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Abstract 
 

 

The objective of this thesis is to extract meteorological information from ambient ocean 

noise. In particular, this study aims to use Machine Learning algorithms to obtain 

rainfall detection and prediction of rainfall intensity and wind speed from underwater 

acoustic spectra. Those spectra are recorded by a passive aquatic listener (PAL) in 

the Mediterranean Sea near Genoa, Liguria, over the timeframe of June 2011 to May 

2012. The entire dataset is composed of 18193 hourly-averaged acoustic spectra. So 

the aim of the thesis is to demonstrate the efficiency of Machine Learning techniques 

in underwater acoustic signal analysis for what concerns rainfall and wind intensity 

information with respect to state-of-the-art empirical methods. The proposed 

techniques permit to obtain good results with an RMSE (Root Mean Square Error) 

value related to rainfall prediction of about 0.48 mm/h, 1.15 m/s for what concern wind 

and detect precipitations greater than 1 mm/h with 90% probability, keeping the false 

alarm probability below 0.5%. 
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1. Introduction 

 

 

 

1.1. General framework and objectives 

 

In some cases the role of noise signal analysis could be very useful in situations in 
which the aim is to understand natural phenomena and their characteristics in a given 
moment. In today's technological world it’s essential to implement solutions that could 
collect data and analyse them in order to extract information useful to increase the 
awareness about a given situation of interest or for future research studies. One of 
those cases is underwater acoustic signals analysis. Underwater acoustic noise could 
contain information for estimating meteorological parameters, for example rainfall 
intensity and wind speed. There are many situations, in the marine environment, in 
which that kind of measurements are essential, for instance for navigation or 
meteorological monitoring, and could be impossible or not suitable to install and use 
surface sensors, such as pluviometer and anemometer; this is the case, for example, 
of harsh environments or dense navigation traffic areas. Also there are many 
challenging scenarios in which it could be even difficult to use satellite transmission 
and it is needed to store information on board. A particular example could be the 
underwater navigations of submarines, in this case the underwater vehicle must need 
to know the meteorological situation on the surface if it wants to emerge in a safe 
way.  Another example could be the collection of weather informations before a military 
marine operation in a particular area. A series of sono-buoys could be dropped from 
helicopters in a given section of sea in order to monitor meteorological conditions and 
understand well what kind of scenario will be faced. Changing the topic completely, 
another need could be the monitoring of natural phenomena, especially in relation to 
climate change and risk prevention. In some situations, data may have to be collected 
in very harsh environments such as polar waters and the coverage that satellites offer 
at the higher latitudes of the polar environment is reduced. Weather surveillance 
radars, operating along the coast, surface rain gauges and anemometers, installed on 
oceanographic fixed or mobile platforms, also present critical issues that make it 
difficult to deploy these devices on a large scale. Another solution for meteorological 
monitoring could be the usage of Synthetic Aperture Radar (SAR). The advantage of 
using SAR is the ability to work night and day in all meteorological conditions and with 
high spatial resolution, but costs and complexity can increase a lot. The objective of 
this thesis is to use underwater acoustic spectra for extracting meteorological 
informations. As said before, this could be important in scenarios in which collecting 
weather knowledge could be difficult or not suited with other traditional systems. The 
approach followed by the thesis is totally different from most state-of-the-art studies. 
In the thesis Machine Learning algorithms were applied to the dataset available trying 
to predict rainfall and wind intensity and with the objective of understanding which 
methods and techniques could better be able to model, from a mathematical point of 
view, the meteorological phenomena considered. So a deep analysis of different kinds 
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of preprocessing and Machine Learning algorithms was made in order to find the best 
ones. This kind of approach is based on the analysis of all the features available that 
compose the collected spectra. In the past, the approach followed by state-of-the-art 
studies was very different, in this case in fact the models implemented were based on 
empirical formulas built on the analysis of few frequencies of the spectra. Underwater 
acoustic has a long tradition of calculating some physical quantities (for example the 
speed of sound in water) using empirical equations trying to obtain simple models with 
a global validity. That's why also for the estimation of wind and rainfall, equations of 
this type has been proposed, obviously using a limited number of variables (i.e. the 
values of the spectrum at some frequencies chosen with the utmost care). But the 
results were not very accurate nor global. In this thesis a Machine Learning regression 
is proposed to exploit all the spectrum's information. To demonstrate the advantage of 
this approach, it is necessary to compare the results of the thesis and those of the 
traditional methods, applied to the same data. The experimental dataset used during 
the thesis study was collected and provided by the Italian CNR. It is made of 18193 
spectra and every collected spectrum is composed of a series of frequency bins that 
discretize the frequency space in a given range; 64 frequencies in a range from 0.1 to 
50 kHz. The underwater acoustic noise was recorded, at a depth of 36 m, by an 
oceanic recorder, based on Passive Aquatic Listener (PAL) technology. So the inputs 
available are composed by the dataset of 18193 spectra and by a pair of labels 
associated to each spectrum. In fact for each spectrum collected, the real 
measurements of rainfall in mm/h and wind intensity in m/s were collected by two 
meteorological instruments installed in the same site where spectra were collected. 
The rainfall intensity was measured with a Vaisala RAINCAP Sensor, composed of a 
Vaisala Weather Transmitter WXT520, and the hourly average wind speed was 
computed using measurements from a WindSonic 2D anemometer. Instead the output 
is composed by the predicted measurements of rainfall and wind intensity, again 
respectively in mm/h and m/s, for what concerns the prediction analysis part and by 
the rain/no rain label considering the rainfall detection part. So in summary, this thesis 
aims to study the possibility of applying Machine Learning algorithms to obtain rainfall 
detection, so to detect the presence or not of precipitation, and rainfall and wind 
prediction, thanks to which it is possible to estimate the rainfall intensity measured in 
mm/h and wind speed in m/s. The idea is to demonstrate and to show that the 
application of Machine Learning (ML) techniques could produce good results in this 

particular case, in which acoustic spectra are used as ambient measurements.  

 
 

 

 

 

1.2. State-of-the-art 

 

During the analysis of the methods proposed by this thesis, comparisons with the 

previous state-of-the-art algorithms are made. Past methods proposed are 

substantially based on empirical formulas and analysis of few frequencies. For 



8 
 

example, for what concerns wind prediction in Vagle90 [1] the wind speed is calculated 

through a model that uses only the sound level at 8 kHz (𝑆𝑃𝐿8). 
 

𝑈 =
10𝑆𝑃𝐿8/20+104.3

53.91
   (1.1) 

 

where U is wind speed (m/s) and 𝑆𝑃𝐿8 is the acoustic intensity at 8 kHz (dB relative 

to 1 μPa2 Hz-1). SPL8 is divided by 20 because in this equation the wind speed is 

computed through the peak pressure of the acoustic wave. In Nystuen11 [8], instead, 

a third-order equation is used. The model is fitted on the data with the objective of 

reducing the bias and offset of the previous methods.  

SPL8 (dB relative to 1 μPa2 Hz-1) again is used. 

 

𝑈 = 𝑎3𝑆𝑃𝐿8
3 + 𝑎2𝑆𝑃𝐿8

2 + 𝑎1𝑆𝑃𝐿8 + 𝑎0  (1.2) 

 

 

The coefficients (a3, a2, a1, and a0) correspond to the values: (0.0005; 20.0310; 0.4904; 

2.0871). In Pensieri15 [2] one linear equation is calculated for low 𝑆𝑃𝐿8 value and one 

quadratic for high 𝑆𝑃𝐿8 value. As for the previous models, sound pressure level at 8 

kHz is used. 

 

 

𝑈 = 0.1458 ⋅ 𝑆𝑃𝐿8 − 3.146       30 < 𝑆𝑃𝐿8 < 38, 

𝑈 = 0.044642 ⋅ 𝑆𝑃𝐿8
2 − 3.2917 ⋅ 𝑆𝑃𝐿8 + 63.016   

 38 ≤ 𝑆𝑃𝐿8 < 60. 
(1.3) 

 

Finally, in Cazau19 [3] a method based on an outlier-robust nonlinear regression 
model (O-R regression model) is proposed for wind speed prediction. The regression 
model has the following second-order polynomial form that follows [2]. 
 
 

𝑈 = 𝑎2 ⋅ 𝑆𝑃𝐿8
2 ∓ 𝑎1 ⋅ 𝑆𝑃𝐿8 + 𝑎0  (1.4) 

 
with (a2, a1, a0) equal to (0.027418, 1.8705, 37.9). 
In order to briefly explain outlier removal based on Cook’s distance it can be said that 
in statistics, that kind of distance is commonly used to estimate the influence of a data 
point when performing a least-squares regression analysis. In a practical ordinary least 
squares analysis, Cook’s distance indicates influential data points that are particularly 
worth checking for validity. In [3] study, Cook’s distance threshold is chosen through 
an optimization process. This distance is optimized so that the coefficient α in the 
regression equation U = α ·Ugt tends to 1, where Ugt is the wind speed ground truth. 
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Considering rainfall prediction, Ma05[4] computes an acoustic rainfall rate algorithm 

using a simple power-law relationship between sound intensity and rainfall (in mm/h), 

which can be written in the form of: 

 

𝑆𝑃𝐿5 = 𝛼 ⋅ 𝑅
𝛽

   (1.5) 

 

where 𝑆𝑃𝐿5 (dB relative to 1 𝜇𝑃𝑎2𝐻𝑧−1) is the sound intensity at 5 kHz, R is the rainfall 

intensity (mm/h), and α and 𝛽 are empirically determined parameters. These 

parameters are determined at 5 kHz and have values of 42.5 and 15.4, respectively. 

Taking the 10 log10 of the previous equation, this becomes: 

 

 

𝑅 = 10
(
𝑆𝑃𝐿5−𝛼

𝛽
)
= 10(

𝑆𝑃𝐿5−42.5

15.4
)
    (1.6) 

 

 

Considering rainfall prediction in [2], 𝑆𝑃𝐿5 is analysed and two exponential equations 

are estimated, one for drizzle and one for rain and heavy rain. 

 

 

 

𝑅 = 10(
𝑆𝑃𝐿5−64.402

25 )    𝑑𝑟𝑖𝑧𝑧𝑙𝑒, 

𝑅 = 10(
𝑆𝑃𝐿5−65.645

17.86 )       𝑟𝑎𝑖𝑛 𝑎𝑛𝑑 ℎ𝑒𝑎𝑣𝑦 𝑟𝑎𝑖𝑛. 
(1.7) 

 

 

In Nystuen08 [5] the log10 of R (the rainfall rate in mm/h) is estimated as a linear 

equation: 

 

𝑙𝑜𝑔10(𝑅) = 𝑏0𝑆𝑃𝐿5 + 𝑏1    (1.8) 

 

Again 𝑆𝑃𝐿5, the sound level at 5 kHz (dB relative to 1 μPa2 Hz-1), is used for the 

prediction. The values of the coefficients (b0 and b1) are empirically calculated: (0.0325, 

-1.4416), respectively. In a completely different way from the previous methods, in 

Taylor20 [6] Machine Learning methods to predict rainfall intensity and wind speed are 

proposed.  CatBoost and Random Forest models are used for this purpose and are 

applied to hourly-averaged acoustic spectra. For what concerns rainfall detection in 

[1], the spectral slopes between 3 and 8 kHz and between 3 and 19.5 kHz are 

compared to specific thresholds to achieve an indication of the precipitation presence. 
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𝑆(19.5) − 𝑆(3) > −13.25 𝑂𝑅 𝑆(8) − 𝑆(3)  >  −6.82 
(1.9) 

 

Where the notation S(𝑓k) is introduced to indicate the sound spectral level of 

underwater noise, measured in dB re 1 𝜇𝑃𝑎2𝐻𝑧−1, at the frequency 𝑓k expressed in 

kHz. In [4] rainfall is detected if at least one of the following three conditions is verified. 

The third condition being specific for drizzle:  

 

 

𝑆(21) + 2.35 𝑆(5.4)  >  194 

𝑆(21)  >  48 𝐴𝑁𝐷 𝑆(5.4)  >  53 

𝑆(21) >  44 𝐴𝑁𝐷 𝑆(21) − 0.7 𝑆(8.3)  >  14 
(1.10) 

 

 
In Nystuen15[7] and Nystuen11[8] rainfall is detected if at least one of the following 

four conditions is verified. The third condition being specific for drizzle and the fourth 

for rain with high wind:  

 

 

 

𝑆(20) − 0.75 𝑆(5)  >  5 𝐴𝑁𝐷 𝑆(5)  ≤  70 

 

𝑆(8)  >  60 𝐴𝑁𝐷 𝑄(2,8) > 𝜃 𝐴𝑁𝐷 𝑆(20)  >  45 

 

𝑆(8) <  50 𝐴𝑁𝐷 𝑄(8,15) > −5 𝐴𝑁𝐷 𝑆(20) >  35 𝐴𝑁𝐷  

𝑆(20) >  0.9 𝑆(8) 
 

 

{𝑆(20) + 0.1144 𝑆2(8) − 12.728 𝑆(8) > −307 𝐴𝑁𝐷 𝑄(2.8) > 𝜃 

    𝐴𝑁𝐷 𝑆(20) + 0.1 𝑆2(8) − 11.5 𝑆(8) < −281 𝐴𝑁𝐷 

 51 < 𝑆(8) < 64} 
(1.11) 

 
where Q(f1,f2) is the spectral slope, in dB/decade, between the frequencies f1 and f2 

(expressed in kHz): 

 

 



11 
 

𝑄(𝑓1, 𝑓2) =
𝑆(𝑓1)−𝑆(𝑓2)

𝑙𝑜𝑔10(𝑓1)−𝑙𝑜𝑔10(𝑓2)
  (1.12) 

 

θ = –18 dB/decade in [8] and θ = –13 dB/decade in [7]. 

 

In [6] for rainfall detection supervised models are applied to hourly-averaged acoustic 

spectra, extending the analysis to all the frequency bins instead of only few 

frequencies and slopes. For the detection task, a binary classifier is built through the 

CatBoost algorithm, setting the lower bound for rainfall intensity equal to 1 mm/h. 

 

1.3. Available dataset 

 

The material used for the development of the thesis contribution is composed by a 

dataset of underwater acoustic spectra and rainfall and wind intensity at sea surface 

collected from 17 June 2011 to 6 September 2013 (with a few breaks, approximately 

1.5 months overall) by apposite sensors installed on the meteo-oceanographic 

observatory W1M3A, moored on a deep-sea bed of 1,200 m, about 80 km off the 

Ligurian coast, in the northwestern part of the Mediterranean Sea. The rainfall intensity 

was measured with a Vaisala RAINCAP Sensor, composed of a Vaisala Weather 

Transmitter WXT520, placed on the upper part of the buoy trellis, at about 10 m. The 

hourly average wind speed was computed using measurements from a WindSonic 2D 

anemometer installed on the same trellis on the observatory at 10 m above sea level. 

The underwater acoustic noise was acquired by a dedicated oceanic recorder, based 

on Passive Aquatic Listener (PAL) technology, clamped to the body of the platform at 

a depth of 36 m. This device is designed to operate unattended at sea for a long period 

of time powered by an internal battery, and to acquire an average of seven acoustic 

noise snapshots per hour. Each snapshot consists of a time series of 4.5 s, sampled 

at 100 kHz, which is processed on board to obtain a spectrum composed of 64 

frequency bins, with a resolution of 0.2 kHz from 0.1 to 3 kHz and 1 kHz from 3 to 50 

kHz. The spectra of the snapshots acquired in one hour (at an average interval of 

about 9 minutes from each other) were averaged, producing a mean spectrum that is 

included in the acoustic dataset used in this thesis for prediction and detection. In the 

entire period of operation, 18193 hourly-averaged acoustic spectra were collected and 

are available for processing. The rain gauge measured precipitation greater than 0.1 

mm/h in 876 of the 18,193 hours considered. The maximum rainfall intensity measured 

was 51.5 mm/h. and the distribution of the observed intensities is shown in Fig. 1.1(a). 

The wind speed is ranged between 0.4 and 20.7 m/s and its distribution shown in Fig. 

1.1(b). Finally, the tracks of the Automatic Identification System (AIS) used on ships 

reveal how many of them transited near the buoy in the period of data acquisition. 

Considering a circle with a radius of 5 km, centered at the position of the buoy, the 

number of hours in which at least one ship crossed the circle is 1,999, of which 78 are 

characterized by the presence of rain. Additionally, Fig. 1.2 shows the average spectra 
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of the underwater noise measurements grouped per Beaufort wind class. The variation 

of some spectral features as the wind speed increases is evident. [11] 

 

 

 

 

 
(a)                                                                (b) 

 

Fig. 1.1 Distribution of rainfall intensity (a) and wind speed (b) in the period from 17 June 

2011 to 10 October 2012.  

 

     
 

Fig. 1.2 Average spectra of the underwater noise present in the acoustic dataset. The 

grouping of the spectra is based on the wind classes (left) and rain classes (right). 
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1.4. Contribution summary and innovation 

 

So, in summary, the study carried out by this thesis was composed by a first part of 

analysis of the spectra and of the data available. The description of the features and 

the comprehension of what are the peculiarities of the data are essential for 

proceeding into the next phases. Then, another important step was the features 

extraction thanks to algorithms such as Dictionary Learning or Mel-Frequency Cepstral 

Coefficients (MFCCs) and Gammatone Cepstral Coefficients (GTCCs) processings. 

So the aim of the initial part is to understand what are the features that can be used 

for the supervised learning analysis and what could be the ones more suitable for the 

objective of the thesis, in order to obtain the best performances. Then there is the first 

supervised learning part in which the objective is to do rainfall detection. The spectra 

are divided in 2 categories identified by two labels: rain and not rain. The 64 frequency 

bins are given in input to some Machine Learning algorithms in order to perform 

detection. The results of the various algorithms are compared between them and 

between the state-of-the-art methods. In the rainfall detection case the spectra are 

given in input without any kind of preprocessing on the values. Then, there is the part 

of rainfall and wind prediction. Again supervised methods are used, but in this case 

the objective is to make regression and to obtain as output rainfall intensity values in 

mm/h and wind speed in m/s. So the labels are the real values themselves in mm/h 

for rain and m/s for wind corresponding to each spectrum. In this case the idea is to 

give as input to the supervised techniques spectra processed in three different ways. 

In the first case the preprocessing is done using a Dictionary Learning algorithm, in 

the second case with MFCC processing and finally with GTCC processing. Then 

polynomial regression (a form of regression analysis in which the relationship between 

the independent variable x and the dependent variable y is modelled as an n degree 

polynomial in x) is used and the results are compared between them and with state-

of-the-art algorithms. The great innovations carried out by this thesis is the idea of 

using Machine Learning algorithms to do prediction of rainfall and wind values and 

rainfall detection, instead of using previous empirical algorithms based on signal 

analysis. As said before, the previous methods for detection and prediction in the state-

of-the-art are based on the analysis of few frequencies and on the estimation of 

empirical formulas. In ML cases all the frequencies are taken in consideration together 

and the potential of this kind of analysis is greater because it is not limited to only 1 or 

2 features, so a more complete model could be fitted and could better be able to 

describe the phenomena in analysis. Using a pool of information on the dataset more 

complete, the model learned will be obviously more precise and give better results. 

Also another objective of the thesis is to show that the use of averaged spectra could 

give good results. In fact every spectrum that will be used in this study is calculated as 

https://en.wikipedia.org/wiki/Regression_analysis
https://en.wikipedia.org/wiki/Independent_variable
https://en.wikipedia.org/wiki/Dependent_variable
https://en.wikipedia.org/wiki/Polynomial
https://en.wikipedia.org/wiki/Polynomial
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the hourly average of a series of short-terms spectra (that can be also called 

‘instantaneous’ and indicate data gathered over some minutes) acquired in one hour 

at an average interval of about 9 minutes from each other. So another objective of the 

thesis is to demonstrate that hourly-averaged spectra can be used with Machine 

Learning techniques and can give better performances than those achieved by 

previous empirical methods fed by short-term data. The usage of hourly averaged 

spectra could be useful in situations in which there is the need of mitigating extra noise 

non related to rainfall and wind (for example due to ships passages) or in applications 

in which it is important to reduce data transmission or also on board memory 

occupancy. In fact, in some scenarios it is difficult to use satellite transmission 

continuously and, in some cases, data have to be stored on board. 

 

 

 

 

 

 

1.5. Organization 

 

The thesis initially describes, in Chapter 2, the various methods used, divided in 

categories. The first category contains the methods for preprocessing and so Mel-

Frequency Cepstrum Coefficients (MFCCs), Gammatone Cepstral Coefficients 

(GTCC) and Dictionary Learning (DL). Then supervised algorithms are described. 

First, the supervised learning methods analysed are the ones used for rainfall 

detection: Linear Discriminant Analysis, Logistic Regression, Support Vector Machine 

and Random Forest. Then, the techniques used for rain and wind prediction are 

described: Linear Regression and Polynomial regression. At the end of this part the 

thesis will focus the attention on the results and on the proceeding used for obtaining 

them. For what concerns the results, they will be organized in: rainfall detection results 

(Chapter 3), wind speed prediction results (Chapter 4) and rainfall intensity prediction 

results (Chapter 5). All of those three chapters will be divided in: algorithm analysis, 

in-depth results analysis and comparisons, performance of the literature algorithms 

and final analysis and comparisons. So results are accompanied by a depth 

comparison with state-of-the-art methods. Finally, there will be conclusions and 

possible future research in Chapter 6.  
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2. Materials and methods 
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2. Materials and methods 

 

 

 

2.1. Methods for features extraction 

The feature extraction is the transformation (linear or nonlinear) of the original feature 

space in n dimensions in a space of different dimension m, usually lower than the 

original one. One of the objectives of reducing the dimension of the original features 

could be the reduction of the computational effort. When the number n of the features 

is very large, the model used for regression or classification could have some issues 

because of the dimensionality of the problem (“curse of dimensionality”). Increasing n, 

the computational complexity of a model increases and so this involves an increasing 

of computation time and sometimes also of memory occupation. Obviously the 

disadvantage is that sometimes reducing the dimension of the feature space involves 

loss of information. Then another motivation to change feature space could be the use 

of another type of features more effective for what concerns the interpretation of data 

and phenomena. For example in some cases the use of biologically inspired features 

could be very useful for doing automatic speech recognition tasks. This is the objective 

of using MFCCs and GTCCs instead of the original frequency bins features. 

Considering the use of Dictionary Learning the advantage could be the decreasing of 

the computational effort but at the same time the compression of the initial information 

could gain the performances of the models analysed.   

 

 

2.1.1. Sparse Dictionary Learning 

 

Sparse coding can be defined as a representation learning method. It’s objective is to 

obtain a sparse representation of the input data as a linear combination of basic 

elements. The basic elements that have to be computed are called atoms and they 

compose a dictionary. Atoms in the dictionary are not required to be orthogonal. Given 

the input dataset X = [ 𝑥1 , . . . , 𝑥𝑘 ] , 𝑥𝑖 ∈ 𝑅𝑑  we wish to find a dictionary D ∈ 𝑅𝑑 𝑥 𝑛:  

D = [ 𝑑1 , . . . , 𝑑𝑛 ] and a representation R = [ 𝑟1 , . . . , 𝑟𝑘 ] ,𝑟𝑖 ∈ 𝑅𝑛 such that both 
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||𝑋 − 𝐷𝑅||
𝐹

2
 is minimized and the representations 𝑟𝑖 are sparse enough. This can be 

formulated as the following optimization problem:  

 

 

(2.1) 

C is required to constrain D in order to not have atoms with arbitrarily high values 

allowing low (but non-zero) values of 𝑟𝑖. 𝛼 is a parameter used to control the trade off 

between the sparsity and the minimization error. In general the minimization problem 

described is not convex because of the ℓ0-"norm" and it is an NP-hard problem.                

If n<d, the dictionary is defined "undercomplete", if n>d it is considered "overcomplete". 

Usually the complete dictionary case n=d does not provide any improvement and so it 

isn't considered. Undercomplete dictionaries case represent a situation in which the 

new input data lies in a lower-dimensional space and so it can be an important tool for 

dimensionality reduction. In this specific case dimensionality reduction based on 

dictionary representation can be utilized for particular tasks such as data analysis or 

classification. Instead, considering the overcomplete case, it is possible to obtain 

redundant atoms and multiple representations of the same signal but also an 

improvement in sparsity and flexibility of the representation.  

 

 

Fig. 2.1 Graphical example of how a signal x can be decomposed using matrix D and the 

correspondent vector of coefficients  
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2.1.2.  MFCC 

 

Mel Frequency Cepstral Coefficents (MFCCs) are a kind of feature derived from short-

term power spectrum of a sound and are computed using linear cosine transform of a 

log power spectrum on a nonlinear Mel scale of frequency. The MFCC feature 

extraction technique includes different phases: windowing the signal, applying the 

DFT, taking the log of the magnitude, warping the frequencies on a Mel scale and 

finally applying the inverse DCT. In general this kind of coefficients are used in speech 

recognition.  

 

 

 

Frame blocking and windowing  

 

Consider the case in which the signal is slowly time-varying or quasi-stationary. For 

stable acoustic characteristics, for example for speech, signal needs to be examined 

over a sufficiently short period of time. Therefore, analysis must always be carried out 

on short segments across which the signal is assumed to be stationary. Short-term 

spectral measurements are typically carried out over 20 ms windows, and advanced 

every 10 ms. Advancing the time window every 10 ms enables the temporal 

characteristics of individual sounds to be tracked, and the 20 ms analysis window is 

usually sufficient to provide good spectral resolution of these sounds, and at the same 

time short enough to resolve significant temporal characteristics. The purpose of the 

overlapping analysis is that each sound of the input sequence would be approximately 

centered at some frame. On each frame, a window is applied to taper the signal 

towards the frame boundaries. Generally, Hanning or Hamming windows are used. 

This is done to enhance the harmonics, smooth the edges, and to reduce the edge 

effect while taking the DFT on the signal. 

 

 

DFT spectrum 

 

Each windowed frame is converted into magnitude spectrum by applying DFT. 

 

𝑋(𝑘) = ∑ 𝑥(𝑛)𝑒
−𝑗2𝜋𝑛𝑘

𝑁𝑁−1
𝑛=0 ;          0 ≤ 𝑘 ≤ 𝑁 − 1    (2.2) 

 

 

where N is the number of points used to compute the DFT. 
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Mel spectrum  

Mel spectrum is computed by passing the Fourier transformed signal through a set of 

band-pass filters known as Mel-filter bank. A Mel is a unit of measure based on the 

human ears perceived frequency. It does not correspond linearly to the physical 

frequency of the tone, as the human auditory system apparently does not perceive 

pitch linearly. The Mel scale is approximately a linear frequency spacing below 1 kHz 

and a logarithmic spacing above 1 kHz. 

The approximation of Mel from physical frequency can be expressed as 

𝑓𝑀𝑒𝑙 = 2595𝑙𝑜𝑔10(1 +
𝑓

700
)      (2.3) 

where f denotes the physical frequency in Hz, and 𝑓𝑀𝑒𝑙  denotes the perceived 

frequency. Filter banks can be implemented in both time domain and frequency 

domain. For MFCC computation, filter banks are generally implemented in the 

frequency domain. The center frequencies of the filters are normally evenly spaced on 

the frequency axis. However, in order to mimic the human ears perception, the warped 

axis, according to the nonlinear function given in Eq. 2.3 above, is implemented. The 

most commonly used filter shaper is triangular, and in some cases the Hanning filter 

can be found. The triangular filter banks with Mel frequency warping is given in            

Fig. 2.2 

 

Fig. 2.2 Example of triangular filter banks used in MFCC analysis [13] 
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The Mel spectrum of the magnitude spectrum X(k) is computed by multiplying the 

magnitude spectrum by each of the triangular Mel weighting filters. 

 

𝑠(𝑚) = ∑ [|𝑋(𝑘)|2𝐻𝑚(𝑘)]
𝑁−1
𝑘=0 ;         0 ≤ 𝑚 ≤ 𝑀 − 1     (2.4) 

where M is the total number of triangular Mel weighting filters. 𝐻𝑚(k) is the weight 

given to the k-th energy spectrum bin contributing to the m-th output band and is 

expressed as: 

 

with m ranging from 0 to M-1 

(2.5) 

 

 

Discrete cosine transform (DCT)  

The DCT is applied to the transformed Mel frequency coefficients to produce a set of 

cepstral coefficients. Prior to computing DCT, the Mel spectrum is usually represented 

on a log scale. This results in a signal in the cepstral domain with a quefrency peak 

corresponding to the pitch of the signal and a number of formants representing low 

quefrency peaks. Since most of the signal information is represented by the first few 

MFCC coefficients, the system can be made robust by extracting only those 

coefficients ignoring or truncating higher order DCT components. Finally, MFCC is 

calculated as:  

 𝑐(𝑛) = ∑ 𝑙𝑜𝑔10(𝑠(𝑚))𝑐𝑜𝑠(
𝜋𝑛(𝑚−0.5)

𝑀
)𝑀−1

𝑚=0 ;     (2.6) 

where c(n) are the cepstral coefficients, and C is the number of MFCCs. Traditional 

MFCC systems use only 8–13 cepstral coefficients. [13] 
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2.1.3. GTCC 

Gammatone cepstral coefficient computation process is a biologically inspired 

modification of MFCC. The two processes are very similar. The signal is first windowed 

into short frames. Subsequently, the GT filter bank is applied to the signal’s discrete 

Fourier transform (DFT) and finally the log function and the discrete cosine transform 

(DCT) are applied. The computational cost is almost equal to the MFCC case. The 

gammatone filter-bank aims to model the frequency analysis of the cochlea in the inner 

ear and so to mimic the structure of the peripheral auditory processing stage. The idea 

is to simulate the motion of the basilar membrane within the cochlea as a function of 

time, the output of each filter is the frequency response of the basilar membrane at a 

single place. The energies of the filter outputs is a sort of biologically driven version of 

the power spectrum used to compute the new features. 

The gammatone function is defined in time domain using the g(t) impulse response: 

 

 𝑔(𝑡) = 𝑎𝑡𝑛−1𝑐𝑜𝑠(2𝜋𝑓𝑡 + 𝜑)𝑒−2𝜋𝑏𝑡   (2.7) 

 

where 𝑛 is the order of the filter which largely determines the slope of the filter's skirts; 

𝑏 is the bandwidth of the filter and largely determines the duration of the impulse 

response; 𝑎 is the amplitude; f is the filter centre frequency; Φ is the phase. Usually, 

in order to provide a satisfactory fit to the human auditory filter shapes, the impulse 

response of the gammatone function of order 4 can be used, derived by Patterson and 

Moore (1986). Glasberg and Moore (1990) have summarized human data on the 

equivalent rectangular bandwidth (ERB) of the auditory filter with the function: 

 

 𝐸𝑅𝐵 = 24.7(4.37 ⋅ 10−3𝑓 + 1)   (2.8) 

 

That is the so-called equivalent rectangular bandwidth (ERB), a measure used in 

psychoacoustics, with the aim of approximating the bandwidths of the filters in human 

hearing. The gammatone filter bank is defined in such a way that the filter center 

frequencies are distributed across frequency in proportion to their bandwidth, known 

as the ERB scale. The ERB scale is approximately logarithmic, on which the filter 

center frequencies are equally spaced and so each filter has constant unitary 

bandwidth on an ERB frequency scale. [14] 
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Fig. 2.3 Example of filter banks used in GTCC analysis 

 

 

 

 

2.2. Supervised Learning 

Supervised learning is a particular category of Machine Learning. It is characterized 

by the use of labeled datasets to train the algorithms with the objective of classifying 

data or predict outcomes accurately. Supervised learning uses a training set, that 

includes inputs and correct outputs, to fit models. Then the algorithm measures 

precision and accuracy in prediction of the learned model using a test set. Supervised 

learning is composed of two types of problems, classification and regression: 

● Classification has the objective of dividing test data into classes. It recognizes 

patterns in the dataset and tries to draw some conclusions on how those entities 

https://www.ibm.com/cloud/learn/machine-learning
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should be labeled or defined. Labels are discrete numbers, corresponding 

classes or categories. Common classification algorithms are linear classifiers, 

support vector machines (SVM), decision trees, k-nearest neighbor, and 

random forest 

● Regression is used to understand the relationship between dependent and 

independent variables. Labels are continuous numbers, such as 

measurements values. Linear regression, logistic regression, and polynomial 

regression are popular regression algorithms.                                                                               

 

 

 

 

Fig. 2.4 Scheme representing classical data processing, in which supervised learning 

algorithms are used 

 

 

 

 

2.2.1. Linear Regression and Least Square 

 

Linear regression is one of the simplest methods for supervised learning. Given a 

vector of inputs 𝑋𝑇  = (𝑋1,𝑋2, . . . ,𝑋𝑝), it predict the output 𝑌 via the model 

 

 
(2.9) 
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The term 𝛽0̂ is the intercept, also known as the bias in Machine Learning. Often it is 

convenient to include the constant variable 1 in 𝑋, include 𝛽̂0 in the vector of 

coefficients 𝛽̂, and then write the linear model in vector form as an inner product 

 
(2.10) 

 

In the (p + 1)-dimensional input–output space, (𝑋, 𝑌̂) represents a hyperplane. The 

relationship can be represented as a function over the p-dimensional input space, 

𝑓(𝑋)= 𝑋𝑇β is linear, and the gradient 𝑓′(𝑋) = 𝛽 is a vector in input space that points in 

the steepest uphill direction. In order to fit the linear model using a training set there 

are several methods and the most popular is the least squares method. In this case, 

the coefficients β is calculated in order to minimize the, so called, residual sum of 

squares 

 

𝑅𝑆𝑆(𝛽) = ∑ (𝑦𝑖 − 𝑥𝑖
𝑇𝛽)2𝑁

𝑖=1     (2.11) 

 

RSS(β) is a quadratic function of beta. Its minimum always exists, but may not be 

unique. It can be written 

 

𝑅𝑆𝑆(𝛽) = (𝑦 − 𝑋𝛽)𝑇(𝑦 − 𝑋𝛽) (2.12) 

 

where 𝑋 is an N × p matrix with each row an input vector, and y is an N-vector of the 

outputs in the training set. Differentiating w.r.t. β we get the normal equations 

 

𝑋𝑇(𝑦 − 𝑋𝛽) = 0    (2.13) 

 

If 𝑋𝑇𝑋  is nonsingular, then the unique solution is given by 

 

𝛽̂ = (𝑋𝑇𝑋)−1𝑋𝑇𝑦     (2.14) 

 

 

and the fitted value at the i-th input 𝑥𝑖 is 𝑦̂𝑖 = 𝑦̂(𝑥𝑖) =𝑥𝑖
𝑇𝛽̂. At an arbitrary input 𝑥0 the 

prediction is 𝑦̂(𝑥0) = 𝑥0
𝑇𝛽̂. The entire fitted surface is characterized by the p 

parameters 𝛽̂ . Intuitively, it seems that we do not need a very large data set to fit 
such a model. [12] 
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Fig. 2.5 Example of linear regression 

 

 

 

 

2.2.2. Polynomial regression 

 

In the case of polynomial regression most of the considerations made in Linear 

Regression are still valid. In fact a model is considered linear if it is linear in 

parameters. For example the models 

 

𝑦 = 𝛽0 + 𝛽1𝑥 + 𝛽2𝑥
2 + 𝜀 

(2.15)    

 

 and 

 

 𝑦 = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + 𝛽11𝑥1
2 + 𝛽22𝑥2

2 + 𝛽12𝑥1 𝑥2 + 𝜀   

(2.16) 

       

are also linear models. Polynomial models aim to describe situations in which the 

relationship between dependent and independent variables is curvilinear or to 
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approximate a complex nonlinear relationship. Considering Polynomial models in one 

variable of the k-th order we have 

    

𝑦 = 𝛽0 + 𝛽1𝑥 + 𝛽2𝑥
2+. . . +𝛽𝑘𝑥

𝑘 + 𝜀    (2.17) 

 

If 𝑥𝑗 = 𝑥𝑗, 𝑗 = 1,2, . . . , 𝑘 then the model is multiple linear regressions model in k 

independent variables 𝑥1,𝑥2,. . . , 𝑥𝑘. The linear regression model 𝑦 = 𝑋𝛽 + 𝜀 can be 

adapted and used for representing the polynomial regression model. As said before, 

the techniques for fitting linear regression models can be used for fitting the polynomial 

regression model.  

 

 
 

 Fig. 2.6 Example of quadratic function [15] 

 

A model is ‘hierarchical’ if it contains the terms   𝑥, 𝑥2, 𝑥3, 𝑥3   etc. in a hierarchy. For 

example, the model 𝑦 = 𝛽0 + 𝛽1𝑥 + 𝛽2𝑥
2 + 𝛽3𝑥

3 + 𝛽4𝑥
4 + 𝜀   is hierarchical as it 

contains all the terms up to order four. The model  𝑦 = 𝛽0 + 𝛽1𝑥 + 𝛽2𝑥
2 + 𝛽4𝑥

4 + 𝜀    

is not hierarchical as it does not contain the term of 𝑥3. It is expected that all polynomial 

models should have this property because only hierarchical models are invariant under 

linear transformation. In some cases, the need for the model may be more complex. 

For example, the model 𝑦 = 𝛽0 + 𝛽1𝑥1 + 𝛽12𝑥1𝑥2 + 𝜀 uses a two-factor interaction, 

provided by the cross-product term. [15] 
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Fig. 2.7 Example of polynomial regression 

 

 

 

2.2.3. Linear Discriminant Analysis  

Linear discriminant analysis (LDA) is usually used to classify patterns between two 

classes, but there are some extensions to use LDA as multiple class classifier. The 

basic assumption of LDA is that classes are linearly separable. So, multiple linear 

discrimination function representing hyperplanes in the feature space are computed in 

order to distinguish the classes. For example if there are two possible classes, the 

LDA model traces a hyperplane and projects the data onto this hyperplane. The 

separation of the two categories is maximized. This hyperplane is created using the 

two criteria simultaneously: 

•Maximizing the distance between the means of two classes. 

•Minimizing the variation between each category. 

 

Linear Discriminant Analysis (LDA) is a traditional method, based on decision theory 

and Bayes theorem, in which the probability density functions for the samples 

belonging to the +1 and −1 classes are assumed to be multivariate Gaussian with 

mean vectors 𝜇+1 and 𝜇−1, respectively, and the same covariance matrix . The 

knowledge of these class-conditional densities, 𝑓𝑥|+1(𝑥) and 𝑓𝑥|−1(𝑥), together with the 

prior probabilities for the two classes, 𝑃(−1) and 𝑃(+1), makes computation of the class 
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posterior probabilities possible for a given sample 𝒙, 𝑃(+1 | 𝒙) and 𝑃(−1 | 𝒙). 

Specifically, the probability for the +1 class given sample 𝒙 is:  

 

𝑃(+1|𝑥) =
𝑓𝑥|+1(𝑥)𝑃(+1)

𝑓𝑥|+1(𝑥)𝑃(+1)+𝑓𝑥|−1(𝑥)𝑃(−1)
 (2.18) 

 

Sample 𝒙 is assigned to the +1 class if this probability exceeds 0.5, to the −1 class 

otherwise. Although the 0.5-threshold is optimum in terms of overall classification 

accuracy, a different value can be set to modify the balance between 𝑃𝑑 (Probability 

of Detection) and 𝑃𝑓𝑎 (Probability of false alarm), and, therefore, the tuning of the 

threshold allows the tracing of the detector’s ROC (receiver operating characteristic) 

curve. The samples belonging to the training set are used in LDA to estimate the mean 

vectors, the covariance matrix and the prior probabilities mentioned above. LDA is a 

linear classification method because membership of sample 𝒙 can be equivalently 

assigned working on the log-odds function (i.e., the logarithm of the ratio between (+1 

| 𝒙) and (−1 | 𝒙)), which is a linear equation in 𝒙. [11] 

 

 
Fig. 2.8 The plot shows some data from three classes, with linear decision boundaries found 

by linear discriminant analysis.[12] 

 

 

 

2.2.4.  Logistic Regression  

 

The Logistic Regression (LR) model assumes the log-odds function to be a linear 

function in 𝒙 and derives the equations for the class posterior probabilities without 

introducing any assumption about the class-conditional density functions. The model 

has the objective to model the posterior probabilities of the K classes via linear 
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functions in x, while at the same time ensuring that they sum to one and remain in [0, 

1]. The model has the form 

 

𝑙𝑜𝑔 
𝑃𝑟(𝐺 = 1|𝑋 = 𝑥)

𝑃𝑟(𝐺 = 𝐾|𝑋 = 𝑥)
= 𝛽10 + 𝛽1

𝑇𝑥 

𝑙𝑜𝑔
𝑃𝑟(𝐺 = 2|𝑋 = 𝑥)

𝑃𝑟(𝐺 = 𝐾|𝑋 = 𝑥)
= 𝛽20 + 𝛽2

𝑇𝑥 

                       . 

                       . 

                       . 

𝑙𝑜𝑔
𝑃𝑟(𝐺 = 𝐾 − 1|𝑋 = 𝑥)

𝑃𝑟(𝐺 = 𝐾|𝑋 = 𝑥)
= 𝛽(𝐾−1)0 + 𝛽𝐾−1

𝑇 𝑥 

(2.19) 

 

where G is our predictor. 

The model is specified in terms of K − 1 log-odds or logit transformations (reflecting 

the constraint that the probabilities sum to one). Although the model uses the last class 

as the denominator in the odds-ratios, the choice of denominator is arbitrary in that the 

estimates are equivariant under this choice. A simple calculation shows that 

𝑃𝑟(𝐺 = 𝑘|𝑋 = 𝑥) =
𝑒𝑥𝑝(𝛽𝑘0 + 𝛽𝑘

𝑇𝑥)

1 + ∑ 𝑒𝑥𝑝(𝛽𝑙0 + 𝛽𝑙
𝑇𝑥)𝐾−1

𝑙=1

, 𝑘 = 1, . . . . . . , 𝐾 − 1, 

𝑃𝑟(𝐺 = 𝐾|𝑋 = 𝑥) =
1

1 + ∑ exp(𝛽𝑙0 + 𝛽𝑙
𝑇𝑥)𝐾−1

𝑙=1

  

(2.20) 

 

and they clearly sum to one.  

To emphasize the dependence on the entire parameter set θ = {𝛽10, 𝛽1
𝑇, . . . ,𝛽(𝑘−1)0 

,𝛽𝑘−1
𝑇 }, we denote the probabilities Pr(G = k|X = x) =𝑝𝑘(x; θ). When K = 2, this model 

is especially simple, since there is only a single linear function. It is widely used in 

biostatistical applications where binary responses (two classes) occur quite frequently. 

For example, patients survive or die, have heart disease or not, or a condition is 

present or absent. 

 

In the binary case, the probability for the +1 class given the sample 𝒙 results:  

 

𝑃(+1|𝑥) =
1

1+𝑒𝑥𝑝(𝛽𝑜+𝛽
𝑇𝑥)

 (2.21) 

 

i.e., a sigmoid function whose parameters 𝛽0 and 𝛽 can computed by maximizing a 

conditional log- likelihood function. The maximization is achieved through an iterative 

procedure in which the training set samples are exploited and the Newton-Raphson 

algorithm is typically applied to find the root of the first derivative. As in LDA, sample 
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𝒙 is assigned to the +1 class if (+1 | 𝒙) is greater than 0.5, to the −1 class otherwise, 

but different threshold values can be used to trace the detector’s ROC curve and 

change the balance between 𝑃𝑑 and 𝑃𝑓𝑎.  [12] 

 

 
Fig. 2.9 Examples of predictive modeling (blue line) for a continuous outcome using linear 

regression and for a binary outcome using logistic regression. The predictions in the logistic 

regression are rounded to either class A or B using a threshold (0.5 by default) 

 

2.2.5. Support Vector Machine 

 

Support Vector Machine (SVM) indicates a popular approach to classification based 

on two key ideas:  

 

● Exploiting the information represented by the samples at the interface between 

classes  

● Extending from linear to non linear classification through kernel functions. SVM 

is the most widespread example of a kernel machine, i.e. Machine Learning 

methods based on kernel functions. 

 

Our training data consists of N pairs (𝑥𝑖, 𝑦𝑖) with 0<i<N+1 and 𝑥𝑖 ∈ 𝑅𝑝and 𝑦𝑖 ∈ {−1, 1}. 

 

A Support Vector Machine (SVM) assigns sample 𝒙 to one of the two classes based 

on the score of the discriminant function: 

 

 

ℎ(𝑥) = ∑ 𝛼𝑖𝑦𝑖𝐾(𝑥𝑖, 𝑥)
𝐿
𝑖=1 + 𝑏   (2.22) 
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L is the number of support vectors, that are the samples with nonzero coefficients 𝛼𝑖 

where 𝐾(⋅,⋅) is a kernel function and the coefficients 𝛼𝑖 and 𝑏 are optimized by solving 

a quadratic programming problem. This optimization problem exploits the samples of 

the training set and includes a parameter 𝐶 that bounds the range for 𝛼𝑖: 0< 𝛼𝑖<𝐶, 

i=1,2,…,𝐿. Sample 𝒙 is assigned to the +1 class if ℎ(𝒙) is positive, to the −1 class 

otherwise. As for previous methods, different threshold values can be used to trace 

the detector’s ROC curve and change the balance between 𝑃𝑑 and 𝑃𝑓𝑎. In the SVM 

literature the most commonly adopted kernels are the linear function, polynomial 

function of order 𝑞 and Gaussian radial basis function (RBF), defined, respectively, as:  

 

 

𝐾(𝑥𝑖𝑥) = 𝑥𝑇𝑥𝑖 

𝐾(𝑥𝑖 , 𝑥) = (1 + 𝑥𝑇𝑥𝑖)
𝑞 

𝐾(𝑥𝑖 , 𝑥) = 𝑒𝑥𝑝(
−||𝑥−𝑥𝑖||

2

2𝜎2
)   (2.23) 

 

where 𝜎2 is a specific parameter of the RBF kernel.  

The choice of 𝐶 and 𝜎2 (if the case) requires specific attention and, possibly, an 

optimization stage. In addition, although not strictly necessary, all features of the 

dataset samples are often preliminarily standardized, so that each of them has a zero 

mean and a unitary variance. This operation makes features insensitive to the scales 

on which they are measured and favors numerical stability in the solution of the 

quadratic programming problem mentioned above. [11] 

 

 
Fig. 2.10 Example of non linear transformation from an original 𝑅2 space to non linear 

transformed space. 

 

For what concerns the computational aspects, the quadratic problem of the training of 

an SVM has a unique global optimum, a desirable property that is not shared by other 

approaches. Also it can be shown that training an SVM is equivalent to minimizing an 



32 
 

upper bound on the probability of error, which is also related to the generalization 

capability of the classifier. The set of support vectors is usually a small subset of the 

training set, i.e., the discriminant function, expressed as a kernel expansion, gives a 

“sparse” representation of the training data. This property helps preventing overfitting. 

 

 
 

 

Fig. 2.11 A simple representation of how SVM works. It can be seen the support vectors for 

blue and red classes lying on the two hyperplanes parallel to the so called ‘separating 

hyperplane’ and the ‘margin’ that is the distance between the two dashed hyperplanes. 

 

 

2.2.6. Random Forest  

 

Random Forest (RF) is an ensemble model that aggregates the predictions individually 

achieved by many decision trees, separately trained on a subset of samples randomly 

chosen from the training set. A decision tree is an acyclic connected graph where each 

node represents a decision rule (called split) related to a single feature that leads to 

the partition of data in two groups. To automatically set the structure and splits of a 

decision tree, Classification and Regression Trees (CART) is an algorithm widely 

adopted in which a new node is created by identifying the feature that yields the best 

split in terms of a pre-selected metric. 
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Fig. 2.12 Example of a CART (left) with the related partition of the feature space (right) 

 

In an RF model 𝐵 trees are generated and trained in an independent and identically 

distributed way by performing, for each tree 𝑇𝑏, b = 1, …, 𝐵, the following steps :  

 

● a subset of 𝐿 samples is drawn randomly from the training set, uniformly and 

with replacement (this means that some samples are taken more than once, 

others are not chosen at all) 

 

● such a subset is used to grow the tree 𝑇𝑏, for each node of which a pool of 𝑚 

features is selected (at random and uniformly from the 𝑑 features) and used to 

identify the best  feature and the best decision rule to split the node into two 

daughter nodes 

 

●  the previous step is repeated until at least one of the predefined stopping 

criteria is satisfied.  

 

When all the 𝐵 trees are generated, an unknown sample 𝒙 is classified as follows: the 

sequence of decision rules of the 𝑏-th tree is applied to 𝒙 in such a way that the 

corresponding class prediction 𝑦 𝑏(𝒙) is reached (namely, +1 or −1); the predictions 

from all the trees of the RF are used to compute a score. 

 

 

𝑔(𝑥) =
1

𝐵
∑ 𝑦̂𝑏(𝑥)𝐵
𝑏=1    (2.24) 

 

Sample 𝒙 is assigned to the +1 class if (𝒙) is positive, to the −1 class otherwise. 

Threshold values different from zero can be used to trace the detector’s ROC curve 

and tune the balance between 𝑃𝑑 and 𝑃𝑓𝑎. Although the setting of 𝐵 and 𝑚 does not 

critically affect performance, it deserves some investigation, recalling that these two 

parameters affect the computational burden. [11] 
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Fig. 2.13 Random forest illustration example in which n trees are used and major voting 

criterion is considered 

 

 

 

2.3. Cross-Validation 

 

The evaluation of the learned models in Supervised Learning is a very important step. 

Usually, the dataset is divided in training and testing sets. The training set is used to 

learn the new model and the testing set is used to test and evaluate the model. The 

performances can be evaluated using error metrics estimating the accuracy of the 

fitted model, such as Mean Square Error or Percentage Error. This simple concept 

can be extended in order to be more rigorous using the K-fold Cross Validation(CV) 

method. In fact, using K-Fold CV a given dataset is divided into K sections/folds where 

each fold is used as a testing set. For example, consider a scenario of 5-Fold cross 

validation (K=5), dataset is split into 5 folds. In the first iteration, the first fold is used 

to make the test of the model and the remaining folds are used to train the model. In 

the second iteration, the second fold is used as the testing set and the remaining folds 

are used as the training set. This process is repeated until each fold of the 5 folds have 

been used as the testing set. 
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Fig. 2.14 Graphical explanation of cross validation algorithm with 5 folds 
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3. Rainfall Detection  
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3. Rainfall Detection  

 
 
 
 
 
As said in the Introduction Chapter, underwater noise analysis allows estimating 
parameters of meteorological interest, difficult to monitor with other devices, especially 
in polar waters. Rainfall detection is a fundamental step of acoustical meteorology 
toward quantifying precipitation. To date, this task has been conducted with some 
success by using few frequency bins of the noise spectrum, combining their absolute 
values and slopes into some inequalities. Unfortunately, these algorithms do not 
perform well when applied to spectra obtained by averaging multiple noise recordings 
made over the course of an hour.  The use of supervised, statistical learning models 
allows the use of all the frequency bins in the spectrum, exploiting relationships that 
are difficult to identify by a human observer. Among the different models tested, a 
binary classifier based on random forest performed well with moderate computational 
load. Using a data set consisting of over 18000 hourly-averaged spectra 
(approximately 25 months of at-sea recordings) and comparing the results with 
measurements from a surface-mounted rain gauge, the proposed system detects 
precipitations greater than 1 mm/h with 90% probability, keeping the false alarm 
probability below 0.5%. This system has demonstrated remarkable robustness as 
performance is achieved without excluding spectra corrupted by passing ships or high 
winds. So in this chapter rainfall detection topics will be treated. In the first part there 
will be the analysis of the algorithms and Machine Learning techniques used for the 
processing of the spectra and fitting of the models such as, Random Forest, SVM, 
using different kinds of kernel functions, Linear Regression and LDA. In this part tools 
are compared in order to show what is the best one. To this aim some indices or 
variables are calculated in order to make comparisons, for example the probability of 
false alarm, the probability of detection, or also the OA (overall accuracy) and the AUC 
(area under the ROC curve). Then in the second part of the chapter results are 
compared and explained with a series of plots, in order to analyse in deeper what are 
the outputs and to interpret them in the best way. In the last part of the chapter, the 
state-of-the-art algorithms are considered and their results are shown in order to make 
some comparison between these algorithms and supervised ones. In particular it will 
be analysed rule-based algorithms (called in this way because the detection is 
performed by decision rules using empirical formulas), such as those presented in 
Vagle et al., 1990 [1], Ma et al., 2005 [4], Nystuen et al., 2011 [8] and Nystuen et al., 
2015 [7], but also supervised ones such as Taylor21[6].  
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3.1 Algorithm analysis 

 

Before entering in the details of the Machine Learning techniques that have been used, 
it is necessary to understand what kind of algorithm is used in order to validate the 
results and output of the various models. In this thesis aiming to assess and compare 
the detection performance of the statistical models, a 10-fold cross-validation with 
stratification in dataset partitioning is used. So every time the dataset is divided in 
training and test parts, data are selected in a random way but based on their class 
(Fig. 3.1). In this way, when a test set, representing the 10% of the complete dataset, 
is selected randomly, it’s sure that for each class of rain or wind about the 10% will be 
put in the test set and 90% in training set. In addition, for the SVM approach feature 
standardization is applied, the constant is set equal to 1.0, according to common 
practice, and the variance of the Gaussian RBF kernel, after some tests, is set equal 
to 8.0. For the parameters of the RF, B = 100 trees and m = 22 features are used, 
although a change of these values in even rather broad ranges does not significantly 
affect the performance obtained. Data processing is performed using Matlab and, in 
particular, the Statistics and Machine Learning toolbox. Additionally, it has been 
verified that results perfectly consistent with those shown below can be obtained using 
the scikit-learn library for the Python programming language. 

 

 

 

 

 

Fig. 3.1.  Subdivision of the dataset in classes of wind and rainfall intensity. For what concerns 
rain, 4 intervals are considered, from R0 (No rain) to R3 (Heavy rain). For what concern wind, 
Beaufort scale is considered and so 9 classes are used, from B0 to B8. 
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The ROC curves obtained from the trained models are shown in Fig. 3.2 and their 
performance is summarized in Table 3.I, where the Pd value for which Pfa = 0.01 is 
reported. In the cross-validation procedure, one of the K folds into which the dataset 
has been split, in turn, is not used for training but is instead used for testing. At the 
end of the procedure and after setting the decision threshold, it is possible to calculate 
Pd and Pfa in each fold used for the test. The data inserted in Table 3.I are the average 
and standard deviation of the Pd and Pfa values calculated on each fold. The average 
Pfa is 0.01 since the threshold is set precisely to achieve this result. The threshold 
values used for each classifier are also included in Table 3.I and should be read 
recalling that the optimal threshold values (i.e., those values that maximize OA) are: 
0.5 for LDA and LR; 0 for SVM and RF. The change of the kernel function for the SVM 
classifier does not significantly alter the performances, although the linear case shows 
a lower detection ability and the Gaussian case reports the worst AUC figure. The OA 
values are all greater than 0.97, but this finding has little relevance because it is 
strongly influenced by the correct classification of non-rainy samples (probability 0.99, 
Pfa being 0.01) which are by far the most numerous. Overall, the best option among 
the models considered is the RF classifier because it achieves the best performance 
figures, shows a stability better than that of SVM classifiers with polynomial or RBF 
kernels, requires a computational load lower than that of such SVM classifiers, and is 
not appreciably affected by changes in the parameter setting. Accordingly, in the 
remainder of this chapter, further analysis and performance comparisons will be 
carried out with reference to the RF-based classifier. Indeed, the goal is not to identify 
the best model, but rather to demonstrate that the Machine Learning approach is well 
suited for rainfall detection also in case of drizzle phenomena, characterized by low 
rainfall intensity. 
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 Pd Pfa OA AUC TV 

LDA 0.583 ± 

0.053 

0.010 ± 

0.003 

0.970 0.926 0.38 

LR 0.597 ± 

0.058 

0.010 ± 

0.003 

0.971 0.928 0.33 

SVM, linear 0.667 ± 

0.041 

0.010 ± 

0.003 

0.974 0.931 -0.67 

SVM, polynomial, 

q=2 

0.702 ± 

0.060 

0.010 ± 

0.002 

0.976 0.936 -0.51 

SVM, Gaussian 

RBF 

0.703 ± 

0.062 

0.010 ± 

0.003 

0.976 0.897 -0.71 

RF 0.708 ± 

0.054 

0.010 ± 

0.002 

0.977 0.941 -0.42 

 
Table 3.I. Detection probability, false alarm probability,  overall accuracy, OA, and area under 
the ROC curve, AUC, for the supervised learning models. For the probabilities, the average ± 
the standard deviation is reported. For each classifier, the threshold value TV, used to obtain 
the average Pfa equal to 0.01, is reported. 

 

 

 

To delineate the desired performance of the rain detector, it is necessary to recall that 
rainfall is present in 5% of the one-hour periods included in the dataset and that the 
precipitation limit which distinguishes between rainy and non-rainy hourly-averaged 
spectra is particularly low (i.e., 0.1 mm/h). In this scenario, it is strictly necessary that 
the false alarm probability be very low, while a detection probability not too close to 
one may be acceptable. Consequently, the performance of a detector cannot be 
considered acceptable if Pfa exceeds 0.01. 
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3.2. In-depth results analysis and comparisons 

 

 

In Fig. 3.2 (a), the zoom of the ROC curve for the RF model demonstrates that Pd 
remains greater than 0.6 even if Pfa is reduced by as much as 0.0035. More precisely, 
the following probability pairs, {Pd, Pfa}, lie on that curve: {0.661, 0.006}, {0.644, 0.005}, 
{0.623, 0.004}, {0.588, 0.003}. The ability of the classifier to detect the precipitation 
can be analysed as a function of the rainfall rate, as shown in Fig. 3.3. In this case, Pd 
is estimated using the hourly samples in which the cumulated rainfall, measured by 
the rain gauge on the platform in one hour, is equal to or greater than a value G. The 
Pd curves shown in Fig. 3.3 are related to three choices of the threshold value, leading 
to different Pfa: 0.010, 0.005 and 0.003. Pd increases rapidly with G, reaching, 
respectively, 0.921, 0.897 and 0.876 for G = 1 mm/h. Although the probabilities of 
detection of the three detectors show significant differences for G < 2 mm/h, for rainfall 
intensities higher than this value the three detectors provide similar Pd. It is therefore 
possible to design acoustic detectors capable of detecting rainfall of intensity greater 
than 2 mm/h with a probability greater than 0.9, while keeping a false alarm probability 
of 0.003. The sharp Pd increase with G observed in Fig. 3.3 shows that the missed 
detections are mainly related to drizzle phenomena characterized by low precipitation 
intensity. This relation is confirmed by the average of the rainfall intensities recorded 
by the surface rain gauge when the precipitation is detected or missed by the 
underwater acoustic device. Among the 876 acoustic samples collected in rainy 
conditions (with intensity greater than or equal to 0.1 mm/h), the RF-based classifier 
correctly detects 620 of them (70.8%) and misses the remaining 256 samples (29.2%). 
The average rainfall intensity measured for the detected samples is 2.98 mm/h, 
whereas the average intensity for the missed samples is 0.71 mm/h. The small 
fluctuations that the curves in Fig. 3.3 show, especially for G greater than 2 mm/h, are 
mainly due to the limited number of samples available to train the RF model (in the 
training phase) and to estimate the detection probability (in the test phase). The 
number of acoustic samples with rainfall greater than 3 mm/h is about 200, while the 
number of those with rainfall greater than 4 mm/h is reduced to less than 150. 
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Fig. 3.2 ROC curves for the supervised learning models listed in Table 3.I. (a) LDA, LR and 
RF, with a zoom for the RF model. (b) SVM with three kernel functions. [11] 
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Moving from missed detections to false alarms, an analysis of wind distribution 
provides some interesting insights. Fig. 3.4 shows the wind speed histograms for rainy 
samples correctly detected (620 samples), non-rainy samples correctly classified 
(17145 samples), and non-rainy samples raising false alarms (172 samples, 
corresponding to Pfa = 0.01). The average wind speeds for these three categories are, 
respectively, 8.5, 4.6 and 9.3 m/s. It is evident that the false alarm samples present a 
wind distribution more similar to that of the rainy samples than to that of non-rainy 
samples. 
 
 
 

Fig. 3.3 Detection probability for the rainy samples with a rainfall intensity greater than or 
equal to G. Three RF-based classifiers, with different false alarm probabilities, are 
considered.[11] 
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Fig. 3.4 Histograms of wind speed for: (a) non-rainy samples correctly classified; (b) rainy 
samples correctly detected; (c) non-rainy samples raising false alarms. 

 
However, the histogram of non-rainy samples shows that there are over a thousand 
samples with wind speed greater than 10 m/s that are correctly classified. To analyse 
this issue in detail, Fig. 3.5 shows the estimated Pfa when the samples for which the 

wind speed is greater than W, W 𝜖 [0.1, 10] m/s, are considered. The three detectors 
already examined in Fig. 3.3 are included. Notwithstanding the considerable rise of 
the Pfa with increasing wind speed, the probability of correct classification for non-rainy 
samples remains satisfactory (e.g., for W = 10 m/s, Pfa increases from 0.01 to 0.08, 
but the probability of correctly classifying a non-rainfall sample is still high: 0.92). 
Therefore, the wind-related similarity only partially explains why the detector is misled 
and false alarms occur. 
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Fig. 3.5 False alarm probability for non-rainy samples with a wind speed greater than W. Three 
RF-based classifiers with different probabilities of false alarm (on the entire dataset) are 
considered. [11] 

 

Finally, the performance of the RF-based detector during the period of data collection 
is examined in Fig. 3.6, where the height of the bars indicates the rainfall intensity 
measured by the rain gauge and the colours distinguish samples correctly detected 
(light blue bars) from missed alarm samples (orange bars). Samples raising false 
alarms are inserted as white bars with black edges, and an arbitrary height of 2 is set 
for them. The two zoom panels show the typical behaviour that characterizes the 25-
month span of data collection with good uniformity. 1999 out of the 18193 dataset 
samples are characterized by the passage of a ship within 5 km of the platform during 
the observation hour. These samples are not discarded and are used, like all others, 
to train and test the statistical model. It is verified a posteriori that the Pd and Pfa values 
estimated on these samples do not differ significantly from those already reported, 
thus supporting the robustness of the proposed detector. Fig. 3.7 shows a further zoom 
of a portion of the 25-month span introduced in Fig. 3.6, in which the one-hour intervals 
at which a ship passage occurred are indicated by a black diamond. Again, it can be 
verified that there is no correlation between the ship passages and false alarms or 
missed detections. Since the rainy samples most susceptible to missed detection are 
those characterized by modest precipitation intensity, it is reasonable to expect that a 
Pd of 70.8% would allow the detection of rainy samples with the greatest impact in 
terms of cumulative precipitation. Fig. 3.8 compares the cumulative rainfall profiles 
over the 25-month span obtained by considering all rainfall events measured by the 
rain gauge (876 hourly samples) or only those detected by the proposed underwater 
acoustic system (620 hourly samples). It can be emphasized that although the 
detected rainy samples are 70.8% of the total, these samples, at the end of the 
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observation period, gather 91.0% of the cumulative precipitation (i.e., 1851 mm out of 
a total of 2035 mm). The performance achieved by the RF-based detector acting on 
hourly-averaged spectra can also be compared with those obtained by other 
underwater acoustic systems [2,3,4] acting on short-term spectra. By using data in Fig. 
3.3, it is immediately possible to observe that the proposed system, at the same Pfa 
values and rainfall intensities, always provides a significantly higher detection 
capability. Moving from short-term spectra to hourly-averaged spectra the 
performance obtained from the detection algorithms used in [2,3,4] worsen. As a 
result, the supervised learning models adopted in this thesis achieve a detection 
performance significantly better than those obtained from rule-based detection 
algorithms and better even than that obtained from the binary classifier proposed in 
[6]. Another useful comparison is with the rainfall detection capability of a weather 
radar installed on Mount Settepani, located at about 1400 m above sea level, about 
87 km away from the buoy, covering the area of investigation and the data of which 
were used in [2]. In that thesis, rainfall detection by radar at the W1M3A observatory 
is characterized by Pfa = 0.009 accompanied by Pd = 0.728 for G = 0.1 mm/h and Pd 
= 0.846 for G = 1 mm/h. The data in Fig. 3.3 show that the performance of the proposed 
acoustic system is very close to that of radar: slightly worse for G = 0.1 mm/h and 
slightly better for G = 1 mm/h. However, it is important to emphasize the qualitative 
nature of this comparison because the radar performance refers to a time period of 
about 11 months [2], thus significantly shorter than the 25-month period considered in 
this study. [11] 

 

 

Fig. 3.6 Rainfall intensity during the 18193 hours of observation (one sample per hour; about 
25 months of data collection), with indication of detected rainy samples (620 hours), missed 
rainy samples (256 hours), false alarm samples (172 hours). The zoom panels show two 
examples of the occurrence of the three cases on a fine scale. [11] 
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Fig. 3.7 Zoom of a portion of the 25-month span shown in Fig. 3.6, with the indication (black 
diamond) of the one-hour intervals at which a ship passage occurred. [11] 

 

Fig. 3.8 Cumulative rainfall profiles over the 25-month span obtained by considering all rainfall 
events measured by the rain gauge (light blue line) or those detected by the underwater 
system (golden line). [11] 
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 3.3. Performance of the literature algorithms  

 

The application of the algorithms introduced in the first chapter to the available dataset 
provides the results summarized in Table 3.II. It is important to recall that these 
algorithms were designed to detect rainfall using short-term acoustic spectra, whereas 
in this thesis they are applied to hourly-averaged spectra. 

The algorithms applied are:  
 

-Vagle90 [1]: 

 

𝑉1: 𝑆(19.5) − 𝑆(3) > −13.82   𝑂𝑅   𝑆(12.5) − 𝑆(3) > −10.54   𝑂𝑅    

𝑆(8) − 𝑆(3) > −6.82 

 

𝑉2: 𝑆(19.5) − 𝑆(3) > −13.25  𝑂𝑅   𝑆(8) − 𝑆(3) > −6.82 

(3.1) 

 

-Ma05 [4]: 

 

𝑆(21) + 2.35 𝑆(5.4)  >  194  

𝑆(21)  >  48 𝐴𝑁𝐷 𝑆(5.4)  >  53  

𝑆(21)  >  44 𝐴𝑁𝐷 𝑆(21) − 0.7 𝑆(8.3)  >  14       

 

(3.2) 

   

- Nystuen15 [7] and Nystuen11 [8]: 

  

𝑆(20) − 0.75 𝑆(5)  >  5 𝐴𝑁𝐷 𝑆(5)  ≤  70 

𝑆(8)  >  60 𝐴𝑁𝐷 𝑄(2,8) > 𝜃 𝐴𝑁𝐷 𝑆(20)  >  45 

𝑆(8)  <  50 𝐴𝑁𝐷 𝑄(8,15) > −5 𝐴𝑁𝐷 𝑆(20)  >  35 𝐴𝑁𝐷 𝑆(20)  >  0.9 𝑆(8) 

 

{𝑆(20) + 0.1144𝑆2(8) − 12.728𝑆(8) > −307 𝐴𝑁𝐷 𝑄(2.8) > 𝜃 

  𝐴𝑁𝐷 𝑆(20) + 0.1𝑆2(8) − 11.5𝑆(8) < −281 𝐴𝑁𝐷 51 < 𝑆(8) < 64} 

(3.3) 

  

where Q(f1,f2) is the spectral slope, in dB/decade, between the frequencies f1 and f2 
(expressed in kHz): 
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𝑄(𝑓1, 𝑓2) =
𝑆(𝑓1)−𝑆(𝑓2)

𝑙𝑜𝑔10(𝑓1)−𝑙𝑜𝑔10(𝑓2)
  (3.4) 

 

θ = –18 dB/decade in [8] and θ = –13 dB/decade in [7]. 

 

 

 Pd Pfa 

Vagle90 [1] – V1 0.900 0.630 

Vagle90 [1] – V2 0.880 0.570 

Ma05 [4] 0.300 0.001 

Nystuen11 [8] 0.671 0.116 

Nystuen15 [7] 0.586 0.094 

 
Table 3.II. Probabilities of detection, Pd, and false alarm, Pfa, for the rule-based algorithms 

applied to hourly-averaged spectra. 

 
 
The algorithms in [1] achieve high Pd, but this is accompanied by excessive Pfa. A bias 
in hydrophone sensitivity cannot be the cause of the problem, because the quantities 
compared with thresholds in Vagle90 formula are subtractions between 
measurements. One option to make the algorithms more selective is to arbitrarily 
increase the threshold values, modifying the V2 rule, as follows: 
 
 

𝑆(19.5) − 𝑆(3) > −13.25 + 𝛿    𝑂𝑅    𝑆(8) − 𝑆(3) > −6.82 + 𝛿      (3.5) 
 

where 𝛅 > 0. Varying the value of 𝛅 between 0 and 5, the ROC curve in Fig. 3.9 is 
obtained. The Pfa reduction is obtained but, unfortunately, it is accompanied by a 
significant Pd decrease. When a similar modification is applied to the V1 rule, the 
performance is worse since the ROC curve is always below that shown in Fig. 3.9 for 
the V2 rule. What is more, the algorithms in [4], [7] and [8] do not provide satisfactory 
performance, because Pd is too low, as for [4], or Pfa is too high, as for [7] and [8]. The 
performance of these algorithms can be optimized by considering potential errors in 

hydrophone sensitivity. To do this, the values S(𝑓𝑘) in equations from (3.2) to (3.8), for 

whatever 𝑓𝑘, are replaced by S(𝑓𝑘)+ε, where ε is intended to compensate a sensitivity 

bias. Varying ε between –10 and 10 dB re 1 𝜇Pa2 Hz-1, the ROC curves shown in Fig. 
3.9 are obtained. This comparison clearly evinces that the rule-based algorithm 
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achieving the best performance (with the discussed correction) is the one proposed in 

[4]. In particular, for ε = 2 dB re 1 𝜇Pa2 Hz-1, a detection probability Pd = 0.521 is 
accompanied by Pfa = 0.010. The corrections introduced fail to reduce the false alarms 
of the other rule-based algorithms [1,7,8] to acceptable values: Pfa always remains 
significantly higher than 0.01.   

 

 

 

 

Fig. 3.9 ROC curves obtained by varying threshold values [1] and hydrophone sensitivity 
[4,7,8] in the rule-based algorithms listed in Table 3.II. [11] 

 

 

So the rainfall detection by rule-based algorithms taken from the literature have not 
provided satisfying performance on this type of spectrum, Machine Learning methods 
have shown that the detection can be carried out successfully. The linear classifiers 
(i.e., LDA and LR) perform moderately better than the best rule-based algorithm, 
increasing the probability of detection to about 0.6. A further advantage is offered by 
the SVM and RF classifiers for which probability of detection exceeds 0.7. Instead in 
the solution proposed by [6] Machine Learning methods are used to predict rainfall 
intensity and wind speed using all the frequency bins of the underwater noise spectrum 
as input data, in order to exploit implicit relationships that are not evident to the human 
observer. In fact in [6] Machine Learning methods are applied for rainfall detection, 
using hourly-averaged spectra as input data. Unfortunately, detection is limited to 
precipitation intensities greater than 1 mm/h and the performance obtained over a one-
year period is worse than that reported in [2], where a rule-based prediction method 
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[8] was fed with short-term data collected by the same equipment and over the same 
time period used in [6]. For the detection task, a binary classifier is built through the 
CatBoost algorithm, setting the lower bound for rainfall intensity equal to 1 mm/h. 
When the detector is applied to the available one-year dataset (through the cross-

validation scheme), a 𝑃𝑓𝑎 = 0.0332 and a 𝑃𝑑 = 0.811 are obtained: a poorer 

performance than that obtained in [2] using the same dataset but exploiting short-term 
data in place of hourly-averaged data.[11] 

 

 

 

 

 

 

 

3.4. Final analysis and comparisons 

 

 

In this analysis, kernel-based and ensemble-learning models have demonstrated the 
best performance among the experimented supervised classifiers. In particular, the 
RF-based binary classifier has shown a satisfactory balance between computational 
burden and performance, reaching a detection probability greater than 90% when 
precipitation exceeds 0.7 mm/h and Pfa is 1% or, alternatively, when precipitation 
exceeds 1.4 mm/h and Pfa is 0.3 %. This level of performance is slightly better than 
that obtained by a weather radar operating in the experiment area, and therefore the 
proposed method represents a promising alternative to obtain an estimate of rainfall 
intensity in areas where environmental constraints do not allow the installation of rain 
gauges or radar systems. This is even more noteworthy in polar areas, where global 
warming is changing the hydrological cycle of those regions, thus increasing rainfall 
with respect to snow precipitation. While the presence of high wind, especially above 
10 m/s, induced a noticeable increase in the probability of false alarm, the 
performances did not undergo significant alterations in the hours in which a ship 
transited in the area where the underwater measurement device was placed. Similarly, 
no fluctuations in performance were observed on a seasonal basis, attributable to 
varying underwater propagation conditions. It is worth recalling that rainfall detection 
was based on the amount of precipitation accumulated over the course of an hour, 
and it is not possible to determine whether this amount is due to transient, intermittent 
or continuous rain. Although very promising, supervised learning models require a 
training phase that necessitates extensive collection of underwater acoustic spectra, 
accompanied by concomitant precipitation measurements to be used as ground truth. 
On the other hand, this is also partially necessary for rule-based algorithms that need 
specific calibrations to account for geographic location and hydrophone sensitivity. 
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The possibility of using the trained detector in geographic areas other than the one in 
which the training data were collected is a topic for future investigation. However, it is 
reasonable to assume that in similar environmental settings, a trained detector can 
continue to operate successfully. The performance obtained working on averaged 
spectra suggests that Machine Learning models may also be advantageous for rain 
detection using short-term acoustic spectra. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



53 
 

 4. Wind prediction 
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4. Wind prediction 

 

 

 

 

 

As said in the Introduction Chapter the prediction of the wind intensity values is a very 

important and discussed topic that could have many applications from meteorology to 

navigation, in particular when the situation in which a system has to work is difficult or 

not suitable to install and use surface sensors, such as anemometers. In the past wind 

prediction was the objective of many scientific researches, but in many cases the 

results were not so good and not good performances were obtained. In particular this 

happened because the old state-of-the-art empirical formulas were not so suited for 

this kind of regression. In this study Machine Learning algorithms are applied and the 

results of the previous state-of-the-art algorithms are improved. Previous methods for 

prediction are based on the analysis of few frequencies and on the estimation of 

empirical formulas, instead in supervised learning all the frequencies are taken in 

consideration together and so the potential of this kind of analysis is greater because 

it is not limited to few features. The use of supervised learning gets satisfying results 

applying polynomial regression with Dictionary Learning preprocessing. Using a data 

set consisting of over 18000 hourly-averaged spectra the proposed algorithms obtain 

a RMSE (Root mean square error) of 1.15 m/s, a very low bias (ME, mean error) and 

a MAE (Mean average error) of 0.80 m/s.  The structure of the algorithm is the same 

as the rainfall prediction case, because the research part was studied in parallel. This 

happened because rainfall and wind predictions show a sort of similarity or parallelism 

for what concern results related to methods used. In the first part preprocessing 

algorithms and Machine Learning tools for regression that were used in the thesis will 

be described such as, Linear Regression, Polynomial Regression, Dictionary 

Learning,  MFCC and GTCC. In this part results are shown and algorithms are 

compared. Some indices or indicators are used to make comparisons between them, 

such as RMSE, ME or MAE. In the second part of the chapter results are compared 

using figures and plots describing well the information that could be analysed from the 

outputs of the processing. In the last part of the chapter, the state-of-the-art algorithms 

are considered and their results are shown in order to make some comparisons. In 

particular it will be analysed algorithms based on empirical formulas such as those 

presented in Vagle90[1], Nystuen11[8], Pensieri15[2], Shaw78[9], Cazau19 [3] but also 

supervised ones such as Taylor21[6]. 
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4.1 Algorithm analysis 

 

 

Before starting to describe in detail the techniques and algorithms used to obtain the 
results shown in Table 4.I, it is important to describe the validation methods used to 
choose the optimal hyperparameters and so the optimal models. In the table, the best 
results for each technique are shown. In this study aiming to compare prediction 
performance of the statistical models, the first step of obtaining the best 
hyperparameters is to use a cross validation. The dataset is first divided in 10-fold with 
stratification in dataset partitioning. So at every cycle the dataset is divided in training 
(9 fold) and test parts (1 fold) in a cyclical way. Then considering the training set, that 
is composed of 9 folds, at each cycle 8 folds compose the training set and one the 
validation set. So every cycle evaluates one particular set of hyperparameters and at 
the end of the 9 repetition on the validation the best set of hyperparameters are chosen 
and used to evaluate the performances using the initial 10-fold training/test set (Fig. 
4.1). The data for a fold are selected in a random way but based on classes, in this 
way when a test set, representing the 10% of the complete dataset, is selected 
randomly, it is sure that for each class of rain or wind about the 10% will be put in the 
test set and 90% in training set. Differently from rainfall detection the technique used 
showed great changes when hyperparameters are subject to slight and even low 
variations; it is clear that that kind of model is very sensitive and in this case it is 
important that parameters are chosen in a precise way.  Data processing is performed 
using the scikit-learn library for the Python programming language. 

 
 

 

 

 

 

 
 

Fig. 4.1  Subdivision of the dataset in classes of wind and rainfall intensity. For what concerns 
rain, 4 intervals are considered, from R0 (No rain) to R3 (Heavy rain). For wind, Beaufort scale 
is considered and so 9 classes are used, from B0 to B8. 
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Fig. 4.2 10-Fold cross validation graphical example 

 

 RMSE 

[m/s] 

MAE 

[m/s] 

ME 

[m/s] 

Linear Regression 

(64 frequency bins) 

2.45 

(±0,2) 

0.95 

(±0,03) 

-0.001 

Linear Regression 

(30 DL coefficients) 

2.30 

(±0,1) 

0.92 

(±0,03) 

0.002 

Polynomial 

Regression 

(16 DL coefficients/ 

Degree 3) 

1,15 

(±0,03) 

0.80 

(±0,01) 

-0,00005 

Polynomial 

Regression 

(64 frequency bins-

degree 2) 

1,27 

(±0,05) 

0.85 

(±0,02) 

-0,00003 

MFCC(15 

coefficients/ 

Degree 2) 

 

1,28 

(±0,05) 

0.86 

(±0,02) 

-0,00002 

GTCC(10 

coefficients/ 

Degree 3) 

 

1,27 

(±0,04) 

0.85 

(±0,02) 

-0,00003 

 
Table 4.I. Performance of the predictors. For RMSE, MAE, ME  
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In Table 4.I the best results for each technique are shown. It can be noted that initially 
a simple linear method was used just to obtain a preliminary result to be compared 
with the followings. It was immediately clear that the usage of Dictionary Learning 
preprocessing and of the coefficient collected in the so called Code matrix permits the 
algorithm used to achieve better results than the ones obtained applying directly the 
frequency bins. In fact using the simple linear regression with 30 coefficients as 
features decreases the RMSE of 0.15 m/s, even if the results remain not good. The 
best results are obtained for polynomial regression using 16 dictionary coefficients and 
third degree. First the DL coefficients are extracted using as input all the 64 bins, then 
a polynomial preprocessing is applied to the new dataset 18193x16 and a simple linear 
regression is used to fit the model. The performances strongly increase and the RMSE 
is 1.15 m/s, with a reduction of 1.3 m/s from the previous linear model. Also the MAE 
value decreases to 0.80 m/s from 0.95 m/s in the previous case. Good results are 
shown by applying a bank of filters to extract MFCC or GTCC and fitting a polynomial 
model. First a bank of filters is applied to the 64 bins, using classical MFCC or GTCC 
computation, and a number of coefficients corresponding to the number of filters in the 
bank is generated.  At this point polynomial regression is applied and models are fitted. 
The RMSE values are 1.28 m/s for MFCC and 1.27 m/s for GTCC. In the first case 15 
coefficients and a second degree polynomial is used and in the second case 10 
coefficients and a third degree polynomial is considered. The results are satisfying but 
worse than the previous one and at the same time are good to show and demonstrate 
that techniques already used for speech recognition could be applied also for wind 
prediction with good performances. In general, all the models show unbiased 
behaviour and MAE results simply reflect RMSE performances. The use of a smaller 
number of features with respect to the 64 bins is useful also for obtaining good 
performances in terms of computational time and computation effort. In fact the time 
to obtain a model using polynomial regression with 64 bins is very high. For what 
concern the Dictionary Learning preprocessing it was useful to understand what could 
be the optimum parameters to be applied in order to fit a dictionary model for the 
extraction and calculation of the coefficients. The main idea was to estimate the best 
α regularization parameter in order to obtain the ‘best’ Code and Dictionary matrices 
from the DL algorithm. In order to understand which could be the meaning of the 
concept of ‘best’ matrices, it is useful to remember that multiplying Code matrix and 
Dictionary matrix the result is an approximation of the original dataset. So the best α 
(alpha) corresponds to the matrices from which the best approximation of the original 
dataset is obtained. Obviously considering the number of atoms, it is simple to 
understand that increasing it the approximation will be better and better, and it is also 
clear from the plot in Fig. 4.3. But for what concern that parameter, corresponding to 
the number of coefficients per spectra, it is better to optimize it considering directly the 
results of the cross validation process explained before. In Fig. 4.3 it is plotted a 3D 
surface representing the MSE between the original dataset and the approximation 
obtained multiplied by the Code and the Dictionary calculated by the DL model versus 
the parameters alpha and number of atoms. The MSE is calculated between the 
spectra in linear scale and not directly in dB scale. The unit of measure of the MSE, 

hence, is 𝜇𝑃𝑎4. As said before, in general increasing the number of atoms the 
approximation is better. For what concern the alpha parameter the best results are 
obtained using alpha with a low value. So for all the following calculations the 
regularization parameter is taken equal to 1 in order to obtain Code and Dictionary 
matrices more similar to the optimum ones.  
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Fig. 4.3 Approximation error between the original dataset and the reconstructed one versus 

alpha and the number of atoms.  

 

 

 
 

Fig. 4.4 12 dictionary spectra example in 3D representation 
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The usage of the DL coefficients as features instead the direct usage of the frequency 

bins is the key for the increasing of performance obtained for polynomial regression. 

The decreasing of the number of features and the compression of the information 

helps to obtain a more clear comprehension of the underlying scheme that binds data 

features to classes of rain and wind. In Fig. 4.5 there are three tables each one 

represents one of three averaged coefficients divided in classes obtained fitting a DL 

model with alpha equal to 1 and atoms equal to 3.  In the figure the classes composed 

by a consistent number of samples are underlined in orange and only those classes 

are considered for that general analysis. Considering the first coefficient values in the 

underlined classes it can be noted that increasing the rainfall intensity the values 

increase in modulus. Instead considering wind intensity the coefficients have greater 

values in modulus in the medium classes and the values decrease for low intensity 

and high intensity classes, like a sort of Gaussian distribution. More complex is the 

second coefficient case, in which the behaviour looks exactly opposite of the preceding 

case. In fact the lowest and negative values are in the center classes and the values 

increase moving to the right and to the left. The distribution is a sort of reversed 

Gaussian. Analyzing the third coefficient table, it is clear that the values increase in a 

slightly linear way, increasing the rainfall intensity and wind speed. 

 

 

 
 

 
 

 
 

Fig. 4.5 Averaged DL coefficients values divided per classes of wind and rain 
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4.2. In-depth results analysis and comparisons 

 

The objective of this part will be to underline and analyse in a detailed way the results 
obtained. The results in analysis will be related to the optimum algorithm, i.e. 
Dictionary Learning preprocessing, extraction of 16 coefficients and using them as 
features given in input to fit a polynomial regression model. In addition, predictions 
with a value <0 m/s are carried to 0 m/s. In Fig. 4.7 there are two tables with values of 
RMSE and Absolute Percentage Error divided in classes. In the first table, considering 
only classes in which a consistent number of samples are present, it can be noted that 
the lowest values are related, in general, to classes in which there is a greater number 
of samples. For example, considering no rain case and B2 wind class, we have 5553 
samples and a RMSE of 0.98 m/s. In part it is clear that considering a great number 
of spectra the model is well fitted for that class and can learn very well how to better 
recognize that kind of wind intensity. From another point of view it's also clear that 
having spectra without rain contribution could be simpler to discriminate between 
different wind classes or intensities. So the combination of those two characteristics, 
i.e. absence of rain noise and great number of samples available, keeps to good 
results and it is clear observing all the classes corresponding to no rain. B2 has the 
best results, but also B3 and B4 respectively with RMSE equal to 1.04 m/s and 1.09 
m/s give very good performances and correspond to the 3 classes with more samples. 
Decreasing the number of spectra the RMSE increases, B1 has a RMSE of 1.47 m/s 
and B6 of 1.45 m/s. B5 again shows very good results with a RMSE of 1.18 m/s. When 
the rain contribution increases, also the number of samples per class decreases, so 
the RMSE values are higher. The worst values in classes with consistent numbers of 
spectra are represented by samples in (R2, B3) with RMSE value of 2.5 m/s and (R3, 
B6) with RMSE equal to 2.9 m/s; obviously related to low numbers of samples and 
high rain noise contribution. Instead (R2,B6) shows good values 1.14 m/s despite the 
theoretically non favorable conditions. 
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Fig. 4.7 Wind RMSE divided per classes of wind and rain in the first tab; Wind Absolute 
Percentage Error divided per classes of wind and rain in the second tab 

 

 

The same consideration could be made for results in the second table. This table 
shows the Absolute Percentage Error values for wind >1.5 m/s divided per class. It is 
clear that computations for very low values of wind speed are neglected because of 
low prediction errors could bring to very high errors in percentage. Increasing the wind 
speed values, and so classes, the error decreases, because in general errors in 
absolute value don't increase so much with the increasing of speed and so the 
absolute percentage error decreases. Very good values again are shown by zero rain 
contribution, in class B5 with percentage equal to 9.9% and in class B6 equal to 10.0%. 
But the best results are shown for rain R1 and wind in B7 with a percentage of 6.9% 
and B6 with a error of 8.6% or also for R2 and wind in B6 with a value of 7.6% and B7 
with 8.6%. This is a good result because it shows that high values for wind speed don’t 
lead to high prediction percentage errors, and so the error does not increase strongly. 
So the model can be considered stable and in some way shows some linearity in the 
increasing of the errors with respect to values to be predicted.  
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Fig. 4.8 Wind Error Distribution plot 

 

In Fig. 4.8 it is shown the distribution of the errors. We know from Table 4.I that the 
Mean Error is very low and so the model could be considered unbiased. This new plot 
is important in order to understand how the error is distributed. It is simple to note that 
the distribution is a sort of Gaussian with low variance and so quite strict and centered 
in zero. The fact that the distribution is symmetrical and centered in zero is good to 
understand that there is no a privileged direction for what concerns prediction errors 
and so a very similar number of errors is related to negative and positive values. The 
fact that the bias is low and RMSE is quite small is a good indicator for the fact that 
the model fitted is a good model. A good bias-variance tradeoff is an indicator of good 
generalization properties and so a good probability in having no overfitting, but also 
not even an underfitting situation. So the model is not too simple and not too complex 
and the wind phenomenon is modelled, and also predicted, in a good way. 
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Fig. 4.9 Scatter plot with Real values versus Predicted values, the continuous line represents 
the bisector and the two dashed lines are the bisector shifted by ±RMSE 

 

In the plot depicted in Fig. 4.9 predicted values versus real wind speed are 
represented. The continuous line is the bisector line describing the perfect prediction 
and the two dashed lines (bisector shifted by ±RMSE) are parallel to the bisector. It is 
clear that the distribution of the red dots follows very well the black line and the dots 
inside the dashed lines are the majority. Inside the two dashed lines there is a very 
great number of samples, about the 85%. Again the 3D distribution of the dots is a sort 
of Gaussian symmetric with respect to the continuous line and with a low variance 
value. That kind of behaviour is good in terms of precision of the prediction model. In 
Fig. 4.10 we can see the same scatter plot with a different scale and two lines, the 
blue one is the bisector and the green one is the line that best fits the predictions and 
it is clear that the two lines are very near each other. The plots in Fig. 4.11 (a) and 
4.11 (b) can be used to make some considerations. The samples predicted through 
the thesis technique are much less dispersed than those predicted by [1], [18] and [2]. 
The number of samples for which the predicted wind speed is noticeably incorrect 
(especially in terms of overestimation) is reduced. The bisector and the best fit line are 
similar and near only in [2] and [6], but in the other two models they are very distant. 
The results made by [6] are similar to the one obtained by the thesis algorithm for what 
concern dispersion of the samples and similarity between the two lines (best fit line 
and bisector), but in the [6] case a low number of samples is depicted and the plot is 
cleaned from points too distant from the bisector. Instead in Fig. 4.10 all 18193 
samples are shown. 
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Fig. 4.10 Scatter plot with Real values versus Predicted values, the blue line represents the 
bisector and the green line is the best fit line. 

 

Fig. 4.11 (a) Scatter plot with Real values versus Predicted values from [6], the black line 
represents the bisector and the red line is the best fit line. 
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Fig. 4.11 (b) Scatter plots with Real values versus Predicted values from [2], the black dashed 
line represents the bisector and the blue line is the best fit line. 

 

 

 

 

An important way to understand if the model is a good estimator is to plot, as in Fig. 
4.12, in a chronological way all the 18193 real wind label values and the predicted 
ones together. In the plot all the samples together are depicted and it can be 
preliminary understood that the predictions, in general for all the analysis period, follow 
very well the real wind speed. Obviously it is important to show some figures with 
higher resolution in order to see and describe the details. This is done in Fig. 4.13. In 
this figure we can note in detail that the predictions are quite precise and follow very 
well the real wind speed trend. A common error that happens is when the model 
predicts a fast increasing or decreasing of the speed but in reality the behaviour is 
quite smoothed. On the other side another kind of error is related commonly to rapid 
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changes of the real wind status in particular when the wind speed increases rapidly. 
In general this error could occur both when there are peaks both related to rapid 
increasing or decreasing cases. So it is clear that the model shows in some situations 
difficulties, but in general the behaviour of the prediction is satisfying.  

 

 

Fig. 4.12. Comparison between Real and Predicted wind speeds for the 18193 spectra of the 
dataset. 
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Fig. 4.13. Two detail fragments of the comparison between Real and Predicted wind speeds 
for the 18193 spectra of the dataset  

 

 

 

 

 

4.3. Performance of the literature algorithms  

 

In this paragraph of the chapter the objective will be to show and analyse the 
algorithms introduced in the Introduction Chapter that are part of the state-of-the-art 
related to wind prediction. The most important techniques were applied to the available 
dataset and the results are summarized in Table 4.II. It is important to recall that most 
of these algorithms were designed to predict wind using short-term acoustic spectra, 
whereas in this study they are applied to hourly-averaged spectra. In order to obtain 
results comparable to the one proposed in Table 4.I, the same identical 10-Fold cross 
validation scheme is used, for supervised techniques, and the same indices are 
computed. 
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 RMSE 

[m/s] 

MAE 

[m/s] 

ME 

[m/s] 

Vagle90[1] 2.02 1.36 0.28 

Nystuen11[8] 3.41 1.82 1.58 

Pensieri15[2] 2.43 1.25 0.45 

Cazau19[3] 4.96 2.03 -0.01 

Taylor21[6] 1.11 0.78 0.02 

 

Table 4.II.  Performance of the state-of-the-art predictors. For RMSE, MAE, ME. 

 

 

The wind prediction techniques in literature based on empirical formulas have not 
provided good performance on averaged spectra and Machine Learning methods 
have shown the best performances. The polynomial regression with 16 DL coefficients 
performs better than the best algorithm, decreasing the RMSE of about 2.3 m/s for 
what concerns [8], about 0.9 m/s for [1] and 1.3 m/s for [2]. The same happens for 
MAE values, that decreases of about 1 m/s for [8] and of about 0.5 m/s for the other 
two. The same could be said for the algorithms using MFCC or GTCC that decreases 
the RMSE of about 2.1 m/s for what concern [8], about 0.8 m/s for [1] and 1.1 m/s for 
[2]. Not good solutions are proposed by [3]. In that case RMSE is 4.96 m/s and MAE 
value increases to 2.03 m/s. Again those performances are very far from those 
achieved by the regression model proposed by this thesis. The same happens for 
example in the solution proposed by [6] in which Machine Learning methods are used  
to predict wind speed using all the frequency bins of the underwater noise spectrum 
as input data. Again in [6] Machine Learning methods are applied for wind prediction 
using hourly-averaged spectra as input data. In that case Random Forest with 50 trees 
was used. The performances are quite similar. RMSE is 1.11 m/s and MAE value is 
0.78 m/s, but it shows a greater bias value. That kind of comparison is essential to 
understand that the thesis results are consistent and correct, in fact different 
techniques applied to a similar dataset carry to the same result.  
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4.4. Final analysis and comparisons 

 

The analysis done in this chapter is aimed to compare the performance of the wind 
prediction techniques described previously, including fixed empirical equations, 
models fitted to the data and supervised learning techniques, when applied to 
averaged spectral data. The results provided by all the models fitted to the data are 
obtained through a 10-fold cross-validation. The prediction accuracy metrics for each 
method applied to the available dataset are reported in Table 4.I and 4.II and their 
analysis leads to some observations. First, the polynomial regression with DL 
preprocessing shows significantly lower error values, considering RMSE and MAE, 
than the prediction techniques that use a single feature, both fixed or fitted to the data. 
Also good results are obtained using speech recognition techniques such as GTCC 
and MFCC together again with polynomial regression. The results in Table 4.II, for the 
state-of-the-art models that use only one feature, were obtained using frequency at 8 
kHz, as in most of the literature. This analysis confirms the superiority of the prediction 
performed using a multiplicity of features and regression methods that belong to the 
Machine Learning domain. Considering [6] results are very similar to the thesis model, 
and it shows almost equal RMSE and MAE, but high ME. So at the end it can be 
concluded that the thesis analysis on wind prediction demonstrates that the application 
of ML techniques to averaged spectra could produce good performances. In fact 
previous algorithms for prediction in the state-of-the-art, applied to the same dataset 
composed of 18193 spectra, obtained not good results or in general worse than the 
supervised models. A possible idea could be to understand if the thesis predictor 
applied to spectra collected in different seas could obtain again good performances, 
but it is reasonable to assume that it would continue to operate successfully. The 
performance obtained working on averaged spectra suggests that Machine Learning 
models may also be useful for wind prediction using short-term acoustic spectra. 
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5. Rainfall prediction 
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5. Rainfall prediction 

 

 

 

 

 

In the Introduction Chapter the importance of predicting rainfall intensity was 

highlighted through the applications that could be implemented thanks to this kind of 

analysis, both in navigation and in meteorological studies. For example for underwater 

navigations of submarines, in which it’s needed to know the meteorological situation 

on the surface or also in situations in which is important to monitor natural phenomena, 

for example in relation to risk prevention. But in the past rainfall regression state-of-

the-art algorithms had not good results and not good methodologies. This happened 

because they were based on algorithms not so adapted for this kind of analysis. The 

idea is to improve that results and so in the thesis rainfall prediction analysis based on 

Machine Learning algorithms is considered. The usage of supervised learning obtains 

good performances, in particular applying polynomial regression and Dictionary 

Learning together as in the previous wind prediction case. Using the same available 

dataset consisting of 18193 hourly-averaged spectra the best proposed algorithm 

obtains an RMSE of 0.48 mm/h and a MAE of 0.08 mm/h. In the first part the 

preprocessing algorithms and Machine Learning tools for regression used will be 

described such as, Linear Regression, Polynomial Regression, MFCC and GTCC 

preprocessings. In this part results are shown and algorithms are compared. Some 

indices or indicators are used to make comparisons between them, such as RMSE, 

ME or MAE. In the second part of the chapter results are compared using figures and 

plots describing well the information that could be analysed from the outputs of the 

processing. In the last part of the chapter, the state-of-the-art algorithms are 

considered and their results are shown in order to make some comparisons. In 

particular some algorithms based on empirical formulas will be analysed such as those 

presented in Pensieri15[2], Nystuen08[5] and Ma05[4] but also supervised learning 

models such as Taylor21[6]. 
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5.1 Algorithm analysis 

 

 

 

In Table 5.I the best results for all the algorithms tested are shown. The same  
validation methods used to choose the optimal hyperparameter in the wind prediction 
case are used again. Hence summarizing the algorithm for validation already 
explained in the preceding chapter, the dataset is first divided in 10-fold with 
stratification based on classes. So at every cycle the dataset is divided in training (9 
fold) and testing parts (1 fold) in a cyclical way. Then considering the training set, that 
is composed of 9 folds, at each cycle 8 folds compose the training set and one the 
validation set. So every cycle evaluates one particular set of hyperparameters and at 
the end of the 9 repetition on the validation the best set of hyperparameters is chosen 
and used to evaluate the performances using the initial 10-fold training/test set (Fig. 
5.1). The data for a fold are selected in a random way but based on classes, in this 
way when a test set, representing the 10% of the complete dataset, is selected 
randomly,  it is sure that for each class of rain or wind about the 10% will be put in the 
test set and 90% in training set. Again, as for wind prediction, the techniques used are 
very sensitive to hyperparameters changes; so it is important that parameters have to 
be chosen in a precise way. Data processing is performed using the scikit-learn library 
for the Python programming language. 
 

 

Fig. 5.1.  Subdivision of the dataset in classes of wind and rainfall intensity. For what concerns 
rain, 4 intervals are considered, from R0 (No rain) to R3 (Heavy rain). For what concerns wind, 
Beaufort scale is considered and so 9 classes are used, from B0 to B8. 

 

 

 
 

Fig. 5.2 10-Fold cross validation graphical example 
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 RMSE 

[mm/h] 

MAE 

[mm/h] 

ME 

[mm/h] 

Linear Regression 

(64 frequency bins) 

0.89 

(±0,22) 

0.3 

(±0,05) 

0.2 

Linear Regression 

(30 DL coefficients) 

0.78 

(±0,19) 

0.28 

(±0,04) 

-0.1 

Polynomial 

Regression 

(12 DL coefficients/ 

Degree 3) 

0,50 

(±0,12) 

0.14 

(±0,02) 

-0.0709 

Polynomial 

Regression 

(12 DL coefficients/ 

Degree 3) with 

threshold 0.6 mm/h 

0.48 

(±0,12) 

0.08 

(±0,01) 

0.0006 

Polynomial 

Regression 

(64 frequency bins-

degree 2) 

0,7 

(±0,25) 

0.2 

(±0,06) 

-0.09 

MFCC(20 

coefficients/ 

Degree 3) 

 

0,58 

(±0,15) 

0.2 

(±0,06) 

0.1 

GTCC(10 

coefficients/ 

Degree 3) 

 

0,59 

(±0,14) 

0.19 

(±0,05) 

0.1 

 

Table 5.I. Performance of the predictors. For RMSE, MAE, ME  
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The procedure used during the study is the same used in the wind prediction case. 
The studies proposed by the thesis in the prediction cases are led in parallel, because 
wind and rain show a strong parallelism for what concerns results and algorithms. So 
first a simple linear method was used just to obtain a preliminary result useful for 
comparisons and starting point. Then, Dictionary Learning preprocessing was 
introduced before linear regression and the usage of the DL coefficients of the Code 
matrix was useful to obtain better performances. In fact, if linear regression, that uses 
the frequency bins, has an RMSE of  0.89 mm/h, the performance increases and with 
30 coefficients the RMSE becomes 0.78 mm/h. A good improvement but not the best 
possible. Then polynomial regression using 12 dictionary coefficients and third degree 
was introduced. First the DL coefficients are extracted using as input all the 64 bins, 
then a polynomial preprocessing is applied to the new dataset 18193x12 and a simple 
linear regression is used to fit the model. Putting to 0 mm/h all predictions lower than 
zeros the RMSE became 0.50 mm/h and the MAE 0.14 mm/h. A further improvement 
of the performances is obtained using a threshold of 0.6 mm/h. In this case predictions 
lower than 0.6 mm/h are put to 0 mm/h. So the RMSE decreases to 0.48 mm/h and 
MAE to 0.08 mm/h. Again as for wind prediction suboptimal results are shown by 
applying a bank of filters to extract MFCCs or GTCCs and fitting a polynomial model.  
First a bank of filters is applied to the 64 frequency bins, then, using classical MFCC 
or GTCC computation, a number of coefficients corresponding to the number of filters 
in the bank is generated. At this point polynomial preprocessing is applied and models 
are fitted. The results are good, but not the best performances are obtained; the RMSE 
is 0.58 mm/h for MFCC and 0.59 mm/h for GTCC. At the same time those two models 
are good to show and demonstrate that techniques already used for speech 
recognition could be applied also for rainfall prediction with good performances. In 
general all the models shown unbiased behaviour and MAE results simply reflect 
RMSE ones. The reduction of features with respect to the 64 bins is useful to achieve 
good performances in terms of computational time and computation effort. In fact the 
time to obtain a model using polynomial regression with 64 bins is very high. 
Considering Dictionary Learning preprocessing the same considerations done in the 
previous chapter can be made. The same process and analysis for the parameter 
alpha was made and is valid for the rainfall prediction case. So, as said before, in 
general increasing the number of atoms the approximation is better. For what concern 
the alpha parameter the best results are obtained using alpha with a low value. For all 
the following calculations the regularization parameter is taken equal to 1 in order to 
obtain Code and Dictionary matrices more similar to the optimum ones.  
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4.2. In-depth results analysis and comparisons 

 

 

The objective of this part will be to underline and analyse in a detailed way the results 
obtained. The results in analysis will be related to the algorithm that implements 
Dictionary Learning preprocessing, extracts 12 coefficients and uses them as features 
to fit a polynomial regression model of third degree. In addition, predictions with a 
value <0 mm/h are carried to 0 mm/h. Again as in the previous chapter, two tables in 
Fig. 5.3 represent the RMSE divided per class and the Absolute Percentage Error for 
rain >2.55 mm/h divided per class. In the second table only values greater than a 
certain threshold are computed, this is because too low values of rainfall could make 
the percentage error grow exponentially and so are not suited for that kind of index 
evaluation. Considering the first table and in particular classes with a consistent 
number of samples, it can be noted that in general increasing the number of spectra, 
performances increase. In part it is clear that considering a great number of spectra 
the model is well fitted for that class and can learn very well how to better recognize 
that kind of rainfall intensity. Increasing the rainfall intensity the RMSE values increase 
and if for (R0,B1) or (R0,B3) there are very good results, 0.22 mm/h and 0.20 mm/h 
respectively, for (R1, B4) the value increases to 0.8 mm/h  and the worst results are 
for (R3,B5), 4.6 mm/h, and (R2,B4), 2.0 mm/h. The availability of samples in some 
way precludes the possibility to have uniform RMSE in all classes, but performances 
decrease rapidly increasing the rainfall intensity and then also decreasing the number 
of spectra. Differently from what can be observed in wind prediction case, increasing 
the other component intensity, in this case increasing wind speed, there is not an 
important decreasing of performances. Also when the wind intensity is high there isn’t 
a consistent increasing of RMSE but the values remain stable and the error seems to 
depend only on rain classes and number of samples. Regarding the results in the 
second table, the values are quite regular and uniform, again it can be concluded that 
the results for rain are not dependent on wind intensity, in fact changing wind class 
there is not an important increasing or decreasing in the values reported. The fact that 
the percentage error remains quite constant when rainfall intensity increases is good, 
because it means that high errors are done in high value samples and small errors in 
small value samples. 
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Fig. 5.3 Rain RMSE divided per classes of wind and rain in the first tab (a); Wind Absolute 
Percentage Error divided per classes of wind and rain in the second tab (b) 

 

 

 

 

 
 

Fig. 5.4 Scatter plot with Real values versus Predicted values, the continuous line represents 
the bisector and the two dashed lines are the bisector shifted by ±RMSE 

 
 

 

In Fig. 5.5 it can be analyse a scatter plot in which every red point represents real 

values versus predicted ones. The continuous line is the bisector line and the two 

dashed lines are bisectors shifted by ±RMSE. Observing the plot in detail in Fig. 5.6 

there is a great number of points inside the two dashed lines (remember that the 

samples >0 mm/h are only 1277) and sparse samples outside that are the minority.  
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Increasing the intensity of rainfall the behaviour becomes more confuse, samples are 

more outside the double dashed lines and dots are not more near the bisector 

representing the perfect prediction line. This is in practice the visualization of what was 

observed in Fig. 5.3 (a), in which increasing the rainfall intensity the RMSE increases. 

It is also important to understand that the majority of points are very near or equal to 

zero (16916) and that points are well grouped near the bisector line and inside the two 

RMSE lines. Samples with higher intensity are very sparse and so it is obvious that 

the algorithm could have difficult to predict them but also it is good that high errors are 

made in high intensity samples and low errors in low intensity samples. 

 

 
 

Fig. 5.5 Detail of Fig. 5.4 

 
 

 

 

In Fig. 5.6 and Fig. 5.7 the same scatter plot is depicted with blue line representing 

bisector and the green line that is the best fit line. Observing Fig. 5.7 with high 

resolution it can be seen that for samples approaching zero the two lines are very near 

and they diverge for high value samples. Again the same consideration made before 

for low and high rainfall measurements can be said and so the regression model 

proposed is better fitted on low rainfall values. Although in general the divergence 

between the two lines doesn’t increase so much and they are quite near in all cases. 
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Fig. 5.6 Scatter plot with Real values versus Predicted values, the blue line represents the 
bisector and the green line is the best fit line. 
 

 

 
 

Fig. 5.7 Detail of Fig. 5.6. 
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Fig. 5.8 Rain Error distribution plot 

 
 

 

 

In Fig. 5.8 it is shown the distribution of the rain errors. It is clear from Table 5.I that 
the model fitted can be considered unbiased, because a very low ME is observed. It 
is simple to understand that the shape of the curve is a Gaussian with very low 
variance, and so very strict, and with centre in zero. The distribution is symmetrical 
and this kind of characteristic is good to understand that there is no privileged direction 
in overestimation or underestimation and so a very similar number of errors is related 
to negative and positive values. Also the low variance value indicates low error values 
in general. The fact that the bias is low and RMSE is quite small is a good indicator for 
understanding that the model fitted is a good model and in particular that good bias-
variance trade off is obtained. So the model fitted is not too simple and not too complex 
and at the same time there is no overfitting or underfitting. In Fig. 5.9 it can be seen 
the rainfall trend over time for real values and predictions. From this figure it can be 
observed only the trend from a general point of view and not in detail. The general real 
trend is well followed. In Fig. 5.10 there is a most detailed image and it can be well 
analysed the small oscillations of samples near 0 mm/h. It is clear that there are a lot 
of small oscillations in prediction that don’t permit to precisely follow the real trend. 
From this kind of considerations was born the idea of using a threshold (for example 
of 0.6 mm/h) under which predictions are put to 0 mm/h. And in Fig. 5.11 it can be 
seen that the oscillation problem is quite solved and now also the trend for low values 
is better followed. This kind of reasoning is well explained and again demonstrated by 
Fig. 5.12, 5.13 and 5.14. In these three plots cumulative rainfall trends are depicted 
using different threshold values. It's clear from Fig. 5.12 that the curve representing 
cumulative trend of real values is not well followed by the one obtained with predictions 
using thr=0 mm/h. The two curves diverge and the predicted curve is overestimated 
because of that kind of small oscillations described before. Then imposing a threshold 
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of 0.5 mm/h in Fig. 5.13 and 0.6 mm/h in Fig. 5.14 better results are obtained and the 
two curves are overlapped in a quite precise way, in particular in the second case. 
From Table 5.I is clear that the model with thr=0.6 mm/h shows very good properties 
and results also for RMSE, MAE and ME. 
 

 

 

 
 

Fig. 5.9. Comparison between Real and Predicted rainfall intensities for the 18193 spectra of 
the dataset. 

 

 

 

Fig. 5.10 Details of Fig.5.9. 
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Fig. 5.11 Detailed comparison between Real and Predicted rainfall intensities for the 18193 
spectra of the dataset with thr = 0.6 mm/h. 

 

 
 

Fig. 5.12 Cumulative rainfall trend for Real values and Predicted values with thr=0 mm/h. 
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Fig. 5.13 Cumulative rainfall trend for Real values and Predicted values with thr=0.5 mm/h. 

 

 

 
Fig. 5.14 Cumulative rainfall trend for Real values and Predicted values with thr=0.6 mm/h. 
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5.3. Performance of the literature algorithms  

 

In this part of the chapter some state-of-the-art models are used to compute 
performances to be compared with the data contained in Table 5.I. In the rainfall 
prediction case there is a relatively low number of formulas or techniques in state-of-
the-art. In fact that kind of analysis during the previous years was considered very 
difficult and results were not satisfactory for possible applications. Also in many studies 
data were cleaned by ‘difficult’ samples in order to obtain better results. In this case 
that kind of comparison is made computing the same indices of Table 5.I using the 
entire dataset available and using the same cross validation schemes, in the case of 
supervised learning techniques. As seen in the introduction part, [5], [2], [4] and [6] 
studies will be analysed. In the first three cases empirical formulas based on one 
frequency (5 kHz) are computed. Considering [2] study there are two formulas, one 
valid for drizzle and another for rain >1 mm/h. For [5] and [4] there is only one formula. 
For what concern [6], Random Forest predictor is used again as for wind prediction 
but results are calculated considering only samples >0 mm/h 

 

 

 
RMSE  
[mm/h] 

MAE 
 [mm/h] 

ME 
 [mm/h] 

Nystuen08[5] 1.6 1.37 1.27 

Pensieri15[2] 0.98 0.32 0.12 

Ma05[4] 3.95 2.9 2.8 

Taylor21[6] 
(>0mm/h) 

1.82 0.85 0.25 

Table 5.II.  Performance of the state-of-the-art predictors. For RMSE, MAE, ME. 

 

Making a comparison between results in Table 5.I and 5.II, it is clear that all the 
predictors analysed by the thesis showed better results than the empirical formulas 
proposed by [4], [5] and [2]. [4] shows the worst results with an RMSE of 3.95 mm/h 
and a very large bias. Also [5] has not good performances, but better than [5]. [2] 
shows a lower bias, but RMSE is high, comparable with linear regression done in the 
simplest way (using 64 bins directly). In order to compare the thesis model with the 
one proposed by [6] it was needed to consider and compute the performances of the 
polynomial regression using 12 DL coefficients for samples with rainfall values greater 
than zero. In that particular case the RMSE increases to 1.76 mm/h and the MAE to 
0.83 mm/h. Considering the RMSE, the performances are strongly better than the one 
proposed by [6]. The bias of the thesis model is 0.28 mm/h and so very similar to the 
correspondent in [6]. This could be considered a very good result, in fact, observing 
Fig. 5.15, it is clear that the dataset is composed of a relatively very low number of 
samples > 0 mm/h. So it is simple to understand that a model could have difficulties in 
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predicting high value samples because it has less opportunities to learn how to 
discriminate them. Also a consistent reduction in RMSE from other supervised learning 
in literature is a great result for what concern the effectiveness of polynomial 
regression and Dictionary Learning. 

 

 

 
 

Fig. 5.15 Distribution of rain samples with intensity <0.1 mm/h 
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5.4. Final analysis and comparisons 

 

 

This study has the objective of analysing the performances of the rainfall prediction 
algorithms described in the preceding paragraphs, including fixed empirical equations 
and supervised learning techniques, when applied to averaged spectral data. Some 
important considerations can be summarized; the polynomial regression with DL 
preprocessing has lower errors than all other techniques and RMSE and MAE values 
obtained by the thesis predictor are better than those obtained by state-of-the-art 
algorithms that use only the frequency at 5 kHz as feature. Good results are obtained 
using speech recognition techniques such as GTCC and MFCC, again with polynomial 
regression. Considering [6] result values are very similar to the thesis predictor, and it 
shows greater RMSE and MAE, but smaller ME. The study kept by the thesis shows 
and demonstrates that the predictions performed using all features available and 
supervised regression methods significantly improve state-of-the-art schemes 
performances, in particular the ones using empirical formulas. From a certain point of 
view supervised learning algorithms needs a training phase and a consistent number 
of underwater acoustic spectra has to be used but clearly in some way this is also 
partially necessary for other kinds of algorithms. For example when it is necessary to 
find optimum coefficient of an equation used for predictions and some kind of 
calibrations are needed.  In general, it is important to recall that, as said in the rainfall 
detection part, no fluctuations in performance were observed on a seasonal basis and 
rainfall prediction was based on the amount of precipitation accumulated over the 
course of an hour, and it is not possible to determine whether this amount is due to 
transient, intermittent or continuous rain. A possible idea could be to observe dataset 
collected in different environments and understand if the thesis scheme obtains again 
good performances, but it is reasonable to assume that it would continue to operate 
successfully. As for wind prediction case, the performance obtained working on 
averaged spectra suggests that Machine Learning models may also be useful for 
prediction using short-term acoustic spectra. 
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6. Conclusions 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



87 
 

6. Conclusions 

 

 

 

 

This thesis concerned the possibility of detecting precipitation, from drizzle 

phenomena to events of high intensity, and predicting rainfall intensity and wind speed 

using the underwater acoustic noise spectra obtained from the average of the 

instantaneous spectra acquired, at various times, over the course of an hour. Since 

each sample is representative of an entire hour, to maintain sufficient temporal 

coverage it was necessary to analyze all the spectra acquired, even those altered by 

the passage of ships and other concurrent noises [11]. State-of-the-art methods for 

detection and prediction consider only few frequencies and try to compute empirical 

formulas. The Machine Learning algorithms proposed by the thesis are more accurate 

because they consider all the frequencies available together. The potential of this 

analysis is very high because it is not limited to only 1 or 2 features, so a more 

complete model could be fitted and could better be able to describe the phenomena 

in analysis. In this way better results are obtained. Also, the thesis demonstrates that 

averaged spectra can be used to obtain good results even better than the usage of 

short-terms spectra in state-of-the-art. Considering first the performances obtained in 

the rainfall detection part, it can be said that the literature methods didn’t have obtained 

satisfying performances using the dataset available in the thesis. Instead Machine 

Learning methods have obtained good performances, better than previous ones and 

with the capability of having satisfactory results for possible applications. The best 

performances are obtained by kernel-based and ensemble-learning models, among 

the experimented supervised classifiers. In particular, the RF-based binary classifier 

has obtained a good tradeoff between computational burden and performance. For 

this classifier the Pd is greater than 90% when precipitation exceeds 0.7 mm/h and Pfa 

is 1% or, alternatively, when precipitation exceeds 1.4 mm/h and Pfa is 0.3%. This kind 

of method represents a good alternative to obtain rainfall detection in areas where 

environmental constraints do not allow the installation of rain gauges or radar systems, 

in fact its performances are also better than the ones obtained by a weather radar 

operating in the experiment area. In some cases with high wind above 10 m/s the 

probability of false alarm can increase, but there are no important alterations in results 

during passages of ships in the area near the dataset spectra were collected. Also no 

alterations in results are related to seasonal basis. Considering the wind prediction 

case, the best performances are obtained using Dictionary Learning coefficients with 

polynomial regression. In particular, using 16 coefficients and a polynomial of third 

degree. The performances increase with respect to state-of-the-art algorithms and the 
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RMSE is 1.15 m/s. Also MAE value decreases to 0.80 m/s and ME is very near zero. 

Suboptimal results are obtained also using a bank of filters to extract MFCCs or 

GTCCs and using them as input of a polynomial model. In the first case 15 coefficients 

and a second degree polynomial are applied and in the second case 10 coefficients 

and a third degree polynomial are used. The RMSE is 1.28 m/s for MFCC and 1.27 

m/s for GTCC. Analysing also the plot (Fig. 4.9) in which predicted values versus real 

wind speed are depicted, it can be noted that the samples follow very well the bisector 

line and the dots inside the two lines representing the bisector shifted by ±RMSE are 

about the 85% of the total. So they are grouped around the perfect prediction line 

represented by the bisector. Representing in a chronological way all the 18193 wind 

real values and the predicted values together as in Fig. 4.12, it can be seen that the 

prediction trend follows very well the real one in time, both considering the general 

trend and if, as in Fig. 4.13, detailed situations are considered. Considering the rainfall 

prediction case, the best results are obtained again using Dictionary Learning 

coefficients and polynomial regression. 12 Dictionary Learning coefficients and a third 

degree polynomial were used. Then all predictions lower than zeros are put to 0 mm/h. 

RMSE has a value of 0.50 mm/h and the MAE 0.14 mm/h. A further increase of the 

performances can be achieved by introducing a threshold of 0.6 mm/h, instead of the 

threshold of 0 mm/h. So the RMSE decreases to 0.48 mm/h and MAE to 0.08 mm/h. 

Again, as for wind prediction, also good results are shown using a bank of filters to 

extract MFCCs or GTCCs and fitting a polynomial model. The RMSE is 0.58 mm/h for 

MFCC and 0.59 mm/h for GTCC. In the first case 20 coefficients and a third degree 

polynomial are applied and in the second case 10 coefficients and again a third degree 

polynomial are used. Analyzing, as in the wind prediction case, scatter plot (Fig. 5.4) 

in which every red point represents real values versus predicted ones again it is quite 

clear that a great number of points are inside the two bisectors lines shifted of  ±RMSE 

and a low number of samples are outside from these lines. So points are well grouped 

around the perfect prediction line represented by the bisector and the samples follow 

it very well. Increasing the intensity of rain, the behavior becomes less precise and in 

general high errors are computed for high values. Considering the rainfall trend over 

time for real values and predictions from a general point of view (Fig. 5.9) the real 

trend is well followed. Considering a more detailed image it can be noted that there 

are small oscillations near 0 mm/h. In order to solve this kind of problem the threshold 

at 0.6 mm/h was considered and it can be seen that the oscillation problem is quite 

solved and then also the trend for low values is better followed. The performance 

obtained working on averaged spectra suggests that Machine Learning models may 

also be advantageous for detection and prediction using short-term acoustic spectra. 

So a possible idea for future research could be to extend the studies done in this thesis 

to instantaneous spectra. Also similar considerations could be done for what concern 

the usage of temporal spectra and so in this way extending the Machine Learning 

analysis from frequency to time domain. Another objective could be to understand if 

the Machine Learning techniques that have been used in this thesis and the models 

fitted using the available dataset can obtain good results also with data collected in 

other parts of the world and in seas with different characteristics in terms of salinity, 
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temperature and maybe with different depth. In the future, the performance of the 

prediction system should be assessed when it is operated at a different point from that 

where the data used for training were acquired. The performance drift when the 

prediction system is trained and operated under environmental conditions different 

than those used in this thesis (e.g., shallow water, polar water, etc.) should also be 

investigated. An additional idea for future research could be the so called compound. 

The technique consists in averaging the spectra gathered in successive instants 

before proceeding with the wind speed or rainfall intensity prediction. Spectral 

compounding from a few tens of minutes up to a few hours have been used in the 

state-of-the-art. A lesser adopted option is prediction compounding, in which wind 

speed predictions produced in successive instants are averaged. In the state-of-the-

art [16, 7] the compounding of instantaneous predictions was applied over an interval 

of three hours, while the prediction compounding, over very long intervals, was applied 

downstream of a spectral compounding over an interval of an hour [1, 17]. 
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