlying the occurrence of missing data is 
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known and the missingness depends on the observed data and not on the 

unobserved ones, that is if MAR (with MCAR as special case) missing data occur, 

the multiple imputation procedure has the possibility to fill the missing values by 

using the observed data.  

Therefore, filling in the missing data enable to include all subjects in the 

analysis and allows to correct the bias that characterizes the complete case 

analysis. 

However, it is relevant to point out that such bias correction is possible only 

in the case in which there are appropriate auxiliary variables to include in the 

model used to impute the missing values. If this does not happen, analysis and 

imputation models reveal to be analogous.  

Whenever the missingness mechanism cannot assumed to be random, and 

therefore missing data behave as MNAR, multiple imputation still allows to 

reduce the bias deriving from a complete case analysis under the assumption to 

have auxiliary variables which are strong predictors of missingness. Indeed, some 

bias is very likely to remain since the estimation of the imputed values is based 

only on the observed data. 

The other main benefit characterizing the multiple imputation procedure 

consists of an improving in precision.  

In a situation in which missingness occurs completely at random (MCAR 

missing data) a complete case analysis leads to obtain unbiased results because it 

includes a random sample of the original study subjects and therefore a random 

sample from the population (assuming the randomness of the original sample 

with respect to the whole population). Even if these results reveal to be unbiased, 

a relevant aspect of the complete case analysis is that it is conducted throwing 

away some information about the study participants affected by missing values 

in one or more covariates of interest. Then, a complete case analysis may lead to 

obtain wide confidence intervals around parameters estimates, i.e., it might be 

inefficient.  

In this perspective, it is possible to state that the multiple imputation 

procedure can obtain narrower confidence intervals and consequently to obtain 

an improvement in efficiency. This is possible simply because the multiple 
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imputation methodology, for its nature, allows to include all the participants in 

the analysis. Then it is interesting to understand under which circumstances the 

implementation of a multiple imputation procedure can lead to a major (or minor) 

increase in efficiency. 

Multiple imputation may lead to a largest potential gain of efficiency over 

a complete case analysis in a framework in which the variables of interest, the 

exposure of interest and the outcome are all fully observed, but there are missing 

values in relevant confounders. In such case, excluding incomplete cases leads to 

a loss of information about the exposure-outcome relationship in cases in which 

the covariate is missing. Such information can, then, be recovered through the 

implementation of a multiple imputation mechanism. 

Instead, when a dataset is characterized by missing exposure or outcome 

values, multiple imputation reveals to be less likely to gain information about the 

exposure-outcome association, unless to be in the case in which there are some 

auxiliary variables which present a high correlation with the covariate affected 

by missing data (Lee & Carlin 2012, Marshall et al. 2010). 

In the end, the above-mentioned multiple imputation possible efficiency 

gain derives from the inclusion, in the imputation model, of the auxiliary 

variables. Therefore, the stronger reveals to be the association characterizing the 

incomplete variables and the auxiliary ones, the more the imputed values will be 

accurate and the more the multiple imputation methodology implemented will 

lead to an improvement in efficiency.  

However, it is important to point out that in real analyses it is needed to 

exist a reasonably strong correlation between the incomplete variables and the 

auxiliary ones to observe, after the application of a multiple imputation 

procedure, a relevant gain in efficiency with respect to a complete case analysis 

(Graham, 2012). Moreover, in most cases it is hard to observe variables 

characterized by such a strong correlation (Karahalios et al., 2010). 

In contrast to the above-mentioned advantages characterizing the multiple 

imputation procedure, it is relevant to point out the main drawback which may 

affect this type of methodology.  

Indeed, multiple imputation may introduce bias over a complete case 
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analysis if not carried out appropriately (Lee and Carlin, 2012). Specifically, 

when setting up the imputation model of the first stage of the multiple imputation 

process, there are some decisions which, if not taken in a proper way, may affect 

the validity of the inference results. 

A first feature to take into consideration is the share of missing data 

affecting the dataset under analysis. If a researcher has to deal with a lot of 

missing data, any bias deriving from the decisions of the setting up framework 

regarding the imputation model will inevitably be inflated since a large amount 

of data will be imputed based on a potentially mis-specified model (Rubin, 1996). 

The second relevant step regards the choice of the variables to include in 

the imputation model. Indeed, it is relevant to include all the covariates of the 

analysis model in the imputation model, plus any interaction term and the ones 

which may describe a nonlinear association, such as quadratics or logarithms 

transformations (Graham, 2012). If a researcher leaves one or more of these 

variables out of the imputation model, the inference results may be biased. 

Moreover, it is relevant to include auxiliary variables in the perspective of the 

recovery of information lost. 

The third relevant feature is about the inclusion of non-normally distributed 

continues variables into the imputation model. In this perspective, both the above-

mentioned methodologies of multiple imputation are characterized by the 

assumption of normality for continuous variables. In this perspective, including 

the original scale values of any non-normally distributed covariate in such 

imputation model may lead to obtain imputed values quite different from the 

observed ones. This may, consequently, lead to flow on effects to the inference 

obtained. However, it has been suggested that transforming data prior to 

imputation to improve normality may, on the other hand, lead to biased results in 

some cases (von Hippel, 2013). 

The fourth situation to take into consideration consists of the imputation of 

categorical variables when using a joint normal distribution. Indeed, since both 

main multiple imputation methodologies actually assume normality for all the 

variables present in the imputation model, it remains unclear, in this framework, 

which may be the best way to impute missing values affecting a categorical 
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covariate (Galati et al. 2012, Lee et al. 2012). 

Then, it is important to choose how to impute and analyze covariates 

characterized by a restricted range of values. In this perspective, various 

approaches have been suggested of the imputation and consequent analysis of 

restricted range variables (von Hippel 2013, Enders 2010, Royston et al. 2009). 

It is crucial to take into consideration that all five the above-mentioned 

potential issues should be considered prior to imputation and with respect to the 

dataset under analysis in the research. Indeed, the flexibility characterizing the 

multiple imputation process suggests that it would be desirable to have some 

expertise in the methodology prior to using it and making the above reported 

relevant decisions (Lee and Simpson, 2014). 

In the end, a relevant step consists of exploring the sensitivity of the 

obtained results to the decisions made in all the imputation process. Intuitively, 

the best scenario is the one in which all tested imputation models lead to the same 

general conclusion (Figure 3.2). 

 

 

Process for carrying out multiple imputation. 

 

 
Figure 3.2. Source: Lee and Simpson, 2014, “Introduction to multiple imputation for dealing with missing 

data” 
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3.2 Algorithms for multiple imputation 
 

Multiple imputation procedure can be implemented with the use of 

algorithm within several different package presents within various statistical 

software. 

In this perspective, Pampaka et al. (2016, “Handling missing data: analysis 

of a challenging data set using multiple imputation” provide a general overview 

of the main algorithms presented in literature to apply the multiple imputation 

methodology. 

First, it is relevant to specify that, while some authors (Schafer and Graham, 

2002) distinguish between multiple imputation and maximum-likelihood 

estimation2 approaches for dealing with missing data, Pampaka et al. assume the 

two methodologies to be interconnected, since maximum-likelihood usually is 

used for the estimation of the imputation model.  

Indeed, the essential element characterizing any approach is assumed to be 

the distribution of the observed data as a function of the population distribution 

(complete dataset) with respect to the missing values.  

Maximum-likelihood approach estimation is based on maximizing the (log 

of the) so-called likelihood function. In most situations, such maximization is 

computed in an iterative way by using the so-called expectation-maximization 

(EM) algorithm, a very established statistical technique.   

In general, maximum-likelihood methods summarize a likelihood function 

averaged over a predictive distribution for the missing values (Schafer 1999, 

Schafer and Graham 2002, Ibrahim et al. 2005). 

In the last decades, Bayesian3 multiple imputation methods are becoming 

more popular. These methodologies have the peculiarity to be performed using a 

Bayesian predictive distribution to generate the imputations (Nielsen, 2003) and 

 
2 Maximum-Likelihood estimation is a statistical method for estimating population parameters (i.e. mean 

and variance) from sample data that selects as estimates those parameter values maximizing the 

probability of obtaining the observed data 
3 Bayesian statistical methods assign probabilities or distributions to events or parameters (e.g. a 

population mean) based on experience or best guesses (more formally defined as prior distributions) and 

then apply Bayes’ theorem to revise the probabilities and distributions after considering the data, thus 

resulting in what is formally defined as posterior distribution 
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then specifying prior values for all the parameters of interest (Ibrahim et al., 

2005). Moreover, Schafer and Graham (2002) state that Bayesian methodologies 

bring together multiple imputation methods and maximum-likelihood methods. 

Such combination has been implemented in the last decades statistical 

packages: for example, Pampaka et al. (2016) in their work use a package called 

Amelia II.  

In general, King et al. (2001), summarize multiple imputation algorithms 

as follows: 

 

computing the observed data likelihood [ . . . ] and taking random draws from it, is computationally 

infeasible with classical methods. Even maximizing the function takes inordinately 

long with standard optimization routines. In response to such difficulties, the 

Imputation-Posterior (IP) and Expectation-Maximization (EM) algorithms were devised 

and subsequently applied to this problem. From the perspective of statisticians, IP is 

now the gold standard of algorithms for multivariate normal multiple imputations, in 

large part because it can be adapted to numerous specialized models. Unfortunately, 

from the perspective of users, it is slow and hard to use. Because IP is based on 

Markov Chain Monte Carlo (MCMC) methods, considerable expertise is needed to 

judge convergence, and there is no agreement among experts about this except for 

special cases. (54) 

 

Considering the above-reported issues, it has been developed the so called 

EMB algorithm, combining the typical EM4 algorithm with a bootstrap approach 

to take draws from the posterior distribution. Such new algorithm, therefore, 

expands the range of computationally feasible data types and sized to which it is 

possible to apply the multiple imputation methodology. 

Currently, in most used statistical software there are various packages to 

apply the multiple imputation method. 

In R, various procedures are available to perform imputation of missing 

values: 

 

• Amelia II (Honaker et al., 2011) 

• arrayImpute (Lee et al., 2009) 

• cat (for categorical-variables datasets affected by missing values; 

Schafer, 1997) 

 
4 Expectation-maximization 
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• EMV (for the Estimation of Missing Values for a Data Matrix; 

Gottardo, 2004) 

• impute (Hastie et al., 2014) 

• mi (Su et al., 2011) 

• mice (Van Buuren and Groothuis-Oudshoorn, 2011) 

• Hmisc (Harrell, 2008) 

 

Other tools for performing multiple imputations of missing data are 

available within other statistical packages such as ICE in STATA, the SAS PROC 

MI, Missing Data Library, and NORM for S-Plus and SOLAS. Moreover, 

multiple imputation may also be applied using MLwiN or SPSS (Pampaka et al., 

2016). 

Horton and Kleinman (2007, “Much Ado about Nothing: A Comparison of 

missing Data Methods and Software to Fit Incomplete Data Regression Models.”) 

applied imputation with Amelia II, Hmisc, mice and other statistical packages 

finding similar parameters estimates for all different analyses. Moreover, they 

obtained a relevant reduction regarding the standard error estimates with respect 

to the complete case analysis estimators.  

Hutcheson and Pampaka (2012) also published a practical tutorial about the 

imputation of missing data using Amelia II. 

Chhabra et al. (2017, “A Comparison of Multiple Imputation Methods for 

Data with Missing Values”) implemented in the statistical software R a 

comparison between six multiple imputation methods included in the imputation 

package mice: 

 

• Predictive Mean Matching 

• Multiple Random Forest Regression Imputation 

• Multiple Bayesian Regression Imputation 

• Multiple Linear Regression using Non-Bayesian Imputation 

• Multiple Classification and Regression Tree (CART) 

• Multiple Linear Regression with Bootstrap imputation 
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The results obtained by Chhabra et al. will be analyzed in the next section, 

in the framework of a brief overview of some relevant applications of the multiple 

imputation procedure in literature. 

A simple application of the multiple imputation methodology has been 

implemented using the above-mentioned package mice available in the statistical 

software R. 

Such package allows to implement a method to handle missing data by 

creating multiple imputation (replacement values) for multivariate missing data. 

The methodology applied by the package is based on Fully Conditional 

Specification technique, characterized by the fact that each incomplete covariate 

is imputed by a separate model. 

Moreover, the mice algorithm is able to impute mixes of continuous, binary, 

unordered categorical and ordered categorical data. Indeed, such package can be 

used to impute continuous two-level data maintaining consistency between 

imputations by means of the so-called passive imputation. 

For this example of application has been used the “nhanes2” dataset, that is 

a small dataset available in R designed for missing data examples. It is made of 

four variables, which are quantitative and binary (Figure 3.3). 

 

 

The nhanes2 dataset. 

 

 
Figure 3.3. 

 

 

Then, the mice function has been used to create the default five imputed 

datasets (Figure 3.4): 
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The mice function. 

 

 
Figure 3.4. 

 

 

Using the summary function, it is possible to have an overview of the tasks 

completed by the imputation method (Figure 3.5): 
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Summary of the imputation procedure. 

 

 
Figure 3.5. 

 

 

The above summary shows the number of imputed datasets (in this case, 

five), the imputation method used by the algorithm (for categorical variables a 

log regression since the data is not continuous) and, in the end, the predictor 

matrix which reports the variables used in predicting missing values for a specific 

variable (e.g., for age the model used all the other three included variables). 

Then, it is possible to run a standard regression using the above-reported 

imputed datasets. Specifically, it has been run a regression model which regresses 

chl on the covariates age and bmi (Figure 3.6). 
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Standard regression using the imputed datasets. 

 

 
Figure 3.6. 

 

 

In the end, it is possible to use the pool function to pool the regression 

results together over the five imputed datasets to obtain just a unique final result 

(Figure 3.7). 

 

 

Regression output after the application of the pool function. 

 

 
Figure 3.7. 
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3.3 Examples of application in literature 
 

In recent decades’ literature many authors have conducted research, 

belonging to many different fields, applying various multiple imputation 

methodologies to deal with missing information in the datasets under analysis. 

Shrive et al. (2006, “Dealing with missing data in a multi-question 

depression scale: a comparison of imputation methods”) compare six different 

imputation techniques for dealing with missing data in the Zung Self-reported 

Depression scale (SDS). 

The Self-reported depression scale questionnaire consists of a 20 question 

scale (Table 3.1). 

 

 

The Zung Self-rating Depression scale (SDS). 

 

 
Table 3.1. Source: Shrive et al., 2006, “Dealing with missing data in a multi-question depression scale: a 

comparison of imputation methods” 

 

 

 

As shown in the above table, each question has a score between 1 and 4; 

then, the sum of the responses is calculated. Moreover, such sum of scores across 

the 20 questions is converted to a 100-point scale by dividing the sum by 0.8. 

The participants of the study were 1931 surgical patients: among them, 
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1580 patients completed all 20 questions of the SDS5 questionnaire, while the 

remaining 351 did not fully complete the instrument. In detail, the quantity of 

missing values affecting the 351 subjects occasionally involved only one missing 

response in the entire instrument. Indeed, most participants were characterized 

by four or less missing items. 

  Considering the 1580 subjects who completed all the items of the 

questionnaire, the authors simulated missing values in these complete cases by 

assigning each observation a number between 0 and 1 selected in a random way 

from a uniform distribution (0, 1)6. Then, the assigned value was used to assign 

missing values to selected observations. 

Initially, the authors simulated three MCAR scenarios in which the 

probability of missingness is assumed not to be linked to any other patient 

characteristic. In such framework, observations assigned a value lower than 0.10 

were deleted, consequently simulating a study characterized by the missingness 

of 10% of the originally collected data. Then, for the subsequent MCAR 

simulations the threshold value was increased first to 0.20 and then to 0.30. In the 

end, subjects without deleted values were removed from the analysis, since they 

had no missing values to impute. 

Moreover, the authors considered an unbalanced MCAR scenario in which 

the probability of missing question 6 was 20%, while the same probability for the 

other questions was of 10%, Such simulation is referred to as the “Q6” 

simulation. 

Next, a MAR simulation was implemented, characterized by the fact that 

the probability of missingness was linked to known patient characteristics. 

Specifically, the probability of a missing value was linked to the subject’s gender 

of the patient: females over 65 were assigned a non-response probability of 20%, 

while for all the other patients such probability was assumed to be 10%. 

In the end, the authors considered a MNAR framework in which the 

probability of missingness is assumed to depend on unknown patient 

characteristics. In such context, all questions except for question 6 were assigned 

 
5 Self-rating Depression scale 
6 Each number between 0 and 1 is characterized by an equal probability of beign assigned 
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a missingness probability of 10%. Moreover, with a response to question 6 equal 

to 1 or 2, the probability of missingness for question 6 was assumed to be 5%, 

while with the above-mentioned responses being 3 or 4 the missingness 

probability for question 6 such probability increased to 20%.  

As tool for the analysis, Shrive et al. compared six different imputation 

methodologies: 

 

• Random Selection 

• Proceding Response 

• Question Mean 

• Individual Mean 

• Single Regression 

• Multiple Imputation 

 

As for multiple imputation, an experimental version of multiple imputation 

available in SAS 8.1 was applied. Moreover, the missing data are filled five times 

generating five unique and completed datasets, with each of them analyzed 

separately to calculate a mean and a standard deviation. The following step 

consists of combining the results from the different analyses to produce, for each 

missing value of interest, a mean and a standard deviation. In this context, the 

predictors used in the multiple imputation procedure to predict missing values 

were the responses to completed questions. 

A comparison between the six above-mentioned imputation method 

applied allows to state that the multiple imputation procedure reveals to be, 

without any doubt, the most accurate imputation methodology for this analysis 

(Table 3.2, Figure 3.8). 

 

 

 

 

 

 



59 
 

Diagnostic measures for imputation methods. 

 

 
Table 3.2. Source: Shrive et al., 2006, “Dealing with missing data in a multi-question depression scale: a 

comparison of imputation methods” 
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Predicted versus observed scores for each imputation technique with a probability of missing of 20%. 

 

 
Figure 3.8. Source: Shrive et al., 2006, “Dealing with missing data in a multi-question depression scale: a 

comparison of imputation methods” 
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Pampaka et al. (2016, “Handling missing data: analysis of a challenging 

data set using multiple imputation”) applied multiple imputation in the field of 

educational research. 

Specifically, Pampaka et al. conducted an analysis, in the context of UK 

schooling system. In particular, the authors were interested in modelling whether 

students dropped out of the mathematics courses they were enrolled on. The 

authors start from an existing original study (Hutcheson et al., 2011), in which 

such drop-out variable was found to be related to the typology of course they 

were on, their previous GCSE7 score in mathematics, their disposition to study 

mathematics at high level and their self-efficacy rating. 

Indeed, the analysis carried out by Pampaka et al. is restricted to the data in 

the model used in the above-mentioned original paper. 

First, the outcome variable of interest (the dropout) is modeled using the 

initial data affected by missing values (which amount to 495 out of 1374), then 

these results are compared to a model in which missing data are imputed 

(consequently, n = 1374). 

The results obtained carrying out the analysis, by the means of a logistic 

regression, using only the 495 completed data points are shown in Table 3.3:  

 

 

A logistic regression model of “dropout” using the 495 cases available at the end of the initial study. 

 

 
Table 3.3. Source: Pampaka et al., 2016, “Handling missing data: analysis of a challenging data set using 

multiple imputation” 

 
7 GCSE qualifications are usually taken at the end of compulsory education in a range of subjects. 

Students typically take about 8-10 of these in a range of subjects that must include English and 

mathematics. 
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However, since the missing data are unlikely to behave as MCAR, the 

above model is likely to provide a biased picture of the outcome variable of 

interest. In this perspective, the authors use a logistic regression to show the non-

random nature of the missing data which occur in this framework (Table 3.4). 

 

 

A logistic regression model of missingness on dropout variable. 

 

 
Table 3.4. Source: Pampaka et al., 2016, “Handling missing data: analysis of a challenging data set using 

multiple imputation”  

 

 

Considering such missingness mechanism, it is possible to state that the 

model shown in Table 3.3 is likely to overestimate the effect of the high-

achieving pupils. 

To address the potential bias characterizing the 495 subjects’ sample, 

Pampaka et al. imputed the 879 missing values using, in the statistical software 

R, the above-mentioned Amelia II package, which assumes that the complete data 

are multivariate normal, and that the missing data follow a MAR missingness 

mechanism. 

The above Table 3.4, together with Figure 3.9, show that the occurrence of 

missingness depends on GCSE grades, which is an observed variable. Moreover, 

Amelia II is assumed to be an appropriate package for this analysis because the 

missing values are binary. 
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Probability of providing information. 

 

 
Figure 3.9. Source: Pampaka et al., 2016, “Handling missing data: analysis of a challenging data set using 

multiple imputation” 

 

 

The imputation model included a number of variables available in the full 

dataset (Course, Disposition, GCSE-Grade, Maths Self Efficacy) plus some 

additional covariates such as information about EMA8, ethnicity, gender, 

Language, LPN9, uniFAM10 and HEFCE11. 

Amelia II imputed 100 separate datasets and, in order to get parameter 

estimates for the overall imputed model, such imputation models were combined 

 
8 i.e. whether the student was holding Educational Maintenance Allowance 
9 i.e. whether the student was from Low Participation Neighborhood 
10 Whether the student was not first generation at HE 
11 An ordered categorical variable denoting socio-economic status 
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obtaining the combined estimates and standard errors using the Zelig library 

(Owen et al., 2013) available in the R package. The overall statistics for the 

imputed models computed using such library are shown in Table 3.5. 

 

 

A logistic regression model of “dropout” using imputed data (n = 1374). 

 

 
Table 3.5. Source: Pampaka et al., 2016, “Handling missing data: analysis of a challenging data set using 

multiple imputation”  

 

 

Even if the conclusions for the model based on the imputed data are similar 

to the ones for the model affected by missing data (n = 495), it is important to 

notice the relevant difference found in the standard error estimates for the GCSE 

grades. In this sense, the model characterized by the use of the multiple 

imputation methodology allows for a better differentiation of the covariate 

“GCSE-grade”, leading to significant differences between more categories with 

respect to the initial model (the Higher B and Intermediate B groups are now 

significantly different to the reference category). 

As introduced in the previous section of this work, Chhabra et al. (2017, 

“A Comparison of Multiple Imputation Methods for Data with Missing Values”) 

apply six different multiple imputation techniques all available in the statistical 

package mice within the software R. Then, it is useful to provide an high level 

overview of some of the six multiple imputation methodologies (Predictive Mean 

Matching, Multiple Random Forest Regression Imputation, Multiple Bayesian 

Regression Imputation, Multiple Linear Regression using Non-Bayesian 

Imputation, Multiple Classification and Regression Tree (CART), Multiple 
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Linear Regression with Bootstrap Imputation). 

The Predictive Mean Matching technique consists of an attractive 

technique available for missing value substitution under the occurrence of 

quantitative variables. Such methodology uses the linear regression and the 

nearest-neighbor together to estimate the values of interest. 

Multiple Random Forest Regression Imputation is characterized by the fact 

that a forest of classification or regression trees is constructed using bootstrap – 

or subsamples of the original data and the majority vote or overall average of 

trees generate the prediction rule for the target variable (Chhabra et al., 2017). 

Multiple Classification and Regression Tree (CART) consists of an 

algorithm for both classification and regression, which makes use of decision 

trees that are binary to classify new data. 

In the end, Multiple Linear Regression with Bootstrap Imputation uses any 

test or metric which relies on random sampling with replacement. 

In their work, Chhabra et al. use iris dataset from UC Irvine Machine 

Learning Repository, composed by three classes, each one of them having 50 

cases. Moreover, the dataset is characterized by four continuous features (sepal 

width, sepal length, petal width, petal length) introduced artificially with a 

percentage of missing values around 20% (Figure 3.10). 
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Missing value mechanism in sample data. 

 

 
Figure 3.10. Source: Chhabra et al., 2017, “A Comparison of Multiple Imputation Methods for Data with 

Missing Values” 

 

 

Applying the six above-mentioned multiple imputation methods available 

in the package mice, the authors observed the performance shown in Table 3.6: 

 

 

Comparison of different Multiple Imputation methods. 

 

 
Table 3.6. Source: Chhabra et al., 2017, “A Comparison of Multiple Imputation Methods for Data with 

Missing Values” 
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Observing the above table, it is possible to state that standard error and 

mean confidence interval length is the least in the case of Multiple Imputation 

combined with Bayesian Regression. Moreover, the results obtained by applying 

the Multiple Random Forest Regression Imputation reveal to be quite similar to 

the ones obtained with the Multiple Bayesian Regression Imputation. 

In the end, the authors explain that a possible explanation driving the gain 

of efficiency applying the Multiple Imputation combined with Bayesian 

Regression is represented by the fact that such technique can make better use of 

the available data by accommodating nonlinearities among the predictors 

(Chhabra et al., 2017).

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



68 
 

Chapter IV 

 

Multiple imputation for 

different types of cross-

sectional data 

 
A relevant feature of the above-described multiple imputation techniques 

consists of the fact that such methodologies may be applied to a variety of 

different fields and situations.  

Among these, multiple imputation methods can be applied in context 

characterized by different types of cross-sectional data. 

In this perspective, in the next section will be provided an overview of the 

application of multiple imputation in situations in which multiple types of cross-

sectional data.  

Specifically, the following cross-sectional data frameworks will be 

analyzed: 

 

• Quantitative data 

• Binary and ordinal data 

• Unordered categorical data 

 

4.1 Quantitative data 
 

Multiple imputation procedure can be applied, first, to cross-sectional 

missing data which joint distribution can be considered to be multivariate normal 

(in this context, so-called quantitative data). 

Assuming to observe missing data characterized by a monotone missing 

pattern and by a MAR missingness mechanism (with MCAR as a special case), 

it is sufficient to use a regression-based imputation algorithm to fill in the missing 

values, as explained in detail by Carpenter and Kenward (2013) (Figure 4.1): 
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Regression imputation with a monotone missingness pattern. 

 

 
Figure 4.1. Source: Carpenter and Kenward, 2013, “Multiple Imputation and Its Application” 

 

 

In such framework, performing the above steps 1-2 for j = 2, …, p it is 

possible to obtain the first imputed dataset. Then, it is necessary to repeat the 

whole sequence to generate the successive imputed datasets. 

The second approach to deal with quantitative missing data consists of the 

so-called joint modelling. 

In such framework, no assumption is made about the missingness pattern 

underlying the missing data. However, the missingness mechanism is assumed to 

behave as MAR. 
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Then, the imputation model for the data is defined as the following 

multivariate normal model: 

 

𝑌 ∼  N(𝛽, Ω) 

 

Where Ω consists of the unstructured covariance matrix. In the end, for the 

imputation it is used the so-called Gibbs sampler. 

Another fundamental approach to handle quantitative missing data is the 

full conditional specification methodology. 

This method is originated by relaxing the assumption that all covariate 

values in the sequential regressions are actually observed. By relaxing such 

hypothesis, in literature was proposed an approach called imputation using 

chained equations (ICE), known nowadays as full conditional specification 

(FCS). 

Such methodologies have been proposed, among others, by van Buuren et 

al. (1999), Raghunathan et al. (2001) and van Buuren (2007). 

In such approach, the first thing that is necessary is to re-order the variables 

so that the missingness pattern is as close as possible to be a monotone pattern. 

Then, it is necessary to fill in the missing values for each variable, typically by 

simply drawing, with replacement, from the observed values characterizing each 

variable. 

In practice, the algorithm works as follows: 

 

1. It implements a regression of the observed part of the variable of 

interest an all the remaining ones, with the missing values set at 

their current imputed values; 

2. It imputes the missing values by using the regression imputation 

algorithm. 

 

  Running through for several times the two above-reported steps, it is 

called a cycle. After finishing the first cycle, all the initial starting values have 

already been replaced by the imputed values. 
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Then, it is necessary to run a number of cycles for the algorithm to 

converge. When this happens, the current values at that time originate the first 

imputed dataset. Such procedure is repeated for a desired number of times, with 

the imputed values stochastically independent from the first imputation. At the 

end, the desired number of imputed datasets is created from the algorithm. 

Indeed, such process is called “full conditional specification” because each 

covariate is imputed from its full conditional distribution on all the other 

variables. 

The three above-mentioned imputation methodologies may naturally be 

applied by researchers in statistical packages. 

The sequential regression imputation can be programmed in any one of the 

main statistical software. Moreover, such technique is available in SAS PROC MI 

(V9 onwards). It is relevant to point out that, since this method assumes that the 

missingness pattern is monotone, the software at the beginning checks for such 

assumptions and does not run if it is violated. 

As for the joint modelling approach, the earliest commonly used software 

implementing is considered to be the so-called Schafer’s NORM package 

(Schafer, 1997). Such package, which has been ported to R and S-plus, is also 

considered to be the inspiration for multivariate normal imputation available in 

SAS PROC MI and similar algorithms in Stata. In the end, the joint multivariate 

normal model may be applied also in Windows REALCOM-impute (Carpenter et 

al., 2011). 

Full conditional specification methodology is instead implemented by a 

SAS macro, IVEware, as well as in R with the two packages mice and mi. 

 

4.2 Binary and ordinal data 
 

The second typology of cross-sectional data for which it is possible to apply 

the multiple imputation procedure consists of binary and ordinal data.  

Considering this type of data, based on the different assumptions made on 

the characteristics of the missing values, it is possible to implement a number of 

approaches. 
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Assuming that the outcome variable of interest Yi is fully observed, that the 

missing data affecting the dataset behave as MAR (with, as usual, MCAR as 

special case) with missing values are characterized by a monotone missingness 

pattern, and that the dataset of interest is made by a mix of binary and continuous 

variables, the procedure is the following. 

First, it is necessary to put the variables in order to make a monotone 

missingness pattern, with first the fully observed covariates. Then, it is necessary 

to impute each partially observed variable in turn, conditional on previous 

covariates.  

The whole procedure needs to be repeated with the aim to generate 

successive imputed datasets. 

However, when missing data mechanism is characterized by a 

nonmonotone missing pattern, Carpenter and Kenward (2013) propose an 

approach consisting of treating binary, binomial and ordinal variables as 

continuous for the imputation purpose, and then in the imputed data to round their 

imputed values to the nearest valid discrete value before continuing to fit the 

model. 

Assuming those variables not to be affected by missing values, handle them 

as if they were continuous in the framework of a multivariate normal imputation 

yields that the distribution of the other covariates reveals to be conditioned on a 

linear function of them.  

Instead, in the case in which fully observed binary variables are formally 

modeled, in most applications the results are likely to be almost indistinguishable 

(Carpenter and Kenward, 2013). 

Specifically, Bernaards et al. (2007), considering the framework of binary 

data, propose and compare three methodologies to implement the above-

described procedure: 

 

• Simple rounding, consisting of simply round to the nearest of o or 

1; 

• Coin flip; 

• Adaptive rounding. 
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Carpenter and Kenward (2013) provide a detailed explanation for the 

functioning of the coin flip algorithm and the adaptive rounding algorithm 

(Figure 4.2): 

 

 

Coin flip algorithm and adaptive rounding algorithm. 

 

 
Figure 4.2. Source: Carpenter and Kenward, 2013, “Multiple Imputation and Its Application” 

 

 

Therefore, it is possible to state that adaptive rounding is quite similar to 

simple rounding: the main difference consists of the application of the above-

reported threshold. Indeed, for values closer to 0 or 1, the imputed binary 

variables will be characterized by a higher variability. 

Horton et al. (2003) anticipate bias in parameter estimates in the case in 

which simple rounding is applied. 

In this perspective, Bernaards et al. (2007) compare all three proposals in 

simulation studies and find that coin flipping performs worst, with adaptive 

rounding having a slight edge over simple rounding. Moreover, the adaptive 

rounding methodology reveals to perform satisfactorily in applications when the 

underlying probability is between 0.1 and 0.9. 
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A third relevant approach to handle binary and ordinal missing data consists 

of the so-called general location model. Such methodology to a joint imputation 

model for continuous and categorical data, described by Schafer (1997), makes 

use of the general location model provided by Olkin and Tate (1961). 

Such model consists of first separating the data into continuous and 

categorical variables. Then, for each cell of the contingency table which has been 

defined by the categorical variable, it is necessary to fit a separate multivariate 

normal model to the continuous variables. 

Another commonly used method to deal with binary and ordinal missing 

data consists of the full conditional specification approach.  

First, it is necessary to first order the variables of interest to obtain a 

missingness pattern as close as possible to be monotone. Then, it is needed to fill 

in the missing values of each variable. This is typically done by drawing with 

replacement from the observed values of the covariate of interest. In the 

following step, the algorithm works as follows: 

 

3. By the means of a logistic regression for the binary variables and of 

a linear regression for the continuous ones, it implements a 

regression of the observed part of the variable of interest on all 

remaining ones, which missing values are set at their current 

imputed values; 

4. It uses the appropriate regression imputation methodology 

(depending on the nature of the data) to impute the missing values 

of interest. 

 

Referring to such two steps, it is necessary to cycle through them until the 

algorithm looks lime to have converged to the stationary distribution. In the end, 

the current imputed values are kept to make the first imputed dataset. Such 

procedure is repeated several times, drawing each subsequent completed dataset. 

Referring to real applications, it is necessary to mention the potential for 

explicit or implicit over-fitting of models with a number of correlated binary 

variables.  
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In this perspective, it is relevant to understand how to apply the above-

mentioned methodologies in statistical packages. 

In the situation of sequential imputation of missing data characterized by a 

monotone missingness pattern and having a mix of binary and continuous 

variables, it is possible to use the linear and logistic model fitting software 

available in most statistical packages.  

In such framework, it is possible to avoid overfitting by simply checking 

that the results characterizing each regression model are sensible. It is important 

to point out that this check has to be done before starting the process of 

imputation. 

In the case of the joint multivariate normal approach, some statistical 

packages include automatic rounding; however, if a researcher wants to use the 

adaptive rounding, she/he will have to write an own post-imputation data step. 

An advantage of using the joint multivariate normal approach consists of the fact 

that it reveals to be more robust to perfect prediction errors. By the way, some 

issues may arise in the case in which the variables reveal to be highly corelated. 

It is possible to successfully address this problem by using a ridge parameter. 

Considering the full conditional specification algorithm, it is possible to 

use various statistical packages. Moreover, in Stata it is possible to implement 

automatic detection and adjusting for perfect prediction, even if it is relevant to 

point out that detection or perfect prediction is not guaranteed. 

 

4.3 Unordered categorical data 
 

Regarding the application of the multiple imputation procedure to 

unordered categorical data, in last decades the literature has provided many 

different possible approaches.  

Assuming, as in the two previous frameworks, to deal with missing data 

characterized by a monotone missingness pattern, it is possible to apply the 

above-described sequential imputation with a unique but relevant difference in 

the methodology: the logistic regression (which is used in the case of binary and 

ordinal data) is replaced with a multinomial logistic regression. 
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After having implemented such above-mentioned crucial substitution, the 

procedure for this approach reveals to be exactly the same as described in the 

previous section. 

Just like in the framework of binary and ordinal data, a second relevant 

multiple imputation methodology which can be used consists of the joint 

multivariate normal model. The main feature of applying multivariate normal 

imputation to categorical data is that, supposing to have a categorical variable 

characterized by M levels, it is necessary to generate M – 1 dummy variables 

indexing the categories of interest.  

Even if this approach has not been widely explored in literature, Carpenter 

and Kenward (2013) suggest that it is likely to perform in an acceptable way if 

applied in several practical settings. 

Another relevant methodology to deal with unordered categorical missing 

data is, as for binary and ordinal data, the general location model (Olkin and Tate, 

1961). 

However, with reference to this approach it is important to point out that 

the general location model is characterized by a saturated log-linear model the 

categorical variables and that, usually, both categorical and multivariate normal 

models need to be quite simplified before it is fitted. 

In the end, it is also possible to apply to such typology of missing data the 

above-described full conditional specification approach, but with some points of 

attention. 

First, when dealing with a M-level categorical variables which are included 

as predictors in the regression models constituting the full conditional 

specification, such covariates need to be included in the methodology as M-level 

categorical variables (that is, using M – 1 dummy indicators). 

Moreover, in the case in which the missingness pattern is actually 

monotone, an appropriately specified full conditional specification leads to have 

imputed data characterized by the same distribution of a hypothetical sequential 

regression imputation, once the former has converged. 

Regarding the application of the multiple imputation procedure to 

unordered categorical data, various statistical packages are available for 
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researchers. 

Schafer’s CAT package uses a joint log-linear model, which is extended by 

the so-called MIX package to a mix of categorical and continuous data by using 

the general location model (Schafer, 1999). Such packages have been ported to 

the software R. 

In the end, the full conditional specification algorithm is available both in 

Stata and R. 
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Conclusions 

 

 
As shown in chapter I, missing data (of any of the three main typologies 

presented) actually represent a major issue often affecting inferential procedures 

in many research fields. 

Taking this into account, in the last decades various techniques have been 

developed to handle missing data and, consequently, to obtain unbiased inference 

results. 

As for single imputation techniques, it has been shown that there exists a 

variety of different methodologies, based on different assumptions and statistical 

methods. Such approaches, even if still characterized by a number of not 

negligible drawbacks, under specific assumptions and situations are able to lead 

a researcher to obtain unbiased results. 

Multiple imputation procedure, on the other hand, can be considered as an 

improvement with respect to the single imputation techniques. Indeed, such 

methodology not only is able to lead to unbiased results but, in some 

circumstances, it allows to get a reduction in bias and/or a gain in efficiency. 

Moreover, since multiple imputation can be applied to different types of cross-

sectional data, it substantially represents a step forward regarding the possible 

fields of application. 

Even if it consists of a more accurate and precise methodology, it is relevant 

to point out that multiple imputation has not to be considered a miracle cure and 

that the door is still widely open for the implementation of new approaches and 

methodologies, also considering the continuous evolution of statistical software 

and packages that a researcher has available when conducting a study. 
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