UNIVERSITÀ DEGLI STUDI DI GENOVA

SCUOLA POLITECNICA

DIME

Dipartimento di Ingegneria Meccanica, Energetica,

Gestionale e dei Trasporti

TESI DI LAUREA MAGISTRALE IN

INGEGNERIA MECCANICA ENERGIA E AERONAUTICA

Progettazione del banco prova per la qualifica di un prototipo di refrigeratore magnetico rotante

Relatore:

Chiar.ma Prof. Ing. Annalisa Marchitto

Correlatori:

Chiar.^{mo} Dott. Johan Augusto Bocanegra Cifuentes

Chiar.^{mo} Ing. Ferdinando De Filippis

Allievo:

Daniele Petrarulo 19 Dicembre 2022

Progettazione del banco prova per la qualifica di un prototipo di refrigeratore magnetico rotante

Sommario

La refrigerazione magnetica rappresenta una possibile alternativa, per via dell'assenza di fluidi refrigeranti e di maggiori efficienze, ai refrigeratori a compressione di vapore e a gas e alle macchine ad assorbimento. Il refrigeratore magnetico può funzionare anche come una pompa di calore oppure, invertendo il ciclo, può essere utilizzato per ottenere lavoro meccanico.

La refrigerazione magnetica si basa sull'effetto magnetocalorico di alcuni materiali, per esempio il Gadolinio che, se sottoposti a un campo magnetico variabile, cambiano la loro temperatura. La variazione di temperatura è minima per cui è necessario utilizzare un ciclo rigenerativo per ottenere gradienti di temperatura significativi.

L'obbiettivo del seguente elaborato consiste nella progettazione di un banco prova per testare un prototipo di refrigeratore magnetico rotazionale che verrà successivamente realizzato. Il sistema sarà sottoposto a sperimentazione al fine di caratterizzarne le prestazioni in diverse configurazioni e condizioni operative.

La progettazione del banco prova ha richiesto le seguenti fasi:

- Determinazione delle prestazioni dell'AMR e delle caratteristiche del circuito primario e secondario attraverso il software MAGROT, un simulatore numerico alle differenze finite.
- Disegno del diagramma P&ID (disegno, segnali di acquisizione dei dati e lista dei componenti) del banco prova attraverso CAD.
- Ricerca dei componenti commerciali tramite cataloghi e siti di vendita.

Si descrive il banco prova precedentemente costruito per testare il funzionamento di un altro prototipo e lo si confronta con il banco prova che verrà progettato.

Si effettua inoltre una descrizione dei banchi prova costruiti fino al giorno d'oggi.

Design of the test bench for the qualification of a prototype of a rotating magnetic chiller

Abstract

Magnetic refrigeration represents a possible alternative, due to the absence of refrigerant fluids and greater efficiencies, to vapor and gas compression chillers and absorption machines. The magnetic chiller can also work as a heat pump or, by reversing the cycle, it can be used to obtain mechanical work.

Magnetic refrigeration is based on the magnetocaloric effect of some materials, for example Gadolinium which, when subjected to a variable magnetic field, change their temperature. The temperature variation is minimal so it is necessary to use a regenerative cycle to obtain significant temperature gradients.

The goal of the following paper is to design a test bench to test a prototype of a rotational magnetic chiller that will be subsequently built. The system will be tested in order to characterize its performance in different configurations and operating conditions.

The design of the test bench required the following steps:

• Determination of the performance of the AMR and the characteristics of the primary and secondary circuit through the MAGROT software, a finite difference numerical simulator.

• Drawing of the P&ID diagram (drawing of the test bench, data acquisition signals and list of components) of the test bench through CAD.

• Search for commercial components through catalogs and sales sites.

The test bench previously built to test the operation of another prototype is described and compared with the test bench that will be designed.

A description of the test benches built up to the present day is also made.

Indice

Sommario	
CAPITOLO 1. Introduzione	1
1.1 La refrigerazione magnetica	1
CAPITOLO 2: Teoria di riferimento	3
2.1 Effetto magnetocalorico	3
2.2 Materiali utilizzati nella refrigerazione magnetica e fluidi termovettori utilizzati	4
2.2.1 Materiale magnetocalorico:	4
2.2.2 Fluido termovettore:	6
2.3 Ciclo AMR e Geometria AMR	8
CAPITOLO 3: Funzionamento e progettazione del banco prova	17
3.1 Funzionamento del banco prova:	18
3.2 Determinazione delle prestazioni dell'AMR e delle caratteristiche del circuito primario e secondario attraverso MAGROT:	19
3.2.1 Prestazioni AMR:	25
3.2.2 Disegn preliminare del banco prova:	26
3.2.3 Circuito primario:	27
3.2.3.1 Scambiatori di calore:	27
3.2.3.2 Analisi di bypass sullo scambiatore UA=20 W/K	30
3.2.3.3 Pompe:	33
3.2.3.4 Motore:	35
3.2.3.5 Vaso di espansione chiuso:	36
3.2.3.6 Valvole di carica e scarica del circuito:	36
3.2.4 Circuito secondario:	36
3.2.4.1 Pompe:	37
3.2.4.2 Bagni termostatici:	42
3.2.4.3 Filtri:	42
3.3 P&ID	42
3.4 Ricerca dei componenti:	45
CAPITOLO 4: Disegno del banco prova	56
4.1 Confronto con banchi prova precedenti:	60
4.2 Banco prova 2013:	85
CAPITOLO 5: Conclusioni	92

5.1 Sviluppi futuri:	93
BIBLIOGRAFIA	94

CAPITOLO 1. Introduzione

1.1 La refrigerazione magnetica

La refrigerazione magnetica rappresenta una possibile alternativa, per via dell'assenza di fluidi refrigeranti e di maggiori efficienze, ai refrigeratori a compressione di vapore e a gas e alle macchine ad assorbimento. Il refrigeratore magnetico può funzionare anche come una pompa di calore oppure, invertendo il ciclo, può essere utilizzato per ottenere lavoro meccanico.

Rispetto a una macchina a compressione di vapore, il refrigeratore magnetico non possiede i due componenti che presentano le maggiori irreversibilità: il compressore e la valvola di laminazione.

Per far funzionare la macchina è necessario introdurre del lavoro meccanico per muovere il magnete e avere un forte campo magnetico.

La refrigerazione magnetica si basa sull'effetto magnetocalorico (MCE): il materiale magnetocalorico (MCM) cambia la sua temperatura se sottoposto a una variazione adiabatica di campo magnetico (ΔB). Il cambio di temperatura (ΔT_{ad}) è di pochi gradi utilizzando un campo magnetico di qualche Tesla: utilizzando un ciclo rigenerativo si possono ottenere dei gradienti di temperatura comparabili con un ciclo frigorigeno a compressione di vapore (Barclay, 1983).

La teoria magnetocalorica è in grado di migliorare il processo iso-magnetico, che presenta minime irreversibilità per materiali ferromagnetici ed è in grado di migliorare l'efficienza del ciclo termodinamico, raggiungendo efficienze del 30-60% rispetto al ciclo di Carnot (Yu et al. 2003, Zimm et al. 1998), mentre l'efficienza della refrigerazione a compressione di vapore è solo del 5%-10% del ciclo di Carnot (Yu et al., 2003).

Una delle peculiarità di questi impianti è la presenza di acqua+glicole (per evitare il congelamento del fluido a 0°C e per diminuire la possibilità di corrosione) come fluido termovettore e di un materiale magnetocalorico (Gadolinio) al posto di fluidi refrigeranti.

Un motore provvede alla movimentazione del MCM in sostituzione del compressore, riducendo così le irreversibilità e aumentando l'efficienza del processo. Inoltre, si ottiene un design della macchina molto compatto, con basse rumorosità ed elevate efficienze.

Le difficoltà nella realizzazione di queste macchine consistono nella richiesta di elevati campi magnetici permanenti, nella precisione di regolazione della frequenza di rotazione del MCM e delle portate, nella necessità di un MCM con elevata differenza di temperatura adiabatica (ΔT_{ad}) e con T_{curie} vicina alle temperature di lavoro del frigorifero e negli elevati costi dei materiali e di costruzione.

L'obbiettivo del seguente elaborato consiste nella progettazione di un banco prova per testare un prototipo di refrigeratore magnetico rotazionale che verrà successivamente realizzato.

Il banco prova sarà corredato di tutti i componenti di impianto (pompe, valvole, scambiatori, sensori di misura, sistema di regolazione e sistema di acquisizione dati) necessari allo svolgimento delle prove.

Il sistema sarà sottoposto a sperimentazione al fine di caratterizzarne le prestazioni in diverse configurazioni e condizioni operative (temperatura imposta, variazione della frequenza di rotazione AMR, variazione dell'efficienza globale di scambio termico UA degli scambiatori di calore, variazione della portata del fluido termovettore).

CAPITOLO 2: Teoria di riferimento

2.1 Effetto magnetocalorico

Il fenomeno magnetocalorico, scoperto da Weiss and Piccard (1917) (Smith, 2013), è un effetto magneto-termodinamico che si presenta quando un determinato materiale è sottoposto a un campo magnetico variabile nel tempo, comportando una variazione reversibile di temperatura.

Questo effetto fu utilizzato per la prima volta in applicazioni a bassa temperatura, conosciute come smagnetizzazione adiabatica, da Debye (Debye, et al. 1926) e Giauque (Giauque et al. 1927) nel 1993 per ottenere temperature criogeniche (T<1K) con un'unica smagnetizzazione di alcuni sali paramagnetici.

Per determinare l'effetto magnetocalorico si può utilizzare la seguente formula (2.1):

$$\Delta T_{ad}(T, H_0, H_1) = -\int_{H_0}^{H_1} \left(\frac{T}{c_p(T, H)}\right)_H \left(\frac{\partial M(T, H)}{\partial T}\right)_H dH$$
(2.1)

Dove ΔT_{ad} [K] è la differenza di temperatura adiabatica, T [K] è la temperatura, H $\left[\frac{A}{m}\right]$ è il campo magnetico utilizzato, c_p $\left[\frac{J}{m^3}\right]$ è il calore specifico del magnete, M $\left[\frac{A}{m}\right]$ è la magnetizzazione del refrigerante.

Utilizzando l'equazione soprastante è possibile migliorare l'effetto magnetocalorico nei seguenti modi:

- 1. Generando un forte campo magnetico.
- 2. Utilizzando un materiale con basso calore specifico.
- 3. Utilizzando un materiale magnetico che abbia un forte cambiamento di temperatura se sottoposto a un campo magnetico variabile.

2.2 Materiali utilizzati nella refrigerazione magnetica e fluidi termovettori utilizzati

2.2.1 Materiale magnetocalorico:

Il primo materiale utilizzato per valutare la fattibilità della refrigerazione magnetica (Brown, et al. 1976.) è stato il lantanide Gadolinio (Gd).

Le caratteristiche richieste a un materiale magnetocalorico sono:

 Temperatura di Curie (*T_{curie}*) adeguata: superata la temperatura di Curie il materiale ferromagnetico diventa paramagnetico. In corrispondenza della temperatura di Curie il materiale ferromagnetico presenta un massimo di gradiente di magnetizzazione ^{*M*}/_{*∂T*}. L'entropia magnetica (*ΔS_M*) e la temperatura adiabatica (*ΔT_{ad}*) sono proporzionali a questo gradiente.

Il materiale magnetocalorico ideale deve avere una temperatura di Curie molto vicina alla temperatura interna della stanza nella quale è collocato il refrigeratore magnetico. Per esempio, il Gadolinio presenta una temperatura di Curie pari a 293,6 K che lo rende il perfetto candidato per essere il materiale nella refrigerazione magnetica.

- 2. Minima isteresi magnetica e termica per evitare perdite durante il ciclo di funzionamento.
- 3. Ampio ΔT_{ad} e ampio ΔS_M (entropia di magnetizzazione).
- 4. Elevata resistenza elettrica per minimizzare le perdite associate alle correnti parassite.
- 5. Facilità di sinterizzazione e lavorazione per ottenere diverse forme geometriche (microsfere, fogli sottili, tubi) per massimizzare il rapporto superficie su volume.
- 6. Materiale che non si corroda facilmente per garantire il massimo trasferimento termico, evitando la formazione di strati di materiali che diminuiscano il trasferimento di calore.

I materiali magnetocalorici possono essere suddivisi in materiali paramagnetici e ferromagnetici (Smith et al 2012.; Zarkevich, et al. 2020). I materiali ferromagnetici sono classificati in base all'ordine della transizione come segue:

- Materiali del secondo ordine: hanno un classico secondo ordine di trasformazione da ferromagnetico a paramagnetico a una certa temperatura (T_c) , sotto la quale la magnetizzazione si azzera gradualmente fino a raggiungere la temperatura T_c .
- Materiali del primo ordine: la magnetizzazione dei materiali del primo ordine cambia bruscamente a una certa temperatura, rilasciando calore latente nel processo (Gschneidner et al. 2000; Smith et al 2012.; Zarkevich, et al. 2020).

Nelle pompe di calore, nei refrigeratori e nelle macchine di conversione dell'energia il materiale magnetocalorico può essere allo stato solido come componente puro o come lega, come nanofluidi (Shao, et al. 1996), come sospensioni o come lega di metalli liquidi (Burnett 1993). Non esistono ancora macchine che usano materiali magnetocalorici allo stato liquido.

Ram et al. (Ram et al. 2018) definirono dei confronti tra diversi materiali come vetroceramiche, perovskiti magnetiche, ferriti a spinello e composti a base di ossido.

Secondo Zarkevich e Zverev (Zarkevich, N.A.; Zverev, V.I. 2020) i materiali magnetocalorici sono costituiti da una limitata combinazione di diversi metalli, tra cui Cr, Dy, Mn, Gd, Fe, Ho, Ni, Eu, Tb, Sm, Er e Tm.

Il Gadolinio sottoposto a un campo magnetico di 1T, presenta le seguenti caratteristiche:

- $T_c = 293,6 K$
- $\Delta T_{ad} = 2,1K$
- $-\Delta S_M = 2,04 \frac{J}{kgK}$

In Figura 2.1 (Trevizoli et al. 2014) è rappresentato l'andamento del calore specifico a pressione costante del Gadolinio in funzione della temperatura dello stesso e dell'intensità del campo magnetico a cui esso è sottoposto.

Tutte le curve presentano un massimo in corrispondenza della temperatura di 290 K, prossima alla temperatura ambiente.

Figura 2.1 Andamento calore specifico a pressione costante in funzione della temperatura del Gadolinio al variare dell'intensità di campo magnetico applicato (Trevizoli et al. 2014)

Se ci si allontana di dieci gradi Kelvin dalla temperatura di Curie, l'effetto magnetocalorico (MCE) crolla di una volta e mezzo rispetto al massimo, rendendo impossibile ottenere un ampio ΔT_{span} (gradiente massimo di temperatura tra l'ingresso e l'uscita del rigeneratore) con un solo materiale.

Si utilizzano diversi composti sinterizzati di Gadolinio e metalli, anche stratificati, per ottenere una temperatura di Curie compatibile con le temperature di applicazione.

Per le sue caratteristiche, il Gadolinio è considerato, al momento, il miglior materiale per la refrigerazione magnetica.

2.2.2 Fluido termovettore:

Oltre alla scelta del materiale magnetocalorico, è molto importante la scelta del fluido termovettore che deve asportare/cedere calore al materiale magnetico. Il fluido termovettore deve presentare un opportuno coefficiente di scambio termico, una buona conducibilità termica e un buon calore specifico. Oltre alle caratteristiche citate sono importanti la viscosità del fluido e la sua velocità: esse influenzano le perdite di carico, le quali devono essere le più basse possibili.

Kitanovski et al. (Kitanovski et al. 2008b) and Kitanovski and Egolf (Kitanovski et al. 2008) fecero, attraverso un codice di calcolo che teneva conto della geometria del magnete, delle

temperature in gioco, della frequenza di rotazione del magnete e della portata del fluido termovettore, un confronto tra diversi fluidi termovettori per la determinazione del migliore. I risultati sono mostrati in Figura 2.2 (Kitanovski et al. 2010). Si nota come il miglior fluido termovettore per rateo di potenza sia il mercurio ma non è utilizzabile perché tossico. Gallio e Indio sono i metalli liquidi più utilizzati: sarebbero una buona soluzione in termini di rateo di potenza ma presentano elevate perdite di carico.

Nella scelta del fluido termovettore è importante sia la sua capacità di asportare calore (nel grafico rappresentato con il termine rateo di potenza), sia avere basse perdite di carico. Per questo motivo il miglior fluido termovettore viene identificato nell'acqua, poiché presenta una buona capacità di asportazione del calore e basse perdite di carico. Per evitare fenomeni di corrosione e che l'acqua congeli a 0 °C si aggiunge una percentuale di glicole.

Figura 2.2 Confronto del tasso di potenza di diversi fluidi termovettori (Kitanovski et al. 2010)

Per ottenere un elevato effetto magnetocalorico è importante la scelta sia del fluido termovettore sia della frequenza di rotazione del magnete (generalmente 1-2 Hz) per ottenere la massima densità magnetica.

Il fluido termovettore utilizzato generalmente è l'acqua, in alcune applicazioni si può utilizzare l'elio (Rowe et al. 2005) oppure l'aria (Egolf et al. 2006a).

Nella scelta dei fluidi termovettori non si utilizzano gas poiché richiedono una diversa geometria della macchina e si ottiene una densità di potenza di un ordine di grandezza inferiore rispetto a quella dei liquidi.

2.3 Ciclo AMR e Geometria AMR

Il rigeneratore magnetico attivo (AMR) è costituito da uno scambiatore di calore a matrice porosa la cui fase solida è un materiale magnetocalorico (refrigerante solido) che subisce una variazione di entropia magnetica reversibile se soggetto a un campo magnetico variabile. La capacità di raffreddamento del ciclo è proporzionale alla massa del refrigerante solido MCM, alla frequenza di funzionamento, alla cilindrata volumetrica del fluido termovettore e all'efficacia del rigeneratore.

Il ciclo magnetico si divide in:

- 1. Ciclo di Carnot
- 2. Ciclo Brayton
- 3. Ciclo Ericsson
- 4. Ciclo Stirling

Ciclo magnetico di Carnot: è costituito da quattro trasformazioni: due processi isoentropici/adiabatici e due processi isotermi. In Figura 2.3 (Alahmer et al. 2021) è possibile visualizzare le trasformazioni descritte sul piano S-T. S è espresso in $\left[\frac{J}{\kappa}\right]$ e T in [K].

Figura 2.3 Ciclo magnetico di Carnot (Adattata da Alahmer et al. 2021)

1. Trasformazione adiabatica e isoentropica A-B: si presenta quando si applica un campo magnetico (+B) a un materiale magnetocalorico dopo che questo è stato

posizionato in un'area isolata, permettendo l'allineamento dei dipoli magnetici. Poiché il campo magnetico riduce l'entropia di spin del materiale, l'entropia di lattice deve aumentare per mantenere costante il valore totale di entropia, comportando un aumento della temperatura adiabatica (T+ ΔT_{ad}) da T_c a T_H .

- 2. Magnetizzazione isoterma B-C: l'intensità del campo magnetico indotto è incrementata per ottenere la totale magnetizzazione. Il calore prodotto è estratto (Q_{in}) da un liquido o da un gas prima che il materiale magnetocalorico e il fluido siano separati (B=0).
- 3. Smagnetizzazione adiabatica e isoentropica C-D: si ottiene riducendo il campo magnetico e riducendo la temperatura adiabatica $(T-\Delta T_{ad})$ da T_H a T_C , riportando i bipoli a uno stato di disordine.
- 4. Smagnetizzazione isoterma D-A: completa il ciclo con la completa demagnetizzazione del materiale. Durante questo processo il campo magnetico è mantenuto costante per preservare il campione da un altro riscaldamento. Il calore del fluido termovettore è asportato dal refrigerante magnetico.

Il lavoro compiuto dal sistema è pari all'area sottesa ABCD e si determina come (2.2):

$$w = -\oint_{B}^{C} T dS - \oint_{D}^{A} T dS = T_{H} \left(S_{B} - S_{C} \right) - T_{C} \left(S_{A} - S_{D} \right)$$
(2.2)

Il calore assorbito durante il processo D-A è pari a (2.3):

$$q_{C} = \int_{D}^{A} T dS = T_{C}(S_{A} - S_{D})$$
(2.3)

Il COP della macchina si esprime come (2.4):

$$COP = \frac{q_C}{w} = \frac{T_C(S_A - S_D)}{T_H(S_B - S_C) - T_C(S_A - S_D)}$$
(2.4)

Poiché $S_A = S_B$ e $S_C = S_D$, il COP può essere espresso come (2.5):

$$COP = \frac{T_C}{T_C - T_H} \tag{2.5}$$

Ciclo magnetico di Brayton: è costituito da due trasformazioni adiabatiche e due trasformazioni a campo magnetico costante, rappresentate in Figura 2.4 (Alahmer et al.

2021) sul piano S-T. T_C rappresenta la temperatura di sorgente fredda, T_H la temperatura di sorgente calda. $B_0 \in B_1$ rappresentano il campo magnetico minimo e massimo applicato.

Fig. 2.4 Ciclo magnetico di Brayton (Adattata da Alahmer et al. 2021)

- 1. Processo di magnetizzazione adiabatica A-B: durante il processo isoentropico il materiale magnetico è portato da campo magnetico B_0 al campo magnetico B_1 , incrementando la temperatura del materiale magnetocalorico.
- 2. Raffreddamento a campo magnetico costante B-C: il calore è estratto continuamente a campo magnetico costante.
- Smagnetizzazione C-D: il materiale magnetico viene raffreddato fino a quando non si ha più scambio di calore.
- 4. Riscaldamento a campo magnetico costante B_0 D-A: il calore è assorbito da un refrigerante magnetico che fa raffreddare un dispositivo esterno.

Le equazioni che descrivono il processo sono (2.6) (2.7) (2.8) (2.9):

$$q_C = \int_D^A T dS \tag{2.6}$$

$$q_r = \int_B^C T dS \tag{2.7}$$

$$w = -q_r - q_c = -\int_B^C T dS - \int_D^A T dS$$
 (2.8)

$$COP = \frac{q_C}{w} = \frac{\int_D^A T dS}{-\int_B^C T dS - \int_D^A T dS}$$
(2.9)

Ciclo magnetico di Ericsson: è costituito da due trasformazioni isoterme e due trasformazioni a campo magnetico costante, rappresentate in Figura 2.5 (Alahmer et al. 2021).

Figura 2.5 Ciclo magnetico di Ericsson (Adattata da Alahmer et al. 2021)

Il ciclo Ericsson è simile al ciclo Brayton: in questo caso la magnetizzazione e la smagnetizzazione avvengono adiabaticamente e non più isotermicamente. Le equazioni che descrivono il processo sono (2.10) (2.11) (2.12) (2.13):

$$q_{C} = \int_{C}^{D} T dS = T_{C}(S_{D} - S_{C})$$
(2.10)

$$q_r = \int_{A}^{B} T dS = T_H (S_B - S_A)$$
(2.11)

$$w = -q_r - q_c = -q_c = T_H(S_A - S_B) - T_C(S_D - S_C)$$
(2.12)

$$COP = \frac{q_C}{w} = \frac{T_C(S_D - S_C)}{T_H(S_A - S_B) - T_C(S_D - S_C)}$$
(2.13)

Figura 2.6 Ciclo magnetico di Stirling (Adattata da Steyert 1978)

Ciclo magnetico di Stirling: è costituito da due trasformazioni isoentropiche e due trasformazioni a campo magnetico costante, rappresentate in Figura 2.6 (Steyert 1978b).

Il materiale magnetocalorico (MCM) sottoposto a un campo magnetico nullo viene prima riscaldato dal fluido termovettore da T_C a T_H ; successivamente, imponendo una variazione adiabatica di campo magnetico, viene portato alla temperatura $T_H + \Delta$, imponendo una variazione adiabatica di campo magnetico. In seguito, il fluido termovettore asporta calore dal materiale magnetocalorico portandolo alla temperatura $T_C + \Delta$ e infine smagnetizzando adiabaticamente il materiale si torna alla temperatura T_C .

Il flusso termico energetico equivalente può essere utilizzato per calcolare il lavoro minimo da introdurre nella macchina (2.14):

$$Ex_Q = Q\left(\frac{T_0}{T} - 1\right) \tag{2.14}$$

Dove Q è il flusso termico proveniente da un serbatoio a una temperatura T, T_0 è la temperatura ambiente e Ex_Q è la frazione di exergia trasferita. Utilizzando questa equazione in un refrigeratore reversibile si ottiene (2.15):

$$Ex_Q = Q_C \left(\frac{T_H}{T_C} - 1\right) \tag{2.15}$$

L'efficienza η è pari a (2.16):

$$\eta = \frac{Ex_Q}{W} = COP\left(\frac{T_H}{T_C} - 1\right)$$
(2.16)

La potenza exergetica specifica refrigerante è pari a (2.17):

$$\mu = \frac{Ex_Q}{BV_{MCM}} \tag{2.17}$$

Dove V_{MCM} è il volume totale di refrigerante nella struttura, B è il campo magnetico applicato.

Esistono diversi modelli matematici per l'analisi dell'AMR:

- Modelli stato-stazionari: sono modelli molto semplificati che permettono di fare una stima della potenza frigorigena asportata, confrontata al gradiente di temperatura che si ottiene modificando la geometria della macchina.
- Modelli tempo-variante: sono modelli più complessi che permettono di definire una descrizione più accurata dell'AMR.

La geometria ideale dell'AMR deve possedere le seguenti caratteristiche: magnetizzazione e smagnetizzazione del materiale uniforme, ottima trasmissione del calore con il fluido termovettore che lo lambisce, minime perdite di carico del fluido che attraversa l'AMR e bassa conduzione assiale o longitudinale. Il coefficiente di scambio termico dipende dalla geometria, dalle proprietà termofisiche del fluido e del solido e dal rapporto di utilizzo, definito come il rapporto tra la portata di fluido e la portata di solido. Particelle solide piccole permettono di avere una maggiore superficie di scambio termico e maggiori perdite di carico a parità di altre geometrie (Kays and London 1984). Data una geometria per valutare il coefficiente di scambio termico come (2.18):

$$j = \frac{Nu}{Re Pr^{1/3}}$$
(2.18)

Dove Nu rappresenta il numero di Nusselt, dal quale è possibile ricavare il coefficiente di scambio termico, Re rappresenta il numero di Reynolds, definito in funzione delle proprietà del fluido e della geometria della macchina, Pr è il numero adimensionale di Pr che dipende dalle proprietà termofisiche del fluido.

Le perdite di carico influenzano direttamente le prestazioni della macchina poiché una grande caduta di pressione comporta una elevata potenza richiesta dalla pompa per movimentare il fluido.

Shah and Sekulic (Shah RK, et al. 2003) hanno individuato un fattore di attrito f_F definito come (2.19):

$$f_F = \Delta p \frac{d_h}{2\rho u^2 L_r} \tag{2.19}$$

Dove d_h è il diametro idraulico definito come (2.20):

$$d_h = \frac{4V_f}{A_{ht}} = \frac{4\varepsilon}{a_p} \tag{2.20}$$

Dove:

- ρ è la densità del fluido
- *u* è la velocità del fluido
- L_r è la lunghezza del rigeneratore
- ε è il volume nocivo
- a_p è la superficie di scambio termico per unità di volume

La porosità del rigeneratore è un parametro geometrico e ha una forte influenza sulle prestazioni dell'AMR. In un refrigeratore magnetico, il rigeneratore deve avere una bassa porosità, per avere una massa maggiore di materiale magnetico.

Si definisce la porosità ε come (2.21):

$$\varepsilon = 1 - \frac{V_{reg}}{V} \tag{2.21}$$

Il gradiente di temperatura massimo tra l'ingresso e l'uscita del rigeneratore (ΔT_{span}) è inversamente proporzionale alla sua porosità.

Parametri operativi molto importanti per il ciclo AMR sono:

• La frequenza di ciclo: definita come il numero di cicli operativi compiuti in 1 s. Rowe (Rowe A. 2011) definì una correlazione tra la frequenza di ciclo e la specifica potenza exergetica refrigerante del sistema (2.22):

$$\mu_{ex,sp.} = f\left(\frac{Ex_Q}{B_0 V_{MCM}}\right) \tag{2.22}$$

Dove f è la frequenza operativa del ciclo termodinamico.

 Fattore di utilizzazione: è il parametro chiave per il design dell'AMR. Il fattore di utilizzazione φ (2.23) è definito come il rapporto tra la massa termica del fluido termovettore che lambisce il materiale magnetico e la massa termica del materiale magnetocalorico.

$$\phi = \frac{m_f c_{p,f} \tau_{flow}}{m_{MCM} c p_{MCM}} \tag{2.23}$$

Dove cp_{MCM} è definito come il calore specifico a pressione costante del materiale magnetocalorico a B=0 e T= T_{cold} . τ_{flow} è il tempo di passaggio del fluido caldo o del fluido freddo.

- Scambio termico: un elevato tasso di scambio termico è importante nei dispositivi AMR: il fluido termovettore per essere usato dovrebbe possedere un'elevata conducibilità termica per massimizzare lo scambio termico volumetrico, un massimo di calore specifico per minimizzare la portata e una bassa viscosità cinematica per minimizzare le perdite di carico e il coefficiente di attrito (Zimm C et al. 1998). Il rapporto kc/μ determina la bontà di alcuni fluidi termovettori per l'applicazione nell'AMR.
- Temperatura di rigetto del calore: questa temperatura influenza notevolmente le prestazioni della macchina refrigerante. Per ottenere un valore ottimo di ΔT_{span} bisogna avere una temperatura di espulsione del calore compresa tra 295-300 K.
- Flusso termico freddo (Q_{in}) : è il parametro fondamentale per la qualifica della macchina. Diversi studiosi hanno definito un legame tra il ΔT_{span} e il flusso termico freddo (Q_{in}) , rappresentato nella seguente Figura 2.7 (Kamran et al. 2020); i valori

di flusso termico ottenuti variano in un range di 0-200 W e il ΔT_{span} varia tra 0 e 70 K. I valori più alti di ΔT_{span} vengono ottenuti per flussi termici bassi.

Figura 2.7 Confronto ΔT_{span} vs. Q_{in} trovati dai diversi ricercatori (Adattata da Kamran et al. 2020)

 Angolo di fase e sequenza del rigeneratore: in un sistema AMR con due letti fluidi, i profili di campo magnetico e di portata massica sono sincronizzati per mantenere lo stadio di sequenza del ciclo termodinamico. Durante l'attraversamento del fluido il campo magnetico è stazionario. L'angolo di fase tra i due profili può influenzare le prestazioni della macchina.

CAPITOLO 3: Funzionamento e progettazione del banco prova

Figura 3.1 Schema semplificato banco prova

Per comprendere al meglio la progettazione e la scelta dei componenti impiantistici, si definisce uno schema semplificato di come dovrebbe essere il banco prova, mostrato in Figura 3.1.

Per la progettazione e la costruzione dello stesso sono fondamentali:

- AMR, cuore del banco prova
- Un motore elettrico in grado di muovere l'AMR (M)
- Scambiatori di calore lato caldo e lato freddo del circuito (rispettivamente HHEX e CHEX)
- Pompe di circolazione del fluido termovettore ($Pump_{Cold} e Pump_{Hot}$)
- Sistemi di misura (Δp e T) e di controllo (C)

La progettazione del banco prova ha richiesto le seguenti fasi:

- Determinazione delle prestazioni dell'AMR e delle caratteristiche del circuito primario e secondario attraverso il software MAGROT¹, codice numerico alle differenze finite. Questa fase verrà analizzata dettagliatamente nel paragrafo 3.2;
- Sviluppo del P&ID, del disegno del banco prova, della lista dei componenti e dei sistemi di misura e di controllo², come verrà mostrato nel paragrafo 3.3;
- Ricerca dei componenti commerciali tramite cataloghi e siti di vendita³, come verrà mostrato nel paragrafo 3.4.

3.1 Funzionamento del banco prova:

Il banco prova viene realizzato per testare il prototipo REFMAG in due condizioni operative distinte: modalità ΔT_{span} imposto e modalità free running.

Modalità ΔT_{span} **imposto:** si impone la temperatura del fluido primario all'ingresso del rigeneratore.

Tale modalità permette di ottenere le curve caratteristiche di rendimento del rigeneratore $(Q_{in} \text{ vs. } \Delta T_{span}; COP \text{ vs. } \Delta T_{span})$ imponendo la differenza di temperatura all'ingresso dei letti attivi del rigeneratore o $\Delta T_{span} = T_h - T_c$ (3.1), gradiente di temperatura visibile in Figura 3.1.

Modalità free-running: non si impone la temperatura di ingresso del fluido primario nel rigeneratore. In questo caso il ΔT_{span} è una conseguenza del fenomeno fisico.

Questa modalità prevede due possibili funzionamenti:

• UA variabile: cambiando l'efficienza globale di scambio termico UA degli scambiatori di calore si può simulare un frigorifero reale operante in assegnata temperatura ambiente.

¹ Progettato in una delle sezioni del TEC per il progetto REFMAG

² Il disegno del banco prova è stato effettuato utilizzando AutoCad Plant 3D

³ Con l'aiuto dell'Ingegnere De Filippis

• Temperatura ambiente (T_{amb}) variabile: è possibile verificare la capacità refrigerante della macchina e del ΔT_{span} ottenibile al variare della temperatura ambiente.

Per ottenere la massima prestazione refrigerante (in qualsiasi modalità operativa) è necessario regolare la frequenza di rotazione del rigeneratore AMR (f) e la portata del circuito primario (\dot{m}_f). La regolazione della portata di fluido \dot{m}_f viene anche calcolata secondo il fattore di utilizzazione ϕ , definito nell'equazione (3.2) come il rapporto tra le portate di "massa termica" di fluido e solido durante una rotazione:

$$\Phi = \frac{\dot{m}_f c_f}{(M_s/2) c_s} \frac{1}{f} \tag{3.2}$$

3.2 Determinazione delle prestazioni dell'AMR e delle caratteristiche del circuito primario e secondario attraverso MAGROT:

MAGROT, codice numerico alle differenze finite, è stato utilizzato per simulare il funzionamento della macchina AMR rotativa a quattro zone in esame.

Il principio di funzionamento dell'AMR è basato sul ciclo magnetico di Brayton.

Il materiale magnetocalorico è Gadolinio sotto forma di lamelle spesse 0,5 mm, distanziate di 0,25 mm una dall'altra e alte 7,8 mm.

Il campo magnetico minimo applicato è pari a 0,05661 T e il massimo è pari a 0,94583 T.

MAGROT permette di simulare il funzionamento della macchina nelle modalità ΔT_{span} imposto e nella modalità free running.

In Figura 3.2 viene rappresentata la schermata di MAGROT durante la simulazione della modalità ΔT_{span} imposto.

Per simulare il funzionamento della macchina nelle condizioni di ΔT_{span} imposto è necessario selezionare la casella " DT_{span} "; per simulare il funzionamento in condizioni di free running è necessario deselezionare la casella " DT_{span} ".

In entrambe le modalità è possibile testare la macchina con la presenza del materiale magnetocalorico oppure senza (prova denominata "prova a vuoto del rigeneratore AMR") selezionando la voce "adding Dead Volume" o "removing MCM".

Per entrambe le modalità è necessario selezionare la frequenza f e il fattore di utilizzazione ϕ (3.2).

In basso a destra sono rappresentati tutti i parametri geometrici, il volume nocivo, la percentuale attiva e la porosità del rigeneratore, il numero di alette utilizzate e la massa di Gadolinio (2,41 kg).

Figura 3.2 Schermata software MAGROT per la simulazione dell'AMR in condizioni di ΔT_{span} imposto

Il software è progettato in modo tale da poter testare differenti materiali magnetocalorici, per sviluppi futuri. Ciò è possibile cambiando nella casella "view" il materiale che si desidera analizzare. Il software non possiede ancora una libreria di materiali magnetocalorici alternativi al Gadolinio: se si volessero simulare materiali differenti dal Gadolinio, sarebbe necessario inserire tutte le caratteristiche del nuovo materiale magnetocalorico.

Il fluido termovettore utilizzato è acqua+glicole, in percentuale rispettivamente 70%-30%. Le proprietà termofisiche (calore specifico, densità, coefficiente di dilatazione volumetrica e diffusività termica) e altre proprietà, sia del Gadolinio (indicato con il pedice σ) sia del fluido termovettore (indicato con il pedice β), sono rappresentate a destra dello schema semplificato del circuito primario.

A sinistra della schermata è possibile impostare il funzionamento della macchina (intermittente o continuativo) e selezionare il numero di zone associate al rigeneratore (2,4 o 8 zone). Nell'elaborato si analizza un funzionamento intermittente e un rigeneratore a quattro zone.

Vengono indicati il tempo di simulazione, il numero di cicli e l'errore effettuato sul parametro Q_{in} , che permette di stabilire quando la simulazione è finita in condizioni di free running o di ΔT_{span} imposto (è possibile fermare la simulazione quando l'errore commesso è trascurabile).

Sempre a sinistra della schermata è possibile visualizzare i numeri adimensionali necessari per analizzare termicamente il processo tra cui Nusselt (Nu), Reynolds (Re), Prandtl (Pr), Peclet (Pe), Biot (Bi), il valore di coefficiente di scambio termico convettivo h e il valore di conducibilità termica λ .

A destra dei numeri adimensionali si visualizzano i valori di performance della macchina: $Q_{in}, \eta_{ex}, \eta_{ex2}, \eta_{II}, Q_{out}, L_{tot}$ e COP. Inoltre, è possibile visualizzare la coppia necessaria e si può selezionare se effettuare la prova in condizioni di attrito o senza attrito.

Tutte le simulazioni effettuate considerano l'attrito.

Con le funzioni save, save as e load è possibile salvare i risultati su un file blocco note e caricare risultati di simulazioni fatte precedentemente.

Modalità ΔT_{span} **imposto:** Selezionando la casella " DT_{span} " è possibile variare la temperatura della sorgente inferiore e superiore per ottenere il valore di ΔT_{span} desiderato (i campi di ΔT_{span} analizzati nel seguente elaborato vanno da 5 K a 35 K). In questa modalità è possibile cambiare la temperatura media $T_m = \frac{T_h + T_c}{2}$ (3.3) e utilizzare la funzione "sweep" e la funzione "optimum". La prima permette, fissato un valore di ϕ , di effettuare le

prove per frequenze che vanno da 0,1 Hz a 2,6 Hz con passo 0,1 Hz, la seconda di determinare i valori di frequenza f e di ϕ ottimali per quel determinato ΔT_{span} .

La funzione "sweep" origina un foglio Excel nel quale sono rappresentati tutti i dati di simulazione: frequenza f, ΔT_{span} , ϕ , Re, Pe, Cyover, Q_{in} , $\frac{Q_{in}}{kg}$, Q_+ , COP, torque, η_{ex} , η_{II} , potenza richiesta dalla pompa P_{pump} , cadute di pressione Δp_{att} , portata di acqua \dot{m}_{H20} , portata di Gadolinio \dot{m}_{Gd} , UA_h (HHEX), UA_c (CHEX), Q_{in} , l'errore err.

In Figura 3.3 è rappresentato un grafico ottenuto grazie ai risultati in uscita da una simulazione "sweep".

Dalla seguente figura è possibile determinare il range di frequenze operative della macchina: esso va da 0,3 a 1 Hz.

Figura 3.3 Portata fluido vs. frequenza per ogni ΔT_{span} determinati tramite la funzione "sweep"

Con la funzione "optimum" sono stati individuati i valori ottimali di frequenza f e del parametro di controllo ϕ per ogni ΔT_{span} analizzato, riportati nella Tabella 3.1. I valori riportati sono per $T_m = 21^{\circ}C$ e utilizzati per i conti successivi.

Tabella 3.1 Valori ottimali di f e ϕ per i valori di ΔT_{span} analizzati ottenuti con la funzione "optimum" per $T_m = 21^{\circ}C$

$\Delta T_{span} [K]$	f ottimale [Hz]	φ ottimale [-]
5	0,6	1,5033
10	0,5	1,0133
15	0,4	0,8385
20	0,4	0,6326
25	0,3	0,6321
30	0,3	0,5109
35	0,3	0,4194

Modalità free running: deselezionando la voce " DT_{span} " è possibile simulare il funzionamento della macchina in free running, come viene mostrato in Figura 3.4.

roge	tto1 progetto1				
Vi	Materials Tinf 21.00 ew CP_GAD01.csv Tinf 21.00 Start JJ Pause output 13.5 21.15	Tsup \$28.50	n	DeadVol DT span+ 2. DT span- 1.0	Close 104 3.912
		0 - 142 19	€40.00 (<i>UA</i>) _c 68.76 19.192 20.009 0.600 18.648	(UA) 23.775 23.775 0.600 22.096 23.104 DVby 1.6 m/MGd 59.0 Φ 0.595	w 0.156 $τ_c$ 0.500 β 2661 α335 ρ 1030.2 β 3658.0 ρ 7900.0 σ 306.2 θ
C s time Qin	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c} \begin{array}{c} n \\ n \\ ex \\ n \\ ex2 \\ 0.077 \\ n \\ ex2 \\ 0.057 \\ \hline 0.0$	© 0.500 coppia 10.57 S attrito B _{mHigh} B _{mLow}	optim	m H2O 0.07118 m Gd 1.204609 save save as load data
			geometria spessore la distanza altezza volume no lunghezza raggio mer cinconf, at larghez, 1	amella 0.0005 " 0.00025 " 0.0078 civo % 6 0.173 % attiva 94.3 dio 0.06675 tiva .81 letto 0.1699	porosità 0.335 n. alette 452 massa Gd 2.41 massa H2O 0.167 NTU _β 17.414
			lunghezza M	CM .173 lunghezza ca	anale .183

Figura 3.4 Schermata MAGROT durante la simulazione della modalità free running

In questa modalità è possibile impostare la temperatura ambiente T_e , che di default è pari a 21°C, l'efficienza globale di scambio termico UA degli scambiatori lato caldo e lato freddo (denominati rispettivamente HHEX e CHEX) e di impostare, se necessario, la frazione di bypass ottenuta attraverso una valvola a tre vie regolabile.

In questa seconda modalità si considera una temperatura media T_m pari a 21°C.

Il software permette di visualizzare le temperature di ingresso e di uscita nei due scambiatori di calore e le temperature di ingresso e di uscita dal rigeneratore che permettono di valutare il valore di ΔT_{span} che, in questa modalità operativa, è una conseguenza del fenomeno fisico.

Con MAGROT è stato possibile determinare le caratteristiche delle pompe del circuito primario e secondario, valutare il funzionamento della macchina al variare del grado di bypass inserito e le caratteristiche degli scambiatori di calore.

3.2.1 Prestazioni AMR:

Le prestazioni dell'AMR cambiano con:

- La temperatura media di lavoro T_m (3.3)
- La differenza di temperatura ΔT_{span}
- La frequenza di rotazione f
- La portata di fluido $\dot{m}_{f}(\phi)$

Per ogni frequenza di rotazione (tra 0.1 Hz e 2.6 Hz) si trova un ϕ che ottimizza il valore di Q_{in} . Le Figure 3.5 e 3.6 mostrano i valori di Q_{in} e COP per ogni frequenza, con ϕ ottimo, quando la macchina funziona a un ΔT_{span} fisso da 5 K a 35 K.

In Figura 3.5 si analizza l'andamento del flusso termico asportato dalla macchina Q_{in} in funzione del ΔT_{span} al variare della temperatura media di lavoro T_m .

Figura 3.5 Performance della macchina al variare di T_m : Q_{in} vs. ΔT_{span}

Minore è il valore di ΔT_{span} richiesto, maggiore è il calore sottratto all'ambiente.

Figura 3.6 Performance della macchina al variare di T_m : COP vs. ΔT_{span}

In Figura 3.6 si riportano i valori di COP, parametro che qualifica la bontà della macchina, in funzione del ΔT_{span} .

Più elevato è il ΔT_{span} desiderato e più è basso il COP. I valori più alti di COP si ottengono per $\Delta T_{span} = 5 K e T_m = 17^{\circ}C$.

3.2.2 Disegno preliminare del banco prova:

Per poter lavorare con entrambe le modalità di funzionamento della macchina descritte in precedenza si è pensato a un design costituito da due circuiti per ogni lato del rigeneratore AMR, come mostrato in Figura 3.7.

I circuiti secondari lato caldo e lato freddo sono costituiti da un bagno termostatico (TB-COLD e TB-HOT) in grado di imporre la temperatura desiderata al fluido termovettore (acqua+glicole rispettivamente in percentuale 70%-30%) e da una pompa di circolazione ($Pump_{cold \ Secondary}$ e $Pump_{Hot \ Secondary}$) per la movimentazione dello stesso.

La valvola a tre vie-terza chiusa permette di portare il fluido termovettore direttamente dal bagno termostatico al circuito primario, attraverso la tubazione in viola, per poter lavorare nella condizione di ΔT_{span} imposto.

Invece, nella modalità free-running non si impone alcuna temperatura al fluido termovettore e si opera grazie allo scambiatore di calore.

Figura 3.7 Schema preliminare banco prova

3.2.3 Circuito primario:

Per la determinazione delle caratteristiche dei componenti del circuito primario è stata utilizzata la funzione "sweep", precedentemente descritta, per valutare il funzionamento della macchina a diverse frequenze e al valore di ϕ ottimale.

3.2.3.1 Scambiatori di calore:

Sono stati scelti scambiatori di calore a piastre che permettono di ottenere un design molto compatto, un'estrema facilità di pulizia e di evitare la miscelazione dei fluidi che scambiano calore. Per la scelta dello scambiatore a catalogo è necessario conoscere l'efficienza globale di scambio termico UA, con la quale, imponendo il gradiente di temperatura, differente per le varie case produttrici, è possibile determinare la potenza di scambio termico dello scambiatore al scelta più idonea.

Regolazione dello scambio termico: la Figura 3.8 mostra che, variando i parametri operativi della macchina, frequenza e portata (f e ϕ), non è possibile regolare lo scambio termico e avere prestazioni ottimali. Supponendo di avere a disposizione scambiatori idonei a ottenere la prestazione ottima a $\Delta T_{span} = 15 K$, con tali scambiatori non si potrà regolare

la prestazione del sistema a piacimento. Infatti, variando sia la portata (ϕ) che la frequenza (f), ci si sposta sulla curva subottimale indicata (una specie di parabola inclinata), come mostrato in Figura 3.8.

Figura 3.8 Regolazione con UA costante: curva di prestazioni ottimali (blu) del AMR-001 e curva subottimale (rossa) per $\Delta T_{span} = 15 K$.

La Figura 3.9 mostra i valori di UA degli scambiatori di calore lato caldo e lato freddo per ottenere la curva ottimale di funzionamento della macchina per ogni valore di ΔT_{span} desiderato.

Figura 3.9 Indicazione del valore UA per avere i diversi punti della curva di prestazioni ottimali.

La medesima curva si può ottenere con scambiatori UA = 145 W/K e un sistema di bypass.

Pertanto, la regolazione dello scambio termico si ottiene attraverso un bypass che varia la portata del fluido circolante in un lato dello scambiatore. Il bypass cambia la caratteristica effettiva del coefficiente di scambio termico dello scambiatore UA peggiorandola, in quanto parte della portata non scambia più con l'altro lato dello scambiatore.

Considerando per esempio il lato freddo, dovrà essere come mostrato in Figura 3.10:

Figura 3.10 Sistema di bypass per controllare lo scambio termico.

Si suppone di realizzare gli scambiatori (lato caldo e lato freddo) uguali e con valore di UA in grado di smaltire la massima potenza termica, per esempio quella per $\Delta T_{span} = 5 K$. Per ottenere i punti a ΔT_{span} più grande della caratteristica Q_{in} vs. ΔT_{span} , occorrerebbe sostituire gli scambiatori con elementi a UA minore. Invece, si inseriscono due bypass (chiamati successivamente VC-003 e VC-004) e si cerca di ottenere 2 scambiatori equivalenti a quelli desiderati.

La Figura 3.11 presenta il bypass calcolato per regolare uno scambiatore di calore con UA = 145 W/K.

Figura 3.11 Valori di bypass stimato per avere la caratteristica UA desiderata utilizzandoUA = 145 W/K.

Dalla Figura 3.11 si vede, inoltre, che il valore del bypass è alto; pertanto, si pensa all'utilizzo di due scambiatori in parallelo per ogni lato del circuito (lato caldo e lato freddo): uno con la caratteristica UA = 150 W/K per essere utilizzato con ΔT_{span} da 5 K a 10 K e uno con UA = 20 W/K per regolare tra 10 K e 35 K.

Non dovrebbe essere necessario dimensionare gli scambiatori per $\Delta T_{span} = 5 K$, trattandosi di una condizione operativa di scarsa utilità.

3.2.3.2 Analisi di bypass sullo scambiatore UA=20 W/K

Come detto in precedenza, utilizzare un unico scambiatore UA = 145 W/K comporta la richiesta di un bypass molto fine. Per questo motivo si è deciso di utilizzare due scambiatori in parallelo: uno con UA = 150 W/K per coprire ΔT_{span} da 5 a 10 K e uno con UA = 20 W/K per coprire i restanti ΔT_{span} .

Inizialmente sono stati determinati i valori di bypass per lo scambiatore con UA = 20 W/K, necessari per ΔT_{span} 15, 20, 25, 30, 35 K nelle condizioni ottimali di f e ϕ (valori mostrati in Tabella 2.2) e si sono ottenuti valori di bypass molto elevati, come mostrato in Figura 3.12.

Figura 3.12 Analisi di bypass scambiatore UA = 20 W/K per valori di f e ϕ ottimali per $Tm = 21 \ ^{\circ}C$

Si nota come il bypass richiesto sia finissimo e quindi sarebbe necessario un sistema di regolazione molto preciso.

Dato che la macchina non lavorerà sempre nelle condizioni ottimali si è deciso di valutare come si comporta la macchina (modalità free running) in termini di Q_{in} vs. ΔT_{span} imponendo frequenze pari a 0,3 e 0,4 Hz (frequenze ottime per i valori di ΔT_{span} analizzati) e variando il parametro di controllo ϕ da 0,1 a 2,1 con passo 0,1 (il punto di funzionamento di ottimo è in questo intervallo) e il bypass da 60 a 90%.

In Figura 3.13 sono mostrati i risultati per una frequenza operativa di 0,3 Hz, in Figura 3.14 sono mostrati i risultati per una frequenza operativa di 0,4 Hz.

Diminuendo ϕ e aumentando il bypass ci si allontana dalla condizione operativa di $\Delta T_{span} =$ 15 *K*.

Tutte le curve presentano un andamento a massimo dove il massimo è posizionato sulla curva caratterizzata dai valori di bypass identificati nelle condizioni ottime di frequenza e ϕ .

Figura 3.13 Analisi di bypass per lo scambiatore UA = 20 W/K al variare del bypass e di ϕ per frequenza 0,3 Hz

Figura 3.14 Analisi di bypass per lo scambiatore UA = 20 W/K al variare del bypass e di ϕ per frequenza 0,4 Hz

Anche per una frequenza di rotazione della macchina pari a 0,4 Hz si indentifica un andamento analogo alla curva precedente.

Per ottenere curve subottimali, sia nel caso di frequenza operativa 0,3 Hz sia 0,4 Hz, più vicine alle condizioni operative di ΔT_{span} 20, 25, 30, 35 K è necessario ampliare lo studio del bypass a valori compresi tra il 90 e 99%.

3.2.3.3 Pompe:

Sul circuito secondario, non avendo particolari esigenze come sul circuito primario, si è optato per pompe a ingranaggi per via del loro basso costo e della loro precisione nella regolazione della portata.

La scelta migliore per il circuito primario sarebbe stato l'impiego di pompe peristaltiche che, grazie al loro principio meccanico di funzionamento, non immettono calore nel sistema e permettono di misurare e variare la portata elaborata variando il numero di giri. Per motivi di costi e nella scelta a catalogo, a causa delle elevate portate richieste e della precisione nella regolazione della portata, si è deciso di utilizzare pompe a ingranaggi accoppiate con motori brashless in grado di variare il numero di giri del motore da 0 a 3000 giri/min per ottenere i valori di portata desiderati.

Si suppone che il calore dissipato dalla pompa non impatti sul funzionamento della macchina. A ogni pompa viene associato un misuratore di portata per verificare la bontà della regolazione.

Per scegliere la pompa è necessario conoscere la portata che deve elaborare e le cadute di pressione che si hanno nel circuito in modo tale da poterle vincere.

Per determinare le caratteristiche del circuito primario si è utilizzata la funzione "sweep "(descritta nel paragrafo 3.2) e per ogni valore di ΔT_{span} si è utilizzato il valore di ϕ ottimo, determinato tramite la funzione "optimum" (i valori per $T_m = 21^{\circ}C$ sono riportati in Tabella 3.1).

Essendo le prove a ΔT_{span} imposto si è variata la temperatura media T_m da 17 °C a 27 °C. In Figura 3.15 sono rappresentate le curve \dot{m}_f vs. ΔT_{span} per diversi valori di T_m .

Figura 3.15 Circuito primario: \dot{m}_f vs. ΔT_{span} al variare di T_m .

Si ottiene così la portata massima di 16,8 l/min e la minima di 0,24 l/min.

In Figura 3.16 sono rappresentate le perdite di carico attraverso il rigeneratore AMR; nel circuito primario l'elemento che comporta le maggiori perdite di carico è individuato nell'AMR.

Per determinare le perdite di carico nel circuito primario è necessario aggiungere a quella associata al rigeneratore AMR la perdita dello scambiatore di calore pari a 0,5 bar (verrà ribadito nel paragrafo 3.2.3.1): tale valore è dichiarato dal costruttore di scambiatori di calore a piastre ALFALAVAL. Le massime perdite di carico si individuano a $\Delta T_{span} = 5 K e T_m = 17 °C e le minime a <math>\Delta T_{span} = 35 K e T_m = 27 °C$.

Figura 3.16 Circuito primario Δ_p vs. ΔT_{span} al variare T_m

Inoltre, è possibile determinare la potenza richiesta dalla pompa, rappresentata in Figura 3.17. La massima potenza richiesta è di 72 W, individuata a $\Delta T_{span} = 5 K$.

Figura 3.17 Circuito primario: P_{pump} vs. ΔT_{span} al variare T_m

Con i dati a disposizione si è deciso di utilizzare pompe a ingranaggi, che operano tra 0 e 20 l/min con motore brashless di potenza 0,2 kW, in grado di vincere le perdite di carico che si hanno sul circuito primario.

3.2.3.4 Motore:

La seguente macchina è una macchina a ciclo inverso: per questo motivo è necessario inserire un'azione compensatrice, per portare il calore da una sorgente a temperatura inferiore a una a temperatura superiore, fornita da un motore elettrico.

Per la scelta del motore elettrico è necessario conoscere la coppia richiesta all'albero.

In Figura 3.18 sono rappresentati i valori di coppia richiesti all'albero per i valori di ΔT_{span} indicati per una T_m di 21°C.

Figura 3.18 Caratteristica motore elettrico: Torque vs. ΔT_{span}

La coppia massima richiesta all'albero è di 20 Nm: è necessario un motore in grado di trasmettere quella coppia.

Il motore elettrico è un motore passo-passo in grado di ottenere tutte le frequenze per avere le prestazioni massime della macchina.

Si è optato per un motore elettrico brashless 24 DVC, potenza 750 W, campi di rotazione 0-180 $\frac{giri}{min}$, coppia 20 Nm.

3.2.3.5 Vaso di espansione chiuso:

È costituito da un recipiente cilindrico che contiene al suo interno un gas il quale permette, con la sua compressione, la dilatazione dell'acqua nell'impianto.

3.2.3.6 Valvole di carica e scarica del circuito:

Sono valvole che sono sempre chiuse e vengono aperte per garantire la carica dell'impianto (questa azione consiste nell'inserimento del fluido termovettore) e la scarica/ricambio di fluido dell'impianto (aprendo la valvola è possibile eliminare il fluido presente nell'impianto e riempirlo di aria).

3.2.4 Circuito secondario:

Le prestazioni del circuito secondario (portata di fluido, potenza richiesta dalle pompe, cadute di pressione) sono state determinate in modalità free running, impostando i valori ottimali di frequenza f e di ϕ , i valori di UA ottimali (Figura 3.9) e variando la temperatura

 T_e , coincidente con la temperatura del bagno termostatico, con valori 17, 19, 21, 23, 25, 27 °C.

3.2.4.1 Pompe:

Per la determinazione delle caratteristiche delle pompe del circuito secondario si è utilizzato sempre MAGROT, facendo alcune considerazioni: con MAGROT è possibile conoscere la temperatura in ingresso e in uscita dal lato freddo dello scambiatore, la temperatura in ingresso dal lato caldo (coincidente con la temperatura imposta nel bagno termostatico) e la portata di fluido termovettore nel circuito primario.

L'obbiettivo è la determinazione della portata nel circuito secondario e la temperatura in uscita dallo scambiatore lato caldo.

La seguente analisi è stata effettuata sul lato freddo del circuito.

Lo scambiatore di calore considerato è un controcorrente puro; è noto il flusso termico scambiato nello scambiatore che è pari al Q_{in} della macchina.

La Figura 3.19 mostra lo schema semplificato dello scambiatore di calore lato freddo (CHEX): si indicano con T_1 e T_2 le temperature sul lato caldo (circuito secondario) e T'_1 e T'_2 le temperature sul lato freddo (circuito primario) dello scambiatore. Si utilizza l'analoga nomenclatura per le altre grandezze.

Figura 3.19 Andamento temperature in uno scambiatore controcorrente

MAGROT fornisce:

- T_1 : temperatura di ingresso lato caldo pari alla temperatura del fluido in uscita dal bagno termostatico (nel caso in esame regolato tra 17 e 27°C)
- T'_1 : temperatura in ingresso lato freddo dello scambiatore

- $T'_2 = T_c$: temperatura in uscita lato freddo dello scambiatore uguale alla temperatura in ingresso al rigeneratore
- \dot{m}'_{H20} : portata di fluido termovettore nel circuito primario

Per la determinazione della portata del circuito secondario (\dot{m}_{H20}) e della temperatura in uscita lato caldo (T_2), si è utilizzata la seguente procedura:

Noto il flusso termico scambiato Q_{in} e conoscendo la caratteristica dello scambiatore UA è possibile determinare la differenza di temperatura media logaritmica ΔT_m con (3.4):

$$Q = UA\Delta T_m \to \Delta T_m = \frac{Q}{UA}$$
(3.4)

Ricordando che ΔT_m è pari a (3.5):

$$\Delta T_m = \frac{(T_1 - T_2') - (T_2 - T_1')}{\ln\left(\frac{(T_1 - T_2')}{(T_2 - T_1')}\right)}$$
(3.5)

Con metodi numerici, tipo la bisezione, si determina la temperatura T_2 . In Excel si è posta la funzione uguale a zero e con la funzione "ricerca obiettivo" si è determinato il valore di T_2 .

Noto T_2 , ricordando che (3.6):

$$Q = mc\dot{p}(T_1 - T_2) = Q' = \dot{m}'cp'(T_2' - T_1')$$
(3.6)

È possibile determinare la portata del circuito secondario come: (3.7)

$$\dot{m} = \frac{Q}{cp(T_1 - T_2)} \tag{3.7}$$

Essendo c_p una proprietà termofisica variabile con la temperatura, questa dovrebbe essere calcolata alla temperatura media del fluido $T_{mfluido} = \frac{T_1+T_2}{2}$ (3.8) ma essendo la variazione di temperatura T_1 - T_2 molto piccola e considerando che le variazioni di proprietà termofisiche dell'acqua+glicole in quella differenza di temperatura sono trascurabili, allora si è considerato c_p costante con la temperatura.

In Figura 3.20 sono rappresentati i valori di portata ottenuti, rappresentati in l/min al variare di T_e , per $T_m = 21^{\circ}C$.

Si nota come il valore massimo di portata (11,6 l/min) sia inferiore rispetto a quello del circuito primario (16,8 l/min): per questo si potrebbe pensare di utilizzare una pompa di taglia minore per il circuito secondario, cosa non fatta per motivi di sicurezza.

Figura 3.20 Circuito secondario: \dot{m}_f vs. ΔT_{span} per $T_m = 21^{\circ}C$

Per il calcolo delle perdite di carico e della potenza richiesta dalla pompa sul circuito secondario, si è considerato un diametro della tubazione di mezzo pollice (corrispondente a 2,54 cm), densità del fluido termovettore acqua+glicole pari a 1032,2 $\frac{kg}{m^3}$.

Nota la portata massica di acqua+glicole da (3.9), la densità del fluido termovettore e la sezione di passaggio (i tubi sono a sezione circolare), è possibile determinare la velocità w del fluido (3.9):

$$w = \frac{\dot{m}}{\rho \left(\frac{\pi D^2}{4}\right)} \tag{3.9}$$

Le perdite di carico, espresse in metri di colonna d'acqua, si suddividono in perdite di carico concentrate (3.10) e perdite di carico distribuite (3.11).

$$\Delta h_{concentrate} = \frac{w^2}{2g} * \sum_{i=1}^n f_i \tag{3.10}$$

Dove w è la velocità del fluido nel condotto, g è la costante di gravità pari a 9,81 $\frac{m}{s^2}$, f_i è il fattore di attrito concentrato di ogni singola discontinuità.

Il calcolo delle perdite di carico concentrate può essere effettuato imponendo 0,5 come fattore di concentrazione di ogni singola discontinuità presente nel circuito più sfavorevole: filtri e valvole. Si utilizzano tubazioni flessibili per evitare la presenza di perdite di carico concentrate associate a curve e gomiti. Si suppone che i bagni termostatici non presentino perdite di carico nel circuito.

$$\Delta h_{distribuite} = \frac{w^2}{2g} \left(\frac{L}{D} f(Re, \frac{\varepsilon}{D}) \right)$$
(3.11)

Dove L è la lunghezza del circuito più sfavorevole, D è il diametro della tubazione (sezione circolare) e f è il fattore di attrito dipendente dal numero di Reynolds, definito come il rapporto tra le forze di inerzia e le forze viscose, e da $\frac{\varepsilon}{D}$ dove ε è la rugosità della tubazione.

Si suppone una lunghezza del tratto più sfavorevole pari a un metro, rifacendosi alle dimensioni del vecchio banco prova del 2013 che verrà analizzato nel Capitolo 4 (paragrafo 4.2), un diametro di mezzo pollice e f che è stato determinato tramite la formula implicita di Colebrook (3.12), risolta con metodi numerici:

$$\frac{1}{\sqrt{f}} = -2\log\left(\frac{2.51}{Re\sqrt{f}} + \frac{\varepsilon/D}{3.71}\right)$$
(3.12)

Per lo scambiatore di calore si è utilizzato un valore di perdita di carico totale (concentrata + distribuita) pari a 50 kPa, corrispondente a 0,5 bar. Tale valore viene dichiarato dalla casa costruttrice ALFALAVAL, nota azienda italiana costruttrice di scambiatori di calore a piastre, per gli scambiatori di calore a piastre della taglia desiderata.

Figura 3.21 Circuito secondario: $\Delta p vs. \Delta T_{span}$ al variare di T_e

In Figura 3.21 sono rappresentati i valori di caduta di pressione ottenuti per i ΔT_{span} di interesse per la progettazione della macchina al variare della temperatura ambiente T_e per valori di ϕ e f ottimi.

La potenza della pompa si determina come (3.13):

$$P_{pump} = \Delta h_{conc+distr} * g * \dot{m}_f \tag{3.13}$$

Dove \dot{m}_f è la portata volumetrica del fluido termovettore, misurata in $\frac{kg}{s}$.

Considerando un'efficienza della pompa pari a 0,85, la potenza effettivamente richiesta dalla pompa per vincere le perdite di carico è pari a (3.14):

$$P_{pump\ reale} = \frac{P_{pump}}{\eta_{pump}} \tag{3.14}$$

La Figura 3.22 mostra i valori di potenza richiesti dalla pompa, determinati nelle stesse condizioni operative descritte precedentemente.

Figura 3.22 Circuito secondario: P_{pump} vs. ΔT_{span} al variare di T_e

I valori massimi di portata, potenza richiesta dalla pompa e cadute di pressione si presentano per $\Delta T_{span} = 5$ K e $T_e = 17$ °C, come mostrato nelle Figure 3.20, 3.21, 3.22.

Con i valori ottenuti si potrebbe pensare di utilizzare pompe a ingranaggi di taglia minore ma per motivi di sicurezza e di difficoltà nella ricerca a catalogo sono state selezionate pompe analoghe al circuito primario.

3.2.4.2 Bagni termostatici:

Le due modalità operative hanno bisogno di una sorgente calda e di una sorgente fredda, implementate nel disegno come bagni termostatici (TB-COLD-001 e TB-HOT-002) con la capacità di regolare la temperatura del fluido di lavoro tra 0 °C e 50 °C. Durante la modalità di operazione ΔT_{span} imposto, il fluido primario viene fornito direttamente dai bagni termostatici.

Invece, la modalità free running impiega lo scambio termico del circuito primario con il fluido secondario attraverso gli scambiatori (W) a ogni lato del banco prova (lato caldo e lato freddo). Il fluido secondario di ogni singolo lato viene dal bagno termostatico a una temperatura imposta. È necessario, pertanto, per la costruzione del banco, avere bagni termostatici in grado di regolare la propria temperatura con precisione.

Il bagno TB-COLD-001 è costituito da una testa termostatica riscaldante di potenza massima 1500 W (HAAKE DC3) e il bagno TB-HOT-002 da una testa riscaldante (1000 W) e da un gruppo frigo (al momento sono disponibile nel laboratorio UniGe fino a 150 W) (HAAKE F3-K).

3.2.4.3 Filtri:

I filtri sono inseriti nel circuito primario e secondario per evitare che nelle pompe, nei bagni termostatici e nell'AMR vengano elaborate eventuali impurità presenti nel circuito.

3.3 P&ID

Il P&ID (Piping and Instrumentation Diagram) è un sistema di rappresentazione grafica di un sistema idraulico: mostra le interconnessioni tra apparecchiature di un processo, il sistema di interconnessione delle tubazioni e la strumentazione utilizzata per il controllo dello stesso. Riveste un ruolo fondamentale nelle fasi di manutenzione e modifica del processo descritto.

Un P&ID ha i seguenti scopi:

- 1. Permettere una migliore comprensione del processo operativo trattato.
- 2. Permettere di operare, mantenere e modificare il processo in modo più efficiente.

3. Disporre i componenti e dimostrare la sequenza operativa degli stessi con particolare attenzione agli schemi di controllo e di spegnimento, ai requisiti normativi e di sicurezza e ai dettagli di base di avvio e funzionamento.

Per la costruzione di un P&ID si parte da un PFD (Process Flow Diagram), diagramma non così dettagliato come il P&ID, che è necessario per comprendere come funzioneranno i componenti di impianto una volta costruito.

Costruito il PFD, esso viene utilizzato come documentazione di riferimento per disegnare un P&ID che contenga le specifiche del flusso di lavoro come il sistema di tubazioni, i motori e altre unità importanti.

I vantaggi di un P&ID sono:

- Consentire al personale di valutare il processo di costruzione in modo accurato.
- Aiutare a formare una solida base per la programmazione del controllo.
- Servire come linguaggio simbolico generico che può essere utilizzato dai designer di tutte le regioni del mondo per comunicare tra loro.
- Aiutare nella preparazione e implementazione dei sistemi di controllo della sicurezza.

Gli svantaggi sono:

- Non contengono dettagli accurati.
- Richiesta di un PFD.
- Unicità del diagramma: non può essere utilizzato per altri processi.
- Necessità di utilizzare simboli e nomenclature corretti durante il disegno di un diagramma di tubazioni e strumentazione, per evitare errori durante la costruzione.
- Nella Tabella 3.2 sono rappresentate le simbologie dei componenti inseriti nel circuito.

Simbologia	Tipologia	Nomenclatura		
	AMR	AMR-001		
M	Motore elettrico	M-001		
\bigcirc	Pompa a ingranaggi	GP-001, GP-002, GP-003, GP-004		
	Bagno termostatico	TB-COLD-001, TB-HOT-002		
	Filtro	F-001, F-002, F-003, F-004		
	Scambiatore di calore	W-001, W-002, W-003, W- 004		
×	Valvola a tre vie terza chiusa	VC-001, VC-002, VC-003, VC-004		
127	Valvola a tre vie regolabile	VR-001, VR-002		
	Valvola di intercettazione	20		
\bowtie	Valvola di intercettazione per carica e scarica impianto	2		
<u>11</u> 9999	Termoresistenza	TY-001, TY-002, TY-003, TY-004, TY-005, TY-006, TY-007, TY-008, TY-009, TY-010, TY-011, TY-'12, TY-013		
F0 999	Misuratore di portata	FQ-001, FQ-002, FQ-003-FQ- 004		
(CV) 999	Sensore di controllo	CV-001, CV-002, CV-003, CV-004, CV-005, CV-006, CV-007		
PY 999	Misuratore di pressione differenziale	PY-001, PY-002, PY-003, PY-004		
999 999	Misuratore di torque	QY-001		
RY 999	Misuratore di velocità di rotazione	RY-002		
	Tubazione	Verde circuito primario, blu circuito secondario lato freddo, rosso circuito secondario lato caldo, viola linea di collegamento valvola a 3 vie-terza chiusa e circuito primario		
, , , , , , ,	Linea di connessione con strumentazione di misura	Accoppiata a termocoppie, misuratori di pressione (PY, TY)		
-00	Linea di controllo	Associata ai sensori di controllo CV		

Tabella 3.2 simbologia e	nomenclatura	per i com	ponenti d	i impianto
0			1	1

3.4 Ricerca dei componenti:

Per la ricerca dei componenti si sono contattati diversi fornitori commerciali; successivamente si è affidato il compito di acquisto dei componenti e la futura costruzione dell'impianto sarà effettuata in una delle sedi della Bi-Freezer, grande azienda italiana con elevata esperienza nel campo della refrigerazione e costruzione di impianti frigo.

Nella seguente tabella, Tabella 3.3, sono riportati i componenti da acquistare per la progettazione del banco prova:

Тіро	Ref.	Descrizione	Quanti tà	Tipologia	Controllo	Sensoristica (per singolo pz)	Sicurezza	Note	Fornitore	Modello
AMR	AMR-001	AMR	1	Rotazionale (magneti fissi), 4 letti porosi (lamelle) 8 ingressi 8 uscite di fluido	-	PY-003, PY- 004, TY-007, TY-008, TY- 010, TY-011	Erosione, corrosione, depositi	Circuito del fluido primario	OMS	REFMAG
	W-001; W- 003 CRANDI		2	Scambiatore acqua/ acqua-glicole $UA=150$ W/K: 750 W ($\Delta T = 5$ K)	Man <i>ua</i> le (chiusura)	TY-001, TY- 002, TY-003, TY-004; DP	-	W001 XOR W002, W003 XOR W005	ALFA LAVAL	AC-65
Termico	W-002; W- 004	HEX scambiatori di calore PICCOLI	2	Scambiatore Acqua/ acqua- glicole UA=30 W/K: 150 W (Δ T = 5 K)	Man <i>ua</i> le (chiusura)	TY-005, TY- 006, TY-009, TY-012; DP	-	W001 XOR W002, W003 XOR W004	ALFA LAVAL	AC-65
	TB-COLD- 001	Bagno termostatico (COLD)	1	Temperatura variabile, riscaldamento	VC-008 (temperatura)	DT; DP	-	Deve cedere il calore al fluido di lavoro (Qin)	Unige	HAAKE DC3
	ТВ-НОТ-002	Bagno termostatico (HOT)	1	Temperatura variabile, gruppo frigo	VC-009 (temperatura)	DT; DP	-	Deve prendere il calore dall' AMR (Qout),	Unige	HAAKE F3K
Meccanico	M-001	Motore elettrico brashless	1	24 VDC, campi velocità 0-180 giri/min (con misuratore di torque), potenza 750 W, coppia 16 Nm	VC-001 (frequenza di rotazione)	Torque (QY- 7001), f(RY- 002), VR-001	-	Fino a 20 Nm, 0.1: 2.6 Hz, diretto sull'asse meccanico del AMR	ABB	ABB
	-	Motore elettrico brashless	4	Potenza 0,2kW	VC-002 VC-003 VC-004 VC-005 (frequenza di rotazione)	f (RY-003, RY-004, RY- 005, RY-006)	-	0.1-2.6 Hz	ABB	ABB
Idraulico	GP-001; GP- 002	Pompa a ingranaggi portata regolabile	2	Acqua/acqua-glicole 72 W, 20 L/min	VC-002, VC- 003 (portata)	DP; portata; Tout	-	Circuito primario, il numero di giri si utilizza per calcolare la portata	Mazzocchi	GPH2-12

Tabella 3.3 Lista di componenti da acquistare per la realizzazione del banco prova

Tipo	Ref.	Descrizione	Q <i>ua</i> nti tà	Tipologia	Controllo	Sensoristica (per singolo pz)	Sicurezza	Note	Fornitore	Modello
	GP-003; GP- 004	Pompa a ingranaggi portata regolabile	2	Acqua/ acqua-glicole 20W, 20 L/min	VC-004, VC- 005 (portata)	Portata, Tout	-	Circuito secondario	Mazzocchi	GPH2-12
	-	Valvola di chiusura	⁷ alvola di chiusura 12 Solenoide		Manuale (chiusura)	-	-	Smontaggio del AMR Logica XOR tra gli scambiatori grandi e piccoli	Castel	1020/3A6
	VC-001; VC- 002; VC-003; VC-004	Valvole a tre vie terza chiusa	4	Tipo ON/OFF	Manuale (chiusura)	-	-	Per scegliere la modalità di funzionamento (<i>free</i> <i>running</i> , ΔT_{span} imposto) Possibile solenoide e segnale di controllo?	Ismacontrolli	VDC2 DN15 Kvs =4
	F-001; F-002; F-003; F-004 Filtro liquido 4 Per pompe		Per pompe	-	-	Range - 2°C: 50°C	Posizionati dove non interferiscono con le misure	Einhel	Einhell 4173851	
	VR-001; VR- 002	Valvola a tre vie regolabile by-pass	2	Valvola a spillo	VC-006, VC- 007	-	-	Regolato con un motore passo-passo	Caleffi	6443
		Vaso di espansione	2	Chiuso	-	-	-	Prevenzione di overshooting della pressione	Zilmet	Cal-Pro
	-	Tubazione	one 0 1/2", flessibile		-	-	-	Pezzi acciaio inox di circa 20cm per FQ-001, FQ- 002, FQ-003, FQ-004	Comid	-
	TY	Trasduttore di	12	PT1000 paired oppure PT100 a tre fili	_	_	_	Utilizzare RTD pari a minima incertezza nella misura differenziale	National	Ni 9126 C
Sensoristic a		RTD	12	Acqua/ acqua-glicole		-		Scelta PT100 o PT1000 valutata con compatibilità sistema acquisizione	Instrument	N1 9126 C
	TY	Trasduttore di temperatura RTD	1	PT1000 paired oppure PT100 a tre fili	-	-	-	Per misurare temperatura ambiente, Scelta PT100 o PT1000 valutata con	National Instrument	Ni 9126 C

Тіро	Ref.	Descrizione	Q <i>ua</i> nti tà	Tipologia	Controllo	Sensoristica (per singolo pz)	Sicurezza	Note	Fornitore	Modello
								compatibilità sistema acquisizione		
	РҮ	Misuratore differenziale di pressione	4	Acqua/ acqua-glicole	-	-	-	Caduta di pressione delle pompe GP-001-GP-002, e attraverso l'AMR	KEYENCE	GP-M108
	FQ	Misuratore di portata Mass flow rate meter	4	Acqua/ acqua-glicole, misuratore a ultrasuoni	-	-	-	Reversibile	KEYENCE	FD-H020
	QY	Misuratore di torque	1	Integrato al motore M-001	-	-	-	Se il motore fosse dotato di freno si potrebbe utilizzare il refrigeratore in modo inverso (motore) e misurare l'uscita di lavoro meccanico traverso l'asse	ABB	ABB
	RY	Misuratore di velocità di rotazione	1	Integrato al motore M-001	-	-	-	Il motore deve lavorare a frequenze di rotazione tra 0.1 e 2.6Hz (6:156 rpm)	ABB	ABB
	-	DAQ	1	Acquisizione e controllo diversi moduli	-	-	-	Numero minimo di canali ingresso / uscita (I/O): 20/9	DATEXEL	80 Series
	-	Modulo di temperatura RTD	1	Lettura di 12 RTD PT 1000 4wires, massimo sample rate (fast)	-	-	-		DATEXEL	80 Series
DAQ	-	Modulo di lettura delle tensioni analogico	1	Lettura di 10 tensioni provenienti di sensori PY, FQ, QY, RY +/- 10V	-	-	-		DATEXEL	80 Series
	-	Modulo output I/V	1	Uscita di almeno 9 segnali di controllo analogici	-	-	-		DATEXEL	80 Series
	-	Chassis	1	Protocollo MODBUS TCP/IP		-	-	Capacità di collegare i moduli sensori con il PC ()	DATEXEL	80 Series

Тіро	Ref.	Descrizione	Quanti tà	Tipologia	Controllo	Sensoristica (per singolo pz)	Sicurezza	Note	Fornitore	Modello
DAQ software	-	Labview	1	Compatibile con modbus & TCP/IP	-	-	-		NI	LV2021
РС	-	PC	1	Windows, soporte TCP/IP	-	-	-	Compatibile con labview (Windows), porta per TCP/IP (ethernet)	Lenovo	Legion 5
DISEGNO V1.7.2										

Sistema di acquisizione dati e di controllo

Lo scopo di questo sistema è permettere di collegare il PC al banco prova per:

- Acquisire i dati durante i vari cicli operativi dell'AMR e fare un primo passo sul post-processing.
- ✓ Generare i diversi segnali di controllo per definire le condizioni di lavoro del rigeneratore ($\Delta T_{span}, f, \dot{m}_f(\phi), T_m$).

Acquisizione dati

L'acquisizione dei dati deve prendere in considerazione che:

- Le temperature devono essere acquisite durante ogni ciclo per determinare il calore totale scambiato a ogni lato del rigeneratore AMR; pertanto, si deve conoscere anche il valore di portata in ogni circuito.
- Alcune differenze di temperatura possono essere minori di 1°C, pertanto la misura deve essere accurata e precisa.
- Si deve determinare la convergenza a uno stato stazionario.

Oltre alla misura della temperatura si devono acquisire i segnali di misura della condizione di lavoro (ΔT_{span} , f, $\dot{m}_f(\phi)$, T_m): tali misure sono la base per il sistema di controllo e di regolazione.

Sistema di controllo e di regolazione

I parametri di controllo sono:

- Meccanici (frequenza di rotazione)
- Fluidodinamici (portata del circuito primario e secondario)
- Termici (temperature del bagno freddo e del bagno caldo, span di temperatura e temperatura media).

Lista di segnali I/O acquisizione/controllo

La lista di segnali di acquisizione e di controllo del banco prova si trova nella Tabella 3.4.

Tipologia	Nome	Canale	Posizione	tipo di sensore	range	precisione	velocità di acquisizione	note
Temperatura	TY- 001	1	Cold side – circuito secondario- HEX inlet	PT1000	(-2°C:50°C)	0.15 °C	veloce, 10 samples/ciclo=>0.04s/sample(26Hz)	Il ciclo AMR più veloce ha f=2.6Hz
Temperatura	TY- 002	2	Cold side- circuito secondario- HEX outlet	PT1000	(-2°C:50°C)	0.15 °C	veloce, 10 samples/cycle=>0.04s/sample(26Hz)	la differenza tra TY-002 e TY-001 e la portata FQ-001 sono utilizzate per calcolare Q_{in} [W]
Temperatura	TY- 003	3	Hot side-circuito secondario- HEX outlet	PT1000	(-2°C:50°C)	0.15 °C	veloce, 10 samples/cycle=>0.04s/sample(26Hz)	
Temperatura	TY- 004	4	Hot side – circuito secondario- HEX inlet	PT1000	(-2°C:50°C)	0.15 °C	veloce, 10 samples/cycle=>0.04s/sample(26Hz)	la differenza tra TY-003 e TY-004, e la portata FQ-002 sono utilizzate per calcolare Q_{out} [W]
Temperatura	TY- 005	5	Cold side- primario circuito HEX outlet	PT1000	(-2°C:50°C)	0.15 °C	veloce, 10 samples/cycle=>0.04s/sample(26Hz)	
Temperatura	TY- 006	6	Hot side- primario circuito HEX outlet	PT1000	(-2°C:50°C)	0.15 °C	veloce, 10 samples/cycle=>0.04s/sample(26Hz)	
Temperatura	TY- 007	7	Cold side- circuito primario- AMR outlet bed i (HEX inlet)	PT1000	(-2°C:50°C)	0.15 °C	veloce, 10 samples/cycle=>0.04s/sample(26Hz)	
Temperatura	TY- 008	8	Cold side- circuito primario- AMR outlet bed ii (HEX inlet)	PT1000	(-2°C:50°C)	0.15 °C	veloce, 10 samples/cycle=>0.04s/sample(26Hz)	TY-007 e TY-008 sono utilizzate per verificare la simmetria dei letti (bed i e ii)

Tabella 3.4 sistema di acquisizione e di controllo

Tipologia	Nome	Canale	Posizione	tipo di sensore	range	precisione	velocità di acquisizione	note
Temperatura	TY- 009	9	Cold side- circuito primario-HEX inlet	PT1000	(-2°C:50°C)	0.15 °C	veloce, 10 samples/cycle=>0.04s/sample(26Hz)	la differenza tra TY-009 e TY-005 e la portata FQ-003 sono utilizzate per calcolare Q_{in} [W] (calcolo ridondante con quello fatto sul circuito secondario, la differenza di temperatura è piccola)
Temperatura	TY- 010	10	Hot side-circuito primario- AMR outlet bed iii (HEX inlet)	PT1000	(-2°C:50°C)	0.15 °C	veloce, 10 samples/cycle=>0.04s/sample(26Hz)	
Temperatura	TY- 011	11	Hot side-circuito primario-AMR outlet bed iii (HEX inlet)	PT1000	(-2°C:50°C)	0.15 °C	veloce, 10 samples/cycle=>0.04s/sample(26Hz)	TY-010 e TY-011 sono utilizzate per verificare la simmetria dei letti (bed i e ii)
Temperatura	TY- 012	12	Hot side- circuito primario-HEX inlet	PT1000	(-2°C:50°C)	0.15 °C	veloce, 10 samples/cycle=>0.04s/sample(26Hz)	la differenza tra TY-012 e TY-006, e la portata FQ-004 sono utilizzate per calcolare Q_{out} [W] (calcolo ridondante con quello fatto al circuito secondario, la differenza di temperatura è piccola)
Pressione	P-001	13	Hot side - circuito primario	pressione differenziale, +-10 V	0:6 bar	1 %fs	media, 1 sample/cycle =>0.4 s/sample (2.6Hz)	Caduta pressione GP-001
Pressione	P-002	14	Cold side - circuito primario	pressione differenziale, +-10 V	0:6 bar	1 %fs	media, 1 sample/cycle =>0.4 s/sample (2.6Hz)	Caduta pressione GP-002
Pressione	P-003	15	AMR - bed i-ii	pressione differenziale, +-10 V	0:6 bar	1 %fs	media, 1 sample/cycle =>0.4 s/sample (2.6Hz)	Caduta di pressione attraverso il rigeneratore (comprensiva dei due letti)
Pressione	P-004	16	AMR - bed ii , iv	pressione differenziale, +-10 V	0:6 bar	1 %fs	media, 1 sample/cycle =>0.4 s/sample (2.6Hz)	Caduta di pressione attraverso il rigeneratore (comprensiva dei due letti)

Tipologia	Nome	Canale	Posizione	tipo di sensore	range	precisione	velocità di acquisizione	note
Portata	FQ- 001	17	Cold side- circuito secondario		1.5:20L/min	1 %fs	veloce, 10 samples/cycle=>0.04s/sample(26Hz)	profilo di portata nel tempo circuito secondario per calcolare Q_{in} , preferibilmente a ultrasuoni perché a bassa pressione il contatore di giri può non essere accurato
Portata	FQ- 002	18	Hot side- circuito secondario		1.5:20L/min	1 %fs	veloce, 10 samples/cycle=>0.04s/sample(26Hz)	profilo portata nel tempo circuito secondario per calcolare Q_{out} , preferibilmente a ultrasuoni perché a bassa pressione il contatore di giri può non essere accurato
Portata	FQ- 003	19	Cold side letto A		1.5:20L/min	1 %fs	veloce, 10 samples/cycle=>0.04s/sample(26Hz)	preferibilmente a ultrasuoni portata dentro il circuito primario per calcolare fattore di utilizzo FQ-003 e FQ-004 devono essere simili
Portata	FQ- 004	20	Hot side letto B		1.5:20L/min	1 %fs	veloce, 10 samples/cycle=>0.04s/sample(26Hz)	preferibilmente a ultrasuoni portata dentro il circuito primario per calcolare fattore di utilizzo preferibilmente a ultrasuoni FQ-003 e FQ-004 devono essere simili
Velocità di rotazione	RY	21	asse meccanico	ottico	6:180 rpm (0.1Hz:3Hz)	0-1 rpm	veloce, 10 samples/cycle=>0.04s/sample(26Hz)	Misura di velocità di rotazione del motore, che viene controllata (f del ciclo)
Torque	QY	22	asse meccanico	rotativo	2:20Nm	0.1 Nm	veloce, 10 samples/cycle=>0.04s/sample(26Hz)	Misura del torque dal motore

Tipologia	Nome	Canale	Posizione	tipo di sensore	range	precisione	velocità di acquisizione	note
Temperatura	TY- 013	23	esterno	TC	0°C:40°C	0.5 °C	Lenta (nessun requisito)	T ambiente del laboratorio, viene segnalata nel disegno del banco prova

Elenco segnali controllo

Tipologia	Nome	Canale	Posizione	tipo di sensore	range	precisione	velocità di acquisizione	note
Controllo Elettrici- tensione	VC- 001	1	M-001	Segnale di controllo in tensione al motore	0.1 Hz : 2.6 Hz		media, 1 sample/cycle =>0.4 s/sample (2.6Hz)	Rotazione frequenza motore
Controllo Elettrici- tensione	VC- 002	2	GP-001	Segnali controllo pompa primaria	0.1 L/min : 20 L/min		media, 1 sample/cycle =>0.4 s/sample (2.6Hz)	Portata pompa GP-001 circuito primario (VCC per aggiustare N.o di giri), deve di essere uguale alla portata di GP-002
Controllo Elettrici- tensione	VC- 003	3	GP-002	Segnali controllo pompa primaria	0.1 L/min : 20 L/min		media, 1 sample/cycle =>0.4 s/sample (2.6Hz)	Portata pompa GP-002 circuito primario (VCC per aggiustare N.o di giri)
Controllo Elettrici- tensione	VC- 004	4	GP-003	Segnali controllo pompa secondaria	0.1 L/min : 20 L/min		media, 1 sample/cycle =>0.4 s/sample (2.6Hz)	Portata pompa GP-003 circuito secondario COLD SIDE (VCC per aggiustare N.o di giri)

Tipologia	Nome	Canale	Posizione	tipo di sensore	range	precisione	velocità di acquisizione	note
Controllo Elettrici- tensione	VC- 005	5	GP-004	Segnali controllo pompa secondaria	0.1 L/min : 20 L/min		media, 1 sample/cycle =>0.4 s/sample (2.6Hz)	Portata pompa GP-004 circuito secondari HOT SIDE (VCC per aggiustare N.o di giri)
Controllo Elettrici- tensione	VC- 006	6	VR-001	Motore passo-passo per chiudere/aprire la valvola a spillo	-		media, 1 sample/cycle =>0.4 s/sample (2.6Hz)	Controllo del bypass (per cambiare UA del HEX COLDSIDE) per prove in modalità "free running"
Controllo Elettrici- tensione	VC- 007	7	VR-002	Motore passo-passo per chiudere/aprire la valvola a spillo	-		media, 1 sample/cycle =>0.4 s/sample (2.6Hz)	Controllo del bypass (per cambiare UA del HEX HOTSIDE) per prove in modalità "free running"

CAPITOLO 4: Disegno del banco prova

Figura 4.1 Disegno banco prova

Determinati i componenti necessari per la realizzazione del banco prova, si è effettuata la sua progettazione.

Il disegno del progetto è mostrato in Figura 4.1: oltre al Cad dell'impianto banco prova è rappresentata la lista componenti per facilitare la comprensione del disegno tecnico. Per non appesantire troppo il disegno e rendere più facile la sua comprensione mancano tutti

i motori elettrici associati alle pompe e alle valvole a tre vie regolabili, tutte le connessioni dei sistemi di misura e di controllo con il sistema di acquisizione dati.

Come mostrato dal diagramma della Figura 4.1, il banco prova può essere diviso in un circuito primario (tubazione verde), del quale fa parte il rigeneratore AMR-001 e in due circuiti secondari (tubazione blu lato freddo e tubazione rossa lato caldo) che prendono il fluido da ogni bagno termostatico per scambiare calore con il circuito primario attraverso gli scambiatori W. La presenza di due circuiti per ogni lato del rigeneratore è necessaria per poter operare sia nelle condizioni di ΔT_{span} imposto, sia nella condizione operativa free running. Ogni circuito (primario e secondario) ha il suo sistema di pompaggio. Le tubazioni in viola permettono di collegare direttamente il bagno termostatico con il circuito primario, utile nella modalità ΔT_{span} imposto. In giallo è rappresentata la strumentazione di misura per le misure di temperatura (TY), delle cadute di pressione (PY) e i misuratori di portata (FQ). In azzurro sono rappresentati i sensori di controllo del voltaggio dei motori elettrici associati ai componenti.

Nella **modalità** ΔT_{span} **imposto** si impone la temperatura del fluido primario all'ingresso del rigeneratore (con le termoresistenze TY-005 e TY-006): ciò è possibile prendendo il fluido di lavoro direttamente dai bagni termostatici situati all'estremità del circuito (TB-COLD-001 e TB-HOT-002). Il fluido che esce del rigeneratore ritorna al bagno dal lato contrario: questo impone che la differenza di portata tra le pompe che fanno circolare il fluido in questa modalità (GP-001 e GP-002) deve essere minima per evitare di svuotare il serbatoio di riserva di uno dei due bagni. Questa modalità di operazione si seleziona con le valvole a tre vie-terza via chiusa (VC-001, VC-002, VC-003, VC-004).

Modalità free running: in questa modalità non c'è alcun controllo della temperatura di ingresso al rigeneratore (TY-005 e TY-006). Viene imposta la temperatura dei bagni termostatici (TB-HOT e TB-COLD): essa potrebbe essere imposta per entrambi come temperatura ambiente di riferimento, per esempio, $T_m = 21 \,^{\circ}C$ (modalità UA variabile), oppure come rispettivamente temperatura di cella e temperatura dell'ambiente esterno, per esempio, $T_c = 5 \,^{\circ}C \, e \, T_h = 32 \,^{\circ}C$ (modalità Temperatura esterna imposta). Per poter essere un circuito chiuso, le due portate misurate dai due misuratori di portata FQ-003 e FQ-004 devono essere uguali. Nella modalità free running si può operare con la modalità UA variabile o la modalità Temperatura esterna imposta:

- Modalità frigorifero *UA* variabile: cambiando il coefficiente di scambio equivalente *UA* degli scambiatori W, ottenuto modificando la portata mediante le pompe a ingranaggi GP-001 e GP-002 o combinando con il bypass regolabile VR-001 e VR-002, si può simulare il comportamento di un frigorifero reale con maggiore o minore isolamento (*UA*) rispetto alla temperatura ambiente. Per ottenere questo risultato bisogna imporre valori di *UA* molto bassi sul lato freddo (W-001 W-002) e valori ragionevolmente alti sul lato caldo (W-003 W-004). In questa modalità si misurano le curve caratteristiche (Q_{in} vs. ΔT_{span}) al variare del grado di isolamento simulato, variando la portata nello scambiatore lato circuito secondario.
- **Temperatura esterna imposta:** in questa modalità operativa si possono verificare le potenzialità della capacità refrigerante del frigorifero al variare della temperatura media di lavoro e del salto di temperatura imposto caldo-freddo (ΔT_{span} esterno). Le portate dei circuiti secondari sono determinate come descritto successivamente. Le portate del circuito secondario possono essere eventualmente cambiate per consentire la misura del cambio di temperatura attraverso lo scambiatore (TY-001; TY-002) e (TY-003; TY-004).

Al variare della temperatura media, per esempio $T_m = \frac{T_h + T_c}{2} = \frac{32 \circ c + 5 \circ c}{2} = 18.5 \circ C$ (4.1) e del salto di temperatura imposto, $\Delta T_{span} = 32 \circ C - 5 \circ C = 27 \circ C$ (4.2), si verifica la capacità di refrigerazione effettiva della macchina. Questa modalità potrebbe essere utile in futuro per la verifica delle potenzialità di materiali alternativi al Gadolinio (con temperature di Curie diverse) distribuiti in serie all'interno del rigeneratore REFMAG AMR-001.

In Tabella 4.1 sono riportate sinteticamente le tipologie di funzionamento descritte, le grandezze imposte, le grandezze misurate e le grandezze di controllo per ottimizzare il rendimento della macchina.

Denominazione	Grandezze imposte	Grandezze misurate	Grandezze controllate per
			ottimizzare rendimento
ΔT_{span} imposto	TY-005; TY-006	Q_{in}, Q_{out}	F, FQ3, FQ4 (GP-001, GP-
			002)
Free running:	<i>UA_c</i> (FI-001; VR-	$Q_{in}, Q_{out}, \Delta T_{span}$	F, FQ3, FQ4 (GP-001, GP-
Modalità	001), <i>UA_h</i> (FI-004;	(circuito primario)	002)
frigorifero-UA	VR-002), <i>T_c</i> TY-		
variabile	001; <i>T_h</i> TY-004		
Free running:	T_c , T_h scambiatori e	$Q_{in}, Q_{out}, \Delta T_{span}$	F, FQ3, FQ4 (GP-001, GP-
Temperatura	portate circuiti	(circuito primario)	002)
esterna imposta	secondari		

Tabella 4.1 Riassunto delle modalità operative e indicazione delle grandezze imposte, di quelle misurate e quelle che ottimizzano il rendimento della macchina

Le termoresistenze TY-001, TY-002, TY-003, TY-004 poste sul circuito secondario lato freddo e sul circuito secondario lato caldo servono per misurare la temperatura del fluido in ingresso e in uscita dallo scambiatore.

Le termoresistenze TY-005 e TY-006 poste rispettivamente prima dei filtri F-001 e F-002 sono inserite per misurare la temperatura del fluido in ingresso al rigeneratore e verificare che la temperatura del fluido termovettore sia quella aspettata.

Le termoresistenze TY-007, TY-008, TY-010, TY-011 sono utilizzate per valutare le differenze di temperatura in uscita dai canali del rigeneratore.

Le termoresistenze TY-009 e TY-012 misurano il ΔT_{span} della macchina.

La termoresistenza TY-013 misura la temperatura ambiente del locale nel quale sarà posto il banco prova.

I misuratori differenziali di pressione PY-001 e PY-002 misurano eventuali cadute di pressione attraverso le pompe GP-001, GP-002. Invece, PY-003 e PY-004 misurano le cadute di pressione attraverso il rigeneratore AMR-001.

Le valvole di intercettazione sono poste:

- A monte e a valle degli scambiatori per facilitarne lo smontaggio per eventuali manutenzioni o sostituzione.
- A monte e a valle del rigeneratore AMR-001 per facilitarne l'assemblaggio e la rimozione.
- In due lati del circuito per garantire la possibilità di caricare e scaricare il circuito.

4.1 Confronto con banchi prova precedenti:

Il primo prototipo di refrigeratore magnetico fu costruito nel 1976 da Brown (Brown 1976): esso ha permesso di dimostrare la possibilità di effettuare la refrigerazione magnetica.

Il prototipo si basava su un magnete superconduttore, in grado di generare elevatissimi campi magnetici, che veniva refrigerato con elio liquido. Il principio di funzionamento della macchina è spiegato dal ciclo termodinamico di Stirling (Figura 2.6). Il moto del materiale magnetocalorico, Gadolinio, era di tipo lineare.

Si sono utilizzate lamelle di Gadolinio spesse 1 mm, scambiatori di calore a piastre acquaaria e come fluido termovettore acqua+glicole, rispettivamente in percentuale 80%-20%.

La macchina lavorava con frequenze operative molto basse i cui valori non sono stati specificati.

Le prestazioni in termini di COP e Q_{in} , parametri che qualificano la macchina, erano basse, riuscendo però a raggiungere dei ΔT_{span} di 80K.

Nel corso degli anni furono costruiti svariati prototipi con l'utilizzo di Gadolinio (materiale molto studiato e molto performante) oppure prove con materiali alternativi (per esempio $LaFe_{10.97}Co_{0.78}Si_{1,05}B_{0.2}$, leghe a base di Gd e NiMnGd, LaFeSi, $La_{0.67}Ca_{0.33x}Sr_xMnO_3$ ($0 \le x \le 0.33$), $LaFe_{11}Co_{0.9}Si_{1.1}$ e Gd, e altre tipologie di leghe), con diverse tipologie di AMR (attivo, passivo, rotativo, lineare) e diversi fluidi termovettori (acqua+glicole, elio, olii e aria), con diverse configurazioni impiantistiche (per esempio presenza o meno dello scambiatore lato freddo) e con diverse frequenze di rotazione (da 0 a 6 Hz generalmente).

Tutti questi prototipi hanno ottenuto diverse curve di prestazione a seconda se le prove fossero fatte a flusso imposto oppure a gradiente di temperatura imposta. La maggior parte delle prove viene eseguita a flusso imposto con l'aiuto di riscaldatori elettrici e il ΔT_{span} è una conseguenza.

I parametri prestazionali che vengono analizzati sono il COP, Q_{in} e il ΔT_{span} che si riesce a ottenere. Un parametro molto importante per la regolazione dell'impianto viene identificato nella frequenza di rotazione f e nel parametro operativo ϕ .

Nella seguente Tabella 4.1 sono riportati i banchi prova costruiti dal 1976 (Brown et al. 1976) al giorno d'oggi (Viera et al. 2021).

Per la costruzione della tabella sono stati tenuti presente i diversi parametri di paragone:

- Tipologia AMR;
- Tipologia materiale magnetocalorico (MCM);
- Tipologia di fluido termovettore;
- Tipologia CHEX (scambiatore di calore lato freddo);
- Tipologia HHEX (scambiatore di calore lato caldo);
- Performance della macchina (COP, Q_{in}), dove dichiarati;
- Range operativo di frequenza;
- Range di portata del fluido termovettore e frequenze operative;
- ΔT_{span} ottenuto;

La Tabella 4.2 rappresenta i dati ottenuti dalla ricerca:

	Valori di ∆T _{span} ottenuto	47 K (1976) 80 K (1978)	80 k	11K	24 K (dopo 100 cicli)	5 K	14K
lell'AMR	Intervallo di portata m_f e frequenza f		ı	ı	1	I	ı
Prestazioni c	Intervallo operativo di frequenza	Basse frequenze operative	Basse frequenze operative	Basse frequenze operative	Basse frequenze di funzionament o, sono necessari 70 s per completare il ciclo di refrigerazione	Frequenze 0,06-0,8 Hz	ı
	Prestazion i della macchina	Q _{in} e basso COP	Basso Q _{in} e COP	Basso Q _{in} e COP	1	I	1
Controllo	Controllo		ı	ı	1	1	I
Misura	Portata	I	ı	ı	1	I	ı

Tabella 4.2 Caratteristiche dei banchi prova costruiti fino al giorno d'oggi.

	Pressione		ı		r	I	1
	Temperat ura	ı	ı	ı	ı	ı	ı
Fluidodina mica	Pompe	ı	I	r	r	I	I
ri di calore	НЕХ	Scambiato re di calore a piastre aria-acqua	Scambiato re di calore a piastre aria-acqua	Scambiato re di calore a piastre aria-acqua	r	1	HHEX coassiale
Scambiato	CHEX	Scambiato re di calore a piastre aria-acqua	Scambiato re di calore a piastre aria-acqua	Scambiato re di calore a piastre aria-acqua	II rigenerator e passivo funziona da CHEX	1	I
Motore	Tipo	1	I	I	1	I	Motore di azionamen to CC

Prestazion i dell'AMR			7	IMR	Primario fluido / secondario
Valori di ∆T _{span} ottenuto	Auto	ore	tipo AMR	MCM	Fluido termovettore
21 k	Brown (Brown G	1 1976 3V 1976)	Utilizzo di magnete supercond uttore refrigerato con elio liquido	Gadolinio: 1 mm di spessore lamelle	Acqua + 20% alcool etilico
25K			Lıneare (ciclo Stirling)		
	Ctorrow	+ 1078	Primo	Godolinio: 1	
15 k	(Steyer, V a,]	b)	lineare (ciclo Brayton)	Datronumo. 1 mm di spessore lamelle	Acqua + 20% alcool etilico
23K	Kirol e D: (Kirol e 198	acus 1987 : Dacus, 87)	Rotary (ciclo Ericson)	Gadolinio: 125 dischi coassiali, altezza totale 25,4 mm e massa totale 270 g	Acqua + 20% alcool etilico
4 k				0	
37 K (0,65 Hz), 50 K (0,8 Hz)	Green 199 et al.]	90 (Green 1990)	Alternativa	Gadolinio e Terbio (Tb)	Azoto gassoso
8 K	Bohiga (Bohiga 200	is 2000 as et al. 00)	Rotante	Gadolinio sotto forma di nastri:	1
	Rowe e] 2001 (F Barclay Tura,	Barclay Rowe e , 2002; 2005)	Alternativa	Gadolinio	ı

	Intervallo di portata <i>i</i> n _f e frequenza f	r	r	ı	I	I	ı	ı	r
	Intervallo operativo di frequenza	1	Intervallo 0,5-4Hz	ı	ı	0,5 hz	0,65-1Hz	0,4 Hz	r
	Prestazioni della macchina	Q _{in} massimo 100 W	$Q_{in} \max 600$ W, COP 60% del ciclo di Carnot	ı	ı	Q _{in} massimo 8,8 W	T	Q _{in} massimo 60 W	Q _{in} massimo 100-360 W
Controllo	Controllo	ı	ı	ı	I	1	I	I	ı
	Portata	ı	-	-	ı	ı			-
Misura	Pressione	1		1	1	I			
	Temperat ura	I	I	1	I	I	1	I	I

Fluidodina mica	Pompe	1	T	T	,	ı	r	ı	
ri di calore	HEX	1	Scambiato re di calore a piastre aria-acqua	ı	ı	I	r	ı	Scambiato re di calore a microcanal e
Scambiato	CHEX		Scambiato re di calore a piastre aria-acqua		ı	1	ı	ı	Scambiato re di calore a microcanal e
Il motore	Tipo	1	-			1	ı	ı	-
Primario fluido / secondario	Fluido termovettore	I	Acqua + inibitori	Gadolinio in polvere	Acqua	Acqua	Elio: pressione media 3,5-9 bar	Acqua	
AMR	MCM	Gadolinio sottoforma di sfere	Gadolinio: sfere di diametro medio compreso tra 0,15 e 0,5 mm	Gadolinio	Gadolinio: grani di 0,2 mm di diametro e polvere Gd5Si1.985Ge1.985 Ga0.03	Fogli di Gadolinio: spessore 1 mm, peso totale 230 g	Gd, Gd0.74 Tb0.26 e Gd0.85Er0.15	Gadolinio: massa totale 1 kg	Gadolinio: massa 165 g

Autore	tipo AMR
Hirano 2002 (Hirano et al., 2002) Okamura 2005) Okamura et al. 2005); Gschneidner e Pecharsky, 2007, 2008 (Gschneidner , Pecharsky, 2007, 2008)	Alternativa
Astronautics Corporation of America nel 2001 (Zimm et al., 2005, 2006; Gschneidner e Pecharsky, 2007, 2008).	Rotante
Blumenfeld 2002 (Blumenfeld et al. 2002)	Nessuna parte in movimento
Lu 2005 (Lu et al. 2005)	Principio di reciprocità
Clot 2003 (Clot et al., 2003; Allab et al., 2005) e Allab 2005 (Allab et al., 2005)	Alternativa
Richard 2004 (Richard et al. 2004); Rowe 2005 (Rowe et al. 2005); Rowe e Tura 2006 (Rowe e Tura 2006)	Alternativa
Okamura 2005 (Okamura et al. 2005)	Rotante
Vasille e Muller 2005,2006 (Vasille Muller 2005, 2006)	Rotante

MR	Valori di ∆T _{span} ottenuto			42,3 k	15 k		5 K	12K	13,2 k
tazioni dell'A	Intervallo di portata \dot{m}_f e frequenza f			ı	ı				13,2 k
Pres	Intervallo operativo di frequenza	,	0,2 Hz	Intervallo 0,4-1Hz	1	1	0,18 Hz	4Hz	0,5-3Hz
	Prestazion i della macchina	Q _{in} massi mo 18,7 W	1	Q _{in} massi mo 51,2 W	Q_{in} max 560W con COP 1.8. COP 2,4 per Q_{in} 244 W	ı	Q _{in} massi mo 20W	<i>Q_{in}</i> massi mo 220 W	Q _{in} 10-20 W
------------------------------	-----------------------------------	------------------------------------	----------------------	------------------------------------	--	---	---------------------------------	---	----------------------------
Controllo	Controllo	4 solenoide valvole	1	ı	ı	ı	T	ı	
	Portata	1 flussometr o	1	ı	ı	ı	T	ı	ı
Misura	Pressione	1 misura della pressione	r	,	ı	ı	-	ı	ı
	Temperat ura	30 Termocop pie	5 termocopp ie	ı	ı	ı		1	I
Fluidodina mica	Pompe	Presente	ı	Dislocatore	ı	ı	Presente	$\Delta p = 0,15$ bar	ı
Scambiato ri di calore	НЕХ	Controcorr ente	Riscaldato re	Presente	1	1	Presente	Design ottimizzato	1

Ā	MR	Primario fluido / secondario	Il motore	
tipo AMR	MCM	Fluido termovettore	Tipo	CHEX
Alternativa	Lega di Gd e Gd5Si2Ge2, particelle sferiche	Acqua	ı	Controcorr ente
Alternativa	Gadolinio	Acqua distillata	ı	ı
Alternativa	Particelle di Gadolinio: massa totale 1.167 kg	Elio		Presente
Rotante	Gadolinio		I	
Rotante	Gadolinio	Aria	ı	ı
Alternativa	750 g di Gadolinio e 200 g di LaFe10.97Co0.7 8Si1.05B0.2	Soluzione acquosa alcalina (PH 10)		Accumulat ore di freddo
Rotante	Gadolinio	Acqua + inibitori	ſ	Design ottimizzato
Alternativa	Gadolinio	Acqua	I	I

	Autore	Yu 2005 (Yu et al. 2005) e Gao 2006 (Gao et al., 2006)	Kawanami 2005 (Kawanami et al. 2005)	Yao 2006 (Yao et al 2006)	Hirano 2007 (Hirano et al. 2007); Okamura 2005, 2007 (Okamura et al 2005, 2007) (Miglioramento del prototipo 2003)	Egolf 2006 (Egolf et al. Ac 2006); Sari et al. 2007 (Sari et al. 2007)	Huang 2006, 2007 (Huang et al. 2006,2007)	Zimm 2007 (Zimm et al. 2007)	Tura e Rowe 2007 (Tura e Rowe 2007)
	Valori di ∆T _{span} ottenuto		11,5 k		1) 6,9 K 2) 6,4 K	3) 6,2 K 4) 6,0 K		16,1 k	7,8 K (3 ml/s)
el'AMR	Intervallo di portata \hat{m}_f^e frequenza f	0,6-1,5 litri/min	ı			1	1		0,5 ml/s- 23 ml/s
Prestazioni de	Intervallo operativo di frequenza	1-10 hertz	0,1-0,7 Hz	≤ 1HZ	0,25	≤ τ1/ τ2 ≤ 4	1	0,3 Hz	$\leq 1 Hz$
	Prestazioni della macchina	Q _{in} 40W	Q _{in} 40 W (ΔT _{span} 6,7 K e f 0,15 Hz)	1	Q _{in} e COP non dichiarati, dichiarato solo confronto tra	modello sperimentale e teorico per $\Delta T_{span}(\mathrm{Fig.}\; 6, 7)$	1	T	r

Controllo	Controllo	r		ı	ı	4 valvole	ı	-
	Portata	-		1	1	2 flussometri	ı	-
Misura	Pressione			ı		ı		-
	Temperat ura	ı	ı	I	5 termocopp ie tipo E	Termocop pie presenti	ı	T
Fluidodinami ca	Pompe	-		T	ı	·	r	-
Scambiatori di calore	HEX	1	1	Rame	Il modello sperimentale non ha scambiatori di calore ma ha due guide di flusso posizionate a contatto con l'ambiente circostante e con i tubi in perspex.	ı	Serbatoio freddo	-

7	AMR	Primario fluido / secondario	Il motore	
~	MCM	Fluido termovettore	Tipo	CHEX
	Leghe a base di Gd e NiMnGd	ı	I	·
	Gadolinio: particelle di 0,5 mm di diametro. Massa totale 1 kg	Acqua	ı	,
а	Gadolinio: piastra spessa 1 cm e lunga 5 cm	ı	ı	Rame
	13 fogli di Gadolinio: spessore 0,9 mm, distanziati di 0,8 mm tra un foglio e l'altro. Il gadolinio è puro al 99%. Ogni foglio è largo 25 mm, lungo 40 mm e la massa totale è di 92 g	 Acqua demineralizzata + etanolo al 10% (per ridurre le tensioni superficiali) (WE); 2) glicole etilenico (EG); 3) propilene etilenico (PG); 4) Olio extravergine di oliva (OO); 	Motore passo passo	Il modello sperimentale non ha scambiatori di calore ma ha due guide di flusso posizionate a contatto con l'ambiente circostante e con i tubi in Perspex.
	Particelle sferiche rivestite con LaFel0.97Co0.78S i1.05B0.2	Aria		·
а	Gadolinio: 37 lamelle spesse 0,6 mm	ı		Serbatoio caldo
a	Gadolinio: 1 mm di spessore fogli	ı	Attuatore elettrico	·

	Autore	Buchelnikov 2007 (Buchelnikov et al. 2007)	Chen 2007 (Chen et al. 2007)		Petersen 2007 (Petersen et al. 2007)		2008. Bahl (Bahl 2008) (Arrototino)		Hirano 2009 (Hirano et al. 2009)	Bour 2009 (Bour et al. 2009)	Dupuis 2009 (Depuis et al. 2009)
	Valori di ∆T _{span} ottenuto	16 k	Nessuna test	ı			29 k	7 k		1) 6-9 K 2) 5-9 K3) 3,75-5,25 K	
il'AMR	Intervallo di portata \dot{m}_f e frequenza f	ı	Nessuna test	Nessuna test -		1	I	L'utilizzo varia da 0,1 a 0,9			
Prestazioni de	Intervallo operativo di frequenza	Fino a 1Hz	Nessuna test	I	≤ 0,2 <i>Hz</i>		1	Fino a 4Hz		Basse frequenze, - valori	
	Prestazioni della macchina	$Q_{in}40W$	Nessuna test	ı			- Q_{in} 50 W con COP 1,6 f 1,4 Hz e ΔT_{span} 2 K	ſ	ΔT_{span} vs. $T_{amb}({ m Fig. 3, 5});$	ΔT_{span} vs. Q_{in} (Fig.6); ΔT_{span} rispetto a φ (Fig. 7) $O_{}O_{}O_{}T$ W	

Controllo	Controllo	Valvole e rotative	I	ı	ı	I	ı	I
	Portata	ı	ı	ı	1	I	ı	ı
Misura	Pressione	ı	ı	ı	1	I		ı
	Temperat ura	I	I	ı	ı	I	1	Termocop pia tipo T (∓ 0,2 °C)
Fluidodinami ca	Pompe	T	I	ı	r	T	r	r
Scambiatori di calore	HEX	ı	1	1	in acciaio inox e ottone con guarnizioni in teflon per evitare qualsiasi corrosione	1	ı	Scambiatore di calore a convezione forzata che utilizza un fluido termovettore secondario.

Prin s
teri
Acqu
75% a etile

		Autore	Kim e Jeong 2009 (Kim e Jeong 2009)	Pryds 2009 (Pryds et al. 2009)	Sari 2009 (Sari et al. 2009)	Tagliafico 2009 (Tagliafico et al. 2009)	Tura e Rowe 2009 (miglioramento del	proucipo 2007) (aura e Rowe 2007)	Tusek 2009 (Tusek et al. 2009)		Engelbrecht 2011 (Engelbrecht et al. 2011)	
	Valori di ∆T _{span} ottenuto		0-30K			0-4,4K		Fino a 22K	con olio siliconico, con acqua o Zitrec si ottiene Δ 32 K	0-14K		Massimo 5K
ell'AMR	Intervallo di portata <i>in_fe</i>		Ф 0,62-1,28		Porta le prove	fatte a: 6,45 kg h-1, 9,76 kg h-1 e 14,9 kg h- 1			Valori di portata del fluido non indicati, prove effettuate a 0,5 Hz	Ф: 0,33, 0,53, 0,81,		0,3-1,2 litri/min
Prestazioni de	Intervallo operativo di		2,4 Hz			Prove effettuate a 0,14 Hz			Prove effettuate a 0,5 Hz	Frequenze 0,5, 1, 2 Hz		0-0,25 Hz
	Prestazioni della macchina	$Q_{in} \max 60$ W,	COP max 0,8 Grafici COP vs. $Q_{in}(Fig. 10)$ $\Delta T_{span}vs.$ $T_{H}(temperatura didissipazione delcalore) (Fig. 8)$			Q_{in} contro ΔT_{span} (figura 12); Q_{in} contro ϕ (Fig. 13); Q_{in} massimo 4 W			<i>AT_{span}</i> grafico nel tempo (Fig. 11)	ΔT_{spanVS} ΔT_{spanVS} T_{Hot} (Fig. 8).; φ rispetto a f	(c	ΔT _{span} contro φ (Fig. 7);

Scambiatori di calore	Fluidodinamica		Misura		Controllo
НЕХ	Pompe	Temperat ura	Pressione	Portata	Controllo
Progettato per avere perdite di carico minime. Realizzato in alluminio. Tubi paralleli, moto fluido pulsante unidirezionale	dislocatore	4 termocoppia tipo E	Trasduttore di pressione a film sottile Omega PX 603	Omega FDP 2001	Un Tektronic A622 m viene utilizzato per misurare la corrente assorbita dal motore CC
Lo scambiatore di calore lato caldo (HHEX) è uno Scambiatore di calore a mini-canali in rame a flusso incrociato, con alette a piastre parallele su un lato (in basso). un modulo termoelettrico è fissato alla superficie dello scambiatore di calore per emulare una sorgente calda a tenneratura		1	1	1	г
Presente ma non da informazioni		1			T
Temperatura imposta		·		,	I
Aria-acqua	2 pompe	15 termocopp ie	4 misuratori di pressione		Timer elettronico per la regolazione degli scambiatori di calore, sistema di controllo regola l'apertura della valvola

7	AMR	Primario fluido / secondario	Il motore	
AMR	MCM	Fluido termovettore _	Tipo	CHEX
ante	Gadolinio con sfere diametro 0,3 mm, massa 55 g	Acqua + glicole (80% -20%)	Motore elettrico	Progettato per avere perdite di carico minime. Realizzato in alluminio. Tubi paralleli, moto fluido pulsante undirezionale. Il carico termico al frigorifero è fornito da 2 riscaldatori elettrici flessibili Kapton ciascuno di 65 cm2 e una capacità di 25 W (50
nativa	Il rigeneratore è costituito da 28 lamelle parallele di Gadolinio commerciale, dimensioni lamelle: Lunghezza 160mm; 0,85 mm di spessore; 6,9 mm di altezza; Massa totale del gadolinio: 195,4 g	Acqua deionizzata		Lo scambiatore di calore a freddo (CHEX) è un riscaldatore elettrico (Joule) che dissipa il calore a una velocità (costante) specificata.
nativa	Gadolinio: lastre piane di Gd spesse 1 mm, larghe 8 mm e lunghe 100 mm, corrispondenti a circa 800 g di Gadolinio	Olio siliconico (scelto per proteggere il letto di Gadolinio dalla corrosione e dall'ossidazione) Acqua o Zitrec (con quest'ultimo si ottiene un ΔT_{span}		Presente ma non dà informazioni
eare	Gadolinio: piastra utilizzata con strisce di gadolinio spesse 540 mm, larghe 15 mm e lunghe 90 mm (Fig. 1). Per mantenere una porosità del 36%, il gioco	Acqua		Temperatura imposta
nativa eare	Gadolinio: lamelle spesse 0,8 mm, massa 0,38 kg	Acqua + etanolo (50% -50%)	Motore lineare	Aria-acqua

1 stazioni	Prestazioni de Intervallo	ell'AMR Intervallo	Valori		
hina	operativo di frequenza	di portata m _f e frequenza f	di ∆T _{span} ottenuto		Autore
ig. 2000 3: 9): imo	4Hz	Test effettuati a 12,5, 15,5, 19,4, 21,2 l/min	0-20 K	Magnet 2011	e permanente Tura IJR . (Tura e Rowe 2011)
$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \end{array} \end{array} \end{array} \end{array} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \end{array} \end{array} \end{array} \end{array} \left(\begin{array}{c} \begin{array}{c} \end{array} \end{array} \right) \\ \end{array} \end{array} \left(\begin{array}{c} \end{array} \right) \\ \end{array} \end{array} \left(\begin{array}{c} \end{array} \right) \\ \end{array} \end{array} \left(\begin{array}{c} \end{array} \right) \\ \end{array} \\ \end{array} \\ \end{array} \left(\begin{array}{c} \end{array} \right) \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \right) \\ \end{array} \\ \end{array} \left(\begin{array}{c} \end{array} \right) \\ \end{array} \\ $	0,25-1,5 Hz	Portate fino a 21 l/min	0-50 K	Trevi	zoli 2011 (Trevizoli et
ure li φ) 42	0,15- 0,45Hz	φ: 0,07, 0,16, 0,37	0-25 K		al. 2011)
s. 8), 8), 3; 3; 0 W	Frequenza 0,33 Hz	0-0,45 kg/s	0-35 K	Balli 2	2012 (Balli et al. 2012)
ra vs. . 4, 5,) empo	0,25-2Hz	10-180 kg/ora, 0,25-2 Hz	40K	Tura	2012 (Tura et al. 2012)
Δp tempo 1)				Taglific	o 2013 (Tagliafico et al. 2013)

Controllo	Controllo			-		Le valvole controllan o la direzione del fluido nello scambiator e di calore
	Portata	Precisione 0,5 \vec{L}/min	1	-	1	Presente
Misura	Pressione		2 trasduttori di pressione (Omega PX613)	-	1	trasduttori di pressione
	Temperat ura	termistori (±0,05 °C)	7 termocopp ie tipo K	Termocop pia	1	Termocop pie tipo T
Fluidodinamica	Pompe			-	Pompa a pistoni	Pompa a doppio effetto
Scambiatore di	HEX	Altro lato dello scambiatore collegato ad un bagno termostatico in grado di controllare la temperatura	Termoregolazione dello scambiatore con chiller indipendente	Scambiatore di calore lato caldo collegato ad un bagno termostatico che ne controlla la temperatura	1	Le temperature degli scambiatori caldo e freddo sono controllate da due chiller indipendenti. T hot costante, TH, di $320 \pm 0,15$ K. Scambiatore a piastre fluido- fluido.

7	AMR	Primario fluido /	Il motore	
tipo AMR	MCM	Fluido termovettore _	Tipo	CHEX
Rotante	Sfere di LaFeSiH di massa 1,52 kg.	Acqua + anticorrosivo	1	Non presente ma sostituito da una resistenza elettrica. Impostare la temperatura
Lineare	Gadolinio: particelle di 0,5 mm di diametro, massa 0,1664 kg	Acqua	1	Termoregolazione dello scambiatore con chiller indipendente
Lineare	gadolinio 10 mm * 40 mm * 80 mm e LaFe13 x yCoxSiy	distillata (66%) + antigelo per auto (33%)	Pneumatic o cilindro	Riscaldatore elettrico che simula il carico freddo
Lineare	Gadolinio	Cascata	1	T
Rigeneratore passivo	Sfere in acciaio inossidabile diametri 0,5, 0,8, 1 mm	Acqua distillata	Motore passo passo	Le temperature degli scambiatori caldo e freddo sono controllate da due chiller indipendenti. L'estremità fredda è stata mantenuta a una temperatura costante, TC, di 280 ± 0,15 K. Scambiatore a piastre Fluido-fluido

Autore	acobs 2014 (Jacobs et al.	revizoli 2014 (Trevizoli et	lsek esp. 2014 (Tusek et al.	Chiba 2014 (Chiba et al.	revizoli 2016 (Trevizoli et
	2014)	al. 2014)	2014)	2014)	al. 2016)

	Valori di ∆T _{span} ottenuto	0-12,5 K
i dell'AMR	Intervallo di portata m _f e frequenza f	da 30 a 60 kg/h
stazion	Inte rvall o oper ativ freq uenz a	0,5 Hz
Pre	Prestazioni della macchina	Δ p vs. \dot{m}_{fluid} (Fig. 9); T vs. tempo (Fig. 16); Q_{in} specifico g vs. ΔT_{span} (Fig. 17), Q_{in} specifico max 300 W/kg

na	Fluidodi	di calore Fluidodi
	Pompe	HEX Pomp
	Pompa (ingranag	Scambiat ore a piastre fluido- fluido collegato a un bagno termostati co che impone la temperatu ra

	AMI	x	Primario fluido / secondario	Il motore
	tipo AMR	MCM	Fluido termovetto re	Tipo
a. a	Magnetico attivo rigeneratore	Particelle sferiche di 700 micron di La (Fe, Mn, Si) 13H: massa totale 75 g	Soluzione acquosa di ENTEK al 2% in massa	Motore passo passo

Per alcuni prototipi non sono state dichiarate le informazioni richieste per il completamento della tabella, per questo si è inserito "- ".

Nella Tabella 4.1 è possibile analizzare i due precedenti prototipi progettati e costruiti dall'Università di Genova (Tagliafico et al. 2009, Tagliafico et al. 2013).

Nel paragrafo successivo (4.2) verrà analizzato nel dettaglio il banco prova costruito nel 2013 per testare il prototipo di refrigeratore magnetico lineare.

4.2 Banco prova 2013:

Nel 2013 è stato progettato e costruito un banco prova (Tagliafico et al. 2013), mostrato in Figura 4.2, per valutare la fattibilità della refrigerazione magnetica: per questo motivo non si hanno vincoli di compattezza o di prestazioni.

Il prototipo è un rigeneratore attivo costituito da 2 rigeneratori che lavorano in parallelo. Si è utilizzato Gadolinio sotto forma di lamelle spesse 0,8 mm e per un peso complessivo di 0,4 kg.

Figura 4.2 Impianto banco prova realizzato (Tagliafico et al. 2013)

Il dispositivo si basa sul ciclo AMR, basato su quattro fasi (magnetizzazione, asportazione del calore dalla matrice solida con un fluido termovettore, smagnetizzazione e riscaldamento della matrice solida attraverso un fluido termovettore).

I due rigeneratori paralleli, composti da piastre parallele di Gadolinio, effettuano due cicli AMR, entrando e uscendo da una regione ad alto campo magnetico, generato da magneti permanenti disposti a croce in modo tale da generare un campo magnetico massimo di 1,55 T.

Il fluido intermedio viene distribuito in ciascuna tubazione per mezzo di un collettore collegato a elettrovalvole. I rigeneratori sono vincolati a una struttura plastica che contiene le valvole di inversione e le connessioni e che è meccanicamente collegata a un sistema pneumatico per il movimento lineare.

L'azionamento pneumatico è controllato da un timer elettronico che permette di impostare indipendentemente la durata del soffio caldo e freddo.

La disposizione idraulica, per garantire il corretto sincronismo tra i due rigeneratori, è realizzata mediante quattro valvole 3/2 bistabili azionate elettricamente. La disposizione del circuito garantisce che nel circuito esterno ai rigeneratori il moto del fluido sia unidirezionale. La distribuzione del flusso è concepita in modo da ridurre al minimo il volume morto nella geometria del rigeneratore (il volume di fluido che cambia direzione del flusso), dati i vincoli geometrici imposti dalla struttura magnetica. Il volume morto globale è compreso tra le due valvole a tre vie su ciascun lato. Le valvole bistabili sono opportunamente attivate da un dispositivo elettronico attivato dal segnale di un sensore fotoelettrico. Il sensore è vincolato alla struttura che contiene i rigeneratori e la sua posizione può essere regolata per modificare la sincronizzazione tra la variazione del campo magnetico e l'inversione di direzione del fluido.

Le elettrovalvole sono collegate alla parte statica del circuito mediante tubi flessibili. La parte calda e la parte fredda del frigorifero sono realizzate mediante due circuiti simmetrici, ciascuno dotato di un trasduttore di portata massica, una pompa volumetrica a velocità variabile e un serbatoio del fluido per conferire un'inerzia aggiuntiva al sistema.

Sono presenti due pompe a velocità variabile controllate attraverso un software di controllo, un sistema di distribuzione del fluido composto da quattro valvole a tre vie e quattro canali di inversione, due letti rigenerativi composti ciascuno da cinque tubi paralleli in fibra di carbonio, una struttura statica a magneti permanenti e un'unità motore lineare collegata a una struttura rigida in ABS, che contiene il sistema di distribuzione e i rigeneratori. La posizione del motore e della valvola sono comandate e sincronizzate via software, al fine di ottenere la portata massica del fluido desiderata e le funzioni di tempo del campo magnetico applicato.

Il sistema di controllo del movimento è stato progettato in modo da consentire ai rigeneratori di entrare nel campo magnetico, trattenersi stabilmente al suo interno e uscirne con una funzione temporale prestabilita. Inoltre, il tempo di lavoro deve essere impostato come variabile, per consentire una modifica delle condizioni operative per un'ulteriore ottimizzazione.

Due termocoppie misurano la temperatura di ingresso e di uscita del fluido nello scambiatore di calore.

Si possono facilmente realizzare diverse condizioni di funzionamento, tutte incentrate intorno alla temperatura ambiente, come riportato in (Tagliafico G. 2011): "free run" con inerzia minima, cioè con il bypass sia del serbatoio caldo che di quello freddo; "free run" con inerzie simmetriche, cioè con il serbatoio collegato al circuito; corsa asimmetrica con il serbatoio caldo o freddo bypassato.

La Fig. 4.3 mostra il banco prova assemblato. Sono visibili l'azionamento pneumatico, le pompe a velocità variabile e il flussometro. Le tubazioni sono realizzate mediante tubi flessibili in plastica di diametro 4 mm e le connessioni sono realizzate con componenti per applicazioni pneumatiche. Le due pompe a velocità variabile sono poste sotto il flussometro insieme ai relativi trasduttori di by-pass e di pressione differenziale. Sono ben visibili anche i due scambiatori di calore a piastre, insieme alla struttura magnetica e al supporto che sostiene il rigeneratore.

I due scambiatori di calore a piastre (indicati in Figura 4.2 con CHEX e HHEX) sono in acciaio inox dotati di ventilatori per controllare lo scambio termico variando la velocità dell'aria che lambisce il fluido termovettore.

Il banco prova è dotato di strumenti di misura e di sistemi di acquisizione e controllo dati. Le misure desiderate riguardano principalmente le prestazioni globali del dispositivo: apporto di calore dalla sorgente fredda e reiezione del calore alla sorgente calda, valutati attraverso la temperatura del fluido e la portata massica (equazione di bilancio energetico applicata al fluido); potenza totale in ingresso al sistema tramite le misure dell'energia assorbita dalle pompe, valvole e motore lineare.

Due dei tubi del rigeneratore sono strumentati con cinque termocoppie lungo il percorso del fluido per misurare l'evoluzione del profilo di temperatura all'interno del rigeneratore. Il sistema di acquisizione e controllo dati utilizzato per acquisire tutti i segnali dello strumento è della National Instruments modello NI-cDAQ9172 commerciale, con connessione USB 2.0 al PC. Il rack è dotato di otto diversi moduli per l'ingresso e l'uscita dei diversi segnali. I moduli per le diverse venti termocoppie chromel-costantana (precisione entro 0,2 K) sono cinque: c'è un modulo per i segnali di ingresso della cella di carico e del sensore di posizione, uno per il modulo ad alta velocità di ingresso/uscita che controlla le due pompe a velocità variabile e un modulo di ingresso analogico per i sensori di flusso e i trasduttori differenziali di pressione.

I segnali di tensione e corrente acquisiti dalle pompe, dal motore lineare e dalle valvole a tre vie venivano acquisiti per misurare il consumo energetico globale. Il software di acquisizione e controllo utilizzato è Labview 8.2.

Figura 4.3 Prototipo assemblato (Tagliafico et al. 2013)

La Fig. 4.4 mostra un'immagine della geometria del rigeneratore. I due generatori sono composti da piastre parallele di Gadolinio posizionate in una struttura che permette una chiara visualizzazione del rigeneratore al suo interno. La tenuta è garantita dalla sigillatura a nastro standard.

Figura 4.4 Foto rigeneratore (Tagliafico et al. 2013)

In Figura 4.5 è rappresentata una Tabella riassuntiva (Tagliafico et al. 2013) delle caratteristiche della macchina costruita.

Technical	data of	the	magnetic	refrigerator	device.
-----------	---------	-----	----------	--------------	---------

Process	
Thermodynamic cycle	AMR
Magnet-active material relative motion	Linear, reciprocating
Active material	Commercial gadolinium plates
Intermediate fluid	water-ethanol 50%
Fluid flow rate operating range	5 + 20 g s ⁻¹ (0.3 + 1.2 l min ⁻¹)
Frequency operating range	≤1/4 Hz
Utilization factor range	0.5 + 3
Pegeperator	
Numbers of regenerator	2
Regenerator size (each)	2 50 × 8 × 100 mm ³
Plates thickness	0.8 mm
Measured upid fraction	0.38
Cadolinium mass	2 × 194 g
Gauoimum mass	2 / 1948
Magnet	
Type of structure	Cross type
Permanent magnets	NdFeB, N50
Magnetic circuit	High saturation steel
Magnet mass	5 kg
Magnetic structure mass	35 kg
Magnetic gap	13 mm
Maximum magnetic field	1.55 T (in air)
Minimum magnetic field	<0.02 T
Max spatial magnetic field variation	1.2 T cm ⁻¹

Figura 4.5 Tabella riassuntiva delle caratteriste della macchina (Tagliafico et al. 2013)

In Figura 4.6 sono rappresentate le prestazioni che si potevano ottenere secondo il modello numerico creato per simulare il funzionamento della macchina per tre frequenze operative differenti: 1/4, 1/8 e 1/16 Hz.

Figura 4.6 Q_{in} vs. ΔT_{span} modello numerico generato per valutare il funzionamento della macchina (Tagliafico et al. 2013)

Dalla Figura 4.6 è possibile vedere che il campo di ΔT_{span} analizzato sia lo stesso della progettazione attuale e che il Q_{in} teorico che poteva essere ottenuto è un ordine di grandezza inferiore rispetto a quello ottenuto con MAGROT (Figura 3.5). Inoltre, il seguente modello numerico non presenta un'ottimizzazione dei parametri operativi (f e ϕ) del sistema come in MAGROT.

Era possibile lavorare soltanto in condizioni di free running e ottenere un ΔT_{span} effettivo di 5 K e potenze refrigeranti effettive molto basse.

Il suddetto prototipo era lineare e un circuito per lato, quello che si sta progettando è di tipo rotativo e costituito da due circuiti per lato, come descritto in Figura 4.1. Il campo magnetico massimo richiesto dal nuovo prototipo è di circa 1 T; invece, il prototipo precedente richiedeva un campo magnetico massimo di 1,55 T.

Gli scambiatori di calore non sono più aria-liquido, dove la regolazione dello scambio termico veniva effettuata tramite l'utilizzo di un ventilatore che, cambiando la velocità dell'aria, permetteva di cambiare il coefficiente di scambio termico, ma liquido-liquido, dove la regolazione dello scambio termico avviene attraverso il bypass effettuato tramite le valvole a tre vie regolabili. La massa di Gadolinio passa da 0,4 kg a 2,41 kg.

Nel nuovo banco prova sarà possibile testare diverse condizioni operative: temperatura imposta, portata di fluido termovettore variabile, variazione del coefficiente globale di scambio termico UA degli scambiatori di calore, variazione della frequenza di rotazione AMR. Nel vecchio banco prova era possibile analizzare soltanto alcune di queste possibili condizioni operative.

CAPITOLO 5: Conclusioni

L'obbiettivo del seguente elaborato era la progettazione di un banco prova in grado di testare il prototipo REFMAG in diverse condizioni operative (temperatura imposta, portata del fluido termovettore variabile, frequenza di rotazione dell'AMR variabile, variazione dell'efficienza globale di scambio termico UA degli scambiatori di calore).

Si è determinata la progettazione e il disegno del banco prova in grado di testare questo prototipo e inoltre sono stati determinati componenti impiantistici adeguati alla sua costruzione.

- A. Si è proceduto con la simulazione del circuito primario e secondario attraverso un codice di calcolo numerico per comprendere le caratteristiche dell'impianto, per esempio la scelta delle pompe, degli scambiatori di calore e delle valvole a tre vieterza chiusa e regolabili.
- B. Compresi i componenti necessari per la costruzione del banco prova, si è proceduto con la costruzione di un P&ID e con il disegno dello stesso per collocare i componenti e visualizzare il processo operativo.

Le valvole a tre vie-terza chiusa e le valvole a tre vie regolabili sono state inserite per garantire le due modalità di funzionamento (ΔT_{span} imposto e free running). Per controllare i parametri operativi e controllare il corretto funzionamento della macchina nelle modalità desiderate, sono stati inseriti dei sistemi di misura come termoresistenze, pressostati, misuratori di portata e sistemi di controllo.

Le valvole e le pompe sono regolate elettricamente attraverso sistemi di controllo.

C. Sono stati utilizzati siti di vendita e cataloghi per la ricerca dei componenti commerciali.

Per motivi di costi non si sono potute scegliere le pompe peristaltiche per il circuito primario: queste, con il loro principio di funzionamento meccanico, non avrebbero comportato alcuna dispersione di calore nel circuito stesso.

Si è dovuto virare su pompe a ingranaggi: si suppone che la dissipazione di calore sia minima.

Per garantire la regolazione dello scambio termico, che non si può effettuare soltanto variando la frequenza di rotazione f e il parametro di controllo ϕ , si sono utilizzati

due scambiatori di calore in parallelo per lato al posto di uno per lato, per via dell'estrema precisione nel bypass che sarebbe stata richiesta.

Le valvole tre vie regolabili permettono una più fine regolazione dello scambio termico.

5.1 Sviluppi futuri:

Definito il disegno del banco prova si procederà con l'acquisto dei componenti e la costruzione dello stesso in una delle sedi dell'azienda italiana Bi-Freezer che ha sede a Genova e ha grande esperienza nel campo della refrigerazione e nella costruzione di impianti frigorigeni.

Una volta costruito il banco prova sarà necessario:

- Testare il prototipo per confrontare i risultati numerici con i risultati reali e per poter validare il modello numerico costruito.
- Valutare il massimo ΔT_{span} ottenibile e la massima potenza refrigerante ottenibile Q_{in} per valutare la bontà della macchina e la possibilità di poter brevettare questo prototipo.
- Continuare a ottimizzare la macchina in termini di AMR, utilizzando materiali magnetocalorici alternativi al Gadolinio o testare la possibilità di utilizzare materiale magnetocalorico sotto forma di particelle sferiche, cavi o fogli.
- Valutare la possibilità di utilizzare altri fluidi termovettori per migliorare le prestazioni della macchina.
- Ottimizzare il circuito primario e secondario.
- Valutare la possibilità di costruire prototipi successivi che siano sempre più economici e commercializzabili.

BIBLIOGRAFIA

Allab, F., Kedous-LeBouc, A., Yonnet, J.P., Fournier, J.M., 2005. A magnetic field source system for magnetic refrigeration. In: Proceedings of the First International Conference on Magnetic Refrigeration at Room Temperature, Montreux, Switzerland, 27-30 September, International Institute of Refrigeration, Paris, pp. 309-318.

Bahl, C R. H et al. "A Versatile Magnetic Refrigeration Test Device." Review of scientific instruments 79.9 (2008): 093906–093906–7. Web.

Balli, M. et al. "A Pre-Industrial Magnetic Cooling System for Room Temperature Application." Applied energy 98 (2012): 556–561. Web.

Blumenfeld, P.E., Prenger, F.C., Sternberg, A., Zimm, C.B., 2002. High temperature superconducting magnetic refrigeration. Advances in Cryogenic Engineering 47, 1019-1026.

Bohigas, X., Molins, E., Roig, A., Tejada, J., Zhang, X.X., 2000. Room-temperature magnetic refrigerator using permanent magnets. IEEE Transactions on Magnetics 36 (3), 538-544.

Bour, S., Hamm, Jl., Michot, H., Muller, C., 2009. Experimental and numerical analysis of a reciprocating room temperature active magnetic regenerator. In: Proceedings of the Third International Conference on Magnetic Refrigeration at Room Temperature, Des Moines, lowa, USA, 11-15, May. International Institute of Refrigeration, Paris, pp. 415-424.

Brown, G.V., 1976. Magnetic heat pumping near room temperature. Journal of Applied Physics 47, 3673-3680.

Buchelnikov, V.D., Taskaev, S.V., Bychkov, I.V., Chernets, I.A., Denisovskiy, A.N., 2007. The Prototype of effective device for magnetic refrigeration. In: Proceedings of the Second International Conference on Magnetic Refrigeration at Room Temperature, Portoroz, Slovenia, 11-13, April. International Institute of Refrigeration, Paris, pp. 371-376. Chen, Y.G., Tang, Y.B., Wang, B.M., Xue, Q.X., Tu, M.J., 2007. A permanent magnet rotary magnetic refrigerator. In: Proceedings of the Second International Conference on Magnetic Refrigeration at Room Temperature, Portoroz, Slovenia, 11-13, April. International Institute of Refrigeration, Paris, pp. 309-315.

CHIBA, Y et al. "Thermal investigations of an experimental active magnetic regenerative refrigerator operating near room temperature: New Developments in Magnetic Refrigeration." International journal of refrigeration 37 (2014): 36–42. Print.

Clot, P., Viallet, D., Allab, F., Kedous-Leboc, A., Fournier, J.M., Yonnet, J.P., 2003. A magnet-based device for active magnetic regenerative refrigeration. IEEE Transactions on Magnetics 39, 3349-3351.

Dupuis, C., Vialle, A.J., Legait, U., Kedous-Lebouc, A., Ronchetto, D., 2009. New investigations in magnetic refrigeration device, AMR cycle and refrigerant bed performance evaluation. In: Proceedings of the Third International Conference on Magnetic Refrigeration at Room Temperature, Des Moines, Iowa, USA, 11-15 May. International Institute of Refrigeration, Paris, pp. 437-442.

Egolf, P.W., Gendre, F., Kitanovski, A., Sari, O., 2006a. Machbarkeitsstudie fu[°] r magnetische Wa[°] rmepumpen: Anwendungen in der Schweiz. Final Report for the Swiss Federal Office of Energy, project No. 100873/151017: 1-67 (in German).

Egolf, P.W., Kitanovski, A., Ata-Ceasar, D., Gendre, F., Sari, O., 2006c. Magnetic refrigerator and heat pump using magnetocaloric fluid and process for magnetic heating and cooling with such refrigerator or heat pump, WO 2006136041.

Egolf, P.W., Sari, O., Kitanovski, A., Gendre, F., Erbeau, N. 2006b. Presentation of the Swiss Technology Award Demonstrator at the Hannover industrial fair, 24-28 April, Germany (see for example in: Bernhart, Ch., Swiss Technology Award: Ka⁻⁻Ite mittels Magnet und Magnetisierung, Swiss Engineering 1-2, pp. 10-11 (in German)).

Engelbrecht, K., C.R.H. Bahl, and K.K. Nielsen. "Experimental Results for a Magnetic Refrigerator Using Three Different Types of Magnetocaloric Material Regenerators." International journal of refrigeration 34.4 (2011): 1132–1140. Web. Gao, Q., Yu, B.F., Wang, C.F., Zhang, B., Yang, D.X., Zhang, Y., 2006. Experimental investigation on refrigeration performance of a reciprocating active magnetic regenerator of room temperature magnetic refrigeration. International Journal of Refrigeration 29, 1274-1285.

Green, G., Chafe, J., Stevens, J., Humphrey, J., 1990. A gadolinium-terbium active magnetic regenerator. Advances in Cryogenic Engineering 35, 1165.

Gschneidner Jr., K.A., Pecharsky, V.K., 2007. 30 Years of near room temperature magnetic cooling. In: Paper and oral presentation, 2nd International Conference on Magnetic Refrigeration at Room Temperature, Portoroz, Slovenia, 11-13, April. International Institute of Refrigeration, Paris, pp. 9-21.

Gschneidner Jr., K.A., Pecharsky, V.K., 2008. Thirty years of near room temperature magnetic cooling: where we are today and future prospects. International Journal of Refrigeration 31, 945-961.

Hirano, N., Nagaya, S., Okamura, T., Kawanami, T., Wada, H., 2007. Development of room temperature magnetic refrigerator-overall plan. In: Proceedings of the Second International Conference on Magnetic Refrigeration at Room Temperature, Portoroz, Slovenia, 11-13 April. International Institute of Refrigeration, Paris, pp. 281-287.

Hirano, N., Nagaya, S., Takahashi, M., Kuriyama, T., Ito, K., Nomura, S., 2002. Development of magnetic refrigerator for room temperature application. Advance in Cryogenic Engineering 47, 1027-1034.

Hirano, S., Kawanami, T., Nakamura, K., Fumoto, K., Ikegawa, M., Hirasawa, S., 2009. A development of spherical-shaped magnetocaloric materials using power coating method.In: Proceedings of the Third International Conference on Magnetic Refrigeration at Room Temperature, Des Moines, Iowa, USA, 11-15 May. International Institute of Refrigeration, Paris, pp. 457-464.

Huang, J.H., Liu, J.R., Jin, P.Y., Yan, H.W., Qiu, J.F., Xu, L.Z., Zhang, J.X., 2006. Development of permanent magnetic refrigerator at room temperature. Rare Metals 25 (6), 641-644. Huang, J.H., Song, L., Jin, P.Y., Yan, H.W., Wang, Y., Tegus, O., Zhang, J.X., 2007.
Research on the magneto- caloric effect in LaFe11.17XCo0.78Si1.05BX alloys. In:
Proceedings of the Second International Conference on Magnetic Refrigeration at Room
Temperature, Portoroz, Slovenia, 11-13 April. International Institute of Refrigeration,
Paris, pp. 155-168.

Jacobs, S. et al. "The Performance of a Large-Scale Rotary Magnetic Refrigerator." International journal of refrigeration 37 (2014): 84–91. Web.

Kawanami, T., Chiba, K., Ikegawa, M., Sakurai, K., 2005. Optimization of magnetic refrigerator at room temperature. In: Proceedings and Presentation of First International Conference on Magnetic Refrigeration of Room Temperature, Montreux, Switzerland, 27-30 September. International Institute of Refrigeration, Paris, pp. 275-283.

Kim, Y., Jeong, S., 2009. Investigation on the room temperature active magnetic regenerative refrigerator with permanent magnetic array. Proceedings of the Third International Conference on Magnetic Refrigeration at Room Temperature, Des Moines, lowa, USA, 11-15 May. International Institute of Refrigeration, Paris. 393-400.

Kirol, L.D., Dacus, M.W., 1987. Rotary recuperative magnetic heat pump. In: Cryogenic Engineering Conference, St. Charles, IL, USA, pp. 757-765.

Lu, D.W., Xu, X.N., Wu, H.B., Jin, X., 2005. A permanent magnet magneto-refrigerator study using Gd/GdeSiGe/GdeSiGeeGa alloys. In: Proceedings of First International Conference on Magnetic Refrigeration of Room Temperature, Montreux, Switzerland, 27-30 September. International Institute of Refrigeration, Paris, pp. 291-296.

Okamura, T., Rachi, R., Hirano, N., Nagaya, S., 2007. Improvement of 100 W class room temperature magnetic refrigerator. In: Proceedings of the Second International Conference on Magnetic Refrigeration at Room Temperature, Portoroz, Slovenia, 11-13 April. International Institute of Refrigeration, Paris, pp. 377-382.

Okamura, T., Yamada, K., Hirano, N., Nagay, N., 2005. In: Egolf, P.W., Sari, O., Kitanovski, A., Gendre, F. (Eds.), Proceedings of the First International Conference on Magnetic Refrigeration at Room Temperature, Montreux, Switzerland, 27-30 September. International Institute of Refrigeration, Paris, pp. 319-324. Okamura, T., Yamada, K., Hirano, N., Nagay, N., 2005. In: Egolf, P.W., Sari, O., Kitanovski, A., Gendre, F. (Eds.), Proceedings of the First International Conference on Magnetic Refrigeration at Room Temperature, Montreux, Switzerland, 27-30 September. International Institute of Refrigeration, Paris, pp. 319-324.

Paulo V. Trevizoli, Jader R. Barbosa, Rogério T.S. Ferreira, Experimental evaluation of a Gd-based linear reciprocating active magnetic regenerator test apparatus, International Journal of Refrigeration, Volume 34, Issue 6, 2011, Pages 1518-1526, ISSN 0140-7007.

Petersen, T.F., Pryds, N., Smith, A., Bahl, C.R.H., 2007. A numerical analysis of a reciprocating active magnetic regenerator with a parallel-plate regenerator geometry. In: Proceedings of the Second International Conference on Magnetic Refrigeration at Room Temperature, Portoroz, Slovenia, 11-13 April. International Institute of Refrigeration, Paris, pp. 271-281.

Pryds, N., Bahl, C.R.H., Smith, A., 2009. Do simple magnetic refrigeration test devices lead to more successful prototypes?. In: Proceedings of the Third International Conference on Magnetic Refrigeration at Room Temperature, Des Moines, Iowa, USA, 11e15 May. International Institute of Refrigeration, Paris, pp. 363-370.

Richard, M.A., Rowe, A.M., Chahine, R., 2004. Magnetic refrigeration: single and multimaterial active magnetic regenerator experiments. Journal of Applied Physics 95, 2146-2150.

Rowe A. ConFiguration and performance analysis of magnetic refrigerators. Int J Refrig 2011; 34:168–77.

Rowe, A., Dikeos, J., Tura, A., 2005. Experimental studies of near roometemperature magnetic refrigeration. In: Proceedings of the First International Conference on Magnetic Refrigeration at Room Temperature, Montreux, Switzerland, 27-30 September. International Institute of Refrigeration, Paris, pp. 325-333.

Rowe, A., Tura, A., 2006. Experimental investigation of a three-material layered active magnetic regenerator. International Journal of Refrigeration 29, 1286-1293.

Rowe, A.M., Barclay, J.A., 2002. Design of an active magnetic regenerator test apparatus. Advances in Cryogenic Engineering 47 (8), 995-1002. Sari, O., Balli, M., Trottet, G., Bonhote, Ph., Egolf, P.W., Muller, C., Heitzler, J.C., Bour,
S., 2009. Initial results of a test-bed magnetic refrigeration machine with practical running conditions. In: Proceedings of the Third International Conference on Magnetic
Refrigeration at Room Temperature, Des Moines, Iowa, USA, 11e15 May. International
Institute of Refrigeration, Paris, pp. 371-379.

Sari, O., Hu, J., Alber, N., 2007. Magnetic refrigeration from Warburg to modern technology. In: Proceedings of the 5th International Conference on Rare Earth Development and Application, Baotou, China, 7-11, August.

Smith A., Who discovered the magnetocaloric effect? (2013), Eur Phys J H, 38 (4) (2013), pp. 507-517

Steyert, W.A., 1978a. Stirling-cycle rotating magnetic refrigerators and heat engines for use near room temperature. Journal of Applied Physics 49, 1216-1226

Steyert, W.A., 1978b. High temperature refrigerator, US patent No. 4107935

Tagliafico, L.A. et al. "Preliminary Experimental Results from a Linear Reciprocating Magnetic Refrigerator Prototype." Applied thermal engineering 52.2 (2013): 492–497. Web.

Tagliafico, L.A., Scarpa, F., Tagliafico, G., Valsuani, F., Canepa, F., Cirafici, S., Napoletano, M., Belfortini, C., 2009. Design and assembly of a linear reciprocating magnetic refrigerator. In: Proceedings of the Third International Conference on Magnetic Refrigeration at Room Temperature, Des Moines, Iowa, USA, 11e15 May. International Institute of Refrigeration, Paris, pp. 425-430.

Trevizoli, Paulo et al. "Experimental Assessment of the Thermal–hydraulic Performance of Packed-Sphere Oscillating-Flow Regenerators Using Water." Experimental thermal and fluid science 57 (2014): 324–334. Web.

Trevizoli, Paulo V et al. "Modeling of Thermomagnetic Phenomena in Active Magnetocaloric Regenerators." Journal of thermal science and engineering applications 6.3 (2014): n. pag. Web.

Trevizoli, Paulo V., Guilherme F. Peixer, and Jader R. Barbosa. "Thermal–hydraulic Evaluation of Oscillating-Flow Regenerators Using Water: Experimental Analysis of Packed Beds of Spheres." International journal of heat and mass transfer 99 (2016): 918–930. Web.

Tura, A., 2005. Active Magnetic regenerator experimental optimization, Master's degree dissertation, University of Victoria, Canada.

Tura, A., and A. Rowe. "Permanent Magnet Magnetic Refrigerator Design and Experimental Characterization." International journal of refrigeration 34.3 (2011): 628– 639. Web.

Tura, A., K.K. Nielsen, and A. Rowe. "Experimental and Modeling Results of a Parallel Plate-Based Active Magnetic Regenerator." International journal of refrigeration 35.6 (2012): 1518–1527. Web.

Tura, A., Rowe, A., 2007. Design and testing of a permanent magnet magnetic refrigerator.In: Proceedings of the Second International Conference on Magnetic Refrigeration atRoom Temperature, Portoroz, Slovenia, 11-13 April. International Institute ofRefrigeration, Paris, pp. 363-371.

Tura, A., Rowe, A., 2009. Progress in the characterization and optimization of a permanent magnet magnetic refrigerator. In: Proceedings of the Third International Conference on Magnetic Refrigeration at Room Temperature, Des Moines, Iowa, USA, 11-15 May. International Institute of Refrigeration, Paris, pp. 387-392.

Tušek, Jaka et al. "Experimental Comparison of Multi-Layered La–Fe–Co–Si and Single-Layered Gd Active Magnetic Regenerators for Use in a Room-Temperature Magnetic Refrigerator." International journal of refrigeration 37 (2014): 117–126. Web.

Vasile, C., Mu["] ller, C., 2005. A new system for a magnetocaloric refrigerator. In: Egolf,
P.W., et al. (Eds.), Proceedings of First International Conference on Magnetic
Refrigeration at Room Temperature, Montreux, Switzerland, 27-30 September.
International Institute of Refrigeration, Paris, pp. 357-366.

Vasile, C., Mu⁻⁻ ller, C., 2006. Innovative design of a magnetocaloric system. International Journal of Refrigeration 29 (8), 1318-1326.

Vieira, Bernardo P. et al. "Magnetocaloric Properties of Spheroidal La (Fe,Mn,Si)13Hy Granules and Their Performance in Epoxy-Bonded Active Magnetic Regenerators." Applied thermal engineering 183 (2021): 116185–. Web.

Weiss, Pierre, and Auguste Piccard. "Le phénomène magnétocalorique." J. Phys. Theor. Appl. 7.1 (1917): 103-109.

Yao, G.H., Gong, M.Q., Wu, J.F., 2006. Experimental study on the performance of a room temperature magnetic refrigerator using permanent magnets. International Journal of Refrigeration 29, 1267-1273.

Yu B, Gao Q, Zhang B, Meng X, Chen Z. Review on research of room temperature magnetic refrigeration. Int J Refrig 2003; 26:622–36.

Yu, B.F., Gao, Q., Wang, C.F., Zhang, B., Yang, D.X., Zhang, Y., 2005. Experimental investigation on refrigeration performance of a reciprocating active magnetic regenerator of room temperature magnetic refrigeration. In: Egolf, P.W., et al. (Eds.), Proceedings of First International Conference on Magnetic Refrigeration at Room Temperature, Montreux, Switzerland, 27-30 September. International Institute of Refrigeration, Paris, pp. 375-391.

Yu, Bingfeng et al. "A Review of Magnetic Refrigerator and Heat Pump Prototypes Built before the Year 2010." International journal of refrigeration 33.6 (2010): 1029–1060. Web.

Zimm C, Auringer J, Boeder A, Chell J, Russek S, Sternberg A. Design and initial performance of a magnetic refrigerator with a rotating permanent magnet. In: Proceedings of the 2nd International conference of magnetic refrigeration at room temperature. Slovenia: Portoroz; 2007.

Zimm, C., Auringer, J., Boeder, A., Chells, J., Russek, S., Sternberg, A., 2007. Design and initial performance of a magnetic refrigerator with a rotating permanent magnet. In: Proceedings of the Second International Conference on Magnetic Refrigeration at Room Temperature, Portoroz, Slovenia, 11-13 April. International Institute of Refrigeration, Paris, pp. 341-347.

Zimm, C., Boeder, A., Chell, J., Sternberg, A., Fujita, A., Fujieda, S., Fukamichi, K., 2005. Design and performance of a permanent magnet rotary refrigerator. In: Proceedings of the First International Conference on Magnetic Refrigeration at Room Temperature, Montreux, Switzerland, 27-30 September. International Institute of Refrigeration, Paris, pp. 367-376.