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Summary 

 
This thesis aims to verify the IMUs effectiveness in identifying the gait cycle 

phases. This is only partially present in the literature and limited to regular 

flat terrain. Therefore, the aim here is to investigate the effectiveness of these 

sensors for this purpose and extend their application to various irregular 

terrains. 

This study performed a comparison between an inertial sensor system and a 

stereophotogrammetry system, used as gold standard. The comparison is 

based on experimental data acquired in the Spanish project, called 

‘Neuromark’,  using a slightly modified experimental protocol. In this thesis, ten 

healthy subjects were analyzed in twelve different configurations of walking and, 

also, two Parkinson’s disease patients data of the project  were examined. Some 

codes, that use acceleration and angular velocity data, were analyzed in term of 

performance to detect events that are comparable with the ones of the gold 

standard, having defined threshold methods. In addition, with the comparable 

events, an analysis on the temporal errors was performed, using a statistical test, 

as it is the analysis of variance. The results can give some indications on the 

recommended positions of the IMU sensors in every terrain condition and 

inclination, and also which method can be considered useful for an analysis on 

the gait events of the Parkinson disease patients. 
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Chapter 1 - Introduction 
 
1.1  Motivation 
 

The Parkinson disease is the second most relevant neurodegenerative disease 

in the world. Doctors usually evaluate it with clinical observations, that lack 

of an objective analysis leads to an incorrect diagnose in the 35% of the cases 

[C.H. Adler, 2014]. Moreover an early diagnosis is difficult with current 

methods, and the evolution of the patient following different therapies  is 

complex and affected by large uncertainties. Parkinson severely impairs  the 

quality of life of patients, due to the motor and non-motor underlying alterations 

that it implies. As already depicted an early diagnosis is difficult, and the 

current diagnostic procedures depend on the clinical subjective analysis of 

motor cues in accordance with certain rating scales, one of the most used is 

the Unified Parkinson’s Disorders Rating Scale (UPDRS) or the Hoehn and Yahr 

(HY) scale [Mirelman A, 2019]. For these reasons there are several studies that 

aim to build an early diagnose system. For example, the paper from Yuzhe 

Yang and Katabi uses breathing signals during the night either with a wireless 

system that sends and receives radio waves or with    a system that uses a 

kind of sensor belt placed over the patient’s ribcage that can detect its 

movements. The paper from Wei Fu and Chen wants to build an artificial 

intelligence system that functions as an olfactory system, capable of 

diagnosing Parkinson’s disease from the smell of the skin. Clinical studies on 

the effectiveness of foot stimulation for Parkinson’s disease patients [Kleiner 

and Pandis, 2015]. Design of devices useful for combined forced  motor 

training of the upper limbs in patients with Parkinson’s disease, improving 

movement and posture in 100 percent of patients [Messa and Rossi, 2019]. 

Again, studies demonstrating the effectiveness of surgical implantation of 
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electrodes in the subthalamic nucleus [Thenaisie and                                      Moraud, 2022]. 

At the moment, there is no cure for Parkinson’s disease. The most 

extended treatment are: 

• Intake of levodopa. This substance is converted into dopamine into the 

brain, which improves the motor capabilities of the patient. But, not all 

parkinsonian gait features are responsive to this treatment [Roemmich 

and Hass, 2014]. 

• Deep Brain Stimulation (DBS) is used as a later stage treatment when 

dopaminergic medication does not control symptoms [A.L. Benabid, 

2009]. 
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1.2  Research questions 
 

In the project ’Neuromark’, that wants to find     the most important features in 

gait cycle analysis to discriminate if a person   is an healthy subject or a 

Parkinson’s disease patient and the illness severity, using machine learning, the 

Inertial Measurement Units sensors are used because they are convenient and 

manageable. So, it occurred to me to validate this system and to see if it is now 

possible to use this special kind of sensors for gait measurements when walking 

on different terrain conditions. In particular, the research question in this thesis 

wants to verify if we can reliably obtain spatio-temporal  parameters with these 

sensors. To do this, it is evident in literature the importance to detect correctly 

and more precise as possible the gait events instants during the walk. If this 

occurs, it may open up diagnostic opportunities to any doctor’s office, even of 

not equipped with a complex and expensive system to install like an 

optoelectronic motion capture system, or monitor patients from home in more 

severe cases to obtain regular data on daily activities or conduct experiments 

outdoor. 

So, can an IMUs system acceptably replace a stereophotogrammetry system? Is 

it possible to use Inertial Measurement Unit sensors in an experimental protocol 

like the one used in this thesis? Are there body positions where it is advisable to 

put the IMUs sensors to have a precise measure? Does it depend on terrains? Or 

on the configurations of them?  

We can expect that this kind of comparison will confirm the possibility to 

use IMU sensors in the measurement of gait parameters with acceptable 

errors range when operating on regular terrains such as a flat rigid floor, both 

horizontal (0 deg) or slightly inclined (15 deg). On the other hand, it is 

reasonable to encounter some difficulties when irregular terrains are 

involved as it will be presented later in the ’Experimental protocol’ section. 
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Furthermore, with the statistical analysis we can see if the variabilities of  the 

results depend on the subjects anthropometric characteristics like the 

weight, the body mass index (BMI), the height, on the pathological 

conditions of the subjects or only on the terrains characteristics. In order to 

have a good data base, the latter must not depend on the anthropometric 

characteristics of the subjects, instead it is possible that depend on the 

pathological conditions, because, as it will be presented in the ‘Parkinson 

disease’ section, the patients involved in this experiments can have balance 

and stability problems. These issues can lead to particular acceleration and 

angular velocity signals , that the algorithms may not handle properly. 
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Chapter 2 - State of the art 

 
2.1  Parkinson Disease 
 

Gait disorders are a common manifestation among patients with Parkinson 

Disease (PD), and according to their pattern of occurrence they can be 

classified as: continuous, or episodic [Giladi N, 2013]. Continuous (persistent) 

alterations in gait pattern are usually consistent from step to step so 

systematic effects can be observed: walking is slow and characterized by a 

reduced                                                       step length and step width (’shuffling gait’); furthermore, arm swing 

is decreased or absent, a longer double limb support phase can be observed, 

and patients present higher step variability with increased left/right 

asymmetry. These persistent gait abnormalities are usually exacerbated 

under dual-task conditions [Plotnik M, 2011] [Springer S, 2006]. Episodic 

alterations on the other hand, are occasional, intermittent, and apparently 

random. They occur in an inexplicable manner, and include: festination, i.e. 

a tendency to move forward with increasingly rapid, but ever smaller steps, 

associated with a forward shift of the center of gravity over the stepping feet, 

and freezing of gait, i.e. brief, episodic absence or marked reduction of 

forward progression  of the feet despite the intention to walk. Freezing of gait 

may prevent the patient from starting to walk, turning, passing through 

narrow spaces, and making for specific destinations. While festination is 

relatively infrequent, freezing of gait is a common and debilitating 

phenomenon in PD; although primarily related to progression of the disease 

and disease duration, it can also occur in the early stages. Although the 

underlying mechanisms (loss of automaticity, impaired regulation of 

rhythmicity, failure to release inhibition of the stepping program) are still 



13  

uncertain [Nutt JG, 2000], freezing of gait is associated with an increased 

prevalence of falls and loss of independence  [Bloem BR, 2004]. 

Analyzing the gait is important as some of its characteristics, including the 

spatio-temporal parameters of interest in this work, are in direct correlation with 

the disease and its extent. Furthermore, given that the dual                           task increases 

and thus highlights the problem, irregular terrains can further engage the 

subject and make the task more onerous similarly to a dual task.  In this sense, 

it is important to have the spatio-temporal parameters also under these 

conditions, hopefully as good early indicators of the disease. For these reasons, 

the activity was focused on the validation of methods for measuring spatio-

temporal parameters, with reference instruments (Optoelectronic Motion 

Capture) and instruments of simpler applicability (Inertial Measurement Units), 

also outside a laboratory, during walks on different types of terrain. 
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2.2  Gait analysis 
 

Walking can be defined as a method of locomotion in which through alternating 

and repeated use of the lower limbs [M. D. J. Perry, 1992] provides for the 

movement of the body in forward while simultaneously allowing stable 

support.  

Recovery of walking function is one of the main goals of neurorehabilitation. The 

ultimate goal of the rehabilitation is to reduce the likelihood of disability, by 

helping patients maximize their independence and increase their interaction 

with their environment throughout life [Stucki G, 2007].  

It is known that gait consists of two main phases (% of gait), generally estimated 

during a comfortable walk. The swing phase (40%) is defined as the period of 

time when the reference foot is not in contact with the ground, while the stance 

phase (60%) corresponds to the time when it is in contact with the ground. The 

stance phase can be further subdivided into: (a) the double support phase (10%) 

during which both feet are in contact with the ground; (b) the single limb support 

phase (40%) of the gait cycle, during which the opposite foot swings. So, the 

human gait cycle pattern can be segmented from two to eight phases in the 

literature [J. Taborri, 2016] as it is shown in the Figure 2.1.  

 



15  

 

 

 

Gait abnormalities can refer to the stance or swing phase of the gait cycle. Stance 

phase dysfunctions include an abnormality of the support base (equinovarus 

foot, claw toes, knee hyperextension) and limb or trunk instability 

(Trendelenburg limping). Swing phase dysfunctions may result in impaired limb 

advancement [Bensoussan L, 2008].  

 

 

 

 

 

 

Figure 2.1: The eight phases of the human gait cycle. (https://www.streifeneder.com/) 
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Gait analysis is used to quantify human motion and it is generally performed in 

a specialized laboratory. The objectives of gait analysis are to understand the 

biomechanical features of human gait and to differentiate normal conditions 

from those defined as pathological. Other important aspects that can be studied 

are the different biomechanical components of the body (feet, trunk, arms) and 

their relationship to each other during gait. Finally, gait analysis can help in 

drawing clinically meaningful inferences about the anatomical and 

biomechanical functions of the body in patients with different pathologies 

[Mayich DJ, 2014]. It is to be noted that the clinical course of gait disorders is 

variable and changes over time in patients with neurological diseases. A better 

understanding of gait changes related to disease progression or treatment could 

help clinicians to classify gait disorders. Classifying dysfunctional gait patterns 

would have important implications from the perspective of improving 

communication between rehabilitation experts and developing specific 

interventions based on patients’ needs [Kempen JC, 2016] [Mirek E, 2016].  

The parameters used in gait analysis can be divided into five types: (a) spatio-

temporal parameters; (b) kinematic parameters; (c) kinetic parameters; (d) 

integrated biomechanics (joint moments and power); and (e) electromyography. 

Spatio-temporal parameters are the easiest to understand and, with respect to 

the others, the most applicable in clinical practice. Essentially, the spatio-

temporal parameters are gait speed (m/s), stride length (m), cadence (steps/s), 

step or stride width (m), single limb support time (s), double limb support time 

(s), and stance time/duration (s). It is important to consider that spatio-temporal 

parameters are a global expression of gait function and can be directly 

influenced by several factors (the subjects’ sex and age, the measurement 

method used, the instructions given to the subjects, the type of terrain where 

the trials are conducted, etc) [Mayich DJ, 2014].  
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Kinematic parameters are used to study the movement of the body independent 

of the forces that generate the motion. They are measured as displacements of 

linear or angular accelerations or velocities, usually recorded with motion 

tracking devices and/or optical tracking cameras to derive joint angles and limb 

trajectories. Modern gait analysis laboratories are equipped with optical tracking 

cameras for either two-dimensional or three-dimensional (3D) gait analysis.   

A well-equipped movement analysis laboratory has the potential to measure and 

record the kinematic parameters and many more. The path of movement in 

three different dimensions and precise quantitative data can be collected 

simultaneously. Gait analysis devices are generally easy to use and non-invasive 

for the patient. The table 2-1 shows a list of possible systems that can analyze 

and evaluate gait. 

 

 

 

Table 2-1: List of instrumental measurement systems to evaluate gait. 

Devices for gait analysis 

Optoelectronics Motion Capture 

GAITRite system 

OPTO GAIT photoelectric cell system 

Electromyography 

Posturography 

IMU systems 
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Although the assessment of gait disorders is a key area in the field of 

rehabilitation, there is no agreement on the most appropriate method to select 

outcome measures, but in the literature the most used system to perform gait 

analysis is the Optoelectronics Motion Capture. Furthermore, there is no shared 

consensus between researchers and clinicians on the clinical scales that should 

be used to assess the treatment effects and gait training [Geroin C, 2013]. 

Walking independence, velocity, muscle strength, endurance, mobility, and 

balance are the main aspects of walking with potential implications for 

rehabilitation. Furthermore, real-time gait analysis techniques often have the 

goal to be applied in gait rehabilitation [Prasanth, 2021].  

So, for all the reasons reported above, it is important to have universal 

references to analyze the gait cycle. The first step towards a common approach 

is the definition of the coordinate reference system for gat analysis: 

- axis X: direction of the subject motion during walking, it is the antero-

posterior direction; 

- axis Y: direction perpendicular to the ground and positive from bottom to 

top, it is the vertical direction; 

- axis Z: direction perpendicular to the axis X and to the axis Y following the 

right hand rule, it is the medio-lateral direction. 

 

 

 

 

                                                                              

 

 

 X 

Z 

Y 
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In the gait analysis, it is useful and recommended to decompose the motion in 

planes, the convention comes from the ISB (International Society of 

Biomechanics), as we can see in the Figure 2.2: the plane being implemented by 

the two axis X and Y is the sagittal plane, the most important plane in the gait 

cycle; the plane that the axis X and Z form is the transverse (or horizontal) plane; 

the plane that is realised by the other two axis, Y and Z, is the frontal (or coronal) 

plane. 

 

 

 

 

 

Figure 2.2: Reference planes for gait analysis. 
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In this thesis, the interest goes to the sagittal plane and on the gait events that 

determine the most spatio-temporal parameters that exist in gait. The 

calculation of these parameters comes from the correct identification of the gait 

events. Gait events correspond to transition between phases, therefore gait 

segmentation and the detection of gait events are equivalent problems. Most 

existing approaches to detect gait events include two events: Heel Strike (HS), 

when the foot first touches the floor, better called Initial Contact (IC), and Toe-

Off (TO), when the foot loses contact with the floor, better called End Contact 

(EC) [R. Caldas, 2017]. In this work, with regard to nominative recruitment, it was 

decided to call the two events described above, as Initial Contact (IC) and End 

Contact (EC). The reason lies in the fact that in this thesis we go for an analysis 

involving challenging terrains where the part of the foot that touches the ground 

first is not always the heel. Similarly, the last part that touches the ground is not 

always the toes. The references in literature on irregular terrains are residual and 

even more rarely there are any specifics on the analysis on this kind of terrains  

[Torres-Pardo A., 2022].   

In conclusion, in order to determine the gait phases, it is necessary to know 

correctly at which instants the first and last contact (IC and EC) of the foot with 

the ground occurs, so this thesis’ goal focuses on the gait instants determination.  
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2.3  Motion capture systems 
 

Motion capture is a technology used to record and digitize human movements. 

It uses sensors placed on the body or cameras that track markers  attached to 

the body to produce a digital representation of motion. There are two main 

types of motion capture systems: marker-based and markerless. Marker-based 

systems are based on a biomechanical model to describe the movement under 

investigation. A proper set of markers identifies landmarks on the subject 

corresponding to specific points in the model. Cameras can record images of the 

markers easily detectable since they appear as white dots on a black  

background. Markers trajectories once labelled, associated to the model, can 

reproduce the subjects’ movement to the level of detail included in the model. 

Markerless systems use computer  vision algorithms to track the movement of 

the body without the use of markers. In biomechanics, the most accurate state 

of the art systems in terms of trajectory measurement are marker-based, 

whereas markerless systems have considerable advantages in terms of subject 

setup speed even if they are less accurate. 

Motion capture systems are widely used in animation, film-making, gaming and 

biomechanics research [Shubham Sharma, 2019]. The resulting data can be used 

to animate characters, evaluate physical performance, or study human 

movement patterns to study a Biomechanical disease or to evaluate a sport 

performance [Reijne, 2018]. These systems can range from simple setups using 

just a few cameras to complex setups using multiple cameras and high tech 

sensors. By studying human motion, researchers can gain a deeper 

understanding of the mechanics of movement, as well as the factors that 

influence it. This  information can be used to improve the design of medical 

devices, such as prosthetics, and to develop new treatments for conditions such 

as Parkinson’s disease. 
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2.3.1 Stereophotogrammetry systems 
 

As already introduced, among the first steps in the biomechanical study of a 

movement, we have           the definition of the biomechanical model of the body 

segments under analysis. There are some cautions to keep in mind. If the 

acquisition system is stereophotogrammetric and there is a need to make a three-

dimensional model of the body, then one must make sure to place at least three 

non-aligned markers on each body segment so that its movement can be 

described in its six degrees of freedom: three coordinates for positions and three 

possible rotations in the 3D space.  If, on the other hand, a two-dimensional 

analysis is performed, usually, two markers are placed to describe each segment. 

The stereophotogrammetry systems are measuring instruments that provide 

markers coordinate. These markers can be active or passive. The active markers 

have a LED light that has to be received  by white light cameras to record markers 

positions in the global reference frame. The passive markers, instead, reflect 

infrared wavelengths and they have to be, therefore, the only objects recorded 

by cameras that are sensitive to infrared wavelengths. The camera set-up is 

critical to define a proper working volume, and once they are fixed in position 

and adjusted in their optics, a calibration of the system must be carried out 

prior to        its use in order to refer the images from the different points of view to a 

common reference frame (world reference system), in the way illustrated in 

Figure 2.3.  
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The coordinates of the markers will be defined according to the origin of the 

reference system.  

To reconstruct the 3D position and consequently the trajectory, each marker 

has to be recorded at least by two points of view, or considering the hardware 

used, by at least two cameras. It becomes important to have as  many 

cameras as possible to enable multiple views and to guarantee that during 

the movement every marker is always seen by at least two cameras [Chiari, 

2005].  

As already depicted such systems at the state of the art are the most 

precise and often considered as gold reference standard for movement 

reconstruction in biomechanics. Nevertheless there are some uncertainty 

issue. One of these is described in [Cappozzo, 2005], is caused by the skin, 

where the markers have to be attached. The skin, like all the soft tissues, has 

a deformability that can introduce some errors while the subject is moving 

in the experimental trials. So, fixed and stable positioning of the markers is 

not guaranteed because of the movement of skin and underlying masses 

(soft tissue or contracting muscles), in general called wobbling masses. This 

Figure 2.3: World Reference Frame set-
up with the Vicon calibration wand. 
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issue was studied in the past by [K. Gruber, 1998] so current biomechanical 

models privilege some essential landmarks where such problem is reduced 

and consider other positions as secondary to complete the information of 

the segment movement. 

Another common problem is the lost in the line of view during the specific 

trial. In such conditions the marker is seen by less than the minimum number 

of cameras, so its positions in the 3D space con not be reconstructed. Such 

problem results in gaps in the marker trajectory, creating discontinuities in the 

movement. To solve such problem after the experimental session has been 

completed, the only option is a long and careful process of each trial  to try 

to fill more gaps as possible. On the other hand a careful set-up of the cameras, 

their appropriate number, and proper marker position selection can help in 

reducing such a provable  during the acquisition phase.  So filling appropriately 

the gaps is important to reconstruct the markers trajectories in the most 

realistic way. In the current practice, this problem is difficult to avoid 

because in an experimental trial the subject can interact  with several 

objects and also with his art movements can hide markers to       the cameras. 

Another aspect to be considered is the time required to set both the cameras 

and the subject with markers. If the former can be done every time and then 

when setting up a new configuration in the lab the latter is required for every 

subject considered, healthy or patients. Of course, this point has a great 

importance in clinical studies. 
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2.3.2  Inertial Measurement Units systems 
 

The Inertial Measurement Units systems or IMUs are measurement systems 

based on two inertial sensors and some auxiliary sensor that provides raw 

measurements of linear accelerations and angular velocities. Main sensors are 

accelerometers, gyroscopes, while auxiliary sensors are magnetometers, 

thermometers and pressure sensors. The accelerometers sensors give us 

acceleration measurements on all the three axis, they have a useful bandwidth 

from 0 : 1000Hz, they are sensible to the gravity acceleration and the 

measurement range is over 100m/s2 , depending on the model. The gyroscopes 

sensors, instead, give us angular velocity measurements, they are tri-axial 

sensors and the have a measurement range usually over 2000 deg/s. The 

magnetometer sensors are useful to measure the earth’s magnetic field 

orientation to define a reference system for the measurement. The  auxiliary 

sensors, when present, are used to compensate the errors that gyroscopes or 

accelerometers may have due to the environmental conditions. So, for every 

sensor we have three different kind of data, one for each axis, versus time and 

it is very  important the processing of the raw data after the recording phase. 

In particular, in motion capture a sensor fusion is operated to obtain finally 

an orientation measurement. The angular position of the device is then 

extended to the angular position of the body segment on which the device 

is fixed, enabling the movement reconstruction. Possible applications of this 

system are varied, like virtual reality for cinema, ergonomic design for user or 

biomechanics, where it is possible to reconstruct limbs motion, to develop 

model of the entire body with minimum invasiveness in field applications.  
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One of the possible problems that may occur is the distortion of the earth 

magnetic field. If the magnetometer during the measurement fails, there is still 

a valid measurement of acceleration and speed, but the sensor fusion to arrive 

at the orientation in space is no longer reliable. The distortion depends on the  

distance from the ferro containing metal and thus the construction materials 

used in the building. The paper written by [W.H.K. de Vries, 2009] gives some 

advices to not encounter this problem. One of these says to ’map your 

laboratory on ferromagnetic characteristics before validating’ and this can 

be done with an application that anyone can download on his smartphone. 

Nowadays the Inertial Measurement Units, called also IMUs, are in the 

interest of most scientists around the world for their availability, relatively low-

cost,  portability, lightweight [Ferrari, 2010], but it is not yet clear whether their 

use can replace systems used for many years until today and of which there are 

many studies in the literature. So, in the last years, many studies were 

conducted to evaluate the performances of these systems in a lot of conditions 

and situations, like in sports [Benjaminse and Otten, 2020], in small 

movements [S.B. Thies, 2007] and tasks [Robert-Lachaine, 2017], under 

ambulatory conditions [Karatsidis, 2019], and also military tasks [P. Mavor and 

Graham, 2020]. In this thesis, for the experiments the IMUs sensors by Xsens 

(https://base.xsens.com/s/topic/0TO09000000Y06oGAC/mvn-

awinda?language=en_US&tabset-acedd=2) was used. It is the leading innovator 

in 3D motion tracking technology and products for the high quality of its IMU 

sensors [A. Garcia and Siqueira, 2022]. This system has two possible hardware 

solutions, one body-wired and one completely wireless, that has been used for 

this thesis. With this solution, it is necessary the ‘MVN Awinda’, that uses 

wireless motion trackers and body straps and receives the data in wireless mode. 

Called also ‘Awinda station’, it uses a patented protocol described in [F. Dijkstra 

and P. J. Slycke, 2009 and 2010] and in [G. Bellusci, 2014 and 2015]. The Xsens 

company provides also the software where the data collected by the sensors are 
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combined with the biomechanical models of the human body to obtain segment 

positions and orientations. It is possible to choose how many sensors to be used 

in the study. For this work, being experimental trials, it has been chosen to use 

the full body configuration to have all the possible sensors to investigate after 

on which sensor can be optimal for the goal of the study. So, 17 sensors were 

used and they are illustrated in the Figure 2.4. 

 

Figure 2.4: Xsens 17 sensors, full body configuration. 
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2.4  Gait events detection 
 

A code search in the literature led to the confirmation that IMU and rule-based 

algorithms are the preferred option among studies, even in those seeking to be 

validated on subjects with disabilities, like the Parkinson’s disease patients 

[Prasanth, 2021]. Nine papers have been found, but in the end only two 

were used to write and replicate the code inside them. In the paper of [M. 

Jasiewicz, 2006], cited more than 280 times in the literature, were reported 

three methods of gait event detection using angular velocities, linear 

accelerations, but also the joint angles data to make time windows where the 

events (Initial Contact and End Contact) have to be searched. These methods 

were compared with standard pressure-sensitive foot switches. Then, the paper 

of [Trojaniello and Croce, 2014], cited more than 140 times, was found. The 

method, not well described, uses two Miniature inertial measurement units 

(MIMUs) above the ankles and the medio-lateral and sagittal shank angular 

velocities recorded by these sensors to detect the gait events like the Initial 

Contact (IC) and End Contact (EC) to, subsequently, estimate the spatio-

temporal parameters for both healthy and various pathologic gait patterns.   

Other two methods were described in a paper recent paper of [Yuzhe Yang 

and Katabi, 2022], where all the 36 healthy subjects did run trials with different 

velocities and the IMUs sensors were placed on the ankles. Only the data 

collected from gyroscope and the accelerometer were used. The results of the 

algorithms were good, especially, in the trials at the medium speed, where the 

events detection errors were at their lowest with average errors of 0.0273s 

and 0.0214s, IC and EC respectively. Another paper, [Milad Nazarahari, 

2022], used four IMUs, two on the shanks and two on the feet, to make an 

algorithm that, afterwards, has been compared with data recorded by two 

pressure insoles. The events detection was based on the measurement of the 

foot orientation, in particular on the pitch angle, foot angle, measures in the 
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sagittal plane. Instead, the trunk acceleration data were used in the paper of 

[Wiebren Zijlstra, 2003] to analyze their relationships with spatio-temporal 

gait parameters in healthy subjects. Also algorithms were developed, based on 

model predictions of the body’s center of mass trajectory during walking. This 

method was tested on subjects that walked on regular ground of 60m with 

their regular shoes in a public building at three different speed. In the paper, 

it is explained how the algorithm, that detects the IC events, was developed. 

It was developed after some observations on the mean trunk acceleration 

patterns. In every kind of trial, that every kind presents a different speed of 

the subject, the peak acceleration identifies the foot contact with the 

ground. Additionally, they observed that in the antero-posterior acceleration 

pattern, there is always a deceleration phase after the first contact with the 

floor. Another interesting paper is the one of [A. Garcia and Siqueira, 2022], 

where they tried to write an algorithm for the IMU that is present in the 

phone,  and this phone located in the thigh pocket. This evaluation was 

conducted on nine subjects without gait abnormalities and they wanted to see 

the precision of the algorithm in the detection of four gait events (Heel-Strike, 

Flat-Foot, Heel-Off and Toe-Off). For this evaluation they used the F1-score 

metric, often used to evaluate the performances of the algorithm in these 

conditions [J. D. Farah and Lemaire, 2019], [J. C. Perez-Ibarra and Krebs, 

2020]. The paper found that belongs to [G. V. Prateek and Nehorai, 2020] 

and they tried to write and develop an algorithm to segment the gait cycle 

with three different events, midstance, toe-off and heel-strike. This algorithm 

uses the data in the sagittal plane recorded by the gyroscope sensor. This 

method is presented, but not in details and it is too complicate to replicate. 

Other algorithms, like the one presented in the paper of [Shuo Jiang, 2017], 

use the angle signals and their development over time. The paper cited before 

tried to define a threshold and to use the knee angle signal over time, but its 
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limitation is that this method was not evaluated sufficiently. Another 

algorithm of the paper belonging to [A.R. De Asha, 2012] uses the 

contralateral peak hip extension to detect the IC instants and they showed it 

using a force platform placed on the ground. 

 

 2.5  Statistical Analysis 
 

Statistical analysis starts with a theory and a model and tries to fit the parameters of 

the model to the data.  

We deal with two hypotheses: the null hypothesis, notated H0, that is the general 

accepted one, and its opposite, the alternative hypothesis, notated H1. In an ideal 

world, in order to determine the correct hypothesis, one should test the entire 

population. This is hardly the case in everyday practice; thus, we can only test a 

random sample of that population. One thing we must keep in mind: when choosing 

the random sample, we need to make sure that it matches the features of the entire 

population, otherwise the drawn conclusion will most definitely be wrong. After 

determining the correct sample, we can formulate our hypothesis.  

To determine the statistical significance of an event three concepts have to be 

understood: hypothesis testing, the Normal distribution, and p-level. To find out 

whether we need to accept or reject the null hypothesis based on the evidence at 

hand we must perform statistical tests. There are two type of tests: parametric and 

non-parametric. As the name states, the parametric tests use the statistical 

parameters from the sample data. The statistical parameters are the mean, standard 

deviation (or dispersion), and the distribution that governs the data. The most used 

parametric tests are the t-test and ANOVA. Before applying these tests, we need to 

verify whether the data is governed by the Normal distribution or not.  

The p-level is one of the most powerful statistical tools that can be used. It is a number 

between 0 and 1. Its values can be interpreted as follows: if the p-level is less than or 

equal to 0.05, then we can reject the null hypothesis, because there is enough 
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evidence to support the significance of the results; else if the p-level is greater than 

0.05, then we accept the null hypothesis, due to the fact that there is not enough 

evidence to reject it.  

In hypothesis testing we need to discuss the Normal (Gaussian) distribution. A random 

variable X has a Normal distribution with mean μ and dispersion σ^2, and density and 

distribution function with the following formula: 

 

𝑓𝑋 (𝑥) =  
1

𝜎√2𝜋
 ∙  𝑒

− 
(𝑥−𝜇)2

2𝜎2  , −∞ < 𝑥 <  ∞ [eq. 3.1] 

 
 
The Normal distribution graph is the well-known Gaussian Bell. 

The Normal distribution plot can point us some helpful information such as the area 

under the graph that lies between x = μ−σ and x = μ+σ contains 68% of all the 

observations from the statistical series. If we widen the area between x= μ−2σ and 

x=μ + 2σ, 95% of all the observations will fall in this region. This interval is also known 

as the 95% confidence interval. Widening the area all the way from x = μ − 3σ to x = μ 

+ 3σ, 99.7% of the data will be found in that interval.  

Plotting the distribution graph can help us determine whether the sample data is 

governed or not by the Normal distribution. Another way is to apply different 

statistical tests such Kolmogorov–Smirnov Goodness of Fit test, the Lillifors test, and 

the Shapiro Wilk W test.  

So, to conclude, in order to determine whether we accept or reject the null hypothesis, 

we need to perform specific tests that will give us a level of significance (p-level).  
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Normality Tests  
 

This tests are useful to determine the data distribution. They are important to 

apply when it is not clear that the data distribution can be compared to a 

Gaussian bell. All of the tests that will be presented, being normality tests, have 

the null hypothesis that refers to the normality of the data. So, the hypotheses 

are: - H0: the data is governed by the Normal distribution; H1: the data is not 

governed by the Normal distribution.  

The normality test chosen for this work is the Shapiro Wilk W test [H.W. Lilliefors, 

1969], that computes the W statistics. Its steps are: 

▪ n observations have to be arranged in ascending order: 
 

𝑥1 ≤  𝑥2 ≤ ⋯ ≤  𝑥𝑛 
 

▪ the statistics that follow must be computed: 
 

𝑍2 =  ∑ (𝑥𝑖
𝑛
𝑖=0 −  𝑥̅)2 

 
 

▪ differences have to be computed:  
 

𝑑𝑖 = 𝑥𝑛−𝑖+1 −  𝑥𝑖 , for 𝑖 = 1,2, … , 𝑛 2⁄ 𝑜𝑟 (𝑛 − 1) 2⁄ , 
depending if n is odd or even. 
 

▪ to use the Shapiro Wilk ai coefficients, it has to be computed: 
 

𝑏 = ∑ 𝑎𝑖𝑑𝑖

𝑘

𝑖=1

 

 
 

▪ Then, the W statistics is computed: 
 

𝑊 =
𝑏2

𝑍2
 

 
▪ In conclusion, using the Shapiro Wilk table, it can be decided if the 

null hypothesis has to be accepted or rejected.  
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The ANOVA and t-test need also a check if the two groups have approximately 

the same variance. For doing this, there are two test that can be used. 

 
Equality of Variances 
 

These tests have two hypotheses, the null hypothesis is that the variances are 

the same and the alternative hypothesis that the variances are not equal to 

each other. 

The first one is the Levene’s test that has to be used when the data set does not 

have a normal distribution. The other one is the Barlett’s test, that has to be 

used in the other case.  

 
The Levene’s test was developed by Levene in 1960 [H. Levene, 1960]. This test 

uses the W statistics:  

 

𝑊 =
(𝑁−𝑘)

(𝑘−1)
 ∙  

∑ 𝑁𝑖(𝑍𝑖−𝑍..)2𝑘
𝑖=1

∑ ∑ (𝑍𝑖𝑗−𝑍𝑖)2𝑁𝑖
𝑗=1

𝑘
𝑖=1

 [eq. 3.2] 

 
With: k number of data samples, Ni the i-th group’s number of samples, N the 

total number of samples, from all the groups, 𝑍𝑖𝑗 = |𝑌𝑖𝑗 − 𝑌̅𝑖| with 𝑌𝑖𝑗 being the 

value of variable j, from the i-th group, and 𝑌̅𝑖, 𝑍𝑖 =
1

𝑁𝑖
∑ 𝑍𝑖𝑗

𝑁𝑖
𝑗=1 , 𝑍.. =

1

𝑁
∑ ∑ 𝑍𝑖𝑗

𝑁𝑖
𝑗=1

𝑘
𝑖=1 . 

The W statistics is governed approximately F-distributed with k−1 and N−k 

degrees of freedom.  

 
The Barlett’s test was developed by Barlett in 1937 [M. S. Barlett, 1937]. This 

test computes the statistics that follow: 

 

χ2 =  
(𝑁−𝑘) ln(𝑆𝑝

2)−∑ (𝑛𝑖−1)ln (𝑆𝑖
2)𝑘

𝑖=1

1+ 
1

3(𝑘−1)
(∑

1

𝑛𝑖−1
−

1

𝑁−𝑘
𝑘
𝑖=1 )

 [eq. 3.3] 
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Where 𝑁 = ∑ 𝑛𝑖
𝑘
𝑖=1 , Si variances, 𝑆𝑝

2 =
1

𝑁−𝑘
∑ (𝑛𝑖 − 1)𝑆𝑖

2
𝑖  the pooled estimate 

of the variance.  

 
Both tests accept the null hypothesis if the p-level > 0.05.  

 
 

ANOVA 
 

This test, in particular the one-way ANOVA, uses the variance to compare 

the groups and its model is  

 

𝑦𝑖𝑗 = 𝜇 + 𝜏𝑖 + 𝜖𝑖𝑗 {
𝑖 = 1,2, … , 𝑎
𝑗 = 1,2, … , 𝑛

  [eq. 3.4] 

 
The experimental design has to be completely randomized. ANOVA studies the 

variances of the residuals. The residuals are computed as the difference 

between the mean of each group and each object in that group. The following 

steps are employed: 1. The mean of each group is computed.  

2. The overall mean is computed as the mean of all observations. 3. The within 

group variation is computed as the total deviation of each object from each 

sample. 4. The deviation of each group from the overall mean is computed. 5. 

The F statistics is computed as the ratio between the variation of the group and 

the variation within the group.  

Figure 2.25 presents one-way ANOVA’s results in terms of Sum Sq. (sum of 

squares), degrees of freedom (d. f.), Mean Sq. (mean squares), F-value, and 

Prob > F.  

 
 

 
 
 
 
 

 



35  

 
 
 
 
 

 
Figure 2.5: Example of how the ANOVA table is presented in MATLAB. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



36  

Chapter 3 - Materials and Methods 
 
3.1  Experimental set-up 
 

The data for this study were collected in the Eurobench facility at the Hospital ’Los  

Madroños’  in  Brunete,  Madrid,  Spain. This facility, created under the  EU project 

(https://eurobench2020.eu/), offer a common instrumental set up (see par 3.1.1) and 

a set of test beds, useful for testing several gestures in particular gait, with and without 

exoskeletons, and in different conditions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 

https://eurobench2020.eu/
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3.1.1 Instrumental set-up 
 

The experiments followed an ordered list of instrumental configurations. 

For the synchronization set-up of the systems used, the RCA-BNC wire has to be 

connected from the lock of the Vicon System to the Awinda Station (see Figure 3.1), 

then the output setup on the VICON system has to be selected.  

 

 

 

Figure 3.1: Configuration set-up. 

 

On the Xsens software, instead, in the ‘Sync Station’ menu, the Sync configuration 

has to be set like in the Figure 3.2 and 3.3. 
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Figure 3.2: Start recording output configuration on the Xsens software. 
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Figure 3.3: Stop recording output configuration on the Xsens software. 

 

Then, it is necessary to perform a check to see if the trigger functions properly. 

For the motion capture system, the stereophotogrammetric system Vicon, it is 

necessary a calibration of the cameras before starting the trials and to set the origin 

of the system with the Vicon calibration wand (see Figure 2.3).  

In the end all the required measurements of the body segments of the subjects were 

performed. 
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3.1.2 Experimental protocol 
  

To the subjects was asked to walk on every terrain at their comfortable walking 

speed.  

Tests were designed to create difficult situations for the gait in order to create 

critical and sensible conditions to detect Parkinson’s disease in the early phases.  

In this sense we have conceived a protocol based on two main factors: floor 

inclination and floor or terrain type. 

Floor inclination is obtain using the test bed at Eurobench, that can be 

positioned in flat or inclined up to 15°. By walking on the two directions uphill 

and downhill gait can be investigated. 

The set of possible terrains is really wide, in this study we have selected four of 

them, based on these criteria: being able to create a long corridor with the same 

terrain characteristics; having a rigid and compliant terrain; having regular and 

irregular characteristics.  

 

1.  Flat terrain: it is the rigid support of the corridor at Eurobench facility. The 

rigidity is very similar to a concrete floor. 

2. ‘M’ terrain: it is constitute by rigid wood surfaces (dimension: 50 x 50 cm) 

inclined alternatively upward and downward of about 10° when they are placed 

in horizontal position. 

3. Mattress (Mat) terrain : it is constitute by three mats arranged one after the 

other to cover the entire ground. Each mat has a density of 100 Kg/m3. 

4. Terrasensa terrain: consisting of elements each 80 x 500 x 500 mm 

(http://www.terrasensa-original.de/) one after the other to cover the entire 

ground. 
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All the four terrains were investigated in the three inclination conditions flat, 

uphill (+ 15°) and downhill (- 15°). The length of the corridor is different for each 

condition and material due to realization problems. In the following the several 

conditions are illustrated. 

 
1. Flat terrain:  

 

• 0°: the subject has to walk 10 meters in a flat condition with the 

platform at 0 degrees.  

 

• 15°: the subject has to walk 4 meters on a regular terrain, but 

with the platform at 15°, first from down to up and 

then from up to down (Figure 3.4). 

Figure 3.4: Flat terrain at 15°. 
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2. Irregular terrains: 

 
(a) Mat terrain: 

• 0°: the subject has to walk 10 meters in a flat condition with 

the platform at 0° and with three mats on the platform (Figure 

3.5). 

 
Figure 3.5: Mat terrain at 0°. 
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• 15°: the subject has to walk 4 meters on a regular 

terrain, but with the platform at 15° and with a mat on the 

platform, first from down to up and then from up to down 

(Figure 3.6). 

 

 
Figure 3.6: Mat terrain at 15°. 
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(b) ’Terrasensa’ terrain: 

• 0°: the subject has to walk 10 meters in a flat condition with the 

platform at 0° and with modules on the all platform (Figure 

3.7). 

 

 

 
 
 
 
 
 

Figure 3.7: Terrasensa terrain at 0°. 
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• 15°: the subject has to walk 4 meters on a regular terrain, but 

with the platform at 15° and with modules on the all platform, 

first from down to up and then from up to down (Figure 3.8). 

 

 

 

 

 

 

Figure 3.8: Terrasensa terrain at 15°. 
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(c) M terrain: 

• 0°: the subject has to walk 10 meters in a flat condition with the 

platform at 0° and with the modules that cover all the length of 

the terrain (Figure 3.9). 

 

Figure 3.9: M terrain at 0°. 
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• 15°: the subject has to walk 4 meters with the plat- form at 

15° and with the modules placed until the end of the inclined 

terrain, first from down to up and then from up to down (Figure 

3.10). 

 

Figure 3.10: M terrain at 15°. 

 

The experimental protocol required the subject to afford the terrains in a 

random sequence. Between each run, when it is necessary to change 

conditions, subjects rest on a chair while in about 10 minutes the terrain is 

prepared for the next trial. Unfortunately, it was not possible to operate in 

continuity since the corridor enables the testing of only one material at a 

time.  
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After every terrain change a new calibration of the Xsens system was 

performed to ensure correct operation of the collecting data by the IMU 

sensors and the ‘Awinda Station’. Also a check on Nexus for the correct use 

of the Vicon system was performed every time. For what concern the 

Parkinson disease patients, the terrain trials were performed only at zero 

degrees for security reasons. 
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3.1.3 Subject selection and categories 
 

Subjects included in this study are, from number 1 to 10, healthy, without 

relevant and known problems to walk in different conditions and terrains,      only 

the subject number 5 has a knee problem: chondromalacia patella, also known 

as ’runner’s knee’, is a condition in which the cartilage on the inner surface of 

the kneecap deteriorates and softens, it starts to hurt when the knee bends 30 

degrees, so it hurts only in descending M slope terrain; the other two 

subjects, number 11 and 12, are Parkinson’s disease patients. Specific           data 

are reported in the table 3-1. The Body Mass Index (BMI) was calculated also 

for each subject, the formula is 𝐵𝑀𝐼 =  
𝑊𝑒𝑖𝑔ℎ𝑡 [𝐾𝑔]

𝐻𝑒𝑖𝑔ℎ𝑡2 [𝑚2]
. 

To have more than one degree of freedom for the statistical analysis that will be 

conducted later, the values of mass, height and BMI were grouped in more 

categories. The categories were determined to have the same number of 

subjects in each category, where it is possible, see Figure 3.11 and 3.12. 

 

Figure 3.11: Masses and heights histograms. 
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Figure 3.12: BMIs histogram. 

 
Table 3-1: Subjects’ anthropometric data. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Subject number Sex Age Mass[Kg] 
(Category) 

Height[cm] 
(Category) 

BMI[Kg/m2]
(Category) 

1 F 23 61.1 (2) 174.0 (2) 20.2 (2) 

2 F 23 51.0 (1) 166.5 (2) 18.4 (1) 

3 F 24 52.0 (1) 167.5 (2) 18.5 (1) 

4 M 23 87.4 (3) 187.0 (3) 25.0 (3) 

5 F 32 72.0 (2) 176.0 (2) 23.2 (2) 

6 F 24 54.1 (1) 166.0 (1) 19.6 (1) 

7 F 24 57.9 (2) 166.0 (1) 21.0 (2) 

8 M 24 85.2 (3) 185.0 (3) 24.9 (3) 

9 F 23 49.2 (1) 162.0 (1) 18.7 (1) 

10 M 24 64.4 (2) 179.0 (3) 20.1 (2) 

Mean  24.4 63.4 172.9 20.9 

Standard dev.  2.72 13.9 8.7 2.5 

11 F 55 80.0 (3) 162.0 (1) 30.5 (3) 

12 F 72 78.0 (3) 158.0 (1) 31.2 (3) 
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3.1.4 Subjects anthropometry 
 

According to the measurement systems guides it is necessary to measure some 

anthropometric characteristic of each subject to set up the proper biomechanical 

model.  

For the Plug-in Gait model of the Vicon system the required measurements 

are listed in the table 3-2 and explained here: 

 

• Body mass: the mass of the subject [Kg]; 
 

• Height: the height of the subject [mm]; 
 

• Leg length: distance from the anterior superior iliac spine to the 

medial malleolus of the ankle [mm]. Measured while standing, if 

possible. This data is required for the left and right sides; 

 
Table 3-2: required measurements for Vicon. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Measurements Units 

Body mass [Kg] 

Height [mm] 

Leg length [mm] 

Knee width [mm] 

Ankle width [mm] 

Shoulder offset [mm] 

Elbow width [mm] 

Wrist width [mm] 

Hand thickness [mm] 
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• Knee width: medial-lateral width of the knee through the flexion axis 

in millimeters, one for the right side and one for the left side. To be 

measured while standing, if possible; 

• Ankle width: mid-lateral distance between the malleoli of the ankle 

in millimeters, one for the right side and one for the left side. To be 

measured standing, if possible; 

• Shoulder offset: vertical distance from the center of the glenohumeral 

joint to the acromion in millimeters, one for the right side and one for 

the left side; 
 

• Elbow width: distance between the medial and the lateral epicondyles 

of the homerus in millimeters, one for the right side and one for the 

left side; 
 

• Wrist width: the anterior-posterior distance of the wrist in millimeters 

at the position where our wrist marker bar is attached, one for the right 

side and one for the left side. If the wrist markers are attached directly 

to the skin, this value should be set to zero and this one was my case, 

so I put zero for this parameter; 

• Hand thickness: the interior posterior thickness between the dorsum and 

palmer surfaces of the hand in millimeters, one for the right side and 

one for the left side. 
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For the Xsens inertial system (see table 3-3), the required measurements are 
different: 

 

• Body height: if the subject in the experiment has to have the shoes, 

this measure, like the others, has to be taken with the same shoes that will 

be used by the person; 

 

• Foot length: distance from the heel to the toe in centimeters; 

• Shoulder height: distance from C7 vertebra to the floor in centimeters; 

• Shoulder width: from the left acromioclavicular joint to the right acromio- 

clavicular joint in centimeters. 

 

• Elbow span:  from the left elbow to the right elbow in centimeters with 

the subject in T-pose; 

 

Table 3-3: required measurements for Xsens. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Measurements Units 

Body height [cm] 

Foot length [cm] 

Shoulder height [cm] 

Shoulder width [cm] 

Elbow span [cm] 

Wrist span [cm] 

Arm span [cm] 

Hip height [cm] 

Hip width [cm] 

Knee height [cm] 

Ankle height [cm] 
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• Wrist span: from the left wrist to the right wrist in centimeters with 

the subject in T-pose; 

 

• Arm span: from the end of the left hand to the end of the right hand 

in centimeters, always with the subject in T-pose; 

 

• Hip Height: measured from the greater trochanter to the ground in 

centimeters; 

 

• Hip Width: distance between the iliac spines in centimeters; 

• Knee height: from the knee to the floor in centimeters; 

• Ankle height: from the ankle to the ground in centimeters. 
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3.2 Subject set-up 

 3.2.1 Vicon 
 

In the Figure 3.13 and 3.14, the position and the label of the markers that have to 
be placed on the subjects’ body: 

 

 
Figure 3.13: Vicon markers name and position on the body, back view. 
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o Head (Figure 3.15) 

 

 
Figure 3.15: label and position of the markers of the head. 

 

 
 

 
 

Figure 3.14: Vicon markers name and position on the body, front view. 
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o Torso (Figure 3.16) 

 

 
Figure 3.16: label and position of the markers of the torso. 
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o Upper limbs (Figure 3.17) 
 

 

 
Figure 3.17: label and position of the markers of the upper limbs. 
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o Pelvis (Figure 3.18) 

 

 
Figure 3.18: label and position of the markers of the pelvis. 
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o Lower limb (Figure 3.19) 

 

 
Figure 3.19: label and position of the markers of the lower limbs. 
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Other two markers on each foot were added (red circled in Figure 3.20) to 

reconstruct the relative positions of the toe marker and heel marker if needed 

during the processing of the trials on Nexus. 

 

 

 
Figure 3.20: Markers added. 
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             3.2.2  Xsens 
 

The IMU sensors positioned on the subjects’ body were 17, using the ‘MVN Awinda 

Straps’ of Xsens. The online instructions on tutorial.xsens.com/mvn for the full 

body configuration were followed. The label on the side of the tracker indicates 

the position on the body, as we can see in the Figure 2.4. The position of the 

sensors are shown in the Figure 3.21. 

 

 

Figure 3.21: IMU Xsens sensors positions on the body. 
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An example of a subject with all markers and sensor is shown in the Figure 3.22. 

 

 

Figure 3.22: An instrumented subject before starting the experimental trials. 
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3.3 Subject calibration 
 

              3.3.1 Vicon 
 

Before the dynamic trials, a calibration of the subject has to be performed on the 

Nexus software. The calibration phase was done, dividing it in two trials, one the 

classic static trial where the subject has to be in the position shown in the Figure 

3.23, with the arms parallel to the ground and the body in the stand position. 

 

 

Figure 3.23: static calibration of Vicon, view on the Nexus software. 
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After this trial, a ‘functional calibration’ was performed. The subject has to stand 

in a fixed position and to move alternatively and slowly all the body segments, as 

it is intuitive from the image of the Nexus software shown in the Figure 3.24. 

 

 

Figure 3.24:  functional calibration of Vicon, view on the Nexus software. 
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              3.3.2 Xsens 
 

The Xsens calibration was performed after every change of the terrain. This 

calibration, that compares as in the Figure 3.25 in the software, asks to the subject 

to stay in N-pose for few seconds, then to move around the space of the future 

data acquisition and in the end to stand in the N-pose in the same point where the 

subject started the calibration. All these commands are explained in live mode by 

the software ‘MVN Analyze’. At the end of the calibration, the software has to say 

‘calibration was good’, if not the calibration has to be repeated until the message 

above compares on the software window. 

 

 

Figure 3.25: calibration window on the ‘MVN Analyze’ software. 
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3.4 Postprocessing phase 

             3.4.1 Vicon 
 

Postprocessing of a Optoelectronics Motion capture test, consist in:  

▪ reconstruction of markers positions – in practice completely 

automated in Nexus software; 

▪ labelling: almost automatic in nexus software after the subject 

calibration; 

▪ gap filling. 

After this preprocessing the data is ready to be analyzed as regards the gait 

phases that are the main focus in this thesis. We now introduce some details 

for the gap filling phase. 

Even if the experimental procedure takes into account all possible precautions, 

gaps in the markers trajectories are almost the gaps are always present. They 

may be due to particular subject movements such as an hand moving on a 

marker on the pelvis, or to specific problems for example regarding camera 

positions with respect to subject movement. The first step to be carried out. A 

gap is defined as a time instant in which a marker that was previously present 

in the test now is missing and in the next frames it will be  visible again. 

There are different methods to fill gaps available in Nexus, that we can see in 

the Figure 3.26. In this thesis processing the methods mainly used are the 

following ones. 
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Figure 3.26: Filling gaps tool on the Nexus software. 
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’Pattern fill’ uses the shape of another trajectory without a gap to fill the selected 

gap. This tool has to be used only if there is a suitable marker with a trajectory 

similar to the one whose gap you wish to fill. This is typically the case when the 

trajectories originated from markers attached to the same segment. 

’Rigid Body Fill’ has  to be used when a rigid or semi-rigid relationship exists 

between markers. As example we can consider: Pelvis (LASI, RASI, LPSI, RPSI 

markers), Head (LFHD, RFHD, LBHD, RBHD markers) and also Trunk (C7, T10, CLAV, 

STRN markers), if its flexion is discarded. 

Moreover a new method has been used based on extra markers. 

This method enables the reconstruction of the right and left ankle and heel 

markers, using the relative positions of the two added markers on each foot and 

of the toe marker. Before, it is necessary to save the relative position of them in 

the static trial, thanks to the ‘Run Static Body Language Model’ command and to 

the file.mod created. 

Then, in the dynamic trials, if the markers of ankle or heel are not present in one 

or more frames, it is necessary to run the highlighted command on the Figure 3.27 

to fill the gaps of these markers with a reconstructed marker that uses the relative 

positions saved before. In some frames the capture can lose some markers for 

multiple reasons, something can cover the marker during the subject movements, 

or only one camera sees the marker so the position in the 3D space cannot be 

reconstructed, or the light reflection problems were not avoided correctly during 

the calibration.  
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Figure 3.27: dynamic pipeline on the Nexus software. 

  3.4.2  Xsens 
 

For the Xsens system, there is a software that processes the data, ’MVN Analyze’, 

and can give in output acceleration data, angular velocities data,                                   magnetometer 

data, joint angles data, the trajectories of constructed markers on the body. This 

software can give in output these data because it uses  biomechanical models 

of the human body [Schepers].  

This software has different scenarios to process the collected data. 

For the trials on the flat terrain, the ‘Single Level’ option has to be selected; for the 

trials on the M terrain and on the Terrasensa terrain, the ‘Multi Level’ option has 

to be selected; for the Mat terrain, there is the option ‘Soft Floor’. 

For the trials conditions where the terrains are in slope at 15 deg, the option ‘Multi 

Level’ has to be selected for every terrain. After this process, the data are saved in 

file.xlsx and a code to read only the parts where the acceleration, angular velocity 

and joint angles data was implemented.  
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3.5  Gait events detection  

             3.5.1 Vicon 
 

The last processing part done in this software is the most important one, the 

event selection part, that represents our gold standard.  

The concept behind this task lies in the fact that the trajectory is the principal 

output of this system, so the most accurate one, that not expect calculations 

inside the software, like derivation to have the velocity or the acceleration 

data. So, a method that went to see and analyze the trajectory of the foot 

markers was thought. In general, the point of the heel marker trajectory that 

has the lowest vertical coordinate is the interested point for the IC instant. It 

is like that for the flat terrain at 0 deg, but for the other terrains it is not 

always like that. For this reason, positioning markers every 50 cm on both 

sides on the irregular terrains was thought and then a template for irregular 

terrains was created on the Nexus software to help the visualization of the 

IC event, because on the Mat terrain, for example, the IC instant is the instant 

when one part of the foot touches the Mat and this one is not the lowest 

trajectory point, but the point of the trajectory that crosses the lines that 

reconstruct the Mat terrain on the Nexus software. Also, it was helpful to 

record the trials with GoPro cameras because in some cases, like the trials on 

the Terrasensa terrain, the identification of the IC or EC events is very difficult 

because of the shape of the terrain. For the EC event, the lowest trajectory 

point of the toe marker before the start of the swing phase is our EC event. 

In the irregular terrains trials, this fact is not always the same and the 

reconstruction of the terrains on the software helps another time as it is 

possible to see in the Figure 3.29. 
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               Practical instructions 
 

Flat terrain:  

- Initial Contact: Select the heel marker, look to the lowest trajectory 

part and see if the marker is aligned with the reconstructed terrain on 

the software. Select the frame where the cone parts attached to the 

marker change directions (see Figure 3.28). 

 

Figure 3.28: Example of the frame selected for the IC instants on flat terrain. 

 

- End Contact: Select the toe marker. Go to the lowest point of the trajectory 

before the start of the swing phase. Select the second frame in which the 

cones pointing at the marker have been aligned with the trajectory it will 

follow. 

 

M terrain:  

- Initial Contact: Select the heel marker, look at where the trajectory is 

at the lowest point and where the marker is aligned with the 
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reconstructed terrain on the software. Select the frame in which the 

cone parts attached to the marker change direction.  

- End Contact: Select the toe marker. Go to the lowest point of the 

trajectory before the start of the swing phase. Select the frame in 

which the cones that point to the marker have been aligned with the 

trajectory it will follow.  

 

Mat terrain: 

- Initial Contact: Select the heel marker. Select the frame where the 

marker intersects the reconstructed plane of the terrain in its lowest 

trajectory part. Note that this is not the minimum value of the heel 

elevation, since the loaded heel will sink a bit in the Mattress. 

- End Contact: Select the toe marker. Select the third frame after the 

alignment of the cone parts attached on the marker in the initial part 

of the swing phase, where the marker starts to go up.  

 

Terrasensa terrain: 

- Initial Contact: Select the heel marker. When the marker is in its 

lowest point, combine the view of the trials on the video recorded by 

the camera with the visualization on Nexus, because this terrain has 

too particular irregularities to try to find a systematic and precise way 

to define the IC instant.  

- End Contact: Select the toe marker. Do the same procedure explained 

for the IC instant.  

This procedure , carried out manually with the best motion capture system 

at the state of the art, produces result that can be considered as gold 

standard events for our comparison. Nevertheless the instants are 

identified manually, so maybe they are affected by some subjectivity,. To 
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understand the subjectivity level, three engineers of the Cajal Institute in 

Madrid applied exactly the same procedure to the same data set. In total 

we can consider 4 operators including myself. The Mean Absolute Errors 

(MAE) between the data collected by the 4 operators on each terrain does 

not exceed four hundredths of a second, or 4 frames in motion capture 

system,  so it seems to be a very good method. 

 

 

 

 

 

 

 

 

 

 
 

 

 

Figure 3.29: Example of the frame selected for the EC instants on mat terrain. 
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3.5.2 Xsens 
 

For the IMU data, the criteria to select the methods were: use angular 

velocities or linear acceleration data, principal output data from the IMU 

sensors, use data that come from the preferred IMU placements, that are the 

shank and the foot [Prasanth, 2021], algorithms with most citations and the 

easiest to replicate.  

 

Method 1 

The first one chosen method was that of [Wiebren Zijlstra, 2003]. This 

algorithm takes the antero-posterior acceleration of the IMU on the pelvis. 

First, it has to be made a removal of low-frequency noise with an high-pass 

filter of Butterworth of the fourth or- der and cutoff frequency at 0.1Hz. 

Then, must be carried out other two filtering operations, both with the low-

pass fourth order Butterworth filter and the signal already filtered before, 

but one at a cut-off frequency of 20Hz and the other at a cut-off 

frequency of 2Hz. So, in MATLAB the functions ’butter()’ and ’filtfilt()’ 

were used. On the signal filtered at the cut-off frequency of 2Hz must be 

identified the zero-crossing points, so the points were the accelerometer 

signal goes from being positive to being negative and this operation was 

made in MATLAB using a for loop where the rows of the acceleration 

positive values positioned immediately before the first acceleration negative 

values were saved in a vector called ’zero’. Instead, on the signal filtered 

at the cut-off frequency of 20Hz must be detected the peaks of the 

acceleration signal, using the MATLAB function ’findpeaks’ that 

provides the value and the row inside the vector of every identified peak. 

Analyzing the plots in more trials the best values for the 

’MinPeakDistance’ and ’MinPeakHeight’ parameters of the function were 

0 seconds and 0.9m/s2, respectively. The next and last step was to define 
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the peak before the zero-crossing point like the IC instant. It was possible 

thanks to the implementation of a for loop that saves the position of the 

peak that presents the smallest difference in frames between the zero-

crossing point and the peaks before it. In the Figure 3.30 we can see the 

visualization of the acceleration signal filtered at 20Hz and 2Hz, the zero-

crossing points in red, the peaks in green and the IC instants in black. 

Then, the values in frame were converted in seconds using the sample 

frequency of Xsens: 60Hz. 

 

 

Figure 3.30: IC instants identification of the ’Zijlstra’ method - MATLAB. 

 

At the end the IC instants were saved in a file.csv where in a second step  were 

used to create a matrix that describes who was the subject, which was  the 

terrain, the condition and the repetition of the trial. 
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Method 2 

The first algorithm of the paper of [M. Jasiewicz, 2006] was used as our second 

method, it uses the linear x-directed acceleration of the foot and, in  particular, 

tries to find the peaks located in the EC search windows, located 250ms before 

and 50ms after each peak of ankle plantar flexion. To do this, a code in MATLAB 

was implemented. First, the acceleration was filtered with an high-pass filter 

of Butterworth of the fourth order and cutoff frequency at  0.1Hz to remove the 

noise from the signal, using the functions ’butter()’ and ’filtfilt()’. Other 

parameters for the filter were analyzed, but the cut-off frequency at 8 or 10 

Hz for walking recommended by [Emily J. Miller, 2022] and [Daniel W.T. 

Wundersitz, 2014] seemed to change too much the signal values. So, the 

peaks of the acceleration have to be found, the function used was 

’islocalmax()’ with ’MinProminence’ set to 10 m/s2, then the function ’find()’ to 

find the frames where these peaks were located in the acceleration signal. Now, 

it is necessary to create the EC search windows. In the code, the  same functions 

used for the acceleration signal were implemented, also with the same value of 

the parameter of the function ’islocalmax’. Then, the two  extremes said before 

of the search window were converted in frame values to manage better the rows 

of the vectors that contain the ankle angle values. In  the code, a number of cells 

in a cell array was set. This number corresponds  to the number of peaks found 

by the ’islocalmax()’ function. These cells were fill with the frames that go from 

the first extreme to the last extreme of the window calculated thanks to the 

frames where are located the ankle angle peaks found, in the code with a for 

loop that fills each cell with the described frames. The last step was to write a 

for loop with an if condition to  find the frame of the acceleration peak found 

before that corresponds to the  all possible frames of the window defined above 

in the cells of the cell array.  The same code was used for the left and for the 

right acceleration signals. An example of the final result is shown in the Figure 
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3.31 below. 

 

Figure 3.31: EC instants identification of the foot acceleration method -  MATLAB. 

 

As the previous method, the EC instants were saved in a file.csv to be 

used later for the analysis. 

Another algorithm, always classified as second method because it uses the 

linear z-directed acceleration of the foot and it is very similar to the previous 

algorithm explained. It tries to find the peaks located in the IC search windows, 

located 100ms before and 100ms after each peak of ankle dorsi flexion. To do this, 

a code in MATLAB was implemented. First, the acceleration was filtered with 

an high-pass filter of Butterworth of the fourth order and cutoff frequency at  

0.1Hz to remove the noise from the signal, using the functions ’butter()’ and 

’filtfilt()’. So, the peaks of the acceleration have to be found, the function used 
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was ’islocalmax()’ with ’MinProminence’ set to 10 m/s2, then the function 

’find()’ to find the frames where these peaks were located in the acceleration 

signal. Now, it is necessary to create the IC search windows. In the code, the 

function ‘islocalmin()’ was used because the dorsi flexion peaks in the ankle 

flexion signal are the minimums. The parameter ‘MinProminence’ was set to the 

absolute value of the first ankle value in the interested signal, because the subject 

starts from a standstill pose. Then, the two extremes said before of the search 

window were converted in frame values to manage better the rows of the vectors 

that contain the ankle angle values. In the code, a number of cells in a cell array 

was set. This number corresponds to the number of peaks found by the 

’islocalmin()’ function. These cells were fill with the frames that go from the 

first extreme to the last extreme of the window calculated thanks to the 

frames where are located the ankle angle minimums found, in the code with a 

for loop that fills each cell with the described frames. The last step was to write 

a for loop with an if condition to find the frame of the acceleration peak found 

before that corresponds to the all possible frames of the window defined above 

in the cells of the cell array. The same code was used for the left and for the 

right acceleration signals. An example of the final result is shown in the Figure 

3.32. 
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Then, the IC instants were saved in csv files, ready to use after for the analysis of the 

data. 

 

 

 

 

 

 

 

 

 

 

Figure 3.32: IC instants identification of the foot acceleration method - MATLAB. 
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Method 3 
The last used algorithm uses the sagittal angular velocity of the shank. This code 

has to search peaks of the velocity and the minimums before each peak have 

to be associated with EC and the minimums after each peak have to be 

associated with IC. To do this, the algorithm was implemented in MATLAB. First, 

the angular velocity signal was filtered with a Savitzky-golay filter, using the 

‘smoothdata()’ function. So, the peaks of the angular velocity have to be found, 

the function used was ’islocalmax()’ with ’MinProminence’ set to 1 deg/s, then 

the function ’find()’ to find the frames where these peaks were located in the 

angular velocity signal. Then, it is necessary to find all the minimum values in 

the same signal. In the code, the function ‘islocalmin()’ with ’MinProminence’ 

set to 0 deg/s, then the function ’find()’ to find the frames where these 

minimums were located in the angular velocity signal. Now, the problem is to 

select only the minimums before and after each angular velocity peak. After 

trying several solutions, the best way to solve this issue was to implement a 

solution where the user can select the interested minimum points on the plots 

of the angular velocity signals. So, in the code a function called ‘ginput’ was 

used. This function allows users to select points of interest with a cursor. The 

value that had to be saved was only the value on the x-coordinate, because 

the interest is to analyze the instant time found. After having selected all the 

points in the signal, the enter key on keyboard had to be selected to let the 

code to save the selected instants. Then, to have an orderly and precise data 

structure, the selected instants were saved in two different matrices, one for 

IC and the other for EC, using a for loop and an if condition with the ‘mod()’ 

function to take all the impair row values and to assign them to the EC vector, 

the others to the IC vector. The same code was used for both the right and the 

left angular velocity signals of the shank. 
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Figure 3.33:  IC & EC instants identification of the shank angular velocity method – MATLAB. 

 

An example of the final result is shown in the Figure 3.33 above. In the  end, all 
these values were saved in csv files.  
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3.6 Data processing 
 

To compare the gait events identified by the selected methods with the gold standard 

identification carried out by hand on the marker based motion capture data, some 

data processing is required. 

First of all we will analyze the efficiency of the methods as event detector, in other 

words we will validate their capability to positively identify events or to create false 

events in the same data set. In the following, it will be presented the procedure used 

and the rule to consider an event positively identified. 

Secondly, only the events positively identified will be considered to evaluate the 

measurement errors as compared with the gold standard method, it was decided to 

consider the error between the instants of the IMU codes and the instants of the gold 

standard. This second part will consider also a statistical analysis of the errors to 

understand if they depend on subjects anthropometrics characteristics, or on terrain 

type or inclination. 

 

3.6.1 Detector qualification 
 

After having used the codes that were implemented for the data recorded by 

the IMU sensors, three files with IC instants and two files with EC instants were 

present (IC_M, EC_M). These instants had to be compared with the IC and EC 

instants detected with the gold standard (IC_GD, EC_GD). A big matrix for each 

IMU method was constructed and also for the gold standard. In this matrix, 

the first column is a vector with IC/EC instants, the second column a vector 

with the subject number (from 1 to 12), the third column with the subjects’ 

health to tell if the subject is healthy (1) or a Parkinson’s disease patient (0), 

the fourth column a vector with the same mass category for each subject (a 

number from 1 to 3), the fifth column a vector with the same height category 

for each subject (a number from 1 to 3), the sixth column a vector with the 
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same BMI category for each subject (a number from 1 to 3), the seventh 

column a vector with the terrain conditions (1 for flat, 3 for M, 9 for Mat and 

11 for Terrasensa), the eighth column a vector with the number of the 

repetition and the ninth column with the vector of the terrain inclinations (-

15, 0, 15). 

The problem was to have the same number of rows for the gold standard 

matrix and for the other method matrices, because the methods had not 

detected the same number of instants in comparison with the gold 

standard. To solve this issue, a threshold to select the correct events and 

the correct matrix rows to make the error matrix for each method was 

implemented. Therefore, if an instant IC_GD has not a corresponding 

IC_M, which would have to be present in the defined surroundings, we 

are in presence of a Missed Event. Instead, if there are more IC_Ms in the 

corresponding IC_GD threshold timeline, one IC_M is saved to be used 

after for the comparison and the other ones are classified like Extra event. 

For the method called ‘Zijlstra’, that detects only the IC instants of gait in 

sequence, the threshold was defined like this: 

𝑇𝐻(𝑖) =
(𝐼𝐶_𝐺𝐷(𝑖+1) − 𝐼𝐶_𝐺𝐷(𝑖))

2
⁄ , so half the distance between two 

successive IC_GD events. So, for each IC_GD, an IC_M has to be find in 

the time line defined by the threshold TH, after, but also before, the 

corresponding IC_GD.  

For the second method, the first one of the paper of [M. Jasiewicz, 2006], 

the threshold was calculated, calculating first the time of every gait cycle, 

that is defined as the successive EC_GD instant less the actual EC_GD 

instant. So, this time of gait cycle was multiplied for 0.4, because an EC 

instant has not to be confused with the successive IC instant present in 

the gait cycle that comes 40% of the gait cycle time after the EC instant 

(swing phase). To this value were added other two values, one was the 
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mean absolute error (MAE), different for each terrain, that comes from 

the validation of the Vicon processing method used and the other one is 

the intrinsic error that is present in the IMU sensors. This intrinsic error is 

the result of the different sample frequencies that the Vicon system and 

the Xsens system have.  

For the third method, the threshold was calculated like in the second 

method, but the instants were Initial Contacts. So, the gait cycle time was 

calculated as the difference between the successive IC_GD instant and 

the actual IC_GD instant. And, this time, the gait cycle time was multiplied 

for 0.6, because an IC instant has not to be confused with the successive 

EC instant present in the gait cycle that comes 60% of the gait cycle time 

after the IC instant (stance phase). 

 

The same last two principals were used to calculate the thresholds for the 

last method used. A representative figure is shown in Figure 3.34. 

 

 

 

 

 

 

Figure 3.34: Threshold criterion to select the correct, missed and extra events. 



86  

3.6.2 Error qualification 
 
The error was calculated only with the correct events selected by the 

threshold rules explained before. Also the missed and extra events have 

to be found.  

The algorithms that do it were implemented in MATLAB. The outputs of 

these algorithms are:  

1. the Error matrix with in the first column the error vector calculated 

as IC/EC_M – IC/EC_GD with the comparable instants selected 

with the threshold methods and in the other columns the 

corresponding values of subject, health, category of mass, 

category of height, category of BMI, terrain condition, repetition 

and terrain inclination.  

2. the matrix of the Missed Events with two columns, one where 

there are the numbers of the terrain conditions, one with the 

corresponding inclination of the terrains; 

3. the matrix of the Extra Events with the same structure of the 

Missed Events matrix; 

4. the Missed Events rate, calculated as 
# 𝑀𝐼𝑆𝑆𝐸𝐷 𝐸𝑉𝐸𝑁𝑇𝑆

# 𝑇𝑂𝑇𝐴𝐿 𝐺𝐷 𝐸𝑉𝐸𝑁𝑇𝑆
 ∙ 100; 

5. the Extra Events rate, calculated as  
# 𝐸𝑋𝑇𝑅𝐴 𝐸𝑉𝐸𝑁𝑇𝑆

# 𝑇𝑂𝑇𝐴𝐿 𝐺𝐷 𝐸𝑉𝐸𝑁𝑇𝑆
∙  100 ; 

6. the Correct Events rate, calculated as 
# 𝐶𝑂𝑅𝑅𝐸𝐶𝑇 𝐸𝑉𝐸𝑁𝑇𝑆

# 𝑇𝑂𝑇𝐴𝐿 𝐺𝐷 𝐸𝑉𝐸𝑁𝑇𝑆 
 ∙ 100. 
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3.6.3 Data implementation 
 

For the statistical analysis, the Error matrix were used. In particular, the column of 

the terrain and the inclination were used to make the Analysis of Variance to see 

which group affect more the variability of the total error in the detection of the 

gait events. Before another control on the anthropometric groups, columns of the 

category of mass, height and BMI in the matrix, was performed to verify if the 

method depends or not on the anthropometric characteristics of the subjects. The 

function used in MATLAB was the ‘anovan()’ function. 
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Chapter 4 - Results 
 
4.1 Experimental database 

 

First of all, in this section we present number of events in each condition available for 

further processing, considering the gold standard 4.1.1 and the other detection methods 

(4.1.2, 4.1.3, 4.1.4) used for this work. Moreover the tables distinguish between healthy 

subjects and Parkinson patients.  

4.1.1 Gold standard 
 

The number of instants in each terrain that was detected are presented in the 

table 4-1 and in the table 4-2, only for the Parkinson patients, that follow.  

 

Table 4-1: Number of instants for each terrain condition with the gold standard – all the subjects. 

Terrain Inclination 
[deg] 

EC left EC right IC left IC right 

Flat -15 49 50 49 50 

 0 251 251 251 251 

 15 41 38 41 38 

M -15 62 63 62 63 

 0 240 246 240 246 

 15 52 49 52 49 

Mat -15 42 43 42 43 

 0 207 206 207 206 

 15 39 39 37 41 

Terrasensa -15 57 60 57 60 

 0 247 242 247 242 

 15 56 54 56 54 

Total  1343 1341 1341 1343 
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Table 4-2: Number of instants for each terrain condition with the gold standard – Parkinson patients. 

Terrain Inclination 
[deg] 

EC IC 

Flat -15 0 0 

 0 68 68 

 15 0 0 

M -15 0 0 

 0 64 64 

 15 0 0 

Mat -15 0 0 

 0 69 69 

 15 0 0 

Terrasensa -15 0 0 

 0 73 73 

 15 0 0 

Total  274 274 
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4.1.2 Method 1: Zijlstra 
   
The number of instants detected by the method on every terrain and inclination 

is presented in table 4-3. 

 
Table 4-3: Number of instants for each terrain condition with the Zijlstra method. 

Terrain Inclination 
[deg] 

IC healthy 
subjects 

IC Parkinson 
patients 

Flat -15 82 0 

 0 406 58 

 15 73 0 

M -15 92 0 

 0 394 61 

 15 97 0 

Mat -15 86 0 

 0 348 67 

 15 74 0 

Terrasensa -15 113 0 

 0 411 70 

 15 109 0 

Total  2285 256 

Sum Totals  2541  
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4.1.3 Method 2: IMU on the foot 
 
The number of instants detected by the method on every terrain and inclination 

for all the subjects is presented in table 4-4 and for Parkinson patients in table 4-

5. 

 

Table 4-4: Number of instants for each terrain condition with the second method – all the subjects. 

Terrain Inclination 
[deg] 

EC left EC right IC left IC right 

Flat -15 35 39 118 128 

 0 160 149 704 700 

 15 27 23 97 71 

M -15 47 42 162 167 

 0 131 142 558 540 

 15 28 20 101 123 

Mat -15 42 24 82 80 

 0 116 118 472 506 

 15 32 29 82 89 

Terrasensa -15 47 34 139 151 

 0 132 116 753 691 

 15 38 39 116 129 

Total  835 775 3384 3375 
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Table 4-5: Number of instants for each terrain condition with the second method – Parkinson patients. 

Terrain Inclination 
[deg] 

EC IC  

Flat -15 0 0 

 0 19 125 

 15 0 0 

M -15 0 0 

 0 27 124 

 15 0 0 

Mat -15 0 0 

 0 16 113 

 15 0 0 

Terrasensa -15 0 0 

 0 16 107 

 15 0 0 

Total  78 469 
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4.1.4 Method 3: IMU on the shank 
 
The number of instants detected by the method on every terrain and inclination 

for all the subjects is presented in table 4-6 and for Parkinson patients in table 4-

7. 

 
Table 4-6: Number of instants for each terrain condition with the third method – all the subjects. 

Terrain Inclination 
[deg] 

EC left EC right IC left IC right 

Flat -15 52 52 52 54 

 0 237 251 243 259 

 15 38 43 39 45 

M -15 67 72 69 74 

 0 222 250 230 258 

 15 53 50 55 52 

Mat -15 41 47 41 49 

 0 204 213 213 220 

 15 38 38 38 40 

Terrasensa -15 58 71 63 74 

 0 234 241 239 250 

 15 56 64 58 66 

Total  1300 1392 1340 1441 
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Table 4-7: Number of instants for each terrain condition with the third method – Parkinson patients. 

Terrain Inclination 
[deg] 

EC IC  

Flat -15 0 0 

 0 72 77 

 15 0 0 

M -15 0 0 

 0 69 74 

 15 0 0 

Mat -15 0 0 

 0 78 84 

 15 0 0 

Terrasensa -15 0 0 

 0 79 90 

 15 0 0 

Total  298 325 
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4.2 Detection analysis 
 
The percentage values of the correct, missed and extra events in all the three methods 

(4.2.1, 4.2.2, 4.2.3) used are presented. The correct events are the method events that are 

confrontable with the gold standard. The missed events are the gold standard events that 

not have a correspondent value detected by the method and the extra events are the 

method events in the threshold that have a bigger temporal distance to the gold standard 

events than the identified correct events. 

4.2.1 Method 1: Zijlstra 

 
This method, that uses the IMU on the pelvis, has 90% of correct events detected. 

So the percentage of missed events is 10%, but where these events were missed? 

We can see it in the Figure 4.1. 

 

 

Figure 4.1: Missed events areogram – Zijlstra method. 
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In particular:  

▪ In the flat terrain trials in slope: 

• the 23.1% at 15 degrees; 

• the 76.9% at -15 degrees. 

▪ In the M terrain trials in slope: 

• the 21% at 15 degrees; 

• the 79% at -15 degrees. 

▪ In the Mat terrain trials in slope: 

• all of them at 15 degrees. 

▪ In the Terrasensa trials in slope: 

• the 46% at 15 degrees; 

• the 54% at -15 degrees. 

 

Furthermore, it has only a 4.7% of extra events, events detected by the code that 

do not exist in the reality.  

These events are divided as follows in the Figure 4.2: 

 

 

Figure 4.2: Extra events areogram – Zijlstra method. 
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In particular: 

▪ In the flat terrain trials in slope: 

• all of them at -15 degrees. 

▪ In the M terrain trials in slope: 

• the 36.4% at 15 degrees; 

• the 63.6% at -15 degrees. 

▪ In the Mat terrain trials in slope: 

• the 80% at 15 degrees; 

• the 20% at -15 degrees. 

▪ In the Terrasensa trials in slope: 

• the 48% at 15 degrees; 

• the 52% at -15 degrees. 
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4.2.2 Method 2: IMU on the foot 
 
For the left foot and the EC instants, we have the 33.8% of correct events, the 

66.2% of missed events and the 28.4% of extra events. 

For what concerns the missed events, they are divided as follows in the Figure 4.3: 

 

 

Figure 4.3: Missed EC events areogram – method of the IMU on the left foot. 

 

In particular:  
▪ In the flat terrain trials in slope: 

• the 49.3% at 15 degrees; 

• the 50.7% at -15 degrees. 

▪ In the M terrain trials in slope: 

• the 50.6% at 15 degrees; 

• the 49.4% at -15 degrees. 

▪ In the Mat terrain trials in slope: 

• the 50% at 15 degrees; 

• the 50% at -15 degrees. 

▪ In the Terrasensa trials in slope: 
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• the 54.5% at 15 degrees; 

• the 45.5% at -15 degrees. 

 

Instead, for the extra events in the Figure 4.4: 
 

 

Figure 4.4: Extra EC events areogram – method of the IMU on the left foot. 

 

In particular: 

 

▪ In the flat terrain trials in slope: 

• the 49% at 15 degrees; 

• the 51% at -15 degrees. 

▪ In the M terrain trials in slope: 

• the 40% at 15 degrees; 

• the 60% at -15 degrees. 

▪ In the Mat terrain trials in slope: 

• the 39.4% at 15 degrees; 

• the 60.6% at -15 degrees. 
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▪ In the Terrasensa trials in slope: 

• the 47.4% at 15 degrees; 

• the 52.6% at -15 degrees. 

 

 

Now always for the left foot, but IC instants. The 92.6% is the value for the correct 

events detected. The percentage of extra events is 63.3% and for the missed 

events the 7.4%. 

For the missed events we have these percentage values in the Figure 4.5: 

 

 

Figure 4.5: Missed IC events areogram – method of the IMU on the left foot. 

 

 In particular: 

 

▪ In the flat terrain trials in slope: 

• the 50% at 15 degrees; 

• the 50% at -15 degrees. 

▪ In the M terrain trials in slope: 
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• the 50% at 15 degrees; 

• the 50% at -15 degrees. 

▪ In the Mat terrain trials in slope: 

• the 25% at 15 degrees; 

• the 75% at -15 degrees. 

▪ In the Terrasensa trials in slope: 

• the 50% at 15 degrees; 

• the 50% at -15 degrees. 

 

For the extra events in the Figure 4.6: 

 

 

Figure 4.6: Extra IC events areogram - method of the IMU on the left foot. 

 

 In particular: 

 

▪ In the flat terrain trials in slope: 

• the 45% at 15 degrees; 

• the 55% at -15 degrees. 
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▪ In the M terrain trials in slope: 

• the 35.7% at 15 degrees; 

• the 64.3% at -15 degrees. 

▪ In the Mat terrain trials in slope: 

• the 51.7% at 15 degrees; 

• the 48.3% at -15 degrees. 

▪ In the Terrasensa trials in slope: 

• the 43.4% at 15 degrees; 

• the 56.6% at -15 degrees. 

 

We miss to analyze the right foot. For the EC instants the percentages are these: 

correct events 31.6%, missed events 68.4% and extra events 26.2%.  

For the missed events in particular, they are divided on the terrains as follows in 

the Figure 4.7: 

 

 

Figure 4.7: Missed EC events areogram – method of the IMU on the right foot.  
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In particular: 

 

▪ In the flat terrain trials in slope: 

• the 51.7% at 15 degrees; 

• the 48.3% at -15 degrees. 

▪ In the M terrain trials in slope: 

• the 40.3% at 15 degrees; 

• the 59.7% at -15 degrees. 

▪ In the Mat terrain trials in slope: 

• the 39.7% at 15 degrees; 

• the 60.3% at -15 degrees. 

▪ In the Terrasensa trials in slope: 

• the 45.6% at 15 degrees; 

• the 54.4% at -15 degrees. 

 

For the extra events, they are divided on the terrains as follows in the Figure 4.8: 
 

 

Figure 4.8: Extra EC events areogram – method of the IMU on the right foot. 
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In particular:  
 
 

▪ In the flat terrain trials in slope: 

• the 46.8% at 15 degrees; 

• the 53.2% at -15 degrees. 

▪ In the M terrain trials in slope: 

• the 18.5% at 15 degrees; 

• the 81.5% at -15 degrees. 

▪ In the Mat terrain trials in slope: 

• the 44.8% at 15 degrees; 

• the 55.2% at -15 degrees. 

▪ In the Terrasensa trials in slope: 

• the 45% at 15 degrees; 

• the 55% at -15 degrees. 
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Now, we analyze the IC instants detection of the right foot of this method. We 

have the 92.3% of correct events, the 7.7% of missed events and the 63.3% of extra 

events. 

We start to see how the missed events are divided on each terrain in the Figure 

4.9: 

 

 

 

Figure 4.9: Missed IC events areogram – method of the IMU on the right foot. 

 

 

In particular: 

 

▪ In the flat terrain trials in slope: 

• the 61.5% at 15 degrees; 

• the 38.5% at -15 degrees. 

▪ In the M terrain trials in slope: 

• the 16.7% at 15 degrees; 

• the 83.3% at -15 degrees. 

▪ In the Mat terrain trials in slope: 
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• all of them at -15 degrees. 

▪ In the Terrasensa trials in slope: 

• the 66.7% at 15 degrees; 

• the 33.3% at -15 degrees. 

 

Now for the extra events in the Figure 4.10: 
 

 

Figure 4.10: Extra IC events areogram – method of the IMU on the right foot. 

 

In particular: 
 

▪ In the flat terrain trials in slope: 

• the 33% at 15 degrees; 

• the 67% at -15 degrees. 

▪ In the M terrain trials in slope: 

• the 41.8% at 15 degrees; 

• the 58.2% at -15 degrees. 

▪ In the Mat terrain trials in slope: 
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• the 52.2% at 15 degrees; 

• the 47.8% at -15 degrees. 

▪ In the Terrasensa trials in slope: 

• the 45.3% at 15 degrees; 

• the 54.7% at -15 degrees. 
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4.2.3 Method 3: IMU on the shank 
 

The third and last method used to segment the gait cycle in this work is the 

algorithm that uses the IMU positioned on the shank of the subjects. As before, 

let’s see the percentage values, starting with the left shank and the EC instants. 

The correct events are the 83.5%, the missed events the 16.5% and the extra 

events the 13.3%. First the missed events are divided on each terrain as follows 

in the Figure 4.11: 

 

 

Figure 4.11: Missed EC events areogram – method of the IMU on the left shank. 

 

In particular: 

 

▪ In the flat terrain trials in slope: 

• all of them at 15 degrees. 

▪ In the M terrain trials in slope: 

• the 83.3% at 15 degrees; 

• the 16.7% at -15 degrees. 
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▪ In the Mat terrain trials in slope: 

• the 93.3% at 15 degrees; 

• the 6.7% at -15 degrees. 

▪ In the Terrasensa trials in slope: 

• the 71.4% at 15 degrees; 

• the 28.6% at -15 degrees. 

 

For the extra events in the Figure 4.12: 
 

 
Figure 4.12: Extra EC events areogram – method of the IMU on the left shank. 

 
 In particular: 

 

 
▪ In the flat terrain trials in slope: 

• the 76.9% at 15 degrees; 

• the 23.1% at -15 degrees. 

▪ In the M terrain trials in slope: 

• the 66.7% at 15 degrees; 

• the 33.3% at -15 degrees. 
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▪ In the Mat terrain trials in slope: 

• all of them at 15 degrees. 

▪ In the Terrasensa trials in slope: 

• the 68.2% at 15 degrees; 

• the 31.8% at -15 degrees. 

 
Now, for the same shank, but the IC instants. The correct events are the 87.4%, 

the missed events the 12.6% and the extra events the 12.5%. 

Let’s see how the missed events are divided on each terrain in the Figure 4.13: 

 

 

Figure 4.13: Missed IC events areogram – method of the IMU on the left shank. 
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In particular:  

 
▪ In the flat terrain trials in slope: 

• all of them at 15 degrees. 

▪ In the M terrain trials in slope: 

• the 85.7% at 15 degrees; 

• the 14.3% at -15 degrees. 

▪ In the Mat terrain trials in slope: 

• the 87.5% at 15 degrees; 

• the 12.5% at -15 degrees. 

▪ In the Terrasensa trials in slope: 

• the 75% at 15 degrees; 

• the 25% at -15 degrees. 

 

Instead, for what concerns the extra events in the Figure 4.14: 

 

 

Figure 4.14: Extra IC events areogram – method of the IMU on the left shank. 
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In particular: 
 

▪ In the flat terrain trials in slope: 

• the 75% at 15 degrees; 

• the 25% at -15 degrees. 

▪ In the M terrain trials in slope: 

• the 62.5% at 15 degrees; 

• the 37.5% at -15 degrees. 

▪ In the Mat terrain trials in slope: 

• all of them at 15 degrees. 

▪ In the Terrasensa trials in slope: 

• the 58.3% at 15 degrees; 

• the 41.7% at -15 degrees. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



113  

Now, the right shank. The EC instants has the 82.4% of correct events, the 17.6% 

of missed events and the 21.4% of extra events. And for the missed events are 

divided as follows in the Figure 4.15: 

 

 

Figure 4.15: Missed EC events areogram – method of the IMU on the right shank. 

 

 In particular: 

 

▪ In the flat terrain trials in slope: 

• the 68.8% at 15 degrees; 

▪ In the M terrain trials in slope: 

• the 77.8% at 15 degrees; 

• the 22.2% at -15 degrees. 

▪ In the Mat terrain trials in slope: 

• the 80% at 15 degrees; 

• the 20% at -15 degrees. 

▪ In the Terrasensa trials in slope: 

• the 93.3% at 15 degrees; 
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• the 6.7% at -15 degrees. 

 

For the extra events in the Figure 4.16: 

 

 

Figure 4.16: Extra EC events areogram – method of the IMU on the right shank. 

 

In particular: 

 

▪ In the flat terrain trials in slope: 

• the 69.6% at 15 degrees; 

• the 30.4% at -15 degrees. 

▪ In the M terrain trials in slope: 

• the 53.6% at 15 degrees; 

• the 46.4% at -15 degrees. 

▪ In the Mat terrain trials in slope: 

• the 61.1% at 15 degrees; 

• the 38.9% at -15 degrees. 

▪ In the Terrasensa trials in slope: 
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• the 66.7% at 15 degrees; 

• the 33.3% at -15 degrees. 

 

For the IC instants of the right shank, the correct events are the 84.2%, the missed 

events the 15.8% and the extra events the 23.2%. 

The instants of the missed events are divided as follows in the Figure 4.17: 

 

 

Figure 4.17: Missed IC events areogram – method of the IMU on the right shank. 

 

 

In particular: 

 

▪ In the flat terrain trials in slope: 

• the 71.4% at 15 degrees; 

• the 28.6% at -15 degrees. 

▪ In the M terrain trials in slope: 

• the 65% at 15 degrees; 

• the 35% at -15 degrees. 
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▪ In the Mat terrain trials in slope: 

• the 81.3% at 15 degrees; 

• the 18.7% at -15 degrees. 

▪ In the Terrasensa trials in slope: 

• the 94% at 15 degrees; 

• the 6% at -15 degrees. 

 

For the extra events, instead, are divided as follows in the Figure 4.18: 

 

 

Figure 4.18: Extra IC events areogram – method of the IMU on the right shank. 

 

In particular: 

 

▪ In the flat terrain trials in slope: 

• the 68% at 15 degrees; 

• the 32% at -15 degrees. 

▪ In the M terrain trials in slope: 

• the 47% at 15 degrees; 
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• the 53% at -15 degrees. 

▪ In the Mat terrain trials in slope: 

• the 57% at 15 degrees; 

• the 43% at -15 degrees. 

▪ In the Terrasensa trials in slope: 

• the 67% at 15 degrees; 

• the 33% at -15 degrees. 

 

4.3 Statistical analysis on the errors 
 
The statistical analysis results are presented as follows for all the methods (4.3.1, 4.3.2, 4.3.3). 

4.3.1 Method 1: Zijlstra 
 

A Boxplot to see how the Parkinson disease patients affect the errors on the 

different terrains is shown in the Figure 4.19. 

 
 
 

 
Figure 4.19: Zijlstra method boxplot, errors on different terrains. Healthy subjects vs Parkinson disease patients. 
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Another boxplot of the errors in each healthy subject is shown in the Figure 4.20. 
 
 

 
Figure 4.20: Zijlstra method boxplot, errors of each healthy subject. 

 

   

We can see the Anova performed in Matlab shown in the Figure 4.21. 
 

Figure 4.21: Anova on the BMI group – Zijlstra method. 
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Now, we can see the results on the analysis of variance of the terrain inclinations 
and terrain groups in the Figure 4.22. 

 

Figure 4.22: Anova on the terrain and inclination groups – Zijlstra method. 

 
 
 
So, a boxplot of the errors on the three different inclinations can be visualized in 
the Figure 4.23. 
 

 

Figure 4.23: Boxplot of the errors on the different terrain inclinations - Zijlstra method. 
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With the error plot in the Figure 4.24 with the mean and the standard deviation of 

the errors on each terrain and inclination, we can see if there is a regularity. 

 

 

Figure 4.24: error plot of all the subjects - Zijlstra method. 
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4.3.2 Method 2: IMU on the foot 
 

We consider only the IC instants. First the IMU on the left foot. We see the boxplot 

in the Figure 4.25 with all the subjects, dividing the Parkinson patients and the 

healthy subjects. And then another boxplot in Figure 4.26 with the healthy subjects 

only. 

 

 

Figure 4.25: foot method boxplot, errors on different terrains. Healthy subjects vs Parkinson disease patients. IC left 
instants. 
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Figure 4.26: foot method boxplot, errors of each healthy subject. IC left instants. 

 
 
 

Then, the Anova we performed on the height group, shown in the Figure 4.27. 
 
 

 
Figure 4.27: Anova from MATLAB on the height group of the IC instants – left foot method. 
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Another different Anova is presented in the Figure 4.28. 
 

 

 
Figure 4.28: Anova from MATLAB on the BMI group of the IC instants – left foot method. 

 
 
 

Now, always the IC instants, but we analyze the IMU on the right foot. First with 
two boxplots shown in the Figure 4.29 and 4.30. 

 
 
 

 
Figure 4.29: foot method boxplot, errors on different terrains. Healthy subjects vs Parkinson disease patients. IC right 
instants. 
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Figure 4.30: foot method boxplot, errors of each healthy subject. IC right instants. 

 
 
 
 

The analysis of variance is shown in the Figure 4.31. 
 
 

 
Figure 4.31: Anova from MATLAB on the BMI group of the IC instants – right foot method. 
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4.3.3 Method 3: IMU on the shank 
 

We first consider the left shank and the EC instants. We see the two boxplots 

shown in the Figure 4.32 and 4.33. 

 

 

Figure 4.32: shank method boxplot, errors on different terrains. Healthy subjects vs Parkinson disease patients. EC left 
instants. 
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Figure 4.33: shank method boxplot, errors of the healthy subjects. EC left instants. 

 

The Anova in the Figure 4.34 was performed on the BMI group with the categories 

for each subject. 

 

 

Figure 4.34: Anova from MATLAB on the height group of the EC instants – left shank method.. 
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Another Anova to see how much the error is influenced by the terrains and the 

inclinations is shown in the Figure 4.35. 

 

 

Figure 4.35: Anova from MATLAB on the terrain and inclination groups of the EC instants – left shank method. 

 

 

The boxplot of the errors on the various inclinations is shown in the Figure 4.36. 

 

 

Figure 4.36: Boxplot of the errors on the different terrain inclinations of the EC instants - left shank method. 
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Instead, the error plot of all the subjects is shown in the Figure 4.37. 

 

 

Figure 4.37: error plot of all the subjects of the EC instants - left shank method. 
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Now the IC instants on the left shank. The boxplots are shown in the Figure 4.38 

and 4.39. 

 

 

Figure 4.38: shank method boxplot, errors on different terrains. Healthy subjects vs Parkinson disease patients. IC left 
instants. 
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Figure 4.39: shank method boxplot, errors of each healthy subject. IC left instants. 

 

The Anova on the BMI group is shown in the Figure 4.40.  

 

 

Figure 4.40: Anova from MATLAB on the BMI group of the IC instants – left shank method.. 
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The Anova on the inclination and terrain groups can be performed and it is shown 

in the Figure 4.41. 

 

 

Figure 4.41: Anova from MATLAB on the terrain and inclination groups of the IC instants – left shank method. 

 
 

The boxplot of the errors on the different inclinations is presented in the Figure 4.42. 
 

 

Figure 4.42: boxplot of the errors on the various inclinations of the IC instants – left shank method. 
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So, an error plot of all the subjects mean and standard deviation on every terrain 

is shown in the Figure 4.43. 

 

 

Figure 4.43: error plot of all subjects of the IC instants – left shank method. 
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Now we see the results for the right shank. We first see the results for the EC 

instants. 

The boxplots are shown in the Figure 4.44 and 4.45. 

 

 

Figure 4.44: shank method boxplot, errors on different terrains. Healthy subjects vs Parkinson disease patients. EC right 
instants. 
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Figure 4.45: shank method boxplot, errors of each healthy subject. EC right instants. 

 

 

The Anova on the BMI group is shown in the Figure 4.46. 

 

 

Figure 4.46: Anova from MATLAB on the BMI group of the EC instants – right shank method. 
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The Anova on the terrain and inclination groups is shown in the Figure 4.47. 

 

Figure 4.47: Anova from MATLAB on the terrain and inclination groups of the EC instants – right shank method. 

 

The boxplot on the various inclinations is shown in the Figure 4.48. 

 

 

Figure 4.48: boxplot of the errors on the various inclinations of the EC instants – right shank method. 
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The error plot for all the subjects is shown in the Figure 4.49. 

 

 

Figure 4.49: error plot of all subjects of the EC instants – right shank method. 
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To conclude, now we see the results for the IC instants, always for the IMU 

positioned on the right shank. We can see two boxplots in the Figure 4.50 and 4.51. 

 

 

Figure 4.50: shank method boxplot, errors on different terrains. Healthy subjects vs Parkinson disease patients. IC right 
instants. 
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Figure 4.51: shank method boxplot, errors of each healthy subject. IC right instants. 

 

And the Anova of the BMI group is shown in the Figure 4.52. 

 

 

Figure 4.52: Anova from MATLAB on the BMI group of the IC instants – right shank method. 
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Chapter 5 - Discussion 
 

We start the discussion, considering the areogram plots from the chapter 4 

‘Results’, in the ‘Detection analysis’ section. The foot method for the IC events 

seems to be the best detector method if we see the percentage value of the 

correct events. But, we can see that the method detects many more instants than 

the gold standard, so only the threshold helps the method to work better. This fact 

is confirmed by the percentage value of the extra events, the events detected by 

the method but not interesting for the error analysis. These extra events are more 

present in trials at zero degrees, but this fact can be caused by the large amount 

of data that we have for these trials comparing them to the trials in slope, as we 

can see in the tables 4-4 of the method and 4-1 of the gold standard in the 

‘Experimental database’ section in the chapter 4 ‘Results’. The irregular terrain 

that has more extra events, as we could expected, is the Terrasensa terrain. So, 

seeing all the percentage values, the best detector method is the first one, the 

method that uses the IMU on the pelvis. It has an high percentage value of correct 

events, therefore a low value for the missed events, but also the lowest value for 

what concerns the extra events. In addition, the values of the missed events and 

the extra events are almost evenly distributed on the inclined and level walking 

conditions. And, to conclude, for both the terrain that has most not correct events 

is an irregular terrain, in particular the M terrain. Therefore, considering the IC 

instants, also the method that uses the IMU on the shank provides good 

percentage values of correct, missed and extra events, so it can be considered for 

further analysis. 

As for the EC events, the shank method is better than the foot one, considering all 

the percentage values calculated. For this reason and for the too low correct 

percentage values, it was decided to not continue the analysis of the foot method 

for the detection of the EC instants. The shank method provides quite good 
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percentage values and for both right and left shank, the terrains that provide more 

missed and extra events are the irregular ones, with an exception regarding the 

IMU on the right shank at the level walking configuration on the flat terrain that 

present more missed events than any other terrain. The reason why the IMU on 

the foot has negative performances lies in the fact that this sensor is characterized 

by other movements that condition the performance of the sensor and 

consequently they make the signal noisier. So, we can say that the other three 

IMUs on the shanks and on the pelvis function like low pass filters that delete small 

right and left swing in the movement and the signal is affected in the positive way. 

 

As mentioned earlier, only the methods that presented acceptable detection 

percentage values were subjected to a more in-depth analysis. The procedure was 

the same for all the selected and appropriate methods. A first look was given to 

the boxplots of the errors on the different terrains and inclinations, dividing the 

healthy subjects from the Parkinson patients to evaluate if the method works in 

the same way for both subjects categories. For the first method, it is possible to 

see in the Figure 4.19 that the variabilities of the errors on the different conditions 

for the Parkinson patients is higher than the ones for the healthy subjects. Also for 

the second method this happens. Instead, for the third method the Parkinson 

patients present similar error variabilities.  

Another boxplot with all the healthy subjects was performed for all the methods, 

because as said previously in this work, the first subject of the study performed a 

bit different set of trials, but for this reason, it is interesting to see which method 

performs in a comparable way with the other kind of trials, the majority in this 

study. All the methods had acceptable and comparable errors for the first subject.  

 

The last analysis is that of the variance. This analysis has two steps in this work. 

With the first step we want to see if the method depends on the anthropometric 
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parameters of the subjects. If not, we can further investigate on the different 

variables that influence the errors variability, in particular if the terrain or the 

inclination conditions the accuracy of the method. The analysis of the variance on 

the BMI group of the method (Figure 4.28 and 4.31) that uses the IMU on the foot 

says to us that this method depends on the anthropometric parameters of the 

subjects. All the other methods do not depend on the anthropometric values of 

the subjects, only the IC detection method that uses the IMU positioned on the 

right shank depends on these, as we can see in the Figure 4.52, so it cannot be 

further investigated.  

For the remaining methods, the inclination is most significative parameter that 

affects the variability of the error, but also the kind of terrain has an impact. Some 

indications can be given as to which terrain to use which method. Seeing the Figure 

4.23, the method that uses the IMU on the pelvis has performances that are 

comparable on the terrains with inclinations at 15 and -15 degrees, instead on the 

terrains inclined at zero degrees has a better performance, but presents some 

outliers. Therefore, seeing the Figure 4.24 the average error increases on every 

terrain from the -15 to 15 degrees inclination. The highest average error is on the 

Mat terrain inclined at 15 degrees, the standard deviations are higher in the 

irregular terrains like the M terrain and the Terrasensa terrain. So, this method can 

be used on flat terrains, also inclined at -15 degrees.  

For what concerns the method that uses the sagittal angular velocity from the IMU 

positioned on the shank, seeing all the boxplots on the Figure 4.36, 4.42 and 4.48, 

the lowest error variability occurs with the terrain inclination at -15 degrees. In 

particular, analyzing the EC events detection, the method anticipates the correct 

instants identified by the gold standard. For what concerns the IC instants, the 

method anticipates the gold standard on the configurations at -15 degrees and has 

more positive errors with the inclination of the terrains at 15 degrees, so it is late 

in comparison with the gold standard. Analyzing now the error plot in the Figure 
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4.37 of the EC left events detection method, the lowest average errors are in the 

configurations at zero degrees of all the terrains, in general the method presents 

a good performance in all the configurations of the flat terrain. Seeing the error 

plot shown in the Figure 4.43, the fact that the method on the configurations at -

15 degrees tends to anticipate the gold standard is confirmed by all the average 

errors at these configurations are negative. All the average errors at zero degrees 

configurations are near to the zero, so the method works well with this inclination. 

The highest average error is present on the M terrain 15 degrees inclined. To 

conclude, analyzing the error plot shown in the Figure 4.49, the best performances 

are performed on the flat terrain at all configurations. The worst terrain and 

inclination is the Mat terrain at 15 degrees.  

 

In the ‘Statistical analysis’ section in the chapter 2, it was said that to be Anova 

applicable, two hypotheses had to be verified before the analysis. This work 

presents a complex situation with a large amount of degrees of freedom so the 

verification of the hypotheses of the analysis of variance should be conducted on 

every different condition that these experimental trials present. Therefore, the 

database should be improved to have the same number of instants detected in 

each condition and for each kind of subjects, healthy and Parkinson patients, to 

have a statistical analysis of a better quality. Having said that in some situations, 

the hypothesis of a normality distribution was verified, as we can see from the 

histogram plot of the errors of the first method of Zijlstra shown in the Figure 5.1 

below.  
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On the plot was graphed also the Gaussian Bell (in orange) following the [eq. 3.1] 

with the mean and the standard deviation of the errors. 

An histogram that does not respect the normal distribution of the errors is the 

following one in the Figure 5.2, that belongs to the method that uses the IMU 

positioned on the right foot. 

 

 

 

 

 

Figure 5.1: histogram of the errors – Zijlstra method. 
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When the histogram seemed to suggest that the hypothesis of normal distribution 

had not to be accepted, a verification with Shapiro-Wilk W test was always 

performed with a significance level of 0.05. Every time the tests executed 

confirmed the impressions from the histograms.  

For what concerns the second hypothesis of the Anova, the equality of variances 

was never perfectly accepted for the groups used. In fact, the Barlett’s test was 

performed on every group (subjects, categories of mass, height and BMI, terrains 

and inclinations), but none presents a p-value > 0.05. These results have to be 

analyzed better with an analysis that goes more in depth of the data, maybe it has 

to be analyzed every different condition of terrain as said before.

Figure 5.2: histogram of the errors – right foot method, IC instants. 
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Chapter 6 – Conclusion 
 

The aim of this thesis was to understand if gait events could be efficiently 

identified by using algorithms based on IMU sensors in comparison with a 

stereophotogrammetry system, usually considered as a  gold standard in gait 

analysis. Last but not least such methods have been applied to gait on challenging 

terrains viable for its inclination, for irregularity characteristics and for stiffness. 

The experimental campaign produced a large quantity of gait events data which 

constitute the data set to check four IMU methods performances. The four 

methods require inertial sensors on the pelvis, or on the shank or on the foot. We 

validated them for their detection capability, having considered the gold standard 

as reference, including correct events, ‘missed events’ when events detected by 

the gold standard are not detected by IMU methods, called ‘missed events’, and 

‘extra events’ when the events detected by IMU methods do not correspond to 

those obtained by the gold standard. Moreover for the correct events, we 

considered the temporal error between the comparable events of the method and 

the gold standard and we analyzed it. The results suggest that a unique best 

method suitable for all the tested conditions does not exist, but some useful 

indication can be read from this study. It is shown in fact that , indicatively for all 

the methods, there is an increase in time error for each event, moving from 

negative to positive inclination in all terrains. Beside that for each terrain the most 

performant method, among the four considered, can be identified, giving useful 

indications to the experimenter, for the specific conditions. In general, the IMU on 

the foot is not the perfect solution on irregular terrains and/or when considering 

Parkinson patients, while the IMU positioned on the pelvis and the shank are the 

best choices for gait event detection on irregular terrains, probably for the low 

pass filtering effect of the subject body when moving from the distal part to a more 

proximal one. 
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