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Sunto

L’equivalenza olografica tra teorie di gravità in spazi anti-de Sitter e teorie di campo
conformi permette il calcolo di funzioni di correlazione della teoria di campo nel regime
di accoppiamento forte in termini della teoria classica di (super)gravità. Un passaggio
preliminare necessario per questi calcoli è la costruzione della mappa olografica che lega gli
operatori conformi con i campi duali di supergravità. Questa tesi si concentra sulla teoria
conforme D1-D5, emergente dal limite a basse energie di uno stato legato di D1- e D5-brane,
e si propone di stabilire la mappa olografica per operatori conformi che appartengono a
diversi multipletti tensoriali.





Abstract

The holographic duality between gravity theories in anti-de Sitter spaces and conformal
field theories (CFT) allows the computation of CFT correlators in the strong-coupling
regime in terms of the classical (super)gravity theory. A necessary preliminary step for
this computation is the construction of the holographic map linking the CFT operators
with the dual supergravity fields. This thesis focuses on the D1-D5 CFT emerging from
the low-energy limit of a bound state of D1- and D5-branes and aims at establishing the
holographic map for conformal operators belonging in different tensor multiplets.
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1 | Introduction

Holography is one of the most important discoveries of high-energy theoretical physics in
recent years. The term “holography” comes from holograms, which are two-dimensional
objects that store information about all three dimensions of the object they represent. The
holographic principle, proposed by Gerard ’t Hooft and Leonard Susskind, states that the
physical phenomena on a volume of space (the bulk) are somehow encoded in a theory
on the boundary of that space. The first hint for holography comes from studying the
thermodynamics of black holes, which predicts that the black hole entropy is proportional
to the surface area of the object, meaning that a quantity of a three-dimensional object (the
black hole) depends on its two-dimensional surface area, rather than on its bulk volume.

The most important and useful application of the holographic principle is the anti-de
Sitter/conformal field theory correspondence, AdS/CFT for short, introduced by Juan
Martín Maldacena in 1997. AdS/CFT is a relationship between two seemingly unrelated
physical theories that live in spaces with different dimensions. One is a quantum gravity
theory defined on anti-de Sitter space (AdS) which is the maximally symmetric space with
negative curvature. The other is a conformal field theory (CFT) that is a quantum field
theory that enjoys conformal symmetry, which is composed of the transformations that
preserve angles. The quantum gravity theories that are most used in this context are those
formulated in terms of string theory. String theory was instrumental in the inspiration and
formulation of the correspondence for two reasons. One is that string theory is as of now the
best candidate for the theory of quantum gravity, because one of the vibrational modes of
the strings it describes can be interpreted as the graviton, the carrier for the gravitational
interaction. The other reason is that string theory, besides closed and open strings contains
other extended physical objects, which are called D-branes: they are the hypersurfaces
on which open strings end. The crucial point that hinted at the presence of some kind of
correspondence between field theories and gravity theories comes right from D-branes. One
can describe a system of D-branes in two different ways: in terms of open strings and closed
strings. The theory defined on the brane worldvolume arising from open strings is a field
theory, while the theory due to closed strings is a gravity theory: this allows a gravitational
description of a system of D-branes. In the so-called decoupling limit, interactions between
the two theories are turned off, so they decouple and become independent: the field theory
becomes conformal and the spacetime becomes anti-de Sitter space. Maldacena realized
that the D-brane systems in this decoupling limit can be described in terms of the conformal
theory or the gravity theory on AdS, and that the two descriptions have to be equivalent.
This is the heart of the AdS/CFT correspondence. Generally, AdS/CFT is difficult to
apply, because it is complicated to do quantum-gravity calculations in string theory and,
on the other side, field theory at strong coupling is impossible to treat with modern tools.
Fortunately, there are regimes in which strongly coupled field theory is dual to effectively
classical gravity, namely supergravity. The fact that AdS/CFT relates complicated theories
with simpler theories has been applied even in other branches of physics like condensed
matter and nuclear physics: examples are respectively high-temperature superconductivity

1



2 Introduction

and the quark-gluon plasma, that are both strongly coupled systems intractable using
standard techniques and theories.

Operationally, AdS/CFT relates chiral primary operators in the field theory with super-
gravity fields. The so-called “holographic dictionary” consists in determining all pairs of
chiral primary operators and supergravity fields. These fields are small perturbations to
the background spacetime. Chiral primary operators are referred to as “light operators”.
However, it is possible to take particular combinations of chiral primary operators that
are called “heavy operators” and are dual to whole nontrivial geometries. An important
aspect of AdS/CFT is in correlators with chiral primary operators, which are fundamental
quantities in any quantum and conformal field theory. However, when the theory is strongly
coupled, correlators becomes involved and difficult to compute. Holographic dualities
provide a powerful tool for treating them by studying, according to a known prescription,
their supergravity counterpart, namely the equations of motion of fields in a background
geometry, where both the background geometry and the fields depend on the operators
contained in the correlator.

There exist multiple examples of AdS/CFT dual pairs in various number of dimensions.
The most popular and understood correspondence comes from the system of D3-branes:
the two dual descriptions of this system are type IIB string theory on the 10-dimensional
product space AdS5 × S5—where S5 is the five-dimensional sphere—and the so-called
N = 4 supersymmetric Yang-Mills theory on the four-dimensional boundary. Note that
string theory lives on a 10-dimensional space so, in order to properly apply the duality, we
reduce the dimensionality of the space via a process called compactification, and effectively
consider AdS5. Other systems of D-branes give rise to other dualities. For instance, this
work is focused on the D1-D5 system, which in a certain limit is described by type IIB
supergravity on AdS3 × S3 × T4—where T4 is the four-dimensional torus—and a two-
dimensional conformal field theory known as D1-D5 CFT. This system consists in a number
of D1-branes and D5-branes that wrap around the compact dimensions of spacetime. The
D1-D5 system exhibits a peculiarity which distinguishes it from D3 system; the latter has
the maximum number of supersymmetries, so each field is related via supersymmetry to
every other, i.e. there is only one field multiplet. Conversely, in the former system the
presence of the torus T4 breaks half the supersymmetries and causes the supergravity
fields—and the CFT operators—to organize in five tensor multiplets, also called flavours.
There is a SO(5) symmetry that rotates between the multiplets; this obviously applies
also to correlators: one can show that a three-point correlator with two different-flavour
states is zero and non-zero otherwise. Fields or operators that have the same dimensions
but different flavours have “similar” properties. Among the five operators with different
flavours but equal dimensions, three transform nontrivially under the torus and the other
two are invariant.

In this work, we will consider the two torus-invariant operators and in particular their
descendants, which are obtained by acting with two supercharges on the original operator,
that is sometimes called “ancestor”. In the context of correlators, descendants are useful
because they make correlators easier to compute. That said, the goal of this thesis is to
determine the holographic map between these two descendants and their corresponding
supergravity dual fields. Generally, descendants are dual to six-dimensional scalar fields,
but the fact that the two descendants are somewhat similar—they have same dimensions
and are both torus invariant—makes it difficult to pin down the precise holographic relation.
In the literature, some indirect arguments have been provided to establish the precise map.
Our approach involves doing a direct holographic calculation, exploiting the aforementioned
SO(5) flavour symmetry.
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Let us briefly explain the procedure. For concreteness we call the two fields F and G
and the two descendants A and B. We consider the two three-point correlators that
contain an unflavoured operator, the ancestor of A, and A or B. On the supergravity side,
this corresponds to two calculations, one with F and one with G. As we said before, for
symmetry reasons the correlator with A is going to be zero, implying that the corresponding
supergravity calculation has to be zero as well. This means that the field that makes the
supergravity calculation vanish is the field that is dual to A, leading obviously to identify
the other one as the dual to B.

We now give the outline of the thesis. Chapter 2 provides the basic principles of any
conformal field theory. Chapter 3 introduces string theory: the relativistic string, its
quantization and the string spectrum, as well as superstring theory; even if we do not really
use string theory in the following, it is useful to explain the basis for supergravity, which is
the subject of Chapter 4. Subsequently, in Chapter 5, we describe AdS/CFT correspondence,
giving some motivations and the general statement, as well as the prescription to compute
correlators in the gravity side. We then describe the D1-D5 system in Chapter 6, starting
from the conformal side and deriving the geometries from their dual CFT states. Finally,
Chapter 7 contains the original contribution of the thesis, namely the holographic map we
discussed above, which is commented upon in the final Chapter 8.





2 | Conformal field theory

Conformal field theories (CFT) are invariant under conformal transformations. Conformal
transformations are transformations that preserve angles, not lengths. This implies that
the theory looks the same at all length scales. Since the end of the twentieth century,
conformal field theories have become increasingly important because they play a role in
the AdS/CFT correspondence.

In this chapter we provide an introduction to conformal field theory. For more details, we
refer to standard references such as [1–3].

2.1 Conformal invariance

A conformal transformation is a transformation of the coordinates that leaves the metric
invariant up to a scale:

g′µν(x) = Λ2(x) gµν(x). (2.1)

For the special case where Λ2(x) = 1, the transformation reduces to Poincaré transformation,
so we deduce that the Poincaré group is a subgroup of the conformal one. Conformal
transformations are also sometimes called angle-preserving, because they preserve angles
between curves, even after a local dilation.

Under a generic infinitesimal transformation xµ → xµ + εµ(x), the metric transforms as

gµν → gµν − (∂µεν + ∂νεµ) (2.2)

In order for (2.2) to be conformal, the definition (2.1) requires that

∂µεν + ∂νεµ = f(x) gµν =
2

d
∂ρε

ρ gµν (2.3)

where the factor f(x) is determined by taking the trace on both sides.

It can be shown that, for dimensions d > 2, εµ is at most quadratic in the coordinates xµ
and can be written in the generic form

εµ = aµ + bµνx
ν + cµνρx

νxρ (2.4)

where cµνρ = cµρν . Depending on the coefficients, we can identify four kinds of conformal
transformations: translation, rotation, dilation and special conformal transformation.

In classical field theory, a spinless field φ(x) will transform under a conformal transformation
x→ x′ as

φ(x)→ φ′(x′) =

∣∣∣∣∂x′∂x

∣∣∣∣−∆/d

φ(x) (2.5)

5



6 Conformal field theory

where ∆ is the conformal dimension of φ and
∣∣∂x′/∂x∣∣ is the Jacobian of the conformal

transformation of the coordinates. A field transforming like (2.5) is “quasi-primary”.

An important quantity in any field theory is the energy-momentum tensor. Conformal
invariance implies it is traceless. Under a generic change of coordinates xµ → xµ + εµ, the
action changes as follows:

δS =

∫
ddxTµν∂µεν =

1

2

∫
ddxTµν(∂µεν + ∂νεµ) (2.6)

The conformal transformations imply

δS =
1

d

∫
ddxTµµ ∂ρε

ρ

so the action is invariant under conformal transformation if Tµν is traceless.

Let us now see how conformal invariance is implemented in quantum field theory, especially
in correlation functions. We will mostly list the results without proofs, which can be
found in [1]. Consider a two-point function

〈
φ1(x1)φ2(x2)

〉
. For spinless fields, conformal

invariance yields

〈
φ1(x1)φ2(x2)

〉
=

∣∣∣∣∂x′∂x

∣∣∣∣∆1/d

x=x1

∣∣∣∣∂x′∂x

∣∣∣∣∆2/d

x=x2

〈
φ1(x1)φ2(x2)

〉
(2.7)

If we specialize to a scale transformation x→ λx, we obtain〈
φ1(x1)φ2(x2)

〉
= λ∆1+∆2

〈
φ1(λx1)φ2(λx2)

〉
(2.8)

Furthermore, rotation and translation invariance imply
〈
φ1(x1)φ2(x2)

〉
= f(|x1 − x2|) or,

in other words, 〈
φ1(x1)φ2(x2)

〉
=

C12

|x1 − x2|∆1+∆2
(2.9)

Finally, invariance under special conformal transformation implies

〈
φ1(x1)φ2(x2)

〉
=


C12

|x1−x2|2∆1
∆1 = ∆2

0 ∆1 6= ∆2

(2.10)

For three-point functions, we have

〈
φ1(x1)φ2(x2)φ3(x3)

〉
=

C123

x∆1+∆2−∆3
12 x∆2+∆3−∆1

23 x∆1+∆3−∆2
13

(2.11)

where for brevity xij =
∣∣xi − xj∣∣. However, these totally constrained forms end with 4-point

functions, for which

〈
φ1(x1)φ2(x2)φ3(x3)φ4(x4)

〉
= f

(
x12x34
x13x24

,
x12x34
x23x14

) 4∏
i<j

x
∆/3−∆i−∆j

ij (2.12)

where ∆ =
∑4

i ∆i. The function f depends on the so-called anharmonic ratios, which
are invariant under any conformal transformation, but it is not determined by conformal
invariance.
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2.2 Two-dimensional conformal field theory

Conformal field theory is particular in two dimensions, especially if we consider local
transformations, which are transformations that are not defined everywhere or necessarily
invertible. There are an infinity of two-dimensional coordinate transformations that are
locally conformal: they are the holomorphic mappings.

In two dimensions, we consider the plane of coordinates (z0, z1). A conformal transformation
is any change of coordinates zµ → wµ(x) where wµ(x) is a holomorphic function, i.e. it
satisfies the Cauchy-Riemann equations:

∂w1

∂z0
=
∂w0

∂z1
and ∂w0

∂z0
= − ∂w

1

∂z1
(2.13)

Given z = z0+ iz1 and w = w0+ iw1, the holomorphic Cauchy-Riemann equations become
simply

∂z̄w(z, z̄) = 0 (2.14)

whose solution is any holomorphic mapping z → w(z).

2.2.1 Conformal group

All that we have inferred above is local, that is, we have not imposed the condition that
conformal transformations be defined everywhere and be invertible. Strictly speaking, in
order to form a group, the mappings must be invertible, and must map the whole plane
(Riemann sphere) into itself. We must therefore distinguish global conformal transformations,
which satisfy these requirements, from local ones, which do not.

The set of global transformation, called the special conformal group, is the set of mappings

f(z) =
az + b

cz + d
(2.15)

with ad− bc = 1. We can associate to each f a matrix with determinant 1, that is a matrix
in SL(2,C). So the global conformal group in two dimensions is isomorphic to SL(2,C)
which in turn is isomorphic to the Lorentz group SO(3, 1). Then we found the global
conformal group has 6 real parameters in two dimensions.

2.2.2 Conformal generators

Local properties are more useful than the global ones, so the local group, made up of all
(not necessarily invertible) holomorphic mappings is of great importance. We now find the
algebra of its generators.

Any holomorphic infinitesimal transformation may be expressed as

z′ = z + ε(z) ε(z) =

∞∑
−∞

cnz
n+1 (2.16)

The effect of such mapping on a spinless and dimensionles field φ(z, z̄) is

φ′(z′, z̄′) = φ(z, z̄)

= φ(z′, z̄′)− ε(z′)∂′φ(z′, z̄′)− ε̄(z̄′)∂̄′φ(z′, z̄′)
(2.17)
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The variation of the field under this transformation is

δφ = −ε(z)∂φ− ε̄(z̄)∂̄φ

=
∑
n

[
cn`n φ(z, z̄) + c̄n ¯̀n φ(z, z̄)

] (2.18)

in which we Laurent-expanded ε(z) and defined

`n = −zn+1∂z ¯̀
n = −z̄n+1∂z̄ (2.19)

These are the generators, and they obey the following relations which characterize the
conformal algebra:

[`n, `m] = (n−m)`n+m

[¯̀n, ¯̀m] = (n−m)¯̀n+m

[`n, ¯̀m] = 0

(2.20)

Thus the conformal algebra is the direct sum of two independent isomorphic algebras,
called Witt algebras.

The infinite algebra made of `n contains a finite subalgebra generated by `−1, `0 and
`1 which is associated with the global conformal group. Indeed, it is manifest from the
definition (2.19) that `−1 = −∂z generates translations, `0 = −z∂z generates rotations and
scale transformations, while `1 = −z2∂z generates special conformal transformations.

2.2.3 Correlation functions

Before writing correlators in two dimensions, we define what we mean by “primary field”.
A field φ with scaling dimension ∆ and planar spin s, possesses the so-called conformal
dimensions, defined as

h =
1

2
(∆ + s) h̄ =

1

2
(∆− s) (2.21)

Under the transformations z → w(z) and z̄ → w̄(z̄), φ is a primary field if it transforms as

φ′(w, w̄) =

(
dw

dz

)−h(dw̄
dz̄

)−h̄
φ(z, z̄) (2.22)

which is the generalization of (2.5) for s 6= 0. If the mapping is infinitesimal, that is
w = z + ε(z) and w̄ = z̄ + ε̄(z̄), the variation of primary fields is

δε,ε̄ ≡ φ′(z, z̄)− φ(z, z̄)
= −(hφ∂zε+ ε∂zφ)− (h̄φ∂z̄ ε̄+ ε̄∂z̄φ)

(2.23)

The correlation function of n primary fields φi with conformal dimensions (hi, h̄i) reads

〈
φ1(w1, w̄1) · · ·φn(wn, w̄n)

〉
=

n∏
i=1

(
dw

dz

)−hi (dw̄
dz̄

)−h̄i 〈
φ1(z1, z̄1) · · ·φn(zn, z̄n)

〉
(2.24)

which fixes the form of two- and three-point functions. The novelty is spin, given by
hi − h̄i. Note that equations (2.10) and (2.11) are still valid in two dimensions. In complex
coordinates we have

〈
φ1(z1, z̄1)φ2(z2, z̄2)

〉
=

C12

(z1 − z2)2h(z̄1 − z̄2)2h̄
if
{
h1 = h2 = h

h̄1 = h̄2 = h̄
(2.25)
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Note that it vanishes if the conformal dimensions are different; this comes from rotation
invariance with spins: the sum of spins should be zero.

Equation (2.11) becomes〈
φ1(z1, z̄1)φ2(z2, z̄2)φ3(z3, z̄3)

〉
=

C123
1

zh1+h2−h312 zh2+h3−h223 zh3+h1−h213

1

z̄h̄1+h̄2−h̄312 z̄h̄2+h̄3−h̄223 z̄h̄3+h̄1−h̄213

(2.26)

Four-points functions are not fixed neither in two dimensions, but the anharmonic ratios
live on the same plane, so we have relations between them:

η =
z12z34
z13z24

1− η =
z14z23
z13z24

η

1− η
=
z12z34
z14z23

(2.27)

so that the general (2.12) translates into

〈
φ1(x1)φ2(x2)φ3(x3)φ4(x4)

〉
= f(η, η̄)

4∏
i<j

z
h/3−hi−hj
ij z̄

h̄/3−h̄i−h̄j
ij (2.28)

2.2.4 Ward identities

Ward identities are the quantum counterpart of Noether’s theorem and as such, they arise
from symmetries. Let us see which identities come from conformal invariance. We report
here a set of Ward identities associated with translation, rotation and scale invariance [1].
They are

∂

∂xµ

〈
Tµν(x)X

〉
= −

n∑
i=1

δ(x− xi)
∂

∂xνi
〈X〉

εµν
〈
Tµν(x)X

〉
= −i

n∑
i=1

siδ(x− xi) 〈X〉

〈
TµµX

〉
= −

n∑
i=1

δ(x− xi)∆i 〈X〉

(2.29)

where X stands for a string of n primary fields defined at points xi. Using the relation,

δ(x) =
1

π
∂z̄

1

z
=

1

π
∂z

1

z̄
(2.30)

we can rewrite the identities (2.29) in complex coordinates, which are

2π∂z 〈Tz̄zX〉+ 2π∂z̄ 〈TzzX〉 = −
n∑
i=1

∂z̄
1

z − wi
∂wi 〈X〉

2π∂z 〈Tz̄z̄X〉+ 2π∂z̄ 〈Tzz̄X〉 = −
n∑
i=1

∂z
1

z̄ − w̄i
∂w̄i 〈X〉

2 〈Tzz̄X〉+ 2 〈Tz̄zX〉 = −
n∑
i=1

δ(x− xi)∆i 〈X〉

−2 〈Tzz̄X〉+ 2 〈Tz̄zX〉 = −
n∑
i=1

δ(x− xi)si 〈X〉

(2.31)
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If we add and subtract the last two equations of (2.31), we find

2π 〈Tz̄zX〉 = −
n∑
i=1

∂z̄
1

z − wi
hi 〈X〉

2π 〈Tzz̄X〉 = −
n∑
i=1

∂z
1

z̄ − w̄i
h̄i 〈X〉

(2.32)

Inserting these two inside the first two equations of (2.31), we find holomorphic and
antiholomorphic derivatives set to zero. Using T = −2πTzz, the holomorphic one is:

∂z̄

〈T (z, z̄)X〉−
n∑
i=1

[
1

z − wi
∂wi 〈X〉+

hi
(z − wi)2

〈X〉
] = 0 (2.33)

and this allows us to write

〈
T (z)X

〉
=

n∑
i=1

{
1

z − wi
∂wi 〈X〉+

hi
(z − wi)2

〈X〉
}
+ reg. (2.34)

Similar expressions hold for the antiholomorphic counterpart, where T̄ = −2πTz̄z̄. The
Ward identities (2.29) can be grouped in a single relation. We will simply write the final
result, while the procedure is explained in [1].

δε,ε̄ 〈X〉 = −
1

2πi

∮
C
dzε(z)

〈
T (z)X

〉
+

1

2πi

∮
C
dz̄ε̄(z̄)

〈
T (z̄)X

〉
(2.35)

where δε,ε̄ 〈X〉 is the variation of X under a local transformation of parameters ε and ε̄.

For the Ward identity to work, we must require that the energy-momentum tensor be finite
for every z. Since it is symmetric and traceless, it has spin s = 2; furthermore, since it is
an energy density, it has scaling dimension ∆ = 2, leading to conformal dimensions h = 2
and h̄ = 0. Under a global transformation w = 1/z we have

T ′(w) =

(
dw

dz

)−2

T (z) = z4T (z) (2.36)

and since T ′(w) is as regular as T (z), the latter must decay like z−4 as z →∞.

2.2.5 Operator product expansion

Correlation functions typically are singular in points where fields coincide, and this arises
from the fluctuating nature of quantum fields.

The operator product expansion, or OPE, is the representation of a product of fields (at
positions z and w) as a sum of terms made up of a regular operator times a diverging
function for z → w.

The OPE of T with a primary field φ is simply the correlator (2.34) without the regular
terms:

T (z)φ(w, w̄) ∼ h

(z − w)2
φ(w, w̄) +

1

z − w
∂wφ(w, w̄)

T̄ (z̄)φ(w, w̄) ∼ h̄

(z̄ − w̄)2
φ(w, w̄) +

1

z̄ − w̄
∂w̄φ(w, w̄)

(2.37)
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In general, the OPE of fields A(z) and B(w) is

A(z)B(w) ∼
N∑

n=−∞

{AB}n(w)
(z − w)n

(2.38)

where {AB}n(w) is some expression non-singular at w = z. In (2.37), for example, {Tφ}1 =
∂wφ(w).

Two famous examples of fields are the free boson and the free fermion. Denoted respectively
by ∂X and ψ, they are primary fields of dimension h = 1 and h = 1/2. Their OPEs are

∂X(z)∂X(w) ∼ − 1

4πg

1

(z − w)2
ψ(z)ψ(w) ∼ 1

2πg

1

z − w
(2.39)

Note that that the structure of the OPEs reflects the nature of their corresponding field:
the bosonic one is invariant under switch of the two fields while the fermionic one has a sign
change. Moreover, the OPEs with the two fields with their corresponding energy-momentum
tensor are

T (z)∂X(w) ∼ ∂X(w)

(z − w)2
+
∂2X(w)

z − w
T (z)ψ(w) ∼

1
2ψ(w)

(z − w)2
+
∂ψ(w)

z − w
(2.40)

Finally we compute the OPEs of the two T ’s with themselves:

T (z)T (w) ∼ 1/2

(z − w)4
+

2T (w)

(z − w)2
+
∂T (w)

z − w
(2.41)

T (z)T (w) ∼ 1/4

(z − w)4
+

2T (w)

(z − w)2
+
∂T (w)

z − w
(2.42)

where g denotes an unspecified coupling constant of the boson and fermion fields. By
comparing (2.41) and (2.42) with (2.37), we see that these energy-momentum tensors are
not primary fields, because of the term proportional to 1/(z − w)4 which does not appear
in the OPE of T with primary fields (2.37). We see shortly that the numerator of the
additional term is proportional to the central charge c.

2.2.6 Central charge

The OPEs of T for the theory of the free boson and the free fermion (2.41, 2.42) can be
generalized to

T (z)T (w) ∼ c/2

(z − w)4
+

2T (w)

(z − w)2
+
∂T (w)

z − w
(2.43)

where c is a model-dependent constant called central charge. The central-charge term is
what makes T non-primary: without that term, we would say that it is primary with h = 2.

Transformation of energy-momentum tensor

So T is not primary unless c = 0, and all interesting theories have c > 0. Let’s see what this
implies for the transformation of the energy-momentum tensor. Given the Ward identity
(2.35), T transforms as

δT (w) = −Res[ε(z)T (z)T (w)] (2.44)

= −Res

[
ε(z)

(
c/2

(z − w)4
+

2T (w)

(z − w)2
+
T (w)

z − w
+ · · ·

)]
(2.45)
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If ε(z) contains no singular terms, we can expand

ε(z) = ε(w) + ε′(w)(z − w) + 1

2
ε′′(z − w)2 + 1

6
ε′′′(w)(z − w)3 + · · · (2.46)

from which we find

δT (w) = −ε(w) ∂T (w)− 2ε′(w)T (w)− c

12
ε′′′(w) (2.47)

This is the infinitesimal version. Under a finite conformal transformation z → z̃(z), T is
transformed as

T̃ (z̃) =

(
∂z̃

∂z

)−2 [
T (z)− c

12
S(z̃, z)

]
(2.48)

where S(z̃, z) is known as the Schwarzian and is defined by

S(z̃, z) =

(
d3z̃

dz3

) (
∂z̃

∂z

)−1

− 3

2

(
d2z̃

dz2

)2(
∂z̃

∂z

)−2

(2.49)

It is simple to check that the Schwarzian has the right infinitesimal form to give (2.47). Its
key property is that it preserves the group structure of successive conformal transformations.

Note further that the extra term in the transformation (2.48) is constant for all states: it
can be considered as the Casimir energy of the system.

Physical meaning

The central charge can be viewed as a quantum anomaly of the theory, causing a symmetry
breaking due to the introduction of a macroscopic length scale. An example is the boundary
condition when the CFT is mapped from the plane to a cylinder of length L. The central
charge induces a change on the vacuum energy [1]:〈

Tcyl
〉
= − cπ

2

6L2
(2.50)

while
〈
Tplane

〉
= 0. This is, as we said above, proportional to the Casimir energy.

There are other interpretations of c [1, 3], but we report here the basic idea behind the
c-theorem stated by Zamolodchikov. For starters, note that we can perturb a CFT by
adding an extra term on the action:

S = S + α

∫
φ(σ) d2σ (2.51)

where φ is some operator and α is simply a constant. The effect of the new term depends
on the dimension ∆ of φ.

• If ∆ < 2, the parameter α has positive dimension and the perturbation is called
relevant. Renormalization group (RG) flow causes to move away from the original
CFT;

• If ∆ = 2, the perturbation is called marginal and generates a new CFT;

• If ∆ > 2, the ultraviolet region is altered, while the infrared region is described by
the original CFT. This type of perturbation is called irrelevant.

Naturally, information is lost when we flow from UV region to IR region. The c-theorem
states that there exists a function c on the space of all theories which monotonically
decreases along RG flows. At the fixed points, theories are conformal, and the function c
coincides with the central charge of the conformal theory.
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2.3 Quantum conformal field theory

Our discussion has been about fields. We now talk about quantum states. We start by
quantizing the theory.

2.3.1 Radial quantization

In quantizing a two-dimensional field theory, it is natural to parameterize the plane by two
Cartesian coordinates that we call “time” and “space”. However, it is common in CFT to
define the theory on a infinite cylinder, where the time t goes along the axis of the cylinder
and space around it (x ∈ [0, L]). The map from it to the plane is given by z = e2πξ/L where
ξ = t+ ix is the complex coordinate on the cylinder.

2.3.2 Asymptotic states

In order to construct a Hilbert space of states, we have to define a vacuum state |0〉. We
define asymptotic fields

φin ∝ lim
t→−∞

φ(x, t)|0〉 ⇐⇒ φin = lim
z,z̄→0

φ(z, z̄)|0〉 (2.52)

and we define the out state as the Hermitian conjugate of the in state. The Hermitian
conjugate in radial quantization is defined as

φ†(z, z̄) = z̄−2hz−2h̄φ(1/z̄, 1/z) (2.53)

The out state 〈φout| = |φin〉† has a well-defined inner product with |φin〉. It is

〈φout | φin〉 = lim
z,z̄,w,w̄→0

〈0|φ(z, z̄)†φ(w, w̄)|0〉

= lim
z,z̄,w,w̄→0

z̄−2hz−2h̄〈0|φ(1/z̄, 1/z)φ(w, w̄)|0〉

= lim
ξ,ξ̄→∞

ξ̄2hξ2h̄〈0|φ(ξ̄, ξ)φ(0, 0)|0〉

(2.54)

where we defined ξ = 1/z. Note that the prefactors in (2.53) render the inner product well
defined for z →∞, according to the form of two-point functions as shown in (2.25). We
can interpret the last vacuum expectation value as a correlator since the operators are
already time-ordered.

A conformal field φ of dimensions (h, h̄) can be mode expanded as follows:

φ(z, z̄) =
∑
m∈Z

∑
n∈Z

z−m−hz̄−n−h̄φm,n (2.55)

where
φm,n =

1

2πi

∮
dzzm+h−1 1

2πi

∮
dz̄ z̄n+h̄−1φ(z, z̄) (2.56)

On the real surface (z̄ = z∗) the Hermitian conjugation is straightforward:

φ(z, z̄)† =
∑
m∈Z

∑
n∈Z

z̄−m−hz−n−h̄φ†m,n (2.57)

which is compatible with the conjugation according to the definition (2.53) provided
φ†m,n = φ−m,−n.
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In the following we shall only consider the holomorphic component, thanks to the decoupling
of the two characteristic of conformal theories.

φ(z) =
∑
m∈Z

z−m−hφm φm =
1

2πi

∮
dzzm+h−1φ(z) (2.58)

2.3.3 Radial ordering

Within radial quantization, the time ordering is radial ordering, explicitly defined by

RΦ1(z)Φ2(w) =

{
Φ1(z)Φ2(w) |z| > |w|
Φ2(w)Φ1(z) |z| < |w|

(2.59)

In order for OPEs to have an operatorial meaning the fields must be radially ordered.

We now relate OPEs to commutation relations. Let a(z) and b(w) be two holomorphic
fields and consider ∮

w
dza(z)b(w) (2.60)

where z goes around w. We further define the contour integrals of a(z) and b(z) as

A =

∮
a(z) dz B =

∮
b(z) dz (2.61)

We split (2.60) in the following terms:∮
w
dza(z)b(w) =

∮
C1

dza(z)b(w) +

∮
C2

dzb(w)a(z) = [A, b(w)] (2.62)

where C1 and C2 are circles centered in the origin of radii |w|+ ε and |w| − ε, respectively.
We can add an arbitrary number of fields in the integral, provided b(w) is the only one
to have an OPE with a(z) singular at z → w. In practice, integral (2.62) is evaluated by
substituting the OPE a(z)b(w), of which only the term in 1/(z − w) contributes, by the
theorem of residues. We can also write

[A,B] =

∮
0
dw

∮
dza(z)b(w) (2.63)

where A and B are integrals of a and b around some contour. These formulas relate OPE
with commutation relations.

2.3.4 Virasoro algebra

We apply (2.62) and (2.63) to the conformal Ward identity (2.35). We consider an infinites-
imal transformation with holomorphic coordinate ε(z) and define

Qε =
1

2πi

∮
dzε(z)T (z) (2.64)

With (2.62), the Ward identity translates into

δεΦ(w) = −[Qε,Φ(w)] (2.65)

which means that the Qε is the generator of conformal transformations, the conformal
charge; cf. Di Francesco, Eq. (2.167).
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We expand T according to (2.55).

T (z) =
∑
n∈Z

z−n−2Ln Ln =
1

2πi

∮
dzzn+1T (z) (2.66)

and the same for T̄ (z̄) and L̄n. We also expand ε(z) as

ε(z) =
∑
n∈Z

zn+1 εn (2.67)

so putting this into (2.64),
Qε =

∑
n∈Z

εn Ln (2.68)

from which we conclude that Ln are generators of local conformal transformations in
the Hilbert space, exactly like ln generate conformal mappings in the function space.
Likewise, L−1, L0 and L1 generate SL(2,C) in the Hilbert space. Furthermore, L0 + L̄0

generates dilations (z, z̄)→ λ(z, z̄), which are equivalent to time translations within radial
quantization: L0 + L̄0 is proportional to the Hamiltonian of the system.

While the classical generators of local conformal transformations obey the Witt algebra
(2.20), the quantum generators obey the Virasoro algebra, which is

[Ln, Lm] = (n−m)Ln+m +
c

12
n(n2 − 1)δn+m,0

[Ln, L̄m] = 0

[L̄n, L̄m] = (n−m)L̄n+m +
c

12
n(n2 − 1)δn+m,0

(2.69)

where c is the central charge of the theory. The commutators derive from the T expansion
(2.66), the TT OPE (2.43) and the integral (2.63). The vanishing commutator comes from
T (z)T̄ (w) ∼ 0.

The vacuum state must be invariant under global conformal transformations: this means
that it must be annihilated by L−1, L0 and L1. This comes as a particular of the condition
that T (z)|0〉 and T̄ (z̄)|0〉 are well-defined as z, z̄ → 0, which implies

Ln|0〉 = L̄n|0〉 = 0 n ≥ −1 (2.70)

and also implies the vanishing of the VEV of the energy-momentum tensor:

〈0|T (z)|0〉 = 0 (2.71)

Primary fields on the vacuum state produce eigenstates of the Hamiltonian, i.e. L0 + L̄0.
To see this, we write, from the OPE of T (z) with a primary field (2.37), the following:

[Ln, φ(w, w̄)] =
1

2πi

∮
w
dzzn+1T (z)φ(w, w̄)

=
1

2πi

∮
w
dzzn+1

[
hφ(w, w̄)

(z − w)2
+
∂φ(w, w̄)

z − w
+ reg.

]
= h(n+ 1)wnφ(w, w̄) + wn+1∂φ(w, w̄) n ≥ −1

(2.72)

and similarly for the antiholomorphic counterpart. After applying this to the state |h, h̄〉 =
φ(0, 0)|0〉 we conclude that

L0|h, h̄〉 = h|h, h̄〉 L̄0|h, h̄〉 = h̄|h, h̄〉 (2.73)
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which indeed means that it is an eigenstate of the Hamiltonian. Likewise, Ln|h, h̄〉 =
L̄n|h, h̄〉 = 0 for n > 0.

Expanding the field in modes according to (2.55) we easily find

[Ln, φm] = [n(h− 1)−m]φn+m (2.74)

of which a special case is
[L0, φm] = −mφm (2.75)

This means that operators φm act as ladder operators for the eigenstates of L0. Applying
φ−m for m > 0 increases the conformal dimension of the state by m. The same holds for
L−m, in fact

[L0, L−m] = mL−m (2.76)

This implies that excited states are obtained by applying Lk multiple times. The resulting
state

L−k1 · · ·L−kn |h〉 1 ≤ k1 ≤ · · · ≤ kn (2.77)

will be an eigenstate of L0 with h′ = h+ k1 + · · ·+ kn = h+N , where N is called the level.
These states are called descendant of the state |h〉.

The subspace of Hilbert space generated by the state |h〉 and its descendants is called a
Verma module.

2.3.5 Normal ordering

For free fields, like the free boson or the free fermion, the OPE contains only one singular
term, and the regularization can be done simply by subtracting the corresponding VEV
(which in terms of modes this is equivalent to the ordinary normal ordering). For other
fields, e.g. energy-momentum tensor, subtracting the VEV leaves some singular terms. We
need a new definition of normal ordering. Given the general OPE

A(z)B(w) =

N∑
n=−∞

{AB}n(w)
(z − w)n

(2.78)

then the new normal ordering is

(AB)(w) = {AB}0(w) (2.79)

which is the non-singular term in the OPE. We accordingly define the contraction to include
all singular terms

A(z)B(w) ≡
N∑
n=1

{AB}n(w)
(z − w)n

(2.80)

so that we rewrite the normal ordering as

(AB)(w) = lim
z→w

[
A(z)B(w)−A(z)B(w)

]
(2.81)

and the OPE as
A(z)B(w) = A(z)B(w) + (AB)(w) (2.82)

Using contour integrals the normal ordering can be expressed as

(AB)(w) =
1

2πi

∮
w
dz

1

z − w
A(z)B(w) (2.83)
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As an aside, note that it is possible to mode-expand fields around an arbitrary point w
rather than 0, to obtain

φ(z) =
∑
n∈Z

(z − w)−n−hφn(w) (2.84)

and, in particular,
T (z) =

∑
n∈Z

(z − w)−n−2Ln(w) (2.85)

in which
Ln(w) =

1

2πi

∮
w
dz(z − w)n+1T (z) (2.86)

This re-writing allows us to have a different expression for the OPE

T (z)A(w) =
∑
n∈Z

(z − w)−n−2(LnA)(w) (2.87)

The mode version of (2.83) is

(AB)m =
∑

n≤−hA

AnBm−n +
∑

n>−hA

Bm−nAn (2.88)

wherein the modes (AB)n are defined by

(AB)(z) =
∑

z−n−hA−hB (AB)n (2.89)

This new normal ordering requires a new formulation of the Wick theorem.

2.4 Conformal families and operator algebra

2.4.1 Descendant fields

Primary fields are fundamental in CFT. The state |h〉 = φ(0)|0〉 created by a primary field
with conformal dimension h gives birth to a tower of states of higher conformal dimensions.

Each descendant state can be viewed as a descendant field acting on the vacuum |0〉. For
example,

L−n|h〉 = L−nφ(0)|0〉 =
1

2πi

∮
dzz1−nT (z)φ(0)|0〉 (2.90)

is equivalent to (Lnφ)(0)|0〉 according to (2.87). Descendant states may be obtained by
acting on the vacuum with the regular terms in the OPE T (z)φ(0).

The natural definition of the descendant field φ(−n) associated with (L−nφ) is

φ(−n)(w) = (L−nφ) =
1

2πi

∮
w
dz

1

(z − w)n−1
T (z)φ(w) (2.91)

The physical properties i.e. the correlation functions of these fields can be derived from the
“ancestor” primary field. Indeed, consider the correlator

〈
(Lnφ)(w)X

〉
=
〈
φ(−n)(w)X

〉
where X denotes as usual a string of primary fields with conformal dimensions hi and
position wi. This correlator may be calculated by substituting the definition of the descen-
dant (2.91), in which the contour circles w only, excluding the positions wi of the other
fields. The residue theorem may be applied by reversing the contour and summing the
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contributions from the poles at wi, with the help of the OPE (2.37) of T with primary
fields: 〈

φ(−n)(w)X
〉
=

1

2πi

∮
w
dz(z − w)1−n

〈
T (z)φ(w)X

〉
= − 1

2πi

∑
i

∮
{wi}

dz(z − w)1−n
{

1

z − wi
∂wi

〈
φ(w)X

〉
+

hi
(z − wi)2

〈
φ(w)X

〉}
≡ L−n

〈
φ(w)X

〉
(2.92)

where we have defined L as the following differential operator:

L−n =
∑
i

{
(n− 1)hi
(wi − w)n

− 1

(wi − w)n−1
∂wi

}
(2.93)

so we conclude that a correlator of descendant fields is simply the correlator of primary
fields on which we apply a differential operator.

2.4.2 Conformal families

A conformal family is the set comprising a primary field φ and its descendants and is denoted
[φ]. Since under a conformal transformation fields in [φ] transform among themselves, we
can say that the OPE of T (z) with any member of [φ] will be composed of other members
of [φ].

For instance, we calculate the OPE of T (z) with φ(−n). Eq. (2.87) implies

T (z)φ(−n)(w) =
∑
k≥0

(z − w)k−2(L−kφ
(−n))(w) +

∑
k>0

1

(z − w)k+2
(Lkφ

(−n))(w) (2.94)

where the first term is the non-singular part and contains the descendants φ(−k,−n), while
the second term contains the singular factors and can be derived by using the ordinary
OPE

T (z)φ(−n) =
1

2πi

∮
w
dx

1

(x− w)n−1
T (z)T (x)φ(w)

∼ 1

2πi

∮
w
dx

1

(x− w)n−1

{
c/2

(z − x)4
+

2T (x)

(z − x)2
+
∂T (x)

z − x

}
φ(w)

=
cn(n2 − 1)/12

(z − w)n+2
φ(w) +

∮
w
dx

1

(x− w)n−1

∞∑
l=0

φ(−l)(w)×{
2(x− w)l−2

(z − x)2
+

(l − 2)(x− w)l−3

z − x

}

=
cn(n2 − 1)/12

(z − w)n+2
φ(w) +

n+1∑
l=0

2n− l
(z − w)n+2−lφ

(−l)(w)

(2.95)

where we have used the equality

1

2πi

∮
w
dx

1

(x− w)n
F (w)

(z − x)m
=

(n+m− 2)!

(n− 1)!(m− 1)!

F (w)

(z − w)n+m−1
(2.96)
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Finally, we write

T (z)φ(−n)(w) =
cn(n2 − 1)/12

(z − w)n+2
φ(w) +

n∑
k=1

n+ k

(z − w)k+2
φ(k−n)(w) +∑

k≥0

(z − w)k−2φ(−k,−n)(w)
(2.97)

where we changed the summed index in the second term and used φ(−k,−n) = (Lkφ
(−n)) in

the third. This applies, for instance, to φ(−1) = ∂φ, in the following way

T (z)∂φ(w) ∼ 2hφ(w)

(z − w)3
+

(h+ 1)∂φ(w)

(z − w)2
+
∂2φ(w)

z − w
(2.98)

Note that descendants of primary fields are not primary, and are instead called secondary
fields. A secondary field A(z) transforms, under z → f(z), as

A(z)→
(df
dz

)h′
A(f(z)) + extra terms (2.99)

where h′ = h+N if the ancestor has dimension h. The extra terms transforms into poles
in the OPE of A(w) with T (z) as is shown above.

2.4.3 Operator algebra

The main object of any field theory are the correlation functions, since they are observable. In
conformal field theory, although symmetry provides some constraints, additional dynamical
information is needed to determine the correlators. The required information is the operator
algebra: the OPEs of all primary fields with each other, including regular terms.

Firstly, we have to determine the field normalization, namely the two-point function:〈
φα(w, w̄)φβ(z, z̄)

〉
=

Cαβ

(w − z)2h(w̄ − z̄)2h̄
(2.100)

Since the coefficients Cαβ are symmetric, we can choose a basis of primary fields such that
Cαβ = δαβ. Conformal families with different φα’s will be orthogonal in the sense of the
two-point functions and this applies also to Verma modules. In fact, we can always, by a
global conformal transformation, bring the states to asymptotic positions (e.g. w =∞ and
z = 0), so that the two-point function becomes a bilinear product; given two fields φ and
φ′ we can write〈

φ(w, w̄)φ′(z, z̄)
〉
→ lim

w,w̄→∞
w2hw̄2h̄

〈
φ(w, w̄)φ′(0, 0)

〉
= 〈h | h′〉〈h̄ | h̄′〉 (2.101)

thus the orthogonality between the highest state implies the same for all the descendants,
and the Verma module as a whole.

Invariance under scaling transformations requires the operator algebra to have the form

φ1(z, z̄)φ2(0, 0) =
∑
p

∑
{k,k̄}

C
p {k,k̄}
12 zhp−h1−h2+K zh̄p−h̄1−h̄2+K̄ φ{k,k̄}p (0, 0) (2.102)

where K and K̄ are the sum of all ki and k̄i respectively, and {k} means a collection of
indices. Basically, φ{k,k̄}p is a descendant of primary field φp upon which we acted with
lowering operators with all indexes in the set {k, k̄}.
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We take the correlator of this with a third primary field φr(w, w̄) of dimensions hr e h̄r.

〈φr|φ1(z, z̄)|φ2〉 = lim
w,w̄→∞

w2hr w̄2h̄r
〈
φr(w, w̄)φ1(z, z̄)φ2(0, 0)

〉
=

Cr12

zh1+h2−hr zh̄1+h̄2−h̄r

(2.103)

where for the last equality we took the limit w →∞ in the original formula for the three-
point function (2.26). On the OPE side, the only contributing term is p{k, k̄} = r{0, 0}
(i.e. the primary field φr) because of the orthogonality of the Verma modules. We conclude
that

C
p{0,0}
12 ≡ Cp12 = Cp12 (2.104)

Note that the adopted normalization eliminates the distinction between covariant and
contravariant indices.

Since the correlators of descendants depends on those of primaries, we have

C
p{k,k̄}
12 = Cp12 β

p{k}
12 β

p{k̄}
12 (2.105)

which means that the coefficient of a descendant field is equal to the one for the primary
field times functions which depend on the primary field, the other fields in the correlator,
and the lowering indices.

Let’s do a simple case where h1 = h2 = h. When applying (2.102) on the vacuum, we find

φ1(z, z̄)|h, h̄〉 =
∑
p

Cp12 z
hp−2h z̄h̄p−2h̄ϕ(z)ϕ̄(z̄)|hp, h̄p〉 (2.106)

wherein we introduced
ϕ =

∑
{k}

zKβ
p{k}
12 L−k1 · · ·L−kN (2.107)

and a similar ϕ̄, to separate the holomorphic part from the anti-holomorphic part. For the
holomorphic part, we define

|z, hp〉 ≡ ϕ(z)|hp〉 =
∞∑
N=0

zN |N,hp〉 (2.108)

where we wrote it as a series of descendants |N,hp〉 at level N belonging to the module
V (hp) with primary field |hp〉 = |0, hp〉. Thus

L0|N,hp〉 = (hp +N)|N,hp〉 (2.109)

We now apply Ln on both sides of (2.106) for n > 0. The l.h.s. yields:

Lnφ1(z, z̄)|h, h̄〉 = [Ln, φ1(z, z̄)]|h, h̄〉
= (zn+1∂z + (n+ 1)hzn)φ1(z, z̄)|h, h̄〉

(2.110)

where we applied (2.72). The r.h.s. gives∑
p

Cp12 z
hp−2h z̄h̄p−2h̄Ln|z, hp〉|z̄, h̄p〉 =∑

p

Cp12 z
hp−2h z̄h̄p−2h̄

[
(hp + h(n+ 1))zn + zn+1∂z

]
|z, hp〉|z̄, h̄p〉

(2.111)
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We now substitute the power series (2.108) into the states and obtain

Ln|N + n, hp〉 = (hp + (n− 1)h+N)|N,hp〉 (2.112)

This relation, together with the Virasoro algebra, allows the recursive calculation of all the
|N,hp〉 and hence of all βp{k}12 .

Let us calculate explicitly the lowest coefficients. First, we know that, using (2.107) for
z = 1 and {k} = 1,

|1, hp〉 = β
p{1}
12 L−1|hp〉 (2.113)

Applying L1 on this state yields

L1|1, hp〉 = hp|hp〉 = β
p{1}
12 L1L−1|hp〉 (2.114)

and, since L1L−1|hp〉 = [L1, L−1]|hp〉 = 2hp|hp〉, we find

β
p{1}
12 =

1

2
(2.115)

Note that we assumed h1 = h2, otherwise

β
p{1}
12 =

hp + h1 − h2
2hp

(2.116)

2.4.4 Conformal blocks

Four-point functions can be reduced to three-point functions with the help of the operator
algebra (2.102). We will see in detail which part of the correlator is fixed by conformal
invariance and which is not. Consider〈

φ1(z1, z̄1)φ2(z2, z̄2)φ3(z3, z̄3)φ4(z4, z̄4)
〉

(2.117)

Such a function depends on the ratios

x =
(z1 − z2)(z3 − z4)
(z1 − z3)(z2 − z4)

x̄ =
(z̄1 − z̄2)(z̄3 − z̄4)
(z̄1 − z̄3)(z̄2 − z̄4)

(2.118)

Since these ratios are invariant under global transformations,we perform one in which
z4 = 0, z1 =∞ and z2 = 1, so that z3 = x and we can write

lim
z1,z̄1→∞

z2h11 z̄2h̄11

〈
φ1(z1, z̄1)φ2(1, 1)φ3(x, x̄)φ4(0, 0)

〉
= G21

34(x, x̄) (2.119)

wherein we defined
G21

34(x, x̄) = 〈h1, h̄1|φ2(1, 1)φ3(x, x̄)|h4, h̄4〉 (2.120)

We have related a four-point function to a matrix element between two asymptotic states.
We apply operator algebra (2.102) to compute

φ3(x, x̄)φ4(0, 0) =
∑
p

Cp34x
hp−h3−h4 x̄h̄p−h̄3−h̄4Ψp(x, x̄ | 0, 0) (2.121)

in which
Ψp(x, x̄ | 0, 0) =

∑
{k,k̄}

β
p{k}
34 β̄

p{k̄}
34 xK x̄K̄φ{k,k̄}p (0, 0) (2.122)
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The function G21
34(x, x̄) now assumes the form

G21
34(x, x̄) =

∑
p

Cp34C
p
12A

21
34(p | x, x̄) (2.123)

where again we introduced a function:

A21
34(p | x, x̄) = (Cp12)

−1xhp−h3−h4 x̄h̄p−h̄3−h̄4 〈h1, h̄1|φ2(1, 1)Ψp(x, x̄ | 0, 0)|0〉 (2.124)

We have rewritten the four-point function as a sum over intermediate conformal families,
labeled by p. This expression has a straightforward diagrammatic interpretation.

This can be factorized into the holomorphic and antiholomorphic part:

A21
34(p | x, x̄) = F 21

34 (p | x)F̄ 21
34 (p | x̄) (2.125)

where
F 21

34 (p | x) = xhp−h3−h4
∑
{k}

β
p{k}
34 xK

〈h1|φ2(1)L−k1 · · ·L−kN |hp〉
〈h1|φ2(1)|hp〉

(2.126)

in which the denominator is simply (Cp21)
1/2, recalling (2.26) for z = 1. The functions F

are called conformal blocks. They can be calculated simply from the knowledge of the
conformal dimensions and the central charge, by commuting the Virasoro generators over
the field φ2(1) one after the other. The field normalizations and coefficients Cpmn drop out
of the conformal block at the end of this process.

Going back to the partial wave decomposition (2.123), we see that the conformal blocks
represent the element in four-point functions that can be determined from conformal
invariance. They depend on the anharmonic ratios through a series expansion. The remaining
elements are the three-point function coefficients Cp12 and Cp34 which are not fixed by
conformal invariance. Therefore, the four-point function (2.120) is expressed as

G21
34(x, x̄) =

∑
p

Cp34C
p
12F

21
34 (p | x)F̄ 21

34 (p | x̄) (2.127)

An explicit form for the conformal blocks in generally unknown and the application of the
formula (2.126) is often tedious.

2.4.5 Crossing symmetry and conformal bootstrap

In defining G21
34(x, x̄), we have chosen an order for the fields in the correlator. However,

except for a sign change in fermions, the order does not matter, and we could have put z2
to 0 and z4 to 1. Then z3 = 1− x and

G41
32(1− x, 1− x̄) = G21

34(x, x̄) (2.128)

We can analogously interchange φ1 with φ4 to get

G21
34(x, x̄) =

1

x2h3 x̄2h̄3
G24

31(1/x, 1/x̄) (2.129)

All of these are representations of crossing symmetry.

We express (2.128) in terms of the conformal blocks∑
p

Cp21C
p
34 F 21

34 (p | x)F̄ 21
34 (p | x̄) =

∑
q

Cq41C
q
32 F 41

32 (q | x)F̄ 41
32 (q | x̄) (2.130)
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Assuming the conformal blocks are known, this equation provides constraints that can
determine the coefficients Cpmn and the conformal dimension hp. The procedure of computing
correlators based on crossing symmetry is called the bootstrap approach. The bootstrap
hypothesis is the sole “dynamical input” necessary to fully determine the correlators other
than the part fixed by conformal invariance. The constraints imposed by crossing symmetry
do not exclude interesting theories.





3 | String theory

String theory is a theory that, starting from the principle that the fundamental object are
one-dimensional strings, encompasses and unifies all the fundamental interactions, including
gravity, providing a description of quantum gravity. In this chapter we introduce some
basic, standard concepts of string theory and its quantization. Actually, we will not work
with string theory, but it is important to understand where supergravity, its low-energy
limit, comes from.

3.1 The relativistic string

In this section we describe a string in special relativity. In string theory, the fundamental
objects are the strings, which are one-dimensional objects that can vibrate. Each different
mode of vibration gives rise to a different particle.

3.1.1 The relativistic point particle

Let us start from the action of a relativistic point particle, written in a way that makes
easy the generalization to a string. We demand that the action be invariant under Lorentz
transformations; in all worldlines Γ, the quantity agreed upon by all observers is the proper
time or, equivalently, the spacetime interval, ds. Let’s write it:

ds2 = c2 dt2 − dx2 − dy2 − dz2 = −ηµν dxµ dxν (3.1)

To have the correct dimensions, we multiply this by the rest mass times c2, which is a unit
of energy. We now have the action:

S = −mc2
∫
Γ
dτ = −mc

∫
Γ
ds (3.2)

Other than being Lorentz invariant, S is also reparameterization invariant, a feature crucial
in string theory. To see this, we express the integrand in terms of the coordinates of the
worldline xµ, which depend on τ . We get

S = −mc
∫
Γ

√
−ηµν

dxµ

dτ

dxν

dτ
dτ (3.3)

where we use the convention for which(dxµ
dτ

)2
= −1 (3.4)

25
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We can now check rather easily that S is reparameterization invariant by going from τ
to τ ′: the derivatives change but also the differential transforms accordingly. This action
yields the following equations of motion:

dpµ

dτ
= 0 (3.5)

which means that the four-momentum is conserved along the worldline.

3.1.2 The Nambu-Goto action

We proceed to the string by analogy: as a moving particle traces out a line, so a string
traces out a surface—the worldsheet. As proper time (length) is constant to all observers,
the equivalent for a string is the proper area.

We parameterize the worldsheet with coordinates σ and τ : the transverse (space) and
longitudinal (time) coordinates, respectively; as such, σ is in [0, σ1] while τ runs along the
whole real line. We introduce Xµ, that are the coordinates of the string in spacetime, and
their derivatives Ẋµ and X ′µ with respect to τ and σ, respectively. Finally, the area of the
worldsheet is ∫∫ √

(Ẋ ·X ′)2 − (Ẋ)2(X ′)2 dσ dτ (3.6)

For dimensional consistency, the area must be multiplied by a mass per time or force per
velocity to get an action. The natural choice falls upon T/c where T is the string tension;
however, it is usually preferred to use α′ = 1/(2π~c T ) which is related to the string length
`s by `s = ~c

√
α′. Finally the Nambu-Goto action reads

S = − 1

2πα′

∫∫ √
(Ẋ ·X ′)2 − (Ẋ)2(X ′)2 dσ dτ (3.7)

where ~ = c = 1. Since it is important that this action is reparameterization invariant,
it is worth to write it in a manifestly reparameterization-invariant way. To this end, we
introduce coordinates (ξ1, ξ2) = (τ, σ) and write the induced metric on the worldsheet,
which reads

γαβ = ηµν
∂Xµ

∂ξα
∂Xν

∂ξβ
(3.8)

or, in matrix form,

γ =

(
(Ẋ)2 Ẋ ·X ′

Ẋ ·X ′ (X ′)2

)
(3.9)

It is clear that the radicand in the action is the determinant of γ. Now the desired invariance
is manifest:

S = − 1

2πα′

∫∫ √
−det γ dξ1 dξ2 (3.10)

which is a form we can generalize easily to describe other objects.

The equations of motion obtained by varying the action w.r.t. Xµ are
∂P τµ
∂τ

+
∂P σµ
∂σ

= 0 (3.11)

where we defined the conjugate momenta:

P τµ =
∂L
∂X ′µ = − 1

2πα′
(Ẋ ·X ′)X ′

µ − (X ′)2Ẋµ√
(Ẋ ·X ′)2 − (Ẋ)2(X ′)2

(3.12)

P σµ =
∂L
∂Ẋµ

= − 1

2πα′
(Ẋ ·X ′)Ẋµ − (Ẋ)2X ′

µ√
(Ẋ ·X ′)2 − (Ẋ)2(X ′)2

(3.13)
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Actually, the Nambu-Goto action is highly nonlinear in Xµ and thus it is customary to use
the Polyakov action.

3.1.3 The Polyakov action

The Polyakov action reads

S = − 1

4πα′

∫
dτ dσ

√
−ggαβ ∂αXµ∂βX

ν ηµν (3.14)

where g ≡ det g is the determinant of gαβ. This action introduces a new field, gαβ, that
can be seen as a dynamical metric on the worldsheet, which will have its own equations of
motion. The equation of motion for Xµ is

∂α(
√
−ggαβ∂βXµ) = 0 (3.15)

which can be shown to coincide with the equation of motion (3.11) from the Nambu-
Goto action, except that now also gαβ is to be fixed by its equation. Recalling δ√−g =
−1

2

√
−ggαβδgαβ = +1

2

√
−ggαβδgαβ, we have

δS = −T
2

∫
dτ dσδgαβ

(√
−g ∂αXµ∂βX

ν − 1

2

√
−g gαβgρσ∂ρXµ∂σX

ν

)
ηµν = 0 (3.16)

which determines that

gαβ = 2f(τ, σ) ∂αX · ∂βX = 2f(τ, σ) γαβ (3.17)

Hence the γ and g metrics are related by an arbitrary factor f which drops out of the
equation of motion (3.15) for Xµ, concluding that both actions yield the same equation
of motion for Xµ. In fact, if we replace the metric in the action (3.14) with its equation
(3.17), the f factor drops out again and we recover Nambu-Goto action (3.10).

Note that the Polyakov action possesses, as the Nambu-Goto’s, both Poincaré invariance
and reparameterization invariance, which is akin to a gauge invariance. Moreover it satisfies
the so-called Weyl invariance, that is the invariance of the action under the change of the
metric by a scale factor:

gαβ(σ)→ Ω2gαβ(σ) (3.18)

As for f , the Ω2 factor cancels out in the action between gαβ and √−g.

3.1.4 Solving the equation of motion

The equation of motion (3.15) is pretty complicated for its dependence on g. We can
simplify it a bit by fixing a convenient gauge. Thanks to reparameterization invariance, we
can set

gαβ = e2φηαβ (3.19)

and with a suitable Weyl transformation we obtain gαβ = ηαβ, that is, we turned the
worldsheet metric into a flat metric. This allows us to greatly simplify the Polyakov action,
which reduces to the action of D free scalar fields, that is

S = − 1

4πα′

∫
d2σ ∂αX · ∂αX (3.20)
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and the equation of motion for Xµ reduces to a wave equation

∂α∂
αXµ = 0 (3.21)

Note however that we still need to make sure that gαβ satisfies its equation of motion: we
have to compute the variation of the action with respect to the metric (3.16), but this is
proportional to the stress-energy tensor :

Tαβ = − 2

T

1√
−g

∂S

∂gαβ
(3.22)

so the equation for gαβ is Tαβ = 0, which induces constraints on Ẋ and X ′

T01 = Ẋ ·X ′ = 0 T00 = T11 =
1

2
(Ẋ2 +X ′ 2) = 0 (3.23)

It is convenient to switch to lightcone coordinates on the worldsheet,[1] so we introduce
σ± = τ ± σ, and the wave equation becomes

∂+∂−X
µ = 0 (3.24)

The most general solution of this is

Xµ(τ, σ) = Xµ
L(σ

+) +Xµ
R(σ

−) (3.25)

where Xµ
L(σ

+) and Xµ
R(σ

−) are arbitrary functions that describe left-moving and right-
moving waves, respectively. This solution obeys both the constraints (3.23) and the period-
icity condition

Xµ(τ, σ) = Xµ(τ, σ + 2π) (3.26)

Since it is periodic, it can be expanded in Fourier modes, like

Xµ
L(σ

+) =
1

2
xµ +

1

2
α′pµ σ+ + i

√
α′

2

∑
n6=0

1

n
α̃µn e

−inσ+

Xµ
R(σ

−) =
1

2
xµ +

1

2
α′pµ σ− + i

√
α′

2

∑
n6=0

1

n
αµn e

−inσ−

(3.27)

where some normalizations are chosen for later convenience. This mode expansion will
come in handy in quantization. Let us make a few remarks.

• XL and XR do not individually satisfy the periodicity condition due to the terms
linear in σ±. However, the sum of them is invariant under σ → σ + 2π as required.

• The variables xµ and pµ are the position and momentum of the center of mass of
the string. This can be checked, for example, by studying the Noether currents
arising from the spacetime translation symmetry Xµ → Xµ + cµ. One finds that the
conserved charge is indeed pµ.

• Reality of Xµ requires that the coefficients of the Fourier modes, αµn and α̃µn, obey

αµn = (αµ−n)
? α̃µn = (α̃µ−n)

? (3.28)
[1]Note that worldsheet lightcone coordinates are different from spacetime lightcone coordinates, that we

will define below.
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3.1.5 The constraints in lightcone coordinates

The constraints (3.23) in the worldsheet lightcone coordinates become

(∂+X)2 = (∂−X)2 = 0 (3.29)

which in turn give constraints on the momenta pµ and the Fourier modes. Let’s compute
the second one using the mode expansion. For starters, we have

∂−X
µ = ∂−X

µ
R =

α′

2
pµ +

√
α′

2

∑
n6=0

αµn e
−inσ− (3.30)

For consistency we can define the zero mode αµ0 as
√
α′/2pµ, which accounts for the

translation of the string. The constraint then reads

(∂−X)2 =
α′

2

∑
m,p

αm · αp e−i(m+p)σ−

=
α′

2

∑
m,n

αm · αn−m e−inσ
−

≡ α′
∑
n

Ln e
−inσ−

= 0

(3.31)

where we have introduced the Virasoro modes Ln, defined as

Ln =
1

2

∑
m

αn−m · αm (3.32)

The same applies for left-moving modes, where we define analogous L̃n, and the left-moving
zero mode α̃µ0 to be equal to αµ0 =

√
α′/2 pµ. The apparently natural fact that the zero

modes are equal is going to be crucial in quantization.

The mode-expanded solutions (3.27) must obey the constraints

Ln = L̃n = 0 (3.33)

for all n ∈ Z. Note that these Virasoro modes are closely related to the Virasoro algebra of
conformal field theory.

The Virasoro modes are related to the string effective mass: this is because they contain
the spacetime momentum pµ and pµp

µ = −M2. The mass is then equal to

M2 =
4

α′

∑
n>0

αn · α−m =
4

α′

∑
n>0

α̃n · α̃−m (3.34)

Note that we have two expressions for the mass, one with left-moving modes and one
with right-moving modes. They have to be equivalent, which is a condition known as level
matching.

3.2 Quantum closed strings

There are several ways to quantize the closed string. Two of those are

Covariant quantization we quantize the system and then impose the constraints. This
is akin to Gupta-Bleuler quantization of QED
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Lightcone quantization we impose the constraints classically and then we quantize only
the physical degrees of freedom. In QED, the equivalent way is using the Coulomb
gauge.

Of course the two methods should yield the same results. We are going to discuss briefly
the first method and switch to the second one when we encounter difficulties.

3.2.1 Covariant quantization

As we said before, covariant quantization means we quantize the theory then impose the
constraints

Ẋ ·X ′ = Ẋ2 +X ′ 2 = 0 (3.35)

We quantize the quantities Xµ and Pµ by promoting them to operators and determining
the usual (equal-time) commutation relations:[

Xµ(σ, τ), Pν(σ
′, τ)

]
= iδ(σ − σ′)δµν[

Xµ(σ, τ), Xν(σ′, τ)
]
=
[
Pµ(σ, τ), Pν(σ

′, τ)
]
= 0

(3.36)

Applying the mode expansion (3.27), these translate into relations for xµ, pµ and the
Fourier modes. The non-zero ones are

[xµ, pν ] = iδµν [αµn, α
ν
m] = [α̃µn, α̃

ν
m] = n ηµνδn+m, 0 (3.37)

We easily notice that the relations of αµn and α̃µn are those of harmonic oscillators. Defining

an =
αn√
n

a†n =
α−n√
n

(3.38)

gives the familiar relation [am, a
†
n] = δmn. The αµn are creation operators for n < 0 and

annihilation operators for n < 0. These operators act on the single string and are responsible
for adding or subtracting vibrations on the string. This is different from usual creation and
annihilation operators in field theory, that create and annihilate particles in spacetime.

We are ready to define string states. The vacuum state is defined as the one annihilated by
each αµn for n > 0:

αµn |0〉 = α̃µn |0〉 = 0 (3.39)

As said before, note that this state is the vacuum state of a single string, not of the whole
universe like in field theory. The true vacuum state of the universe will be |0〉, tensored
with a spatial wavefunction Ψ(x), accounting for the rest of the universe. Furthermore, in
momentum space the vacuum carries another quantum number, pµ, which is the eigenvalue
of the momentum operator. We should therefore write the vacuum as |0; p〉, which still
obeys (3.39), but now also

p̂µ |0; p〉 = pµ|0; p〉 (3.40)

Let us start building up the Fock space with creation operators αµn and α̃µn with n < 0.
A generic state comes from acting with any number of these creation operators on the
vacuum,

(αµ1−1)
nµ1 (αµ2−2)

nµ2 · · · (α̃ν1−1)
nν1 (α̃ν2−2)

nν2 . . . |0; p〉 (3.41)

Each of these states corresponds to a different excited state, i.e. a different vibrational
mode, of the string. We will see that each corresponds to a different particle; note that
since there are infinite ways for a string to vibrate, there are a infinity of particles in this
theory. There is a problem with this Fock space, because it does not have positive norm,
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since X0 comes with the wrong sign kinetic term in the action (3.20). This may give rise
to ghosts. Actually, this problem will be solved in lightcone quantization.

Although we will soon switch to lightcone quantization, we briefly report how we treat
constraints in covariant quantization; recall the classical constraints can be written as a
condition on the Virasoro modes

Ln = L̃n = 0 (3.42)
where Ln (and similarly L̃n) are defined in (3.32). As in the Gupta-Bleuler quantization of
QED, we simply require that the constraints apply only on matrix elements between two
physical states |Aphys〉 and |A′

phys〉. Moreover, since L†
n = L−n, it suffices to require

Ln|Aphys〉 = L̃n|Aphys〉 = 0 for n > 0 (3.43)

However, a problem arises in L0, because there is ambuiguity in the operator ordering, due
to the commutation relations (3.37). Commuting the αµn operators past each other in L0

gives rise to extra constant terms. The problem is that we do not know what order to put
the αµn operators, and intuitively different choices lead to different theories. Suppose we
want the quantum operators to be normal ordered, with the annihilation operators αin,
n > 0, moved to the right,

L0 =
∞∑
m=1

α−m · αm +
1

2
α2
0 L̃0 =

∞∑
m=1

α̃−m · α̃m +
1

2
α̃2
0 (3.44)

Then the ambiguity is apparent in the different constraint equations that we could impose,
namely

(L0 − a)|Aphys〉 = (L̃0 − a)|Aphys〉 = 0 (3.45)
for some constant a.

As we saw classically in (3.34), the operators L0 and L̃0 are physically important because
they depend on the momentum and ultimately on the mass. Combining (3.34) with our
constraint equation for L0 and L̃0, we find the spectrum of the string is given by

M2 =
4

α′

−a+ ∞∑
m=1

α−m · αm

 =
4

α′

−a+ ∞∑
m=1

α̃−m · α̃m

 (3.46)

A proper treatment of this ambiguity can be read in [4]. We will now drop the covariant
approach and switch to lightcone quantization, where we shall finally conclude the procedure.

3.2.2 Lightcone quantization

Classical constraints and lightcone gauge

We will now go through with lightcone quantization. We go back to the classical theory
and find the physical degrees of freedom by imposing the classical constraints (3.35).

Even though we already chose a gauge in which the worldsheet metric is gαβ = ηαβ , we still
have some gauge freedom; for example, any coordinate transformation σ → σ̃(σ) which
changes the metric by

ηαβ → Ω2(σ)ηαβ , (3.47)
can be undone by a Weyl transformation. We can see this more clearly using lightcone
coordinates on the worldsheet, σ± = τ ± σ, where the flat metric on the worldsheet takes
the form:

ds2 = −dσ+dσ− (3.48)
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Then the transformation σ → σ̃(σ) translates into

σ+ → σ̃+(σ+) σ− → σ̃−(σ−) (3.49)

which evidently has the effect of (3.47) on the metric. This change can then be compensated
by a suitable Weyl transformation, so that the metric remains invariant.

The remaining reparameterization invariance (3.49) has an important physical implication
regarding physical degrees of freedom. The equations of motion, Xµ

L(σ
+)+Xµ

R(σ
−), contain

2D functions to be determined. Moreover, the contraints, which, in terms of σ±, read

(∂+X)2 = (∂−X)2 = 0 (3.50)

reduce the number down to 2(D− 1) functions. Finally we have to apply the reparameteri-
zation invariance (3.49), which is related to how we define σ±. The physical solutions of
the string are therefore actually described by 2(D − 2) functions. But this counting has
a nice interpretation: the degrees of freedom describe the transverse fluctuations of the
string.

It remains to fix the reparameterization invariance (3.49). We do this with the lightcone
gauge. First, we define spacetime lightcone coordinates as

X± =

√
1

2
(X0 ±XD−1) (3.51)

so that the spacetime metric reads

ds2 = −2 dX+ dX− +
D−2∑
i=1

dXi dXi (3.52)

Note that this choice of coordinates breaks Lorentz invariance, because it selects a particular
time direction and a particular spatial direction. We have to be careful for anomalies, those
classical symmetries that cease to be valid in the quantum theory.

The solution to the equation of motion for X+ reads

X+ = X+
L (σ

+) +X+
R (σ

−) (3.53)

It is now time to fix the gauge. Thanks to reparameterization invariance, we choose
coordinates such that

X+
L =

1

2
x+ +

1

2
α′p+σ+ X+

R =
1

2
x+ +

1

2
α′p+σ− (3.54)

whose sum gives
X+ = x+ + α′p+ τ (3.55)

This is lightcone gauge. One might find perplexing the identification of a timelike worldsheet
coordinate (τ) with a null spacetime coordinate (X+). However, except particular cases,
this is a valid choice of gauge.

The gauge choice (3.55) fixes the reparameterization invariance (3.49) and makes the
constraint equations trivial. Note that the wave equation ∂α∂

αXµ in the lightcone gauge
translates into

∂+∂−X
− = 0 (3.56)

that we can solve by the already used ansatz, X− = X−
L (σ

+) + X−
R (σ

−), so no more
constraints are added other than (3.50). Moreover, note that this gauge and these contraints
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allows us to completely determine X− up to an integration constant. If we write the usual
mode expansion for X−

L/R

X−
L (σ

+) =
1

2
x− +

1

2
α′p− σ+ + i

√
α′

2

∑
n6=0

1

n
α̃−
n e

−inσ+
, (3.57)

X−
R (σ

−) =
1

2
x− +

1

2
α′p− σ− + i

√
α′

2

∑
n6=0

1

n
α−
n e

−inσ−
. (3.58)

where x− is that integration constant, while p−, α−
n and α̃−

n are all fixed by the constraints.
For example, the oscillator modes α−

n are given by,

α−
n =

√
1

2α′
1

p+

+∞∑
m=−∞

D−2∑
i=1

αin−mα
i
m (3.59)

Finally we can reconstruct the classical level matching conditions (3.34).

M2 = 2p+p− −
D−2∑
i=1

pipi =
4

α′

D−2∑
i=1

∑
n>0

αi−nα
i
n =

4

α′

D−2∑
i=1

∑
n>0

α̃i−nα̃
i
n (3.60)

Note here an important consequence of the lightcone gauge: the only oscillators entering
the mass definition are αi and α̃i only, with i = 1, . . . , D − 2 which we’ll call transverse.
The other modes depend on those, which in a sense means that they are the physical
excitations of the string.

To sum up, the most general classical solution is described in terms of 2(D − 2) transverse
oscillator modes αin and α̃in, together with a number of zero modes describing the center of
mass and momentum of the string: xi, pi, p+ and x−.

Quantization

We have finally identified the physical degrees of freedom and we are ready to quantize.
The commutation relations to impose are

[xi, pj ] = iδij [x−, p+] = −i [αin, α
j
m] = [α̃in, α̃

j
m] = n δijδn+m,0 (3.61)

Moreover, we impose [x+, p−] = −i which resembles [t,H] = −i from ordinary quantum
mechanics. The Hilbert space of states is very similar to that described in covariant
quantization: we define a vacuum state, |0; p〉 such that

p̂µ|0; p〉 = pµ|0; pµ〉 αin|0; p〉 = α̃in|0; p〉 = 0 for n > 0 (3.62)

and we build a Fock space by acting with the creation operators αi−n and α̃i−n with n > 0.
The difference with the covariant quantization is that we only act with transverse oscillators
which carry a spatial index i = 1, . . . , D − 2, making the Hilbert space positive definite.

When passing to the quantum theory, in the right-hand side of (3.60) we encounter the
same ordering ambiguity of covariant quantization. Normal ordering makes the ambiguity
manifest itself in the form of an unfixed constant a. The final result for the mass of states
in lightcone gauge is

M2 =
4

α′

D−2∑
i=1

∑
n>0

αi−nα
i
n − a

 =
4

α′

D−2∑
i=1

∑
n>0

α̃i−nα̃
i
n − a

 (3.63)
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It is convenient to rename those double sums as N and Ñ , respectively, so that

M2 =
4

α′ (N − a) =
4

α′ (Ñ − a) (3.64)

It can be shown that a is such that [3]

M2 =
4

α′

(
N − D − 2

24

)
=

4

α′

(
Ñ − D − 2

24

)
(3.65)

This is the formula that we will use to characterize the mass of the string states.

3.2.3 String spectrum

It is now time to analyze the spectrum of states of a single string.

Ground state

Let’s start with the ground state |0; p〉 defined in (3.62). With no oscillators excited, the
mass formula (3.65) gives

M2 = − 1

α′
D − 2

6
. (3.66)

These states have negative mass squared which seems to be problematic. The corresponding
particles are called tachyons.

The problem with tachyons is that their mass arises from an expansion around the maximum
of the potential for the tachyon field. It is unknown if this potential has a stable minimum.
However, the tachyon disappears when we add fermions using supersymmetry.

First excited states

We now look at the first excited states. If we act with a creation operator αj−1, then the
level matching condition (3.64) tells us that we also need to act with a α̃i−1 operator. This
gives us (D − 2)2 particle states,

α̃i−1α
j
−1 |0; p〉 (3.67)

each of which has mass
M2 =

4

α′

(
1− D − 2

24

)
(3.68)

But now we seem to have a problem. The modes transform in representations of SO(D− 2)
but we would like them to fit in a representation of the full Lorentz group SO(1, D − 1).
Glossing over the details (see [3]), we conclude that only massless states give representations
of the Lorentz symmetry group SO(1, D − 1); this can be achieved only if

D = 26 (3.69)

that is, if spacetime has 26 dimensions. From (3.65) it follows that a = 1.

Therefore, we have found massless states that transform in the 24⊗ 24 representation of
SO(24). They decompose into three irreducible representations:

traceless symmetric⊕ anti-symmetric⊕ singlet (trace) (3.70)
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Each of these vibrational modes corresponds to a quantum massless field in spacetime. The
fields are:

Gµν(X) Bµν(X) Φ(X) (3.71)

where the second one is called the “Kalb-Ramond field” or the “2-form”, the third is a
scalar field called the dilaton which is proportional to the string coupling constant gs as
gs ∼ eΦ. The first one is the most important: it is a massless spin-2 particle, which can be
identified with the graviton; string theory is a theory of quantum gravity.

As an aside, note that we can put Greek indices µ, ν = 0, . . . , 25 instead of Latin (i.e.
transverse) ones because actually those additional field modes are eliminated by gauge
symmetries which come out in the covariant quantization.

3.3 Open strings

Open strings differ from closed strings for the presence of two endpoints. Let us understand
what this difference brings to the theory. The spatial coordinate of the string is now
parameterized by

σ ∈ [0, π] (3.72)

Since the dynamics of a generic point on a string is governed by local effects, a single
internal point in an open string is no different than a point in a closed string. This means
we can keep using the Polyakov action to describe the string dynamics. However, we have
to add boundary conditions for the endpoints.

3.3.1 Boundary conditions and D-branes

Let us recall the Polyakov action in conformal gauge

S = − 1

4πα′

∫
d2σ ∂αX · ∂αX (3.73)

As usual, we derive the equations of motion by finding the extrema of the action. This
involves an integration by parts. We denote τi and τf the initial and final configuration,
respectively:

δS = − 1

2πα′

∫ τf

τi

dτ

∫ π

0
dσ ∂αX · ∂αδX

=
1

2πα′

∫
d2σ (∂α∂αX) · δX + total derivative

(3.74)

For an open string the total derivative picks up the boundary contributions

1

2πα′

[∫ π

0
dσẊ · δX

]τ=τf
τ=τi

− 1

2πα′

[∫ τf

τi

dτ X ′ · δX

]σ=π
σ=0

(3.75)

The first term vanishes because δXµ = 0 at τ = τi and τf in order to derive the equations
of motion. We have to treat carefully the second term, which is exclusive for open strings.
To make it vanish, we have to impose

∂σX
µ δXµ = 0 at σ = 0, π (3.76)

We can do this in two different ways, leading to two different boundary conditions:
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Neumann boundary conditions

∂σX
µ = 0 at σ = 0, π (3.77)

Because there is no restriction on δXµ, this condition allows the end of the string to
move freely.

Dirichlet boundary conditions

δXµ = 0 at σ = 0, π (3.78)

This means that the end points of the string lie at some constant position, Xµ = cµ,
in space.

Intuitively, it is strange that endpoints are bound to some generic point in spacetime. In
fact, Joseph Polchinski figured out that the hypersurfaces on which the strings are attached
are indeed a whole new type of dynamical object of the theory, that can have an energy
and be charged. These hypersurfaces are called D-branes, where “D” stands for Dirichlet
(it’s not related to the dimensions of spacetime or of the brane itself).

To see this, let’s consider Dirichlet boundary conditions for some coordinates, and Neumann
for the others. This means that at both endpoints of the string, we have

∂σX
a = 0 for a = 0, . . . , p (3.79)

XI = cI for I = p+ 1, . . . , D − 1 (3.80)

This fixes the end-points of the string to lie in a (p + 1)-dimensional hypersurface in
spacetime such that the SO(1, D − 1) Lorentz group is split into

SO(1, D − 1)→ SO(1, p)× SO(D − p− 1) (3.81)

This hypersurface is the D-brane. To denote the dimensions of this brane, we write Dp-
brane, so that a D0-brane is a particle, a D1-brane is itself a string, and so on. The brane
sits at specific positions cI in the transverse space. This means it extends in the directions
where Neumann condtions are considered.

Note that usually Dp-branes have Neumann boundary conditions on the time direction.
Choosing Dirichlet conditions for the time directiom would mean that the object is localized
in time. One can define a brane that way, and it is called an D(−1)-brane or a D-instanton.

Let us see how these boundary conditions impose relations on the modes of the string. We
take the usual mode expansion for the string, with Xµ = Xµ

L(σ
+) +Xµ

R(σ
−), and

Xµ
L(σ

+) =
1

2
xµ + α′pµ σ+ + i

√
α′

2

∑
n 6=0

1

n
α̃µn e

−inσ+
,

Xµ
R(σ

−) =
1

2
xµ + α′pµ σ− + i

√
α′

2

∑
n 6=0

1

n
αµn e

−inσ−

(3.82)

Let’s see what boundary conditions impose for the modes. Neumann conditions, ∂σXa = 0
at the end points, require that

αan = α̃an (3.83)

while Dirichlet conditions, XI = cI at the end points, require that

xI = cI pI = 0 αIn = −α̃In (3.84)
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So for both boundary conditions, we only have one set of oscillators and the other one is
determined by the boundary conditions.

It’s worth pointing out that there is a factor of 2 difference in the pµ term between the
open string (3.82) and the closed string (3.27). This is to ensure that pµ for the open string
retains the interpretation of the spacetime momentum of the string when σ ∈ [0, π].

3.3.2 Quantization

As usual, quantization involves promoting the fields xa and pa and αµn to operators, while
the other elements are derived by the boundary conditions. It is important to point out
that the position and momentum degrees of freedom, xa and pa, have a spacetime index
that takes values a = 0, . . . , p, which are the coordinates of the brane. This means that
quantum states of an open string are restricted to lie on the brane.

To determine the spectrum, it is again simplest to work in lightcone gauge, with spacetime
lightcone coordinates chosen to lie within the brane,

X± =

√
1

2
(X0 ±Xp) (3.85)

Quantization now proceeds in the same manner as for the closed string until we arrive at
the mass formula for states which is a sum over the transverse modes of the string.

M2 =
1

α′

p−1∑
i=1

∑
n>0

αi−nα
i
n +

D−1∑
i=p+1

∑
n>0

αi−nα
i
n − a

 (3.86)

The first sum is over modes parallel to the brane, the second over modes perpendicular to
the brane. Note that the sum is over α modes only, because the α̃ modes are determined
by boundary conditions.

As for the closed string, the Lorentz symmetry for quantum open strings is preserved if
and only if D = 26 and a = 1. The fact that the same numbers come out indicates that
open and closed strings are actually different states inside the same theory, rather than
different theories altogether. In fact, one can show that a theory of open strings implies
closed strings (because interactions can make an open string closed), while the converse is
more complicated.

3.3.3 State space

Ground state

The ground state is defined by
αin|0; p〉 = 0 (3.87)

for n > 0. The spatial index now runs over i = 1, . . . , p− 1, p+ 1, . . . , D − 1. The ground
state has mass

M2 = − 1

α′ (3.88)

It is again tachyonic. The open string tachyon is confined to the brane. As for the closed
string tachyon, we can dismiss problems related to this kind of particle because it does not
appear in superstring theories.
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First excited states

The first excited states are massless. Depending on the coordinate of the oscillator, they
fall into two classes.

For a = 1, . . . , p− 1, oscillators are longitudinal to the brane, and the resulting state
αa−1|0; p〉 (3.89)

transforms under the SO(p− 1) little group of a massless particle. It is a spin-1 particle on
the brane or, in other words, it is a photon. This is remarkable because photons emerge
naturally even though we did not impose any kind of electromagnetic gauge invariance in
the action. Then we say that we have a gauge field Aa living on the brane.

On the other hand, I = p+ 1, . . . , D − 1 oscillators are transverse to the brane, and the
states are

αI−1|0; p〉 (3.90)
These states are scalars under the SO(1, p) Lorentz group of the brane. They can be thought
of as arising from scalar fields φI living on the brane. These scalars can be interpreted
as fluctuations of the brane in the transverse directions, which is one evidence that the
D-brane is a dynamical object. Note that although the φI are scalar fields under the
SO(1, p) Lorentz group of the brane, they do transform as a vector under the SO(D−p−1)
rotation group transverse to the brane. This appears as a global symmetry on the brane
worldvolume.

3.3.4 Multiple branes

The endpoints of an open string can be both on the same D-brane or on different branes.
Consider two Dp-branes and a string stretching between the two. Its endpoints’ coordinates
are XI(0, τ) = cI and XI(π, τ) = dI , where cI and dI are the coordinates of the two branes.
The coordinate of the string is

XI = cI +
(dI − cI)σ

π
(3.91)

The classical constraints ∂+XI ∂+X
I = 0 imply

M2 =
|d− c|2

(2πα′)2
(3.92)

which is interpreted as the mass due to the stretching of the string between the two branes.

This can be easily generalized to coincident N branes: depending on what brane the
endpoints lie, there are N2 different strings, so we have N2 fields, φ and Aµ. They now
take the form of matrices: (φI)nm and (Aµ)

n
m, where m and n denote the branes on which

the endpoints are placed. It is worth to analyze further the gauge field (Aµ)
n
m, which looks

like a U(N) gauge field; in fact, one can show that this is indeed the case. Therefore, N
coincident branes give rise to a U(N) Yang-Mills gauge theory.

3.4 Superstrings

3.4.1 Worldsheet fermions

Since now, we described the position of (bosonic) strings with coordinates Xµ(τ, σ), which
are commuting variables. If we want to describe fermions, we have to introduce other
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dynamical coordinates on the worldsheet, which we denote ψ1(τ, σ) and ψ2(τ, σ), although
it will be more convenient to consider just one field Ψ(τ, σ). For their fermionic nature,
these new coordinates must be anticommuting. This can be understood by showing that
anticommuting creation operators incorporate automatically the Pauli exclusion principle.

Boundary conditions and the equations of motion determine some constraints on the ψ’s,
namely, if we fix ψI1(τ, 0) = ψI2(τ, 0), we have

ψI1(τ, π) = ±ψI2(τ, π) (3.93)

This choice of sign is physically relevant and defines two distinct types of fermions, called
sectors. All of this is clearer if we consider a single fermion field, defined as

ΨI(τ, σ) =

{
ψI1(τ, σ) σ ∈ [0, π]

ψI2(τ,−σ) σ ∈ [−π, 0]
(3.94)

So the condition (3.93) becomes

ΨI(τ, π) = ±ΨI(τ,−π) (3.95)

This distinguishes two sectors: Ramond (R) sector in which the field is periodic (+) and
Neveu-Schwarz (NS) sector in which the field in antiperiodic (−).

Neveu-Schwarz sector

The Neveu-Schwarz fermion is expanded as

ΨI(τ, σ) ∼
∑

r∈Z+1/2

bIre
−ir(τ−σ) (3.96)

where bIr are fractionally moded, anticommuting operators. They obey the relations{
bIr , b

J
s

}
= δr+s,0 δ

IJ (3.97)

These operators act on the vacuum state |NS〉. As for the bosonic operators, the b’s are
creation operators for r < 0. The generic superstring state in the NS sector is a tensor
product between a generic bosonic state with a generic fermionic NS state. It reads

|λ〉 =
9∏
I=2

∞∏
n=1

(αI−n)
λn,I

9∏
J=2

∏
r∈Z+1/2

(bJ−r)
ρr,J |NS〉 ⊗ |p+,pT 〉 (3.98)

where ρr,J is forced by the anticommutation relations to be either zero or one. The
mass-squared operator has the form

M2 =
1

α′

1

2

∑
p6=0

αI−pα
I
p +

1

2

∑
r∈Z+1/2

r bI−rb
I
r

 (3.99)

The ordering constant a, added when we switch to normal ordering, is to be determined. It
turns out that adding fermions to the theory sets the number of spacetime dimensions to
D = 10, which in turn sets a to be −1/2. The final mass-squared is then

M2 =
1

α′

(
− 1

2
+N

)
where N =

∞∑
p=1

αI−pα
I
p +

∑
r∈Z+1/2

r bI−rb
I
r (3.100)

The states obtained with formula (3.98) can be classified in terms of their number eigenvalue
N , or equivalently their mass, and can be either bosonic or fermionic. It can be shown that
states with integer N are fermionic while states with non-integer N are bosonic. Note that
this refers to the worldsheet. Their nature in spacetime is to be determined.
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Ramond sector

The Ramond boundary conditions imply the fermion field is periodic and as such it can be
expanded with integer modes:

ΨI(τ, σ) ∼
∑
n∈Z

dIne
−in(τ−σ) (3.101)

where, again, n < 0 denotes creation operators. The satisfied anticommutators are{
dIm, d

J
n

}
= δm+n,0 δ

IJ (3.102)

Ramond fermions are more complicated than NS fermions, because an integer index means
we also have eight zero modes dI0. It can be shown that these operators can be linearly
combined to form four creation operators and four annihilation operators. The former
are denoted ξ1, . . . , ξ4. Since they are zero modes, they act on vacuum state but do not
contribute to the mass squared. Starting from a unique vacuum state |0〉, we construct 16
degenerate ground states. In fact, eight of these contain an even number of ξ’s (0, 2 and 4)
while the remaining eight contain an odd number of ξ’s (1 and 3). We shall denote the
first group of eight with |Ra〉, the second group with |Rã〉 and the full set with |RA〉. The
generic Ramond state takes the form

|λ〉 =
9∏
I=2

∞∏
n=1

(αI−n)
λn,I

9∏
J=2

∞∏
m=1

(dJ−m)
ρm,J |RA〉 ⊗ |p+,pT 〉 (3.103)

All eight |Ra〉 states are fermionic and all |Rã〉 states are bosonic. The normal-ordered
mass-squared operator for the Ramond sector is

M2 =
1

α′

∑
n≥1

(
αI−nα

I
n + ndI−nd

I
n

)
(3.104)

which implies that all 16 ground states are massless. If we listed all R states in terms of
their mass, we would see that bosonic and fermionic states are present in equal number at
each level. This is an instance of worldsheet supersymmetry. For future convenience, we
label the set of bosonic states with R+ and the set of fermionic ones with R−.

3.4.2 Superstring theories

Open superstrings

To get a right formulation of open superstrings, we need to choose suitable subsets of the R
and NS sectors to be properly identified with spacetime bosons and fermions. We use GSO
projection: we truncate the R sector in R+ and R− and the NS sector similarly. We shall
keep only R− and NS+, which can be shown to correspond to spacetime fermions, and
spacetime bosons, respectively. It can be further shown that the result yields supersymmetry
on spacetime: each bosonic (i.e. NS+) state is matched to a fermionic (i.e. R−) state. Hence
the name “superstring theory”.

Closed superstrings

Closed superstrings are roughly produced by coupling together two open superstrings,
one left-moving and one right-moving. Naively we consider all four possible sectors: (NS,
NS), (R, R), (NS, R) and (R, NS). However, in order to get supersymmetric closed strings
we truncate and keep only some sectors. Two choices are possible and yield two different
superstring theories: type IIA and type IIB.
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Type IIA theory This theory is obtained by considering NS+ and R− for the left side
and NS+ and R+ for the right side. This choice gives the following sectors: (NS+, NS+),
(R−, R+), (NS+, R+) and (R−, NS+). The first two give rise to spacetime bosons and
the second two fermions. For instance, if we study the massless states of the (NS+, NS+)
sector, we recover a graviton, a Kalb-Ramond field and a dilaton; RR massless fields are
instead a Maxwell field Aµ and an antisymmetric gauge field Aµνρ; moreover, this theory
contains no tachyons.

Type IIB theory The second theory differs from the first one because it has R− (or
R+) in both the left and the right side. We therefore have (NS+, NS+), (NS+, R−), (R−,
NS+) and (R−, R−). There are no tachyons as well. The (NS+, NS+) sector yields the
same bosons of type IIA, whereas RR bosons are different. Type IIB includes a scalar field
A, a Kalb-Ramond field Aµν and a totally antisymmetric gauge field Aµνρσ. The above
RR fields are deeply related with the existence of stable (and charged) D-branes in both
type II theories; this is in contrast with bosonic theory, where no D-branes are stable.

Other superstring theories Other truncations of (NS, NS), (R, R), (NS, R) and (R,
NS) yield different consistent theories albeit not supersymmetric. For example, NS− sector
leads to tachyons. These sectors are not the only way to construct superstring theories: we
have two heterotic string theories, which, as the name suggests (“heterotic” is Greek for
“hybrid”), combine a bosonic string with a superstring. The two versions are characterized
by the underlying symmetry group: SO(32) or E8 × E8. Finally, there is also type I theory.
Unlike any other theory we discussed, it includes unoriented strings, which are strings
invariant under an operation that changes orientation. Nowadays, it has been discovered
that all these theories are related to each other and in fact can be shown to be different
limits of a single theory, called M-theory. In addition to strings, it also describes 2-branes
and 5-branes (not D-branes).
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Now that we have laid down the principles of string theory and superstring theory, we are
now ready to discuss supergravity, the low-energy limit of superstring theory. We briefly
review the most important supergravity theories in 11 and 10 dimensions. We are mainly
interested in type IIB supergravity, which is the theory of interest in the AdS/CFT context.

4.1 Eleven-dimensional supergravity

In d = 11 there is a unique supergravity theory: it has the maximum number of supersym-
metries, that is 32 real supercharges. As such, all the fields are related to each other via
supersymmetry and are contained in a single supermultiplet: the gravitational multiplet.
The theory contains a graviton g, a 3-form A3 and the gravitino, the fermion counterpart
of the gravition. There is a U(1) gauge symmetry under which the gravitino is charged and
for which A3 is the gauge field. It transforms as A3 → A3 + dΛ2 analogously to the QED
four-potential A1, which transforms as A1 → A1 + dΛ where Λ is any scalar function.

The bosonic action contains the usual Einstein-Hilbert term and a kinetic term akin to
F 2 from electrodynamics, plus a Chern-Simons term for A3, which is a topological term
required by supersymmetry:

S =
1

2κ2

∫
d11x
√
−gR+ F4 ∧ ?F4 −

1

12κ2

∫
A3 ∧ F4 ∧ F4 (4.1)

where F4 = dA3, R is the Ricci scalar and κ is proportional to the 11D Newton’s gravita-
tional constant G11.

4.2 Type IIA supergravity

Type IIA supergravity is a 10-dimensional theory of supergravity that can be derived as
the low-energy limit of type IIA string theory. However, there is another way to obtain this
theory, which is by compactifying one dimension of 11D supergravity over a circle of radius
R. To get a intuitive understanding of compactification, suppose we have a line, that is a
dimension of infinite length; we take an interval [0, 2πR], and claim that x = x+ 2πR: the
line is now a circumference. We can do this procedure for multiple dimensions at once; in
particular, we are going to consider a 10D spacetime where four extended dimensions are
compactified on a four-dimensional torus T4.

Let us perform the compactification. We take coordinate y = x10 and curl it around a
circle of radius R. We rewrite the 11-dimensional metric as

ds211 = ds210 + e2σ(dy + Cµ dx
µ) (4.2)

43
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where µ = 0, . . . , 9 and we have a 10D line element ds210 corresponding to the metric gµν .
We have also a one-form C1 = Cµ dx

µ and a scalar σ related to the dilaton as σ = 2/3Φ.
Upon compactification, the field A3 can be rewritten as

A3 = B2 ∧ dy + C3 (4.3)

where two-form B2 and three-form C3 are introduced. From the discussion in Sec. 3.4.2, we
identify the fields C1 and C3 as the RR fields Aµ and Aµνρ, while the remaining ones—gµν ,
B2 and Φ—are NSNS fields. The bosonic action of type IIA supergravity is obtained from
the 11D action (4.1), plugging in (4.2) and (4.3). We have

SIIA =
1

2G2
10

∫ (
eσR10 + eσ∂µσ∂

µσ − 1

2
e3σ|F2|2

)√
−g d10x−

1

4G2
10

∫
(e−σ|H3|2 + eσ|F̃4|2)

√
−g d10x− 1

4G2
10

∫
B2 ∧ F4 ∧ F4

(4.4)

where we defined the field strengths Fp+1 = dCp and H3 = dB2 and F̃4 = F4 −H3 ∧ C1.
Moreover, R10 is the Ricci scalar calculated from gµν and G10 = G11/(2πR) is the ten-
dimensional Newton’s constant.

Depending on the metric, we have different frames which correspond to different actions.
For example, in (4.4), the Einstein-Hilbert action term is not in the familiar form, i.e.√
−g R. To recover that, we move to the so-called Einstein frame, in which we redefine the

metric as
gEµν = eΦ/6gµν (4.5)

Another useful frame is the string frame, which is the frame in which the type IIA action
is written if we derive it from the underlying superstring theory. This is obtained by

gsµν = e2/3Φgµν = eΦ/2gEµν (4.6)

In the string frame, the equations of motion for type IIA supergravity read

e−2Φ(RMN + 2∇M∇NΦ−
1

4
HMPQH

PQ
N )− 1

2
FMPF

P
N −

1

12
F̃MPQRF̃

PQR
N +

1

4
GMN

(
FPQF

PQ +
1

6
F̃PQRSF̃

PQRS

)
4 d ? dΦ− 4 dΦ ∧ ? dΦ+ ?R− 1

2
H3 ∧ ?H3 = 0

d ?(e−2ΦH3)− F2 ∧ ? F̃4 − F̃4 ∧ ? F̃4 = 0

d ?F2 +H3 ∧ ? F̃4 = 0

d ? F̃4 +H3 ∧ F̃4 = 0

(4.7)

The first one is a generalization of the Einstein field equation of general relativity. The
other ones are equations of motion for the other fields. Note that the general form of the
equations of motion for a given field A in differential-form language is d ?A = B (recall
d ?F = J where F is the electromagnetic field strength 2-form and J is the current 3-form).

4.3 Type IIB supergravity

Type IIB supergravity is another 10-dimensional theory that is the low-energy limit of
type IIB string theory. Unlike type IIA, it cannot be derived from some higher dimensional
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theory via compactification; however, it is related to type IIA by a field transformation
called T-duality, described in Sec. 4.4.

The bosonic content of type IIB supergravity consists in a graviton gMN , a dilaton Φ,
a NS-NS form B2, as well as three RR forms: C0, C2 and C4. Their corresponding field
strengths are H3, F1, F3 and F5, respectively. Moreover, we define two modified field
strengths, F̃3 = F3 −H3 ∧ C0 and F̃5 = F5 −H3 ∧ C2.

The following Bianchi identities are satisfied:

dH3 = 0, dF1 = 0, dF̃3 = H3 ∧ F1, dF̃5 = H3 ∧ F3 (4.8)

The equations of motion for type IIB supergravity are similar to the ones for type IIA
(4.7). In the string frame they read

e−2Φ(RMN + 2∇M∇NΦ−
1

4
HMPQH

PQ
N ) +

1

4
GMN

(
FPF

P +
1

6
F̃PQRF̃

PQR

)
−

1

2
FMF

M − 1

4
F̃MPQF̃

PQ
N − 1

96
F̃MPQRSF̃

PQRS
M = 0

4 d ? dΦ− 4 dΦ ∧ ? dΦ+ ?R− 1

2
H3 ∧ ?H3 = 0

d ?(e−2ΦH3)− F1 ∧ ? F̃3 − F̃3 ∧ ? F̃5 = 0

d ?F1 +H3 ∧ ? F̃3 = 0

d ? F̃3 +H3 ∧ F̃5 = 0

F̃5 = ? F̃5

(4.9)

Last equation aside, which is imposed by hand, the equations (4.9) are obtained from type
IIB action in the string frame,

SIIB =

∫ [
e−2Φ

(√
−g R+ 4 ? dΦ ∧ dΦ− 1

2
?H3 ∧H3

)
− 1

2
?F1 ∧ F1 −

1

2
?F3 ∧ F3 −

1

4
?F5 ∧ F5 +

1

2
H3 ∧ F3 ∧ C4

] (4.10)

4.4 Dualities

As we saw, supergravity theories are not independent from one another; there are trans-
formations, called dualities, which map a solution of one theory to a solution of another
theory, or even another solution of the same theory.

4.4.1 T-duality

T-duality is a transformation that relates type IIA supergravity and type IIB supergravity
compactified on S1. A string wrapping a circle S1 of radius R can have winding modes
and momentum modes along the circle. The mass due to these modes is proportional to
R and 1/R, respectively. Therefore, T-duality, which swaps R and 1/R, has the effect of
exchanging winding and momentum modes, keeping the overall mass invariant. This means
that a theory of strings wrapping a circle of radius R has the same spectrum as a theory
of strings wrapping a circle of radius 1/R. Moreover, they are equivalent at the interacting
level too.
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If we want to apply T-duality to type IIA supegravity, it is convenient to write the IIA
fields in the following way:

ds2 = gyy(dy +Aµ dx
µ)2 + ĝµν dx

µ dxν

B2 = Bµy dx
µ ∧ (dy +Aµ dx

µ) + B̂2

Cp = C(p−1),y ∧ (dy +Aµ dx
µ) + Ĉp

(4.11)

where B̂2, C(p−1),y and Ĉp are forms with no terms depending on y, which is the coordinate
along S1. Then T-duality yields the following transformations

ds′ 2 = g−1
yy (dy +Bµy dx

µ)2 + ĝµν dx
µ dxν

e2Φ
′
= g−1

yy e
2Φ

B′
2 = Aµ dx

µ ∧ dy + B̂2

C ′
p = Ĉp−1 ∧ (dy +Bµy dx

µ) + Cp,y

(4.12)

We can make sense of these transformations: g−1
yy replaces gyy because we swapped R and

1/R, and Aµ and Bµy are swapped because the former’s charge is momentum and the
latter’s is winding charge.

4.4.2 S-duality

S-duality is another important transformation that can be applied to supergravity theories.
In particular, it relates the weakly and strongly coupled parts of type IIB theory; since
the coupling is proportional to eΦ, this is achieved by simply changing sign to the dilaton.
Furthermore, B2 and C2 are swapped, and the other fields, C0 and C4, are left unchanged.

Φ′ = −Φ
g′µν = e−Φgµν

B′
2 = C2

C ′
2 = −B2

(4.13)

This duality is useful because, in addition to allowing us to study strongly coupled IIB
theory, it also allows to find a new valid solution from another one.

4.5 Branes and charges

We now take a look at how these fields interact with branes and see how these interactions
can give branes electric or magnetic charges. We proceed by analogy with the usual
electrodynamics case [5].

In classical electrodynamics, the interaction Lagrangian the couples the 4-potential form A
with a particle along a worldline Γ is

L = q

∫
Γ
A (4.14)

Assuming the existence of magnetic charges, the equations of motion take the form dF = Jm
and d ?F = Je where F = dA and Je, Jm are 3-forms whose Hodge dual are the electric
and magnetic currents, respectively. Then we define electric and magnetic charges as

Qe =

∫
S2
?F Qm =

∫
S2
F (4.15)



Branes and charges 47

Table 4.1: Recap of all supergravity fields and their coupling with the branes.

Theory Field Electric brane Magnetic brane
11D SUGRA A3 M2 M5
IIA SUGRA B2 F1 NS5

C1 D0 D6
C3 D2 D4

IIB SUGRA B2 F1 NS5
C0 − D7
C2 D1 D5
C4 D3 D3

where S2 is a two-sphere enclosing the charge. We can now generalize this argument.
Lagrangian (4.14) described the coupling between a 0-dimensional charged object and a
1-form. Let’s now consider the coupling between a brane and a form. We take a (p− 1)-
dimensional charged object and a gauge p-form Ap, leading to

L = qp

∫
Γp

Ap (4.16)

where Γp is the worldvolume swept by the (p−1)-dimensional object—the higher-dimensional
analog of the worldline. We can analogously define Fp+1 as dAp and ?Fp+1. Now (4.15)
can be easily generalized:

Qe =

∫
SD−p−1

?Fp+1 Qm =

∫
Sp+1

Fp+1 (4.17)

Then we note that any p-form couples electrically to a (p− 1)-brane and magnetically to
a (D − p− 3)-brane.[1] For example, the 3-form of 11D supergravity, A3, couples with an
electrically charged 2-brane and a magnetically charged 5-brane.

The fields we have encountered and the branes they couple with are schematized in the
Table 4.1. “D” branes are the usual Dirichlet branes or D-branes, while F1 is called the
fundamental string and NS5 is its magnetic dual. Finally, “M” branes are the branes of
M-theory.

Since they will be relevant to construct the following brane solutions, it is worthwhile to
report how string dualities act on branes. S-duality (4.13) acts on type IIB theory and
swaps B2 and C2; by looking at Table 4.1, we notice that this implies the exchange of D1
and D5-branes with F1 and NS5-branes, respectively. T-duality (4.12) is more complicated:
since it swaps momentum and winding modes, it has the effect of swapping F1 charge with
P charge. Moreover, it acts on the D-branes differently depending on how the coordinate
along which it is applied is related to the coordinates of the brane. More precisely, if
T-duality is applied along a coordinate perpendicular to the brane, it increases the D-brane
dimension by 1; otherwise (i.e. if the coordinate is parallel), the dimension is decreased by
1. All the transformations are schematized in the following:

T-duality: F1↔ P Dp
‖−→ D(p− 1) Dp

⊥−→ D(p+ 1)

S-duality: D1↔ F1 D5↔ NS5

[1]We integrate over a 2-sphere on the transverse coordinates of the brane, where it is seen as a point. The
integration space is D − p− 1 for electric branes and p+ 1 for magnetic branes. Electric branes have thus
D− (D− p− 1+2) = p− 1 dimensions and magnetic ones have D− (p+1+2) = D− p− 3 dimensions [5].
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4.6 Brane solutions

We have outlined the basic principles of supergravity theories, and we have introduced branes
and gauge fields. We now want to find solutions of the supergravity equations of motion
that carry D-branes or the other branes of Table 4.1; we will indifferently use solutions
and geometries. Furthermore, we restrict ourselves to Bogomol’nyi–Prasad–Sommerfield
states, often simply called BPS states. BPS states are those solutions which have the lowest
possible mass given a charge. A type of BPS state can be found in the description of
Reissner-Nordström black holes, which have both mass and electromagnetic charges. For
those black holes gravitational energy is greater or equal than the electromagnetic energy.
The BPS Reissner-Nordström black hole is the one whose gravitational energy matches
exactly the electromagnetic energy.

Typically, there are two ways to find solutions, that are sometimes referred to as the direct
method and the indirect method.

The direct method involves solving the equations of motion themselves. This is in general
complicated, but, since we are interested in BPS solutions that are supersymmetric, the
task is simplified.

The indirect method, on the other hand, involves taking a trivial (by which we mean:
without charges) solution of the supergravity equations, and get to other solutions by
manipulating the trivial one with transformations such as boosts, T-duality and S-duality.
These transformations add or change charges. In particular, boosts add momentum charges
(P), and the other dualities modify the P charge into F1, NS5 or D charges. Finally, we
impose suitable conditions in order to have BPS states.

We now show how to find solutions via the indirect method.

4.6.1 One-charge solution

The trivial solution we are starting with is the generalized Schwarzschild metric in the 10D
space R1,4 × S1 × T4, where five dimensions (t, xµ) are non-compact (R1,4), four (zi) are
the coordinates of a torus T4 and one (y) is compactified along a circle S1. The other fields,
Φ, B2 and Cp, are put to zero.

ds210 = −
(
1− 2M

r2

)
dt2 +

(
1− 2M

r2

)−1

dr2 + r2 dΩ2
3 + dy2 + dzi dz

i (4.18)

where G = 1. The solid angle Ω3 is sometimes parameterized using Hopf coordinates, that
are 

x1 = r sin θ cosφ

x2 = r sin θ sinφ

x3 = r cos θ cosψ

x4 = r cos θ sinψ

θ ∈ [0, π/2], φ, ψ ∈ [0, 2π] (4.19)

We now perform a transformation in order to get a nontrivial (charged) solution. In
particular, we do a boost of parameter η along S1, defined as

y → y cosh η + t sinh η = y′ ≡ y t→ t cosh η + y sinh η = t′ ≡ t (4.20)

Note that this is a boost along a periodic coordinate, so it is not globally well-defined:
it implies an unphysical identification on the time coordinate. This is properly done by
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applying (4.20) after decompactifying and re-compactify again afterwards. So, the metric
(4.18) becomes a new solution:

ds210 =

(
1 +

2M sinh2 η

r2

)
dy2 +

(
−1 + 2M cosh2 η

r2

)
dt2 +

2M

r2
sinh(2η) dy dt+

(
1− 2M

r2

)−1

dr2 + r2 dΩ2
3 + dy2 + dzi dz

i

(4.21)

This is new solution of type II supergravity. In particular it is a solution of type IIA theory
generated by a wave carrying momentum along S1. Let’s call this charge Py. This is a
1-charge solution. The P charge can be read off from the dy dt term: we have Q =M sinh 2η.
On the other hand, mass is read from the dt2 term: m = 2M cosh2 η, so generally m ≥ Q.
For BPS states, m = Q; this is achieved by taking the following limits:

M → 0 η →∞ (4.22)

so that Me2η = 2Q.

However, we want it to change this P charge to get a brane configuration. To this end, we
perform a T-duality to get to a F1 charge. This leads to the solution

ds2 =
1

Sη

[
dy2 +

(
− 1 +

2M

r2

)
dt2
]
+
(
1− 2M

r2

)−1
dr2 + r2 dΩ2

3 + dzi dz
i

e2Φ =
1

Sη
B2 =

1

Sη

M

r2
sinh(2η) dt ∧ dy Cp = 0

(4.23)

where for brevity we introduced the factor

Sη =

(
1 +

2M sinh2 η

r2

)
(4.24)

The geometry (4.23) is the solution of type IIB supergravity carrying a F1 charge. We now
impose BPS conditions (4.22), that imply

Sη → 1 +
Q

r2
= Z(r) (4.25)

Finally, the BPS one-charge solution describing a fundamental string F1 is

ds2 =
1

Z(r)
(dy2 − dt2) + dr2 + r2 dΩ2

3 + dzi dz
i

e2Φ =
1

Z(r)
B2 = −

1

Z(r)
dt ∧ dy Cp = 0

(4.26)

4.6.2 Two-charge solution

Let us now add another charge. Boosts have no effect on BPS solutions because of the
term dy2 − dt2. We then go back to the non-BPS solution with F1 (4.23) on which we
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perform another boost, parameterized by ξ. It yields:

ds2 =
Sξ
Sη

(
dy +

M sinh(2ξ)

r2 + 2M sinh2 ξ
dt

)2

+
1

SξSη

(
− 1 +

2M

r2

)
dt2 +(

1− 2M

r2

)−1
dr2 + r2 dΩ2

3 + dzi dz
i

e2Φ =
1

Sη

B2 =
1

Sη

M

r2
sinh(2η) dt ∧ dy

Cp = 0

(4.27)

This boost produces a fundamental string with momentum along y so we have F1 and
P charges. However, we are interested in a configuration with D1 and D5 branes, so we
perform the following series of S and T-dualities:(

F1y
Py

)
Sy−→
(

D1y
Py

)
TT4−−→

(
D5yT4

Py

)
S−→
(

NS5yT4

Py

)
Ty−→
(

NS5yT4

F1y

)
Tz1+S−−−−→

(
D5yT4

D1y

)
(4.28)

Note that the last T-duality has the only effect of going to the type IIB theory, which is
necessary in order to apply the final S-duality. We refer to the previous section for details
on how the dualities act on branes. After all these transformations, we arrive at the solution

ds2 =
√
SξSη

[
dy2 −

(
1− 2M

r2

)
dt2
]
+

√
SξSη

[(
1− 2M

r2

)−1
dr2 + r2 dΩ2

3

]
+

√
Sξ
Sη

dzi dz
i

e2Φ =
Sξ
Sη

B2 = 0 = C0 = C4

C2 = −
1

Sξ

M

r2
sinh(2ξ) dt ∧ dy − f(θ, η, ξ) dφ ∧ dψ

(4.29)

where f(θ, η, ξ) is a complicated function for non-BPS states and we report it only for BPS
states. Since C2 contains Sξ in its dt∧ dy term, and we know from Tab. 4.1 that its electric
brane is D1, we identify Sξ with the D1 charge Q1 and accordingly Sη with the D5 charge
Q5. Therefore, BPS limit acts as

Sξ → 1 +
Q1

r2
= Z1(r) Sη → 1 +

Q5

r2
= Z5(r) f(θ, η, ξ)→ −Q5 sin

2 θ (4.30)

The BPS two-charge solution is obtained by plugging (4.30) into the solution (4.29). For
clarity we drop the dependence on r, and we have

ds2 =
1√
Z1Z5

(dy2 − dt2) +
√
Z1Z5(dr

2 + r2 dΩ2
3) +

√
Z1

Z5
dzi dz

i

e2Φ =
Z1

Z5

B2 = 0 = C0 = C4

C2 = −
(
1− 1

Z1

)
dt ∧ dy +Q5 sin

2 θ dφ ∧ dψ

(4.31)
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Note that Q1 and Q5, which are winding charges related to D1 and D5 branes, come from
Q and QP , which are the charges related to F1 and P.

Since the solution (4.29) describes the system with D1 and D5-branes, which is the system
we want to study, it is worthwhile to derive some important features.

One of the most important aspects to note is that the two charges of the solution, Q1 and
Q5, are in fact quantized, because they depend on integer parameters, namely the number
of D1 and D5-branes. Since the dt2 coefficient is proportional to mass, and Zi = 1+Qi/r

2,
we deduce that both Qi’s depend on the mass of the branes. More precisely, since the
Qi’s have to have the dimension of a length squared for the Zi’s to be dimensionless, we
conclude that, up to a numerical factor,

Qi ∼ G5mi (4.32)

where G5 is the 5D Newton’s constant and has the dimensions of a length cubed while
mass’ dimension is [L]−1. The dimension of Gd is [L]d−2. The five dimensions of G5 are the
five non-compact dimensions. We now compute the masses mi of the D-branes. It is

mi = ni Ti Vi (4.33)

where ni is the number of Di-branes, Ti is their tension (defined as mass per volume), and
Vi is the volume they wrap. The brane tension was derived by Polchinski [6] and can be
written as [7]

T1 ∼
1

gs
(α′)−1 T5 ∼

1

gs
(α′)−3 (4.34)

up to numerical factors; note that the fundamental string has tension T = 1/(2πα′). The
5-dimensional Newton constant is

G5 =
G10

volS1×T4

=
G10

(2πR)V4
G10 ∼ g2s (α′)4 (4.35)

The volume factor that relates G5 with G10 comes from requiring that the five-dimensional
action has the proper prefactor when it is obtained by dimensionally reducing the action
in ten dimensions. As for G10, it has to depend on quantities of the 10-dimensional theory,
namely gs and α′. Specifically, it must be proportional to `8s = (α′)4 and g2s ; the latter
intuitively comes from the closed string action, which is proportional to 1/g2s as the
Einstein-Hilbert action is to 1/G10. Putting all together, charges are

Q1 ∼ G5n1T1V1 = n1
gs
V4

(α′)3 Q5 ∼ G5n5T5V5 = n5gsα
′ (4.36)

Finally, we make a remark that will be important in the following. We take the limit in
which r is smaller than

√
Qi. Then the Zi’s in (4.30) become simply

Zi =
Qi
r2

(4.37)

and if we plug them back into the solution we get the metric of AdS3 × S3 × T4.

ds2 =
r2√
Q1Q5

(dy2 − dt2) +
√
Q1Q5

r2
dr2 +

√
Q1Q5 dΩ3 +

√
Q1

Q5
ds2torus (4.38)

Introducing r̂ = r√
Q1Q5

, the metric becomes

ds2 =
√
Q1Q5

[
dr̂

r̂2
+ r̂2(dy2 − dt2)

]
+
√
Q1Q5 dΩ3 +

√
Q1

Q5
ds2torus (4.39)
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From (4.39) we can read off both the radii of AdS3 and S3, which are equal. We find that
they depend on the charges, namely as

RS3 = RAdS = (Q1Q5)
1/4 ∼ (n1n5g

2
s )

1/4 (α′)1/2 (4.40)

where V4 ∼ (α′)2.

We shall work in a regime where V4 ∼ O(α′2) and R2
S1 � α′, which means we take T4 to be

small with respect to S1. Furthermore, in order to have a reliable supergravity description,
we need a small string coupling and a curvature which is small w.r.t. the string scale. In
other words, we require that the AdS radius (4.40), is greater than string scale, i.e. `s.

RAdS � `s ∼
√
α′ =⇒ n1n5 g

2
s � 1 (4.41)

Finally, we discuss briefly about the generic structure of these solutions, in which we can
identify different regions:

• For r �
√
Qi the geometry becomes asymptotically flat and we have Minkowski

spacetime.

• For r �
√
Qi there is the so-called decoupling or near-horizon region, in which the

geometry approaches AdS3 × S3 × T4. This is the region we consider, because the
space is AdS and we can apply AdS/CFT.

As an aside, it is worth mentioning that these geometries were introduced as a description
of black holes in terms of gravitational microstates. In these microstate geometries, if we
decrease r further, we encounter a “cap” region in which there is no singularity. This is the
basic idea behind the fuzzball conjecture proposed by Samir D. Mathur [8].
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Holography is a very powerful tool for studying seemingly unrelated theories. The basic
idea of holography is that a theory defined on the bulk of some space is related to a theory
living on the boundary of the same space. As an aside, the name “holography” comes
from the fact that a hologram allows to represent 3D objects using a 2D image. The most
important and useful realization of holography, and the one we have used, is the AdS/CFT
correspondence.

The AdS/CFT correspondence is a conjecture introduced by Juan Martín Maldacena in
1997. It relates gravity theories on (d+ 1)-dimensional anti-de Sitter spaces (AdS) with
d-dimensional conformal field theories (CFT) that live on the boundary of the AdS space.
The fact that makes this correspondence both useful and difficult to prove is that it is a
strong/weak duality, in the sense that when one theory is strongly coupled the other one is
weakly coupled, and this allows to do calculations on one side that would be otherwise
extremely difficult on the other one.

Although it lacks a rigorous mathematical proof, there is a lot of evidence for AdS/CFT
and it has been successfully applied in many areas. In this chapter, we first report the most
famous clues in favor of it and then what this correspondence entails.

5.1 Evidence

Juan Maldacena [9] and later Edward Witten [10] introduced AdS/CFT in the context of
D-branes and black holes in string theory, but there are different ways to motivate this
conjecture. We will see the way that led Leonard Susskind to formulate the holographic
principle, using the entropy of a black hole [11], and the so-called open/closed string duality.

5.1.1 Holographic principle

The entropy of a black hole, also called Bekenstein-Hawking entropy, is [12]

Sbh =
A

4G
(5.1)

where A is the area of the event horizon and G is the gravitational constant. One can show
that this is the maximal entropy that can be stored in a region of space. In fact, suppose a
region of space Σ has more entropy than ∂Σ/4G. Naturally, the mass inside Σ must be
smaller than the one of a black hole with same area. Let us imagine to add mass to that
region so to make a black hole: the entropy on the inside would decrease by hypothesis.
In the same way, the entropy on the outside of the region would have decreased, because
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we removed matter. Then we would have an overall decrease in entropy that violates the
second principle of thermodynamics. In a gravitational theory, entropy is bounded by

A

4G
(5.2)

so it scales with area. This led Susskind to formulate the holographic principle: quantum
gravity theories in the bulk space are dependent on physics happening on the boundary of
that space.

5.1.2 Open/closed string duality

One of main motivations in favor of the correspondence comes from studying systems of
D-branes, such as the ones derived in Sec. 4.6. Let us consider a D3-brane. The spectrum of
a D3-brane has scalars φi, that we interpreted as the transverse fluctuations of the brane,
and a U(1) gauge field Aµ. When multiple D-branes are close to each other, a non-Abelian
gauge symmetry arises. If we have N close D-branes and open strings that start and end
on the same brane, we have a U(1)N symmetry, with field (Aµ)

a
a. Open strings whose

endpoints are in different branes have massive excitations proportional to the distance
between the branes, denoted by r. As discussed in Section 3.3.4, if r = 0, that is, if the
branes are on top of one another, then the fields (Aµ)

a
b are all massless and the underlying

gauge symmetry becomes U(N). Analogously, the scalar fields become N ×N matrices
labeled by (φi)

a
b , transforming in the adjoint representation of the group.

Consider (9+1)-dimensional spacetime in which there are N overlapping D3-branes. There
are closed strings arising from empty space and open strings as excitations of the D-branes.
We take the low-energy limit, in which we have only massless modes and the action can be
schematically written as

S = Sbulk + Sbrane + Sint (5.3)
where Sbulk is the supergravity action (due to closed string interactions) plus higher-order
corrections, Sbrane is the brane action, and Sint is the interaction between the two. As we
said above, the branes have gauge fields and scalar fields which transform in the adjoint
representation of the gauge group. Then, the action contains the Lagrangian of a Yang-Mills
theory, plus higher-order derivative corrections. The Yang-Mills theory is in particular a
super Yang-Mills theory with gauge group U(N) in (3 + 1)-dimensions. It reads [3, 13]

L = − 1

g2YM

Tr

1

4
FµνFµν +

1

2
Dµφ

iDµφi +
∑
i,j

[
φi, φj

] (5.4)

where the Yang-Mills coupling depends on the string coupling by g2YM = 4πgs. Super-
symmetry causes the beta-function to vanish, making the theory conformally invariant.
Moreover, the group U(N) can be decomposed into U(1) × SU(N) and we focus on the
latter, because U(1) is responsible for the rigid motion of the branes’ center of mass, which
we do not care about.

In the low-energy limit, where `s → 0 (so α′ → 0), all interactions and higher-order terms
in both Sbulk and Sbrane vanish. Therefore, we are left with a free supergravity theory in
the bulk and a super Yang-Mills theory on the branes.

In the perspective of the closed strings, D3-branes are massive and charged objects, acting
as sources of supergravity fields. With the D3-brane, the metric reads

ds2 =
1√
H

(− dt2 + dx21 + dx22 + dx23) +
√
H(dr2 + r2 dΩ2

5) (5.5)



Statement 55

Figure 5.1: Depending on how the worldsheet coordinates σ and τ are defined, one can
interpret the same process as an exchange of a closed string between two D-branes (left),
or as an open string loop diagram (right).

where H = 1 +R4/r4 with R4 = 4πgsα
′2N and x1, x2 and x3 are the spatial coordinates

along which the brane extends. Since the time component of the metric is not zero, the
energy of an object changes depending on the position of the observer. The energies as seen
at r = r0 and at r →∞ are related by E∞ = H−1/4Er. An observer at infinity notices two
kinds of low-energy excitations, one from the bulk and one from the near-horizon region. It
turns out that these two decouple [13]. We then have free supergravity in the bulk and
the near-horizon geometry. In the near-horizon limit, r � R, we have H ∼ R4/r4, and the
metric becomes

ds2 =
r2

R2
(− dt2 + dx21 + dx22 + dx23) +

R2

r2
(dr2 + r2 dΩ2

5) (5.6)

which is AdS5 × S5 geometry.

We have analyzed the same system from the point of view of both open strings and
closed strings. Since string theories are reparameterization invariant, we can swap σ and
τ coordinates and note that we can view closed string tree-level processes as open string
one-loop processes, as can be seen in Fig. 5.1. This is the basic idea behind open/closed
string duality and basically AdS/CFT too. Both perspectives feature free bulk supergravity
and another theory; since the two descriptions should be equivalent, we are led to consider
equal the other two theories, which are Yang-Mills theory (for open strings) and a string
theory on AdS5 × S5 geometry (for closed strings).

5.2 Statement

In the previous section, we have shown how a system of D-branes features both a supergravity
description from closed strings and field-theoretic description from open strings and under
certain conditions they can be decoupled. In his seminal work in 1997 [9], Maldacena
proposed that the two descriptions are indeed equivalent in the decoupling limit. More
specifically, he proposed the following conjecture:

“N = 4 U(N) super Yang-Mills theory in (3 + 1) dimensions
is dual to

type IIB supergravity on AdS5 × S5”

From g2YM = 4πgs and R4 = 4πgs(α
′)2N we get a relation between the parameters of the

two theories:
R4

`4s
∼ g2YMN (5.7)
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where g2YMN is also called ’t Hooft coupling. This relation makes clear a key feature of this
correspondence, which is that strong coupling in one side is dual to a weak coupling in the
other. In fact, let us study some limit cases.

If the ’t Hooft coupling is big, then R4 � `4s . This means that the supergravity theory
is reliable, but also that the conformal theory is strongly coupled. On the other hand,
g2YMN � 1 implies the loop expansion in the SYM theory is possible, but also that stringy
effects are relevant (`4s � R4) so the supergravity description is not valid.

5.2.1 States and geometries

In string theory spectrum, there are both massive fields and massless fields (or states).
From the formulae (3.65) and (3.86), we see that the mass of the states is m ∼ (α′)−1/2. As
we said in (4.41), the supergravity limit involves taking the radius to be big with respect
to the string scale. This is effectively analogous to sending α′ → 0. This implies that string
states have their mass approaching infinity, meaning that they can be decoupled from the
massless states. The only relevant states in supergravity are the massless ones.

We ask ourselves which operators are dual to these supergravity states. On the field-theory
side, relation (5.7) tells us that the condition (4.41) implies g2YMN = λ→∞. Typically, in
an interacting field theory, dimensions of operators are functions of the coupling constant,
in this case λ. However, there is a particular class of operators whose dimension is fixed
regardless of the coupling constant: they are said to be “protected”. In a conformal field
theory, these operators are the so-called chiral primary operators or CPOs. CPOs are
protected because their conformal dimension is h = j and j is, in any conformal theory, a
quantized quantum number, which cannot depend on λ. In super Yang Mills theory, it is the
index labelling representations of SO(6); in the model we are going to consider, the group
is SO(4) ' SU(2)× SU(2) where j is again quantized. We conclude that supergravity fields
are dual to chiral primary operators, or descendants of chiral primary operators—operators
that are obtained by acting upon the CPOs with symmetry operators.

In the conformal theory, we also distinguish between heavy states, which have h ∼ c
(central charge), and light states, which have h ∼ 1. The heavy states are dual to nontrivial
geometries and the light ones are dual to linear deformations around vacuum.

5.2.2 Correlators

Let us talk about how correlators are computed in the AdS/CFT context. Even though we
will not compute correlators directly, the basic principle will be useful in the following.

In any quantum field theory, correlators can be encoded in so-called generating functional.
For any field in the theory, a source J is introduced. We define the generating functional
Z[J ] as

Z[J ] =
∫
dφ exp

(
−Scl[φ] + Jφ

)
(5.8)

where Scl is is the classical action and φ is a field in the theory. Correlators are obtained
by taking derivatives of Z with respect to J . This means that knowing Z[J ] for all sources
J determines all the correlation functions in the quantum field theory. We have

〈O1 · · ·On〉 =
δnZ[J ]

δJ1 · · · δJn

∣∣∣
Ji=0

(5.9)
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where Ji is the source of φi, supergravity field dual to the CFT operator Oi. Via AdS/CFT,
in the supergravity approximation, which implies from (5.7) the strong coupling regime
and the N →∞ limit, the generating functional can be written as

Z[J ] = exp(−Scl[ϕb]) (5.10)

where ϕ are the classical fields which solve supergravity equations of motion and are fixed
by some conditions at the boundary of AdS; specifically, the boundary value ϕb is defined
to be the source J . Then, correlators are computed by calculating this classical action and
differentiate Z[J ] with respect to the boundary value of the field.

To apply this procedure, we consider a classical solution and we expand it at the boundary
(r →∞):

ϕ→ rd−∆ϕb + · · ·+ r∆A+ · · · (5.11)

where ∆ is the dimension of the CFT operator O that is dual to ϕ. Since the supergravity
equations of motions are second-order equations in r, we have to impose another boundary
condition besides (5.11), namely a regularity condition for r → 0. The dominant term is
the first one, which is proportional to the source J . Fixing the boundary conditions fixes
the other terms; in particular the r∆ term’s coefficient, A, is

A ≡ 〈O〉J≡ϕb
(5.12)

that is, the expectation value of the dual operator in presence of the source with the
aforementioned regularity condition. The one-point function A is important because it
actually encodes the information about all correlators. Indeed, higher-point correlators are
obtained by differentiating A with respect to the sources.

5.3 Other realizations of the correspondence

Actually, the relation between AdS5 × S5 and N = 4 super Yang-Mills theory is just one
of the many realizations of the correspondence: the same logic can be applied to any
system of D-branes. In this work we consider the bound system made up of D1 and D5
branes, introduced as the two-charge solution in Sec. 4.6, that in a suitable limit lives in
AdS3 × S3 × T4. This is called the D1-D5 system. The field theory describing this system
is a two-dimensional conformal field theory, often referred to as D1-D5 CFT.

Even though the duality is conceptually the same for D3-branes (AdS5 × S5) and D1 and
D5-branes (AdS3 × S3 × T4), it is important to point out a difference. In AdS5 × S5, if one
compactifies the type IIB theory on S5, one finds all fields in AdS5, and every one of these
is dual to some conformal operators. Furthermore, since the ten-dimensional theory has
the maximum number of supersymmetries (32 supercharges), all fields are related to each
other via supersymmetries transformations; they are said to be in the same supermultiplet.
A supermultiplet is a set of fields that transform into one another via supersymmetry
transformations: starting from one field, e.g. the metric, one can apply any number of
supersymmetries and get to any other field in the theory. In this supermultiplet, there are
six 10D scalar fields; by compactifying these on S5, one finds all the CPOs of the dual
theory. The D1-D5 theory is different; unlike super Yang-Mills, the full 10D space has a four-
dimensional compact region—we took it to be the four-torus, but it can be any 4D compact
space (another usual choice is the K3 surface)—so the analog of AdS5 × S5 here is the
6-dimensional AdS3×S3. Type IIB theory on this space has half the supercharges, meaning
intuitively that it contains more than one multiplet. Starting from the metric as before, we
get to a number of fields that make up the so-called gravitational multiplet, but a lot of fields
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are left out. The remaining fields are organized in the so-called tensor multiplets. The four-
torus has 5 of these multiplets (K3 has 21). If each of these multiplets are compactified on
S3, there are CPOs. In particular, CPOs with lowest dimensions—(1/2, 1/2)—correspond
to the compactification on the smallest spherical harmonics. There are five of these CPOs
of dimension (1/2, 1/2), one for each supermultiplet: these same-dimension CPOs are said
to have different “flavours”. The presence of multiple flavours makes the D1-D5 system
more complicated than the D3-system.
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The D1-D5 system is the type IIB geometry on R1,4×S1×T4 with n1 D1-branes wrapping
S1 and n5 D5-branes wrapping T4; we will denote N = n1n5. In the regime of interest, the
torus is smaller than the circle; in terms of α′, we assume V4 ∼ (α′)2 and R2

S1 � α′.

In this chapter we discuss in some detail the D1-D5 system. First we outline its corresponding
conformal theory, then we report the dual supergravity description.

6.1 D1-D5 conformal field theory

In this section we describe the D1-D5 system in terms of the conformal field theory, referred
to as the D1-D5 CFT. Since this system breaks 1

4 supersymmetries, this theory will be a
N = (4, 4) superconformal field theory (SCFT) with 8 supercharges. Moreover, since it
lives on the boundary of AdS3, it is two-dimensional. Finally, we can show that the central
charge is related to AdS radius (4.40) as

c =
3RAdS

2G3
(6.1)

where RAdS is the AdS radius and G3 is the Newton gravitational constant in three
dimensions [14].

There are two main descriptions of the D1-D5 system as a field theory. We are going to
briefly outline both approaches, but it turns out that the second one is more precise and
less complicated to handle. An extensive description of the two ways can be found in [14,
15].

In the spirit of the open/closed string duality, one possibility is to consider the field theory
of open strings originating from D-branes. Depending on what brane they attach to, open
strings are of three different kinds:

• 1-1 strings. Strings that start and end on D1-branes: they give rise to a U(n1) gauge
theory with 16 supercharges;

• 5-5 strings. Strings that start and end on D5-branes: they give rise to a U(n5) gauge
theory with 16 supercharges;

• 1-5 and 5-1 strings. Strings that start on D1-branes and end on D5-branes or vice
versa. They transform under the fundamental representation of U(n5), and under the
antifundamental representation of U(n1). They break the number of supersymmetries
of the theory down to 8.

Since we have taken the four-torus to be small w.r.t. the one-sphere, the theory is effectively
reduced to a (1 + 1)-dimensional theory parameterized by time t and the S1 coordinate y.
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Table 6.1: Symmetries of the two descriptions of the D1-D5 system.

Supergravity CFT Symmetry group
AdS3 L−1, L0, L+1 SL(2,R)× SL(2,R)
S3 R-symmetry SO(4)E ' SU(2)L × SU(2)R
T4 outer automorphism SO(4)I ' SU(2)1 × SU(2)2

Because we are discussing the low-energy limit, we are interested in the supersymmetric
minima of the theory. If we consider the potential (see [14] for an explicit expression), one
can show that there are two classes of minima, selecting two different regions of the moduli
space of the theory. These classes are

Coulomb branch The adjoint scalars of the 1-1 and 5-5 strings acquire a non-zero vacuum
expectation value, causing the separation of the branes and the breaking of the gauge
symmetry.

Higgs branch The gauge fields of the 1-1 and 5-5 strings that parameterize the displace-
ment of D1-branes inside D5-branes acquire a non-zero VEV. In this case, there is
no separation of the branes which instead form a bound state.

The Higgs branch is what we want, because we are interested in bound states. However, as
said before, this approach makes it complicated to study the theory. Let us now see the
other way.

The second approach consists in considering D1-branes as instantonic solutions of the U(n5)
gauge theory of the D5-branes. That is, D1-branes (strings) wrapping S1 but localized
in T4. We are interested in describing n1 instantons in the D5-brane theory. They give
rise to a family of solutions whose parameters form the instanton moduli space, since the
D1-branes have a (1 + 1)-dimensional worldvolume. This space will be the target space of
the theory we want, that is a (1+1)-dimensional sigma model. The structure of this moduli
space is generally complicated but we are going to pick a particular choice of parameters
that allows to consider the theory in the so-called orbifold point, where the target space is

(T4)N

SN
(6.2)

where SN is the permutation group of order N = n1n5. In the orbifold point, the CFT is
the theory of a collection of N = n1n5 strings wrapping S1 with T4 as the target space.
The permutation group is there to keep account of the fact that two configurations with
some strings exchanged are in fact equivalent.

Note that strings can wrap the circle more than once: when going around the circle S1,
one can end in a different copy of T4. We will identify two sectors: the untwisted sector,
where all N strings wrap the circle only once, and the twisted sector, where some strings
wrap S1 multiple times; sometimes multi-wound strings are called “strands”. Regardless,
considering mi strings with winding wi, the sum∑

i

miwi = N (6.3)

must hold.

Finally, it remains to discuss the symmetries of the two theories, and verify that they
match. The supergravity near horizon geometry lives on AdS3 × S3 × T4, corresponding to
the following isometry groups: SL(2,R)× SL(2,R) for AdS3, SO(4)E for S3 and SO(4)I for
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T4, which is broken due to compactification. On the CFT side, the theory is generated by
the Virasoro generators Ln and L̄n, whose global subalgebra matches SL(2,R)× SL(2,R).
Furthermore, it has a R-symmetry based on SO(4) which we can identify with SO(4)E for
S3. R-symmetry is a symmetry that relates supercharges with each other. Finally the torus
SO(4)I is associated to another SO(4) symmetry—giving an outer automorphism of the
superconformal algebra [16, 17]. The symmetries are schematized in Table 6.1.

6.1.1 Field content

We now list the fields present in this theory; in the following we consider for simplicity the
holomorphic or left-moving sector, because the generalization to the antiholomorphic or
right sector is straightforward. As usual we have the stress-energy tensor T (z); then there
are four (fermionic) currents GαA(z) due to supersymmetry, and three (bosonic) currents
Ja(z) because of R-symmetry.

It is more convenient to express both SO(4) groups as SU(2)× SU(2), namely SO(4)E ∼
SU(2)L × SU(2)R and SO(4)I ∼ SU(2)1 × SU(2)2. We introduce the following conventions
for the indices:

α, β ↔ SU(2)L α̇, β̇ ↔ SU(2)L

A,B ↔ SU(2)1 Ȧ, Ḃ ↔ SU(2)2
(6.4)

where α, α̇ = ± and A, Ȧ = 1, 2.

We can view the CFT states as N = n1n5 copies of the theory on T4, or strands, each of
which contains four free bosons and four free fermions. Since each boson contribute 1 to
the central charge and each fermion contribute 1/2, the central charge of one copy is 6 and
the total one is

c = 6n1n5 = 6N (6.5)

The boson fields are denoted XAȦ
r (z) and the fermions are ψαȦr (z) where r = 1, . . . , N

labels the copy. It will be better to consider ∂X’s as the bosonic fields. The OPEs involving
these fields are

ψ1Ȧ
r (z)ψ2Ḃ

s (w) ∼ εABδrs
z − w

∂XAȦ
r (z) ∂XBḂ

s (w) ∼ εABεȦḂδrs
(z − w)2

(6.6)

where ε12 = ε1̇2̇ = −ε12 = −ε1̇2̇ = +1 and ∼ restricts to the singular part of the OPE.

From these fields we can write the currents that generate the SCFT. First, the total
stress-energy tensor is the sum of the contributions from every field in one copy summed
again to consider all N copies. For one copy we have

Tr(z) = T bos
r (z) + T fer

r (z) =
1

2
εABεȦḂ :∂XAȦ

r ∂XBḂ
r : +

1

2
εαβεȦḂ :ψAȦr ψBḂr : (6.7)

The R-symmetry currents are

J+
r =

1

2
εȦḂ :ψ1Ȧ

r ψ1Ḃ
r : (6.8)

J−
r = −1

2
εȦḂ :ψ2Ȧ

r ψ2Ḃ
r : (6.9)

J3
r = −1

2

(
εȦḂ :ψ1Ȧ

r ψ1Ḃ
r : − 1

)
(6.10)
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which we collectively denote with Jar . Finally we have the supercurrents

GαA(z) =
N∑
r=1

ψαȦr ∂XḂA
r εȦḂ (6.11)

The OPEs for bosons and fermions (6.6) help us figure out the OPEs involving these
currents.

T (z)T (w) ∼ c/2

(z − w)4
+

2T (w)

(z − w)2
+
∂T (w)

z − w

GαA(z)GβB(z) ∼ − c
3

εαβεAB

(z − w)3
+ εABεβγ(σ∗ a)αγ

[
2Ja(w)

(z − w)3
+
∂Ja(w)

z − w

]
−

εαβεAB
T (w)

z − w

Ja(z)Jb(w) ∼ c

12

δab

(z − w)2
+ iεabc

Jc(w)

z − w

T (z)Ja(w) ∼ Ja(w)

(z − w)2
+
∂Ja(w)

z − w

T (z)GαA(w) ∼ 3

2

GαA(w)

(z − w)2
+
∂GαA(w)

z − w

Ja(z)GαA(w) ∼ 1

2
(σ∗ a)αβ

GβA(w)

z − w

(6.12)

Finally, we can write the commutation relations that define the superconformal algebra.
Let us denote the mode coefficients of the currents with Ln, GαAn and Jan and we get

[Lm, Ln] = (m− n)Lm+n +
c

12
(m3 −m)δm+n,0

[Jam, J
a
n] =

c

12
mδabm+n,0 + iεabcJcm+n{

GαAm , GβBn

}
= − c

6

(
m2 − 1

4

)
εαβεABδm+n,0 +

(m− n)εABεβγ(σ∗ a)αγJam+n − εABεαβLm+n[
Jam, G

αA
n

]
=

1

2
(σ∗ a)αβG

βA
m+n

[Lm, J
a
n] = −nJam+n[

Lm, G
αA
n

]
= −

(m
2
− n

)
GαAm+n

(6.13)

This algebra has a well-defined finite global subalgebra, which is generated by the subset

{L0, L±, J
a
0 , G

αA
±1/2} (6.14)

This global algebra does not depend on c. Its Cartan subalgebra is spanned by L0 and J3
0 ,

so the states can be classified in terms of their eigenvalues h and m.

6.1.2 States of the untwisted sector

In this work, we are going to focus mainly on the untwisted sector, where strings wrap S1
just once. It is possible to switch to the twisted sector, where strings are wound around
S1 multiple times, via so-called twist operators, one of which is denoted Σ2 and will be
introduced in the following.
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Irreducible representations of the algebra (6.13) are constructed by choosing a highest-
weight state, called primary, and acting upon it with negative modes in order to build a
set of descendants. Depending on the generator, we identify three kinds of primary states.
A state |P 〉 is Virasoro primary if it is annihilated by Ln (n > 0), affine primary if it is
annihilated by Jan (n > 0), and chiral if it is annihilated by G+A

r (r ≥ −1/2) and chiral
primary if it is both Virasoro primary and chiral.

Vacuum states

Since strings are singly wound, we have to impose boundary conditions in order to make
sure that for σ → σ + 2π we get back to the same copy. On the plane it corresponds to
z → ei(τ+r)z. For the bosons we have

∂XAȦ
r (e2πiz) = ∂XAȦ

r (z) (6.15)

This implies the bosonic field can be mode-expanded as

∂XAȦ
r (z) =

∑
n∈Z

αAȦr n z
−n−1 (6.16)

Fermions, as in superstring theory, can have periodic or antiperiodic boundary conditions
on the cylinder. This distinguishes two different types, or sectors, of fermions: Ramond
and Neveu-Schwarz, respectively. On the plane the periodicity is reversed and we have:

ψαȦr (e2πiz) = −ψαȦr (z) R sector (6.17)

ψαȦr (e2πiz) = ψαȦr (z) NS sector (6.18)

Let’s consider NS sector first. The mode expansion yields

ψαȦr (z) =
∑

n∈Z+1/2

ψαȦr n z
−n−1/2 (6.19)

We now build the NS vacuum state. One can show that the state with lower energy lies in
the NS sector. For a given copy, the vacuum state is made up of a tensor product between
the bosonic vacuum state and the fermionic vacuum state. Both have a holomorphic and
an antiholomorphic part, but they commute with each other so we can consider just the
holomorphic part. The bosonic vacuum state is the one annihilated by the boson modes:

αAȦr n |0〉r = 0 n ≥ 0 (6.20)

while fermion vacuum is determined by

ψαȦrm|0〉r m ≥ 1

2
(6.21)

These are states with (h,m) = (0, 0). In contrast, the R sector vacuum states are more
complicated; this is because the mode expansion,

ψαȦr (z) =
∑
n∈Z

ψαȦr n z
−n−1/2 (6.22)

includes zero modes ψαȦr 0 that yield multiple degenerate vacuum states, sixteen in total.
These states come from all possible non-zero combinations of (α, Ȧ) indices in the left and
right sector, and can be represented as

|αα̇〉 |αȦ〉 |Ȧα̇〉 |ȦḂ〉 (6.23)
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We can interpret the states (6.23) as two-spin states; among these, the highest-weight
state, sometimes referred to as the maximally spinning state, is |++〉r and has weights
(h,m) = (1/4, 1/2) and satisfies the conditions

ψαȦr n |++〉r = 0 (n > 0) ψ+Ȧ
r 0 |++〉r = 0 ψ2Ȧ

r 0 |++〉r 6= 0 (6.24)

This means that if we take all N = n1n5 copies to be in a Ramond ground state, the overall
conformal dimension is going to be h = N/4 = c/24. The other states in (6.22) come from
acting on |++〉r with ψ−Ȧ

r 0 and ψ̃−Ḃ
r 0 .

Chiral primary states

The above discussion is about the conformal theory in the free orbifold point in the moduli
space, where the theory is weakly coupled and contains free bosons and fermions. However,
due to the strong/weak nature of AdS/CFT, the point in the moduli space that is dual to
weakly-coupled supergravity is different from the free orbifold point. We would like to have
quantities, like vacuum expectation values and correlators, that are protected (i.e. do not
vary) when we move in the moduli space. These are obtained using chiral primary states,
that are both chiral and Virasoro primary. Let us now determine the properties of these
states. If we consider the anticommutator of the G’s in (6.13) for GαA±1/2, we have{

G−A
+1/2, G

+B
−1/2

}
= εAB(J3

0 − L0) (6.25){
G+A

+1/2, G
−B
−1/2

}
= εAB(J3

0 + L0) (6.26)

If we sandwich these with a state |ψ〉 with eigenvalues j and m for L0 and for J3
0 we have∑

B

∣∣∣G+B
−1/2|ψ〉

∣∣∣2 +∑
B

∣∣∣G−B
+1/2|ψ〉

∣∣∣2 = 2(h−m) (6.27)

∑
B

∣∣∣G−B
−1/2|ψ〉

∣∣∣2 +∑
B

∣∣∣G+B
+1/2|ψ〉

∣∣∣2 = 2(h+m) (6.28)

Since in any unitary CFT the left-hand sides are non-negative, from (6.27) we derive a
bound on all physical states:

h ≥ m =⇒ h ≥ j (6.29)
Chiral primary states are the ones and only ones that saturate this bound: h = m. From
(6.27), one sees that chiral states |χ〉 are such that

G+A
−1/2|χ〉 = 0 (6.30)

as anticipated. Since h = m = j, chiral primaries are also the highest-weight states of
the SU(2)L multiplet generated by J ’s. Note that m is quantized, so it cannot depend on
moduli. This means that h = m is moduli-independent for CPOs.

As we have already discussed, chiral primary states/operators are important because they
are related to the supergravity fields. In particular, these are identified as the global
subalgebra descendants of chiral primaries, which are obtained by acting upon chiral
primary operators with L−1, J−

0 or G−A
−1/2. There are four chiral primary states in the

untwisted sector:

|0〉NS ψ+Ȧ
−1/2|0〉NS ψ+1̇

−1/2ψ
+2̇
−1/2|0〉NS ∝ J+

−1|0〉NS (6.31)

where the first one has h = m = 0, the second two have h = m = 1/2, and the last one has
h = m = 1.
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6.1.3 Moduli of the theory

Moduli are marginal deformations of the conformal theory. As we seen in Chapter 2 and
more precisely in Section 2.2.6, marginal operators deform the CFT leaving the conformal
invariance untouched. They are operators of dimension (1, 1); moreover, they should belong
to a so-called short multiplet.[1] These two requirements imply moduli are descendants
of chiral primary operators of dimension (12 ,

1
2). The only chiral primary operators with

conformal dimension (h, h̄) = (12 ,
1
2) are [14]

ψ+Ȧψ̄+Ḃ Σ++
2 (6.32)

where Σ++
2 is a twist operator. These five operators, if are acted upon with G−A

−1/2G
−B
−1/2,

give rise to all the 20 moduli of this conformal theory. Let’s write them explicitly. We have
from the untwisted sector

G−A
−1/2G

−B
−1/2 ψ

+Ȧψ̄+Ḃ = ∂XAȦ∂̄XBḂ (6.33)

It is convenient to write it in the vector representation of SO(4)I , using indices i and
j: ∂Xi∂̄Xj . Since each index A or B takes two values, there are 16 of these marginal
operators. As expected, the remaining 4 come from the twisted sector:

G−A
−1/2G

−B
−1/2Σ

++
2 = T AB (6.34)

We can split both (6.33) and (6.34) in their irreducible representations with respect to
SO(4)I

∂Xi∂̄Xj =
[
∂X(i∂̄Xj)

]
+
[
∂X [i∂̄Xj]

]
+

[
1

4
δkl∂X

k∂̄X l

]
δij

T AB = T [AB] + T AA ≡ T 1 + T 0

(6.35)

So we have written all twenty moduli of D1-D5 CFT. We will see in the following that
these 20 moduli corresponds to just as many moduli in the supergravity side.

6.1.4 Spectral flow

Spectral flow is a map that sends states and operators to other states and operators. Under
spectral flow, the states’ left conformal dimension h and spin m are changed as

h′ = h+ αm+
cα2

24
m′ = m+

cα

12
(6.36)

where α is a parameter which characterizes a particular spectral flow transformation; we
are going to restrict to integer values of α. Right sector quantities are changed similarly
with ᾱ.

The importance of spectral flow is that transformations parameterized by an odd α exchange
R and NS boundary conditions, effectively sending NS states to R states. In particular,
spectral flow with α = −1 sends chiral primary states (that have h = m) to states with
h = c/24, which is the dimension of Ramond ground states. In fact, the four chiral primary
states listed in (6.31) are related to four Ramond ground states, and, moreover, since
the right-moving sector has four more chiral primaries, if one joins left and right sectors
in all possible ways, one finds that 16 Neveu-Schwarz chiral primary states map into all
16 Ramond vacuum states (6.23); among these, the NS vacuum state is mapped to the
maximally spinning R state, |++〉r.

[1]While supermultiplets are obtained by acting on a global primary state with GαA
−1/2, short multiplets

are multiplets for which some GαA
−1/2 annihilate the highest-weight state, and this means the highest-weight

state is chiral primary [14].
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6.1.5 Heavy and light operators

We can take a particular combination of the operators in (6.32), to get

Oαα̇fer =
N∑
r=1

Oαα̇r (z, z̄) =
N∑
r=1

−i√
2N

εȦḂψ
αȦ
r (z)ψ̄α̇Ȧr (z̄) (6.37)

which is T4 invariant. These are also called “fermion operators” because they contain ψ’s,
but there also similar operator that are “bosonic”, such as

OABbos =

N∑
r=1

1√
2N

εȦḂ∂X
AȦ
r (z)∂̄XBḂ

r (z̄) (6.38)

which contains some of the moduli. The above operators are examples of so-called light
operators, which are operators that possess a conformal dimension of the order of unity, i.e.
small w.r.t. c ∼ N = n1n5. They are generally written as a sum of single-strand operators:

OL(z, z̄) =

N∑
r=1

1⊗ · · · ⊗ 1⊗Or(z, z̄)⊗ 1⊗ · · · ⊗ 1 (6.39)

so that the total conformal dimension of the full operator does not depend on the number
of strands N . The opposite kind of operators is important as well: they are called heavy
operators and their dimension scales with c ∼ N . They are schematically written as a sum
of products of operators acting nontrivially on every strand:

OH =
N∑
r=1

N⊗
r=1

Or (6.40)

Chiral primary operators with h ∼ 1 are an example of light operators. Via spectral flow,
they are related to Ramond ground states. By looking at how the conformal dimension are
changed by spectral flow (6.36), we conclude that Ramond ground states have dimensions
that scale with c, and are therefore heavy states.

In the AdS/CFT context, light operators are dual to linear deformations around the
vacuum (in our case, AdS3 × S3), while heavy operators are dual to nontrivial geometries.
In particular, Ramond ground states are dual to geometries that carry D1 and D5-branes.
We see in the following section how these dual geometries are constructed.

6.2 Supergravity description

6.2.1 Moduli space

The moduli space of this supergravity solution is given by the following six-dimensional
scalar fields [14]

hij (10) Bij (6) Cij (6) C0 (1) Ĉ4 (1) Φ (1) (6.41)

where i, j run on the four-torus, Ĉ4 denotes the term in C4 which lives on torus, and the
number inside brackets denotes the number of degrees of freedom of each field, which is in
total 25. In the near horizon limit, there is an “attractor mechanism” which imposes some
constraints that fix 5 of these 25 moduli, arriving to 20. These five scalars get fixed to
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Table 6.2: The CFT moduli and their corresponding supergravity moduli, along with their
representations under the symmetry groups and the number of degrees of freedom. [14, 20]

SUGRA CFT SO(4)I ∼ SU(2)1 × SU(2)2 SO(4)E ∼ SU(2)L × SU(2)R dof

hij − 1
4δijh

k
k ∂X(i∂̄Xj) − 1

4∂X
i∂̄Xi (3,3) (1,1) 9

Cij ∂X [i∂̄Xj] (3,1)⊕ (1,3) (1,1) 6
B+
ij T 1 (3,1) (1,1) 3
V4 ∂Xi∂̄Xi (1,1) (1,1) 1
Ξ T 0 (1,1) (1,1) 1

values that depend on the charges; the simplest example to see this is the dilaton, which in
the near horizon limit, r �

√
Qi, becomes

e2Φ =
Q1

Q5
∼ n1
n5

(6.42)

More details about this mechanism can be found in [18, 19].

A consistency check of the AdS/CFT duality comes from matching moduli from the two
sides. A matching is presented in [15] which we report in Table 6.2, where the correspondence
between the CFT side and the gravity side is done by associating each term in (6.35)
with the corresponding gravity modulus that shares the same symmetry under S3 and T4.
However, there is a two-fold ambiguity for the symmetries (1,1) and (3,1). To solve this
ambiguity, some indirect arguments can be provided [15]. In particular, in Chapter 7 we
will explain an approach that justifies the holographic map for B2 and C2 via a direct
calculation.

Furthermore, recall we have lost five moduli by going to the near horizon limit in supergravity
side. It can be shown that these five moduli can be associated to five irrelevant perturbations
of the CFT, making the correspondence even more precise [14].

6.2.2 Dual geometries

In the context of the AdS/CFT correspondence, one is generally interested in studying
geometries that are dual to “coherent states” of chiral primary operators (CPO) of the
CFT, that we have introduced in the previous chapter. This is because these coherent
states are expected to have classical description in terms of geometries; as an aside, this is
analogous to ordinary quantum mechanics, where coherent states are those quantum states
that resemble classical states the most. CPOs are states with (h, h̄) = (j, j̄). Coherent
states of these operators are heavy states of the schematic form∑

n

bnOn (6.43)

where O is a CPO.[2] Chiral primary operators are operators in the NS sector. Thanks
to spectral flow (Sec. 6.1.4), CPOs are related to Ramond ground states which are heavy
states corresponding to geometries that possess D1 and D5 charges. The six-dimensional
metric dual to Ramond ground states that are invariant under rotations in the four compact
dimensions is [21–23]

ds26 = −
2√
P
(dv + β)(du+ ω) +

√
P ds24 (6.44)

[2]The nomenclature of “coherent states” comes from the ordinary quantum states of the same name.
A standard example of coherent state is eαa†

|0〉 which can be expanded in the form
∑

n
(αa†)n

n!
|0〉, that

resembles (6.43).
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This ansatz is the most general supergravity solution that carries D1 and D5 charges
and preserves the necessary supersymmetries [24]. The full 10D metric includes the torus
metric:

ds210 =

√
Z1Z2

P
ds26 +

√
Z1

Z2
dzi dz

i (6.45)

Here P = Z1Z2 − Z2
4 and we have used light-cone coordinates

u =
t− y√

2
v =

t+ y√
2

(6.46)

to parameterize time t and the S1 coordinate y. The metric ds4 is the flat metric on R4,
while Z1, Z2, Z4 are harmonic scalar functions on R4, sometimes referred to as “warp
factors”; the functions Z1 and Z2 are analogous to Z1 and Z5 from the two-charge solution
(4.31). Finally, β and ω are one-forms with self-dual and anti-self-dual 2-form field strengths.
The space R4 is parameterized by coordinates xi defined such that

x1 + ix2 = r̂eiφ sin θ̂ x3 + ix4 = r̂eiψ cos θ̂ (6.47)

where r̂2 = r2 + a2 sin2 θ and
cos2 θ̂ =

r2 cos2 θ

r2 + a2 sin2 θ
(6.48)

so that the flat R4 ' R× S3 reads

ds24 = Σ

(
dr2

r2 + a2
+ dθ2

)
+ (r2 + a2) sin2 θ dφ2 + r2 cos2 θ dψ2 (6.49)

In this ansatz, for the presence of Z4, the other fields of type IIB supergravity are nontrivial
too. The type IIB fields are the dilaton Φ, the NSNS 2-form B2 and the RR forms C0, C2

and C4. They are given by:

C0 =
Z4

Z1
e2Φ =

Z2
1

P

B2 = −
Z4

P
(du+ ω) ∧ (dv + β) + a4 ∧ (dv + β) + δ2

C2 = −
Z2

P
(du+ ω) ∧ (dv + β) + a1 ∧ (dv + β) + γ2

C4 = −
Z4

P
γ2 ∧ (du+ ω) ∧ (dv + β) + x3 ∧ (dv + β) +

Z4

Z2
dz1 ∧ dz2 ∧ dz3 ∧ dz4

(6.50)

where we introduced the one-forms a1, a4, the two-forms δ2, γ2 and the three-form x3. In
the following, we will consider the field strengths: F1, H3, F3 and F5. Actually we will pick
F̃3 = F3 −H3 ∧ C0 and F̃5 = F5 −H3 ∧ C2. They are defined as

F1 = d
(Z4

Z1

)
e2Φ =

Z2
1

P

F̃3 =
dû ∧ dv̂
P

∧
(
Z2

Z1
dZ1 −

Z4

Z1
dZ4

)
−

1

Z1
(dv̂ ∧ dω − dû ∧ dβ) + ?4 dZ2 −

Z4

Z1
?4 dZ4

H3 = − dû ∧ dv̂ ∧ d
(
Z4

P

)
− Z4

P
(dv̂ ∧ dω − dû ∧ dβ) + ?4 dZ4

F̃5 = −
dû ∧ dv̂
P

∧ ?4(Z4 dZ2 − Z2 dZ4) + d
(Z4

Z2

)
∧ dz1 ∧ dz2 ∧ dz3 ∧ dz4

(6.51)
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where for brevity we defined dû = du+ω and dv̂ = dv+β. The form of the warp factors and
the one-forms β and ω is in general complicated and depends on the specific ground state
[25]. We can give a general formula for the warp factors and the two one-forms. We have
seen in Sec. 4.6 that, via a series of string dualities (T-duality and S-duality), these D1-D5
geometries are related to geometries containing a fundamental string carrying momentum
(F1P). These F1-P states are well known: they are described by eight functions gA(v), that
live in R4 × T4 and represent the profile of left-moving oscillations of the fundamental
string [26, 27]. Each choice of the profile functions describes a different geometry and
thus a different coherent state (6.43). The detailed procedure with the precise holographic
relations is described in [28–30].

We ask for these solutions to be invariant with respect to the torus, so we consider only
non-zero profiles gi(v) for i = 1, . . . , 4. If we do again the series of dualities (4.28) to go back
to the D1D5 frame, which is the frame of interest, it turns out that the torus invariance
survives if gµ(v) is non-zero for µ = 1, . . . , 5. Therefore, the warp factors and the forms ω
and β are determined by the following relations:

Z1 =
Q5

L

∫ L

0

∣∣ġi(v)∣∣2 +∣∣ġ5(v)∣∣2∣∣xi − gi(v)∣∣2 dv Z2 =
Q5

L

∫ L

0

1∣∣xi − gi(v)∣∣2 dv
Z4 = −

Q5

L

∫ L

0

ġ5(v)∣∣xi − gi(v)∣∣2 dv A = −Q5

L

∫ L

0

ġj(v) dxj∣∣xi − gi(v)∣∣2 dv
dB = − ?4 dA β =

−A+B√
2

ω = −A+B√
2

(6.52)

where the dot indicates the derivative with respect to v and ?4 is the Hodge dual with
respect to ds4. We further notice that g5 6= 0 implies Z4 6= 0. The integration bound
L = 2πQ5/R can be interpreted as the length of the fundamental string. Note that the
physical interpretation of g(v)’s is lost in the D1-D5 frame.

We now pick a particular selection of the profile functions and derive the corresponding
geometry [20]. The non-zero functions are:

g1(v) = a cos
(2πv
L

)
g2(v) = a sin

(2πv
L

)
g5(v) = g(v) = −bk

k
cos
(2πkv

L

)
(6.53)

which represent a circular oscillation on two directions of R4 and an oscillation in one
direction along the torus. First, we compute the denominator of the integrands of the warp
factors:∣∣xi − gi(v)∣∣2 = (x1 − g1(v))2 + (x2 − g2(v))2 + x23 + x24

=
∣∣(x1 − g1(v)) + i(x2 − g2(v))

∣∣2 +|x3 + ix4|2

=
∣∣∣(x1 + ix2)− aeiw

∣∣∣2 +|x3 + ix4|2

=
∣∣∣r̂ sin θ̂eiφ − aeiw∣∣∣2 +∣∣∣r̂ cos θ̂eiψ∣∣∣2

= r̂2 + a2 − ar̂ sin θ̂
(
ei(φ−w) + e−i(φ−w)

)
= r2 + a2 + a2 sin2 θ − a

√
r2 + a2 sin θ

(
ei(φ−w) + e−i(φ−w)

)
= A−B

(
ei(φ−w) + e−i(φ−w)

)

(6.54)

where we have used the change of coordinate (6.47) and redefined w = (2πk/L)v. We
further introduce the complex coordinate z = ei(φ−w), which implies

i
dz

z
= dw =

L

2π
dv (6.55)
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Also we notice that

ġ(v) = −bk
2π

L
cos
(2πkv

L

)
= −bk

2π

L
cosw = −πbk

L

[
e−ikφzk + eikφz̄k

]
(6.56)

The poles in the denominator are

z± =
1

2B

[
A±

√
A2 − 4B2

]
(6.57)

where √
A2 − 4B2 = r2 + a2 cos2 θ z− =

a sin θ√
r2 + a2

(6.58)

The integral for Z4 becomes complex:

Z4 = −
Q5

L

πbk
L

L

2π

∮
C

dz

z
i
e−ikφzk + eikφz̄k

A−B(z + 1/z)
(6.59)

=
πbkQ5

L

Res
Ω

[
e−ikφzk

Bz2 −Az +B

]
+Res

Ω̄

[
eikφz̄k

Bz2 −Az +B

] (6.60)

= Rbk a
k sink θ cos kφ

(r2 + a2)k/2(r2 + a2 cos2 θ)
(6.61)

where C = ∂Ω is the circle with |z|2 = 1 and Ω̄ = C \ Ω. The other two warp factors are
computed similarly; we are going to simply report the result. Finally, we obtained the warp
factors derived from the profile (6.53):

Z1 = 1 +
R2

Q5

a2 + b2k/2

r2 + a2 cos2 θ
+
R2b2k
2Q5

a2k sin2k θ cos 2kφ

(r2 + a2)k(r2 + a2 cos2 θ)

Z2 = 1 +
Q5

r2 + a2 cos2 θ

Z4 = Rbk a
k sink θ cos kφ

(r2 + a2)k/2(r2 + a2 cos2 θ)

(6.62)

We note that Z4 depends linearly on bk, Z1 depends quadratically on it, while Z2 does
not depend on it at all. We may generalize it and consider multiple k’s. The geometry is
defined in [25]. The warp factors are

Z1 =
R2

Q5Σ

a20 +∑
k,k′

bkbk′

2

ak+k
′

(r2 + a2)(k+k′)/2
sink+k

′
θ cos[(k + k′)φ] +

∑
k>k′

bkbk′
ak−k

′

(r2 + a2)(k+k′)/2
sink−k

′
θ cos[(k − k′)φ]


Z2 =

Q5

Σ
Z4 =

R

Σ

∑
k

bk
ak

(r2 + a2)k/2
sink θ cos kφ

(6.63)

while the 1-forms β and ω are in both cases equal to

β =
Ra2√
2Σ

(sin2 θ dφ− cos2 θ dψ) ω =
Ra2√
2Σ

(sin2 θ dφ+ cos2 θ dψ) (6.64)

The warp factors and the one-forms depend on a and bk which are related to some
parameters characterizing the dual CFT state. For generic values of bk, the geometry is
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complicated, but it can be shown to be regular and without horizon for any values of the
parameters, as far as the constraint

a2 +
∑
k

b2k
2

= a20 (6.65)

is satisfied. Here a0 is defined by
a20 =

Q1Q5

R2
(6.66)

where R is the radius of the one-sphere S1 and the charges are

Q1 =
(2π)4n1gs

V4
(α′)3 Q5 = n5gsα

′ (6.67)

where we included in (4.36) the numerical factors. We shall consider the geometry with
a single bk where k is generic. It is worthwhile to study this geometry in orders of bk. At
order O(b0k), the metric becomes simply that of vacuum: AdS3 × S3 × T4—in the following
we will drop the torus part and focus on the 6D geometry. Indeed, as bk = 0, the warp
factors (6.62) become

Z1 =
R2

Q5Σ
a20 Z2 =

Q5

Σ
Z4 = 0 P = Z1Z2 (6.68)

therefore the 10D metric (6.45) is changed into

ds210 = ds26 +

√
Q1

Q5
ds2torus (6.69)

where ds26 is now the metric of AdS3 × S3, as in (4.39). From (6.50) follows that the fields
C0, B2 and C4 are zero, and the dilaton is constant:

e2Φ =
Z2
1

Z1Z2
=
Z1

Z2
=
R2 a20
Q2

5

(6.70)

Since it does not depend on bk, the only non-vanishing, non-constant form is C2, whose
(modified) field strength can now be written in the simplified form:

F̃3 = 2Q5(−volAdS3 + volS3) (6.71)

where we defined the volumes of AdS3 and S3 as

volAdS3 =
r

Q1Q5
dr ∧ dt ∧ dy volS3 = sin θ cos θ dθ ∧ dφ ∧ dψ (6.72)

In six dimensions, this makes it Hodge anti-self-dual: F̃3 = − ?6 F̃3.

At linear order in bk, the metric, the dilaton and F̃3 are left unchanged. We have a
deformation of the vacuum caused by the fields B2 and C0 (or, equivalently, the part of C4

on the torus). These fields satisfy a coupled set of equations [31] which is

dB2 − ?6 dB2 = 2wF̃3 d ?6 dw =
Q1

Q5
dB2 ∧ F̃3 (6.73)

where w is C0 or the torus part of C4. Let us consider the particular case where k = 1; the
conformal (light) operator that is dual to this linear deformation must be a chiral primary
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operator of dimensions (h, h̄) = (1/2, 1/2). Since we have five tensor multiplets, for any
given k we have five operators of dimension (k/2, k/2). It turns out that this is

Oαα̇ ∼ εABψαAψ̃α̇B (6.74)

Let us give a intuitive understanding of why is this the right operator. We introduced in
(6.4) that capital-letter indices denote the SO(4)I symmetry, whose gravity equivalent is
the T4 symmetry. Then, the operator (6.74) is invariant under the torus SO(4), just like
the profile (6.53) is.

The exact, all-orders geometry in b1 is the nonlinear completion of this first-order de-
formation, so we are led to conclude that it is dual to the coherent state (6.43) with
O = Oαα̇: ∑

n

bn (Oαα̇)n (6.75)

It is customary to denote the operators of same dimension (h = k/2) but belonging to
different tensor multiplets collectively as S(i)

k where k denotes the dimension and i = 1, . . . , 5
denotes the multiplet, and is sometimes called the “flavor” index. In the case of Oαα̇, we
have k = 1 and, by convention, i = 1, so

Oαα̇ = S
(1)
1 (6.76)

As the coherent state composed by S(1)
1 is dual to geometry with b1, analogous sums of

S
(1)
k are dual to the same geometry with bk.
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In this chapter we report the original contribution of the thesis. We have said that unlike
the popular N = 4 super Yang-Mills theory, the D1-D5 system features multiple flavours,
which make it more difficult to construct the entire holographic map. This means there are
multiple operators that are “similar”, in that they have the same dimensions but different
flavours. Our objective is to establish the holographic map between operators and fields
of different flavours. In particular, given a chiral primary S(i) of flavour i, we want to
find what are the fields dual to the descendants GG̃S(j) with j = i and j 6= i. To do so,
we exploit some properties of three-point correlators in their holographic supergravity
description.

7.1 Correlators

Correlators are important objects in quantum and conformal field theories. When the theory
is strongly coupled, the computation becomes involved. Holographic dualities provide a
powerful tool for treating these strongly coupled correlators by studying their supergravity
counterpart [32, 33]. In the most famous realization of the holographic duality, that is
AdS5 × S5 and super Yang-Mills, there is a vast literature on these holographic correlators
(see [34] and references therein). We are going to discuss correlators in AdS3/CFT2 which
are less understood.

Let us outline the types of operators that enter into correlators. In type IIB supergravity,
when one compactifies over the four torus dimensions, fields organize into five tensor
multiplets, and the gravitational multiplet, containing the metric. In the dual CFT we also
have five operators of dimension (k/2, k/2) for any k = 1, . . . ,∞. For example, for k = 1,
the five operators are (6.32). We denote these operators as S(i)

k , where i = 1, . . . , 5 denotes
the multiplet (also called “flavour”). The operators dual to the fields in the gravitational
multiplet are denoted as σk and have dimensions (k/2, k/2) where k = 2, . . . ,∞.[1] Among
the five S(i)

k ’s for a fixed k, there are two that are torus invariant; for k = 1, they are Oαα̇
and the twist operator Σ2. A conventional notation identifies Oαα̇, defined in (6.37), as
S
(1)
1 and Σ2 as S(2)

1 .

In supergravity, the five flavours generate a SO(5) symmetry, which means we can pass
from one flavour to another, leaving the Lagrangian invariant. This means that if we take
correlators of flavoured states, the result must preserve that SO(5) symmetry. For instance,
let us consider a three-point function like〈

S
(i)
k1
S
(j)
k2
S
(k)
k3

〉
(7.1)

[1]There is no σk for k = 1 because the five S
(i)
1 ’s in (6.32) exhaust all conformal operators of dimensions

(1/2, 1/2).

73
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We need to have as result a tensor that is invariant under SO(5). However, the only
SO(5)-invariant tensors are Kronecker delta and the Levi-Civita symbol, and there is no
way they can be put together to get an invariant three-index tensor. So, we conclude that
the correlator (7.1) is zero. The only non-vanishing three-point correlators are the ones
which have only two flavours, such as〈

S
(i)
k1
S
(j)
k2
σk3

〉
∼ δij (7.2)

Therefore, the tensor structure of these correlators is helpful in determining in advance if a
correlator is going to be non-vanishing, even though there can be values of the k’s that
make it zero anyway.

Let us take correlators involving chiral primary descendants, such as〈
S
(1)
k1
G+G̃+S

(i)
k2
G−G̃−σk3

〉
(7.3)

Even if it involves chiral primary descendants, it can be shown that a Ward identity relates
(7.3) with the correlator involving the original chiral primaries [25], so we have〈

S
(1)
k1
G+G̃+S

(i)
k2
G−G̃−σk3

〉 Ward identity←−−−−−−−→
〈
S
(1)
k1
S
(i)
k2
σk3

〉
(7.4)

The conformal theory is in the strong coupling regime, so it is necessary to compute this
correlator holographically. The prescription for computing correlators using holography
is detailed in Sec. 5.2.2. One can use the SO(5) symmetry and some information of the
holographic correlator to pin down the field/operator map. Following (7.2), correlator (7.3)
is proportional to δ1i where we restrict to i = 1 or 2 to consider torus-invariant operators.
By determining if the result of the supergravity calculation is vanishing or not, we will be
able to associate the descendant G+G̃+S

(1)
k2

to its dual supergravity field and accordingly
G+G̃+S

(2)
k2

.

Let us outline the holographic calculation of (7.3). The basic prescription follows what
we reported in Sec. 5.2.2. Importantly, holographic correlators are usually computed on
vacuum states, that are dual to anti-de Sitter spaces. Instead, we are going to apply
the ordinary procedure for correlators on a heavy state, dual to a nontrivial background
geometry. Namely the heavy state of interest is the coherent state built out of S(1)

k1
, defined

as
O(1)
k1

=
∑
n

bnk1 (S
(1)
k1

)n (7.5)

that is dual to the geometry specified by the data in (6.62) with the switch bk → bk1 .
Correlators of this kind have the form of a four-point correlator or equivalently of a
two-point correlator on nontrivial states:〈

O(1)
k1
G+G̃+S

(i)
k2
G−G̃−σk3O

(1)
k1

〉
←→

〈
O(1)
k1

∣∣∣G+G̃+S
(i)
k2
G−G̃−σk3

∣∣∣O(1)
k1

〉
(7.6)

The full correlator (7.6) is complicated, but for our purpose it suffices to stop at linear
order in bk1 in the sum (7.5) and extract only one S(1)

k1
from one of the two heavy states,

and nothing from the other one. The upshot is that we recover a three-point correlator,
namely (7.3). As seen in the previous chapter, S(1)

k1
, being light, corresponds to the linear

deformation of the vacuum caused by B2 and C0, which satisfy the equations (6.73). The
field dual to G−G̃−σk3 can be shown to be a certain two-form in six-dimensional space, that
we shall denote λ and introduce shortly: details are discussed in [35] and other unpublished
work by the same authors.
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The dual fields to the other operator in (7.6) for every i have never been derived directly
in the literature. The goal of this thesis is to determine them. We shall call

B(i) = G−ȦG̃−Ḃ S
(i)
k (7.7)

where i = 1, 2. Both operators B(i) are descendants of chiral primaries—namely Oαα̇ and
Σ2—so they are moduli; as such they holographically correspond to six-dimensional scalar
fields. As Ȧ and Ḃ vary, we have four possible B(i)’s for every i, one of which is torus
invariant and the other three are not; we shall consider the latter three. Since B(i) are both
light, the supergravity dual fields are going to be linear deformations of the background
geometry, rather than a whole different geometry. In [25] the deformations of the torus
metric were discussed, but they are not dual to B(1) nor B(2). We then claim that the
supergravity dual are the six-dimensional scalar deformations of C2 and B2; however, even
though their conformal counterparts are structurally different (Σ2 is a twist operator, while
Oαα̇ contains simply ψ’s) these two supergravity fields are similar, making the distinction
not immediate. We will compute the correlator in supergravity using both deformations
and, based on the result of the calculation, we will be able to distinguish which is dual to
which: since (7.3) vanishes for i = 2, we associate the field that makes the supergravity
calculation vanish with B(2), and accordingly the other field will be dual to B(1). We start
the holographic supergravity calculation from the correlator (7.6), so we consider the
background geometry that is dual to O(1)

k1
, which is the one characterized by warp factors

(6.62). The fields are then defined by (6.50). The aforementioned deformations perturb this
background. We then restrict ourselves to first order in bk1 , where in the CFT side (7.6)
becomes (7.3). Mathematically, the deformations are treated as an additional term of the
fields: for example C2 becomes C2 + δC2. This deformation takes the form

δC2 = τ c (7.8)

where c is a 0-form on 6D space, while τ is a constant 2-form on the torus, thus satisfying
dτ = 0; moreover, we are going to assume τ to be Hodge anti-self-dual with respect to
the torus, so τ + ?̂4τ = 0 where ?̂4 denotes indeed the Hodge operator on T4. Besides, a
Hodge anti-self-dual 2-form has three parameters that can be associated to the three non
torus-invariant B(i)’s. An analogous deformation regards B2, that is

δB2 = τ b (7.9)

where b is 0-form on 6D space and τ is the same 2-form defined above.

However, if one turns on these two deformations, they find that the equations of motion
(4.9) cannot be satisfied, and it is necessary to involve another deformation on C4, which is

δC4 = τ ∧ λ (7.10)

where λ is a 2-form on 6D space. Note that λ, being a 2-form and not a scalar, cannot be
dual to one of the moduli. In fact, it is the λ that is dual to G−G̃−σk3 .

To sum up, our claim is that B(i) for i = 1, 2 is dual to the fields c and b. The basic idea
of holographic computation of a correlator involves turning on a source of a field in the
background geometry, and calculate the vacuum expectation value (vev) of the other fields
in presence of this source. Suppose a source for λ is introduced; the other 6D field, which is
either b or c, can become excited or not. if the other field is activated, then the associated
vev is non-zero, implying a non-zero correlator as well. If instead there is no excitation,
its vev is zero, and so is the correlator. We need to know which of the two fields, b and
c, is coupled with λ. To do so, we have to derive their equations of motion. As we said
above, we write the equations for the six-dimensional fields first in the full background
geometry, then we take the zeroth and first orders of these equations to finally pin down
the holographic map.



76 Holographic map

7.2 Equations of motion

In this section, we will write the equations of motion for the deformations. First, we
derive the deformations for the field strengths induced by the deformations (7.8), (7.9) and
(7.10), then we plug the deformed field strengths into the equations of motion of type IIB
supergravity, in the background geometry encoded by the warp factors (6.62). The gauge
potentials and the field strengths that satisfy the equations of motion in this background
are (6.50) and (6.51), respectively.

7.2.1 Deformations of the field strengths

We will consider the geometry (6.62), dual to the coherent state (7.5) and study the linear
deformations (7.8), (7.9) and (7.10). We will later impose that they satisfy the equations
of motion at first order in bk1 . The equations of motion will help us in determining which
field between b and c is coupled with λ and thus yields a non-zero expectation value. After
having obtained their equations under the exact geometry, we require that the deformations
satisfy the equations at the zeroth and linear order in bk1 , because, as we already said the
correlator (7.3) involves a single S(1)

k1
, which corresponds to a linear deformation. Since we

perturbed the gauge potentials, Bianchi identities (4.8) are automatically satisfied, so we
focus on the equations (4.9). In this case, the fields C0, Φ and the metric are left unchanged,
so the equations involving the deformed fields are

d ?(e−2ΦH3)− F1 ∧ ? F̃3 − F̃3 ∧ ? F̃5 = 0 (7.11a)
d ? F̃3 +H3 ∧ F̃5 = 0 (7.11b)
F̃5 = ? F̃5 (7.11c)

The deformations on the gauge potentials C2, B2 and C4 obviously induce deformations
of their respective field strengths. For simplicity, from now on we drop the tildes on the
modified field strengths F̃3 and F̃5. Moreover, ? is used to denote the Hodge operator on
the 10-dimensional metric ds210 (6.45), while the associated metrics of ?6, ?4 and ?̂4 are
ds26, ds24 and ds2torus ≡ dŝ24. We have

δH3 = d(δB2) = db ∧ τ
δF3 = d(δC2)− C0 δH3 = (dc− C0 db) ∧ τ
δF5 = d(δC4)− δH3 ∧ C2 −H3 ∧ δC2

= (dλ− db ∧ C2 −H3 ∧ c) ∧ τ

(7.12)

It is actually better to work with field strengths only; we start from δF5, where we do a
sort of “integration by parts”

δF5 =
(
dλ− d(b ∧ C2) + b dC2 −H3 c

)
∧ τ

=
(
d(λ− b ∧ C2) + b(F3 + C0H3)− cH3

)
∧ τ

=
(
dλ̂+ bF3 + bC0H3 − cH3

)
∧ τ

=
(
dλ̂+ bF3 − (c− bC0)H3

)
∧ τ

=
(
dλ̂+ bF3 − ĉ H3

)
∧ τ

(7.13)
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where we defined λ̂ = λ− bC2 and ĉ = c− bC0 for convenience. Using ĉ, we can rewrite
also δF3. Since c = ĉ+ bC0, we get

δF3 = (dĉ+ d(bC0)− C0 db) ∧ τ = (dĉ+ b dC0) ∧ τ (7.14)

Finally, these are the deformations we will plug into the equations (7.11):

δH3 = db ∧ τ (7.15a)
δF3 = (dĉ+ b dC0) ∧ τ (7.15b)
δF5 = (dλ̂+ bF3 − ĉ H3) ∧ τ (7.15c)

7.2.2 Computation of the equations

The deformations (7.15) are valid for every background geometry. We now specialize to the
full geometry encoded by the warp factors (6.62), whereas the field strengths are defined by
(6.51), and compute the equations of motion for the deformations (7.15). Actually, since
we are ultimately interested in the six-dimensional fields b, ĉ and λ̂, we will drop τ from all
equations and restrict to the six-dimensional equations describing those fields. Since the
resulting equations will be difficult to study at first sight, in the following section we will
simplify them by taking simple limits at zeroth and linear order in bk.

We start from equation (7.11c), which is the simplest. We plug F5 + δF5 into (7.11c) and
keep only the deformed terms, so we have

δF5 − ? δF5 = 0 (7.16)

The Hodge star is easily taken care of; since we want six-dimensional equations at the end,
we simply write the ten-dimensional ? in terms of the six-dimensional ?6. This yields

? δF5 = ?
[
(dλ̂+ bF3 − ĉH3) ∧ τ

]
= −Z2

Z1
τ ∧ Z1

Z2
?6(dλ̂+ bF3 − ĉH3)

= −τ ∧ ?6(dλ̂+ bF3 − ĉH3)

(7.17)

where we used the anti-self-duality of τ . Therefore, we can write the equation that governs
the six-dimensional field λ̂. It is

(dλ̂+ bF3 − ĉH3) + ?6(dλ̂+ bF3 − ĉH3) = 0 (7.18)

where, as announced, we dropped τ .

Let us now consider the equation for δF3 (7.11b). The calculations that have to be done
are similar to the previous case, but they are slightly more involved. The equation for the
deformation is

d ? δF3 + δH3 ∧ F5 +H3 ∧ δF5 + δH3 ∧ δF5 = 0 (7.19)

The latter term is zero, because both deformations contain τ . Then we do the Hodge-star
term. Computing the Hodge star, we get

? δF3 = ?
[
(dĉ+ b dC0) ∧ τ

]
= −Z2

Z1
τ ∧ Z

2
1

P
?6(dĉ+ bF1)

= −Z1Z2

P
τ ∧ ?6(dĉ+ bF1)

(7.20)
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and its derivative is

d ? δF3 = −τ ∧ d
[
Z1Z2

P
τ ∧ ?6(dĉ+ bF1)

]
= −τ ∧

[
d
(Z1Z2

P

)
∧ ?6(dĉ+ bF1) +

Z1Z2

P
(�6 ĉ+ d ?6(bF1))

] (7.21)

where we used the notation �6 ≡ d ?6 d. Now the two wedge products are left. The first
one is

δH3 ∧ F5 = (db ∧ τ) ∧ F5 = db ∧ τ ∧ F̄5 (7.22)

where F̄5 is the six-dimensional term of F5, because the other one vanishes upon the
multiplication with τ . The other product yields

H3 ∧ δF5 = H3 ∧
[
(dλ̂+ bF3 − ĉH3) ∧ τ

]
= H3 ∧ (dλ̂+ bF3) ∧ τ

(7.23)

Putting all together, we get the six-dimensional equation for ĉ, that is

−Z1Z2

P
(�6 ĉ+ d ?6 bF1)− d

(Z1Z2

P

)
∧ ?6(dĉ+ bF1)+ db∧ F̄5+H3 ∧ (dλ̂+ bF3) = 0 (7.24)

It remains to treat the equation for δH3, which will give the equation for b. Equation
(7.11a) for the deformations becomes

d ?(e−2ΦδH3)− F1 ∧ ? δF3 − δF3 ∧ ?F5 − F3 ∧ ? δF5 − δF3 ∧ ? δF5 = 0 (7.25)

Again, the latter term is zero, because τ ∧ ? τ ∼ τ ∧ ?̂4τ = −τ ∧ τ = 0. We start from the
first term as usual. The Hodge star is computed in the same way as the other two cases:

e−2Φ ? δH3 = e−2Φ ?(db ∧ τ)

= −e−2ΦZ2

Z1
τ ∧ Z

2
1

P
?6 db

= −Z2

Z1
τ ∧ ?6 db

(7.26)

Its derivative is:

d(e−2Φ ? δH3) = − d
(
Z2

Z1
τ ∧ ?6 db

)
= −τ ∧ d

(Z2

Z1
?6 db

)
= −τ ∧

[
d
(Z2

Z1

)
∧ ?6 db+

Z2

Z1
�6 db

] (7.27)

Now the three wedge products remain. They yield

F1 ∧ ? δF3 = −
Z1Z2

P
F1 ∧ τ ∧ ?6(dĉ+ bF1) (7.28)

and
δF3 ∧ ?F5 = δF3 ∧ F5 = (dĉ+ bF1) ∧ τ ∧ F̄5 (7.29)

and finally
F3 ∧ ? δF5 = −F3 ∧ τ ∧ ?6(dλ̂+ bF3 − ĉH3) (7.30)
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Therefore, the equation for b is

− Z2

Z1
�6 b− d

(Z2

Z1

)
∧ ?6 db+

Z1Z2

P
F1 ∧ ?6(dĉ+ bF1)−

(dĉ+ bF1) ∧ F̄5 + F3 ∧ ?6(dλ̂+ bF3 − ĉH3) = 0

(7.31)

The equations together are

(dλ̂+ bF3 − ĉH3) + ?6(dλ̂+ bF3 − ĉH3) = 0 (7.32a)

− Z1Z2

P
(�6 ĉ+ d ?6 bF1)− d

(Z1Z2

P

)
∧ ?6(dĉ+ bF1) +

db ∧ F̄5 +H3 ∧ (dλ̂+ bF3) = 0
(7.32b)

− Z2

Z1
�6 b− d

(Z2

Z1

)
∧ ?6 db+

Z1Z2

P
F1 ∧ ?6(dĉ+ bF1)−

(dĉ+ bF1) ∧ F̄5 + F3 ∧ ?6(dλ̂+ bF3 − ĉH3) = 0

(7.32c)

The equations (7.32) are the equation for the six-dimensional fields computed in the full
background geometry with warp factors (6.62). As we already said, it is useful to to study
these equations at two simpler limits, namely O(b0k1) and O(bk1).

7.2.3 Limits

We now take the equations (7.32) at zeroth and linear order in bk1 . The zeroth order
corresponds to deformations around AdS3 × S3, while the linear-order geometry is dual to
S
(1)
k1

which is included in the three-point function (7.3).

Order zero

For bk1 = 0, the warp factors become

Z1 =
R2

Q5Σ
a20 Z2 =

Q5

Σ
Z4 = 0 P = Z1Z2 (7.33)

therefore the field strengths which depend on Z4, i.e. F1, H3 and F5, vanish; the dilaton
becomes constant and F3 becomes Hodge anti-self-dual.

e2Φ =
Z2
1

Z1Z2
=
Z1

Z2
=
R2 a20
Q2

5

F1 = 0 H3 = 0 F5 = 0 F3 = − ?6 F3 (7.34)

Since most fields vanish, the equations simplify greatly. The equation for δF5, which is
δF5 − ? δF5 = 0, becomes

(dλ̂+ bF3 − ĉH3) + ?6(dλ̂+ bF3 − ĉH3) = 0 =⇒ dλ̂+ ?6 dλ̂ = 0 (7.35)

where we used F3 = − ?6 F3 and H3 = 0. The equation for δF3 keeps only the first term:
d ? δF3 = 0, which is

−Z1Z2

P
(�6 ĉ+ d ?6 bF1)− d

(Z1Z2

P

)
∧ ?6(dĉ+ bF1) = 0 =⇒ �6 ĉ = 0 (7.36)

where we used P = Z1Z2 and F1 = 0. Finally, the equation for δH3 is d ?(e−2ΦδH3)−F3 ∧
? δF5 = 0, which is

−Z2

Z1
�6 b− d

(Z2

Z1

)
∧ ?6 db+

Z1Z2

P
F1 ∧ ?6(dĉ+ bF1) = 0 =⇒ �6 b = 0 (7.37)
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where we used that Z2/Z1 is constant (so its derivative is zero) and F1 = 0.

Note that all equations are decoupled at order zero. This means that all fields are indepen-
dent from one another if one makes a perturbation of the vacuum, and, as expected, they
are dual to three distinct CFT operators. At zeroth order, the spacetime is simply the
product AdS3 × S3, so these six-dimensional fields can be written in factorized form with
as factors a spherical harmonic in S3 and a term on AdS3. The various spherical harmonics
correspond to the different possible k’s and the functions on AdS3 denote the dimension.
One can further demonstrate that the equation for λ̂ (7.35) admits solutions with spherical
harmonics with k > 1 only, which goes to show that λ̂ is related to a field in the gravity
multiplet, as expected. Instead, the harmonics satisfying equations (7.36) and (7.37) can
have k = 1, since the corresponding fields are in tensor multiplets.

First order

At first order in bk1 , Z4 is no longer zero. We have

Z1 =
R2

Q5Σ
a20 Z2 =

Q5

Σ
Z4 =

R

Σ

a√
r2 + a2

sin θ cosφ
Z1

Z2
=
R2 a20
Q2

5

The fields F1, F5 and H3 are no longer zero, while Φ is still constant and F3 is still Hodge
anti-self-dual. In formulae, we have

F1 = d
(Z4

Z1

)
e2Φ =

Z2
1

P
=

Z2
1

Z1Z2 −O(b2)
=
Z1

Z2
=
R2 a20
Q2

5

F5 = −
dû ∧ dv̂
P

∧ ?4(Z4 dZ2 − Z2 dZ4) + d
(Z4

Z2

)
∧ dz1 ∧ dz2 ∧ dz3 ∧ dz4

F3 =
dû ∧ dv̂
P

∧
(
Z2

Z1
dZ1

)
− 1

Z1
(dv̂ ∧ dτ − dû ∧ dβ) + ?4 dZ2 = − ?6 F3

H3 = − dû ∧ dv̂ ∧ d
(
Z4

P

)
− Z4

P
(dv̂ ∧ dτ − dû ∧ dβ) + ?4 dZ4

(7.38)

Let us first consider the simplest of the three equations, (7.32a). Thanks to the anti-self-
duality of F3, the two F3’s cancel out and we are left with

dλ̂+ ?6 dλ− ĉ(H3 + ?6H3) = 0 (7.39)

There is nothing left to simplify, so (7.39) is the equation for λ̂ at linear order. Now we
take care of the other two equations, (7.32b) and (7.32c). First, in (7.32b) we use that
Z1Z2/P = 1, while in (7.32c) we use the constancy of Z1/Z2 and the Hodge-anti-self-duality
of (dλ̂+ bF3 − ĉH3) and F3,[2] which we have deduced from equation (7.32a). We have

�6 ĉ+ d ?6 bF1 − db ∧ F5 −H3 ∧ (dλ̂+ bF3) = 0 (7.40a)

− Z2

Z1
�6 b+ F1 ∧ ?6(dĉ+ bF1)− (dĉ+ bF1) ∧ F̄5 = 0 (7.40b)

Then in (7.40b) we cancel out F1 ∧ b ?6 F1 and F1 ∧ F̄5 because they are higher-order terms
in bk1 . In (7.40a) we expand the derivative d ?6 bF1 as db ∧ ?6 F1 + b d ?6 F1:

�6 ĉ+ b d ?6 F1 + db ∧ (?6 F1 − F5)−H3 ∧ (dλ̂+ bF3) = 0 (7.41a)

− Z2

Z1
�6 b+ F1 ∧ ?6 dĉ− dĉ ∧ F5 = 0 (7.41b)

[2]Note that if the forms v and w are Hodge anti-self-dual (or self-dual), then v ∧ w = ±v ∧ ?6 w =
±w ∧ ?6 v = w ∧ v = −v ∧ w = 0.
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In (7.41a), we apply the equation for F1, for which d ?6 F1 = −bH3 ∧ ?6 F3 which in this
case, it is also equal to bH3 ∧ F3. In (7.41b), we rewrite F1 ∧ ?6 dĉ as dĉ ∧ ?6 F1, so:

�6 ĉ−H3 ∧ dλ̂+ db ∧ (?6 F1 − F5) = 0 (7.42a)

− Z2

Z1
�6 b+ dĉ ∧ (?6 F1 − F5) = 0 (7.42b)

It can be shown that ?6 F1 = F̄5 at first order. Indeed, as F5 = ?F5, F̄5 is the Hodge dual
of the torus term of F5, that is,

F̄5 = ?

[
d
(Z4

Z2

)
∧ dz1 ∧ dz2 ∧ dz3 ∧ dz4

]
=
Z1Z2

P
Z2

Z1
?6 d

(Z4

Z2

)
=
Z2

Z1
?6 d

(Z4

Z2

)
(7.43)

where we used Z1Z2/P = 1. Since Z2/Z1 is constant, we can put it inside the derivative
and obtain

?6 d
(Z2

Z1

Z4

Z2

)
= ?6 d

(Z4

Z1

)
(7.44)

which is precisely ?6 F1. Then the terms with ?6 F1−F5 are zero. Finally, the three equations
together are

dλ̂+ ?6 dλ− ĉ(H3 + ?6H3) = 0 (7.45a)
�6 ĉ−H3 ∧ dλ̂ = 0 (7.45b)
�6 b = 0 (7.45c)

The equations (7.45) yield what we were looking for: they show that ĉ is coupled to λ̂
while b is an independent field. Let us now resume the discussion regarding the holographic
computation of the correlator (7.3),〈

S
(1)
k1
G+G̃+S

(i)
k2
G−G̃−σk3

〉
(7.46)

We have found that λ is coupled with c. This means that turning on a source for λ yields a
non-vanishing c: therefore, the supergravity calculation with c produces a non-vanishing
result, which implies a non-vanishing correlator. This in turn implies, due to the SO(5)
tensor structure, that the conformal operator dual to c has flavour equal to 1, specifically
it is G+G̃+S

(1)
k1

. Accordingly, b is dual to the operator G+G̃+S
(2)
k2

.





8 | Conclusions

8.1 Review

Our work focused on analyzing the holographic map between the D1-D5 supergravity
description and the D1-D5 conformal theory. In particular, the main goal was to establish
the supergravity fields that are dual to some chiral primary operators belonging in different
tensor multiplets in the CFT.

In order to apply and understand AdS/CFT correspondence, we needed to introduce many
concepts. We first described the latter side of the duality, introducing the basic principles
of any conformal field theory, both classical and quantum. Then, we presented the former
side, starting from string theory which, even though it has not been our primary framework,
it paved the way to supergravity, being its low-energy limit and the gravitational theory
we worked with. In the context of supergravity, we described its fields and their coupling
with branes. We then provided two solutions that carry charges associated to these branes.
Afterwards, we introduced and gave some motivations for the AdS/CFT correspondence,
and we illustrated the D1-D5 system, starting from the conformal side and working our
way to constructing the dual geometries of heavy states. Finally, we explained the main
problem that was approached in the thesis. We wanted to find the supergravity dual to the
descendants defined by

B(i) = G+G̃+ S
(i)
k (8.1)

where S(i)
k is a chiral primary operator of dimensions (k/2, k/2) belonging in the i-th tensor

multiplet, where i = 1, . . . , 5. For a fixed k, there are therefore five fields belonging to
different multiplets, that enjoy a SO(5) symmetry that rotates between the multiplets, also
known as flavours. Among those fields, three transform nontrivially under the torus T4,
while the other two are torus invariant. We focused on the latter two, whose flavours are
conventionally denoted by i = 1 and i = 2. We claimed that the dual fields to B(1) and
B(2) were going to be B2 and C2, but we needed to distinguish which is dual to which. The
approach consists in performing an holographic computation of a correlator exploiting the
SO(5) flavour symmetry. Specifically, the correlator〈

S
(1)
k1
G+G̃+S

(i)
k2
G−G̃−σk3

〉
(8.2)

is proportional to δ1i: this means that (8.2) is zero for i = 2 and non-vanishing for i = 1.
Therefore, we have done the supergravity computation with both fields, and we have
identified the field that makes the computation vanish with B(2) and, accordingly, the other
field with B(1). The complete holographic map regarding these fields is summarized in
Table 8.1.
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Table 8.1: Holographic map in summary

State Geometry/Field

S
(1)
k deformation by C0 and B2 (6.73)

G+G̃+S
(1)
k ĉ

G+G̃+S
(2)
k b

G+G̃+σk λ̂

8.2 Possible developments

Now that we derived the dual field to the descendant G+G̃+S
(1)
k3

it would be natural to go
on and holographically compute the four-point function with two of those descendants in
the background given by two heavy states, namely〈

O(1)
k1
O(1)
k2
G+G̃+S

(1)
k3
G−G̃−S

(1)
k4

〉
(8.3)

where O(1)
k is the coherent state defined as a sum of multiple S(1)

k introduced in (7.5). One
can show that a Ward identity relates (8.3) with the simpler〈

O(1)
k1
O(1)
k2
S
(1)
k3
S
(1)
k4

〉
(8.4)

The correlator (8.3) has never been computed directly. The function computed in [25] can
be written as 〈

O(i)
k1
O(i)
k2
S
(j)
k3
S
(j)
k4

〉
(8.5)

which is slightly simpler, in that it has two flavours. An argument to explain how this is
simpler is provided intuitively by considering the four-point function〈

S
(i)
1 S

(j)
1 S

(k)
1 S

(l)
1

〉
(8.6)

whose result is bound to be of the form

δijδkl(· · · ) + δikδjl(· · · ) + δilδjk(· · · ) (8.7)

implying that the correlator (8.6) with i = j and k = l has fewer terms than the one with
i = j = k = l. Note that the result of (8.3) will not have the structure (8.7), but the same
idea applies.

In the supergravity context, the correlator (8.5) correspond to computing a simple wave
equation involving a dual field, namely �6 hij = 0, because hij is independent. Instead, the
situation is more complicated in the case of (8.3), because we found in our work that ĉ is
coupled with λ̂. This means that the equations to be solved are actually the coupled set of
(7.45a) and (7.45b).
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