
Exploiting JADE as a Multi-Agent simulator
of the Immune System

SANCHAYAN BHUNIA

Master Thesis

Università di Genova, DIBRIS Via Opera Pia, 13 16145 Genova, Italy
https://www.dibris.unige.it/

MSc Computer Science
Data Science and Engineering Curriculum

Exploiting JADE as a Multi-Agent simulator
of the Immune System

SANCHAYAN BHUNIA

Advisor: Prof. Angelo Ferrando

Prof. Viviana Mascardi

Prof. Chiara Vitale

Examiner: Prof. Gianna Reggio

December, 2022

Abstract

The immune system is one of the most complex biological systems in an organism and
consists of millions – if not billions – of cells of different nature. These cells interact
amongst themselves to keep the organism safe from external pathogens such as viruses and
bacteria. Based upon their behaviours and instance of activation, the cells of the immune
system can be further categorized as a part of either Innate or Adaptive Immune System,
which we have modelled in this thesis.

There has been a huge deal of research in the field of immunology to understand the
nature of the immune system that works under the hood to protect the body against these
pathogens. In this thesis, we have explored another possible way to model different actors of
the Immune system using software agents. Here, we model these actors as software agents
and their interactions via agent communication language. This approach not only helps
us to simulate various aspects of the immune system (e.g., Adaptive and Innate Immune
System), but also, to understand many immunological conditions related to different types
of infections and the immune response in case of a re-infection.

In this thesis, we present the initial design and development of an agent-based simulation of
the immune system using a well-known agent framework, JADE. We present the engineer-
ing choices we made and the instantiation of some steps of the secondary immune system
response. We discuss the implementation in JADE, and we present some experimental
results.

Keywords: Immune System, JADE, ABMS, Multiagent System, Modelling Immune Sys-
tem with a Multiagent System, Modelling the Immune System, Modelling Adaptive Im-
mune System, Modelling Innate Immune System.

3

Table of Contents

Chapter 1 Introduction 8

Chapter 2 Background 11

2.1 Agents . 11

2.1.1 Agents Coupled with their Environment 12

2.1.2 Multiple Agent System . 13

2.1.3 Agent Architecture . 14

2.2 Agent Oriented Software Engineering . 18

2.2.1 OOP and AOP . 19

2.2.2 Applications of AOSE Concepts . 19

2.3 Java Agent Development Framework . 22

2.3.1 JADE Architecture . 23

2.3.2 Behaviour of Agents . 25

2.3.3 Mobility of Agents . 28

2.3.4 Agent Communication Model . 28

Chapter 3 Related Work 31

3.1 Category - I . 31

3.2 Category - II . 33

Chapter 4 Requirement Analysis 35

4

4.1 The Secondary Immune Response Scenario 35

4.2 Requirements . 37

4.3 why choosing JADE for Modelling the Scenario 37

Chapter 5 Design 39

5.1 The Grid System . 40

5.1.1 Modelling the Cell . 42

5.1.2 Modelling the Lymphatic System 43

5.1.3 Mobility across the Grid . 45

5.2 The Innate Immune System . 46

5.2.1 Macrophages . 47

5.2.2 CD8+ and CD4+ T-Cells . 48

5.3 The Adaptive Immune System . 49

5.3.1 Dendritic Cells . 49

5.3.2 CD4+ T-Cells . 51

5.4 Model of Virus . 52

5.4.1 Infecting a Cell . 52

5.4.2 Replication . 52

5.4.3 Terminating The Cell . 53

Chapter 6 Implementation 54

6.1 The Universe . 54

6.1.1 Various Maps in the Universe . 55

6.1.2 Laws of the Universe . 56

6.2 Mobile Agents . 59

6.2.1 Macrophage Agent . 59

6.2.2 Dendritic Cell Agent . 60

6.2.3 CD4+ T-Cell Agent . 62

5

6.2.4 CD8 T-Cell Agent . 64

6.3 Immobile Agents . 66

6.3.1 Initiator Agent . 66

6.3.2 Cell Agent . 68

6.3.3 Lymph Vessel Agent . 71

6.3.4 Virus . 73

6.3.5 CD4TCell Manager Agent . 74

Chapter 7 Experiments 76

7.1 Experiments with Grid-size and R-factor 77

7.2 Strong Immunity . 79

7.2.1 Experiment Background . 79

7.2.2 Setup of the Experiment . 80

7.2.3 Results of the Experiment . 80

7.3 Weak Immunity . 82

7.3.1 Background of the Experiment . 82

7.3.2 Setup of the Experiment . 82

7.3.3 Results of the Experiment . 83

7.4 Re-infection Scenario . 84

7.4.1 Background of the Experiment . 84

7.4.2 Setup of the Experiment . 85

7.4.3 Results of the Experiment . 85

Chapter 8 Conclusion and Future Work 88

Bibliography 90

6

Listings

6.1 Representation of a Mathematical Equation. 57

6.2 Parameters of the Virus. 57

6.3 Method to Activate the Virus. 58

6.4 A few constant Parameters. 58

6.5 Serialization of Information for ACLMessage. 62

6.6 Code snippet of how does the CD4+ T-Cell move inside the Lymph Vessel
Network. 63

6.7 Code snippet of CD4+ T-Cell stimulating a Macrophage. 64

6.8 Code snippet showing the CD8 T-Cell checking for a Virus signature. . . . 65

6.9 Implementation of findNeighbourLocation() method. 67

6.10 Implementation of findNextVessels() method. 68

6.11 Implementation of updateDNA() method. 70

6.12 Serializing the parameters of the virus. 74

6.13 Code snippet of a Virus killing its host Cell. 74

6.14 Snippet code for Generating a CD4+ T-Cell. 75

7

Chapter 1

Introduction

The immune system of a multi-cellular organism is a very complex system with many
different immune cells playing important roles to keep an organism free from infections.
These infections can be cause by any pathogen like a Bacteria, a virus or a fungi. For this
thesis we have focused our research towards an infection caused by viruses. The goal of a
virus is to hijack a cell and use its resources to make a copy of itself (replication) and to
spread those replicas into other parts of the body. The immune system helps an organism
to fight back the infection by searching for any virus signature moving from one cell to
another in general [Sim18].

The immune system in general consists of multiple different cells with different behaviours:
some of them immediately activate and contribute to eradicate the infection by different and
complementary mechanisms, such as Phagocytes, T-cells, B-cells; some of them remember
the signature of an infection, such as B-cells and Memory T-cells, and are essential to
prevent similar infection in the future. Depending upon these behaviours the immune cells
can be categorized in to Innate and Adaptive Immune Cells [Sig16].

The Innate Immunity, that is present at birth and lasts an organism’s entire life, is the
first response of the body’s immune system to a harmful foreign substance. When foreign
substances, such as bacteria or viruses, enter the body, certain cells in the immune system
can quickly respond and try to destroy them. Some of these cells include, Phagocytes like
Macrophages and Neutrophils, Dendritic Cells, Natural Killer Cells [MWWK18], and many
more. Innate immunity also includes barriers, such as skin, mucous membranes, tears, and
stomach acid, that help keep harmful substances from entering the body.

The Adaptive Immunity is a type of immunity that develops when a person’s immune
system responds to a foreign substance or microorganism, such as after an infection or
vaccination. This type of immunity involves specialized immune cells that can target and
eliminate foreign intruders in the future by remembering what those substances genetically

8

look like. Adaptive immunity may last for a few weeks or months or for a longer time,
sometimes for an organism’s entire life. Very similar to the Innate Immune System, there
are many cells involved in this type of immunity, for example Lymphocytes like B-Cells,
T-Cells (Both CD8 T-Cells and CD4+ T-Cells) and so on [MWWK18].

The goal of this thesis is to model some of the components of the immune system as
interacting agents using JADE1 [BCG07] and simulate a situation when the immune system
is under attack from a virus. Agent-Based Model & Simulation (ABMS) is a well-known
research area focused on simulating systems following a bottom-up approach, where agents
are used to describe the actors of the simulation. There are several reasons for choosing
JADE as the modelling framework:

1) The complexity of the individual actors can easily be managed with JADE agents and
their behaviours which can be deployed as independent or dependent of environmental
changes.

2) The possibility of decentralization of the computation and memory allocation of
individual agents allows us to design even complex behaviours for comparatively
large pool of agents.

3) The usability of JADE’s native agent mobilization features allows the agents in the
model to persistently move the computations and memory over a network of com-
puters.

4) The developer-friendly API of JADE, since it is based on Java.

From our preliminary research [SBV22], we have figured out the importance CD8 T-Cell
and Macrophages in the Innate Immune Response and the importance of Dendritic Cells
and CD4+ T-Cells in the Adaptive Immune Response. In our model we have implemented
these actors as a part of the overall immune system with the help of software agents
(mobile agents) following the AOSE methodology. Other than that, we have also modelled
the Somatic Cells and the Lymph Vessel cells as immobile software agents. The virus is
also modelled using JADE software agent but – unlike the other simulated agents – it
is generated by a class that, given some features, generates a virus compliant with them.
These features include the gene of the virus, the replication factor and the resilience towards
interacting with the somatic cells in the system.

Chapter 2 of this thesis digs deeper into the background knowledge that is required to
understand our research project. Especially, in that chapter we discuss about the definitions
and implications of numerous concepts related to Software Agents, their behaviours and
Agent Based Software Engineering. That chapter also includes a brief discussion about
JADE and the features JADE that were used in this thesis.

1JADE: Java Agent Development Framework.

9

In Chapter 3 we discuss some of the works that are related to Agent Based Modelling.
Although we did not find any explicit related work regarding the implementation of the
Immune System using the AOSE2 paradigm, and the JADE framework in particular, still
these studies have helped us to discover the key modelling features.

In Chapter 4 we discuss about the requirements of our model and why does JADE fulfill
these criteria.

Then we move ahead in Chapter 5 with the design part of our model. In thst chapter we
discuss about different types of immune responses and design structure of our model.

In Chapter 6 we discuss how we have implemented the features of our model using JADE.
In that chapter we discuss about different mobile and immobile agents, their behaviours
and communication methodologies in details.

Chapter 7 describes some experiments to support the consistency our software model with
actual biological scenarios. In that chapter we discuss about behaviours of healthy and
unhealthy immune systems from both biological and our model point views. There we also
discuss about a re-infection scenario to solidify our claim about our model being able to
produce an Adaptive Immune Response.

Ultimately, Chapter 8 shades light upon a general discussion about the thesis and future
implications of our model.

2AOSE: Agent Oriented Software Engineering.

10

Chapter 2

Background

In this section we are going to cover the very basic concepts of Agents and Agent Ori-
ented Software Engineering (a.k.a. AOSE) along with some details about how the JADE
Framework works.

2.1 Agents

An agent, also called a software agent or an intelligent agent, is a piece of autonomous
software, the words intelligent and agent describe some of its characteristic features. Intel-
ligent is used because the software can have certain types of behavior (“Intelligent behavior
is the selection of actions based on knowledge”), and the term agent tells something about
the purpose of the software. An agent is “one who is authorized to act for or in the place
of another” (Merriam Webster’s Dictionary) [Tve01].

Examples of software Agents:

• Personal Assistant like Amazon Alexa, Google Assistant and Siri.

• Computer Viruses can be a type of software agents.

• Artificial Players in computer games [Tve01].

• Web Crawlers used by Search Engines like Google are a type of software agents
[GOL].

• A self-driving car could use software agents [OOM19].

11

A common classification scheme of agents is the weak and strong notion of agency [WJ95].
In the weak notion of agency, agents have their own will (autonomy), they are able to
interact with each other (social ability), they respond to stimulus (reactivity), and they
take initiative (pro-activity). In the strong notion of agency the weak notions of agency
are preserved, in addition agents can move around (mobility), they are truthful (veracity),
they do what they’re told to do (benevolence), and they will perform in an optimal manner
to achieve goals (rationality) [Tve01].

In terms of its properties, any software which has the following properties can be classified
as a software agent.

• Situatedness — The agent has to be situated in an environment and receiving some
form of sensory input from its environment. The agent also can perform some actions
with its actuators to change its environment.

• Autonomy — The agent can act independently without a direct intervention from a
human or other software agents. Moreover, it has to have a control over its behaviours
in order to achieve its goals.

• Adaptivity — The agent is capable of (1) reacting flexibly to changes in its environ-
ment; (2) taking goal-directed initiative (i.e., is pro-active), when appropriate; and
(3) learning from its own experience, its environment, and interactions with others.

Apart form these characteristics, an agent can be conceptualized by the following anthro-
pomorphic approach.

• Mentalistic Notations — Believes, Desires, Intentions, Commitments and etc.

• Emotional Notations — Friendliness, Trust, Untrust and etc.

2.1.1 Agents Coupled with their Environment

Agents are autonomous and capable of taking decisions. Thus an agent is a computer
system that can anonymously act in an environment in order to achieve some goals. An
agent can be thought of as an interactive collection of Sense, Decide and React. so, based
upon how it behaves on changes in its environment, the behaviours can be further be
classified in terms of Reactiveness and Pro-activeness.

2.1.1.1 Reactive Property

If an agent is “situated” in an environment which is dynamic in nature, deploying pre-
written codes in order to achieve a goal is not viable. Rather, the agent equipped with

12

sensors should have the ability to react to the ever-changing environment in order to modify
its behaviours and at on it accordingly.

2.1.1.2 Pro-Active Property

Building a reactive agent is easy by making a look-up table, e.g.

“stimulus” −→ “responserules”

But the agent needs to achieve goals as well. Hence, we can model the goal in terms of
guided behaviours. Pro-activeness refers to the ability to generate plans in order to achieve
goals which might or might not be driven by the events captured by the sensors.

Figure 2.1: An Agent Interacting with its Environment [Tut].

2.1.2 Multiple Agent System

A system which is composed of multiple agents where each agent has partial information
about the environment and can solve some part of the given problem. Thus the multiple
Agents need to work together in order to achieve a task. In such typical scenario there
is no global control over the behaviour of the system. The data is decentralized and the
computation is asynchronous.

13

Social Ability of Agents

In a multiagent setting, the environment is also composed of other agent which might or
might not have similar goals. So, the social ability of an agent allows it to interact with
other agents through Agent Communication Languages and perhaps coordinate with them
in order to achieve goals.

Figure 2.2: A Diagram of an interactive Multiagent system in an Environment [AZR+17].

2.1.3 Agent Architecture

The fundamental principles that underlie the autonomous elements that facilitate effec-
tive behavior in real-world, dynamic, and open contexts are known as agent architectures.
In reality, early efforts in the field of agent-based computing were concentrated on the
creation of intelligent agent architectures, and these years saw the emergence of several en-
during architectural styles. These range from purely reactive (or behavioral) architectures
that only respond to stimuli in a simple stimulus-response manner, like those based on
Brooks’s (1991) subsumption architecture, to more deliberative architectures that consider
the implications of their actions, like those based on Rao and Georgeff’s (1995) belief desire
intention (BDI) model [GPP+99]. Between the two are layered architectures (hybrid mix-
tures of both) that try to combine both reaction and contemplation in an effort to adopt
the best features of each strategy. Logic-based, reactive, deliberative, and layered archi-

14

tectures are the four major categories into which agent architectures can be subdivided
[BCG07].

2.1.3.1 Logic-based Architectures

In Logic-based system the environment is symbolically represented and manipulated using
reasoning mechanisms from traditional logic-based systems. And since the human knowl-
edge is also symbolic in nature, Logic-based reasoning is easier for human to understand.
For the same reason it is difficult to translate the real world into an accurate, adequate
symbolic description, and that symbolic representation and manipulation can take consid-
erable time to execute with results are often available too late to be useful [BCG07].

2.1.3.2 Reactive Agent Architecture

Reactive architectures implement decision-making as a direct mapping of situation to action
and are based on a stimulus-response mechanism triggered by sensor data. The represen-
tation of the world in reactive architecture is very simple and there is a tight coupling
between the perception and the action of an agent. The agents are modelled based upon
their behavioral paradigm and “Intelligence” occurs as a result of interaction between the
agent and its environment. A good example is Swarm Intelligence where swarms are mod-
elled as biordoid agents. One agent might not be very intelligent in nature but the Swarm
as a group coupled with the environment shows intelligent behaviours [CBD20].

The best-known reactive architecture is Brooks’s subsumption architecture (Brooks, 1991).
The key ideas on which Brooks realized this architecture are that an intelligent behaviour
can be generated without explicit representations and abstract reasoning provided by sym-
bolic artificial intelligence techniques and that intelligence is an emergent property of cer-
tain complex systems. The subsumption architecture defines layers of finite state machines
that are connected to sensors that transmit real-time information (an example of subsump-
tion architecture is shown in Figure 2.3) [BCG07].

2.1.3.3 Deliberative Agent Architecture

According to the definition by Wooldridge in “Software agents: an overview”, a deliberative
agent is ”one that possesses an explicitly represented, symbolic model of the world, and
in which decisions (for example about what actions to perform) are made via symbolic
reasoning” [Nwa96]. Opposite to the Reactive agents, a deliberate agent’s internal process
is more complex. The Deliberate agents keeps explicit symbolic model of the world it
inhabits. And then the decision making is done via logical reasoning based on pattern

15

Figure 2.3: Architecture of a Reactive Agent [Nwa96].

matching and symbolic manipulation. The classic AI problem solving paradigm sense,
plan and act is used for decision making and action taking. BDI architecture if one of the
widely used type of Deliberate Agent Architecture.

Figure 2.4: Architecture of Deliberate Agent [Nwa96].

BDI Agents

Originally developed by Michael E. Bratman in his book ”Intentions, Plans, and Practi-
cal Reason”, (1987), Belief-Desire-Intention (BDI) architecture is model where an agent’s
beliefs about the world which represents it view of the world model, desires (goal) and

16

Figure 2.5: A diagram to show relation among Belief, Desire and Intention [LBGVDR17].

intentions are internally represented and first-order logic1 is applied to figure out most
suitable action to take at that point of time.

• Beliefs — Agent’s view of the environment/world. If their are multiple beliefs, they
can be stored in a dataset, which is called a beliefset.

• Desires — Desires represent the motivational state of an agent that follows from the
Belief. A desire can be unrealistic from the point of view of the agent’s behaviours
and can also change with time.

A subset of these desires can be realistic and consistent over time these are called
Goals and they are later evaluated for further processing.

• Intentions — When an agent decides to commit a goal it is called an Intention and
sequence of actions are needed to achieve it. These sequence of actions are called
plans to achieve that specific goal.

2.1.3.4 Layered Architecture

In a hybrid or Layered Architecture the agent is built out of two or more subsystems,
e.g. the Reactive and Deliberate. Over the years many researchers have argued that this

1First-order logic is symbolized reasoning in which each sentence, or statement, is broken down into a
subject and a predicate. Then the predicate modifies or defines the properties of the subject.

17

is the best way to design software agents since, we get best of the both worlds. In a
hybrid architecture, an agent’s control subsystems are arranged into a higherarchy where
the higher layers deal with information at increasing levels of abstraction [Cas22].

One of the most difficult task of designing these architectures is to decide the layering of
the subsystems. There are two different layering techniques that can be used, firstly, a hor-
izontal layering where each layer is directly connected to the sensory input and the action
output, alternatively, a Vertical layering where these input and outputs are connected to
at most one layers each.

Examples:

• The TOURINGMACHINES architecture consists of perception and action subsys-
tems, which interface directly with the agent’s environment, and three control layers,
embedded in a control framework, which mediates between the layers [Cas22].

• The Agent Architecture InteRRaP, which is a vertically layered, two-pass architecture
where only one level interacts with the environment [MP93].

2.2 Agent Oriented Software Engineering

In the last few years, together with the increasing acceptance of agent-based computing
as a novel software engineering paradigm, there has been a great deal of research related
to the identification and definition of suitable models and techniques to support the de-
velopment of complex software systems in terms of MASs. This research can be grouped
under the umbrella term Agent-Oriented Software Engineering (AOSE). From a design and
development point of view, the features of agent-based systems are well suited to tackle
the complexity of developing software in modern scenarios. Some of these requirements
which falls in line with AOSE are the following.

• The autonomy of application components reflects the intrinsically decentralised na-
ture of modern distributed systems and can be considered as the natural extension to
the notions of modularity and encapsulation for systems that are owned by different
stakeholders.

• The flexible way in which agents operate and interact (both with each other and
with the environment) is suited to the dynamic and unpredictable scenarios where
software is expected to operate.

• The concept of agency provides for a unified view of AI results and achievements,
by making agents and MASs act as sound and manageable repositories of intelligent
behaviours.

18

The main purposes of Agent-Oriented Software Engineering are to create methodologies
and tools that enables inexpensive development and maintenance of agent-based software.
In addition, the software should be flexible, easy-to-use, scalable and of high quality.[Tve01]
In other words, this sounds quite similar to the research issues of other branches of software
engineering, for example, object-oriented software engineering.

2.2.1 OOP and AOP

Object Oriented Programming (OOP) can is the successor of structured programming
where the main entity is the object. An object is a logical combination of data struc-
tures and corresponding functions or methods to manipulate those data. Objects are very
successful to create abstraction over passive entities (e.g. an employee) in real world and
the agents are regarded as a possible successor of objects since they have the enhanced
capability to even create abstractions of active entities. Agents are similar to objects, but
they also support structures for representing mental components, like beliefs, goals and
commitments. Moreover, an agent is capable of more high level communication with an-
other agent based on the “speech act” theory as opposed to ad-hoc messages frequently
used between objects. Example of such languages are FIPA ACL and KQML [Kib13].

Another more important difference between objects and agents is the fact that objects are
controlled from the outside, whereas the agents have autonomous behaviours which can’t
directly be controlled from outside. In other words, an agent can say “no” to certain set
of instruction if it is not in its belief set [Tve01].

2.2.2 Applications of AOSE Concepts

The Agent Oriented concepts can be applied in various phases while Engineering any
Software starting from the high level design and architecture to actual coding level im-
plementation. Even one can choose between the imperative and declarative programming
paradigm. Where on one hand there is JASON, on the other hand we have JADE where
it is implemented in Java. Now we will discuss about recent developments in some of the
areas where AOSE can be used.

2.2.2.1 Agent-Oriented Architectures

Agent-oriented architecture is formed based on the fact ‘agent’, which has the capability of
autonomy in decision making, team work, work passively and being goal oriented. These
characteristics form the software operate dynamically and make appropriate decisions based
on common interaction with each other in case of each event and then take appropriate

19

reaction [DRN12a]. Below there are some examples about some of the case studies where
Agent-Oriented Architectures have been used.

• In the “article Agent-Oriented Enterprise Architecture: new approach for Enterprise
Architecture” [DRN12b], there is a proposed solution to redesign EA (Enterprise Ar-
chitecture) programs using agent oriented architecture since this kind of architecture
is well suited to handle complex information systems. The authors have also dis-
cussed about the current problems of the EA and how the Agent-oriented paradigm
solves the problem.

• In the article “An agent-based service-oriented integration architecture for collabora-
tive intelligent manufacturing” [SHW+07] the authors have proposes an agent based
approach for a network of virtual enterprises to leverage manufacturing scheduling
service. They have also built a software prototype system to share manufacturing
resources among enterprises using agent-based web services. This is a Multiagent
System (MAS) and the agents can negotiate about sharing the resources by commu-
nicating with each-other through HTTP protocol.

2.2.2.2 Agent-Oriented Programming Languages

Agent-Oriented programming, a.k.a. AOP is a programming paradigm where the construc-
tion of software is centered around the concept of software agents [wik22]. An AOP will
include three primary components [Sho91]:

• A restricted formal language with clear syntax and schematic for describing mental
state of an agent.

• An interpreted programming language with primitive commands like REQUEST and
INFORM to program the agents.

• An “agentifier” for converting neutral devices into programmable agents.

Most of these programming languages are imperative in nature and usually require first
order logic to express the mental states (believes, intentions), behaviours and actions of an
agent. some of the examples include, JASON, GOAL etc.

2.2.2.3 Agent-based Modelling and Simulation

An agent-based model (ABM) is a computational model for simulating the actions and
interactions of autonomous agents (both individual or collective entities such as organi-
zations or groups) in order to understand the behavior of a system and what governs its

20

outcomes [wik20]. In an ABMS usually the agents are simple reactive agents interacting
among themselves and with the environment where each agent can only sense some part
of the environment with its sensor and react accordingly. The intelligence then arises as a
result of their interaction with each-other. This is also argued as “the third way of doing
science” by experts. There are several reasons for this claim and they are the following.

• ABS takes place in an artificial world so, the aspects of the real world which are not
physically accessible can be modelled here for experiments.

• Experimenting in the real system sometimes might have undesired interference from
other sources.

• The time scale of the system behaviour might not be adequate to make an observa-
tion.

• The Original system might have been altered or have vanished from the existence by
the time of the experiment.

• There might be cost related concern in performing the experiment live.

An example of ABM is swarm Intelligence and NetLogo2, developed by CCL research
group from Northwestern University is widely used for simulating these models. In the
paper, “Survival chances of a prey swarm: how the cooperative interaction range affects
the outcome” [CBD20] I have used MATLAB to simulate a swarm of interacting prays and
predators.

Although this thesis falls under the category of Multiple Agent Based Modelling, the agents
are not simple reactive agents, rather, they exhibits complex behaviours and interacts with
the environment and other agents. Here we have used JADE Framework to implement the
agents and their environment.

2.2.2.4 MAS Infrastructures & FIPA Compliance

Software infrastructures are very important for developing Multiagent Systems, tools and
software and throughout the years various tools have been proposed to implement MAS
specifications into actual agent code, and many middle-ware infrastructures have been
developed that provide support for implementing and developing distributed Multiagent
Systems. But the main issue comes in the form of interoperability of these infrastructures.
In order to tackle that FIPA has proposed abstract architecture to design and develop a
standard MAS Infrastructure. Now lets discuss in details about what is FIPA and what
makes a platform FIPA compliant.

2https://ccl.northwestern.edu/netlogo

21

FIPA

The Foundation for Intelligent Physical Agents (FIPA) is an organization that has defined
a set of standards for Systems with Multiple Agents. These definitions allows the interop-
erability between agents and facilitate their development. In particular the FIPA Agent
Platform defines the structure of an agent system model, it is composed of the following
[BCG07]:

• Agents, the fundamental actor inside the system.

• Agent Management System (AMS), has control over access to the system by
offering a white pages service to other agents.

• Directory Facilitator (DF), it is an optional component, provides the yellow pages
services to other agents.

• Message Transport Service (MTS), the communication method exploited by the
agents.

• Agent Platform (AP), the physical infrastructure in which the agents are deployed.

Apart from these components, the FIPA also defines a series of Agent Communication
Language, a message schema that each agent has to follow in order to let the system to be
extensible and allow the integration of other agents. But, for the scope of the thesis only
architectural specifications have been followed [BCG07].

2.3 Java Agent Development Framework

Java Agent Development framework a.k.a JADE, developed by Telecom Italia in late 1998
in order to make a Platform for developing Interactive Agents following the FIPA specifi-
cation. It is open source and distributed under the LGPL (Library Gnu Public Licence).
This software provides middle-ware layer functionalities independent of any application
composed of software agents. Another significant benefit of this platform is that it imple-
ments the agent paradigm over a well-known object-oriented language, Java which provides
a developer-friendly API. The platform also provides the following design choices following
the agent abstraction.

• Autonomous and Proactive Agents — Every agent has its own thread of ex-
ecution where the entire life-cycle of the agent is controlled and the agent can au-
tonomously decide when to perform which action.

22

• Agents are loosely-coupled — The communication between two agents happens
through asynchronous message passing. An agent which is a sender of such message,
should know the ID of the receiver agent. And since there is no temporal dependency
between the sender and the receiver, the receiver might not receive any message at
all.

• Peer-to-Peer — Each agent is identified globally by a unique Agent ID (AID) and
can join or leave the host platform at its own will. So, the discovery of an agent by
other agent or a human has been implemented by both white-page and yellow-page3

services.

With the adoption of these design choices JADE becomes a fully FIPA compliant platform
for implementing and developing agent abstraction based software solutions.

2.3.1 JADE Architecture

Agents live in a container which are Java processes that provides the JADE run-time and
all the services needed for hosting and executing agents and a platform may have several
containers. On the other hand, all containers might not be in the same machine. In other
words, we have one JVM4 per machine and one thread per agent. So in short, the JADE
platform is composed of containers and Agents. The Figure 2.6 shows the UML diagram
of the relationship among the main architectural elements. There there are some special
agents like the Agent Management System Agent, a.k.a. AMS Agent, Directory Facilitator
Agent, a.k.a. DF Agent to provide utility by managing the white-page and the yellow-page
services.

2.3.1.1 JADE Containers

Containers are the fundamental building block for the JADE platform and can be dis-
tributed over a network. The programmer identifies containers by simply using a logical
name, by default the main container is named ‘Main Container’ while the others are named
‘Container-1’, ‘Container-2’, etc.[BCG07] A container can have none to multiple number
of agents. A container has a ContainerController class which upon instantiation creates
a containerController object which can be used to get the Controller of an agent

living inside the container by invoking getAgent() method . A new agent can be cre-
ated inside the container by using the method createNewAgent(). There are method s

3white-page and yellow-page services allow the dynamic discovery of the hosted agents and the services
they offer.[Tom15]

4JVM: Java Virtual Machine.

23

Figure 2.6: UML diagram of Relationship between the main architectural elements [BCG07].

available in this class to accept or reject any migrating agent as well. All containers
regardless of whether it a Main Container or not shares these specifications.

2.3.1.2 Main Container

The main container is a special container that represents a bootstrap point of a platform.
This is the container which is launched first by the JADE run-time and all other containers
should register with it. By default, the main container hosts the AMS and the DF which
are used to manage agents in the platform. There is a registry called global agent descriptor
table managed by the Main Container which holds the information regarding the status and
the location of all agents. The main container also holds a registry of all other containers
in the platform and their transport addresses.

2.3.1.3 JADE Agents

The name of an agent is a global unique identifier that JADE constructs by concatenating
a user defined local name to the name of the platform. The agent addresses are transport
addresses, where each platform address corresponds to an MTP (Message Transport Pro-
tocol) end point where FIPA-compliant messages can be sent and received. And finally,
the agent identity is composed of the agent name and its address and contained within an
Agent Identifier (AID) [BCG07].

The base class Agent is the superclass used to build JADE agents. Generally, each

24

agent records several services which can be implemented by one or more behaviours. Once
instantiated, the setup() method is used to modify the data registered with the AMS, pass
in attributes to the agent, register with one or more domains (DFs). Using this method
it is also possible to add behaviours of the agents. In order to stop the execution of an
agent the doDelete() method is used at any time. Agents can communicate with each
other by exchanging ACL Messages which can be created by instantiating message objects
from ACLMessage class . The message can then be sent to other agent by send() method
from the Agent class . similarly, an agent can receieve a message by receive() method
from the same class . In order to add or remove behaviours [2.3.2], the Agent class

also provides addBehaviour() and removeBehaviour() methods. A life-cycle of an agent
is then composed of various states invoked by all of these methods. The states in the
life-cycle of the agent are the following.

• Initiated — At this state the agent is built, but it can not perform any actions since
it is not registered to the AMS yet.

• Active — The agent is registered to the AMS and can access all JADE features. It
can start executing its behaviours.

• Waiting — At this state the agent thread is blocked and the agent is expecting
something to happen. For example, waiting for a message.

• Suspended — The agent is stopped and can not execute its behaviours.

• Transit — The agent has started migrating from one container to another. This
state persists until the migration process ends.

• Dead — The agent is dead and deregistered from the AMS registry.

Different states of the life-cycle can be represented with the help of schematic diagram
[2.7].

2.3.2 Behaviour of Agents

By definition, agents are autonomous entities, therefore they should act independently
and concurrently with respect to one another. A behaviour is a collection of activities
performed in order to achieve a goal and started by the agent autonomously. JADE
implements behaviours as Java objects , which are executed concurrently by a single

thread by using a non-primitive scheduling policy [2.8].

Any behaviour can be instantiated from jade.core.behaviours.Behaviour class . Ev-
ery behaviour has an action() method which is used to define the actions that should be

25

Figure 2.7: States in Agent’s Life-cycle [Igu19].

performed once the agent decides to adopt a certain behaviour. Other than that done()

method is there to check the state of a behaviour execution process. A block() method
provides the option to block, restart() method to restart and a reset() method to reset
are also provided for handling the execution of a behaviour at run-time. A protected

myAgent object is also available within a behaviour setup in order to add or remove this or
another behaviour at from the behaviour implementation itself. This allows a programmer
to design Composite Behaviours by nesting multiple behaviours.

2.3.2.1 One-shot Behaviour

A OneShotBehaviour is a behaviour where the action(s) that is to be taken by the agent
is executed only once in a lifecycle. The done() method always returns true in such be-
haviours. By extending jade.core.behaviours.OneShotBehaviour class any custom
one-shot behaviour can be created. For example, if an agent wants to inform another agent
about some information without expecting any reply from the target, this action can be
incorporated in an OneShotBehaviour.

26

Figure 2.8: Agent behaviour scheduling policy in JADE [BCG07]. The methods are highlighted in neon blue are the methods
that the programmers have to implement.

2.3.2.2 Cyclic Behaviour

On the other hand, a CyclicBehaviour is a never-ending behaviour which keeps being
iterated unless being explicitly blocked by using the block() method. The done() method
always returns false in such behaviours. Any custom cyclic behaviour can be extended
from jade.core.behaviours.CyclicBehaviour class . An example could be a situation
when an agent is expecting a message from another agent, the action can be implemented
using a CyclicBehaviour.

There are also other behaviours in JADE like the SequentialBehaviour, TickerBehaviour
etc. but those can be easily be implemented by using combinations of OneShotBehaviour
and CyclicBehaviour.

27

2.3.3 Mobility of Agents

According to standard definitions, mobile agents are everything that a non-mobile agent is
(i.e. autonomous, reactive, proactive and social), but in addition they are also moveable.
These agents can migrate between platforms containers in order to accomplish assigned
tasks.

From the distributed systems point of view, a mobile agent is a program with a unique
identity that can move its code, data and state between machines in a network. To achieve
this, mobile agents are able to suspend their execution at any time and to continue once
resident in another location [BCG07]. In JADE, the mobility can happen in two ways, the
first one is by moving and second one is by cloning.

2.3.3.1 Mobility by Moving

The Mobility is managed by a platform service called Agent Mobility Service. This provides
software agents the ability to move between containers. The doMove() method is used by
the agent to move from one container to another. This method requires the Location of
the destination container as its input.

When invoked, this method initiates the process of moving the agent to the specified
destination container. The majority of the code is located in the jade.core.mobility

package. Migration not only includes the transmission of the code and the data but also
the state of the agent. There are two other methods, beforeMove() and afterMove() to
trigger operations right before or after the migration process.

2.3.3.2 Mobility by Cloning

Similar to moving the cloning of an agent to a different container other than the local one
is also counted as migration in JADE and very similar to the method related to moving,
the doClone() method is used to clone an agent to a new container. Since two agents can
not have a similar local name in a platform, a new parameter newName has to be specified
along with the Location of the destination container in order to successfully execute this
process.

2.3.4 Agent Communication Model

Communication and interactivity between agents are the fundamental characteristics of
any multiagent system. In jade this is accomplished by agents through exchanging ad-
hoc messages which each of the parties can understand. JADE follows FIPA standards

28

so that ideally, JADE agents could interact with each-other even on remote platforms.
The messaging standard set by FIPA is called FIPA ACL, where ACL stands for Agent
Communication Language.

2.3.4.1 ACL Message Structure

A FIPA ACL message contains a set of one or more message parameters. Precisely which
parameters are needed for effective agent communication will vary according to the situa-
tion. For example, an ACL message can have a conversation_Id, sender, receiver, and
ACL performative and sometimes a content as well. In JADE the sender and the receiver
is identified by their unique AID. The content can be any String or a Serializable .

There are four different layers of an ACL message, an envelop layer which contains the
transport information, a payload layer which contains encoded message, a message with
all message parameters and a content layer which contains the actual message. FIPA
defines three specific encodings: String (EBNF notation), XML and Bit-Efficient.

Figure 2.9: Structure of a FIPA ACLMessage.

2.3.4.2 ACL Performatives

The FIPA-ACL defines communication in terms of a function or action, called the commu-
nicative act or CA, performed by the act of communicating. These functions are detailed
in the FIPA CA Library specification, but examples include interrogatives which query

29

for information, exercitives which ask for an action to be performed, referentials which
share assertions about the world environment, phatics which establish, prolong or interrupt
communication, paralinguistics which relate a message to other messages, and expressives
which express attitudes, intentions or beliefs. If an agent does not recognize or is unable
to process one or more of the elements or element values, it can reply with the appropriate
not-understood [RAGBSM20].

Based upon the type of actions a performative can take it can be categorized as the
following.[BCG07]

• For Requesting Information - subscribe, query-if, query-ref

• For Passing Information - inform, inform-ref, confirm, disconfirm

• For Negotiation - cfp (call-for-proposal), propose, accept-proposal, reject-proposal

• Performing Actions - request, request-when, request-whenever, agree, cancel, refuse

2.3.4.3 JADE Communication API

in JADE an ACL Message object is created by instantiating jade.lang.acl.ACLMessage

class which requires a ACL Performative [2.3.4.2] as an input parameter. While sending
a, the receiver agent can be set by the method addReceiver() which requires the AID
of the agent. A conversationId can be set by using setConversationId() method . The
content of the message can be sent by using setContent() (for any String content) or

setContentObject() (for any Serializable object content) method and finally, the
message can be sent by using the the agent’s native send() method .

On the receiving side, the agent have to listen to a conversationId in order to receive
a message. A MessageTemplate object is first created by instantiating jade.lang.acl

.MessageTemplate class . Then, the MatchConversationId() method is used to con-
figure the MessageTemplate object to receive a reply with that specific conversationId.
With the help of Agent’s native receive() method, the ACLMessage can then be received.
Once received, the agent can check the sender by using the getSender() method on
the message object . The content of the message can then be retrieved by invoking the

getContent() (for any String content) or getContentObject() (for any Serializable

object content).

30

Chapter 3

Related Work

Naturally, one cannot talk about agent-based simulation without citing Netlogo1. Indeed,
also in the context of simulating the immune system, we may find many applications
based upon Netlogo (thorough review on the topic [CCP+14]). When considering such
applications, the most relevant difference w.r.t. our model is scalability. Netlogo is mainly
an academic centralised simulator, and it is hard to decentralise (only features to perform
concurrent executions exist), which makes it not suitable when the number of agents to
simulate grows too much. Netlogo is good for designing simple agents and lacks its usability
while designing Agents with very complex behaviours.

3.1 Category - I

One first category of works which are related to the one presented in this paper are the
ones which belong to the area of Artificial Immune Systems (AIS).

• In [SS02], the authors present an artificial immune system based intelligent multi-
agent model, named AISIMAM. In [SS02], AISIMAM is not used to simulate how
the immune system works, but as it happens in other disciplines, such as genetic pro-
gramming, AISIMAM aims at exploiting mechanics which efficiently work in nature.
Specifically, it applies them to a mine detection scenario.

• A similar work can be found in [BF10], where a MAS is designed to mimic the
human immune system behaviour. Also here, the resulting model is applied to a
certain domain of interest, which is power system reconfiguration and restoration.

1http://www.netlogoweb.org

31

http://www.netlogoweb.org

• AIS have also been applied in the robotic scenario [DGTM08], where autonomous
mobile robots emulate natural behaviours of cells and molecules to realise their group
behaviours (i.e., cooperation). Similarly, in [HKR08], AIS are also used to engineer
the organisational layer in a MAS, when exploited with simulated robot soccer.

• Another scenario where AIS have found application in MAS is the flexible job shop
scheduling problem (FJSP). In [XF18], the authors analyse similarities between the
FJSP and humoral immunity, which is one of the immune responses. Based on the
similarities, a new immune multi-agent scheduling system (NIMASS) to solve the
FJSP with the objective of minimizing the maximal completion time is presented.

• Agent-based Artificial Immune System (AbAIS) [OOW13] is a framework which uses
a hybrid architecture where heterogeneous agents evolve over a cellular automata
environment and are modelled following a genetic approach. AbAIs is applied to
intrusion detection systems (IDS).

• In the paper Multi-agent-based modelling and simulation of high-speed train [KFS20]
the authors have proposed a multi-agent-based modelling and simulation (MABMS)
technology that can simulate the relationship between the individual behaviour and
overall performance of the high-speed train’s components. And by using this MABMS
methodologies they were able to develop a simulation framework and platform that
successfully integrates multi-disciplinary and heterogeneous simulation models with
agent middle-ware and can drive an adaptive simulation of each agent. They have also
noted that their method bypasses the need to set in advance the simulation param-
eters required in High Level Architecture which, significantly reduces the simulation
time and makes the simulation more intelligent.

• ActoDatA (Actor Data Analysis) is an actor-based software library for the develop-
ment of distributed data mining applications [LFM+19]. It provides a multi-agent
architecture with a set of predefined and configurable agents performing the typical
tasks of data mining applications. In particular, its architecture can manage differ-
ent users’ applications; it maintains a high level of execution quality by distributing
the agents of the applications on a dynamic set of computational nodes. Moreover,
it provides reports about the analysis results and the collected data, which can be
accessed through either a web browser or a dedicated mobile APP.

• Finally, we can find AIS implemented in JADE as well. Also in such works, the
aim is not to simulate the immune system, but to take inspiration from it to solve
different tasks. We may find [SS20], where an AIS is developed in JADE and used in
a process for gas purification from acidic components, or [HEE+19], where is used to
minimize the microgrids operational cost and maximize the real-time response in grid-
connected microgrids, or [HGY13], where a mobile agent-based system architecture
is proposed in JADE for machine condition monitoring by imitating human immune

32

system, or finally [DPG11], where the AIS in JADE is used to handle the disruption
management in production systems monitoring and control.

• One other research article we have studied is related to HPC2 and simulates spread
of COVID-19 in human population using ABMS [PLCP22] methodologies. In this
paper, authors claim that they were able to run the simulation on a large-scale system
and were able to produce high resolution simulation results with the help of their
own simulator. Using this simulator they were also able to model a use-case: the
spread of COVID-19 across two Italian regions (Lombardy and Emilia-Romagna).

• The simulator ActoDemic is from the authors of the above article and has been pub-
lished in a separate paper [PLM+21]. Structurally, the simulator is very similar to the
one that we have designed for this thesis and uses JADE as the development frame-
work. The authors have used this simulator to simulate the model of the COVID-19
spread that we have mentioned above. They have also used this simulator in the field
of evolutionary computation and data analysis other than just the ABMS. ActoDemic
can also be used for developing distributed applications. In fact, depending on the
complexity of the application and on the availability of computing and communica-
tion resources, an application can involve one or more computational nodes. Here,
each computational node maintains an actor space that acts as a “container” for a
subset of the actors of the application and provides them with the services necessary
for their execution.

Differently from our model, all these works are not interested on designing, engineering and
developing an agent-based simulation of the immune system; instead, they are examples
of how to take inspiration from the immune system to solve general MAS problems.

3.2 Category - II

The second category of works which are related to our contribution are the ones presenting
agent-based simulations of the immune system. There are numerous existing works on
agent-based immune system models. CAFISS [TJ05] models cell to cell interactions in a
grid with each cell denoted through a bit string. In [TJ05], the authors describes a Java-
based implementation of a framework for modeling the immune system, particularly Human
Immunodeficiency Virus (or HIV) attack, using a Complex Adaptive Systems (CAS) model.
The only downside of such solution is in its not being much scalable, indeed it has a
large overhead caused by the use of separate threads for each cell. ImmSim [PKSC02,
BC01] is a simulator based on cellular automata developed in APL2 [Fal91]; the framework

2High-Performance Computing

33

exploits task parallelism on distributed computers and, because of this, it is able to reduce
execution time and it supports large-scale simulations. ImmSim is also the base on which
ImmunoGrid [PHR+09], and Sentinel [RG05], two other immune system simulators, have
been built.

Swarms [JLL04] is a 3-dimensional model of the human immune system and its response to
first and second viral antigen exposure (implemented in BREVE [SKPF05], a physics-based
ABMS engine).

In the article GPU acceleration and data fitting: Agent-based models of viral infections
[FD22] the authors have presented, a two dimensional biological system (very similar to
our model of the grid system) is simulated with a mathematical model. The system is
a culture dish of a mono-layer of cells with virus diffusing over the cells. The model is
a combination of an agent based model (ABM) and a partial differential equation model
(PDEM) where the cells are represented with an ABMS and virus diffusion is represented
by a PDEM. This allows for simulation results within hours, but with the necessary level
of detail to capture individual cell effects, and allows for parameterizing the model quickly.
Here, the authors also claim that the model accurately replicates the diffusion of a virus,
the stages of infection of individual cells, and can be fitted to data within hours.

ABM-DSGE is a framework made with an agent based model (ABM) and a Dynamic
Stochastic General Equilibrium (DSGE) [KMWS22]. This model has been developed by
the authors of the article to simulate and study the effects vaccination in human population
in order to reach a “herd immunity”. The authors have also made a claim that they were
able to reproduce a scenario where the vaccines and after-recovery immunity do change the
dynamics of a contagion or reduce the adverse effects of pandemics on an economic scale.

For a further readings on existing ABM techniques to simulate the immune system, a
thorough review can be found in [SK18].

To the best of our knowledge no agent-based immune system simulation has never been
proposed in JADE before.

34

Chapter 4

Requirement Analysis

The immune system is our second most complex system, after the brain. It involves many
different actors (i.e., cells of our body’s tissues, pathogens like bacteria and viruses), each
one with different features, capabilities and objectives. Depending on the scenario, and
the current state of our organism, we may find ourselves with a complete different set of
cells involved in defending us, and that carry out different tasks.

4.1 The Secondary Immune Response Scenario

In this section we consider a simple – but correct – scenario, that will be used as the case
study for checking the requirements of the model.

1. Some time ago, Alice got an infection from a virus V , which infected cells of tissue
TIS (target cells). The infection fired a reaction from the immune system that,
besides successfully fighting V , also activated the generation of CD8 T-cells specific
for V , that we name CD8T (V). The infection also led to the generation of CD4
specific T cells. CD8 T-cells are a major cell population of the adaptive immune
system and their primary function is augmented immune response once the pathogen
that initially caused their generation (V in this scenario) attacks the body again.
CD8 and CD4 T-cells may ‘wander’ in the blood and in tissues close to those that
had been infected by the pathogen, even months after the first infection. Importantly
some memory CD4 and CD8 T cells will remain also in Lymph Nodes.

2. Alice comes into contact with V again.

3. V enters her body via her mouth and tries to infect cells of tissue TIS again. It may

35

succeed in this attempt with some infection success rate ISR. Let us suppose that
one cell C(TIS)a becomes infected. Two events take place:

(a) C(TIS)a becomes a virus-making factory: V can in fact use it to move to
‘infectable neighbouring cells’, and infect them. The amount and density of
infectable neighbouring cells depends on TIS, on the point the virus entered
the body, and on other factors.

(b) C(TIS)a can be recognized as infected thanks to a peptide (an antigen) on
its membrane surface, acting as a manifesto for its health state: when a cell is
infected with a virus, it has pieces of antigens of that virus – the virus ‘signature’
– on its surface, not present when the cell is healthy.

4. Macrophages MFG comes into this picture at this point in time although they are
present in the tissue C(TIS)a looking for any pathogen even if there is no infection.
Macrophages are general purpose killers, and they contribute in three ways:

1) becoming infected and trying to eliminate the virus that they sense inside their
selves,

2) by phagocyting other dying infected cells that contain the virus, thus eliminating
the potential reservoir of the virus,

3) by producing soluble molecules (called cytokines) that overall improve the im-
mune response.

But there is a limit on their ability to control infection. After this limit MFG goes
into a exhausted (MFGexh) state where it exhibits less mobility.

5. One CD8 T-cell trained to recognize V , V D8(V)b, that was wandering close to
C(TIS)a, perceives pieces of V ’s antigen on the cell’s membrane1. After this, V D8(V)b
kills the virus.

6. On the other hand there are Dendritic cells(DEN) moving around in the tissue and
they capture any virus(V) if it encounters one. It then disintegrates the virus and
copies the genetic material of the virus DNA(Va) and synthesizes MHC Class - II
molecules on the cell membrane we can denote it with DENa.

7. Afterwards, DENa moves into the lymphatic system and heads towards the Lymph
node.

8. At the Lymph Node, there are both naive and memory CD4 and CD8 T cells. Every
memory T-Cell is slightly different that the other in terms of the type of virus V! it
can encounter. DENa finds for a match from this huge pool of naive T-Cells and
activates it. This process spawns activated memory T cells targeted towards Va.

1CD8 T-cells CD8T (V) recognize only antigens of V , since they are virus-specific.

36

9. CD4 + Ta then moves through the lymph vessel towards the site of infection whew
it meets the exhausted Macrophages MFGexh and activates them back to normal
MFG.

10. MFGs will recover their function and contribute with CD8 T memory cell to eradi-
cate the secondary infection.

11. Depending on TIS, cells may be re-generated (cellular replication) to cope with the
fact that some amount of C(TIS) infected cells were killed; replication may accelerate
to re-establish some stable number of cells, or may not take place at all, depending on
TIS. For example, cells of the nervous systems cannot be replicated (perennial cells),
hepatic cells can, but only as a response of a serious damage and up to some extent
(stable cells), blood cells are continuously replicated (labile cells). If the damage
is too vast, even tissues with labile cells may not be able to restore at the healthy
situation holding before the virus infection.

4.2 Requirements

The first requirement is that the system has to be scalable to accommodate a large number
of agents. Centralized systems as we have discussed earlier is not enough for this simulation.
The next more important requirement is the fact that cells and all other actors in the
immune systems are autonomous entities with very specific goals. That is the reason why
an agent based development tool is suitable for the development. All immune cells are
mobile, so the platform that to be chosen has to support agent mobility. For the virus
we need a feature of the platform where any agent can be cloned at any given state. And
finally, since the entities can interact with each-other in biology through sending chemical
signals, we need our software counterpart to deliberately communicate with each-other in
order to share information.

4.3 why choosing JADE for Modelling the Scenario

Given these requirements there are several reason for choosing JADE as the framework for
developing this model.

• JADE2 [BCG07] is a widely used agent framework. By being based upon Java, it is
easy to learn and to integrate to existing solutions.

2https://jade.tilab.com

37

https://jade.tilab.com

• JADE is structured around the idea of agents, behaviours, and containers. Agents
follow the standard meaning, as main actors of the system.

• Each agent runs on a different thread, and it communicates with the other agents
through FIPA3 compliant messages.

• Behaviours denote how the agents act, and how they achieve their goals. Containers
represent the abstract environment where the agents live, and can be distributed over
multiple machines.

• It is important to note, that agents can move amongst different containers. This is
going to be exploited in the project to simulate the passage of viruses and lymphocyte
amongst different cells.

• Note that, since the containers can be deployed on different machines, the agents
not only move, but their computations move as well. This aspect is of paramount
importance in case the system to model becomes too big to be handled by a single
machine; as it would happen for a realistic immune system comprised of millions of
cells.

3http://www.fipa.org

38

http://www.fipa.org

Chapter 5

Design

The model has been designed to be a highly scalable and distributed agent-based Immune
System Simulator. Even though in this thesis we only focus on couple of simple sub-
systems of the overall immune system’s response, we tackle all the fundamental aspects of
its full engineering. Specifically, we address how to represent the main immune system’s
components inside JADE. There are two distinct parts of the design from the point of view
of the simulation, a physical part which consists of actual biology entities (represented in
JADE as agents) and a meta-physical part which consists of Agents that are present in the
simulation for helping the biological agents with initiation and computation.

The physical part consists of a grid made with Auxiliary containers which forms the plat-
form for agents representing the biology (Cells, T-Cells, Macrophages, Virus, Dendritic
Cell and Lymph Vessel Agent) to interact with each other depicted in the Figure 5.1.
Moreover, some of these agents can move along the grid following the movement rules set
for the simulation, more about this will be discussed in the following sections.

However, there exists a meta-physical part of the model outside the grid. Agents like
Initiator Agent, CD4TCell Manager etc. belong to such part and are discussed in the
Implementation Chapter [6]. They are usually there to provide utility to the agents living
in the grid.

In this chapter we discuss about the design choices we made while modeling the Grid
System, the Innate Immune System, the Adaptive Immune System, and the Virus.

39

Figure 5.1: The Biological Model.

5.1 The Grid System

Each cell in the model does not live in an isolated island, rather is connected to other
cells. This aspect of neighbourhood has been mapped into the model by implementing the
concept of a grid-based system. A grid at it’s unit level consists of a JADE container and
a cell agent living inside that container. The total number of unit grids define the size of
the Universe. In a typical 2-dimensional square-grid system the size of the universe will
be the square of the number of unit grids present on any side. This is a model parameter
and can tweaked to generate a grid with desired size. For example, in a 5× 5 grid-system,
the total number of grids will be 25, where each side of the grid has 5 unit grids depicted
in the Figure 5.2.

There are multiple options that cone can choose from while designing the Grid. One of
these options is to choose a grid where all of the Cell Agents live inside the same machine
sharing the same pool memory. In this choice, all cells are created inside a single container
and thus there is a centralized record about the positions of the cells. This is a good choice
for a simple design but the problem arises when we increase the size of the universe by
increasing the number of Cell Agents in it. This possibility has been explored by us in this
article. [SBV22]

On the other hand, in a decentralized approach, each Cell Agent can be created in a single

40

container. The choice of JADE as a Framework1 for developments allows us encapsulate
these Cell Agents in a JADE Container. The Cell Agent will then use the available compu-
tational resources in an isolated environment. The JADE Platform2 also allows us to have
these containers distributed in remote machines or in the local machine itself providing a
higher degree of scalability. Unlike the centralized design, this design choice there does not
limit the size to the universe since it is not limited by the computation power of a single
machine. But poses other challenges like keeping the location information which is neces-
sary to establish the notion of direction in the grid and neighbourhood for a cell since there
is no centralized record maintaining this information. We can always define a centralized
record and store it in a machine but that defeats the very purpose of the decentralization.
In our model we have approached this problem by storing the neighbouring information of
a cell agent locally in its own memory. We will discuss more about this next.

Figure 5.2: Representation of a Grid with Cells, Lymph Network, Mobile and Immobile Agents.

1An abstraction in which software providing generic functionality can be selectively changed by addi-
tional user-written code, thus providing application-specific software.

2A platform is a set of hardware and software components that provide a space for developers to build
and run applications.

41

5.1.1 Modelling the Cell

Cells are amongst the most important and fundamental building blocks of our model. They
do not only provide a platform for various agents to communicate and mobilize across
containers, but also work as an entry point for a pathogen in the simulation. Since cells
are a part of the overall complex biological system, they have to keep track of infections,
so that the immune response can be triggered to fight off the intruder.

Each cell in the model will interact with different actors present in the model like the
Dendritic Cell, the Phagocyte, various T-Cells and the virus [Fel72]. Depending upon the
type of agent it is interacting to, the interaction time will change which is a biological
phenomena. The Cells in our model can be tweaked to exert this by manipulating the
associated parameters.

Every Cell in an organism contains nearly similar genetic signature. This genetic signature
which is represented in terms of genes which are usually collections of DNA base pairs.
They vary in size from a few hundred DNA bases to more than 2 million bases in a human
[GKQ16]. These genes dictates the behaviour of the cell throughout its lifetime. Thus
changing the gene will lead to changes in the original behaviour of the cell. In our model,
the genetic signature is carried by a sequence of binaries and stored locally in the memory
of the Cell Agent itself [6.3.2].

As discussed here in 5.1, our model is decentralized. In this situation if an Agent need to
move from one Cell to another in the grid, it has to to know the location of the next cell it is
moving to. But, since there is no centralized record of the location of Cell Agents, the Agent
in doubt can not make a query to any centralized entity to get the next location. In order
to tackle this problem, at the initiation stage (which we will discuss in the implementation
section, 6.3.1) the information about the neighbouring location of a current cell is stored
locally in the memory of the Cell Agent in question. This information not only provides a
sense of direction for the Mobile Agents [6.2] but also helps various cells to communicate
among themselves.

According to what happens at the biological level, depending on the state of the infection,
every cell adapts to a different behaviour at run-time.

Healthy

At the beginning of the simulation, each Cell Agent is healthy and has not been infected by
any virus, yet. In this state, the Cell Agent listens for communications from any possible
agents that are local to that container, including (possibly) a Virus Agent. In this phase, a
Virus Agent can clone itself into the Cell Agent’s container. Afterwards, the Virus Agent
performs modifications in the Cell’s genetics triggering the infection.

42

Infected

When a Cell is infected by a Virus Agent, it isolates itself and can not interact with
other Virus Agents any longer. If Macrophages, or CD8 T-Cells (designed to detect the
pathogen), are located inside the Cell Agent’s container, they can kill the pathogen. When
this happens, they can signal a repair command for the damaged genetic signature of the
Cell, which upon taken an action, revives the cell back to it’s healthy status. By that
point, the process of infection can restart.

Regenerating

After the Cell has been killed by the T-Cell Agent, the Cell Agent can start a process of
rebirth (induced by neighbour cells). Hence, a new Cell Agent is created to substitute the
previously killed one. After that, the cell is considered healthy again and the process can
restart.

We have to point out that the act of regenerating a new cell is not a trivial process, and is
not always possible in real life scenarios. Indeed, not all cells in the human body can be
regenerated; an example are brain and heart cells, which once they are lost, for any reason,
are not regenerated by the body (causing the affected organ to function in a more limited
way, i.e., never fully recovering). In this model, we are currently focusing on cells that can
be regenerated, according to some regeneration factor (which of course would depend on
the typology of the cell).

Being a part of the grid-system the Cell Agent also holds the information about whether
a lymph Vessel Agent is present locally or otherwise. This information is later on commu-
nicated with a Dendritic cell or a CD4+ T-Cell to let them either enter or exit the lymph
vessel.

The presence of any exhausted Macrophage is also recorded by the Cell Agent. This
information is then shared with any CD4+ T-Cell willing to stimulate a Macrophage. Once
this stimulation proceeds, the state is updated by the Cell Agent itself to accommodate
any further exhausted Macrophages.

5.1.2 Modelling the Lymphatic System

Lymphatic system is one of the most important part of the immune system that is composed
of lymph nodes and lymph vessels. Lymph vessels work as the high connectivity lane for
the lymphocytes to travel to and from the lymph nodes to the site of infection. The motion

43

of the lymphocytes in these vessels are typically directional in nature. For example, if a
Dendritic Cell wants to get to the lymph node while it is at the infection site it will look
for a near-by lymph vessel and then follow it down to the lymph node which not only saves
crucial time to reach the lymph node but also provides a path for the Activated CD4+
T-Cell to traverse from the node to the infection site very quickly.

Lymph Vessel

The Lymph Vessels are introduced by creating the Lymph Vessel Agents that live locally
with the Cell Agents in a specific container in such a way that they form a network. Every
Lymph Vessel Agent keeps the information about the next Lymph vessel location, and so
on. It also keeps information about any neighbouring lymph node and once it is asked by
a Dendritic or a CD4+ T-Cell, it transmits both of these information to the later. This
allows Dendritic (resp. CD4+ T-Cell) to enter the Lymphatic System. The movement
time of these agents in the lymph vessel is quite low due to the directional nature of the
lymph-movement. The direction itself is decided by the vessel agent. The network of these
vessels typically spans across the entire grid making sure the least amount of untouched
regions.

The choice of such a network is also very important since it dictates the overall reaction time
of the Adaptive Immune Response [5.3]. There are several ways to imprint this network
of vessel Agents onto the grid. One can simply specify the location of the containers
containing Vessel Agents and that will make the container a lymph containing container.
But then, these containers have to be connected in order to make it a network which
requires one record to be maintained centrally. But, since our model is decentralized in
nature, we have oped for a solution where we implement the lymph network by following a
mathematical equation in the initiation phage. And since, the model is in 2-D realm, any
bivariate3 mathematical equation will be a suitable choice.

For example,
x = y (5.1)

i.e., a cross-diagonal path can be chosen as a Lymph Vessel path; where coordinates of
each and every individual Vessel Cell will follow (5.1) relationship.

Lymph Node

The end-point of a Lymph network is typically the Lymph Node, which is the destination
for the Dendritic Cells after they have collected virus signature from the infection site. In

3Equation with two variables

44

our previous example, Lymph Network (5.1), a Lymph Node can be set-up at coordinate
[8, 8] in a grid [5.1] with size 9 × 9.

A Lymph node holds an arsenal (billions in number) of native T-Cells with the ability to
neutralize a wide variety of pathogens. Keeping this enormous number of Agents, even
though are inactive, is both computationally and memory-wise expensive. In order to
tackle this problem, we have designed a probabilistic solution with the help of a CD4 T-
Cell Manager Agent. Typically, there is always a chance that a certain match of native
T-Cell could be found (we model that with a parameter that can be tweaked to simulate
desired scenario).

5.1.3 Mobility across the Grid

As we have seen, the model consists of multiple agents with the characteristics of being
mobile or immobile. For example, the Cell Agents and Lymph Vessel Agents are immobile
agents. Indeed, they do not move from one Container to another. On the other hand,
T-Cell, Macrophages, and Dendritic Cell Agents are mobile agents. The Virus Agents
are not mobile, in the typical sense, but they can move amongst adjacent Containers by
cloning themselves.

Since the grid is decentralized, the movement across the grid is settled at a local level. The
movement is possible in the grid with 4-degrees of freedom (North-South, East-West and
2 cross-diagonals). There are two types of movements that are present in all of the mobile
agents in the model: a directed movement and a direction-less movement. In both of these
types of movements, a request has to be made to the local Cell or Lymph Vessel Agent by
a mobile agent to retrieve the neighbouring location of the cells or the lymph vessel.

Directional Movement

As the name suggests a directional moment is a movement which is targeted and performed
by an agent in order to move towards a specific location in the grid. Since our model is
decentralized and distributed, the movement to the next location from current location has
to be guided in order to achieve any directional mobilization. In our model this kind of
movement is only possible inside the lymph network and are directed towards the Lymph
Nodes. Any Agent (CD4+ T-Cell or Dendritic Cell) that wants to get to the lymph nodes
are guided by the vessel agent present in the Vessel Containers (building block of the
Lymph Network).

45

Direction-less Movement

On the other hand, the direction-less movement as the name suggest does not have any spe-
cific direction of movement. This behaviour is exhibited by certain Agents while searching
for something in the grid. For example, while the Macrophages and CD4+ T-Cells search
for virus, the Dendritic Cells search for both virus and Lymph Vessels, the CD8 T-Cell
search for exhausted Macrophages in the grid. All of the mentioned movements are ran-
dom in nature. Which means, these agents while in this behaviour, can choose the next
location of movement at random from all 8 possible directions. And since the local cell
agents already contain the information about all 8 of its neighbours (discussed earlier in
5.1.1), the agent in question can just query the local Cell Agent in order to retrieve these
locations.

5.2 The Innate Immune System

The primary job of the Innate Immune response is to quickly detect any pathogen and
neutralize it in order to completely eliminate or reduce the spread of the infection. There
are multiple actors involved in this type of immune response, such as Phagocytes like
Macrophages and Neutrophils, Dendritic Cells, Natural Killer Cells. One thing to note
here is that the Dendritic cells belong to innate immunity but strictly interact with CD4
and CD8 T cells which belong to Adaptive immunity, thus, to keep the cohesion of doc-
umentation CD8 T-Cell is included in this section and Dendritic Cell is included in the
Adaptive Immune System section [5.3.1].

The goal of creating this model has always been to simulate various scenarios where we
closely replicate the corresponding biological phenomenon with an acceptable level of ac-
curacy. The underlying biological model in question is very complex in nature and have
more than 8 (with major contribution and many more with minor contribution) different
immune cells namely, Macrophage, Neutrophil, Eosinophil, Basophil, Mast Cell, T-Cells,
Monocytes and Natural Killer Cells to name a few. First of all, implementing all of which
is time consuming and the complexity of their behaviours are beyond the scope of this
thesis. Rather, we have focus on the usability of JADE as Framework to model some part
of the vast immunology while not diverting far from our primary goal mentioned earlier.
One important point to be noted here is the fact that other than the Macrophages, T-Cells
and Mast Cells, all of the immune cells are short lived and lasts at most a month while the
lifetime of these three in the time frame of years. On the other hand, the concentration of
the Mast Cells is very low in number (< 1%) in adult human [MWWK18].

Keeping this in mind and after discussing the importance of these two agents in the entire
Innate Immune Response with with Professor Chiara Vitale from the Department of Ex-

46

perimental Medicine, University of Genova, that co-supervises this thesis and brings her
experience as a biologist, we have focused mainly on implementing Macrophages and CD8
T-Cells in our model as a part of Innate Immune System. This choice does not only give
us a very close resemblance of the overall behaviour of an Innate Immune System, but also
simplifies such complex system enough to be able to be encoded with software agents.

5.2.1 Macrophages

The Macrophage Agents are agents born to control virus spreading and to improve immune
response. They keep on moving in the tissue unless they find a Virus or dying virus
infected cells ” it would be a little more correct and you could anyhow associated these
concepts to virus unit cell killing whether it is instrumental for your system at the moment.
The immunity obtained from Macrophages is typically not related to any specific type of
pathogen, these are general purpose killers. In terms of biological behaviour, there is a
limit on how many Virus units a Macrophage can kill before it gets exhausted and stops
killing. This limit exists in order to keep the collateral damage caused by the massacre
low.

Based upon these two scenarios the behaviour of the Macrophages can be categorized in
two different states, an Active State and an Exhausted state.

5.2.1.1 Active State

In an active state the Macrophage Agent is mobile in nature, although the direction of
motion is random. Upon moving to a new Cell, it looks for any Virus Agent present in the
container by asking the Cell Agent for its genetic signature. The Cell Agent, as we have
mentioned earlier, changes its genetic signature when infected [5.1.1]. This action by the
Cell Agent allows the Macrophage Agent to possibly detect a local infection in the Cell
Agent (i.e., in its container). If that is the case, the Macrophage Agent makes an attempt
to kill the virus by engulfing it. Although it is the case most of the time, sometimes
random mutation in the Cell Agent’s genetic signature can trigger this behaviour. This
phenomenon is very common in nature which is generally due to the environmental reasons
like ultra violet radiations or chemicals that the organism has been exposed to. Usually,
some minor part of a cell’s genetic material (DNA or RNA) is altered by these factors.
Most of the time this is harmful and quickly been repaired by cellular proteins as a part of
cell’s internal mechanism. But not very often, these repairs are omitted and when enough
of these accumulate, it can cause cancer [TV15].

47

5.2.1.2 Exhausted State

In this state the Macrophage Agent needs a stimulation from the CD4+ T-Cell in order
to revive its killing behaviour once again. This phenomenon has been modeled in the
simulation by implementing a limit on the kill stats of the Macrophage Agent. This limit
is a model parameter and can be tweaked to simulate a variety of immune conditions. Once
this limit is reached, the Macrophage Agent shades its mobility and settles down to its last
kill site to enhance the chance of being revived by a CD4+ T-Cell Agent afterwards. At
this point, it informs the local Cell Agent about its presence in that container as discussed
earlier in [5.1.1] and waits for a stimulation signal. Once it is stimulated, it updates the
cell about this and moves on into the grid to continue the killing [5.2.1.1].

The concentration of these white blood cells (i.e., Macrophages) varies widely in a human
(due to age, sex, genetics, any underlying medical conditions, drug usage, nutrition and
stress level) which impacts his/her immunity strength against any pathogen, in general
[MWWK18]. In our model, the amount of Macrophages is identified by a parameter
which can be tweaked to simulate a specific immunity in the system. Like in biology, the
distribution of these Cells in the model is uniform across the grid in the beginning of the
simulation.

5.2.2 CD8+ and CD4+ T-Cells

CD8 T-Cells are results from an adaptive immune response from a previous infection. After
an infection is over an organism keeps some of the CD4+ T-Cells in their body in order
to fight similar type of infection in future, which makes the organism immune to that type
of pathogen. This type of immunity can be artificially achieved by vaccination as well.
But depending upon any immune condition, the concentration of these cells may vary.
Since they result from a previous infection, every CD8 T-Cell can only target a specific
type of future infection and since an organism can have multiple types of infections from
multiple pathogens in the course of its lifetime, there are a huge variety of these cells that
are present in that organism [Sig16].

The complexity only increases when we include the time scale into the picture. The immune
response in a present infection by the same pathogen will be much intense in case of an
recent infection and less intense or even none in case of an infection happened years ago.
In other words, the concentration of each variety of CD8 T-Cell is non-uniform in nature
and in some cases there might not even be any CD8 T-Cell present in the system at all to
fight off the current infection [Sig16].

This complexity has been modelled by a parameter which decides the percentage of the

48

specific type of CD8 T-Cells present in the simulation to fight off the current infection. This
parameter can be tweaked accordingly in consecutive simulation runs in order to simulate
a variety of situations including one where the host is vaccinated prior to the infection.

Prior to the simulation run, the CD8 T-Cells are initialized with the type of pathogen
it can encounter at run-time depending upon the parameter discussed earlier, and are
uniformly distributed in the grid system [5.1]. Once the simulation starts a CD8 T-Cell
moves around in the grid communicating with the local cell to check if the genetic signature
has been altered by any pathogen. If it has been altered, it then tries to evaluate its ability
to encounter the specific pathogen. Once it is confident about the signature match, it
attempts to encounter the said pathogen. Upon failure, it moves on and repeats the said
behaviour.

5.3 The Adaptive Immune System

Adaptive Immunity is also known as Acquired Immunity or Specific Immunity which is
exclusive to vertebrates and is a subset of the Immune System. It’s primary job is to create
a long time immunity from past infections in order to quickly fight-off a new infection from
a similar type of pathogen. Very similar to the Innate Immune System, there are many
actors involved in this type of immunity. For example, Lymphocytes like B-Cells, T-Cells
(Both CD8 [5.2.2] and CD4+), Dendritic Cells, and so on [MWWK18].

Although classified as two systems of immunity, the innate and the adaptive immune
system are very much interconnected through the behaviours of their actors. which means,
one Agent from one type of immunity triggers some behavioural changes or activates some
other agent from the other type of immunity. In the Innate Immune System [5.2] discussed
earlier, we have narrowed down our focused on the Phagocytes and the CD4+ T-Cells. This
has helped us to narrow down our focus on implementing the Dendritic Cells and CD4+
T-Cells in our model which are the ones that are been mostly affected by their counter
parts in Innate Immune System [MWWK18]. This choice of these actors not only gives
us a very close resemblance with the overall behaviour of an Adaptive Immune System
but also simplifies this complex system enough to be able to be encoded with the help of
software agents.

5.3.1 Dendritic Cells

Dendritic Cells work as the intelligence office of the Immune System. While the Macrophage
and CD8 T-cells are busy fighting the infection, the Dendritic Cell moves around and gath-
ers information about the infection. The primary goal of a Dendritic Cell after detecting

49

an infection is to recruit more CD4 T cell and induce their activation [5.3.2]. The CD4+
T-Cells can only be activated against a specific type of pathogen and we will discuss more
about this in the Section 5.3.2. For this reason, the dendritic cell needs to carry the specific
signature of the pathogen to the Lymph Node [5.1.2].

The behaviour of this agent changes drastically depending on its state. Below we will
discuss about these states and the behaviours of the Dendritic Cell associated with these
states.

5.3.1.1 Virus Detection

The Dendritic Cell moves from one Container to another while in communication with
the local Cell in that Container. If it finds any discrepancy it tries to decode the virus
signature from the genetic signature of the Cell Agent.

In an actual biological system, the Dendritic Cell synthesizes and express a MHC Class-II
molecule outside their cell membrane very specific to the type of pathogen it has encoun-
tered. To put it in other words, there is a one-to-one mapping between the signature of
the pathogen and the type of MHC Class-II molecule being synthesized. In our model the
Dendritic Cell Agent directly stores the viral signature.

5.3.1.2 Mobility towards Lymph Vessel

Once the Virus signature has been captured, the Dendritic Cell starts roaming around
looking for a nearby Lymph Vessel Cell. Once it stumble upon such a Container with a
Lymph Vessel Agent present locally, it asks the Cell Agent in that container to let it enter
the Lymph Network [5.1.2].

5.3.1.3 Destination Lymph Node

Since the mobility inside the Lymph Network is directional and managed by the Lymph
Vessel Agent itself, upon entering the Lymph Network the Dendritic Cell is guided towards
the nearest Lymph Node. On the other hand, the Dendritic Cell keeps a record of the path
it has taken to get to the Lymph node [5.1.2]. This information is necessary for the CD4+
T-Cells to get to the site of infection in record time.

50

5.3.1.4 Activation of CD4+ T-Cell

Once at the Lymph node, the Dendritic Cell keeps looking for a naive T-Cell with the
matching MHC Class-II receptors on its cell membrane. As we have discussed earlier in
section 5.1.2, it is not computationally efficient, if not virtually impossible to keep billions
of T-Cell. For this reason, the CD4TCell Manager Agent has been modeled. This Agent
communicates with the Dendritic Cell and generates multiple copies of CD4+ T-Cell Agents
with the Virus Signature and the information about the path to reach the site of infection
obtained from the latter. Once these T-Cells are created, the goal of the Dendritic Cell is
complete and it stays inside the Lymph Nodes until the end of the simulation.

Depending upon the immune condition of an organism, the concentration of the Dendritic
Cells can vary. In order to cope with this situation, a parameter has been introduced in
our model to tweak the amount of Dendritic Cells present in the grid system.

5.3.2 CD4+ T-Cells

The primary job of a CD4+ T-Cell is to re-activate the Innate Immune System [5.2] by
stimulating the Macrophage s [5.2.1.2] at the site of infection.

There are two main behaviours that has been implemented in the model depending upon
whether it is trying to get to the site of infection or trying to stimulate the Macrophage.

5.3.2.1 Movement Towards the site of Infection

Once a native T-Cell has been activated by the Dendritic Cell [5.3.1.4] it begins its journey
to get to the site of infection with the path-information collected from the latter. This
movement is a directed movement till it leaves the Lymph Network. At the junction, where
the Lymph Vessel ends according to its path, it communicates with the local Cell Agent
to let it enter the tissue. The motion of this agent inside the tissue is directionless [5.1.3].

5.3.2.2 Stimulating Macrophages

Outside the Lymph Vessel the CD4+ T-Cell Agent communicates with the Cell to gather
information about any available exhausted Macrophage Agent [5.2.1.2] locally. If that
is not the case, it continues its search. On the other hand, if it stumbles upon a Cell
with an exhausted Macrophage parked in, it communicates with the latter. This act of
communication stimulates the Macrophage which flips its state to Active [5.2.1.1]. Once

51

the stimulation process is complete, the T-Cell sends a state update signal to the local Cell
Agent.

The number of copies of CD4+ T-Cells are controlled with a parameter in the model which
can be tweaked to simulate various immunological condition in the simulation.

5.4 Model of Virus

The Virus Agent mimics a virus in real life whose goal is to replicate itself exploiting the
resources of the host cells. Differently from the Macrophages and T-Cells, the Virus Agent
is not a mobile agent. In fact, it can only move by replicating itself to the adjacent cells.
Like it happens in nature, the Virus Agent has a replication factor, which defines how many
copies the Virus Agent can make of itself before destroying the host cell. Such replication
factor is an input parameter of our model, and it can be customised to simulate different
replication scenarios. The behaviours of the Virus agents can be summarized into three
distinct natural actions.

5.4.1 Infecting a Cell

The Virus Agent is spawn in a random container in the grid at the beginning of the
simulation (naturally multiple viruses can be spawn at the same time). Subsequently, the
Virus Agent asks the cell in such container to change its own antigen peptide sequence by
marking that the virus is now present in that cell.

5.4.2 Replication

Once the infection of the cell is completed, the Virus Agent starts replicating to the neigh-
bour cells. This is obtained by spawning a random number (well within the replication
factor) of instantiations of the Virus Agent in a random set of neighbour cells. Once a
new Virus Agent is created inside a neighbour cell, then the same process described above
is reiterated (i.e., infection and replication, in this order). Since a cell could have been
previously infected by another instance of the same virus, the Virus Agent also checks
if the Cell Agent can, or not, be infected. In case, this is not possible, then the Virus
Agent stops replicating and dies. Otherwise, it infects the Cell Agent and continues its
replication.

52

5.4.3 Terminating The Cell

After a certain amount of time (which can be parameterised in the model), the Virus Agent
kills the host Cell Agent and thereby commits suicide. Hence, once the resources of a cell
have been completely consumed by the virus, the virus dies (i.e., the corresponding Virus
Agent is killed).

53

Chapter 6

Implementation

6.1 The Universe

The Universe class provides an abstraction for the simulation. A universe object is
created from the same in every simulation with a given size. The replication factor of a
virus that has to be introduced in the simulation and the strength of immunity against that
specific virus is as the other two input parameters. Once the Universe class is instantiated,
the start() method can be invoked. This method both initiates and starts the simulation.

Once the start() method is invoked, the simulator creates the Grid with the dimension
provided. Afterwards, it also creates all of the HashMaps 1 [e.g. 6.1.1.1, 6.1.1.2, 6.1.1.3 and

6.1.1.4]. Then with the help of the Container Controller HashMap and Controller Grid
Map the Cell Agents are placed inside the Auxiliary Containers and with the help of the
Lymph Coordinate Map the Lymph Vessel Agents are placed in the Grid.

Since the model is distributed, no centralized record of locations like the HashMaps men-
tioned above can be used by any Agent after the initialization phase is over. For this
reason an Initiator Agent [6.3.1] is created; it initiates the Cell Agents [6.3.2] and Lymph
Vessel Agents by introducing them to their neighbouring Cells or Lymph Vessels to store
the neighbouring locations locally which enables mobility across the grid for the Mobile
Agents [6.2] once they are active.

Once the initiation phase is complete, all of the Mobile Agents are created in the Auxiliary
Containers and the CD4TCell Manager is created inside the Primary Container. The Virus
Agent needs to be Created with the help of the Virus Generator [6.1.2.3] before Creating
the CD8 T-Cell [6.2.4] since it requires the generated Virus Signature to be able to create

1A HashMap stores information in a (key, value) pairs. Once stored, any specific value can be accessed
by its key.

54

the immunity against the generated virus. The number of these Agents decide the strength
of immunity against that specific virus in a simulation and taken as a parameter input while
instantiating the Universe class .

The simulation, while running, can be safely terminated at any stage by applying the
stop() method on the universe object .

6.1.1 Various Maps in the Universe

At the beginning of the simulation in order to properly organize the structure of the Grid
System [5.1] and the Lymph Network [5.1.2], some HashMap s are created.

6.1.1.1 Container Controller Hash Map

A Container Controller Hash Map is a HashMap of container names assigned by the uni-

verse and the controller of Auxiliary Containers (a.k.a., JADE Container [2.3.1.1]) that
form the base of the grid-system [5.1].

6.1.1.2 Controller Grid Map

A Controller Grid Map is a HashMap of Auxiliary Container Controllers from the grid

and their corresponding coordinate [5.1.3] which is assigned by the universe following the
possible Movements [6.1.2.1] in the Grid [5.1].

6.1.1.3 Lymph Coordinate Map

Lymph Coordinate Map is a HashMap containing the coordinate of a Lymph Vessel as-

signed by the universe following the Lymph Map [6.1.2.2] and its name which allows the
Initiator Agent [6.3.1] to setup the Lymph Network [5.1.2].

6.1.1.4 Lymph Path Map

Lymph Path Map is a HashMap of the Auxiliary Container names and their Container
Controller which is used by the Initiator Agent to form the Lymph Network.

55

6.1.2 Laws of the Universe

6.1.2.1 Movement

The Movement class dictates how the mobility is implemented in the grid. The move-
ment directions are represented according to the coordinate changes if moved in a certain
direction. Let us discuss about it using the Figure 6.1.

In the grid, any unit step at any direction leads to a new unit grid. If a mobile agent is
stationed in an unit grid (represented by Orange), it has 8 possible unit grids (represented
by Purple) as options where it can move. Any unit move in east direction increases the
x-coordinate of the mobile agent by one unit, and any move in south direction increases
the y-coordinate by one unit. Similarly, any move in the west direction decreases the
x-coordinate of the agent by one unit, and any move in south direction decreases the y-
coordinate by one unit. These are the basis movements. Any other movement for example,
south-east is equivalent to moving east by one unit and then moving south by one unit, is
basically a linear combination of all basis movements.

Figure 6.1: Movement in the Grid.

Once the movements are defined, a public method getAdjacentContainerControllers()

can be called with the current Container Controller as a parameter which computes the
possible movements and returns an ArrayList of neighbouring Container Controllers in
all possible directions.

56

6.1.2.2 Lymph Map

The Lymph Map class dictates the blue-print of the Lymph Network [5.1.2] in the grid.
Given a coordinate it returns the coordinate of the next Lymph location. This information
is then used by the Initiator Agent to set-up the Network of Lymph Vessel Cells and Nodes
[6.3.1]. As discussed in Lymph Vessel Design [5.1.2], any suitable bivariate mathematical
equation can be used to design the network. Here is the representation of the equation
used in our model.

/* vessel coordinate Equation x = y */

int dx = 1;

int dy = 1;

int nextVessel_x = current_x + dx;

int nextVessel_y = current_y + dy;

int[] nextCoordinate = new int[] { nextVessel_x , nextVessel_y };

Listing 6.1: Representation of a Mathematical Equation.

6.1.2.3 Virus Generator

With the help of Virus Generator it is possible to generate a variety of Viruses with
different features that determine how a virus behaves in a simulation. The behaviour of a
virus depends on multiple parameters which includes the replication factor of the virus, how
much time it takes to replicate, how efficient is the virus infecting its host Cell Agent, and
the time it takes to exhaust the host’s resources (thus killing it). All of these parameters
associated with the Genetic Signature [5.4] of the virus, to put it in other words, there is
an one-to-one map between the values of these parameters and the genetic signature of the
Virus Agent.

int virus_replication_factor;

int virus_cell_communication_time = 2000 * Constants.SIMULATION_TIME_SCALE;

int virus_replication_time = 20000 * Constants.SIMULATION_TIME_SCALE;

int time_to_kill_the_cell = 100000 * Constants.SIMULATION_TIME_SCALE;

Listing 6.2: Parameters of the Virus.

Given all of these parameters and an Auxiliary Container Controller, a Virus Agent
can be generated inside the grid by calling a public method generateVirus() on a
virusGenerator object which returns the Genetic Signature of the generated Virus.

After a Virus Agent is generated, it is in an inactive state, which means all of its behaviours
are not active yet. In order to activate the Virus, the activateVirus() method has to be
called which internally invokes a start() method (provided by the JADE Framework) on
the virusAgentController which activates the virus behaviours.

57

public void activateVirus () {

try {

virusAgentController.start();

} catch (StaleProxyException e) {

e.printStackTrace ();

}

}

Listing 6.3: Method to Activate the Virus.

6.1.2.4 Constants

The Constant class stores different constant parameters that do not change in a single
simulation like the original Genetic Signature (the DNA) of the Cell Agent before it has
been modified by the Virus Agent, the time it takes to communicate among various Agents,
concentration of different agents like the Macrophages, Dendritic Cells, T-Cells etc. Some
of these parameters can be found below.

public static int SIMULATION_TIME_SCALE = 1;

public static final int MACROPHAGE_SLEEP_TIME = 3000 * SIMULATION_TIME_SCALE; // Seconds

public static final int MACROPHAGE_CELL_COMMUNICATION_TIME = 100 * SIMULATION_TIME_SCALE;

public static final int[] CELL_IDENTIFYING_DNA = new int[] {0, 1, 1, 0, 1, 0, 1, 0, 0, 1,

1, 0, 1, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 1, 1, 1,

0, 0, 1, 0, 1, 0};

public static final int CELL_MUTATION_PERIOD = 5000 * SIMULATION_TIME_SCALE; // Seconds

public static final int CELL_REGENERATION_TIME_AVG = 4000 * SIMULATION_TIME_SCALE;

/* Virus Constants */

public static final int[] GENERIC_VIRUS_SIGNATURE = new int[] {10, 25, 20, 22, 15};

public static final int VIRUS_SIGNATURE_LENGTH = CELL_IDENTIFYING_DNA.length * 30 / 100;

// 30% of Cell DNA Length

Listing 6.4: A few constant Parameters.

One more important thing to note here is the fact that each codon of the DNA of the Cell
is represented in terms of a binary rather than a base four system found in nature, where
each codon can be one of A, T , G or C. But this does not impact the behaviour of the
model since a pair of binaries could represent all of these four states of an unit codon.

For example,

{0, 0} =⇒ A {1, 0} =⇒ T

{0, 1} =⇒ G {1, 1} =⇒ C

On the other hand, the the Genetic signature of the virus implies the positions at Cell’s
DNA it introduces a change. For example, if a virus signature is {3, 8, 12}, it will flip the

58

binaries at the 3rd, 8th and 12th position of the Cell DNA. Generally the length of a Virus
Signature is 30% of the length of the Cell’s DNA which means, once a virus infects a Cell
Agent, 30% of its DNA has changed.

All of the parameters related to the concentration of different agents are represented in
percentage of total number of cells present in the model at the beginning of the simulation,
which is equal to the size of the Grid.

The parameter SIMULATION_TIME_SCALE dictates how slow the simulation is been per-
formed. If the value of this parameter is set to 2, all of the communication between the
Agents, the movements of the Mobile Agents and the replication of the virus will take
twice as much time to complete.

6.2 Mobile Agents

Mobile Agents as the name suggests can traverse across the grid with the help of the Cell
Agents [6.3.2] outside the Lymph Vessel or with the help of Lymph Vessel Agents [6.3.3]
while inside the Lymph Network [5.1.2]. One such movement is commenced by applying
the native doMove() method provided by the JADE Framework with the location of
the destination passed as an argument.

6.2.1 Macrophage Agent

At the beginning of the simulation the Macrophages are created randomly inside the grid.
After that the goal of this agent is to search and kill a virus. But as discussed earlier
in 5.2.1 there is a limit on how many kills it can make before it gets exhausted and that
is stored in a variable within the Macrophage class . Depending upon this value the
behaviour of the Macrophage Changes.

6.2.1.1 Searching for a Virus

Search for a virus in the Grid requires the Macrophage to perform multiple OneShot-
Behaviours2 in sequence. First, it has to move to a neighbouring Container by using
the doMove() method then it has to check if the Check if the Cell Agent is alive in
the Container with the help of isCellAlive() method from the AuxiliaryContainer

class or it is already been killed by the virus. If the Cell is alive, then it has to com-
municates with the local Cell Agent through Signature_Verification_Channel by ex-

2OneShotBehaviour is a behaviour that is executed once in an Agent’s Life Cycle.

59

changing ACLMessage . As a reply the Cell Agent then sends its DNA as an Array of

Integers which is then stored by the Macrophage Agent. After that it has to trigger its
DetectingAndKillingVirus behaviour.

6.2.1.2 Detecting and Killing a Virus

Once this OneShotBehaviour is triggered, the Macrophage looks for changes in the DNA
of the Cell by matching it with the ideal DNA sequence of the cell discussed 6.1.2.4. If
an anomaly is found in the genetic code, which essentially due to the presence of a Virus
agent. In that case the Macrophage carries on with killing the virus Agent. In order to
do that the Macrophage retrieves the agentController of the Virus Agent and calls the

native kill() method on in. At this point the kill record is updated by one kill and its
virus searching behaviour is triggered back again.

6.2.1.3 Switching to Exhausted State

Once the kill limit of the Macrophage has been reached, this behaviour is triggered.
In this behaviour the Macrophage loses its mobility. The local Cell Agent is then in-
formed by the through exhausted_macrophage_cell_connection_channel by sending

an ACLMessage .

6.2.1.4 Waiting for a Stimulation

Once the Exhausted state has been triggered, the Macrophage waits for a stimulation from
a CD4+ T-Cell Agent. This behaviour is a OneShotBehaviour. Here, the Macrophage
keeps listening to cd4t_macrophage_communication_channel unless a message from the
CD4+ T-Cell Agent is received. Once a message is received and the message content
is stimulate_macrophage , the Macrophage is stimulated and resumes its behaviour of
searching and Killing the virus.

6.2.2 Dendritic Cell Agent

Similar to the Macrophage Agent, the Dendritic cells are also created randomly inside the
grid at the beginning of the simulation. The Goal of the Dendritic Cell is to present the
virus signature to the CD4+ Cell Manager inside the Lymph Node. This is achieved by
two sequences of OneShotBehaviours. The job of the first sequence of behaviours is to
Search, Detect and extract the virus genetic signature while the job of the final sequence

60

is to search a Lymph Vessel, enter the Lymph Network, reach the Lymph Node and sate
up a communication with the CD4+ T-Cell Manager.

6.2.2.1 Searching for a Virus

The searching for the virus behaviour is similar to that of the Macrophage Agent discussed
in 6.2.1.1. But instead of Killing the Virus, Detecting and extracting behaviour is triggered.

6.2.2.2 Detecting and Extracting Virus Signature

Once a Virus Agent has been detected, the Dendritic Cell scans through the Cell’s DNA
looking for the places where the change has been made by the virus. From our previous
discussion in 6.1.2.4 we know that the virus imprints its signature by changing the cell’s
DNA sequence at specific location. Thus recording these changes during the scan extracts
the virus signature. The Macrophage then stores this signature in an Array and triggers
a new behaviour of searching for the nearby Lymph Vessel.

6.2.2.3 Searching for a Lymph Vessel

Once this behaviour is triggered, the Dendritic Cell starts moving to neighbouring Cells us-
ing the native doMove() method . But this time instead looking for a virus, it contacts the
local Cell Agent through vessel_confirmation_channel by exchanging ACLMessage if
there is any Lymph Vessel Agent present locally in the current container. If that is not the
case, it moves to a new container and repeats the same behaviour. But if it stumbles upon
a container with a Lymph Vessel present inside, a new behaviour (ContactVesselInCell)
is triggered.

6.2.2.4 Entering into Lymph Vessel Network

The Dendritic Cell enters the Lymph Vessel Network by contacting the Vessel Agent present
inside the local Container Vessel_Dendritic_Communication_Channel by exchanging

ACLMessage . The reply is then sent by the Vessel Agent with the information about
the next vessel in the Lymph Network. This OneShotBehaviour terminates once the next
destination is set which triggers the behaviour for moving towards the Lymph Node.

61

6.2.2.5 Reaching The Lymph Node

This Behaviour is achieved by repeating a sequence of two OneShotBehaviours. The first
Behaviour is checking if the current location is a Lymph Node or Otherwise. If it the case,
then the state value is change as the Lymph Node has been reached and the next behaviour
is triggered. Otherwise, The local Vessel Agent is asked about the next Vessel Location
and the Dendritic Cell is moved to that next location using doMove() method and the
behaviour repeats until it reaches the Lymph Node. During this process the Dendritic
Cell keeps a track of its path towards the lymph node by storing these locations in an
ArrayList of Locations.

6.2.2.6 Communicating with the CD4TCell Manager

Once it reaches the Lymph Node, the CD4+ T-Cell Manager in the MainContainer [??]
is contacted through dendritic_cell_c4t_communication_channel . In this communi-
cation, the Dendritic Cell sends both the Virus Signature and the path it has taken from
the site of infection to reach the Lymph Node is sent. But since only serializable can
be sent through ACLMessage , the information has been be serialized by implementing

java.io.Serializable . The example is presented below.

import java.io.Serializable;

import java.util.ArrayList;

import jade.core.Location;

public class DendriticCellInformation implements Serializable{

public int[] virus_signature;

public ArrayList <Location > path;

public DendriticCellInformation(int[] virus_signature , ArrayList <Location > path) {

this.virus_signature = virus_signature;

this.path = path;

}

}

Listing 6.5: Serialization of Information for ACLMessage.

6.2.3 CD4+ T-Cell Agent

The CD4+ T-Cells are created inside the MainContainer by the CD4 T-Cell Manager
Agent once it is been contacted by the Dendritic Cell. The Main goal of these agents are
to get to the point of infection as quickly as possible in order to stimulate the exhausted
Macrophage Agents. During the creation the virus signature, the Location of the Lymph
Node and the path to reach infection site are stored inside them.

62

6.2.3.1 Moving to Lymph Node

The first thing it does after activation is to move to the Lymph Node using the native
doMove() method with the Location provided during the initiation. This behaviour is a
OneShotBehaviour. Once at the Lymph Node the behaviour of travelling to the infection
site is triggered.

6.2.3.2 Travelling to the Site of Infection

Travelling to the site of infection is achieved by performing a CyclicBehaviour3 called
MoveToNextVessel. This behaviour uses the path provided during the initiation of this
agent to get to the end of the vessel and once it has reached there, the behaviour is removed
by native removeBehaviour() method . At this stage an exhausted Macrophage can be
right next resting into the local Container so it triggers a check on the local Cell Agent
about the presence of the Macrophage. The implementation of this behaviour is presented
below.

private class MoveToNextVessel extends CyclicBehaviour {

@Override

public void action () {

if (path_to_site.size() > 0) {

doWait(Constants.CD4TCell_SLEEP_TIME);

doMove(path_to_site.get (0));

path_to_site = new ArrayList <>(path_to_site.subList(1, path_to_site.size()));

} else {

removeBehaviour(this);

addBehaviour(new CheckIfExhaustedMacrophagePresent ());

}

}

Listing 6.6: Code snippet of how does the CD4+ T-Cell move inside the Lymph Vessel Network.

6.2.3.3 Searching for an Exhausted Macrophage

The checking behaviour is a OneShotBehaviour performed by communicating with the lo-
cal Cell Agent through asking_cell_exhausted_macrophage_connection_channel by

exchanging ACLMessage . If the reply is negative, the behaviour terminates triggering a
new search behaviour similar to the one discussed in 6.2.1.1. But instead of looking for a
Virus, it looks for an exhausted Macrophage by travelling across the grid until it stumbles
upon one such Agent. But if the reply is affirmative, it also receives the AID4 of the tar-

3A behaviour which is cyclically executed by the JADE agent (until is not removed).
4Instance of the class that represents a JADE Agent Identifier

63

get Macrophage. In that scenario this behaviour terminates triggering a new Macrophage
stimulation behaviour.

6.2.3.4 Stimulating the Macrophage

This behaviour is composed of a sequence of two OneShotBehaviour. The first of those
is the one which stimulates the exhausted Macrophages waiting to be stimulated[6.2.1.4]
while listening to cd4t_macrophage_communication_channel . This agent then sends

a stimulate_macrophage signal in that communication channel which stimulates the
Macrophage. The implementation of this behaviour is presented below.

private class StimulatingMacrophage extends OneShotBehaviour {

String conversationID = "cd4t_macrophage_communication_channel";

String instruction = "stimulate_macrophage";

@Override

public void action () {

ACLMessage message = new ACLMessage(ACLMessage.INFORM);

message.setConversationId(conversationID);

message.addReceiver(exMacrophageAID);

message.setContent(instruction);

send(message);

addBehaviour(new TellingCellSimulatedAboutMacrophage ());

}

}

Listing 6.7: Code snippet of CD4+ T-Cell stimulating a Macrophage.

The other behaviour which gets triggered at this point is the one that sends an update
signal to the local Cell Agent about this stimulation event using the same ACLMessage

protocol on the channel, telling_cell_macrophage_channel_cd4t .

6.2.4 CD8 T-Cell Agent

CD8 T-Cells are the the targeted killers which are designed to execute a specific type of
Virus Agent identified by their virus signature. This virus signature if fed into these agents
in the initiation stage as discussed in 6.1. In any simulation not all of these agents are
designed to kill the target Virus Agent, hence the number of those which can, defines the
immunity against the target virus. At the beginning of the simulation these agents are
uniformly distributed among the grid, and once activated they starts searching for the
virus in the grid.

64

6.2.4.1 Searching For a Virus

This Behaviour of searching for the virus is very similar to that of the Macrophage discussed
here in 6.2.1.1. Once an anomaly has been detected in the DNA of the Cell Agent, this
behaviour is terminated triggering a new virus signature checking behaviour.

6.2.4.2 Virus Signature Check

This is a OneShotBehaviour and once triggered it scans through the Cell’s DNA looking for
the places where the change has been made by the virus. From our previous discussion in
6.1.2.4 we know that the virus imprints its signature by changing the cell’s DNA sequence
at specific location. Thus recording these changes during the scan extracts the virus
signature. The CD8 T-Cell Agent then checks through the virus signature to find out if it is
capable of neutralizing the virus by comparing this signature with the one that is stored in
it. upon receiving an affirmative result it calls the protected killTheVirus() method
to attempt a kill, otherwise it terminates this behaviour and moves to a neighbouring
container repeating 6.2.4.1. Some implementation of this behaviour is presented below.

if (! Arrays.equals(cellDNAToBeVerified , Constants.CELL_IDENTIFYING_DNA)) {

ArrayList <Integer > differenceList = new ArrayList <>();

for (int index = 0; index < cellDNAToBeVerified.length; index ++) {

if (cellDNAToBeVerified[index] != Constants.CELL_IDENTIFYING_DNA[index]) {

differenceList.add(index);

}

}

int[] differences = differenceList.stream ().mapToInt(i -> i).toArray ();

if (Arrays.equals(differences , virus_signature)) {

try {

killTheVirus(myAgent);

myAgent.addBehaviour(new MovingToNewCell ());

} catch (ControllerException blocked) {

}

}

}

myAgent.addBehaviour(new MovingToNewCell ());

Listing 6.8: Code snippet showing the CD8 T-Cell checking for a Virus signature.

6.2.4.3 Killing the Virus if Possible

Once the killing method is invoked, the agent retrieves the AgentController of the

Virus Agent with a series of operations. First, the ContainerController of the current
Container is retrieved by using native getContainerController() method . And Finally,
by applying the native getAgent() method on currentContainerController object

65

the AgentController is retreaved. Once available without any ControllerException 5,

the native kill() method can be called on the agentController object to terminate
the Virus.

6.3 Immobile Agents

As the name suggests, these type of agents are immobile in the Grid. They can either live
inside the Auxiliary Container (a.k.a., JADE Container [2.3.1.1]) providing the structure
and the navigation to the Grid enabling the Mobile Agents [6.2] to traverse or in the Main
Container (a.k.a., Primary Container [2.3.1.2]) providing utility to the other Agents. Here,
the Virus Agent is an exception, while it is immobile in nature but can spread across the
Auxiliary Containers in the grid by replicating itself to the neighbouring containers.

6.3.1 Initiator Agent

Initiator Agent is the agent that lives in the meta-physical Main Container and initialized
Cell Agent and the Lymph Vessel Agents in the beginning of the simulation, and once the
initiation is complete, it sits idle. This agent is created with Controller Grid Map [6.1.1.2],
Lymph Path Map [6.1.1.4] and Lymph Coordinate Map [6.1.1.3] from the Universe [6.1].
Now let us discuss the behaviours of this agent.

6.3.1.1 Initiating the Cell

With this CyclicBehaviour this agent collects the Location of the Cell Agents present
in the grid. The collection process starts by iterating over the Controller Grid Map to get
the ContainerController. Next, the Cell Agent present in that container is contacted by
sending an ACLMessage on a specific channel where the Cell Agents are listening to. But
in order to do that the Initiator Agent has to activate the Cell Agents by invoking start()

method since they are inactive at the beginning of the simulation. Once Activated, the
Cell Agents can then send their location as a response to the query by this Agent. The
Location is then stored in an ArrayList of Location objects . Once the locations of
all of the Cell Agents have been collected, this CyclicBehaviour is terminated and a new
behaviour is triggered for assigning neighbours to the Cell Agents.

5ControllerException class is thrown when an operation fails on any of the agent controller methods.

66

6.3.1.2 Assigning Neighbours to the Cell

The neighbouring Cell Locations are assigned to the a Cell with this OneShotBehaviour,
which uses the findNeighbourLocation() method with the ContainerController of
the Cell Agent in order to get an ArrayList of Location objects . This method in

tern instantiates the Movement class [6.1.2.1] and invokes the method to discover the
ArrayList of neighbouring ContainerControllers. Then the ArrayList of neighbour-

ing Containers are retreaved from the ArrayList of Location objects stored in while
Initiating the Cell Agent. Once this Location List is ready, it is then sent to the Cell
agent through neighbour_allocation_channel. Now this process is repeated for all of
the Cell Agents in the grid by iterating over the Controller Grid Map. The implementation
of findNeighbourLocation() method is presented below.

private ArrayList <Location > findNeighbourLocation(ContainerController containerController)

throws ControllerException {

ArrayList <Location > neighbourLocationList = new ArrayList <>();

ArrayList <ContainerController > neighbouringContainerController;

Movement movement = new Movement ();

neighbouringContainerControllers = movement

.getAdjacentContainerControllers(containerController);

for (ContainerController eachNeighbourController : neighbouringContainerControllers) {

neighbourLocationList.add(containerControllerLocationHashMap.get(

eachNeighbourController));

}

return neighbourLocationList;

}

Listing 6.9: Implementation of findNeighbourLocation() method.

While iterating, it also triggers a new OneShotBehaviour to inform the concerned cell
about the presence of a vessel agent locally.

6.3.1.3 Telling the Cell Agents About a Local Lymph Vessel

This behaviour checks if the concerned Cell Agent is in the Lymph Path Map with the
help of checkIfCellisaVessel() method . The result is then shared with the Cell Agent
through vessel_cell_connection_channel .

6.3.1.4 Initializing the Lymph Vessel Agents

Initializing the Lymph Vessel Agents is very similar to initializing the cell agents [6.3.1.1]
in terms of retrieving the Location of the Lymph Vessels by using the Lymph Path Map.

67

But instead of putting them in an ArrayList , the Location objects are put in a

HashMap with the vessel name as key and the vessel location as value , and stored in
memory. Once all of the vessel locations from the Lymph Path Map is stored, the behaviour
terminates with triggering a new behaviour to Assign the Next Vessel Location to each of
the Vessel Agents.

6.3.1.5 Assigning Next Vessel Locations

Very similar to the process discussed in 6.3.1.2, this behaviour is also a OneShotBehaviour

and a very similar method findNextVessels() is used to find an ArrayList of the

next vessel locations, given a vessel’s coordinate. Once it is retreaved, the ArrayList is
then sent to the corresponding Vessel Agent. The process is then repeated for all of the
Vessel Agents in the Lymph Network. The implementation of findNeighbourLocation()
method is presented below.

private ArrayList <Location > findNextVessels(String vesselName) {

ArrayList <Location > nextVesselLocations = new ArrayList <>();

int[] currentVesselCoordinate = lymphVesselCoordinateMap.get(vesselName);

LymphMap lymphMap = new LymphMap ();

ArrayList <int[]> coordinatesOfNextVessels = lymphMap.getNextVessels(

currentVesselCoordinate);

for (int[] coordinate : coordinatesOfNextVessels) {

String nextVesselName = null;

for (String vessel : lymphVesselCoordinateMap.keySet ()) {

if (Arrays.equals(lymphVesselCoordinateMap.get(vessel), coordinate)) {

nextVesselName = vessel;

}

}

if (nextVesselName != null) {

Location nextLocation = vesselLocationHashmap.get(nextVesselName);

nextVesselLocations.add(nextLocation);

}

}

return nextVesselLocations;

}

Listing 6.10: Implementation of findNextVessels() method.

6.3.2 Cell Agent

As we have already discussed in 5.1.1, the Cell Agents acts as the functional structure of
the Grid System providing the sense of direction in the grid and thus enabling the mobility

68

in it. In the beginning of the simulation, every unit grid represented by an auxiliary
container, contains one Cell Agent inside it. At this time, although they are present, the
Cell Agents are in inactive state (meaning, none of their behaviours are in action yet) and
do not have any information about their neighbouring Cells’ location, and are waiting to
be activated by the Initiator Agent.

6.3.2.1 Cell’s Initiation Phase

After the creation, the initiation phase begins. In this phase the Initiator Agent gets
the AgentController of these Agents with the help of Container Controller Grid Map and
invokes the native start() method on individual AgentController in order to start them,
which allows any further Communications to be made in between them. The primary goals
at this phase includes first, to send own location to the Initiator Agent, second, storing
the neighbour’s locations, and third, to check if a Vessel Agent is present locally (which is
possible only after the initiation of the Lymph Network). These goals can be achieved by
the Cell Agent by realizing three CyclicBehaviours consecutively.

Firstly, the SendingOwnLocationToInitiator behaviour will perform a communication
between the Cell Agent and the Initiator Agent through tell_initiator_about_location

channel, essentially informing it about the Cell’s Location retrieved by applying native
here() method.

Secondly, the SettingNeighboursLocationWithInitiator behaviour will perform a com-
munication between the same through neighbour_allocation_channel essentially receiv-
ing and storing the ArrayList of neighbouring locations.

Thirdly, the CheckingIFaVessel behaviour will perform a communication between the
Cell Agent and the local Lymph Vessel through vessel_cell_connection_channel after
it has been activated by the Initiator Agent, to set the status about presence of a Lymph
Vessel which information is important for the Dendritic and CD4+ T-Cell agents to figure
out an enter or an exit point into the Lymph Network.

6.3.2.2 In a Healthy Phase

In the beginning of the simulation all of the Cell Agents are healthy and the Cell’s
DNA is unmodified. In this phase all of the normal behaviours of the Cell Agent are
active along with the behaviour to spawn a Virus agent called SpawningVirus. when
this behaviour is active, a virus Agent (As a part of it’s Cloning behaviour) from a
neighbouring Cell can replicate into this cell by sending its genetic information through
Spawn_A_New_Virus_Channel.The Cell Agent can then communicate with the Virus Agent
through Update_DNA_Message_From_Virus communication channel with ListenToVirus

69

behaviour. The Virus can then alter the behaviour Cell Agent by asking it to change its
DNA sequence according to the virus signature sent through this communication chan-
nel. Upon receiving this instruction, the Cell Agent invokes a updateDNA() method that
performs an update on the DNA. This Altered behaviour flags an infection.

private void updateDNA(int[] flipLocations) {

for (int flipLocation : flipLocations) {

if (myDNA[flipLocation] == 0) {

this.myDNA[flipLocation] = 1;

} else if (myDNA[flipLocation] == 1) {

this.myDNA[flipLocation] = 0;

}

}

}

Listing 6.11: Implementation of updateDNA() method.

6.3.2.3 In an Infected Phase

Once the Cell Agent is infected, it can no longer communicate with any new Virus Agent,
since it removes the ListenToVirus and SpawningVirus behaviours from its list of active
behaviours. At this state, it waits for the Macrophage or the appropriate CD8 T-Cell
Agent to terminate the Virus before it is completely exhausted off its resources, and by
that point it is killed by the Virus Agent. On the other hand, If one of these Agents Are
present in the local Container and they have terminated the virus, the cell keeps listening
to a DNA_Repair_Channel as a part of its DNARepairBehaviour in order to receive a
signal to repair its DNA, in that case it repairs its DNA and puts ListenToVirus and
SpawningVirus behaviours back to it’s list of active behaviours which flags a healthy
phase.

6.3.2.4 Common Behaviours in all Phases

Other than all of the behaviours discussed in earlier there are come Behaviours that
do not change depending upon the state of infection. Some of them provides mobility
for Example once a mobile Agent want to traverse into the grid it will ask the local
Cell Agent to send the neighbouring locations through Tell_About_Neighbours com-
munication channel, for this reason, the cell agent keeps listening to that channel as
a part of its TellNeighboursLocation behaviour. On the Other hand if a Dendritic
Cell, after detecting a virus signature, wants to get to a Lymph Vessel, it will communi-
cate the Cell Agent through vessel_confirmation_channel so the Cell Agent keeps a
TellDendriticCellAboutLymphVessel behaviour in its active state of behaviours in or-
der to perform this communication. Similarly, for a situation when a Macrophage, CD8

70

T-Cell and a Dendritic Cell Agent wants communicate with the it to detect an infection
and asking for its DNA, A SignatureVerificationBehaviour is there in the active state
to handle this query.

Rest of the behaviours are to tackle the information about an exhausted Macrophage
Agent. As we have already discussed in 6.2.1, the Macrophage Agent, after reaching its
kill limit, prevents itself from moving to a new container, in that situation the local Cell
Agent needs to be updated, so that when a CD4+ T-Cell arrives in the container, it
can be informed about this situation. For this reason the Cell Agent Has three more
CyclicBehaviours . The First one is SettingExhaustedMacrophagePresence which
updates the presence of an exhausted Macrophage when contacted by the Macrophage
through exhausted_macrophage_cell_connection_channel. Second behaviour commu-
nicates the presence or the absence of such a Macrophage with the CD4+ T-Cell Manager
through asking_cell_exhausted_macrophage_connection_channel. And the final one
is to update the presence of such an Agent when it is stimulated by the CD4+ T-Cell Agent
which communicates with through telling_cell_macrophage_channel_cd4t by sending
ACLMessages .

To summarize, all of the behaviours of the of the Cell Agent Other than the ones required
for the initiation, can be presented with the help of 6.1. Here we find that every behaviours
other than DNARepairBehaviour is active when the cell is healthy. On the other hand, only
the ListenToVirus, and the SpawningVirus behaviour is inactive when the cell is infected.

6.3.3 Lymph Vessel Agent

Lymph Vessel agents are the agents that form the Lymph Network. At the beginning of
the simulation these are created inside the grid following the Lymph Coordinate Map but
are not activated immediately since they do not contain the directional information of the
Lymph Vessel Network. They need the help of the Initiator Agent [6.3.1.4] in order to be
initiated and eventually activated. The behaviours of this agent are the following.

6.3.3.1 Sending Own Location to Initiator

With this Cyclic Behaviour, this agent first retrieves it own location by invoking na-
tive here() method and then immediately sends it to the Initiator Agent when asked
through tell_initiator_about_location this communication channel by sending an
ACLMessage. It has an ArrayList of Locations which is initially empty. This behaviour

keeps repeating until the ArrayList is no longer empty which implies to the fact that
it has been contacted by an Initiator Agent. Once that is the case, this cyclic behaviour
terminates.

71

All Behaviours Healthy Infected

SignatureVerificationBehaviour o o

TellNeighboursLocation o o

TellDendriticCellAboutLymphVessel o o

ListenToVirus o ×

SpawningVirus o ×

SettingExhaustedMacrophagePresence o o

TellingCD4TCellAboutExhaustedMacrophage o o

ListeningAboutMacrophageStimulationFromCD4T o o

DNARepairBehaviour × o

Table 6.1: Cell Behaviours After Initiation Depending Upon its Phase.

6.3.3.2 Setting Next Vessel Locations

With this behaviour, which is a Cyclic Behaviour, Lymph Vessel Agent first listens to the
next_vessel_allocation_channel, for assigning the next Lymph Location in the Lymph
Network. Once a message with an ArrayList of neighbouring locations is received from
the Initiator Agent it stores the it in the memory. If the received ArrayList is empty,
that represent this is an end of the lymph network thus a assigning itself as a Lymph
Node. Similar to 6.3.3.1, once the ArrayList of Locations is not empty, this behaviour
terminates.

6.3.3.3 Telling if Self is a Lymph Node

This CyclicBehaviour is used to inform a Dendritic Cell weather this agent is a Lymph
Node or otherwise. The Agent keeps listening to the lymph_node_verification_channel

for a message from the Dendritic Cell and when queried with tell_if_lymph_node, returns
a reply to the concerned agent.

72

6.3.3.4 Telling Next Vessel Location to Cell

Very similar to the previous behaviour, the purpose of this CyclicBehaviour is to inform
the Dendritic Cell About the next Vessel Location(s). The Agent keeps listening to the
Vessel_Dendritic_Communication_Channel for a message from the Dendritic Cell and
when queried with give_me_next_vessel, returns a reply to the concerned agent with the
next Vessel Location(s).

6.3.4 Virus

The virus Agent is created by the virus generator in a randomly selected Auxiliary Con-
tainer in the at the beginning of the simulation. That Virus Agent has a specific genetic
signature, replication factor, time it takes to replicate and the time it takes to kill the
host, which assigned by the Generator. The virus behaviour can be grouped together to
understand it’s broader goals.

6.3.4.1 Infecting a Cell

This is achieved by sequentially performing two OneShotBehaviours . Firstly, upon in-
troduction to a new container, the virus needs to check if the Cell Agent is alive in that
container or otherwise. If that is the case, the virus agent then contacts the Cell Agent
inside the container through Update_DNA_Message_From_Virus channel and sends its ge-
netic signature, essentially forcing the Cell to change its DNA sequence. Which triggers
the cell to change its behaviour. After this, the Virus starts the preparation for cloning to
the new neighbouring container.

6.3.4.2 Cloning

The Cloning behaviour is also a sequence of two OneShotBehaviours which includes asking
the Cell Agent about its neighbouring locations which is necessary for the cloning process.
In order to retrieve this information, The virus sends a query (“neighbour list”) to the
Cell Agent through Tell_About_Neighbours channel and waits for a reply from the Cell.
Once the Cell replies with its neighbouring location, the ArrayList is stored and this
behaviour is terminated with triggering a new behaviour to start the cloning process.

The Virus Can not clone itself, it uses the resources from the cell to clone. In order to
incorporate that the virus in this model contacts a target Cell Agent, asking it to spawn
a virus agent identical to the current one. The virus also sends all of its parameters as a

73

serializable object by instantiating an object of VirusInformation class . The
example is presented below.

import java.io.Serializable;

public class VirusInformation implements Serializable {

public int[] virus_signature;

public int virus_replication_factor;

public int virus_cell_communication_time;

public int virus_replication_time;

public int time_to_kill_the_cell;

}

Listing 6.12: Serializing the parameters of the virus.

A few of these neighbours are then randomly chosen for cloning following the replication
factor of the virus. Once the cloning process is complete, and all of the resource of the cell
is been exhausted, the Virus starts preparing for the execution of the host Cell Agent.

6.3.4.3 Killing the Host Cell

This is a OneShotBehaviour performed by invoking the native kill() method on the
AgentController of the of the native Cell Agent. By performing this action the virus
also kills itself since without the cell in that container the virus can not survive. This
phenomenon is introduced in the model by implementing the native doDelete() method .
The sample code is the following.

VirusInformation virusInformation;

ContainerController currentContainerController = myAgent.getContainerController ();

String targetCell = "cell.".concat(myAgent.getContainerController ().getContainerName ());

AgentController targetAgentController = currentContainerController.getAgent(targetCell);

targetAgentController.kill();

myAgent.doDelete ();

Listing 6.13: Code snippet of a Virus killing its host Cell.

6.3.5 CD4TCell Manager Agent

The CD4 T-Cell Manager Agent is an metaphysical agent that substitutes the compu-
tationally heavy and memory intensive task of keeping a billion naive T-Cells to find a
match for the virus signature captured by the Dendritic Cell Agent and brought back to
the Lymph Node.

74

6.3.5.1 Communicating with a Dendritic Cell

At the beginning of the simulation it is created inside the Main Container and upon being
contacted by a Dendritic Cell through dendritic_cell_c4t_communication_channel, it
receives the Location of the Lymph Node and the path to get to the site of infection and
stores them in the memory. This is a CyclicBehaviour and once it is contacted by the
Dendritic Cell a new behaviour is triggered to generate the CD4+ T-Cell Agents.

6.3.5.2 Finding a CD4 T-Cell Match

With this OneShotBehaviour the CD4 T-Cell Manager Agent creates the CD4+ T-Cell
Agents inside the Main Container with the communicated information (virus signature,
Lymph Location and the path to get to the site of infection) from the Dendritic Cell and
activates the agents by invoking the native start() method on the AgentController.
The number of these generated T-Cells depends upon the concentration of CD4+ T-Cell
agents defined in Universe.Constants [6.1.2.4]. Below is a snippet of the CD4+ T-Cell
generation.

String agentName = "CD4TCell -".concat(String.valueOf(id));

AgentController cd4TCellController = mainContainerController.createNewAgent(

agentName ,

"universe.agents.CD4TCellAgent",

new Object [] {

virus_signature ,

lymphLocation ,

path_to_site

});

cd4TCellController.start();

Listing 6.14: Snippet code for Generating a CD4+ T-Cell.

75

Chapter 7

Experiments

The final prototype of this project can be found as a publicly available GitHub repository1.
In the current state, the tool can be customised through a list of parameters. Each pa-
rameter influences a different aspect of the simulation, and can be used to model different
scenarios. Some of the available parameters are the following:

• GRID SIZE : the size of the grid of cells.

• PATHOGENS REPLICATION FACTOR: the factor by which the virus multiplies.

• RE INFECTION IMMUNITY STRENGTH PERCENTAGE : The strength of immunity against a
specific pathogen on consecutive infections.

• CELL IDENTIFYING PEPTIDE : The initial peptide of a healthy cell.

• PERCENTAGE OF MACROPHAGE : The number of Macrophages as a percentage of total number
of cells in the system.

• NUMBER OF VIRUS MACROPHAGE CAN KILL: The number of individual viruses an individ-
ual Macrophage kills before it gets exhausted and seeks for a stimulation from the CD4+ T-Cells.

• PERCENTAGE OF CD4TCell : Dictates the number of CD4+ T-Cells as a percentage of total
number of cells in the system.

• PERCENTAGE OF DENDRITIC CELLS : The number of Dendriric Cells as a percentage of total
number of cells in the system.

• PERCENTAGE OF CD8T CELLS : Dictates the number of CD8 T-Cells as a percentage of total

number of cells in the system.

1https://github.com/sanchayan721/Multi_agent_Immune_System

76

https://github.com/sanchayan721/Multi_agent_Immune_System

We also created a Monitor class to dynamically keep track of not only the number of
infected and dead cells but also the virus count. Every 50 milliseconds, such agent collects
the data and stores them into a .csv file. These log files are then used to plot the so obtained
results. Note that, every simulation is stopped when there are no virus or cells left in the
system. We also have to keep in mind that the system is a stochastic in nature, which
means, any of the outcomes of the simulations can not exactly be reproduced. But we can
definitely observe a trend if we perform consecutive simulations with identical parameters.

Experimental Scenarios

Various experimental scenarios can be modelled using the list of parameters discussed
above. First we will run some simulations to observe the behavior of just the Innate
Immune System depending upon the size of the grid and the replication factor of the
pathogen. Then we will simulate some cases where a person is healthy and has a strong
immunity and a person whose immune system is compromised. Finally, we will also run
some experiments to simulate a situation where there is a re-infection after a primary
infection by a single pathogen.

7.1 Experiments with Grid-size and R-factor

Although this set of experiments has less biological importance attached, nevertheless, it
is very important from the system’s performance point of view. Here we are interested in
inspecting both the infection and death rate of the cells in the course of the simulation.
Every consecutive simulation is created with an increasing number of containers (i.e., cells),
one Virus Agent and one Macrophage Agent.

• Grid Size — Given an assumption of a square-shaped universe, the grid size repre-
sents the length of a side in unit grid.

• Replication factor — The replication factor of the virus (e.g., if the replication fac-
tor is n, then the virus can make at-most n copies of itself to the adjacent containers
in each cycle).

At the beginning of each simulation, the Virus Agent is dropped in a random container and
starts replicating itself according to its replication factor parameter, while the Macrophage
Agent, already present in the system since the beginning of the simulation, searches for
the virus from one container to another.

77

Figure 7.1: Results obtained through our experiments.

Figure 7.1 reports four different scenarios that we have experimented. The first (top left)
is a scenario with 100 cells (i.e., 10 × 10 grid) and replication factor set to 2, the second
(top right) with 100 cells and replication factor 4, the third (bottom left) with 400 cells
(i.e., 20 × 20 grid) and replication factor 2, and finally, the fourth (bottom right) with
400 cells and replication factor 4. In each scenario, we can observe how there is a delay
between the percentage of infected cells, and the percentage of dead cells. This derives by
the intrinsic nature of infections, where a virus first infects a cell and then, after depriving
the latter of all its resources, kills it. In most of the reported experiments (3 out of 4), the
virus ends up killing most of the cells before being killed by the Macrophage, or dying from
starvation. Indeed, in all but the third scenario (bottom left), the percentage of dead cells
reaches 60% (top left), 80% (top right), and 90% (bottom right) of the total population of
cells. In the third case, we have an example of simulation where the Macrophage is capable
of detecting the virus soon enough to stop its replication; in fact, in such simulation, the
percentage of dead cells reaches only 4% of the entire population. Another interesting
aspect to note is the behaviour we obtain in the fourth scenario. There, by having a large
matrix (200×200 containers) and a high replication factor, the virus succeeds in replicating
and is the scenario in fact where we obtain the highest percentage of dead cells (since the
fast replication is not successfully fought by the Macrophage in such a large area.

78

7.2 Strong Immunity

In this section we are going to simulate different scenarios, of a healthy person with a
strong immune system.

7.2.1 Experiment Background

In a biological system a stronger immunity is obtained by both stronger Adaptive and
Innate Immune responses against a pathogen. These experiments model a patch of the
tissue where the pathogen is encountered so, here we define the size of the grid as our
window to observe the state of infection and the concentration of various immune cells
present in our observation window represents higher or lower immune strength.

7.2.1.1 Innate Immune Response

In the design section [5.2] we have discussed the role of Macrophages and CD8 T-Cells in
Innate Immune System. In this experiment we tweak some parameters to obtain various
degrees strengths of the Innate Immune Response.

• Concentration of Macrophages — The concentration of macrophages present
inside the observation window. This is represented as percentage of Macrophage
Agents with respect to the number of cell agents present inside the window.

• Number of Viruses a Macrophages kills before exhaustion — The total
number of viruses one Macrophage can kill before it goes into an “exhausted” state.
At this state a Macrophage no longer kills the virus and becomes immobile waiting
to be “activated by” the CD4+ T-Cells.

• Concentration of CD8 T-Cells — Similarly, the concentration of CD8 T-Cells is
the percentage of CD8 T-Cell Agents present within the observation window. This
percentage is also calculated with respect to the total number of Cell agents in that
window.

7.2.1.2 Adaptive Immune Response

In the design section [5.3] we have also discussed the role of Dendritic Cells and CD4+
T-Cells in the Adaptive immune system. Very similar to the Innate Immune Response,
here we also have some parameters that translate to the overall strength of the Adaptive
Immune Response.

79

• Concentration of Dendritic Cells — The percentage of the Dendritic Cells Agents
present in the observation window calculated with respect to the total number of Cell
Agents present in that window.

• Concentration of CD4+ T-Cells — Similarly, this parameter represents the per-
centage of CD4+ T-Cells present in the observation window and calculated w.r.t.
the number of Cell Agents in that window.

7.2.1.3 Pathogen

As we have discussed earlier in this section, the pathogen (e.g. virus) replicates itself in
order to spread the infection to the adjacent cells inside our observation window. In order
to be consistent with the results for these experiments we will not tweak the replication
factor of the pathogen and set it to, “R− factor = 3”. Which means, the virus can make
at-most 3 copies of itself to infect the nearby cells in a simulation cycle.

7.2.2 Setup of the Experiment

All of the simulations corresponds to a window with 100 Cells (i.e., 10 × 10 grid), and
we are interested in inspecting the number of cells that are alive in each epoch of the
simulation. We are also interested in observing the number count of viruses in those epochs.
According to our primary assumption, the immune response is strong which translates to
higher concentration of Macrophages, CD8 T-Cells, Dendritic cells and CD4+ T-Cells
inside the window. Similar to the previous experiment, [7.1] the monitor collects the data
in 50 milliseconds time interval and stores in a “.csv” file which is then plotted to get the
figures ([7.2] and [7.3]). In both of these experiments each Macrophage individually can
kill 5 viruses before it goes to an “exhausted” state.

7.2.3 Results of the Experiment

Both of these experiments’ results, ([7.2] and [7.3]) depict a strong immune response,
meaning, there are minimal cell deaths due to the infection.

7.2.3.1 Stronger Innate Immune Response

In case of the first experiment [7.2], the simulation ends after 63 seconds and the total cell
death is merely about 10%. Here, the virus is unable to spread a lot since the concentration
of Macrophage and CD8 T-Cell is high about 30% each and all of the virus replicas are

80

Figure 7.2: Simulation with 30% - Macrophage, 30% - CD8 T-Cell, 5% - Dendritic and 20% - CD4+ T-Cell Concentration.

killed relatively sooner before all of the Macrophages go into their “exhausted” state. This
is the reason why we see a single peak here.

7.2.3.2 Stronger Adaptive Immune Response

Figure 7.3: Simulation with 25% - Macrophage, 25% - CD8 T-Cell, 10% - Dendritic and 30% - CD4+ T-Cell Concentration.

On the other hand, in the second scenario [7.3], due to relatively lower concentration of
the Macrophage and CD8 T-Cells the overall cell death is more than 15%, relatively higher
than previous experiment [7.2]. If we analyze the virus count plot, we see two peaks. The
first peak corresponds to the Innate Immune Response, after which the virus count goes
down quite a lot but after a certain point the Macrophages are “exhausted” and stop killing
it, giving a chance to the virus to grow in number again, which results in a second peak.
After a while, the CD4+ T-Cells “activate” the Macrophages and then they together with
the CD8 T-Cells, keep the infection under control which results in a sharp decline in the
virus count.

81

7.3 Weak Immunity

In this section we are going to simulate different scenarios, modelling a person with a
compromised immune system. We have to keep in mind the fact that a weak immunity
does not always refer to the fact that the weaker immunity is caused by a previous infection
from a virus. Although this could be a case, but it could also be caused by a genetic disorder
or some foreign substance in the body for example, some chemicals or due to an immune
suppressant medication (generally prescribed to a patient with an organ transplantation
or with autoimmune diseases).

7.3.1 Background of the Experiment

In a biological system a weaker immunity can be caused by either or both week Adaptive
and Innate Immune Responses. Like in the previous set of experiments [7.2], these further
experiments model a patch of tissue where the pathogen is encountered, which is defined
by the size of the grid and represents our observation window.

7.3.1.1 Simulation Parameters

All of the parameters used in this set of experiments are similar to those of the Strong
Immunity [7.2] but their values are different, much essentially lower than the values used
in case of the Strong Immunity. In order to make the results comparable with the previous
set of experiments we will keep the “Number of Viruses a Macrophages kills before ex-
haustion” parameter along with the “R-factor” of the virus similar. Which means, in these
experiments the Macrophages individually kills 5 viruses before it is “exhausted” and the
“R− factor = 3” for the virus that we introduce into the system.

7.3.2 Setup of the Experiment

Similar to the previous set of experiments [7.2], these set of simulations also corresponds
to a window of 100 Cells (i.e., 10×10 grid) and we are interested in inspecting the number
of cells that are alive in each epoch of the simulation. Like the previous experiments,
we are also interested in observing the number count of the viruses in these epochs. But
unlike the previous experiments, here our assumption is a weaker immune system, thus the
concentration of Macrophages, CD8 T-Cells, Dendritic Cells and CD4+ T-Cells will be
comparatively lower inside the window. Similar to that of the previous set of experiments
[7.2], the monitor collects the data in 50 milliseconds time interval and stores the data in
a “.csv” file which is then plotted in order to obtain the figures ([7.4] and [7.5]).

82

7.3.3 Results of the Experiment

Both of these experiments’ results ([7.4] and [7.5]) depict a weak Immune Response, mean-
ing there is a large number of cell deaths due to infection.

7.3.3.1 Weaker Innate Immune Response

Figure 7.4: Simulation with 10% - Macrophage, 10% - CD8 T-Cell, 10% - Dendritic and 20% - CD4+ T-Cell Concentration.

In case of the first experiment [7.4], at the end of the simulation more than 60% of the cells
are dead representing a situation where the organism is struggling to survive. Here, the
percentage of the Macrophages and CD8 T-Cells are very low – about 10% each – which
results in this massacre of cells, but at least the number of Dendritic cells and CD4+ T-
Cells are relatively higher which results in an “activation” of the “exhausted” Macrophages
that is effective: the infection is stopped before more cells die. This hypothesis is backed
up by the second graph (i.e., Virus Count w.r.t. Time). In this graph we can clearly see
the two major global peaks and further local ones, which suggests that once most of the
Macrophages are “exhausted”, there is a sharp rise in the number of virus counts and once
they are “activated”, we see a decline in those numbers.

7.3.3.2 Weaker Adaptive Immune Response

In case of the second simulation [7.5], although the number of Macrophages and CD8 T-
Cells is higher (20% each), due to the lack of “activation” of “exhausted” Macrophages,
more than 85% of the Cells die. This situation is caused by the very low concentration
of the Dendritic Cells (5%) and the CD4+ T-Cells (10%). These numbers are too few for
the “activation” of “exhausted” Macrophages to be effective, which is also backed up by
the second graph (i.e., Virus Count w.r.t. Time). Here, we do not see two proper global
peaks but rather multiple small peaks. This situation represents a very dangerous one for
the survival of organism due to huge cell loss.

83

Figure 7.5: Simulation with 20% - Macrophage, 20% - CD8 T-Cell, 5% - Dendritic and 10% - CD4+ T-Cell Concentration.

7.4 Re-infection Scenario

In this scenario, the goal is to model a case where an Organism has once been infected by a
pathogen and survived the infection, developing an immunity against the same pathogen.
Now later in its life the pathogen is being encountered again. Based upon what we have
discussed so far in this thesis, our hypothesis is that the immune response should be able
to handle the infection well this time, at least better than how it had been handled for the
very first time.

7.4.1 Background of the Experiment

7.4.1.1 Pathogen

The pathogen in the experiment can be uniquely identified using its genetic signature.
Also, by detecting this signature the CD8 T-Cell identifies the specific strain of the virus.
This specific virus can have any replication factor but for the sake of this experiment we
will set this parameter to be “R− factor = 2”.

• Genetic Signature - An array of zeros and ones that uniquely identifies viruses of
same strain.

This experiment is composed of two co-related simulations and for both of these simulations
the strain of the virus is identical.

7.4.1.2 First Infection

In the first simulation (first infection), the immune system does not recognize the pathogen,
which means, we do not have any CD8 T-Cells, because the immune system has to have

84

encountered the pathogen in a previous infection in order to produce any CD8 T-Cell that
can target that specific pathogen. There could be CD8 T-Cells in the system but they
can not kill the pathogen at this time. But since the Macrophage is non-targeted, it can
kill any virus strain in the simulation. The Dendritic Cell engulfs the virus (pathogen)
and stores this signature by producing “MHC Class-II” molecules. These Dendritic cells
then travel into the lymph nodes and activate the naive CD4 T-Cells against this virus.
These activated CD4+ T-Cells can then travel to the site of infection and “activate” the
“exhausted” Macrophages. At this time some of the CD4+ T-Cells become memory T-
Cells and later can activate the CD8 T-Cells [SMAD+22].

7.4.1.3 Next re-infection

This simulation inherits the activated CD8 T-Cells from the previous simulation [7.4.1.2].
So, there is a significant amount of targeted CD8 T-Cell to encounter the specific strain
of the virus once it is introduced into the system. Alongside this, there are Macrophages
present in the system that will encounter the virus regardless of its strain. The Den-
dritic and The CD4+ T-Cells are also present in the simulation for the “activation” of
“exhausted” Macrophages in successive simulation epochs.

7.4.2 Setup of the Experiment

Similar to the previous set of experiments [7.3], this set of simulations also corresponds to
a window of 100 Cells (i.e., 10 × 10 grid) and we are interested in inspecting the number
of cells that are alive in each epoch of the simulation. Like for the previous experiments,
we are also interested in observing the number count of the viruses in these epochs.

7.4.3 Results of the Experiment

The first point to be noted here is that viruses in both simulations ([7.6] and [7.7]) are
of similar strain since the second graphs (i.e., Virus Count w.r.t. Time) in both of the
simulation show a very similar pattern (a smaller first peak in the beginning and a large
second peak at the end). Although they are not identical due to the fact that in the second
simulation [7.7], there are both Macrophages and CD8 T-Cells that kill it, unlike the first
simulation [7.6] where only the Macrophages can kill, which is the reason the peaks are
less severe in the following simulation.

85

7.4.3.1 First Infection Results

In the first simulation [7.6], the immune system has never encountered the specific strain
of the virus so the “Re-immunity Strength = 0”. Which means, there are no CD8 T-
Cells present that can encounter the specific strain of the virus. But since the organism
was healthy (1 with 20% - Macrophage, 20% - CD8 T-Cell, 20% - Dendritic and 30% -
CD4+ T-Cell Concentration), the immune system was able to handle the infection within
2 seconds of simulation time with a cell loss of about 40% referring to the fact that the
organism has survived.

Figure 7.6: Simulation - 1 with 20% - Macrophage, 20% - CD8 T-Cell, 20% - Dendritic and 30% - CD4+ T-Cell Concentration.

7.4.3.2 Next Re-infection Results

Figure 7.7: Simulation - 2 with 20% - Macrophage, 20% - CD8 T-Cell, 5% - Dendritic and 10% - CD4+ T-Cell Concentration.

In the second consecutive simulation [7.7], the immunity is being carried from the first sim-
ulation [7.4.1.2] and we get a strong immune response this time which is being represented
by “Re-immunity Strength = 80”. Which means, there is a chance that 80% of all of the
CD8 T-Cells present can encounter the specific strain of the virus. Now if we assume that
the system parameters are unchanged, (i.e., 1 with 20% - Macrophage, 20% - CD8 T-Cell,

86

20% - Dendritic and 30% - CD4+ T-Cell Concentration), the immune system is now able
to handle the infection within 1.3 seconds of simulation time with a cell loss of about 15%.
Which means, the infection is now kept under control faster, in 35% less time and with
25% less cell damage.

87

Chapter 8

Conclusion and Future Work

In this thesis, we presented the building blocks of the an agent-based simulator built in
JADE to reproduce the human body’s immune system in a scalable and distributed manner.
We are well aware that the actual immune system is extremely complex and that the model
is only tackling a very specific aspect of it. Nonetheless, the current work allowed us to
focus on the initial engineering steps required to map the immune system in JADE. In
fact, we showed how some of the main organic actors (cells, Macrophages, T-Cells, and so
on), can be mapped into their corresponding agent representation in JADE.

Using our first two sets of simulations we were also able to reproduce some of the biological
scenarios like the immune response of a healthy person and an immune compromised
person. Using the same model we have also simulated a situation where there is a second
infection (or re-infection) by an identical virus strain and were able to produce results
about the dynamics of the re-infection which explicitly explain the underlying biological
phenomena. All of the experimental results point towards the direction that our model is
in sync with the actual biological mode, although more test cases are required to verify
our claim.

One problem that we have faced while comparing the results of experiments is the fact
that collecting the biological data is a huge challenge. To give an example, let say, we want
to collect the data about how does a viral infection spreads in a biological system without
the interference of any immune response from the immune system of the organism. This
may sound very simple in theory but the experiment itself is very challenging due to the
fact that biological systems are not isolated systems, meaning, there are numerous external
factors that are in play like the body-temperature of the organism (which is directly related
to the reproductive capability of the pathogen), the pH1 factor of the environment (also

1pH - A figure expressing the acidity or alkalinity of a solution on a logarithmic scale on which 7 is
neutral, lower values are more acid and higher values more alkaline.

88

impacts the the reproductive capability of the pathogen) etc. If we (or, better, some expert
in biological systems and in immune systems in particular) wanted to collect the data, the
difficulties increases exponentially: either we have to inject the virus into a live target (e.g.,
like a lab animal) or we have to produce a culture in a perti-dish, in that case it is even
more difficult if not impossible to reproduce the immune system with all of its components.

In order to understand these complex biological systems it is necessary to perform simula-
tion like this which has the capability to be produced in an isolated environment and in a
case by case basis. That is one of the reasons why implications of simulations of biological
phenomena are so important: the possibilities in a simulated environment are only limited
by the computational power of the base system that is being used to simulate. And this
brings us to one of the key features of this models, the scalability. Our system architecture
is distributed and can be deployed over a network of computers. Although for the thesis
we did not run the model on a cluster, it is definitely possible in practice to deploy this
model on a large cluster with multiple nodes.

For the very same reasons mentioned above, drug testing is one of the fields of research
where models like the one we developed can help to understand the dynamics. In that case
we would need to add some more agents with the behaviours of the drug (how does the
drug interact with the different actors of the immune system and various cells) to observe
any long term effect on the body.

Other than this, our model can be updated likewise to study the propagation and prolifer-
ation of cancer producing malignant tumours from the cellular level. In that case, the cell
agents needs to be programmed in such way that they replicate regardless of the biological
constraints imposed upon them by their genetics.

One other biological phenomenon that we have just touched the surface in one of our simu-
lations is the situation where there is the possibility of introducing an immune suppressant
medication in order to prevent the rejection of an organ transplantation by the immune
system, or to control autoimmune diseases. In that case, the immune response is intention-
ally suppressed by medications. Using our model it is also possible to simulate the long
term implication of such medication. Especially, in a situation where the patient has been
infected by a pathogen after the implantation or after the autoimmune disease showed up.

As future directions, we are planning to build on top of the model, by adding more agents
and by enriching the currently available ones. Moreover, we plan to build an open source
platform where other developers around the globe can contribute by developing parts of
the immune system. Once online, that global platform will be made available with an open
access to the researchers who will be able to exploit it for their research purposes, and to
drug manufacturers not only to test and discover new drugs, but also to discover new ways
to deliver the drugs.

89

Bibliography

[AZR+17] Norkhushaini Awang, Nurul Hidayah Ahmad Zukri, Nor Aimuni Md
Rashid, Zuhri Arafah Zulkifli, and Nor Afifah Mohd Nazri. Multi-agent inte-
grated password management (MIPM) application secured with encryption.
In AIP Conference Proceedings. Author(s), 2017. doi:10.1063/1.5005364.

[BC01] Massimo Bernaschi and Filippo Castiglione. Design and implementation of
an immune system simulator. Comput. Biol. Medicine, 31(5):303–331, 2001.
doi:10.1016/S0010-4825(01)00011-7.

[BCG07] Fabio Luigi Bellifemine, Giovanni Caire, and Dominic Greenwood. Devel-
oping Multi-Agent Systems with JADE (Wiley Series in Agent Technology).
John Wiley & Sons, 2007.

[BF10] Rabie Belkacemi and Ali Feliachi. Multi-agent design for power distribution
system reconfiguration based on the artificial immune system algorithm.
In International Symposium on Circuits and Systems (ISCAS 2010), May
30 - June 2, 2010, Paris, France, pages 3461–3464. IEEE, 2010. doi:

10.1109/ISCAS.2010.5537841.

[Cas22] Ana Casali. Extension of the bdi agent model: Representing and reasoning
using graded attitudes. 11 2022.

[CBD20] Dipanjan Chakraborty, Sanchayan Bhunia, and Rumi De. Survival chances
of a prey swarm: how the cooperative interaction range affects the outcome.
Scientific Reports, 10(1), May 2020. doi:10.1038/s41598-020-64084-3.

[CCP+14] Filippo Castiglione, Ferdinando Chiacchio, Marzio Pennisi, Giulia Russo,
Santo Motta, and Francesco Pappalardo. Agent-based modeling of the im-
mune system: Netlogo, a promising framework. BioMed Research Interna-
tional, 2014:907171, 2014. doi:10.1155/2014/907171.

[DGTM08] Mamady Dioubate, Tan Guanzheng, and Lamine Toure Mohamed. An arti-
ficial immune system based multi-agent model and its application to robot

90

https://doi.org/10.1063/1.5005364
https://doi.org/10.1016/S0010-4825(01)00011-7
https://doi.org/10.1109/ISCAS.2010.5537841
https://doi.org/10.1109/ISCAS.2010.5537841
https://doi.org/10.1038/s41598-020-64084-3
https://doi.org/10.1155/2014/907171

cooperation problem. In 2008 7th World Congress on Intelligent Control and
Automation, pages 3033–3039, 2008. doi:10.1109/WCICA.2008.4593405.

[DPG11] Saber Darmoul, Henri Pierreval, and Sonia HAJRI Gabouj. An immune
inspired multi agent system to handle disruptions in manufacturing pro-
duction systems. In International Conference on Industrial Engineering
and Systems Management, IESM, volume 2011, 2011.

[DRN12a] Babak Darvish Rouhani and Fatemeh Nikpay. Agent-oriented enterprise
architecture: new approach for enterprise architecture. IJCSI International
Journal of Computer Science Issues, Vol. 9, Issue 6, No 1, November 2012,
9:331–334, 11 2012.

[DRN12b] Babak Darvish Rouhani and Fatemeh Nikpay. Agent-oriented enterprise
architecture: new approach for enterprise architecture. IJCSI International
Journal of Computer Science Issues, Vol. 9, Issue 6, No 1, November 2012,
9:331–334, 11 2012.

[Fal91] Adin D. Falkoff. The IBM family of APL systems. IBM Syst. J., 30(4):416–
432, 1991. doi:10.1147/sj.304.0416.

[FD22] Baylor G. Fain and Hana M. Dobrovolny. GPU acceleration and data fitting:
Agent-based models of viral infections can now be parameterized in hours.
Journal of Computational Science, 61:101662, May 2022. doi:10.1016/j.

jocs.2022.101662.

[Fel72] M Feldmann. Cell interactions in the immune response in vitro. v. specific
collaboration via complexes of antigen and thymus-derived cell immunoglob-
ulin. J. Exp. Med., 136(4):737–760, October 1972.

[GKQ16] Charles Gawad, Winston Koh, and Stephen R. Quake. Single-cell genome se-
quencing: current state of the science. Nature Reviews Genetics, 17(3):175–
188, Mar 2016. doi:10.1038/nrg.2015.16.

[GOL] Overview of google crawlers (user agents). https://developers.google.

com/search/docs/crawling-indexing/overview-google-crawlers. Ac-
cessed: 2022-11-02.

[GPP+99] Michael Georgeff, Barney Pell, Martha Pollack, Milind Tambe, and Michael
Wooldridge. The belief-desire-intention model of agency. In Intelligent
Agents V: Agents Theories, Architectures, and Languages, pages 1–10.
Springer Berlin Heidelberg, 1999. doi:10.1007/3-540-49057-4_1.

91

https://doi.org/10.1109/WCICA.2008.4593405
https://doi.org/10.1147/sj.304.0416
https://doi.org/10.1016/j.jocs.2022.101662
https://doi.org/10.1016/j.jocs.2022.101662
https://doi.org/10.1038/nrg.2015.16
https://developers.google.com/search/docs/crawling-indexing/overview-google-crawlers
https://developers.google.com/search/docs/crawling-indexing/overview-google-crawlers
https://doi.org/10.1007/3-540-49057-4_1

[HEE+19] Fatima Zahra Harmouch, Ahmed F. Ebrahim, Mohammad Mahmoudian Es-
fahani, Nissrine Krami, Nabil Hmina, and Osama A. Mohammed. An opti-
mal energy management system for real-time operation of multiagent-based
microgrids using a t-cell algorithm. Energies, 12(15), 2019. URL: https:
//www.mdpi.com/1996-1073/12/15/3004, doi:10.3390/en12153004.

[HGY13] Xue-Liang Hua, Iqbal Gondal, and Farrukh Yaqub. Mobile agent based
artificial immune system for machine condition monitoring. In 2013 IEEE
8th Conference on Industrial Electronics and Applications (ICIEA), pages
108–113. IEEE, 2013.

[HKR08] Vincent Hilaire, Abder Koukam, and Sebastian Rodriguez. An adaptative
agent architecture for holonic multi-agent systems. ACM Trans. Auton.
Adapt. Syst., 3(1):2:1–2:24, 2008. doi:10.1145/1342171.1342173.

[Igu19] Kingsley Theophilus and Igulu. Intelligent road emergency response system
using GAIA and JADE. International Journal of Engineering Research and,
V8(04), April 2019. doi:10.17577/ijertv8is040075.

[JLL04] Christian Jacob, Julius Litorco, and Leo Lee. Immunity through swarms:
Agent-based simulations of the human immune system. In Giuseppe
Nicosia, Vincenzo Cutello, Peter J. Bentley, and Jon Timmis, editors, Ar-
tificial Immune Systems, Third International Conference, ICARIS 2004,
Catania, Sicily, Italy, September 13-16, 2004, volume 3239 of Lecture
Notes in Computer Science, pages 400–412. Springer, 2004. doi:10.1007/

978-3-540-30220-9_32.

[KFS20] Li Kou, Wenhui Fan, and Shuang Song. Multi-agent-based modelling
and simulation of high-speed train. Computers & Electrical Engineering,
86:106744, September 2020. doi:10.1016/j.compeleceng.2020.106744.

[Kib13] Rodger Kibble. 9. speech act theory and intelligent software agents. In
Pragmatics of Speech Actions, pages 313–338. DE GRUYTER, July 2013.
doi:10.1515/9783110214383.313.

[KMWS22] Jagoda Kaszowska-Mojsa, Przemys law W lodarczyk, and Agata Szymańska.
Immunity in the ABM-DSGE framework for preventing and controlling epi-
demics—validation of results. Entropy, 24(1):126, January 2022. doi:

10.3390/e24010126.

[LBGVDR17] Donfeng Liu, Luis Barba-Guamán, Priscila Valdiviezo-Dı́az, and Guido Ri-
ofrio. Intelligent tutoring module for a 3dgame-based science e-learning
platform. Inteligencia Artificial, 20(60):1–19, February 2017. doi:10.4114/
intartif.vol20iss60pp1-19.

92

https://www.mdpi.com/1996-1073/12/15/3004
https://www.mdpi.com/1996-1073/12/15/3004
https://doi.org/10.3390/en12153004
https://doi.org/10.1145/1342171.1342173
https://doi.org/10.17577/ijertv8is040075
https://doi.org/10.1007/978-3-540-30220-9_32
https://doi.org/10.1007/978-3-540-30220-9_32
https://doi.org/10.1016/j.compeleceng.2020.106744
https://doi.org/10.1515/9783110214383.313
https://doi.org/10.3390/e24010126
https://doi.org/10.3390/e24010126
https://doi.org/10.4114/intartif.vol20iss60pp1-19
https://doi.org/10.4114/intartif.vol20iss60pp1-19

[LFM+19] Gianfranco Lombardo, Paolo Fornacciari, Monica Mordonini, Michele
Tomaiuolo, and Agostino Poggi. A multi-agent architecture for data analy-
sis. Future Internet, 11(2):49, February 2019. doi:10.3390/fi11020049.

[MP93] Jörg Müller and Markus Pischel. The agent architecture interrap: Concept
and application. 07 1993.

[MWWK18] Jean S. Marshall, Richard Warrington, Wade Watson, and Harold L.
Kim. An introduction to immunology and immunopathology. Allergy,
Asthma & Clinical Immunology, 14(S2), September 2018. doi:10.1186/

s13223-018-0278-1.

[Nwa96] Hyacinth S. Nwana. Software agents: an overview. The Knowl-
edge Engineering Review, 11(3):205–244, September 1996. doi:10.1017/

s026988890000789x.

[OOM19] James Imende Obuhuma, Henry Okora Okoyo, and Sylvester Okoth McOy-
owo. A software agent for vehicle driver modeling. In 2019 IEEE AFRICON,
pages 1–8, 2019. doi:10.1109/AFRICON46755.2019.9134033.

[OOW13] Chung-Ming Ou, CR Ou, and Yao-Tien Wang. Agent-based artificial im-
mune systems (abais) for intrusion detections: inspiration from danger the-
ory. In Agent and Multi-Agent Systems in Distributed Systems-Digital Econ-
omy and E-Commerce, pages 67–94. Springer, 2013.

[PHR+09] Francesco Pappalardo, Mark D. Halling-Brown, Nicolas Rapin, Ping Zhang,
Davide Alemani, Andrew Emerson, Paola Paci, Patrice Duroux, Marzio
Pennisi, Arianna Palladini, Olivo Miotto, Daniel Churchill, Elda Rossi,
Adrian J. Shepherd, David S. Moss, Filippo Castiglione, Massimo Bernaschi,
Marie-Paule Lefranc, Søren Brunak, Santo Motta, Pierluigi Lollini, Kaye E.
Basford, and Vladimir Brusic. Immunogrid, an integrative environment
for large-scale simulation of the immune system for vaccine discovery, de-
sign and optimization. Briefings Bioinform., 10(3):330–340, 2009. doi:

10.1093/bib/bbp014.

[PKSC02] Roberto Puzone, B. Kohler, Philip Seiden, and Franco Celada. Imm-
sim, a flexible model for in machina experiments on immune system re-
sponses. Future Gener. Comput. Syst., 18(7):961–972, 2002. doi:10.1016/
S0167-739X(02)00075-4.

[PLCP22] Mattia Pellegrino, Gianfranco Lombardo, Stefano Cagnoni, and Agostino
Poggi. High-performance computing and ABMS for high-resolution COVID-
19 spreading simulation. Future Internet, 14(3):83, March 2022. doi:10.

3390/fi14030083.

93

https://doi.org/10.3390/fi11020049
https://doi.org/10.1186/s13223-018-0278-1
https://doi.org/10.1186/s13223-018-0278-1
https://doi.org/10.1017/s026988890000789x
https://doi.org/10.1017/s026988890000789x
https://doi.org/10.1109/AFRICON46755.2019.9134033
https://doi.org/10.1093/bib/bbp014
https://doi.org/10.1093/bib/bbp014
https://doi.org/10.1016/S0167-739X(02)00075-4
https://doi.org/10.1016/S0167-739X(02)00075-4
https://doi.org/10.3390/fi14030083
https://doi.org/10.3390/fi14030083

[PLM+21] Mattia Pellegrino, Gianfranco Lombardo, Monica Mordonini, Michele
Tomaiuolo, Stefano Cagnoni, and Agostino Poggi. Actodemic: A distributed
framework for fine-grained spreading modeling and simulation in large scale
scenarios. In WOA, pages 194–209, 2021.

[RAGBSM20] Alejandro Rodŕıguez-Arias, Bertha Guijarro-Berdiñas, and Noelia Sánchez-
Maroño. A fipa-acl based communication utility for unity. In 2020 IEEE
29th International Conference on Enabling Technologies: Infrastructure for
Collaborative Enterprises (WETICE), pages 9–13, 2020. doi:10.1109/

WETICE49692.2020.00010.

[RG05] M. J. Robbins and Simon M. Garrett. Evaluating theories of immunological
memory using large-scale simulations. In Christian Jacob, Marcin L. Pilat,
Peter J. Bentley, and Jonathan Timmis, editors, Artificial Immune Systems:
4th International Conference, ICARIS 2005, Banff, Alberta, Canada, Au-
gust 14-17, 2005, Proceedings, volume 3627 of Lecture Notes in Computer
Science, pages 193–206. Springer, 2005. doi:10.1007/11536444_15.

[SBV22] Viviana Mascardi Sanchayan Bhunia, Angelo Ferrando and Chiara Vitale.
Mais: Exploiting jade as a multi-agent simulator of the immune system.
2022. URL: https://emas.in.tu-clausthal.de/2022/papers/paper13.

[Sho91] Yoav Shoham. Agent0: A simple agent language and its interpreter. In
AAAI, 1991.

[SHW+07] Weiming Shen, Qi Hao, Shuying Wang, Yinsheng Li, and Hamada
Ghenniwa. An agent-based service-oriented integration architecture
for collaborative intelligent manufacturing. Robotics and Computer-
Integrated Manufacturing, 23(3):315–325, 2007. International Man-
ufacturing Leaders Forum 2005: Global Competitive Manufactur-
ing. URL: https://www.sciencedirect.com/science/article/pii/

S0736584506000226, doi:https://doi.org/10.1016/j.rcim.2006.02.

009.

[Sig16] Luis J. Sigal. Activation of CD8 t lymphocytes during viral infections.
In Encyclopedia of Immunobiology, pages 286–290. Elsevier, 2016. doi:

10.1016/b978-0-12-374279-7.14009-3.

[Sim18] Julia Simundza. Infection and immunity: insights and therapeutic strate-
gies through genomic analysis of the host, pathogen, and host–pathogen
interaction. Genome Medicine, 10(1), September 2018. doi:10.1186/

s13073-018-0583-9.

94

https://doi.org/10.1109/WETICE49692.2020.00010
https://doi.org/10.1109/WETICE49692.2020.00010
https://doi.org/10.1007/11536444_15
https://emas.in.tu-clausthal.de/2022/papers/paper13
https://www.sciencedirect.com/science/article/pii/S0736584506000226
https://www.sciencedirect.com/science/article/pii/S0736584506000226
https://doi.org/https://doi.org/10.1016/j.rcim.2006.02.009
https://doi.org/https://doi.org/10.1016/j.rcim.2006.02.009
https://doi.org/10.1016/b978-0-12-374279-7.14009-3
https://doi.org/10.1016/b978-0-12-374279-7.14009-3
https://doi.org/10.1186/s13073-018-0583-9
https://doi.org/10.1186/s13073-018-0583-9

[SK18] Snehal B Shinde and Manish P Kurhekar. Review of the systems biology
of the immune system using agent-based models. IET Systems Biology,
12(3):83–92, 2018.

[SKPF05] Lee Spector, Jon Klein, Chris Perry, and Mark Feinstein. Emergence of
collective behavior in evolving populations of flying agents. Genet. Program.
Evolvable Mach., 6(1):111–125, 2005. doi:10.1007/s10710-005-7620-3.

[SMAD+22] Kazuki Sasaki, Mouhamad Al Moussawy, Khodor I. Abou-Daya, Camila
Macedo, Amira Hosni-Ahmed, Silvia Liu, Mariam Juya, Alan F. Zahor-
chak, Diana M. Metes, Angus W. Thomson, Fadi G. Lakkis, and Hos-
sam A. Abdelsamed. Activated-memory t cells influence näıve t cell fate:
a noncytotoxic function of human CD8 t cells. Communications Biology,
5(1), jun 2022. URL: https://doi.org/10.1038%2Fs42003-022-03596-2,
doi:10.1038/s42003-022-03596-2.

[SS02] S. Sathyanath and F. Sahin. Application of artificial immune system based
intelligent multi agent model to a mine detection problem. In IEEE Inter-
national Conference on Systems, Man and Cybernetics, volume 3, pages 6
pp. vol.3–, 2002. doi:10.1109/ICSMC.2002.1176015.

[SS20] Galina A. Samigulina and Zarina I. Samigulina. Design of technology
for prediction and control system based on artificial immune systems and
the multi-agent platform JADE. In Gordan Jezic, Yun-Heh Jessica Chen-
Burger, Mario Kusek, Roman Sperka, Robert J. Howlett, and Lakhmi C.
Jain, editors, Agents and Multi-Agent Systems: Technologies and Ap-
plications 2020, 14th KES International Conference, KES-AMSTA 2020,
June 2020 Proceedings, pages 143–153. Springer, 2020. doi:10.1007/

978-981-15-5764-4_13.

[TJ05] Joc Cing Tay and Atul Jhavar. CAFISS: a complex adaptive framework for
immune system simulation. In Hisham Haddad, Lorie M. Liebrock, Andrea
Omicini, and Roger L. Wainwright, editors, Proceedings of the 2005 ACM
Symposium on Applied Computing (SAC), Santa Fe, New Mexico, USA,
March 13-17, 2005, pages 158–164. ACM, 2005. doi:10.1145/1066677.

1066716.

[Tom15] Michele Tomaiuolo. Service composition in open agent societies, Aug 2015.
URL: https://www.academia.edu/14833173/Service_Composition_in_
Open_Agent_Societies.

[Tut] TutorialsPoint. AI – Agents & Environments – tutorialspoint.com.
https://www.tutorialspoint.com/artificial_intelligence/

95

https://doi.org/10.1007/s10710-005-7620-3
https://doi.org/10.1038%2Fs42003-022-03596-2
https://doi.org/10.1038/s42003-022-03596-2
https://doi.org/10.1109/ICSMC.2002.1176015
https://doi.org/10.1007/978-981-15-5764-4_13
https://doi.org/10.1007/978-981-15-5764-4_13
https://doi.org/10.1145/1066677.1066716
https://doi.org/10.1145/1066677.1066716
https://www.academia.edu/14833173/Service_Composition_in_Open_Agent_Societies
https://www.academia.edu/14833173/Service_Composition_in_Open_Agent_Societies
https://www.tutorialspoint.com/artificial_intelligence/artificial_intelligence_agents_and_environments.htm
https://www.tutorialspoint.com/artificial_intelligence/artificial_intelligence_agents_and_environments.htm

artificial_intelligence_agents_and_environments.htm. [Accessed
21-Oct-2022].

[TV15] Cristian Tomasetti and Bert Vogelstein. Variation in cancer risk among
tissues can be explained by the number of stem cell divisions. Science,
347(6217):78–81, January 2015. doi:10.1126/science.1260825.

[Tve01] Amund Tveit. A survey of agent-oriented software engineering. 08 2001.

[wik20] Agent-based model, Oct 2020. URL: https://en.wikipedia.org/wiki/
Agent-based_model.

[wik22] Agent-oriented programming, Sep 2022. URL: https://en.wikipedia.

org/wiki/Agent-oriented_programming.

[WJ95] Michael Wooldridge and Nicholas R. Jennings. Intelligent agents: theory
and practice. The Knowledge Engineering Review, 10(2):115–152, June
1995. doi:10.1017/s0269888900008122.

[XF18] Wei Xiong and Dongmei Fu. A new immune multi-agent system for the
flexible job shop scheduling problem. J. Intell. Manuf., 29(4):857–873, 2018.
doi:10.1007/s10845-015-1137-2.

96

https://www.tutorialspoint.com/artificial_intelligence/artificial_intelligence_agents_and_environments.htm
https://www.tutorialspoint.com/artificial_intelligence/artificial_intelligence_agents_and_environments.htm
https://www.tutorialspoint.com/artificial_intelligence/artificial_intelligence_agents_and_environments.htm
https://doi.org/10.1126/science.1260825
https://en.wikipedia.org/wiki/Agent-based_model
https://en.wikipedia.org/wiki/Agent-based_model
https://en.wikipedia.org/wiki/Agent-oriented_programming
https://en.wikipedia.org/wiki/Agent-oriented_programming
https://doi.org/10.1017/s0269888900008122
https://doi.org/10.1007/s10845-015-1137-2

	Chapter Introduction
	Chapter Background
	Agents
	Agents Coupled with their Environment
	Multiple Agent System
	Agent Architecture

	Agent Oriented Software Engineering
	OOP and AOP
	Applications of AOSE Concepts

	Java Agent Development Framework
	JADE Architecture
	Behaviour of Agents
	Mobility of Agents
	Agent Communication Model

	Chapter Related Work
	Category - I
	Category - II

	Chapter Requirement Analysis
	The Secondary Immune Response Scenario
	Requirements
	why choosing JADE for Modelling the Scenario

	Chapter Design
	The Grid System
	Modelling the Cell
	Modelling the Lymphatic System
	Mobility across the Grid

	The Innate Immune System
	Macrophages
	CD8+ and CD4+ T-Cells

	The Adaptive Immune System
	Dendritic Cells
	CD4+ T-Cells

	Model of Virus
	Infecting a Cell
	Replication
	Terminating The Cell

	Chapter Implementation
	The Universe
	Various Maps in the Universe
	Laws of the Universe

	Mobile Agents
	Macrophage Agent
	Dendritic Cell Agent
	CD4+ T-Cell Agent
	CD8 T-Cell Agent

	Immobile Agents
	Initiator Agent
	Cell Agent
	Lymph Vessel Agent
	Virus
	CD4TCell Manager Agent

	Chapter Experiments
	Experiments with Grid-size and R-factor
	Strong Immunity
	Experiment Background
	Setup of the Experiment
	Results of the Experiment

	Weak Immunity
	Background of the Experiment
	Setup of the Experiment
	Results of the Experiment

	Re-infection Scenario
	Background of the Experiment
	Setup of the Experiment
	Results of the Experiment

	Chapter Conclusion and Future Work
	Bibliography

