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Abstract

In recent decades’ literature, missing data occurrence represented a major
issue in various fields of research. Considering that a partial loss of information
affecting the dataset under analysis may represent a relevant constraint when
conducting an inferential procedure, such topic has been in the recent years —and
is still nowadays — a relevant and common topic of discussion in the literature.

The first part of this work has the objective the provide a brief overview of
the main types of missing data and of the mechanisms which may be responsible
of such missing values. Given that the aim of an inference methodology is to
obtain unbiased results, it is particularly relevant to analyze statistical methods
which allow to handle missing data and to obtain such desired unbiased figures.
The second section of this paper provides therefore an overview of the main
single imputation techniques, which are able to fill in the missing values by the
use of a number of different statistical techniques. A more complex and accurate
imputation methodology is then represented by the multiple imputation
procedure, presented in chapter 111, which may also be applied to different types

of data as explained in the last section of this paper.



Chapter |

A general overview about the
Issue of missing data

In various types of statistical and inferential analysis, a phenomenon that
can frequently occur is the issue of missing data. It can appear in various forms
and with different characteristics, based on which it is necessary to equip oneself

in the best way to obtain unbiased results.

1.1 Missing data: reasons and definitions

In recent decades, the issue of missing data has acquired an increasingly
important role within the analyzes conducted by researchers in various fields. The
lack of some relevant information within a dataset can in fact easily lead, if not
managed in the best way, to obtaining biased results.

There are multiple possible reasons that can lead to missing data. In this
framework, the use of the term "possible” is not casual but takes on a precise
meaning: when the data is only partially observed, it is very difficult to have
precise knowledge of the mechanisms that can lead to missing data. It is therefore
possible to formulate a series of hypotheses regarding the mechanism of causality
underlying the phenomenon, provided they are consistent with the data analysed.

Moreover, in each dataset there are, as respondents, some units which are
asked to provide information about a series of items. In a classic individual
questionnaire, the unit consists of the individual while the item is represented by
the answers to the questions asked.

In this sense, it is important to distinguish between two types of missing
data. The first one, called unit nonresponse, consists of a situation in which all
the responses of a specific unit are missing: substantially, in the previous
example, there will be no information available regarding a specific individual.

The second typology is represented by the item nonresponse, in which one



or more units provide only a part of the requested information (e.g., an individual
who does not respond to one or more questions in a questionnaire).

In addition to correctly managing the presence of missing data within a
dataset, it is particularly important to understand the origin of the phenomenon
in question.

Missing data can then be classified according to the assumptions
underlying the “missingness” mechanism, that is, the assumed mechanisms that
are believed as causing the data to be missing (Pampaka et al., 2016).

Missing data mechanisms are described as falling into one of the three
categories briefly described below (Allison, 2000), which sometimes are called
“distribution of missingness” (Schafer and Graham, 2002):

e Missing Completely At Random (MCAR): independence is
assumed between the missingness and observed and missing
responses. That is, every case is characterized by the same
missingness probability.

e Missing At Random (MAR): the missingness is assumed to be
conditional independent of the missing responses, given the
observed responses. Therefore, the probability of observing missing
data regarding a particular variable of interest may depend on other
observed variables, but not on such variable itself.

e Missing Not At Random (MNAR): missingness depends on both
observed and unobserved (missing) data.

Missing data are called Missing Completely At Random (MCAR) if, given
a certain value, the probability of it being missing is assumed to be unrelated to
the observed and unobserved data on that unit (Carpenter and Kenward, 2013).
When MCAR data occur, there is no relation between the chance of the data being
missing and the values: the observed data are therefore representative of the
population of interest but, of course, the fact that some information has been lost
has to be taken into consideration.

MCAR data, in real world experiments, may arise in a lot of potential
situations. In medical research it may consist in a tube containing a blood sample

of a study subject broken by accident (such that it is not possible to measure the



blood parameters of interest) or in an accidental loss of a questionnaire of a study
subject (Donders et al., 2006), while in educational research we may observe a
situation in which — conducting some sort of school study — some pupils might
be missing from a sample because they might have been away for school for
random and unpredictable reasons (Pampaka et al., 2016).

Data are said to be Missing At Random (MAR) if given, or conditional on,
the observed data the probability distribution of the missing data is independent
on the unobserved data (Carpenter and Kenward, 2013).

In MAR data framework, missing data depend on known values and they
are, consequently, fully described by the variables actually observed in the
dataset. Missingness does not depend on the variable of interest: it could instead
depend on the other variables which are observed. Therefore, accounting for
values “causing” MAR data will result in obtaining unbiased results (Wayman,
2003).

In real world studies, Missing At Random data are likely to occur in a
variety of different fields. In medical research, MAR data could take the form of
older patients who might be more likely to miss “insurance” than younger ones:
in this framework, “insurance” will be MAR if the study of interest has collected
the age for all the subjects of the study (He, 2010). In educational research we
may observe MAR data in a situation in which, in a school survey, a part of pupils
may be missing because they are representing their school in some sort of
competition.

If in a dataset we observe missing data which cannot be classified as MCAR
nor MAR, then these data are called Missing Not At Random (MNAR). In this
framework, the probability of an observation being missing depends on the
underlying value, and this dependence remains even given the observed data
(Carpenter and Kenward, 2013).

In this situation, the reason leading to missing data is not completely at
random and is related to patient characteristics which are not observed.

When a MNAR data mechanism occurs, it leads to a relevant loss of
valuable information and there is no universal method of handling in a proper

way the missing data (Donders et al., 2006).



This typology of missing data, in real world studies, reveals to be
observable in many different fields. In the framework of a socio-economic study,
MNAR data may occur in a situation in which asking for a subject for his or her
income level missing data may be more likely to occur when the income is
relatively high (Donders et al., 2006). In such case, the probability of nonresponse
characterizing the income variable depends on values which might be missing.

In educational research, we may observe MNAR data in a school study
when pupils might not respond to sensitive questions about their special
educational needs, supposed to be related to the outcome variable of interest
(Pampaka et al., 2016).

To conduct correct statistical inferences leading to unbiased results, it is
crucial to understand of which class the missing data mechanism falls into.

Under MNAR data mechanism, from the observed data something is not
available to the researchers conducting the study of interest. Therefore, it is
possible to state that MAR data can never be proved or falsified using data alone
(He, 2010).

In many situations, however, it is actually possible to test if missing data
belong to MCAR class. If for some variable there exist meaningful differences
between the subjects with and without missing data, it is possible to state that the
missing data of interest are not driven by a MCAR mechanism.

Under MAR assumptions (including MCAR as special case) it is possible
to ignore missingness models and focus on the missing-data models, while in
MNAR framework generally it is necessary to specify missingness models to
obtain the correct inferences.

When dealing with missing data, it is necessary to adopt adequate
techniques in order to handle in a proper way the data issue. Moreover, in last
decades literature have been provided some basic recommendations as to what
should be done about missing data (Pampaka et al., 2016):

e Always report details of missing data.
e Adjust results for what is known about the missing data, if possible.
e Report the sensitivity of the reported results to the distribution of

missing observations.



1.2 Some examples and main implications for inference

In real-world analyses, it may be necessary to deal with the issue of missing
data in a plurality of situations belonging to various fields of research. In such
contexts, it is therefore necessary to understand the possible mechanism driving
to missing data and, consequently, to handle their presence in a proper way to
obtain correct and unbiased results.

In this perspective, in the last decades the literature has provided examples
of real-world studies in which such issues are — or may be — present in different
forms and with different classifications (MCAR, MAR, MNARY).

The aim of this section is to present a brief overview on some relevant
missing data real-world reported — or potential — situations that the literature has
provided in the last twenty years, for each of the main three categories of missing
data cited above?.

One of the main fields in which missing data reveals to be a common issue
consists of the medical research. In this perspective, a first relevant work is the
one by Donders et al. (2006, “Review: A gentle introduction to imputation of
missing values). In the first section of the paper the authors explain the split of
missing data in the three main categories, for which one of them they provide
examples of real-world medical research situations in which data may miss due
to specific reasons.

According to the authors, typical examples in which MCAR missing data
— characterized by the fact that subjects who have missing data are a random
subset of the complete sample of subjects — are the accidental breaking of a tube
containing a blood sample of a study subject (making it impossible to measure
the blood parameters of interest) or an accidental loss of a questionnaire of a study
subject. In these two situations it is possible to state that the reason for
missingness is completely random and that the probability that an observation is
missing is not related to any other patient characteristics. Therefore, the set of

subjects with no missing data will undoubtedly be a random sample from the

! Missing Completely At Random, Missing At Random, Missing Not At Random
2MCAR, MAR, MNAR



source population. We may instead observe the occurrence of MNAR missing
data — in the framework of which the probability that an observation is missing
depends on information that is not observed — when, asking a subject about her
or his income level, missing data may be more likely to occur when the
underlying income level is high. In such framework the reason for missingness is
therefore related to patient characteristics that cannot be observed. MAR missing
data, which reason for missingness is based on other observed characteristics,
need to be handle with care: missing data can indeed be considered random
conditional on these other patient characteristics that determined their
missingness and that are available at the time of analysis (Rubin, 1976). In this
sense, Donders et al. provide a practical example: if, in a medical research
framework, the aim is to evaluate the predictive value of a diagnostic test of
interest and the results of the tests are known for all the diseased subjects but
unknown for a random sample of non-diseased subjects, then such missing data
fall into the classification of MAR because, conditional on observed patient
characteristics, missing data are random (provided that missingness does not only
depend on the outcome variable).

He (2010, “Missing Data Analysis Using Multiple Imputation — Getting to
the Heart of the Matter”), to explain the difference between the three main
categories of missing data, considers the study of Huskamp et al. (2009), who
investigated the patterns of hospice discussion with providers by patients with
late-stage cancer. In this study, the authors use data collected from a multisite
cohort study of care for patients with lung or colorectal cancer by the Can-CORS
Consortium®. In such dataset, as typically happens in any large health or social
dataset, a substantial amount of missing data may occur, characterized by no
systematic pattern. In the example provided by the authors, the fractions of
missing observations range from 0.04% to 19.48% for the variables, including
both the predictors and the outcome. The relevance of this phenomenon is
confirmed by the fact that removing from the dataset the patients with missing
data would result in a loss of around 30% of the sample, inevitably leading to a

massive issue about the validity of the obtained results.

3 Cancer Care Outcome Research and Surveillance Consortium



Some lines of such dataset are shown in Table 1.1, in which the missing

data are the elements that we do not observe, marked by question marks.

Missing Data Matrix.
Myocardial Heart incoms,
Subyact Infarction Falure Stroka $1000 Aoz, y
1 Yes No No =20 56-60
2 Yes No No =20 56-60
3 No Yes ? ? 7680
4 ? Yes No 2040 ?
5 ? No ? ? 7

7 indicates unknown

Table 1.1. Source: He, 2010, “Missing Data Analysis Using Multiple Imputation — Getting to the Heart of the

Matter”

Moreover, the author provides, for each of the main three missing data
classifications*, examples of reasons that can lead to missingness in the dataset
of analysis. MCAR missing data, in the context of analysis, may be difficult to
observe because most missingness is not completely random: older patients, for
example, are more likely than younger ones to have nonresponse on either
income or insurance questions. We may instead observe MAR missing data,
which rely on the more general assumption that the probability a variable is
missing depends only on the observed characteristics, in the case in which older
patients might be more likely to miss “insurance” with respect to younger
patients. In this framework, the variable “insurance” is said to be MAR if the
study has collected information on age for all patients in the sample. MNAR
missing data may instead arise when people with higher income are less likely to
reveal them; therefore, the probability of nonresponse for the variable “income”

depends on values that are or can be missing.

4 Missing Completely At Random, Missing At Random, Missing Not At Random
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One of the most important references in terms of missing data consists in
the book “Multiple Imputation and its Applications”, published by James R.
Carpenter and Michael G. Kenward (Department of Medical Statistics — London
School of Hygiene and Tropical Medicine, UK) in 2013.

In the first section of the book the authors provide an overview of the
differentiation between the different categories of missing data with some
examples of application.

The first one consists of the so called “Mandarin tableau”: in Figure 1.1 it
is shown part of the frontage of a senior mandarin’s house in the New Territories,

Hong Kong.

Detail from a senior mandarin’s house front in New Territories, Hong Kong. Photograph by H.
Goldstein.

Figure 1.1. Source: Carpenter and Kenward, 2013, “Multiple Imputation and its Application”

Assuming that interest is about the figurines’ characteristics — such as their
number, height, facial characteristics, and dress — unit nonresponse will

correspond to missing figurines, while item nonresponse will arise in the case of
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damages figurines. In this example, if the aim is to summarize facial
characteristics of the figurines and missing heads are supposed to behave as
MCAR missing data, from the observed heads a valid estimate is obtained, even
if imprecise compared to an estimate obtained observing all the heads. On the
other hand, a MAR classification would imply to assume that the distribution of
head characteristics given body characteristics does not depend on whether the
head is present. Therefore, under this assumption, it would be possible to estimate
the distribution of the characteristics of the figurines with missing heads from the
ones with similar body characteristics. Completely different scenario is the one
in which we assume to have MNAR missing data: in this case, it would be
possible that the figurines with missing heads were wearing some sort of head
dress which identified them as a member of some class or group which was the
cause for the heads to be smashed. Under this mechanism, it is not possible to
state anything about typical characteristics of head dress without making
assumptions (which, of course, cannot be verified) about the characteristics of
the missing head dresses. Moreover, this type of assumption implies a different
distribution of head dress given body dress for the figurines with and without
heads.

Carpenter and Kenward provide then another fundamental example of real
missing data scenario. The framework is the one of YCS® of England and Wales,
an ongoing UK government funded representative survey of pupils at school-
leaving age (School year 11, age 16-17)°. The authors consider a harmonized
dataset deposited by Croxford et al. (2007) that comprises YCS cohorts from
1984 to 2002 and consider data from pupils attending comprehensive schools
from five YCS cohorts and who reached the end of Year 11 in 1990, 1993, 1995,
1997 and 1999.

In Table 1.2 it is possible to observe the covariates from the YCS
considered by the authors; the variables “cohort” and “boy” do not present any

missing data.

>Young Cohort Study
® UK Data Archive, 2007

12



YCS variables for exploring the relationship between Year 11 attainment and social stratification.

Variable name Description

cohort year of data collection: 1990, 93, 95, 97, 99

boy indicator vanable for boys

occupation parental occupation, categonised as managerial,
intermediate or working

ethnicity categorised as Bangladeshi, Black. Indian,

other Asian, Other, Pakistani or White

Table 1.2. Source: Carpenter and Kenward, 2013, “Multiple Imputation and Its Application”

Moreover, the pattern of missingness for GCSE’ score and the remaining
two variables are shown in Table 1.3. It is important to point out that, in this

example, it is not possible to re-order the variables to obtain a monotone pattern.

Pattern of missing values in the YCS data.

Pattern GCSE score Cccupation Ethnicity Mo % of total
1 55145 BT%
2 6821 1%
3 697 | %
- 592 | %

Table 1.3. Source: Carpenter and Kenward, 2013, “Multiple Imputation and Its Application”

In this study, if missing data are assumed to be of MCAR typology, it would
be possible to obtain valid inference results from the 55145 complete records
(Table 1.3). However, without having the data for the 8110 individuals
characterized missing data, the partial loss information would lead to less precise
results with respect to the case of no missing data.

Another relevant real case of missing data provided by Carpenter and

7 General Certificate of Secondary Education

13



Kenward is the “Randomized controlled trial of patients with chronic asthma”.
In this framework, the authors consider data from a 5-arm asthma clinical trial to
assess the safety and efficacy of budesonide, a second-generation
glucocorticosteroid, on 473 patients with chronic asthma who were enrolled in
the 12-week randomized, double-blind, multi-centre parallel-group trial, which
compared the effect of a daily dose of 200, 400, 800 or 1600 mcg of budesonide
with placebo. The principal outcomes of clinical interest include patients’ peak
expiratory flow rate® and their FEV:°. The trial found a statistically significant at
a 95% confidence level dose-response effect for the mean change from baseline
over the study for both morning and evening peak expiratory flow and FEV 1.

The aim of the study was to compare FEV1 across treatment arms at 12
weeks; however, excluding 3 patients with intermittent participation in the study,
only 37 out of 90 patients in the placebo arm, and 71 out of 90 patients in the
lowest active dose arm, at twelve weeks had remained in the trial.

The withdrawal pattern for the placebo and lowest active dose arms is
shown in Table 1.4. It is possible to observe that the missingness pattern is

monotone in both treatment arms.

Asthma study: withdrawal pattern by treatment arm.

Crropout pattern Placebo arm

Mean FEV, (litres) measured at week Number Percent

0 2 4 8 12
1 ! kT) 41
2 - 15 17
3 22 24
4 16 18
Lowest Active arm
1 71 e
2 8 o
3 8 o
-4 3 3

Table 1.4. Source: Carpenter and Kenward, 2013, “Multiple Imputation and Its Application”

8 The maximum speed of expiration in litres/minute
% “Forced Expiratory Volume”: the volume of air, in litres, the patient with fully inflates lungs can breathe
out in one second
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In this study, if missing data are assumed to be MCAR, it is possible to get
a valid estimate of the overall mean in each group at 12 weeks by averaging the
37 available observations in the placebo group and the 71 in the active group,
obtaining respectively 2.05 litres (s.e.1° 0.09) and 2.23 litres (s.e. 0.10) leading to
a treatment effect of 2.23 — 2.05 = 0.18 litres.

However, is a MNAR mechanism is assumed to drive the missing data, it
is possible to assume a pattern mixture model and the treatment effect varies as
we move away from the MAR mechanism assumption (Figure 1.2). Moreover,
since the placebo group is characterized by many more missing patients, the
treatment effect estimate reveals to be much more sensitive to departures for

MAR in such group.

Contour plot of the difference in average FEV (litres) between active and placebo groups, as we move
away from MAR. Under MAR, the difference is 0.18 litres.
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Figure 1.2. Source: Carpenter and Kenward, 2013, “Multiple Imputation and its Application”

Regarding the same topic, another relevant publication consists in the paper

by Katherine J. Lee and Julie A. Simpson (2014, “Introduction to multiple

10 Standard error



imputation for dealing with missing data”). Indeed, the aim of such work is to
estimate whether current asthma status is associated with FEV1, after adjusting
for some covariates as age, gender, socio-economic status, smoking status,
height, and waist circumference by the means of a multivariable linear regression
(Kasza and Wolfe, 2014).

Lee and Simpson use a random data sample from the fifth decade of follow-
up from the TAHS!, a population-based longitudinal cohort study of 8683
children born in 1961 and attending school in Tasmania in 1968.

Considering such dataset, waist circumference data were not available for
approximately one quarter of the subjects, leading to a material loss of relevant
information. Moreover, the analysis is restricted to 316 TAHS participants with
complete data on all the covariates except from waist circumference. A brief
overview of the results obtained by Lee and Simpson will be provided later in
this work, when various techniques to deal with missing data in large dataset will
be analyzed.

Maria Pampaka, Graeme Hutcheson and Julian Williams (2016, “Handling
missing data: analysis of a challenging data set using multiple imputation)
provide some real-world scenarios in which different forms of missing data may
arise in educational research.

The authors explain how, in the context of a school survey, different
missingness mechanisms can lead to different missing data categories: if, for
example, a researcher gets permission to administer a questionnaire about
bullying to the students during class time, on the administration day there are
various scenarios which could verify:

e some students may not have been present at random without any
predictable reason;

e some pupils may have been absent because that day they might be
representing their school in some sort of competition, being them
the most engaged and keenest;

e some students may choose not to respond to some particular

guestions, maybe because they are the ones being bullied or because

11 Tasmanian Longitudinal Health Study
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they may have special needs.

Each one of the three situations above would therefore lead to a different
category of missing data. MCAR missing data, for which all the cases are
characterized by the same probability of being missing, may arise in the situation
in which the students are missing from school for random and unpredictable
reasons: the missingness is said to be independent of the observed and missing
responses. In the second framework, in which some pupils may be absent because
of representing their school in some sort of competition, missing data would be
classified as MAR: missingness does not depend on the variable of interest but it
could actually depend on other observed variables. In the last situation, in which
a number of students choose not to respond to specific sensitive questions about
their special educational needs (which are assumed to be also related to the
outcome variable of interest), MNAR missing data would instead be observed
because missingness would depend on both observed and unobserved
information.

Jeffrey C. Wayman, in the paper “Multiple Imputation For Missing Data:
What Is It And How Can I Use It’”, presented at the 2003 Annual Meeting of the
American Educational Research Association (Chicago, Illinois), provides
another relevant example of missing data issue in the framework of educational
research.

Wayman uses a dataset coming from a large United States school district;
variable of interest are: a participant’s grade, gender, participation in special
education, NCE*? on a nationally-administered reading test, and row score on a
locally-administered reading test. The author explains how local test scores
ranged between 232 and 430, however approximately 95% of the data points fell
between 303 and 383 and therefore the sample was restricted to such observations
in order to provide the clearest possible explanation. Moreover, it was decided to
include participants with grades 6, 7, or 8, and with no missing responses for
gender, special education status, and local reading test score. With these
adjustments, the sample resulted in 19373 subjects, of which 2896 (15%) had

missing information about the national test score (Table 1.5).

12 Norman curve equivalent
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Description of the sample.

Wariable N Average NCE for Percent Missing
National Test National Test
Grade
6 5897 (30%) 3950 11%
7 7002 (36%) 3818 17%
8 6474 (33%) 3879 16%
Special Education
Yes 3657 (19%) 2047 22%
No 15716 (81%) 42.68 13%
Gender
Male 0888 (51%) 36.85 18%
Female 0485 (49%) 40.76 12%
Local Test =167
Total 19373 38.83 15%

Table 1.5. Source: Wayman, 2003, “Multiple Imputation For Missing Data: What Is It And How Can |

Use It?”

Missing data bias reveals to be evident because special education students,

males and pupils who had bad results on the local test typically reveal to do worse

on the national test. Moreover, these groups of subjects are the ones who are more

likely to present missing data. With this purpose, Table 1.6 reports a subset of

participants from the dataset under analysis.
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Selected data from the full dataset.

Grade Gender Special Ed  Local Score  National Score
8 F no 345 Missing
8 M no 325 30
8 M no 308 18
8 M yes 300 Missing
8 M no 369 40
8 F yes 360 10
7 F no 314 45
7 M yes 291 Missing
7 F no 303 10
7 F no 407 a2
7 M no 375 03
7 F no 3 Missing
6 F no 348 56
o M yes 383 32
o F no 376 60
] F no 310 Missing
] F no 383 Missing

Table 1.6. Source: Wayman, 2003, “Multiple Imputation For Missing Data: What Is It And How Can | Use It?”

Having observed, through a general overview of recent relevant literature,
how frequently missing data can appear in various types of analyzes belonging
to a variety of research fields, it is also important to understand the impacts of the
lack of information on the main statistical inference techniques.

In a framework in which some sort of missing data arises, it is necessary to
have some specific assumptions under which computational methods lead to
valid inference. Therefore, in this context, it is easy to observe misleading
inference processes.

The missingness mechanism leading to missing data issue is usually
unlikely to be definitively identified from the observed data, even if the latter
may indicate possible plausible missing data mechanisms. Therefore, it is needed
to take into account some sort of assumption about the missingness mechanism
underlying the data in order to be able to draw statistical inference.

Even if some assumptions can be made about the reason underlying missing
information in the dataset, it is important to point out that the precise mechanism

causing the missing data can rarely be definitively established: with the aim to
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verify the robustness of an inference to a range of different possible missingness
mechanisms, it can be useful to implement a process dubbed as sensitivity
analysis (Carpenter and Kenward, 2013).

An inference methodology in which there is some kind of missing data
issue can be affected mainly by two problems: loss of efficiency and bias. The
former is an inevitable missing data consequence and the extent of information
loss is not directly linked to the proportion of incomplete records but instead it is
said to be intrinsically linked to the question of interest. When dealing with a
dataset characterized by missing data, most statistical software in an automatic
way restricts the analysis to complete records; however, this loss of information
leads to consequences which are not always easy to predict in advance. Moreover,
many times the information deriving from partial complete records is
fundamental for the study itself: it is therefore necessary to implement some
techniques to handle in a proper way missing data and minimize the loss of
information.

The subset made of complete records may also not be representative of the
whole population under analysis. In this case, a restriction of the sample to
complete records may lead to a biased inferential procedure, where the extent of
such bias depends on the statistical behavior of the missing data affecting the
dataset under study.

If a specific assumption about the reason leading to missing data is made,
it is possible to implement a valid analysis that does not require to include the
model for the missingness mechanism underlying. In this specific situation, such
mechanism is dubbed as ignorable.

In this context, it is relevant to explore the implications of missing data, in
terms of loss of information and bias, in the response and/or in the covariates
under different mechanisms driving missing data.

The first case is the one in which we observe a partially observed response.
In this sense, Carpenter and Kenward (2013) take into consideration the

following regression model:
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Y = Bo+ Pixi+ e, e ~N(0,0%), i=1,..,n

In such model, Y (the outcome variable of interest) is only partially
observed, and R; indicates whether the outcome is observed or not for an
individual, while the x; are supposed to be known without any error. Then, the
contribution to the likelihood for £ = (o, f1) from unit i, conditional on x;, can be

defined as the following:

L; = Pr(R;, Y;lx;) = Pr(R;1Y;, x;) | Pr (Yi|x;)

Assuming that the parameters of Pr(Yilxi), f, are different from the
parameters of Pr(Ri|Yi, xi), it is possible to state that the contribution to the above
likelihood for an individual characterized by missing response can be obtained
by integrating over all possible values of the missing outcome variable Yi, given

Xi.
fPr (¥i]x) dY; = 1

All individuals with missing Y, conditional on x, contribute 1 (the total
probability, since it is an integration over all possible values of Y; given £, xi) to
likelihood for . Therefore, it is possible to state that there is no effect on the
maximum likelihood estimate of 5. This is possible because the parameter space
of the conditional distribution of Y given X is separate from the one of the
marginal distribution of X. Then, as a direct consequence, the conditional
distribution of Pr(Y|X) has not any information on the marginal distribution of X

and does not place any restriction on it.
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It is then relevant to consider the opposite framework, that is the one in
which, considering a regression of Y on X, the former is fully observed while the
latter is only partially observed.

Letting Ri = 1 if Xjis observed and Ri = 0 otherwise, it is useful to consider
the regression of Y on X estimated using only the complete records (that is, Ri =
1):

Pr(Y;, X;,)R;, =1 Pr(R; = 1|Y;, X;) Pr (Y;, X;
Prv X R, = 1) = R0 XuRi =1 _ Pr(R = 1%, X Pr (%, X;)

Pr(X;,Ri=1)  Pr(R; = 1|X;) Pr (X;)
— {PI‘ (Rl = 1|YLIX1} Pr (Y.1X
= Uprri=1xp ) T lXD

When the mechanism underlying the missingness for the covariates
involves the response variable Y, just restricting the sample to the complete
records leads to obtain biased point estimator and, therefore, invalid inference
methodology. This situation holds whether the missingness mechanisms only
depends on Y (MAR, with MCAR as a special case) or when it also includes X
(MNAR).

In the context of the linear regression, there is one last possible case, that is
the one in which missing data issue affects both the response variable and the
covariates. Supposing (1) to have the three variables X, Y, Z and that (2) Y and X
are MAR given Z, in a linear regression of Y on X, Z, units with X, Y missing will
contribute to the likelihood of Pr(Y| £; X, Z) in the behavior described by the

following integration:

fPr(YIﬁ;X.Z) dy =1
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Therefore, it possible to state the complete records analysis described above
in this scenario will be unbiased. Additional variables predictive of Y and/or X,
therefore, may be useful to recover more information about the missing values
and, consequently, the estimate of /.

Having presented and defined the different classifications of missing data,
provided examples of real studies in which this issue has played an important
role, and analyzed the consequences of having at disposal incomplete information
in the context of statistical inference methodologies, the next chapters of this
work aim to present different categories of techniques to handle missing data

issue in the best possible way.
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Chapter 11

Methods of single imputation
to handle missing data

In the recent decades’ literature, it is possible to find several methodologies
to treat missing data and the consequences deriving from such recurrent issue.

Most of the above-mentioned methods have been developed to handle
missing data issue in sample surveys; moreover, they have some drawbacks when
applied to the Data Mining context.

When dealing with the replacement of such missing data, it reveals to be
fundamental to pay particular attention to three key factors (Patel, 2012):

e estimated values should not be affected by bias;
e the relation between attributes should be maintained:;

e the overall cost needs to be minimized.

A very important role is inevitably played by the choice of the right
technique, which depends on the problem domain, the data’s domain and the goal
characterizing the data mining process (Somasundaram and Nedunchezhian,
2011).

In the following section of this work will be provided a general overview
of some relevant methods to handle missing data issue in a proper way, with the

aim to obtain unbiased inference results.

2.1 Ignoring and discarding data

The methodology of ignoring and discarding data is usually implemented
when, assuming that the data mining aim is the classification, the class label

reveals to be missing or many attributes (not just one) are missing from the
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dataset row of interest. However, it is important to point out that, if the share of
such rows is sufficiently high, the performance obtained by implementing the
methodology will be poor.

To discard data with missing values, it is possible to use two main
techniques.

The first one, known as complete case analysis, available in all statistical
programs and used as default methodology in many of them, consists of
discarding all instances with missing data. The second method, known as
discarding instances and/or attributes, consists of determining the extent of
missing data for each instance and attribute and, as second stage, deleting the
instances and/or attributes characterized by an high level of missing data.
However, before deleting any attribute, it is fundamental to control for its
relevance to the analysis of interest: a relevant attribute should be kept even if
characterized by a high share of missing values.

A fundamental characteristic of the above-mentioned methods lies in the
fact that they should both be applied only in the case in which missing data derive
from a missingness mechanism allowing them to be classified as MCAR: missing
data belonging to the other two main categories (MAR, MNAR) are characterized
by non-random elements which may lead to have some bias in the obtained
results.

Somasundaram and Nedunchezhian (2011, “Evaluation of three Simple
Imputation Methods for Enhancing Preprocessing of Data with Missing Values”)
provide a brief example of discarding data application.

The authors suppose to consider a database of students enrollment data
(age, SAT score, state of residence, etc.) and a variable which classifies their
success in college between “Low”, “Medium” and “High”.

If the aim of the work is to build a statistical model able to predict the
students’ success in college, data rows containing missing data for the outcome
variable of interest (the success in college) are not useful to predict the success
in college and, therefore, these rows could be ignored and removed from the
dataset before starting the analysis (under the assumption that the underlying

missingness mechanism leads to MCAR missing data).
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2.2 Mean and median substitution

Mean substitution is a single imputation technique which consists of
replacing missing values on a covariate with the mean value of the observed data
points. Therefore, this method involves the implementation of the replacement of
the missing data for a given attribute by the mean (quantitative attribute) or mode
(qualitative attribute) of all known values of that attribute.

In this framework, the imputed missing values are said to be contingent
upon one and only one variable — the between subjects mean for that variable
based on the available data (Malarvizhi et al., 2012).

Mean substitution may be implemented using two slightly different
methodologies: question mean and individual mean.

The question mean imputation method consists of imputing the overall
mean of the specific question from the entire cohort (Shrive et al., 2006): if a
subject is characterized by a missing value for question 17, the imputed value is
the mean value computed from the completed question 17 for the entire cohort
analyzed.

Individual mean, instead, is a methodology which may also be used as a
simple form of imputation in such scenarios: the imputed value is obtained by
computing the mean of a given participant’s complete responses to other
questions. Therefore, if a subject is characterized by two missing responses, the
missing values will be filled using the calculated average of the remaining
(completed) 18 questions.

Regarding the framework of mean substitution, a further slight distinctions
reveals to be relevant. Indeed, it is possible to use the overall attribute mean or
the attribute mean for all samples belonging to the same class.

Computing the imputed value based on the overall attribute mean, missing
values for such attribute are replaced with its mean value of the whole database
(Somasundaram and Nedunchezhian, 2011): considering for example a database
of United States family incomes and assuming the average income of a US family
to be X, it is possible to use X as value to replace the missing occurrences of the

income.
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Using the attribute mean for all samples belonging to the same class, the
mean value to impute in order to fill the missing data is computed not with the
mean of a certain attribute for all the rows of the given dataset. The calculation
may indeed be limited to the relevant class to make the value more relevant for
the data row of interest. In this framework, Somasundaram and Nedunchezhian
(2011) provide the example of cars pricing database: among other things, it
classified cars to “Luxury” and “Low budget” and missing values is dealt in the
cost field. In such a situation, replacing the missing data about the cost of a luxury
car with the average cost of all luxury cars would probably be way more accurate
with respect to the value computed by the factor in the low budget cars.

Median substitution of covariates and outcome variables, just like mean
substitution, is still frequently used when missing data issue occurs in statistical
inference procedures. It is possible to state that the median substitution
imputation methodology reveals to be slightly improved: this improvement is
obtained by first stratifying the data into subgroups and then using the average of
the subgroup of interest. As a direct consequence, median imputation results in
the median of the entire dataset being the same as it would be with case deletion,
but the variability between subjects’ responses reveals to be decreased, causing a
bias in the variances and covariances toward zero (Malarvizhi and Thanamani,
2012, “K-Nearest Neighbor in Missing Data Imputation™).

Even if the above-mentioned imputation methods are still very used, there
are some issues that may arise when they are implemented in the framework of a
statistical analysis.

While mean substitution results in overall means equal to complete case
values, the variances of these same covariates reveal indeed to be underestimated
(Little, 1992) and such underestimation derives from two sources.

First, by filling the missing data points with the same mean value one does
not account for the variation that would likely arise in the case in which the
variables of interest would instead be observed. Indeed, if the true values would
be observed they would probably vary from the imputed mean.

The other driver of the variances underestimation is the fact that the smaller

standard errors obtained due to the increased sample size do not reflect
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adequately the uncertainty characterizing the dataset under analysis in the
research.

Bias in the estimation of standard errors and variances are compounded
when estimating multivariate parameters such as regression coefficients.
Therefore, there is not any circumstance in which a mean substitution imputation

may lead to obtain unbiased results (Pigott, 2001).

2.3 Regression

Regression imputation method is based on the assumption of linear
relationship between the different variables. That is, it is assumed that the value
of one variable changes in a linear way with the other ones. In the framework of
this technique, the missing values are replaced using a linear regression function
instead of imputing all missing data with some statistics of particular interest as
the mean or the median.

When implementing a regression-based imputation, the regression of each
variable j is used to fill missing values.

In detail, for each variable j present the dataset under analysis, regression

imputation technique involves the following steps:

(@) Remove the records characterized by missing values for the variable
J.

(b) Fit the regression of the reduced j (without missing values) on other
variables.

(c) Use the regression coefficients to fill the missing values in variable

J-

There are two main different regression techniques: the predictive
regression and the random regression.

In the predictive regression (deterministic regression or conditional mean),
the linear regression is used for numeric variables while, when dealing with

categorical missing data, a logistic regression is implemented.
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The linear regression, by its nature, is characterized by a linear function
based on probability; the logistic regression, instead, works on logistic function
based on probability but is characterized by only two possibilities for probability.

Moreover, the predictive regression may be characterized by the presence
of an auxiliary variable to find the missing values which relates missing values
Y; to such auxiliary variable X; and the predicted values used for the missing data
iny.

Therefore, the aim of these methods is to create a predictive model able to
estimate imputed values which will substitute the missing ones. The attribute
affected by missing data, in this methodology, is used as class-attribute, while the
remaining ones are used as input in the predictive model.

It is important to point out, in favor of this methodology, that often it may
occur that the different attributes in a model reveal to be correlated among
themselves. These correlations could therefore be used to implement a resilient
predictive model for classification or regression and some of the relationship may
be maintained if captured by the constructed regression model.

However, one has also to take into account that the model estimated values
usually tend to be more well-behaved with respect to the true values which,
unfortunately, are not observed in the reality. Being the missing values predicted
from a set of attributes, it is likely to happen that the predicted values are more
consistent with the set of attributes used than they would be with the unknown
true attributes.

Another relevant drawback regarding this imputation method consists of
the requirement for correlation among the attributes of the model: in a situation
in which there are no relevant relationships among one or more attributes of the
dataset and the attribute affected by missing values, inevitably the regression
model implemented will not lead to obtain a precise estimation of the missing
values.

The other main regression imputation method is the so-called random
regression. This methodology has the aim to find missing values for any variables
based on the conditional distribution.

The random regression, therefore, leads to the imputation of the missing

29



value of interest based on the conditional distribution of Y given X. In concrete
applications, this type of approach reveals to be more effective in situations in

which numeric data are present (Patel, 2012).

2.4 Hot deck and cold deck

Hot deck and cold deck imputation methods are generally used when the
components of the data under analysis are skewed (or twisted), that is they present
a long tail of data point (usually on the right, “right-skewed data”).

These methods involve the replacement of missing values of one or more
variables for a non-respondent (called the recipient) with observed values taken
from a respondent (the donor), who has to be similar to the non-respondent with
respect to characteristics observed by both cases.

The term “hot deck” derives from the use of computer punch cards for data
storage. It refers to the deck of cards for donors available for a non-respondent.
The deck was “hot” since it was currently being processed, opposed to the “cold
deck” referring to the use of pre-processed data as the donors.

When the donor is selected following a random procedure from a set of
potential donors (the donor pool), the method is called random hot deck method.

However, sometimes a single donor is identified and the missing values are
imputed from that one case, usually the “nearest neighbour” based on some
metric. When this happens, the imputation methodology is called deterministic
hot deck method, since there is no any randomness present in the selection of the
donor.

It is important to point out that, in this framework, the term “deterministic”
only describes the procedure under which a donor is selected; while in the general
imputation framework the same term may be used to describe methods that
impute the mean or other non-random relevant values.

Hot deck is implemented, typically, through two stages. In the first stage
there is a partition of the data into clusters, while in the second stage each instance
characterized by missing data is associated with one cluster. Then, complete cases

in a cluster are used to fill in the missing values: this can be implemented simply
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by calculating the mean or mode of the attribute of interest within a certain
cluster.

The hot deck imputation method does not rely on model fitting for the
variables characterized by missing values and that therefore needs to be imputed;
therefore, this methodology is potentially less sensitive to model misspecification
with respect to imputation methods based on parametric models, such as
regression imputation (Andridge and Little, 2010).

However, one needs to keep in mind that hot deck imputation method is
characterized by implicit assumptions through the choice of metric to match
donors to recipients, and the variables included in such metric.

Another relevant feature of this imputation technique consists of the fact
that, since values come from responses actually observed in the so-called donor
pool, only plausible values may ne imputed.

Moreover, since information in the incomplete cases is being retained, hot
deck implementation may represent a gain in efficiency compared to complete-
case analysis.

In the end, it is also possible to observe a reduction in non-response bias,
to the extent that there is some sort of association between the covariates defining
the imputation classes and both the propensity to respond to the questions and the
variable which needs to be imputed.

The hot deck imputation procedure is commonly used by United States
government statistics agencies and survey organizations with the aim to provide
rectangular dataset for users. For example, the NCES! uses, even within a survey,
different forms of hot deck and alternative imputation methods: out of twenty
recent surveys, eleven used a form of adjustment cell hot deck while the
remaining nine used a form of cold deck imputation, deterministic imputation, or
a Bayesian method for MI2. Within the eleven surveys characterized by the hot
deck imputation procedure, many of them used both random within sequential
imputation and class imputation (NCES, 2002).

Moreover, the hot deck method has been also applied in epidemiologic and

! National Center for Education Statistics
2 Multiple Imputation
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medical settings, even if parametric imputation methods still reveal to be more
common.

In literature it is possible to find applications of the hot deck and some
comparisons with the other imputation methods in the works by Barzi &
Woodward (2004) and Perez et al. (2002) regarding cross-sectional studies, while
for longitudinal studies it is relevant to cite the papers by Twisk & de Vente
(2002) and Tang et al. (2005). However, it is important to point out that the lack
of software in commonly used statistical packages may deter applications of the
hot deck methodology in these settings.

Cold deck imputation slightly differs from hot deck because it involves
imputing missing values of a record using anything other than reported values for
the same variable in the current dataset. Therefore, cold deck imputation requires
the availability of at least one additional dataset from which the donor will be
selected.

An application of cold deck imputation could consist of a framework in
which one is using a company’s revenue for March from the previous year’s
dataset to fill the missing revenue for March in the current year’s dataset to

calculate the turnover of the current year (Figure 2.1).
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Figure 2.1. Source: Narayan, 2017, “A nearest neighbor based cold-deck imputation for X-ray tube wear

estimation”

2.5 K-Nearest Neighbor

A relevant imputation method for missing values in large dataset is the so-
called K-Nearest Neighbor Algorithm for Classification.

Malarvizhi and Thanamani (2012, “K-Nearest Neighbor in Missing Data
Imputation™) provide an exhaustive explanation regarding this imputation
technique.

The authors explain that, given a certain dataset, each sample has n

attributes combined to form an n-dimensional vector such as:
X = (X1, X2, .., Xn)
Then, these n attributes are considered to be the independent variables

within the analysis.

Moreover, each sample is also characterized by another attribute, which is
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denoted by Y and is called the dependent variable; with its value depending on
the other n attributes x.
Assuming that Y behaves as a categoric variable, it is possible to define a

scalar function f such as:
Y = f(x)

This function, therefore, assigns a class to every above-mentioned vector.
Supposing a set of T vectors given together with their corresponding

classes:
Xi, Yi i=1,2,...,T

Then, the set T is referred to as the so-called training set.

The idea underlying the K-Nearest Neighbor methodology is to identify, in
such training set, k samples whose independent variables x are similar to u, then
to use the k samples previously identified to classify such new sample into a
certain class, v.

Assuming the function f to be characterized by a smooth behavior, it is
reasonable to look for samples in the training set which are, in terms of the
independent variables x, near it. Then, it is sufficient to compute v, for the samples
of interest, from the values of Y.

The so-called distance or dissimilarity measure can then be computed,
between two different samples, by measuring distance using the Euclidean

distance between points:

n

k . )
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In the simplest case, that is the one in which k = 1 and the sample in the
training set is the closest (the so-called nearest neighbor) to u, v is equal to Y
which is the class of the nearest neighboring sample (Malarvizhi and Thanamani,
2012).

When higher values of k occur, the instance is characterized by a major
smoothing which reduces the over-fitting risk due to noise in the training data.
However, in real applications usually it happens that k reveals to be in units or
tens rather than in the order of hundreds or thousands.

In practice, for handling missing values, the K-Nearest Neighbor
methodology outperforms internally two well known Machine Learning
Algorithms: C4.5 and CN2. These two algorithms induce propositional concepts:
decision trees and rules, respectively. C4.5 algorithm seems to have a good
internal algorithm for the treatment of missing data, while CN2 seems to use a
simpler method to deal with missing values.

C4.5 algorithm uses a probabilistic approach to handle missing data:
missing values can arise in any attribute in training and test files, except the class
attribute.

CN2 algorithm, instead, uses a rather simple imputation method to treat
missing values: each one of these if filled in with its attribute’s most common
known value.

Just like any other imputation technique, K-Nearest Neighbor method is
characterized by both benefits and drawbacks.

A first advantage of this approach relies in the fact that it is able to predict
both the discrete attributes (which reveal to be the most frequent value among the
K-Nearest Neighbors) and the continues attributes (the mean among the K-
Nearest Neighbors).

Moreover, this technique is characterized by the fact that there is not any
need to create a predictive model for each attribute of the study affected by
missing values. Indeed, the K-Nearest Neighbor methodology does not
implement any explicit model (like, for example, a set of rules or a decision tree),
since the dataset is used as a “lazy” model (Batista and Monard, 2002).

The K-Nearest Neighbor imputation method may also be adapted easily to
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work with any attribute as class, simply modifying the attributes considered in
the distance metric. It is therefore considered an approach which can easily
handle situations in which multiple missing values are present.

Even if the K-Nearest Neighbor approach looks to be characterized by
many advantages, it is important to point out also a relevant drawback: whenever
the running algorithm looks for the most similar instances, it searches through all
the dataset under analysis. This may represent a very relevant issue, since often a
researcher is analyzing very large datasets.

In literature, it is possible to find several wors with the aim to deal with and
solve this limitation affecting K-NN.

One proposed method consists of the creation of the creation of a reduced
training set for the K-Nearest Neighbor composed only by prototypical examples
(Wilson and Martinez, 2000).

Batista and Monard (2002) use, instead, an access method called M-trees,
which can organize and search datasets based on a generic metric space. The
authors explain how the M-trees methodology is able to reduce drastically the

number of distance computations in similarity queries.

2.6 Non-negative matrix factorization

Non-negative matrix factorization approach consists of a matrix
decomposition applied to decompose a non-negative matrix into two low-rank
non-negative matrices (Li and Ngom, 2013), which has been successfully applied
in the mining of biological data.

The standard-NMF3decomposes a non-negative matrix X into two non-

negative factors A and Y, that is:

3 Non-negative matrix factorization
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X, = AV, +E

Referring to the above equation, the term E represents the error (or
residual), while M- indicates that the matrix M is, as assumed above, non-
negative. Then, the optimization for such matrix in the Euclidean space is

formulated as follows:

1
A _ 2 . >
min> ||X — AY||%, subject to A,Y =0

From a statistical point of view, the above formulation is obtained, under
the relevant assumption of a Gaussian error, from the so-called log-likelihood
function.

Moreover, assuming that the multivariate data points are arranged in the
columns of X, then A becomes the so-called basis matrix while Y is called the
coefficient matrix; therefore, each column of A is a basis vector. In this context,
each data point is therefore a non-negative linear combination of the basis
vectors.

Since the above-mentioned optimization problem is a non-convex
optimization problem, the main prescribed optimization technique to solve it is
the so-called block-coordinate descent algorithm (Li and Ngom, 2013), which,
even if relatively easy to implement, is not guaranteed to converge to a stationary
point.

A drawback of the standard-NMF method is that it only works for non-
negative data, obviously leading to limits in its applications.

To this purpose, Ding et al. (2010) extended the framework to the so-called
semi-NMF, which peculiarity is to remove the non-negativity constraint on the

data X and the basis matrix A. Semi-NMF can therefore be expressed as follows:
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1
O _ 2 . >
min > [|X — AY||%,subjecttoY =0

Since semi-NMF can be applied to matrix of mixed signs, it allows to
extend the framework of NMF to various fields.

Brunet et al. (2004) and Kim & Park (2007) implemented a NMF
methodology as a clustering method in order to discover the metagenes* and
interesting molecular patterns.

Carmona-Saez et al. (2006) proposed an implementation of non-smooth
NMF (NS-NMF) to study the biclustering of gene expression data; while Wang
et al. (2006) provided a least-squares NMF (LS-NMF) to take into account the
uncertainty of information characterizing the gene expression data.

In the end, Li and Ngom (2012) proposed kernel-NMF for reducing
dimensions of gene expression data.

However, most authors provide their own NMF implementation with their
publications so that the scientific community may use such implementations to
re-perform such data mining tasks. However, it is important to point out some
issues which prevent researchers and practitioners in the fields of data mining,
biological, health medical and bioinformatics areas from using such
implementations in a complete way.

The first relevant issue consists of the fact that the above-mentioned NMF
techniques usually reveal to be implemented in different programming languages,
such as R, MATLAB, C++ and Java, with only one optimization algorithm
usually provided in the publication. Therefore, for a researcher who wants to
choose an appropriate and suitable mining method for the data under analysis it
is difficult to choose the appropriate control parameters and criteria.

Another relevant drawback derives from the way in which the authors
usually provide their implementations: in most of the cases, scientific papers only

provide NMF optimization algorithms at a basic level and not data mining

4 E.g., groups of similarly behaving genes
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implementation at higher level, making it harder for a researcher to properly
investigate and understand the data under analysis.

In the end, the currently existing in literature NMF implementations are
application-specific: it does not exist a systematic NMF implementation or
package with the aim to perform recurring data mining tasks on biological data.

Even if there exists some NMF toolboxes, as of now there is not any of

them which is able to solve the above-mentioned three issues altogether.
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Chapter 111

Techniques of multiple
Imputation

Multiple imputation consists of more sophisticate techniques to handle the
presence of missing data in large datasets in the framework of statistical
inferential analyses. In the next section, an overview of such statistical

methodologies will be provided together with some real examples of application.

3.1 The multiple imputation procedure

Multiple imputation methodology consists, substantially, of a two-stage
process.

In the first stage, the missing values that the researcher is dealing with are
imputed by sampling from an imputation model.

Such model should, therefore, include all variables characterizing the
analysis model (outcome, exposure, confounders), as well as additional — at least
partially — observed covariates which are not originally included in the model
under analysis but that are assumed to be associated with the variables affected
by missing data. These additional covariates are called, in this framework,
auxiliary variables.

Then, the above-mentioned imputation process is repeated multiple times:
in this way, a number of completed datasets are implemented (Figure 3.1) with

the aim to capture the uncertainty characterizing the missing values.
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lllustration of the method of multiple imputation.
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Figure 3.1. Source: Lee and Simpson, 2014, “Introduction to multiple imputation for dealing with missing
data”

In such illustration, each box represents a given data point, characterized
by columns representing variables and rows representing individuals. In the end,
intuitively, blank spaces represent missing values.

Bi represents the estimate of interest characterizing a given completed
dataset I, while Sw is the estimate obtained from multiple imputation.

The second stage is characterized by the fact that the analysis of interest is
performed on each one of the completed datasets, constituted by the observed and
the imputed values.

Then, the final M1 estimate is defined as the average of the estimates
derived from each completed dataset (Kasza and Wolfe, 2014).

Moreover, it is possible to state that the standard error characterizing the
multiple imputation estimates incorporates both the uncertainty in the estimate
within the completed datasets and the uncertainty across the completed datasets
due to the missingness (Lee and Simpson, 2014).

When applying a multiple imputation method, it is necessary to consider
that the results will be affected by two typologies of uncertainty:

! Multiple Imputation



e Uncertainty within imputation, represented by the confidence
intervals;
e Uncertainty between imputation, consisting of a horizontal shift

between results.

A standard procedure may consist of simply considering the mean of the
results deriving from separate analyses: such method is called pooled point
estimate. However, applying such technique, it is likely that the averages
confidence intervals underestimate the total variation (made up by uncertainty
within imputation and uncertainty between imputation).

In such framework, Rubin (1987) proposed the so-called Rubin’s rules to
pool results from analyses of multiply imputed data. In order to present such

rules, it is necessary to define the following quantities:

e m represents the number of imputed datasets;
e Q is the quantity of interest from I-th imputation;

e U represents the variance of Q.

In such framework, the pooled parameter estimate is calculated as follows:

Then, the variance characterizing the above pooled parameter estimate is
obtained, from the within and between imputation variance, according to the

following equation:
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The total variance is, indeed, calculated as follows:
T=U+B+ B/m

As direct consequence of the presence of missing data, the variance will

show an increase represented by the following parameter rm:

_ (B+ B/m)
=

Moreover, it is possible to obtain confidence intervals characterizing

pooled estimates by using the pooled standard error VT and a reference t

distribution with the following degrees of freedom:
v=>m-11+ r;1)?
Then, the 100% confidence interval is defined by the following expression:
Q £ t, (ec/2NT
Where t,, represents the oc/2 quantile of the t distribution characterized by
v degrees of freedom.

In such framework, the associated p-value is constituted by the following

probability:
Pr{F, > (Q— @?*/T}

Where F; , is a random variable characterized by an F distribution with 1
and v degrees of freedom, while Q, represents the null hypothesis value (which
is typically zero).

Consequently, the multiple imputation methodology allows to produce a

valid 95% confidence interval and p-value for the multiple imputation estimate
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of the regression parameter under analysis.

In a situation — the simplest case — in which missing data affect only a single
continuous variable, the imputation model of interest simply consists of a linear
regression model for the variable characterized by missing data, which is
regressed on the other covariates used for imputation (therefore, the other
variables present in the analysis plus the above-mentioned auxiliary variables).

Instead, when missing data do not affect just a single variable, there are two
main approaches which can be used to impute the missing values of interest.

The first one consists of imputing the missing values by using a series of
conditional regression models. In such framework, it is needed to set up a
regression model for each variable affected by missing data, cycling through the
regression models sequentially to impute the missing values for each variable,
conditional on the imputed values for the other covariates characterized by the
presence of missing data (Lee and Simpson, 2014).

The second method consists, instead, of imputing all the covariates affected
by missing values simultaneously, by using a joint normal distribution.

It is important to point out that both the above-mentioned multiple
imputation approaches are currently available in standard computerized statistical
packages, such as Stata and SAS.

Just like any of the above-mentioned single imputation methodologies, the
multiple imputation procedure is characterized by both advantages and
backwards.

The first relevant benefit that multiple imputation procedure offers is
reducing bias (Lee and Simpson, 2014). In some scenarios in which there may be
differences among participants with and without missing data: for example, in
medical research in the framework of a respiratory study, we may observe a
situation in which the patients affected by asthma and/or allergies may be the
ones to be more motivated to attend follow-up visits. In this case, conducting a
simple complete case analysis may lead to obtain biased results, since it would
be biased on a sub-sample which is not representative of the whole population of
the study.

If the missingness mechanism underlying the occurrence of missing data is
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known and the missingness depends on the observed data and not on the
unobserved ones, that is if MAR (with MCAR as special case) missing data occur,
the multiple imputation procedure has the possibility to fill the missing values by
using the observed data.

Therefore, filling in the missing data enable to include all subjects in the
analysis and allows to correct the bias that characterizes the complete case
analysis.

However, it is relevant to point out that such bias correction is possible only
in the case in which there are appropriate auxiliary variables to include in the
model used to impute the missing values. If this does not happen, analysis and
imputation models reveal to be analogous.

Whenever the missingness mechanism cannot assumed to be random, and
therefore missing data behave as MNAR, multiple imputation still allows to
reduce the bias deriving from a complete case analysis under the assumption to
have auxiliary variables which are strong predictors of missingness. Indeed, some
bias is very likely to remain since the estimation of the imputed values is based
only on the observed data.

The other main benefit characterizing the multiple imputation procedure
consists of an improving in precision.

In a situation in which missingness occurs completely at random (MCAR
missing data) a complete case analysis leads to obtain unbiased results because it
includes a random sample of the original study subjects and therefore a random
sample from the population (assuming the randomness of the original sample
with respect to the whole population). Even if these results reveal to be unbiased,
a relevant aspect of the complete case analysis is that it is conducted throwing
away some information about the study participants affected by missing values
in one or more covariates of interest. Then, a complete case analysis may lead to
obtain wide confidence intervals around parameters estimates, i.e., it might be
inefficient.

In this perspective, it is possible to state that the multiple imputation
procedure can obtain narrower confidence intervals and consequently to obtain

an improvement in efficiency. This is possible simply because the multiple
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imputation methodology, for its nature, allows to include all the participants in
the analysis. Then it is interesting to understand under which circumstances the
implementation of a multiple imputation procedure can lead to a major (or minor)
increase in efficiency.

Multiple imputation may lead to a largest potential gain of efficiency over
a complete case analysis in a framework in which the variables of interest, the
exposure of interest and the outcome are all fully observed, but there are missing
values in relevant confounders. In such case, excluding incomplete cases leads to
a loss of information about the exposure-outcome relationship in cases in which
the covariate is missing. Such information can, then, be recovered through the
implementation of a multiple imputation mechanism.

Instead, when a dataset is characterized by missing exposure or outcome
values, multiple imputation reveals to be less likely to gain information about the
exposure-outcome association, unless to be in the case in which there are some
auxiliary variables which present a high correlation with the covariate affected
by missing data (Lee & Carlin 2012, Marshall et al. 2010).

In the end, the above-mentioned multiple imputation possible efficiency
gain derives from the inclusion, in the imputation model, of the auxiliary
variables. Therefore, the stronger reveals to be the association characterizing the
incomplete variables and the auxiliary ones, the more the imputed values will be
accurate and the more the multiple imputation methodology implemented will
lead to an improvement in efficiency.

However, it is important to point out that in real analyses it is needed to
exist a reasonably strong correlation between the incomplete variables and the
auxiliary ones to observe, after the application of a multiple imputation
procedure, a relevant gain in efficiency with respect to a complete case analysis
(Graham, 2012). Moreover, in most cases it is hard to observe variables
characterized by such a strong correlation (Karahalios et al., 2010).

In contrast to the above-mentioned advantages characterizing the multiple
imputation procedure, it is relevant to point out the main drawback which may
affect this type of methodology.

Indeed, multiple imputation may introduce bias over a complete case

46



analysis if not carried out appropriately (Lee and Carlin, 2012). Specifically,
when setting up the imputation model of the first stage of the multiple imputation
process, there are some decisions which, if not taken in a proper way, may affect
the validity of the inference results.

A first feature to take into consideration is the share of missing data
affecting the dataset under analysis. If a researcher has to deal with a lot of
missing data, any bias deriving from the decisions of the setting up framework
regarding the imputation model will inevitably be inflated since a large amount
of data will be imputed based on a potentially mis-specified model (Rubin, 1996).

The second relevant step regards the choice of the variables to include in
the imputation model. Indeed, it is relevant to include all the covariates of the
analysis model in the imputation model, plus any interaction term and the ones
which may describe a nonlinear association, such as quadratics or logarithms
transformations (Graham, 2012). If a researcher leaves one or more of these
variables out of the imputation model, the inference results may be biased.
Moreover, it is relevant to include auxiliary variables in the perspective of the
recovery of information lost.

The third relevant feature is about the inclusion of non-normally distributed
continues variables into the imputation model. In this perspective, both the above-
mentioned methodologies of multiple imputation are characterized by the
assumption of normality for continuous variables. In this perspective, including
the original scale values of any non-normally distributed covariate in such
imputation model may lead to obtain imputed values quite different from the
observed ones. This may, consequently, lead to flow on effects to the inference
obtained. However, it has been suggested that transforming data prior to
imputation to improve normality may, on the other hand, lead to biased results in
some cases (von Hippel, 2013).

The fourth situation to take into consideration consists of the imputation of
categorical variables when using a joint normal distribution. Indeed, since both
main multiple imputation methodologies actually assume normality for all the
variables present in the imputation model, it remains unclear, in this framework,

which may be the best way to impute missing values affecting a categorical
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covariate (Galati et al. 2012, Lee et al. 2012).

Then, it is important to choose how to impute and analyze covariates
characterized by a restricted range of values. In this perspective, various
approaches have been suggested of the imputation and consequent analysis of
restricted range variables (von Hippel 2013, Enders 2010, Royston et al. 2009).

It is crucial to take into consideration that all five the above-mentioned
potential issues should be considered prior to imputation and with respect to the
dataset under analysis in the research. Indeed, the flexibility characterizing the
multiple imputation process suggests that it would be desirable to have some
expertise in the methodology prior to using it and making the above reported
relevant decisions (Lee and Simpson, 2014).

In the end, a relevant step consists of exploring the sensitivity of the
obtained results to the decisions made in all the imputation process. Intuitively,
the best scenario is the one in which all tested imputation models lead to the same

general conclusion (Figure 3.2).

Process for carrying out multiple imputation.

Step 1: Investigation of the missing data
Which variables?
How much missing data?
Are there predictors of missingness?

¥

Step 2: Set up the imputation model
Which method of imputation?
Which variables to include in the imputation model[?
‘What form of variables to use?

> 2

Step 3: Carry out multiple imputation

- Generate msets of imputed values to produce m completed datasets
- Perform epidemiological analysis on each completed dataset

- Combine the results using Rubin’s Rules

¥

Step 4: Investigate the sensitivity of the results to the decisions made
when setting up the imputation model
Visualise the distribution of the imputed and observed values
Carry out diagnostic checks for your imputation model

Figure 3.2. Source: Lee and Simpson, 2014, “Introduction to multiple imputation for dealing with missing

data”
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3.2 Algorithms for multiple imputation

Multiple imputation procedure can be implemented with the use of
algorithm within several different package presents within various statistical
software.

In this perspective, Pampaka et al. (2016, “Handling missing data: analysis
of a challenging data set using multiple imputation” provide a general overview
of the main algorithms presented in literature to apply the multiple imputation
methodology.

First, it is relevant to specify that, while some authors (Schafer and Graham,
2002) distinguish between multiple imputation and maximum-likelihood
estimation? approaches for dealing with missing data, Pampaka et al. assume the
two methodologies to be interconnected, since maximum-likelihood usually is
used for the estimation of the imputation model.

Indeed, the essential element characterizing any approach is assumed to be
the distribution of the observed data as a function of the population distribution
(complete dataset) with respect to the missing values.

Maximum-likelihood approach estimation is based on maximizing the (log
of the) so-called likelihood function. In most situations, such maximization is
computed in an iterative way by using the so-called expectation-maximization
(EM) algorithm, a very established statistical technique.

In general, maximum-likelihood methods summarize a likelihood function
averaged over a predictive distribution for the missing values (Schafer 1999,
Schafer and Graham 2002, Ibrahim et al. 2005).

In the last decades, Bayesian® multiple imputation methods are becoming
more popular. These methodologies have the peculiarity to be performed using a

Bayesian predictive distribution to generate the imputations (Nielsen, 2003) and

2 Maximum-Likelihood estimation is a statistical method for estimating population parameters (i.e. mean

and variance) from sample data that selects as estimates those parameter values maximizing the
probability of obtaining the observed data
3 Bayesian statistical methods assign probabilities or distributions to events or parameters (e.g. a

population mean) based on experience or best guesses (more formally defined as prior distributions) and

then apply Bayes’ theorem to revise the probabilities and distributions after considering the data, thus

resulting in what is formally defined as posterior distribution
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then specifying prior values for all the parameters of interest (Ibrahim et al.,
2005). Moreover, Schafer and Graham (2002) state that Bayesian methodologies
bring together multiple imputation methods and maximum-likelihood methods.
Such combination has been implemented in the last decades statistical
packages: for example, Pampaka et al. (2016) in their work use a package called
Amelia Il.
In general, King et al. (2001), summarize multiple imputation algorithms

as follows:

computing the observed data likelihood [ . . . ] and taking random draws from it, is computationally

infeasible with classical methods. Even maximizing the function takes inordinately
long with standard optimization routines. In response to such difficulties, the
Imputation-Posterior (IP) and Expectation-Maximization (EM) algorithms were devised
and subsequently applied to this problem. From the perspective of statisticians, IP is
now the gold standard of algorithms for multivariate normal multiple imputations, in
large part because it can be adapted to numerous specialized models. Unfortunately,
from the perspective of users, it is slow and hard to use. Because IP is based on

Markov Chain Monte Carlo (MCMC) methods, considerable expertise is needed to
judge convergence, and there is no agreement among experts about this except for
special cases. (54)

Considering the above-reported issues, it has been developed the so called
EMB algorithm, combining the typical EM* algorithm with a bootstrap approach
to take draws from the posterior distribution. Such new algorithm, therefore,
expands the range of computationally feasible data types and sized to which it is
possible to apply the multiple imputation methodology.

Currently, in most used statistical software there are various packages to
apply the multiple imputation method.

In R, various procedures are available to perform imputation of missing

values:

e Amelia Il (Honaker et al., 2011)

e arraylmpute (Lee et al., 2009)

e cat (for categorical-variables datasets affected by missing values;
Schafer, 1997)

4 Expectation-maximization
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e EMV (for the Estimation of Missing Values for a Data Matrix;
Gottardo, 2004)

e impute (Hastie et al., 2014)

e mi(Suetal., 2011)

e mice (Van Buuren and Groothuis-Oudshoorn, 2011)

e Hmisc (Harrell, 2008)

Other tools for performing multiple imputations of missing data are
available within other statistical packages such as ICE in STATA, the SAS PROC
MI, Missing Data Library, and NORM for S-Plus and SOLAS. Moreover,
multiple imputation may also be applied using MLwiN or SPSS (Pampaka et al.,
2016).

Horton and Kleinman (2007, “Much Ado about Nothing: A Comparison of
missing Data Methods and Software to Fit Incomplete Data Regression Models.”)
applied imputation with Amelia Il, Hmisc, mice and other statistical packages
finding similar parameters estimates for all different analyses. Moreover, they
obtained a relevant reduction regarding the standard error estimates with respect
to the complete case analysis estimators.

Hutcheson and Pampaka (2012) also published a practical tutorial about the
imputation of missing data using Amelia Il.

Chhabra et al. (2017, “A Comparison of Multiple Imputation Methods for
Data with Missing Values”) implemented in the statistical software R a
comparison between six multiple imputation methods included in the imputation

package mice:

e Predictive Mean Matching

e Multiple Random Forest Regression Imputation

e Multiple Bayesian Regression Imputation

e Multiple Linear Regression using Non-Bayesian Imputation
e Multiple Classification and Regression Tree (CART)

e Multiple Linear Regression with Bootstrap imputation
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The results obtained by Chhabra et al. will be analyzed in the next section,
in the framework of a brief overview of some relevant applications of the multiple
imputation procedure in literature.

A simple application of the multiple imputation methodology has been
implemented using the above-mentioned package mice available in the statistical
software R.

Such package allows to implement a method to handle missing data by
creating multiple imputation (replacement values) for multivariate missing data.
The methodology applied by the package is based on Fully Conditional
Specification technique, characterized by the fact that each incomplete covariate
is imputed by a separate model.

Moreover, the mice algorithm is able to impute mixes of continuous, binary,
unordered categorical and ordered categorical data. Indeed, such package can be
used to impute continuous two-level data maintaining consistency between
imputations by means of the so-called passive imputation.

For this example of application has been used the “nhanes2” dataset, that is
a small dataset available in R designed for missing data examples. It is made of

four variables, which are quantitative and binary (Figure 3.3).

The nhanes2 dataset.

age bmi hyp chl

1 20-39 WA =NA>= NA
2 40-59 22.7 no 187
3 20-39 MA no 187
4 &0-99 MA <NA>= NA
5 20-39 20.4 no 113
6 60-99 NA <NA> 184
Figure 3.3.

Then, the mice function has been used to create the default five imputed
datasets (Figure 3.4):
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The mice function.

= nhances2.imp = mice{nhanes2, seed = 12345)

iter imp variable

bmi  hyp chl
bmi hyp chl
bmi hyp chl
bmi  hyp chl
bmi hyp chl
bmi hyp chl
bmi  hyp chl
bmi hyp chl
bmi hyp chl
bmi hyp chl
bmi hyp chl
bmi hyp chl
bmi hyp chl
bmi hyp chl
bmi hyp chl
bmi hyp chl
bmi hyp chl
bmi hyp chl
bmi hyp chl
bmi hyp chl
bmi hyp chl
bmi hyp chl
bmi hyp chl
bmi hyp chl
bmi hyp chl

[N N R R, R R I T i N T I W Iy S [y WA D IV Ty T Gy 0y Sy S o i Sl S e
O T e W I L R ¥ I o WU o I T W T = W I L T < O I N T I S R R S

Figure 3.4.

Using the summary function, it is possible to have an overview of the tasks

completed by the imputation method (Figure 3.5):



Summary of the imputation procedure.

= summary(nhances2. imp)
Class: mids
Number of multiple imputations: 5
Imputation methods:
age bmii hyp chl

"pmm” "logreg” "pmm"

PredictorMatrix:
age bmi hyp chl

age 0 1 1 1
bmi 1 0 1 1
hyp 1 1 0o 1
chl 1 1 1 0
Figure 3.5.

The above summary shows the number of imputed datasets (in this case,
five), the imputation method used by the algorithm (for categorical variables a
log regression since the data is not continuous) and, in the end, the predictor
matrix which reports the variables used in predicting missing values for a specific
variable (e.g., for age the model used all the other three included variables).

Then, it is possible to run a standard regression using the above-reported

imputed datasets. Specifically, it has been run a regression model which regresses

chl on the covariates age and bmi (Figure 3.6).
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Standard regression using the imputed datasets.

= fit = with{nhances2.imp, Tm{chl ~ age + bmi))
= summary (fit)

4 +shhla- 7 G

term estimate std.error statistic p.value nobs
(Intercept) 50.3 53.4 0.942 0. 357 25
agedd-59 48.5 18.0 2.70 0.0135 25
age6d-99 50.5 19.0 Z2.66 0.0148 25
bimi 4,34 2.00 2.17 0.0415 25
(Intercept) 6.9 61.9 1.40 0.175 25
agedd-59 55.7 21.1 2.63 0.0155 25
age6d-99 49.8 22.2 2.24 0.0360 25
bimi 2.83 2.11 1.34 0.194 25
(Intercept) 38.0 63.7 d.597  0.557 25
aged4d-59 43.0 20.6 2.09 0.0404 25
age6d-99 50.0 21.5 2.32 0.0308 25
bimid 4,88 2.08 2. 34 0.0290 25
(Intercept) 1.54 41.1 0.0375 0.970 25
aged4d-59 5.9 13.2 3. 86 0. 000208 25
age6d-99 1.1 14.3 4.97 0.0000638 25
bimid 5.90 1.49 3.96 0.000722 25
{(Intercept) -16.8 39. 6 -0.423 0.676 25
aged4d-59 58.4 12.7 4.59 0. 000159 25
age6d-99 9.2 13.6 5.07 0. 0000508 25
bmi E. 66 1.41 4.72 0.000115 25
Figure 3.6.

In the end, it is possible to use the pool function to pool the regression
results together over the five imputed datasets to obtain just a unique final result
(Figure 3.7).

Regression output after the application of the pool function.

= summary (pool (fit))

term estimate std.error statistic df p.wvalue
1 (Intercept) 31.984371 69.323717 0.461377 7.529804 0.65756187
2 aged0-59 51, 307587 18.717691 2.741128 15.785026 0.01462953
3 age60-99 5B8.110096 22.0B2696 2.631476 10.357080 0.02442909
4 bmi 4.919606 2.449209 2.008651 7.200100 0.08340165

Figure 3.7.



3.3 Examples of application in literature

In recent decades’ literature many authors have conducted research,
belonging to many different fields, applying various multiple imputation
methodologies to deal with missing information in the datasets under analysis.

Shrive et al. (2006, “Dealing with missing data in a multi-question
depression scale: a comparison of imputation methods”) compare six different

imputation techniques for dealing with missing data in the Zung Self-reported

Depression scale (SDS).

The Self-reported depression scale questionnaire consists of a 20 question

scale (Table 3.1).

The Zung Self-rating Depression scale (SDS).

None or a little of the time

Some of the time

Good part of the time  Most of the time

1. | feel down-hearted, blue. and sad.

2. Morning is when | feel the best.

3.1 have crying spells or feel like it.

4. | have trouble sleeping through the night.
5.1 eat as much as | used to.

6. | enjoy looking at, talking to, and being with attractive men/women.

7.1 notice that | am losing weight.

8. | have trouble with constipation.

9. My heart beats faster than usual.

10. | get tired for no reason.

I1. My mind is as clear as it used to be.
12. | find it easy to do the things | used to.
13. 1 am restless and can't keep still.

14. | feel hopeful about the future.

15. 1 am more irritable than usual.

I6. | find it easy to make decisions.

17. | feel that | am useful and needed.

18. My life is pretty full.

19. 1 feel that others would be better off if | were dead.
20. | still enjoy the things | used to do.

b= bbb = — B b —— — — bk — = h—

WA W WW N WNWW RN RN WW RN W
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el e S N N N N N N

Table 3.1. Source: Shrive et al., 2006, “Dealing with missing data in a multi-question depression scale: a

comparison of imputation methods”

As shown in the above table, each question has a score between 1 and 4;
then, the sum of the responses is calculated. Moreover, such sum of scores across
the 20 questions is converted to a 100-point scale by dividing the sum by 0.8.

The participants of the study were 1931 surgical patients: among them,
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1580 patients completed all 20 questions of the SDS® questionnaire, while the
remaining 351 did not fully complete the instrument. In detail, the quantity of
missing values affecting the 351 subjects occasionally involved only one missing
response in the entire instrument. Indeed, most participants were characterized
by four or less missing items.

Considering the 1580 subjects who completed all the items of the
questionnaire, the authors simulated missing values in these complete cases by
assigning each observation a number between 0 and 1 selected in a random way
from a uniform distribution (0, 1)°. Then, the assigned value was used to assign
missing values to selected observations.

Initially, the authors simulated three MCAR scenarios in which the
probability of missingness is assumed not to be linked to any other patient
characteristic. In such framework, observations assigned a value lower than 0.10
were deleted, consequently simulating a study characterized by the missingness
of 10% of the originally collected data. Then, for the subsequent MCAR
simulations the threshold value was increased first to 0.20 and then to 0.30. In the
end, subjects without deleted values were removed from the analysis, since they
had no missing values to impute.

Moreover, the authors considered an unbalanced MCAR scenario in which
the probability of missing question 6 was 20%, while the same probability for the
other questions was of 10%, Such simulation is referred to as the “Q6”
simulation.

Next, a MAR simulation was implemented, characterized by the fact that
the probability of missingness was linked to known patient characteristics.
Specifically, the probability of a missing value was linked to the subject’s gender
of the patient: females over 65 were assigned a non-response probability of 20%,
while for all the other patients such probability was assumed to be 10%.

In the end, the authors considered a MNAR framework in which the
probability of missingness is assumed to depend on unknown patient

characteristics. In such context, all questions except for question 6 were assigned

> Self-rating Depression scale
& Each number between 0 and 1 is characterized by an equal probability of beign assigned
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a missingness probability of 10%. Moreover, with a response to question 6 equal
to 1 or 2, the probability of missingness for question 6 was assumed to be 5%,
while with the above-mentioned responses being 3 or 4 the missingness
probability for question 6 such probability increased to 20%.

As tool for the analysis, Shrive et al. compared six different imputation

methodologies:

e Random Selection

e Proceding Response
e Question Mean

e Individual Mean

¢ Single Regression

e Multiple Imputation

As for multiple imputation, an experimental version of multiple imputation
available in SAS 8.1 was applied. Moreover, the missing data are filled five times
generating five unique and completed datasets, with each of them analyzed
separately to calculate a mean and a standard deviation. The following step
consists of combining the results from the different analyses to produce, for each
missing value of interest, a mean and a standard deviation. In this context, the
predictors used in the multiple imputation procedure to predict missing values
were the responses to completed questions.

A comparison between the six above-mentioned imputation method
applied allows to state that the multiple imputation procedure reveals to be,
without any doubt, the most accurate imputation methodology for this analysis
(Table 3.2, Figure 3.8).
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Diagnostic measures for imputation methods.

Missing Data Scamrio Mathod Maan SO Spearman % Mixchssified Kappa
P=0.10 Random Saloction 4599 10.65 0.50¢ 15% (207) 0494
N= 1379
p= 4368
a=1058
Praceding Quastion 4469 10.07 0.94¢ 7% (120} 0807
Quastion Maan 4175 84 098¢ 7.5% (104} 0213
Indvidal Maan 43174 1.1 09ee 5.4% 74) 0230
Singla Regreszion 4403 1071 asel S.6X(77) 0873
Muizipla mputation 440! 1073 aser 47X (65) 0293
P=020 Random Salection 75 114 0784 287X (440) 0452
N = 1562%
p= 4364
o=1058
Procoding Question 4641 97 0gse 144% (225) 0700
Quastion Maan 4359 (1 g 0574 12.1% (189 0709
Indvidal Man 4359 11.26 0974 8.9%(139) 0202
Single Regrassion “40 10,65 0.9¢5 9.6% (1504 078l
Muziple Smputation 4406 1049 097e 7.0% (110) 0839
P=0130 Random Salocton 4909 1192 0810 41.0% (647) 0267
N= 1579
n= 4362
a=1093
Pracoding Question 4857 953 0ger 234% (373) 0549
Question Man 4360 0¥ 0958 149% (235) 04
indvidal Maan 4366 133 Q955 10.8% (I171) 070
Single Regression 4439 1033 0937 F1.4%(180) 0738
Muizple Imputation 432 1021 Q0939 9.2% (145) 0789
Q6 Random Selaction 4562 1038 90l 166% (233) 0449
N = 1406%=
n= 4349
a=I1089
Procoding Question 4166 1073 0970 102X (143) 0753
Quastion Maan 4343 9267 ose 8.4% (118) 0798
Indvidal Man a7 .03 0584 5.7% (80) 0870
Single Ragrassion 4166 10.67 owa £3%(95) 0342
Muiuple Inputation a3a 1061 09ee S8% (81) 0864
MAR- and Sex Random Selection 4585 10.48 0885 18.1 %4259) 0418
N = 1479=
u= 4360
a=105
Praceding Question 48| 10.09 0540 89%({127) 0834
Question Man 4163 .65 0584 7.4% (106) 0825
Indvidal Maan 4365 1105 %6z S.7% {82) 0867
Single Regression 4389 10.67 ows 7.1%(102) 0835
Musple Imputation 4291 1058 Q965 53% (77) 0877
R Random Salaction 458 10.46 (-2 15.7% (221) 0741
N = 1406%
p=4351
a= 1080
Precoding Questicn 4444 10.06 047 9.T% {136) 08%
Quastion Maan 4351 96 Qser 8.4% (118) 0850
Indvidal Man 4350 10.50 09es 5.9% (83) 0302
Single Regression 4354 1078 Q975 7.7%(108) 0eri
Muiziple Imputation 4354 10.65 098¢ 6.1% (86) 0897

* significant difference from the population statistics at 95% confidence
** Participants for which no observations were randomly deleted are excluded from the analfysis. When there are no missing values to impute, the
calculated score is the same as the known “true” score thus the scores correlate perfectly (spearman= 1.0)

Table 3.2. Source: Shrive et al., 2006, “Dealing with missing data in a multi-question depression scale: a
comparison of imputation methods”



Predicted versus observed scores for each imputation technique with a probability of missing of 20%.

A. Random Selection

e
3 o
)
:
E >
B % 3 % & 0 % M & %
Observed 8DS score
C. Question Mean
*
g
S
g s
B
o
»
o » N x 40 w0 w o w0 o
Observed 508 score
E. Single Regression
"
3 Ly
”
-}
£
2.
= 3¢

" m ’ « 5w

| ) P W
Observed S8DS8 score

Figure 3.8. Source: Shrive et al., 2006, “Dealing with missing data in a multi-question depression scale:

comparison of imputation methods”
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Pampaka et al. (2016, “Handling missing data: analysis of a challenging
data set using multiple imputation™) applied multiple imputation in the field of
educational research.

Specifically, Pampaka et al. conducted an analysis, in the context of UK
schooling system. In particular, the authors were interested in modelling whether
students dropped out of the mathematics courses they were enrolled on. The
authors start from an existing original study (Hutcheson et al., 2011), in which
such drop-out variable was found to be related to the typology of course they
were on, their previous GCSE’ score in mathematics, their disposition to study
mathematics at high level and their self-efficacy rating.

Indeed, the analysis carried out by Pampaka et al. is restricted to the data in
the model used in the above-mentioned original paper.

First, the outcome variable of interest (the dropout) is modeled using the
initial data affected by missing values (which amount to 495 out of 1374), then
these results are compared to a model in which missing data are imputed
(consequently, n = 1374).

The results obtained carrying out the analysis, by the means of a logistic

regression, using only the 495 completed data points are shown in Table 3.3:

A logistic regression model of “dropout” using the 495 cases available at the end of the initial study.

Explanatory variables Estimate s.e. z p
(Intercept) 1.24 0.32 3.88 <.001
Course: UoM (ref:Trad) =1.15 0.26 —4.45 <.001
Disposition —0.09 0.05 —1.88 .06
GCSE-grade (ref: IntC)
Higher C —0.44 0.57 —0.077 44
Intermediate B —0.46 0.32 —-1.42 .16
Higher B —0.67 0.34 —1.95 .05
A —1.85 0.37 —5.07 <.001
A* —49 1.06 —4.63 <.001
Maths Self Efficacy —0.07 0.1 —0.68 49

Table 3.3. Source: Pampaka et al., 2016, “Handling missing data: analysis of a challenging data set using
multiple imputation”

7 GCSE qualifications are usually taken at the end of compulsory education in a range of subjects.
Students typically take about 8-10 of these in a range of subjects that must include English and
mathematics.
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However, since the missing data are unlikely to behave as MCAR, the
above model is likely to provide a biased picture of the outcome variable of
interest. In this perspective, the authors use a logistic regression to show the non-

random nature of the missing data which occur in this framework (Table 3.4).

A logistic regression model of missingness on dropout variable.

Explanatory variables Estimate s.e. z P
Intercept —0.99 0.17 —=5.87 <.001
Course UoM (ref:Trad) 0.11 0.14 0.81 42
Disposition —0.01 0.03 —0.27 .79
GCSE-grade (ref: IntC)
Higher C —0.6 0.3 —1.99 .05
Intermediate B —0.04 0.18 —0.22 .82
Higher B 0.01 0.19 0.08 94
A 0.44 0.2 2.27 .02
AT 1.17 0.26 4.49 <.001
Maths Self Efficacy 0.00 0.05 0.01 .99

Table 3.4. Source: Pampaka et al., 2016, “Handling missing data: analysis of a challenging data set using

multiple imputation”

Considering such missingness mechanism, it is possible to state that the
model shown in Table 3.3 is likely to overestimate the effect of the high-
achieving pupils.

To address the potential bias characterizing the 495 subjects’ sample,
Pampaka et al. imputed the 879 missing values using, in the statistical software
R, the above-mentioned Amelia Il package, which assumes that the complete data
are multivariate normal, and that the missing data follow a MAR missingness
mechanism.

The above Table 3.4, together with Figure 3.9, show that the occurrence of
missingness depends on GCSE grades, which is an observed variable. Moreover,
Amelia Il is assumed to be an appropriate package for this analysis because the

missing values are binary.
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Figure 3.9. Source: Pampaka et al., 2016, “Handling missing data: analysis of a challenging data set using

multiple imputation”

The imputation model included a number of variables available in the full

dataset (Course, Disposition, GCSE-Grade, Maths Self Efficacy) plus some

additional covariates such as information about EMAS, ethnicity, gender,
Language, LPN®, uniFAM*® and HEFCE!!,

Amelia Il imputed 100 separate datasets and, in order to get parameter

estimates for the overall imputed model, such imputation models were combined

8 i.e. whether the student was holding Educational Maintenance Allowance
9 i.e. whether the student was from Low Participation Neighborhood

10 Whether the student was not first generation at HE
11 An ordered categorical variable denoting socio-economic status
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obtaining the combined estimates and standard errors using the Zelig library
(Owen et al., 2013) available in the R package. The overall statistics for the

imputed models computed using such library are shown in Table 3.5.

A logistic regression model of “dropout” using imputed data (n = 1374).

Explanatory variables Estimate s.e. t-stat P
Intercept 1.16 0.26 453 <.001
Course UoM (ref:Trad) —0.87 0.22 —3.96 <.001
Disposition —0.08 0.04 —1.89 .06
GCSE-grade (ref: IntC)
Higher C —0.36 0.34 —1.05 .29
Intermediate B —0.64 0.23 —2.73 .007
Higher B —0.95 0.26 —3.66 .0003
A —1.55 0.259 —5.32 <.001
A* —2.74 0.46 —5.96 <.001
Maths Self Efficacy —0.06 0.08 —0.71 A8

Table 3.5. Source: Pampaka et al., 2016, “Handling missing data: analysis of a challenging data set using
multiple imputation”

Even if the conclusions for the model based on the imputed data are similar
to the ones for the model affected by missing data (n = 495), it is important to
notice the relevant difference found in the standard error estimates for the GCSE
grades. In this sense, the model characterized by the use of the multiple
imputation methodology allows for a better differentiation of the covariate
“GCSE-grade”, leading to significant differences between more categories with
respect to the initial model (the Higher B and Intermediate B groups are now
significantly different to the reference category).

As introduced in the previous section of this work, Chhabra et al. (2017,
“A Comparison of Multiple Imputation Methods for Data with Missing Values”)
apply six different multiple imputation techniques all available in the statistical
package mice within the software R. Then, it is useful to provide an high level
overview of some of the six multiple imputation methodologies (Predictive Mean
Matching, Multiple Random Forest Regression Imputation, Multiple Bayesian
Regression Imputation, Multiple Linear Regression using Non-Bayesian

Imputation, Multiple Classification and Regression Tree (CART), Multiple
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Linear Regression with Bootstrap Imputation).

The Predictive Mean Matching technique consists of an attractive
technique available for missing value substitution under the occurrence of
quantitative variables. Such methodology uses the linear regression and the
nearest-neighbor together to estimate the values of interest.

Multiple Random Forest Regression Imputation is characterized by the fact
that a forest of classification or regression trees is constructed using bootstrap —
or subsamples of the original data and the majority vote or overall average of
trees generate the prediction rule for the target variable (Chhabra et al., 2017).

Multiple Classification and Regression Tree (CART) consists of an
algorithm for both classification and regression, which makes use of decision
trees that are binary to classify new data.

In the end, Multiple Linear Regression with Bootstrap Imputation uses any
test or metric which relies on random sampling with replacement.

In their work, Chhabra et al. use iris dataset from UC Irvine Machine
Learning Repository, composed by three classes, each one of them having 50
cases. Moreover, the dataset is characterized by four continuous features (sepal
width, sepal length, petal width, petal length) introduced artificially with a

percentage of missing values around 20% (Figure 3.10).
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Missing value mechanism in sample data.
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Figure 3.10. Source: Chhabra et al., 2017, “A Comparison of Multiple Imputation Methods for Data with
Missing Values”

Applying the six above-mentioned multiple imputation methods available

in the package mice, the authors observed the performance shown in Table 3.6:

Comparison of different Multiple Imputation methods.

Mean
S. No. Method Standard
Error

Mean C.I
Length

1 Predictive Mean Matching | 0.10608496 | 0.4533471

Multiple Random Forest

2 - - 0.09765137 | 0.4216084
Regression Imputation
3 Multiple Ba)'esiar? Regression 0.09503033 | 0.3847437
Imputation
Multiple Linear Regression
B using Non-Bayesian 0.11876531 |0.5388169
Imputation
Multiple Classification and o
5 ; 5 g
) Regression Tree (CART) G [
& Multiple Linear Regression 0.11446101 | 0.4981347

with Bootstrap Imputation

Table 3.6. Source: Chhabra et al., 2017, “4 Comparison of Multiple Imputation Methods for Data with

Missing Values”



Observing the above table, it is possible to state that standard error and
mean confidence interval length is the least in the case of Multiple Imputation
combined with Bayesian Regression. Moreover, the results obtained by applying
the Multiple Random Forest Regression Imputation reveal to be quite similar to
the ones obtained with the Multiple Bayesian Regression Imputation.

In the end, the authors explain that a possible explanation driving the gain
of efficiency applying the Multiple Imputation combined with Bayesian
Regression is represented by the fact that such technique can make better use of
the available data by accommodating nonlinearities among the predictors
(Chhabra et al., 2017).
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Chapter IV

Multiple imputation for
different types of cross-
sectional data

A relevant feature of the above-described multiple imputation techniques
consists of the fact that such methodologies may be applied to a variety of
different fields and situations.

Among these, multiple imputation methods can be applied in context
characterized by different types of cross-sectional data.

In this perspective, in the next section will be provided an overview of the
application of multiple imputation in situations in which multiple types of cross-
sectional data.

Specifically, the following cross-sectional data frameworks will be

analyzed:

e Quantitative data
e Binary and ordinal data

e Unordered categorical data

4.1 Quantitative data

Multiple imputation procedure can be applied, first, to cross-sectional
missing data which joint distribution can be considered to be multivariate normal
(in this context, so-called quantitative data).

Assuming to observe missing data characterized by a monotone missing
pattern and by a MAR missingness mechanism (with MCAR as a special case),
it is sufficient to use a regression-based imputation algorithm to fill in the missing

values, as explained in detail by Carpenter and Kenward (2013) (Figure 4.1):
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Regression imputation with a monotone missingness pattern.

Then. to impute the data sel we impute missing values of each Y,
J=2...., pinlurn using the following algorithm:

I. For variable j. suppose 1 = I,..., n; individuals have Y; ; observed; the

monotone assumption means they have ¥;,,....Y; ;, observed. Using
data from these n; individuals, letx; ; = (1, ¥;y, Yi2. .-, ¥i j )" so that
Y,;=x;B;+e; ;= N@O D). (3.1)
Fil this rEodel. obtaining the ordinary least squares estimates of 8, a',:.
denoted ;.57 respectively.
2. Then:

(a) draw z from the X,;" i distribution and set

and draw B from

hlﬂ. 0;:‘}')
where :
y ’:’_ -3
T
A; = ( xz.jx.'.‘.)
il !
(b) For each unobserved Y; ;, i=n; +1,..., n, draw g, ; ~ N(0,77)
and impute by
'l'Yl.':""'Yl‘,,‘.‘!)ﬁ-{'_;:i.j' "3.2’
so that all the missing values of Y; are imputed. We note that for
J=3...., p, there will be some units with ¥; ; missing and with one
or more of ¥;5,..., ¥ ;_, missing, and imputed at previous steps.

These previously imputed valves are used in (3.2) when imputing ¥; ;.

Figure 4.1. Source: Carpenter and Kenward, 2013, “Multiple Imputation and Its Application”

In such framework, performing the above steps 1-2 for j =2, ..., pitis
possible to obtain the first imputed dataset. Then, it is necessary to repeat the
whole sequence to generate the successive imputed datasets.

The second approach to deal with quantitative missing data consists of the
so-called joint modelling.

In such framework, no assumption is made about the missingness pattern
underlying the missing data. However, the missingness mechanism is assumed to
behave as MAR.



Then, the imputation model for the data is defined as the following

multivariate normal model:

Y ~ N(B,Q)

Where Q consists of the unstructured covariance matrix. In the end, for the
imputation it is used the so-called Gibbs sampler.

Another fundamental approach to handle quantitative missing data is the
full conditional specification methodology.

This method is originated by relaxing the assumption that all covariate
values in the sequential regressions are actually observed. By relaxing such
hypothesis, in literature was proposed an approach called imputation using
chained equations (ICE), known nowadays as full conditional specification
(FCS).

Such methodologies have been proposed, among others, by van Buuren et
al. (1999), Raghunathan et al. (2001) and van Buuren (2007).

In such approach, the first thing that is necessary is to re-order the variables
so that the missingness pattern is as close as possible to be a monotone pattern.
Then, it is necessary to fill in the missing values for each variable, typically by
simply drawing, with replacement, from the observed values characterizing each
variable.

In practice, the algorithm works as follows:

1. It implements a regression of the observed part of the variable of
interest an all the remaining ones, with the missing values set at
their current imputed values;

2. It imputes the missing values by using the regression imputation

algorithm.

Running through for several times the two above-reported steps, it is
called a cycle. After finishing the first cycle, all the initial starting values have

already been replaced by the imputed values.
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Then, it is necessary to run a number of cycles for the algorithm to
converge. When this happens, the current values at that time originate the first
imputed dataset. Such procedure is repeated for a desired number of times, with
the imputed values stochastically independent from the first imputation. At the
end, the desired number of imputed datasets is created from the algorithm.

Indeed, such process is called “full conditional specification” because each
covariate is imputed from its full conditional distribution on all the other
variables.

The three above-mentioned imputation methodologies may naturally be
applied by researchers in statistical packages.

The sequential regression imputation can be programmed in any one of the
main statistical software. Moreover, such technique is available in SAS PROC Ml
(V9 onwards). It is relevant to point out that, since this method assumes that the
missingness pattern is monotone, the software at the beginning checks for such
assumptions and does not run if it is violated.

As for the joint modelling approach, the earliest commonly used software
implementing is considered to be the so-called Schafer’s NORM package
(Schafer, 1997). Such package, which has been ported to R and S-plus, is also
considered to be the inspiration for multivariate normal imputation available in
SAS PROC MI and similar algorithms in Stata. In the end, the joint multivariate
normal model may be applied also in Windows REALCOM-impute (Carpenter et
al., 2011).

Full conditional specification methodology is instead implemented by a

SAS macro, IVEware, as well as in R with the two packages mice and mi.

4.2 Binary and ordinal data

The second typology of cross-sectional data for which it is possible to apply
the multiple imputation procedure consists of binary and ordinal data.

Considering this type of data, based on the different assumptions made on
the characteristics of the missing values, it is possible to implement a number of

approaches.
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Assuming that the outcome variable of interest Y;i is fully observed, that the
missing data affecting the dataset behave as MAR (with, as usual, MCAR as
special case) with missing values are characterized by a monotone missingness
pattern, and that the dataset of interest is made by a mix of binary and continuous
variables, the procedure is the following.

First, it is necessary to put the variables in order to make a monotone
missingness pattern, with first the fully observed covariates. Then, it is necessary
to impute each partially observed variable in turn, conditional on previous
covariates.

The whole procedure needs to be repeated with the aim to generate
successive imputed datasets.

However, when missing data mechanism is characterized by a
nonmonotone missing pattern, Carpenter and Kenward (2013) propose an
approach consisting of treating binary, binomial and ordinal variables as
continuous for the imputation purpose, and then in the imputed data to round their
imputed values to the nearest valid discrete value before continuing to fit the
model.

Assuming those variables not to be affected by missing values, handle them
as if they were continuous in the framework of a multivariate normal imputation
yields that the distribution of the other covariates reveals to be conditioned on a
linear function of them.

Instead, in the case in which fully observed binary variables are formally
modeled, in most applications the results are likely to be almost indistinguishable
(Carpenter and Kenward, 2013).

Specifically, Bernaards et al. (2007), considering the framework of binary
data, propose and compare three methodologies to implement the above-

described procedure:

e Simple rounding, consisting of simply round to the nearest of o or
1;
e Coinflip;

e Adaptive rounding.
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Carpenter and Kenward (2013) provide a detailed explanation for the

functioning of the coin flip algorithm and the adaptive rounding algorithm
(Figure 4.2):

Coin flip algorithm and adaptive rounding algorithm.

The coin flip algorithm is;

-

if the imputed value, Y, .. is <0 retum 0: if > 1 retumn 1] otherwise

impute a binary response taking | with probability ¥ ..

The adaptive rounding algorithm is:

L.

1

For binary variable j in imputed datasetk = 1, ..., K., let Y;, denote the
mean of the observed (binary) and imputed (continuous) values.

Construct the threshold c; = ¥; 3 — @7'(Y; ) /Y, (1 =Y )

In imputed data set &, re-code continuous imputed values of the binary
variable Y; according to the following rule: Y; ; < ¢;; becomes ¥; ; =0,

and Y; ¢ > c;; becomes ¥; ; = L.

Figure 4.2. Source: Carpenter and Kenward, 2013, “Multiple Imputation and Its Application”

Therefore, it is possible to state that adaptive rounding is quite similar to

simple rounding: the main difference consists of the application of the above-

reported threshold. Indeed, for values closer to 0 or 1, the imputed binary

variables will be characterized by a higher variability.

Horton et al. (2003) anticipate bias in parameter estimates in the case in

which simple rounding is applied.

In this perspective, Bernaards et al. (2007) compare all three proposals in

simulation studies and find that coin flipping performs worst, with adaptive

rounding having a slight edge over simple rounding. Moreover, the adaptive

rounding methodology reveals to perform satisfactorily in applications when the

underlying probability is between 0.1 and 0.9.
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A third relevant approach to handle binary and ordinal missing data consists
of the so-called general location model. Such methodology to a joint imputation
model for continuous and categorical data, described by Schafer (1997), makes
use of the general location model provided by Olkin and Tate (1961).

Such model consists of first separating the data into continuous and
categorical variables. Then, for each cell of the contingency table which has been
defined by the categorical variable, it is necessary to fit a separate multivariate
normal model to the continuous variables.

Another commonly used method to deal with binary and ordinal missing
data consists of the full conditional specification approach.

First, it is necessary to first order the variables of interest to obtain a
missingness pattern as close as possible to be monotone. Then, it is needed to fill
in the missing values of each variable. This is typically done by drawing with
replacement from the observed values of the covariate of interest. In the

following step, the algorithm works as follows:

3. By the means of a logistic regression for the binary variables and of
a linear regression for the continuous ones, it implements a
regression of the observed part of the variable of interest on all
remaining ones, which missing values are set at their current
imputed values;

4. It uses the appropriate regression imputation methodology
(depending on the nature of the data) to impute the missing values

of interest.

Referring to such two steps, it is necessary to cycle through them until the
algorithm looks lime to have converged to the stationary distribution. In the end,
the current imputed values are kept to make the first imputed dataset. Such
procedure is repeated several times, drawing each subsequent completed dataset.

Referring to real applications, it is necessary to mention the potential for
explicit or implicit over-fitting of models with a number of correlated binary

variables.
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In this perspective, it is relevant to understand how to apply the above-
mentioned methodologies in statistical packages.

In the situation of sequential imputation of missing data characterized by a
monotone missingness pattern and having a mix of binary and continuous
variables, it is possible to use the linear and logistic model fitting software
available in most statistical packages.

In such framework, it is possible to avoid overfitting by simply checking
that the results characterizing each regression model are sensible. It is important
to point out that this check has to be done before starting the process of
imputation.

In the case of the joint multivariate normal approach, some statistical
packages include automatic rounding; however, if a researcher wants to use the
adaptive rounding, she/he will have to write an own post-imputation data step.
An advantage of using the joint multivariate normal approach consists of the fact
that it reveals to be more robust to perfect prediction errors. By the way, some
issues may arise in the case in which the variables reveal to be highly corelated.
It is possible to successfully address this problem by using a ridge parameter.

Considering the full conditional specification algorithm, it is possible to
use various statistical packages. Moreover, in Stata it is possible to implement
automatic detection and adjusting for perfect prediction, even if it is relevant to

point out that detection or perfect prediction is not guaranteed.

4.3 Unordered categorical data

Regarding the application of the multiple imputation procedure to
unordered categorical data, in last decades the literature has provided many
different possible approaches.

Assuming, as in the two previous frameworks, to deal with missing data
characterized by a monotone missingness pattern, it is possible to apply the
above-described sequential imputation with a unique but relevant difference in
the methodology: the logistic regression (which is used in the case of binary and

ordinal data) is replaced with a multinomial logistic regression.
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After having implemented such above-mentioned crucial substitution, the
procedure for this approach reveals to be exactly the same as described in the
previous section.

Just like in the framework of binary and ordinal data, a second relevant
multiple imputation methodology which can be used consists of the joint
multivariate normal model. The main feature of applying multivariate normal
imputation to categorical data is that, supposing to have a categorical variable
characterized by M levels, it is necessary to generate M — 1 dummy variables
indexing the categories of interest.

Even if this approach has not been widely explored in literature, Carpenter
and Kenward (2013) suggest that it is likely to perform in an acceptable way if
applied in several practical settings.

Another relevant methodology to deal with unordered categorical missing
data is, as for binary and ordinal data, the general location model (Olkin and Tate,
1961).

However, with reference to this approach it is important to point out that
the general location model is characterized by a saturated log-linear model the
categorical variables and that, usually, both categorical and multivariate normal
models need to be quite simplified before it is fitted.

In the end, it is also possible to apply to such typology of missing data the
above-described full conditional specification approach, but with some points of
attention.

First, when dealing with a M-level categorical variables which are included
as predictors in the regression models constituting the full conditional
specification, such covariates need to be included in the methodology as M-level
categorical variables (that is, using M — 1 dummy indicators).

Moreover, in the case in which the missingness pattern is actually
monotone, an appropriately specified full conditional specification leads to have
imputed data characterized by the same distribution of a hypothetical sequential
regression imputation, once the former has converged.

Regarding the application of the multiple imputation procedure to

unordered categorical data, various statistical packages are available for
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researchers.

Schafer’s CAT package uses a joint log-linear model, which is extended by
the so-called MIX package to a mix of categorical and continuous data by using
the general location model (Schafer, 1999). Such packages have been ported to
the software R.

In the end, the full conditional specification algorithm is available both in

Stata and R.
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Conclusions

As shown in chapter I, missing data (of any of the three main typologies
presented) actually represent a major issue often affecting inferential procedures
in many research fields.

Taking this into account, in the last decades various techniques have been
developed to handle missing data and, consequently, to obtain unbiased inference
results.

As for single imputation techniques, it has been shown that there exists a
variety of different methodologies, based on different assumptions and statistical
methods. Such approaches, even if still characterized by a number of not
negligible drawbacks, under specific assumptions and situations are able to lead
a researcher to obtain unbiased results.

Multiple imputation procedure, on the other hand, can be considered as an
improvement with respect to the single imputation techniques. Indeed, such
methodology not only is able to lead to unbiased results but, in some
circumstances, it allows to get a reduction in bias and/or a gain in efficiency.
Moreover, since multiple imputation can be applied to different types of cross-
sectional data, it substantially represents a step forward regarding the possible
fields of application.

Even if it consists of a more accurate and precise methodology, it is relevant
to point out that multiple imputation has not to be considered a miracle cure and
that the door is still widely open for the implementation of new approaches and
methodologies, also considering the continuous evolution of statistical software

and packages that a researcher has available when conducting a study.
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