Culture-Aware Co-Speech
Gestures Using Generative
Adversarial Nerworks

Ariel Gjaci

DIBRIS - Department of Computer Science, Bioengineering,
Robotics and System Engineering

University of Genova

Supervisor: Prof. Carmine Recchiuto

Co-Supervisor: Prof. Antonio Sgorbissa

In partial fulfillment of the requirements for the degree of

Master in Robotics Engineering

June 15, 2021

http://www.dibris.unige.it
http://www.dibris.unige.it
http://www.unige.it

Acknowledgements

I need to thank many people for helping me to finish this project,
starting from the supervisor Carmine Recchiuto who was always avail-
able for all the problems that I have encountered, I also thank the co-
supervisor Antonio Sgorbissa which also helped me, all the colleagues
and friends of the lab in which I worked for helping me to feel this
work much less stressful, all the colleagues that worked with me dur-
ing these two hard years and that gave me the opportunity to get to
the end of this long path, my parents for supporting me and finally all
the professors that taught me all the valuable and precious concepts.

To all the Master and PhD students of Robotics Engineering at the
University of Genova.

Abstract

Co-speech gestures are commonly used by humans to interact with
other people since they help them to emphasize the meaning of the
words, to express feelings and even for showing intentions. Moreover,
some studies demonstrated that they are not only dependent from the
specific style of a person but they are also strongly connected with
the culture, fact that sometimes can be easily noticed if we go out
from our country and we interact with foreign people.

For all these reasons it can be very useful, in the Social Robotics field,
to have humanoid robots that use custom culture-dependent gestures
to enhance the expressiveness and the interaction with people.

In this project there will be shown a new method to achieve this goal
by relying on Generative Adversarial Networks (GANs), which have
the capability to learn the internal structure of data and generate new
samples. GANs are subjectively regarded to produce better samples
than all the other generative methods and here they will be used to
map gestures to speech data.

In the proposed approach, the Dataset for training the Neural Net-
work is built by taking data of different people belonging to the same
culture. In particular, a custom Dataset was created using Youtube
videos that show people belonging to the same culture (specifically,
the Indian one) talking about their stories or their projects: in this
kind of videos it is simple to detect both poses and voice of the main
speakers that are necessary for the training. However, since the ap-
proach is based on features that depend from the frequency of speech
audio, it is expected that different voices produce different features
even if the people are saying the same words, making the Culture-
Aware element very difficult to be learnt. For this reason it was used
another Neural Network for many-to-one voice conversion. To show
the results on a real social robot, a third Neural Network was used for
mapping the poses from 2-Dimensional to 3-Dimensional space and
the result was reproduced by the humanoid robot Pepper.

In conclusion, the Dataset has been used to generate co-speech ges-
tures associated to a set of sentences pronounced by the robot, and

the result of this approach has been compared to the embedded APIs
for speech generation and with a procedure for generating random
talking gestures. An online evaluation with human subjects, belong-
ing and non belonging to the Indian culture, has been carried out,
to assess if the proposed method may have some effective impact in
the generation of culture-aware co-speech gesture, showing that the
model successfully learnt how to map speech audio-features with ges-
tures of the Indian culture. Also an objective evaluation was carried
out, showing that the proposed GANs model trained with converted
audio features generates more realistic gestures than the non-GANs
approach, as well as the GANs method trained with non-converted
audio features.

Contents

1 Introduction 1
1.1 Summary 3

2 State of the Art 5
2.1 Summary ...)
2.2 Rule-based method oo 5
2.3 Data-driven methodo 6
231 GANs 6

2.3.2 Probabilistic approach 8

2.3.3 End-to-end approach 9

2.3.3.1 Audio to Gesture 11

2.3.3.2 Word to Gesture 14

2.3.3.3 Speech Gesture Generation using Trimodal Context 17

2.4 Voice Conversiono 20

3 Methodology 23
3.1 Summary ... 23
3.2 Youtube Playlist o 25
3.3 Dataset Extraction 0oL 27
3.3.1 Download of the videos 28

3.3.2 Poses extraction L oo 29

3.3.3 Scene extraction Lo 31

3.3.4 Scene Filtering and poses selection 32

3.3.4.1 datautils.py oL 32

3.3.4.2 main_speaker_selector.py 33

3.3.4.3 clipfilterpy 34

3.3.44 runclipfiltering.py 36

3.3.5 Creation of the Dataset 37

3.3.6 Adaptation of the Dataset 39

3.3.6.1 motion_preprocessor.py 39

3.3.6.2 writecsv.pyo 41

CONTENTS

3.3.6.3 write_final skeletons 42

3.3.6.4 writecsv 43

3.4 Training of the model for many-to-one Voice Conversion 44
3.5 Audio Extraction and Conversion 45
3.6 Training of the speech2gesture model 51
3.7 Inference of the speech2gesture model 57
3.8 2D to 3D pose mapping 60
3.9 Mapping to Pepper Joints configuration. 63
3.10 Computational Issues 65
3.11 Requirements 68

4 Evaluation 71
4.1 Objective Evaluation 71
4.2 Subjective Evaluation 82

5 Conclusions 92
References 100

vi

Chapter 1

Introduction

It is easy to notice that humans do not interact with others relying only on the
speech capabilities, in fact, many times they unconsciously accompany the talk
with some non-verbal movements that are called in many ways, e.g. Co-Speech or
Non-verbal gestures. The importance of the non-verbal communication was con-
firmed by many studies (Krauss et al. (1996),Mcneill (1994),Alibali et al. (2000))
and some others confirmed their dependence from the culture (Archer (1997),
Kita (2009)).

The gestures are commonly reproduced by movements of arms, hands, head but
also by the remaining part of upper-body, and they are spontaneously created
while people talk for many different reasons like helping the listeners to better
understand what we want to say, reinforcing the meaning of the words, express
feelings, show intentions and so on.

Meneill (1994) introduced the most known classification of gestures: metaphoric
for describing abstract content, iconic for illustrating physical actions or propri-
eties of an element (they both are related with the speech lexicon), deictic for
pointing a specific object (so it is related to speech lexicon and spatial context in
which the gesture is made), beat (rythmic) gestures which are in tune with the
speech and do not carry any speech content, adaptors which are hand movements
towards other parts of the body, and finally emblems or symbolic gestures which
do not necessarily need to accompany the speech and which have conventional
meaning that often depends from the culture.

Since, as said before, all these kind of gestures are necessary in our conversation,
we may think that they are also needed in human-robot interaction. Especially
in the social robotic field, we aim to have robots that interact with humans as
naturally as possible, so we need agents that are not only good in the verbal
communication but even in the non-verbal one.

Some studies confirmed that gestures performed by artificial agents help a listener
to understand utterances and remember facts (Bremner et al. (2011)), but they

also improve the intimacy between the human and the robot (Wilson J.R. (2017)).
For all these reasons and since actually there does not exist a suitable approach
to reach this goal by taking into account also the culture, my work has focused on
the implementation of a new method for learning and generating culture-aware
co-speech gestures for a humanoid robot. In other words, the main aim of this
thesis is the development of a novel strategy for mapping human speech (using
audio features) and body poses, to autonomously generate cultural competent
talking gestures for a humanoid robot. Among all the possible approaches, a
detailed analysis of the relevant Literature has suggested the usage of Generative
Adversarial Networks (GANS).

GANSs are Deep Generative Networks which are able to learn the probability den-
sity of the training data and discover the internal structure (Goodfellow et al.
(2014)). In the context of gesture generation, they can create in that way novel
movements without changing their nature. GANs became very meaningful in
the last years thanks to the Deepfake, term created in 2017 for indicating auto-
mated procedures for generating fake content that is harder and harder for human
observers to detect thanks to the latest technological advances in artificial intelli-
gence and machine learning (Kietzmann et al. (2020)). Nowadays they are widely
used for many tasks, even for gestures generation, and they are subjectively re-
garded as producing better samples than other generative methods (Goodfellow
(2017)).

This work has been mainly based on the previous work performed by Ginosar
et al. (2019), which used GANS for mapping speech audio to gestures, and Sun
et al. (2016).

The main assumption of this work was that since the method of Ginosar et al.
(2019) demonstrated to successfully learn a mapping between speech audios and
poses of an individual person relying on logarithmic-Mel spectrogram features, it
can be also possible to learn a mapping of the common and non-common poses
among a group of people of a certain culture if the speech audio features (prosody)
are coming from a common voice for all of them. For this reason all the audios
taken for the dataset were converted such that all the voices can look the same for
all people: if they say a word in the same way, that word will produce the same
audio features for all of them. This method has also some drawbacks since it also
produces noise and it loses some of the source expressiveness while it maintains
most of the speech articulation (which is fundamental in speech-poses mapping)
thanks to the senones features which are a phonetic class that depends on the
sounds produced in a speech and by their past and future contexts (for more
details check 2).

In order to have a culture-related data for extracting speech and body poses, a
new personalized dataset composed by 501 videos of Indian people taken from
YouTube was created. Moreover, while the work of Ginosar et al. (2019) only

1.1 Summary

generated 2d animated gestures, this work was aimed at generating 3d speech
gestures for a humanoid robot (specifically, the Pepper robot (Softbank (2018)).
To put the poses in a 3-Dimensional space, a third neural network was trained
(it is the same network used by (Yoon et al. (2018))) and a script for mapping
the joint angles to the Pepper joint space was written.

Since these models require a lot of computations and resources, and since they
were created using Tensorflowl (which exploits the old Cuda 9 Nvidia library)
(Abadi et al. (2015)), all the code was written and adapted such that it can be run
as much as possible by the couple Google Colaboratory Notebooks - Google Drive
Cloud (Bisong (2019)): even if these have a large amount of limits, they can offer
unlimited cloud space, powerful TPUs - Tesla GPUs for the computations, and
all the libraries that are needed to run all the parts of this project, except for the
script used for replicating movements and speech by Pepper: in fact, this requires
a local network and Python 2.7 to work (not available on Google Colaboratory).
In order to assess the validity of the approach, an objective and subjective eval-
uation has been carried out. Concerning the first, metrics such as the mean jerk
of the gestures, the L1 loss and the PCK (as shown in the work of Ginosar et al.
(2019)) have been adopted. Concerning the second, some short videos employing
a Pepper robot pronouncing a set of sentences using a) the proposed approach,
b) Pepper’s APIs for animated speech and ¢) a random movement have been
created and a questionnaire based on Wolfert et al. (2021) has been designed.
Finally, a number of subjects (Indian and non-Indian) has been recruited using
the Amazon Mechanical Turk platform, and asked to watch three videos (with
the robot talking with the three aforementioned approaches) and answer to the
questionnaire.

The results suggest that the proposed method produces better gestures than
the non-GANSs one and the GANs one trained with original audio features; more-
over, it was proved that the gestures generated with the Dataset composed by
Indian people talking were more appreciated by people belonging to the Indian
culture than non-Indian subjects.

1.1 Summary

This document is structured as follows:

e Chapter 2, i.e. the State of the Art chapter, shows what is the current state
of the art on co-speech gesture generation as well as the projects and actual
methods that have been exploited for this thesis.

e Chapter 3, i.e. the Methodology chapter, shows all the methods that were
applied, the code that was written to reach the previously defined goals and

1.1 Summary

all the computational issues that were faced.

e Chapter4, i.e. the Fvaluation chapter, shows the objective and subjective
evaluation methods that were carried out to test the presented Culture-
Aware co-speech gesture generation approach.

e Finally Chapter 5, i.e. the Conclusion chapter, shows what are the conclu-
sions that can be drawn from the evaluations that have been carried out,
what are the limits of the proposed approach and how it can be improved.

Chapter 2

State of the Art

2.1 Summary

In this chapter there will be explained in details the state of the art that was
analyzed and exploited to achieve the goal of generating Culture-aware co-speech
gestures.

The Non-verbal gesture generation is a very difficult problem since machines must
be able to understand the speech,the poses and the relationship among them.
There are two main ways to address this challenge: the rule-based approach and
the data-driven one.

2.2 Rule-based method

In the Rule-based method, the rules for mapping the speech to the gestures are
defined by humans. It is used a lot in commercial robots (e.g. for the Pepper
Robot (Softbank (2018))) since it is relatively a simple approach, it does not
require data for learning, and it is possible to create very natural gestures if
programmers define good rules based on human movements. But, as it can be
imagined, it works only with a limited number of gestures and it requires a
lot of effort if the wish is to have a robot that is able to reproduce a large
amount of gestures. This is not always necessary since many of them (especially
the commercial ones) are built to use only a limited number of sentences and
movements, but if we want a robot that is able to communicate as humans, it
is very laborious to create all the mapping rules. For this reason, and since the
goal of this project is to generate an unlimited number of Cultural-aware gestures
such that Pepper can be able to move as humans do, these kind of methods were
not considered but they were instead exploited in the test phase to check what

2.3 Data-driven method

people prefers (see the Evaluation chapter 4) .

An application example of this method can be found on the work Le et al. (2011):
in this project it was addressed the problem of generating gestures for the NAO
humanoid Robot (Softbank (2018))) while it tells story. To reach the goal, it was
created a database called Lexicon which contains manually annotated gestures
obtained from story telling videos and then these gestures were mapped to the
robot considering also their expressiveness and timing with the speech. The
number of gestures used in this approach as well as the conversational capabilities
were expanded in the research of Meena et al. (2012), more specifically it was
improved the turn-management and the presentation behaviours of NAO during
conversational interactions.

2.3 Data-driven method

Data-driven approach is more suitable for the defined goals, and it can be of many
kinds depending on what we want to reach.

Some of them are suited to work fine with a limited number of gestures and
speech features (like the Probabilistic ones shown here) while some others (like
the End-to-end ones) aim to learn the probability density of the training raw data
without using intermediate representations, such as predefined unit of gestures,
and discover the internal structure at the lowest level so that they can crate novel
unlimited movements without changing their nature.

In the next sections there will be shown some examples of these two different
approaches, giving particular attention to the ones that were exploited for this
project.

Before describing in details the possible approaches for probabilistic and end-
to-end gesture generation, some details about Generative Adversarial Networks
(GANSs) should be given to better understand their importance in this context.

2.3.1 GANs

GANSs, which name stands for Generative Adversarial Networks, are generative
Neuronal Networks (NN) discovered by (Goodfellow et al. (2014)) that, differently
from any other Deep Generative model, are capable of learning how to generate
samples that are similar to the given dataset instead of providing an approxima-
tion of its density function. They consists of two different Neural Networks: the
Generator(G) whose role is to capture the data distribution, and the Discrimi-
nator (D) whose role is to estimate the probability that a sample came from G
rather than training data. These two networks are trained to play an adversarial
game where G tries to imitate as much as possible the training data to fool D,

2.3 Data-driven method

while D tries as much as possible to be not fooled by G, recognizing rather or not
the generated data is real. This game, which can be also called MinMax game,
can be formulated by the equation 2.1:

minmaz V(D, G) = Fyrpyu0109(DX))] + Barp i llog(1 = DG(@)] (21)

where z represents real data coming from dataset, z noise variables, F(x) is
the Expectation operator over distribution *, while pg., and p, represent the
distributions of x and z respectively. Since D must output the probability for a
sample being real or not and since we want to train G for learning the distribution
Pdata Of the data x (let’s call it p,) starting from a noisy distribution p, of noisy
variables z, we train D to maximize the probability of assigning the correct label
to training examples by maximizing the term E,.,,. .) [log(D(x))] (i.e. maxi-
mizing the probability that a real sample is recognized as real) of 2.1, and by
maximizing the term E..,_»[log(1 — D(G(z)))] (i.e. maximizing the probability
that a fake sample coming from G is recognized as fake). Then we simultane-
ously train G' to minimize E..,_ (5 [log(1 — D(G(z)))] (i.e. we want to minimize
the probability that the Discriminator recognizes data of G as fake). The log is
used to avoid computational issues that can happen when 2.1 is computed.
As explained by Goodfellow et al. (2014), GANs work well if both G and D are
Multilayer Perceptrons, if we train at each epoch D for more steps than G so that
D is being maintained near its optimal solution as long as G changes slowly, and
if we train G to maximize logD(G(z)) instead of minimizing log(1 — D(G(z)))
so that in the first epochs G' does not saturate because D rejects samples at the
start with high confidence (G is poor and create samples that are totally different
from ground truth).
Recently Gans were used for very different tasks and many versions were created
for the specific case. One of the most important applications is the image transla-
tion (Isola et al. (2016)): in this project indeed it was created a system composed
by an encoder/decoder for both G and D for translating images from one domain
to another, relying on conditional Gans (cGans) which are a modified version of
Gans where the D can also see the inputs z; this leads to the final formula 2.2.

Legan (D, G) = Eqy[log(D(x,y))] + Ex :[log(1 — D(x, G(x,2)))] (2.2)

Even the loss function was slightly changed, in fact it became 2.3: as it
can be noticed, it was added a new component ALy; that is defined in 2.4 and
that encourages less blurring by minimizing the norm between ground truth and
output generated by G.

OF = arg %un rgax 7LcGAN(Da G) +)\LLl (23)

2.3 Data-driven method

ALy = Epy:(lly — G(x2)|] (24)

This technique has been useful for a lot of applications as the Deepfake (de-
fined in the introduction), for video-to-video translations as in Chan et al. (2018),
but also for some projects that were used for mapping speech text/speech audio
to gestures that were exploited for the thesis.

2.3.2 Probabilistic approach

The probabilistic approach, as the name suggests, it is based on the creation and
usage of a probabilistic model for the mapping between gestures and speech. For
using some of these methods, as the ones shown here, it is necessary to have a
predefined units of gestures and text (as in (Kipp (2003))) or audios (as in (Levine
et al. (2010)); the model of the latter is shown in 2.1). As it is possible to notice
from figure, the Gesture Controller model of Levine et al. (2010) consists of two
layers: an inference layer, which analyzes vocal features and produces a distri-
bution over a set of hidden states, and a control layer, which uses the inferred
hidden state distribution and other available inputs to select the most appropri-
ate gesture segments from a library of motion data exploiting a Markov Decision
Model(MDP). The hidden-state representation of gesture motion is learned from
some kinematic parameters, which constrain the learning process to only the
stylistic content of the motion.

This method, even if it works well and online, it has some important limitations:
firstly the training set for the inference layer must be extensive enough to contain
a representative sample of significant prosody cues and prosody-gesture associ-
ations, then the gestures and audios features are ”quantized” so only a limited
number of them can be generated, and finally everytime we want to generate
gestures of a given library we have to train the model from the start. For all
these reasons, the model is not suited for the goal of this project.

The model of Kipp (2003) was instead one of the first data-driven procedure
where gestures and text were annotated from a long video and then mapped us-
ing a probabilistic model. This one, as many others which came later, has the
limitation of the finite number of gestures that can be mapped to text (1056),
and it requires an important human effort for the poses transcriptions as well as
for text annotation (the last is no more a problem today since there are a lot of
speech-to-text services available). Some other methods that used predefined units
of gestures are the ones of Rodriguez et al. (2019) and Huang & Mutlu (2014) so
the result, as it can be again expected, is restricted to a sequence of predefined
unit gestures. Rodriguez et al. (2019), in particular, demonstrated the goodness

2.3 Data-driven method

of the gesture generation task using GANs Neural Networks overcoming the state
of the art methods. Even if in that project the goal was not the gesture-speech
mapping, this can be a clue for using GANs in similar goals as the ones defined
in this thesis.

s 2

Additional Inputs vL

\

{Speech Prosody@H Probabilistic Model]—) Hidden States C-0-Q MDP '—)‘ Animation ﬁ\ '

Motion Library ‘M\ﬁ

Inference Layer Control Layer

Figure 2.1: Gesture controllers consist of two layers: the inference layer, which
infers a distribution over a set of intermediate hidden states, and the control
layer, which selects appropriate gesture segments from a motion library.

2.3.3 End-to-end approach

The second kind of approach, i.e. the end-to-end approach, relies more on deep-
learning models trained on raw data to generate gestures. Two of the latest
end-to-end approaches are different from the others since they release the limits
of gesture units and they map the movements with the speech audio (Ginosar
et al. (2019)) (let’s call that project AudioToGesture) and with the speech text
(Yoon et al. (2018)) (let’s call that project WordToGesture).

They both use a personalized dataset taken by exploiting Youtube videos, but,
while the first one uses a specific-person dataset, the second one uses a more
general dataset based on TED Talks videos: TED is a conference where people
from all over the world talk about their stories and their ideas. A dataset based
on TED talks has some advantages that have to be taken into account, also for
reaching the main goals of the thesis:

e [t can provide a very large dataset and the amount of Youtube videos are
growing up more and more everyday.

e There can be thousands of unique speakers from all over the world and
many of them speak the same language, i.e. English.

2.3 Data-driven method

e The view of the speakers in the videos is often good and it is easy to detect
their body using computer vision algorithms.

e For a large amount of time it is possible have a clear audio of the speech as
well as the transcription (the last one is not available for all the videos).

So, by viewing the differences between the datasets used, it is possible to image
also what can be some important differences between results: indeed, with one
method we learn a mapping which is style-dependent while with the second one
we learn a more general mapping that is style-indipendent.

What was done in the current project is basically the fusion of these two methods:
it was exploited the approach of AudioToGesture but with a dataset composed
by English Youtube TED Talks of people of the same culture. The original
project of AudioToGesture is based on the log-mel-spectrogram features of a
speech audio: thus even different speakers that pronounce the same words with
the same emphasis may produce different features.

The log-mel spectrogram basically is a logaritmic spectrogram adapted to the
Mel-scale: this scale was creted by Stanley Smith Stevens, John Volkman and
Edwin Newman during the year 1937 and it is a non-linear scale that represents
better the frequencies that we use more while we speak !. Having said these, it
can be imagined that where there is a pitch shifting (for example when two differ-
ent voices are used), there is also a very different log-mel spectrogram even if two
or more people pronounce the same sentences; this of course can’t happen if the
features are extracted from written words as WordToGesture. But also WordTo-
Gesture has some important drawbacks: with written words we loose the voice
articulation as well as expressiveness which are very important for the co-speech
gestures generation, and the synchronization with the gestures (also words can
be synchronized but not as much as a speech audio sampled at 44100 or 16000
samples per second).

Some previous researches in linguistics and psychology (de Meijer (1989), Fey-
ereisen (1991)) suggests that gestural kinematics and rhythm are associated with
prosody while gestural form is more strongly tied to the semantic meaning, which
can be learned by text (Mcneill (1994)). So, prosody and motion are known to
correspond to emphasis and were individually found to correlate with emotional
state. Moreover, these studies also established strong links between prosody and
the timing of gestures. Some aspects of motion that correlate with emotion, such
as directness and velocity (de Meijer (1989)), are better described as dynamics or
kinematics than form. Finally, beat gestures are “formless” (Mcneill (1994)) and
are differentiated only by their kinematic style, so it is necessary to use prosody
to learn them. For all these reasons, it was preferred the usage of audio features

'For more info press here

10

https://medium.com/analytics-vidhya/understanding-the-mel-spectrogram-fca2afa2ce53

2.3 Data-driven method

instead of text ones, even if without the latter the shape of gestures cannot be
completely learnt.

The exploitation of a voice conversion method made possible to use the AudioTo-
Gesture project even with different voices: in particular, by using a many-to-one
Voice Conversion method as the one of (Sun et al. (2016)), there can be obtained
speech audios as they came from the same person. This approach for audio con-
version is ideal since it does not require parallel data (i.e. source and target
syncronized audios) for training, data that cannot be available in the TED talk
videos. This method produces a little bit of noise during the conversion phase,
but it is able to generate audios that are syncronized with the source, that pre-
serve the articulation and also some of the expressiveness that we had before,
and that have the same tonality (i.e same pitch since we have always the same
voice as output) for all the audios. These were the most important reasons which
pushed the authors of WordToGesture to rely on written words instead of audios
features. Researchers that worked on this project used a synthesized speech audio
only for the tests made at the end with the aim of obtaining some comparisons,
relying on the Text To Speech (TTS) Google API which is able to generate a
very good audio from text, but, as it is possible to imagine, the audio cannot be
perfectly syncronized with the poses.

In the next sections there will be explained more in details AudioToGesture,
WordToGesture, some other different end-to-end methods and the state of the
art for voice conversions.

2.3.3.1 Audio to Gesture

This project, that was originally called speech2gesture, it was the main one ex-
ploited for this thesis. The code is available online on a Github repository while
some of the data used for testing the method is available on Cloud services, but,
unfortunately the code for creating the given datasets was not available. The
Gans used for this method were very similar to the ones used by Isola et al.
(2016). A main difference here consisted on the type of data used as input on
G and D, indeed the loss used is described by 2.5 were m is a vector which
represent the difference of 2D poses p between frames taken in some temporal
extent 7" of a video (in the project T=64 frames taken in videos running at 15
frames per second), so m = [ps — p1,...,pr — pr — 1], while s is the input speech
audio taken with f = 16000samples/s in the same video with the same temporal
extent. Finally, here the translation architecture learn a mapping from audio to
poses (instead of image-to-image) using an UNet (Ronneberger et al. (2015)).

Lgan(D,G) = Em[log(D(m)] + Es[log(1 — D(G(s)))] (2.5)

The UNet is basically a Convolutional Autoencoder which downsamples the

11

https://github.com/amirbar/speech2gesture
https://drive.google.com/drive/folders/1qvvnfGwas8DUBrwD4DoBnvj8anjSLldZ

2.3 Data-driven method

input through a series of convolutions, and then it upsamples the features (again
with convolutions) adding also the ones that were taken from the same level of
input, giving as result a network which is shown in 2.3. This architecture proved
to give better results than a common Convolutional Autoencoder, it requires less
data to be trained and provides better outputs since these are reconstructed using
also the features of the ground truth.

So, we have the UNet final architecture shown in 2.2, and an objective to be
minimized shown in 2.6, where L;, as before but without the input z on G
because we don’t use cGan, is defined as 2.7.

O* =arg Tgm max ,Laan(D,G) + A\L11(G) (2.6)

AL (G) = Eps[llp — G(s)]],] (2.7)

Notice that the input audios were represented by a log-Mel spectrogram
(Medium.com (2020)), which more suited for representing human voice than a
common spectrogram, and for training the Neural Network, while poses are rep-
resented as a set of z,y coordinates extracted with model_23 of OpenPose (Cao
et al. (2019a)), for more information see 3.3.2.

Audio G(t), ..., G(ty)

5. » L, regression loss

Time
i'T
)

- — ' Real or Fake
B Motion Sequence?

e

FJ"E"IEIHE‘H{'}'

Figure 2.2: Audio To Gesture architecture. A convolutional audio encoder down-
samples the 2D spectrogram and transforms it to a 1D signal. The translation
model, G, then predicts a corresponding temporal stack of 2D poses. L1 regres-
sion to the ground truth poses provides a training signal, while an adversarial
discriminator, D, ensures that the predicted motion is both temporally coherent
and in the style of the speaker.

12

2.3 Data-driven method

64 64
128 64 B4 2
input
imapge > olels output
: segmentation
tile o o
3 & map
ol of w I s
= = =
o Of 0
| = @
| g w
’ 128 128

256 128

284
2822
2380

N | et ¥ *I"I =»conv 3x3, ReLU
SH 5l 8 = o2
= SR copy and crop

¥ s s 1024 512
Aol — o - # max pool 2x2
S — t o O 4 up-conv 2x2
- o = CcONnv 1x1

28

Figure 2.3: UNet architecture (example for 32x32 pixels in the lowest resolution).
Each blue box corresponds to a multi-channel feature map. The number of chan-
nels is denoted on top of the box. The x-y-size is provided at the lower left edge
of the box. White boxes represent copied feature maps. The arrows denote the
different operations.

This technique gave very good results in learning individual styles of gestures,
but required a lot of data (more or less 100 of hours of video for each person) to
provide them. Since all the videos for a given person were taken in more or less
the same conditions, the normalization of poses it was computed by subtracting
the neck keypoint to all the other keypoints, by then subtracting for each keypoint
the average coordinate of that in all the videos for the given person, and finally by
dividing by the standard deviation of all the coordinates of the same keypoint.
So, for each keypoint, after subtracting z,y coordinates of the neck, we have
(5E), (%)) This method can’t work if the NN is trained by using data of
different people or if the data is taken in very different condition (e.g. if the view
of the speaker changes a lot in the videos or if in some videos a person is still
while in some others is seated ecc..), so it is very important to choose correctly all
the data used: this can be a very important limit because it is not simple to get
hundred of hours of good videos for a unique speaker. The keypoints extracted
from poses were 49: 40 for the hands (5 for each finger), 8 for arms (central

13

2.3 Data-driven method

point of the hand, wrist, elbow, shoulder) and one for the neck, and for the tests
there were used both objective and subjective evaluations. Before the start of the
training, it is necessary to create the dataset as it is explained on the repository
and download some files that were already provided.

The proposed method for loading the data into the network is not suited for
Google Colaboratory since it requires the load of million of single .txt files, but
all the details about this and how the technique was adapted for the thesis there
will be explained better in the next chapters.

For the objective evaluation it was checked the value of the Loss defined before
compared with some other different methods, and the PCK (Percent of Correct
Keypoints) index (Yang & Ramanan (2013)) which is a widely accepted method
for pose detection and which classifies a keypoint as correct if it falls inside a range
a maz(h,w) (where h is the height and w is the width of a predefined bounding
box) of the same ground truth keypoint: in the specific case « = 0.2 while the
bounding box is represented by an ellipse formed by an axis parallel to x and
another parallel to y of the images; the first represents the maximum variation
of width of that keypoint in the ground truth video sample (which is taken at
15 fps and formed by 64 frames), while the second axis represents the maximum
variation in height of the same keypoint in the same ground truth sample. PCK
is not the best method in this case since it is very sensitive to big variations
of keypoints, fact that can often happen since GANs are able to generate very
different movements with respect to ground truth (also in humans it is common to
use different gestures to represent the same words). Also the Loss defined before
is not a perfect evaluation method: the L1 regression part can be very fine in the
case that predicted movements are unnatural but have keypoints that fall near
the ground truth ones. Anyway, those indexes were proven to be higher by using
the proposed method than with other approaches for gesture generation. For the
subjective evaluation, there were shown two different versions of some videos,
one that is the ground truth and the other which is a synthesized one using the
ground truth face and the predicted motions, to the Amazon Workers Turk. The
workers were asked to recognize the one that is fake and the one that is truth.
Overall, this method provided good results, so this is was used as inspiration to
the evaluation conducted for the thesis.

2.3.3.2 Word to Gesture

Also this project is available online and it can be found as Co-Speech_Gesture_Generation.
For some aspects, like the fact that encoders and decoders were used and the fact
that it is based on raw-data, it is similar to speech2gesture, but for many others
they have some clear differences. At first, the data used for training the network
was completely different: as it was explained before, here the dataset is composed

14

https://www.mturk.com/
https://github.com/youngwoo-yoon/Co-Speech_Gesture_Generation

2.3 Data-driven method

by videos of different people talking in TED talks, so also the normalization of
the poses must be different. In fact, since here all the videos were taken using
different view-angles, different cameras, different resolution and frame rates, and
since the main speakers were all different, it didn’t make sense to compute an av-
erage and a standard deviation of the keypoints. The normalization was instead
computed by subtracting to all the keypoints of a given frame the z,y coordi-
nates of the neck keypoint, and then by computing the distance between left and
right shoulders: each keypoint (z,y coordinates) is divided by this factor if the
shoulder length seams to have reasonable value with respect to the height of the
neck, otherwise the keypoints is divided by a factor that can reasonably repre-
sents what can be a shoulder length with respect to the neck height detected.
The keypoints were extracted using a more recent model of OpenPose, body_25,
which gives not only the coordinates of the keypoints as model 23, but also the
confidence value with which they were taken. From the keypoints extracted, only
8 were used: the neck, the head, and then the wrist, the elbow and the shoulder
for both arms.

Before going inside the Neural Network, the poses needed to be hardly processed
in order to take only good data for the training, validation and test sets: there
were taken only the keypoints of the main speaker (the confidence values were
exploited to find it), only parts of videos (clips) which have visible keypoints for
at least 60% of the time, only frontal view was used, in case of jittering and
missing joints (may happen for problems of detection) the keypoints were filled
with reasonable values computed by regression, the motion were smoothed using
filters and the clips were the main speaker is still were deleted. This time also the
code for creating the Dataset was fortunately available on Github and it revealed
to be a good starting point for creating the dataset of this thesis

The words were taken from the transcripts that come with the videos: in fact
there were taken only the ones which have English subtitles.

This time, differently from speechZgesture, gestures were represented as 10-dimensional
vectors where each dimension represent a component extracted thanks to the
Principal Component Analysis (PCA) (Sehgal et al. (2014)) technique: with these
10 components the 94.8% of the variance in the training dataset is represented.
Also words were represented as multi-dimensional vectors, in the specific case
they were represented as one-hot vectors that describe the word index in a dic-
tionary, and then they were compacted to 300-dimensional vectors using a model
for word embedding, which made possible to represent in a similar way words
that have similar meanings.

This kind of representations made the learning process less ”end-to-end” with
respect to speechZgesture, in fact only a limited number of gestures and words of
the original dataset can be used for the training purpose. A bidirectional Recur-
rent Neural Network (RNN) was used in this case for the model for capturing the

15

2.3 Data-driven method

speech context, while for the decoder it was used an RNN with pre- and post-
linear layers. So, practically the model is composed by an encoder-decoder sys-
tem where each of them has a two-layered Gated Recurrent Units (GRUs) (Cho
et al. (2014)) with 200 units, and it is represented in 2.4.

e, % e,
| Un-projection | | Un-projection | | Un-projection |
| Linear | Linear | Linear ‘
[} [} [}
Encoder Encoder Encoder Decoder Decoder Decoder Decader
- - -+ — R >
GRU GRU GRU GRU GRU GRU GRU
LY [LY
Word Word Word | Linear | | Linear | | Linear | | Linear |
Embedding Embedding Embedding | Projection | | Projection | }
[) [} [}
word, word,) word, pose,. posey
{] J | Y J
encoder decoder

Figure 2.4: Word to Gesture architecture. The encoder GRU interprets s speech
words, and the decoder GRU generates m human poses of gestures. The decoder
GRU inputs n previous poses to make the series of poses continuous. The soft
attention mechanism is used but not depicted here coherent and in the style of
the speaker.

Only a user study was conducted to test the method: relying again on the
evaluation of Amazon Turk Workers, the results related to this approach were
compared with the ones obtained with other gestures generation approaches, such
as Ground Truth gestures, Nearest Neighbour, Random gestures and Manually
Crafted gestures.

All the movements were reproduced by the Nao robot (Softbank (2018)) by map-
ping keypoints from 2D to 3D and some videos representing all the methods were
taken relying on Google Text-to-Speech for the speech of the robot, so that ev-
erything has been shown to the Workers.

These ones have to complete a survey at the end, and three different indices were
measured: anthropomorphism, likeability and speech-gesture correlation. The
Ground Truth was the one which gave the best values of the three indices, the
Random was the worst while no statistically significant differences were found
with the proposed method, Nearest Neighbour and Manual Crafted gestures. In
the open questions, the workers said that sometimes the movements seemed jerky
and fast, while some other times the robot were not moving in a predictable hu-

16

2.3 Data-driven method

man fashion even if it seemed not stiff and moving freely as humans do when
they talk.

It is important to notice that, for mapping the poses from 2D to 3D, a new Neu-
ral Network was created since the other existing studies for 3D pose estimation
found to be not successful in the TED dataset, owing to environment mismatches.
Considering that all the poses extracted for the dataset were facing near front,
the problem was easier than the classical pose estimation problem. The network
consists of a cascade of three fully connected layers with 30, 20, and 7 nodes
with batch normalization, while the data used to train the network was coming
from CMU Panoptic Dataset (Joo et al. (2015a)) which provides highly accurate
3D poses of social activities including many co-speech gestures. The code of the
project is publicly available on a Github repository.

2.3.3.3 Speech Gesture Generation using Trimodal Context

This project is the earliest end-to-end method created and it is an evolution of
WordToGesture: here there used not only the written words as a speech context
for generating gestures, but there were exploited also the audios and the Speaker-
IDs of the people(Yoon et al. (2020)). Unfortunately the paper of this project
was available only after few months the actual project was started, so it was not
exploited for the purpose neither explored in details even if the code is currently
available online on a Github repository.

The overall network consists of three encoders (one for each speech modality)
and a decoder for gesture generation; the architecture is shown in 2.5. As it
can be noticed in the image, the Generator create poses frame-by-frame from
an input sequence of features containing the speech context. Differently from
WordToGesture and AudioToGesture, here the problem of the synchronization
was specifically taken into account by synchronizing the different modalities such
that they share the same time steps, and by configuring the Generator to use
parts of speech text/speech audio of the current time step and the near ones
instead of using the whole speech context.

For the speech text, it is assumed known the exact utterance time of words, so
there were inserted padding tokens (¢) to make a padded word sequence to be
with the same length as gestures. All words were then transformed as WordTo-
Gesture in 300 dimensions using a word embedding technique, and finally encoded
by a Temporal Convolutional Network (TCN) (Bai et al. (2018)) to make a 32-D
feature vector.

For the speech audio, a raw audio waveform goes inside a 1D CNN to generate
the 32-D feature vector.

Finally, the speaker IDs were represented as one-hot vectors where only the el-
ement of a chosen speaker is not zero. A CNN then maps the speaker IDs to a

17

2.3 Data-driven method

style embedding space with 8 dimensions.

For the Generator, a bidirectional Gated Recurrent Unit (GRU) network was
used. The encoded features of speech text, audio, and speaker ID are concate-
nated to form a big feature vector for each time instant, so the Generator takes
the feature vector f; as input and generates the next pose d;,; iteratively.

In this project, gestures are represented as a sequence of poses composed by 10
joints and described by directional vectors that represents the relative position of
a child joint with respect to a parent one (i.e. we have 9 directional vectors for
each pose).

To push the gestures to be more realistic, an Adversarial Discriminator was used,
obtaining finally a complete GAN model.

The architecture was tested objectively by using a new index called FGD, and
subjectively by a human study. FGD is an index which applies the concept of
FID metric (Heusel et al. (2017)) to the gesture generation problem: instead of
computing the Frechet distance between the distributions of the features of real
and generated images, it does the same with features of gestures.

The proposed method was compared with WordToGesture and AudioToGesture,
obtaining better results in both the evaluations. Indeed, even if AudioToGesture
showed better motion than WordToGesture because of the usage of an Adver-
sarial Discriminator, this motions seemed repetitive since they were learned by a
single modality. In particular, AudioToGesture showed a lot of beat gestures but
not many others of different kind. WordToGesture instead showed to produce
different gestures for different words, but the motion seemed to be sometimes
slow and with discontinuities between ground truth and generated poses. Even if
the results were better with FGD metric showing also large and dynamic gestures
and even if the results were better subjectively, with the last kind of evaluation
method it was not possible to find significant differences with AudioToGesture
concerning the human-likeness of motion and speech—gesture match questions.

18

2.3 Data-driven method

[Real / Generated}

Discriminator

Generated
Poses

Seed /‘}\
Pose

Generator

@n
Feature fi
Vector
Speech .) .
Text How ¢ can you find ¢ an ¢ answer on ¢ ¢ ¢ what vision ¢ ¢ of the

Speech Iy Iy
Audio

Speaker

a B c E F G H I J
ID -

Figure 2.5: The architecture of the proposed Trimodal gesture generation model.
The generator generates a sequence of human poses from a sequence of context
feature vectors that contain the encoded features of speech text, speech audio, and
speaker identity (ID). The features of text, audio, and speaker ID are depicted
as red, blue, and green arrows, respectively. The seed poses are also used to
ensure continuity between consecutive syntheses. The discriminator is a binary
classifier that distinguishes between real human gestures and generated gestures.
The number in parentheses indicates the data dimension. The poses are in 27
dimensions since there are nine directional vectors in 3D coordinates

19

2.4 Voice Conversion

2.4 Voice Conversion

On the basis of the proposed analysis, and for all the reasons given before, I've
decided to use the AudioToGesture approach as a starting point for my Thesis
work. However, since in my case the dataset was composed by different persons
with different voices, I have decided to adopt a Voice Conversion technique. In
fact, it was thought that if AudioToGesture works well when associating features
coming from spectral evenlops of the voice of a person with his non verbal move-
ments, this technique can work fine even with different people if they use exactly
the same voice. The results of the proposed approach, both without and with
VC, will be shown and discussed in chapters 4 and 5.

There are many different kinds of VC depending on what we want to achieve,
indeed we may want a one-to-one correspondence between voices, many-to-one,
many-to-many or many-to-one. In this thesis it was exploited a technique based
on Deep Learning for many-to-one VC which uses a Neural Netowork based on
Phonetic PosteriorGrams (PPGs) to bridge between speakers (Sun et al. (2016)).
A PPG is a time-versus-class matrix representing the posterior probabilities of
each phonetic class for each specific time frame of one utterance (Hazen et al.
(2009)). A phonetic class may refer to senones, words and phones: in this pa-
per senones were used (an example can be found in 2.6). Senones don’t depend
only from the sounds produced in a speech but also by the context: for example
“a” with left phone “b” and right phone “d” in the word “bad” sounds a bit
different than the same phone “a” with left phone “b” and right phone “n” in
word “ban”. The context depends itself by the past and future contexts (left
and right contexts) of a word. It is important to notice that senones are speaker
indipendent because they rely only on the language used for a speech and by
its typical "sounds” used for speaking the words. This is why there is a believe
that PPGs obtained by the Speaker Indipendent-Automatic Speech Recognition
(SI-ASR) system can be a good element for mapping the voices; the objective
and subjective results shown that this fact revealed to be true.

The model is shown in 2.6 and, as it can be noticed, it is composed by many
parts.

Firstly, the SI-ASR system (that is a DNN created using Povey et al. (2011) and
Garofolo et al. (1992)) learns a PPGs representation of the input speech from
the MFCCs (Mel-frequency cepstral coefficients) features, where MFCC 1is the
short-term power spectrum of a sound based on a linear cosine transform of a
log power spectrum on a nonlinear mel-scale of frequency, coming from a multi-
speaker ASR corpus (TIMIT dataset, Garofolo et al. (1992)).

Then, exploiting a dataset containing the audios of the desired target speaker
(in this case the target comes from the ARCTIC dataset, Kominek & Black
(2004)) by extracting the PPGs features of him/her with the SI-ASR model, and

20

2.4 Voice Conversion

the MCEPs features (MCEPs are the Mel Log Spectral Approximation (MLSA)
parameters which approximate Mel- Frequency Cepstral Coefficients (MFCCs)),
these two are mapped together using a DBLSTM model (as Sun et al. (2015) but
this time trained without parallel data), that is shown in 2.7 and which gives as
output the new Converted MCEPs.

Finally the trained DBLSTM is used to extract MCEPs features from the PPGs
of the source speaker (extracted by the trained SI-ASR); by taking these features
as long as the Log FO (foundamental frequency or pitch of a voice) translated to
the pith of the target, and AP (Aperiodic component, a component generated
by the modulation of the air flow and which is responsible of the generation of
fricative or plosive sounds, but it also present in the voiced sounds as well), the
new syntetized speech is created using a vocoder. In the implementation found
on Github, the training sounds as well as the ones produced by an inference, lasts
exactly 4 seconds; this limit was overcome in the thesis as it will be shown in the
next chapter.

Training Stage 1 | Traming Stage 2 Conversion Stage

Standard ASR [\ |]
: Target Speech . (Source Speech O

Log FO
Parameter Parameter . Parameter =
Extraction Extraction i Extraction | AP
MFCC ,L

Trained SI- Tramed SI-
ASR Model * ASR Model *

I

i

I PPGs _— e PPGs Linear

i i i v Conversion
i i |

i

i

: DBLSTM : Trained
' | Model Training ;[D DBLSTM Model
L |

SO SR D * | Converted
MCEPs

SI-ASR EI—J;)
Model Training | 7

STRAIGHT
Vocoder

Converted
Speech

means these two models are the same

Figure 2.6: Schematic diagram of VC with PPGs. SI stands for speaker-
independent. Target speech and source speech do not have any overlapped por-
tion.

21

2.4 Voice Conversion

Output Layer

Laver-2 Backward

Layver-2 Forward

Laver-1 Backward

Layver-1 Forward

- Input Layer

Figure 2.7: Architecture of DBLSTM. The DBLSTM network architecture in-
cluding memory blocks and recurrent connections makes it possible to store in-
formation over a longer period of time and to learn the optimal amount of context
information

Time (s)

Figure 2.8: PPG representation of the spoken phrase “particular case”. The
horizontal axis represents time in seconds and the vertical one contain indices of
phonetic classes. The number of senones is 131. Darker shade implies a higher
posterior probability

22

Chapter 3

Methodology

3.1 Summary

In this chapter, there will be shown everything about the methodology applied
for this thesis, the code implemented and the computational problems addressed
for reaching the defined goals.

Before the start, it is essential to say that the whole project has been tested on
Ubuntu 18, which is the Operating System used by Google Colaboratory, Python
3.6, and then Python 2.7, the latter only used for the script for mapping the
gestures to the Pepper Robot. The project speech2gesture was the only one also
tested with Ubuntu 20 and CUDA 11, so for the others there is no proof that
they can also work with other versions of CUDA, Python and Ubuntu. There is
a belief that it is at least necessary to maintain Python 3.6 since some packages
are not compatible with other Python versions.

All the Python libraries that are needed to run the project are written inside a
requirements.txt file, which can be passed as an argument to the command pip
for installing them; the list of the required packages is shown in the section 3.11.
The whole project can be briefly described by the following steps which are also
shown in the schematic diagram 3.1:

1. Creation of a personalized Youtube Playlist for the TED videos which will
be used as Dataset.

2. Download of videos and extraction of the Dataset with poses

e Download of all the videos
e Poses extraction using Openpose
e Scene extraction using PySceneDetect

e Scene filtering and poses selection

23

3.1 Summary

e Creation of a Dataset with training,validation and test sets
e Adaptation of the Dataset for speech2gesture

— Downscaling of the fps of clips to 15

— Mapping of the poses to speech2gesture configuration
— Preprocessing of the motions

— Creation of a csv file for describing data

3. Training of the model for many-to-one voice conversion

4. Extraction and conversion of the audio files

5. Training of the speech2gesture model

6. Inference of speech2gesture for generating poses from audio files
7. 2D to 3D pose mapping

8. Mapping of poses to Pepper Joints configuration and computation of the
angles between joints

Let’s now see in detail every single part shown above and how it was imple-
mented.

24

3.2 Youtube Playlist

Youtube
Playlist
Dataset
Extraction
Audio
Conversion

|

Speech-Gesture
Mapping

Robot Speech

Figure 3.1: Schematic diagram of the thesis workflow. A Personalized Youtube
Playlist is created, then the videos are downloaded so that the poses and audios
can are extracted. After the audio conversion, the model is trained so that it
can be inferred by passing an audio thanks to which it can generate poses. The
motion is then mapped in 3D and finally reproduced by the Robot as well as the
spoken words.

3.2 Youtube Playlist

The Youtube Playlist contains all the data that has to be extracted and then
used to train the speechZgesture model. Since in this thesis the goal is to learn
co-speech gestures from a culture, it is important to use a playlist containing
videos of people belonging to the same culture. Even if it can be found on
Youtube a Channel called Josh Talks (a frame of a Josh Talks video is shown in
the figure 3.2) which contains videos of only people coming from India talking
about their stories exactly as it happens inside the Ted Talks Channel (except
for the fact that here the speakers come also from other countries), it cannot be

25

3.2 Youtube Playlist

completely exploited since the people speak using different languages. For this
reason, it was necessary to create a personalized Youtube Playlist.

But, considering that Josh Talks also contains a lot of useful videos, some of them
were exploited to create a specific Playlist for the Indian culture.

To reach the goal, there were mainly exploited the two above mentioned Youtube
Channels and rarely some unofficial channels containing videos of the same kind,
and there were taken only the videos with people talking using only the English
language. By seeing the videos, it was noticed that in some of them the main
speaker used different languages during the speech, so the task of choosing appro-
priate data became more challenging. To overcome this problem, all the videos
were checked for a few seconds in some random points and, if there was found
that in all the points the main speaker was always speaking English, the videos
were considered valid for the Playlist. Of course there was not a proof for that,
but there is a belief that on average the data is as expected.

Also the impossibility of knowing in advance the culture of the main speakers is a
problem for creating the Playlist, so there were considered all the speakers inside
the Josh Talks as belonging to the Indian culture while for the TED Talks and
the other minor channels, there were checked the information used as description
of the videos and eventually, if nothing helpful were found, the origin and where
the person lived for most of the time.

By using this approach, 501 videos with a variable duration from few minutes to
an hour were chosen, and from these, only 439 were taken and used for the cre-
ation of the dataset. Indeed, sometimes problems happened during the download
phase and, as will be explained in the next section, there were taken only the
ones with at least HD 1280x720 resolution to better detect the poses.

26

3.3 Dataset Extraction

Figure 3.2: A frame of a Josh Talk video showing a person coming from India
telling stories. From this frame it is possible to notice that the speaker is clearly
visible so that it is easy to extract poses with Openpose.

3.3 Dataset Extraction

In this section there will be explained in detail all the steps that were necessary
for preparing the training data for the speech2gesture model. To write all the
scripts, it was taken as a reference point the code of youtube-gesture-dataset used
for creating the dataset of the project WordToGesture. It should be noticed that
the implementation of the latter shows that the model was not trained using
the dataset coming from youtube-gesture-dataset but it was instead used another
dataset which gave better results.

All the parts that are shown in the next have a common configuration script
called config.py which has inside some useful constants shared among them. A
schematic diagram for poses extraction is shown in figure 3.3.

27

3.3 Dataset Extraction

M

Poses Extraction J [Scene Detection

T~

Main speaker selector

v

[Clip filtering

J

N

J

Figure 3.3: Diagram showing how the dataset is extracted. The videos are firstly
downloaded, then the scenes and the poses are extracted from them. By using
these data, the main poses of the main speaker are chosen from clips and finally
these ones are filtered such that only the good ones are taken

3.3.1 Download of the videos

This operation was executed by a Python script called download_video.py. To run
this one, it is necessary to be registered as Google Developer (Google (2021a)) so
that it can be possible to get a Developer Key and use the Youtube Data API
(Google (2021b)) with the Python package google-api-python-client.

The code contains 3 simple functions called fetch_video_ids, video_filter, download
and a main function which executes them and also prints the video list returned
by fetch_video_ids inside a file called video_ids.txt. fetch_video_ids basically takes
all the video IDs inside a Playlist and returns a list with all of them. For doing
this operation, the IDs of a specific Playlist and the Channel that contains it must
be passed as arguments. The download function instead takes all the IDs returned
by fetch_video_ids and downloads all the videos that can be downloaded. Before
this operation, it takes all the info of the videos using the Youtube APIs, it prints
them inside a JSON file (we have one JSON for each video), it calls the function

28

3.3 Dataset Extraction

video_filter, which filter and takes the videos that have some specifications, it
downloads the videos and finally writes inside a log file some info the videos that
were downloaded and the ones that were skipped. By filtering the videos with
video_filter and by using the function YoutubeDL of the Python library youtube_dl,
only 439 were downloaded from the 501 available inside the Playlist. The function
video_filter takes as argument the info of a video and it returns a positive boolean
variable only if the video has a duration which is less than 1 hour (longer videos
can require a lot of time to be processed by the other scripts), minimum resolution
of 1280x720 (lower resolution can make the detection of poses more challenging
from the Openpose point of view) and if it is saved on Youtube as .mp4 file (it is
necessary to have videos of the same kind for processing them).

Even if a video is positively filtered, youtube_dl sometimes fails to download it
for many reasons: before processing the next video ID, it tries for maximum 3
times to download and, if it cannot do it, the video is considered skipped. If
the Playlist is not completely processed, the script does some checks to skip the
videos that are already downloaded, and gives the possibility to insert a video ID
of the list returned by fetch_video_ids to start the downloads from that point.

3.3.2 Poses extraction

To achieve the goal of pose extraction, Openpose (Cao et al. (2019b)) was used. It
was written a very simple script whose name is run_openpose that it is composed
by 3 functions and by the main one. The main manages the directories for
the JSON files generated by Openpose (each one containing a single pose) and
the Pickle ones created by the script (this will be explained in details), then it
iteratively gets the video IDs from the path where we previously downloaded the
.mp4 files thanks to get_vid_from_filename, which returns a video ID from a path,
and then it launches a command for running Openpose with the chosen setup:

e Default accuracy

e Model Body_25 for extracting 25 keypoints of the body comprising the head,
the eyes, the neck, the hip, the legs, the foots and the arms (so the face and
the hands keypoints were not extracted)

e The image files showing the detected poses that can be generated by Open-
pose are not saved

e The video for checking in real-time the poses extracted from the videos is
not displayed

e Detection of a maximum of 3 people for each frame

29

3.3 Dataset Extraction

It was decided this setup because:

e Saving JPEG images is not important for the goal and it can slow down
the process

e The display of poses in real-time can again slow down the process and it
is useless if Google Colaboratory or an external Server are used (as it was
done in this thesis) since they both can’t show the videos

e Hands and face poses can’t be mapped on Pepper robot because it hasn’t
enough Joints for the purpose

e [t was chosen to maintain the default accuracy because it is the best trade off
among speed of poses extraction, accuracy and business of GPU memory
occupation (more accuracy requires more graphic memory and in Google
Colaboratory we can’t choose GPUs that have a lot of memory available).

e Detect a maximum of 3 people can be useful since in some frames many
people are shown and we want to choose for as much time as possible the
main speaker among them (if there are more than 3 people, Openpose
choose the three that are detected better)

An example of Openpose detection inside a frame is shown in image 3.4. It is
important to notice that the Pepper robot it is allowed to close and open the
hands but not to control each Joint of each finger directly, so the problem of
hands management was not addressed in this work.

The poses extracted by Openpose, as well as the confidence values of the key-
points, are saved in JSON files so that in the end we have a JSON file for each
frame of the video. To group all these files into a single .pickle file, it was installed
the Pickle python module and it was called the function save_skeleton_to_pickle
that basically groups all JSON files for each video by relying on the function
read_skeleton_json for reading them. After this process we will have a single a
pickle file for each video downloaded. To run this project it is important to have
Openpose installed: to do it in Google Colaboratory it was written a little script
while for executing it on an external Server, a Docker Image which have inside
Openpose was used (available in Openpose Docker Image). For testing the project
it was created a little dataset whose poses were extracted on Google Colaboratory,
while for extracting the whole dataset it was used the external Server which is
much faster than Google Colaboratory. For more info heck the section 3.10.

30

https://hub.docker.com/r/cwaffles/openpose

3.3 Dataset Extraction

OpenPose 1.5.1

: %
-.‘;» Q

11_' 40.2 fps
S :

A
.

L

Erames 201 Eeopler s

Figure 3.4: Example of Openpose detection inside a frame

3.3.3 Scene extraction

Also this script is very simple and its name is run_scenedetect.py. It has only
one function called run_pyscenedetect and the main one that only checks if a
video was already processed: if yes it jumps to the next video, if no it runs
run_pyscenedetect for the selected video. PyScenDetect is a powerful Python
library based on computer vision algorithms for detecting scene changes in videos
and automatically splitting them into clips: by doing these operations we can
check if the length of a scene is large and good enough (from the poses point
of view) to create a training / validation or test set sample for speech2gesture.
run_scenedetect.py only launches a command for starting to detect scenes with
PySceneDetect (that has to be installed in advance as shown in the 3.11) with
the options that we choose: in the specific case, it was used the detect-content
option that compares each frame by sequentially looking for changes in content
and which is useful for detecting fast cuts between video scenes although slower
to process, and list-scenes option for printing the scene list and outputting to a
CSV file on a path defined by us (totally 439 files were obtained since there were
downloaded 439 videos). All the other parameters were not set and default values
were used.

31

https://pyscenedetect.readthedocs.io/en/latest/

3.3 Dataset Extraction

3.3.4 Scene Filtering and poses selection

This is one of the main parts in the process of dataset creation, it is implemented
inside the run_clip_filtering.py script which relies on three python modules called
main_speaker_selector.py, clip_filter.py and data_utils.py, and has inside two func-
tions, called run_filtering and read_sceneinfo, as well as the main one. Before
explaining run_clip_filtering.py, let’s have a look to the contents of the three
modules and run_clip_filtering.py in the next sections.

3.3.4.1 data_utils.py

As the name suggests, this module contains some useful classes and functions for
loading and managing poses and videos:

e class VideoWrapper: given the path of a video, the class extracts from
the video some useful information thanks to OpenCV (a module that is
necessary as shown in 3.11). More specifically, it extracts the frame rate,
the height of the frames, and the total number of frames inside the video.
It has also some useful functions for computing the amount of seconds
passed from the start to a specific point of the video (frame2second) given
the frame rate and the number of frames (it is used to compute the total
length of a video in seconds), for doing the opposite (second2frame, for
setting the current frame(set_current_frame), and to get the video reader
(set_current_frame) with OpenCV Video Reader; this was also done in the
initialization phase of the class.

e function read_video: giving a path and the name of a video, it takes that
video in the path and initializes the OpenCV Video Reader.

e functions load_clip_data and load_clip_filtering_auz_info: given the name of a
video, the first reads the JSON file related to the clips while the second does
the same with clips info (these files are generated by run_clip_filtering.py as
it will be explained in the next).

e class SkeletonWrapper: it simply loads, given a path and the name of a
video, the associated pickle file which contains all the poses that we ex-
tracted previously with Openpose; if it doesn’t exists, Skeleton Wrapper
creates it from JSON files generated by Openpose. It has also two func-
tions inside: read_skeleton_json, that is used by the class to read JSON files
in the case the pickle file is not found, and get which returns the poses from
a start frame to an end frame (parameters passed by us).

32

3.3 Dataset Extraction

e function draw_skeleton_on_image: given a pose, an image and a thickness
value, it draws the pose into the image using lines with the given thickness,
finally returns the result of this operation.

e function is_list_empty: given a Python list, it simply returns true if it is
empty.

e function get_skeleton_from_frame: since we can detect maximum 3 people
with Openpose, we expect to have a maximum of three poses for each video
frame inside the pickle file containing all the poses of a video. To take the
data of all the people for a given frame, we choose the frame (an index
where 0 indicates the start frame) and then we go to the pose_keypoints_2d
element: here we have as many poses as people were detected in the frame.
We can take the one that we want by specifying another index (from 0 to
2 in this case).

What we pass to this function is the latter index so it returns the 2D
keypoints.

3.3.4.2 main_speaker_selector.py

This module contains a single class called MainSpeakerSelector which is used to
filter the poses inside a clip video such that only the keypoints related to the
main speaker are extracted.

Passing the keypoints related to a clip and calling the method get, the class calls
the function find_main_speaker_skeletons that firstly checks for the first frame on
which at least one person is detected. If more than a person is detected, it is
chosen the person (the keypoints are taken thanks to the get_skeleton_from_frame
function defined in data_utils.py) whose average of confidence values of detected
keypoints is higher than the others, with the belief that the keypoints of the main
speaker are the ones detected better: indeed, we expect that the main speaker’s
body is much bigger in the frame with respect to other people because in a TED
talk most of the time the camera will focus on him; a bigger body in Openpose
will be simpler to detect with respect to smaller ones so the confidence values
related to the acquisition of the keypoints will be higher.

Only the 9 keypoints of interest were checked: head, neck, right shoulder, right
elbow, right wrist, left shoulder, left elbow, left wrist, hip. The order is the same
used by Openpose and the other keypoints of the model body_25 were not con-
sidered since they cannot mapped to the Pepper Joints.

After the main speaker is chosen and after him keypoints are taken again with
get_skeleton_from_frame, MainSpeakerSelector iteratively calls, for all the remain-
ing frames, its method called get_closest_skeleton: given a frame and the pose of
the main speaker taken before, this function checks in that frame the pose of the

33

3.3 Dataset Extraction

person (by exploiting again find_main_speaker_skeletons) which is closer to the
pose of the main speaker by computing the absolute distance among each key-
point; if this distance is higher than a predefined threshold (in this case defined
as maximum between neck height * 3 and shoulder length * 2), the tracking is
considered broken and a empty list is returned, otherwise the keypoints of the
tracked person are returned and so taken by MainSpeakerSelector.

We expect that, in a clip detected by PySceneDetect, the position and the size
of the body of the main speaker will not change a lot in the frames: if a point of
view changes so much (so if the camera change or if it fastly moves for focusing
on something else), PySceneDetect will classify this as a different clip, this is why
the predefined threshold makes sense.

Finally, the keypoints of the first frame (that represents the speaker whose key-
points have the highest confidence) and all the tracked ones are grouped together
and returned by the MainSpeakerSelector class. If we instead set Openpose to de-
tect only one person for each frame, the existence of MainSpeakerSelector doesn’t
make any sense.

3.3.4.3 clip filter.py

This is the last module and it is exploited for filtering the video clips. It has
inside a class called ClipFilter which has many methods: it has one for each filter
applied on the clip, one for calling all of them and another one for returning
the results (get_filter_variable). Given the video ID, the start frame and the end
frame of a clip, the poses of that clip and finally the poses of the main speaker
extracted by MainSpeakerSelector, ClipFilter firstly initializes some variables by
exploiting the passed values and then, by calling its method is_correct_clip, it
starts the clip filtering process. The outputs are three and are returned by the
function get_filter_variable: a list of boolean values containing the results of the
filters (if it is 1 then the clip is considered valid for that filter), a list of messages
indicating why the clip is not considered valid, and a list of info about back poses,
missing joints, looking sideways, small body and still body (explained better in
the next lines).

Totally seven filters were applied and only the 9 keypoints of interest were con-
sidered (same keypoints of the previous chapter):

o is_skeleton_back: takes a ratio as argument and then checks the position
of the shoulders of the main speaker for each frame of the clip: if the left
shoulder detected by Openpose is on the right, then the body is considered
turned back and that frame is not considered valid. The total number of
invalid frames is saved in the list of info and the function returns True if
the amount of incorrect frames divided by the total number of frames in
the clip is higher than the ratio passed as argument.

34

3.3 Dataset Extraction

is_skeleton_sideways: even this function takes as argument a ratio and
checks for each frame of the clip if the main speaker is sideways with respect
the camera: if the x coordinate of the head is greater than the x coordi-
nate of left shoulder or lower than the x coordinate of the right shoulder
(or opposite depending on the fact that the main speaker can be turned
back), then the frame is considered incorrect. The total number of incor-
rect frames is saved in the info list and the ratio passed to the function
must be lower than the ratio of the amount of incorrect frames divided by
the total number of frames in the clip for the function to return True.

1s_skeleton_missing: again a ratio is passed and for each frame of the clip
the function checks if any of the 9 joints of the main main speaker is missing:
if yes, that frame is not considered valid and again the ratio between total
invalid frames and total frames in the clip must be higher than the ratio
passed for the function to return True. The number of incorrect frame is
saved in the list of info.

is_skeleton_small: as before, a ratio is passed and a check for all the frames
of a clip is done: if the distance (in pixels) between the two shoulders of
the main speaker is less than a given threshold (100 is the value passed by
default by config.py), that frame is not considered valid. Again the info is
saved and True is returned if the given ratio is lower than the total number
of invalid frames divided by the total number of frames in the clip.

1s_too_short: a very simple filter that checks if a clip contains at least the
number of frames that we expect: since the average fps of a video is 25 fps
and since speech2gesture requires samples that are long 4 seconds, it was
set a minimum of 25 * 4 frames; this condition does not always guarantee
that clips are long enough for the model but it is a good starting point. It
returns True if this condition is not verified.

1s_picture: it samples a clip 5 times extracting 5 frames and then, by using
OpenCV and by going in the frames sampled inside the video, the function
computes the average distance between two consecutive frames by checking
the pixels values. If the distance is below a given threshold (here is 3000000),
the function return True. The distance is saved in the info list.

is-many_people: it checks for each frame of the clip how many people are
present. If the average is more than 5, the function returns True. For
the setup that we choose in Openpose, this condition can’t happen and
the maximum of people detected in a frame is 3. It can be useful if the
Openpose setup changes.

35

3.3 Dataset Extraction

is_correct_clip calls sequentially all this filters by passing the ratio value to
the functions that require it: it was chose to pass 0.3 to is_skeleton_back and 0.5
to is_skeleton_missing, is_skeleton_small and is_skeleton_sideways following the
tuning values set in the Github project. The function set also the messages (like
"too Short” is a clip is too short) that are generated in case a filter returns True.
Finally, if all filters return False, is_correct_clip returns True and a message ” Pass”
is created.

3.3.4.4 run _clip_filtering.py

Now that we have described all the modules, it is much simpler to talk about
the behaviour of this script: basically the main function iteratively loads, for
each video ID, the pickle data by calling Skeleton Wrapper, the video reader by
calling Video Wrapper, and the clips data by searching the JSON file generated
by PySceneDetect through the function read_sceneinfo. If a specific video ID was
not processed before, run_filtering is called, otherwise we pass to the next video
ID.

read_sceneinfo not only loads the data of the clips, but it also splits all the clips
that lasts more than 10 seconds in smaller ones: this operation is executed be-
cause it is easier to preprocess the motion and to convert the audios. Indeed,
as we will see next, preprocessing motions that lasts too long is not very useful
with the proposed technique, and converting long audios can be very challenging
or even unfeasible for the many_to_one Audio Conversion model. 10 seconds has
been chosen as a good trade off between the speed of the audio conversion and the
effectiveness of motion preprocessing. Moreover, since the speech2gesture model
will shrink these clips in samples of 64 frames taken at 15 fps, we will not lose so
much data: to give an example, if we would choose to have a duration of 5 sec-
onds per clip, in that case we will take 3 samples by shifting 5 frames, operation
that is done in the project (0 to 64 frames i.e. 0 to 4.3 seconds, 5 to 69 or 0.3
to 4.6 seconds, 10 to 74 or 0.6 to 4.9 seconds), and we will delete 0.1 seconds of
data. The less we split clips, less data we will loose. The function returns the
new modified list containing the information of the clips with maximum duration
of 10 seconds (it is indicated the starting frame of each one). These ones are then
saved in a JSON file.

Using the Video Wrapper, the Skeleton Wrapper and the scene info, for each clip
the function run_filtering takes the poses with the method get of Skeleton Wrap-
per, then it extracts the poses of the main speaker by calling MainSpeakerSelec-
tor, and finally it process the clip by initializing ClipFilter, calling its method
is_correct_clip and returning the result by calling get_filter_variable.

The results (messages, info and boolean values of each filter) are put together
inside a Python Dictionary representing all the info of that clip (start frame,

36

https://github.com/youngwoo-yoon/youtube-gesture-dataset

3.3 Dataset Extraction

end frame, a boolean variable that is True if it passed all the filters, i.e. the
value returned by is_correct_clip, the results for each filter and the messages re-
turned), while some info of the same clip (start frame, end frame and result of
is_correct_clip) are also put together with the poses of the main speaker in another
Python Dictionary (if is_correct_clip is False than the poses of the main speaker
are not taken). For each video we will have these two Dictionaries containing the
above info for each clip.

The dictionaries are then returned by the function run_filtering, and finally saved
by the main as JSON files: the first will represent auxiliary info of a video 1D,
while the second will represent the poses of the main speaker in that video (so if
it is not detected or some clips didn’t pass the filter, for those clips we will have
no poses of the main speaker).

3.3.5 Creation of the Dataset

Now that we have extracted all the poses of the main speaker, it is possible to
create the Dataset composed by training, validation and test sets. To do so, it
was written a script called make_ted_dataset.py. This script also calls the func-
tions of a module whose name is writecsv.py and that is used for adapting the
Dataset such that it can be used by speech2gesture model; writecsv.py will be
explained in details in the next chapter as shown in the Summary section.
make_ted_dataset.py contains only one function, whose name is make_ted_gesture_dataset,
that is called in the main. make_ted_gesture_dataset manages the paths for load-
ing and putting the data, then, for each video in the Dataset, the JSON file
generated by read_sceneinfo is loaded. Thanks to the info inside, it is possible
to load all the data that we saved before in the two main Dictionaries: all the
clips with inside the poses of the main speaker are used to create the three sets,
and by taking 80% of them for the training set, 10% for the validation set and
10% for the test set, the Dataset that contain the poses is created. Note that
by shrinking clips such that they lasts at least 10 seconds we could have a much
more uniform Dataset: indeed, if we have for example 10 clips where one lasts
100 seconds while the other 9 last 10 seconds, and we then randomly sample 80%
of them such that they can be used for the training set, it is more likely to find
inside this set the one that lasts 100 seconds, having in this way 170 seconds for
the training set, and only 10 seconds of data for the other two sets: practically,
this means that the training set will be constituted by 89% of data, instead of
80%.

From the two Dictionaries the data is extracted and then, for each clip, a Dictio-
nary containing the following info is saved:

e A string indicating if it is a training, validation or test set.

37

3.3 Dataset Extraction

The name of the video from which it was extracted.
The number indicating the start frame.

The number indicating the end frame.

The poses of the main speaker.

The times (expressed in seconds) of all the video frames on which the poses
were extracted.

The culture of the main speaker.

An unique Id (integer number) for that clip.

The clips are saved as pickle files and their name was set such that they can
be easily found by the other parts of the project: for instance, it is formed by the
type of the Dataset, the ID, the start and the end frames, and by name of the
video from which they were extracted.

There were crated more than 7000 clips for the training set and more than 700
for validation and test sets. A schematic diagram showing how the Dataset is
created and adapted can be seen in 3.5.

38

3.3 Dataset Extraction

Correct clips

Test set

[Validation set] [Training set]

Y Y Y

Motion Preprocessing

Pose Mapping

Y
CSVfile

Figure 3.5: Diagram showing how the Dataset is crated. From the correct clips
are extracted 80% of training data, 10% of validation data and 10% of test data.
From these data, the poses are preprocessed then mapped such that they have
the same configuration used by speech2gesture. At the end a csv file containing
info on the data saved is created. The process is still not finished since there
must be loaded also the audio files to have the final Dataset.

3.3.6 Adaptation of the Dataset

As said before, this part is entirely processed inside the writecsv.py module which
is executed inside the main function of the make_ted_dataset.py script. It con-
tains three functions and in order to preprocess the poses it is exploited another
module called motion_preprocessor.py. Let’s have a look on it before showing the
writecsv.py one.

3.3.6.1 motion_preprocessor.py

This code is very important since it is exploited to preprocess all the poses before
using them as a Dataset for speechZ2gesture: if the data is not good enough it can
be expected to have a model that does not work as we may want.

39

3.3 Dataset Extraction

motion_preprocessor.py has a class called MotionPreprocessor with inside many
methods for processing the motions. Firstly, when it is initialized, it takes a set
of poses and put them inside a Numpy array; then by calling its method get the
preprocessing starts and all the methods are called one after the other: if the
poses can’t be processed by at least one filter, an empty array and a message
indicating the error encountered are returned otherwise the processed poses and
a message containing the word "PASS” is returned. Let’s see all the methods in
details:

e has_missing_frames: it checks how many frames in the clip are empty and
without any pose: if more than 10% are empty, a True value is returned as
well as a printed message indicating how many frames are missing, otherwise
the function returns False. Notice that clips can’t be longer than 10 seconds
so poses must be detected for at least 9 seconds.

o fill_missing_joints: if the method described above returned False, this func-
tion fills all the missing joint by using the one-dimensional linear interpo-
lation. If more than half x or y coordinates are missing for a joint in video
clip then an empty set of poses is returned, otherwise it is returned the set
of interpolated poses.

e is_static: this function is called only if the joints were correctly filled. It has

two other functions inside: joint_angle that computes all the angles between
two joints in a frame and returns the angles in degrees, get_joint_variance
that extract the poses in all the frames of a clip, it calls joint_angle and
finally computes the circular variance (a variance used for circular data,
i.e. angles) of all the angles by calling circvar function of the scipy library
(see 3.11). get_joint_variance is called by passing firstly the keypoints of
the right and then the ones of the left arm, indeed we want to measure the
variance of the left and right arm which are the parts of the body that move
more when a person is talking.
If the variance of both the arms is lower than 150 degrees the movement is
considered too static and the function returns True after printing a message;
if the variance is equal or greater than 150 degrees then the function returns
False and prints another message indicating that the movement is not too
static. If the movement is not static, the method get jumps to the next
check otherwise, as it was told before, it returns an error message and
empty poses.

e has_jumping_joint: this method is used to detect if there are joints that
are moving too fast. To do this, this function checks the joint that varies
more along the x coordinate from the start to the end of the clip; if any

40

3.3 Dataset Extraction

of the 9 joints of interest (the ones that are mapped to the Pepper robot)
varies more than half of this distance between any two consecutive frames,
has_jumping_joint returns a error message and a True value, otherwise False
is returned as well as a positive message.

e smooth_motion: now that we have reached this point, we have only to

smooth the movements between frames: since Openpose cannot detect per-
fectly all keypoints, sometimes fast joint transitions between frames may
happen. To address this problem, smooth_motion applies a Savitzky—Golay
filter on the poses. This filter was applied also on the original code available
on Github and it was adopted in this implementation as well.
Similarly to the function is_skeleton_sideways of the class ClipFilter, also
here it was addressed the problem of checking if the main speaker is side-
ways or not: if the speaker is sideways for at least one frame in the clip then
an error message is printed and again an empty set of poses is returned.
This operation was not done by a specific method but it was applied inside
the get method as the last preprocessing operation. From now the poses of
the clip are ready to be used for the training of speech2gesture

3.3.6.2 writecsv.py

This is the last script used for preparing the poses such that can be used for the
network. After this, as we will see later, the poses are put together with the
converted audios and to create the final Dataset.

writecsv.py is called in the main function of make_ted_dataset.py after the method
make_ted_gesture_dataset and, as we said before, it is composed by 3 functions:

o take_correct_keypoints: given a pose and the number of keypoints to be
mapped (for the moment this function works only with the first 9 keypoints
since all the others were not useful for the purpose of this thesis), this func-
tion maps the keypoints from the body_25 Openpose model to the model_23
model used for speech2gesture.

More specifically, inside model_23 the keypoints are represented as two sep-
arated lists, one for the x coordinates and the other for the y ones while
the confidence values are not returned. In body_25 instead each keypoint is
a dictionary element with inside x,y and confidence values.

The 9 keypoints used to train speech2gesture are ordered as follows:

0. neck
1. right shoulder
2. right elbow

41

3.3 Dataset Extraction

right wrist
left shoulder
left elbow
left wrist
head

8. hip

N v W

The first 9 keypoints extracted by body_25 model of Openpose are ordered
as follows:

head

neck

right shoulder

right elbow

right wrist

left shoulder

left elbow

N T e I

left wrist

oo

hip

The function returns three different lists containing x,y and confidence val-
ues of the keypoints ordered as model_23.

3.3.6.3 write_final _skeletons

Given an objective frame rate, the data of a clip (the one that of the Dictionary
created by make_ted_dataset.py), the number of keypoints and the path to save
the new data, this function takes the keypoints by downsampling the frame rate
to 15 and then it converts them by calling take_correct_keypoints. To take the
keypoints at the correct frame rate, it was checked the frame rate of the the video
from which the clip was extracted: if it is lower than 15 then that clip was not
considered (the upsampling is avoided since it can creates poses that are very
different from the ground truth), if it 15 then the poses are taken from all the
frames and finally if it is higher than 15, the poses are taken by sampling them
from frames that were chosen by considering the conversion factor. If for example
we have a source fps equal to 30, it is necessary to take one pose each 2 frames, if
instead is 15 then every 25 frames we must take 5 poses that came from 2 consec-
utive frames and 10 poses that came from two frames separated by another one;

42

3.3 Dataset Extraction

in this way we will sample 10 +5 = 15 poses in 10 * 2 4+ 5 x 1 = 25 frames. Since
in the last case the frames can be chosen in many different ways, the sampling
indexes are given by a distribution that allow us this conversion: for instance, in
case we want to pass from 25 fps to 15, we expect to sample 33% of the time
two consecutive frames and 66% of the time two frames that are separated by
another one.

Finally, the keypoints extracted in this way and converted by take_correct_keypoints
are saved in a pickle file (one for each clip) and the new times that indicates the
exact position in the video from which the keypoints are extracted were returned
in a list format as well as the name of the new saved files.

3.3.6.4 writecsv

This function whose name it is the same as the module, calls iteratively write_final_skeletons
for all the clips; for each file saved, it writes some lines in a csv file indicating for
each cell the following info:

1. video ID from which it was extracted
2. type of data (training/validation/test)
3. ID of the clip

4. number of frame

5. pose time in that frame

6. culture

7. path of the clip

8. fps

This format is very similar to the one used in the original speech2gesture
project and it is useful for loading the data into the Neural Network and for
preparing the last Dataset file containing all the samples with poses and converted
audios (more details will be given in the next). Notice that in this file, for each
clip there are as many rows as the number of frames taken at 15 fps; this file is
finally saved with the name frames_df.csv.

43

3.4 Training of the model for many-to-one Voice Conversion

3.4 Training of the model for many-to-one Voice
Conversion

During this step the two training stages of the many-to-one Voice Conversion
model are processed (see the figure 2.6). Since the model was available on Github
and since it was not changed anything in the code for this phase except for the
paths of the data inside the file default.yaml, details about the scripts will not
be given. The only problem that was encountered following the instructions of
the Github project is that the files of the TIMIT Dataset had extension .WAV
and .PHN instead of .phn and .wav, so they were all renamed. Since the project
was thought to run on a configuration with 4 Gpus and since for on Google Co-
laboratory only one was available, it was also necessary to change the parameter
num_gpu in the default.yaml file for speeding up the training process.

Notice that the project is not written using Tensorflow but instead using Ten-
sorpack: this makes a lot of difference since Tensorpack is no more supported
and runs only on Cuda 9.0. This Cuda Version, at the time that the training was
started, could be installed only on the Google Colaboratory Gpus.

For doing this, two Google Colaboratory notebooks were created so that one was
used for training the first Network while the other was created tot train the sec-
ond one.

As described in 3.10, Google Colaboratory has a lot of limits and in this case they
made the difference: since a lot of data had to be loaded iteratively for training
the Networks and since Google Colaboratory saturates the flow of this data, the
training process was terribly slow. For this reason, the two networks were trained
until they reached an acceptable results and they were capable to extract decent
converted audios. Some users show that slightly better results can be obtained,
reaching lower loss values, higher accuracy and obtaining audios that have less
noise.

Practically, the Network 1 was trained for 20 epochs (100 steps each) with a
batch_size=32 and it reached an accuracy of 78% with an average loss of 0.68
while Network 2 was trained for 261 epochs reaching a loss of 0.0049.

The training process of Network 2 was slower with respect to Network 1 so the
data was directly loaded inside the Google Colaboratory machine to speed-up the
process. For both the Networks there were saved all the checkpoint files required
to load them or to restart the training from the point that was left, some log files
that can be opened by Tensorboard (one for each time we ended the training)
and some JSON files containing the stats (average loss, accuracy, ecc.).

44

https://github.com/andabi/deep-voice-conversion
https://www.tensorflow.org/tensorboard

3.5 Audio Extraction and Conversion

3.5 Audio Extraction and Conversion

This is the final process for creating the final Dataset (the final steps are shown in
the diagram 3.6) that will be used for speech2gesture. To reach this goal, a script
called extract_data_for_training.py was created taking as example the original one
created in the original project of speech2gesture which is also publicly available

on Github.
{ Audio Extracton]

Y
s R

Audio Conversion

A A

Y

- N
A \J

Train + Validation Test Dataset
Dataset

Y

Y
Train.csv \ ‘ Test.csv

Figure 3.6: Diagram showing how the final Datasets are created. Using ffmpeg
the audios are extracted from videos, then by using the trained many-to-one voice
conversion all the audios are converted. By adding also the poses extracted in
the previous steps, all the samples from the training, validation and test sets
are created. The training data and the validation data is put together inside
the training Dataset whose info is inside the train.csv file while the test samples
are put together inside the test Dataset and a test.csv file containing its info is
created.

To iteratively convert all the audios, this time some changes were applied

https://github.com/amirbar/speech2gesture

3.5 Audio Extraction and Conversion

to the model of many-to-one VC. The main limit that was overcome is the one
related to the length of the audios used in the inference process. To solve this
problem, these changes were made in the original code:

e In the file models.py containing the model of the first and second Neural
Networks, it was crated another model for the second Neural Network called
Net2_1: it is exactly the same as the original model, but here for the initial-
ization of the class it is required the duration of the audio to be converted.
This custom duration is exploited to compute the time-steps necessary to
convert the audio following the formula 3.1.

floor(duration x sampling_rate) / hop_length + 1 (3.1)

In this formula floor is the operator that returns the greatest integer value
less or equal to its argument and the hop_length represents how many sam-
ples we advance before passing to the next window.

To better understand this value, it is necessary to know how the Short Time
Fourier Transform (STFT) is applied to the audio that has to be converted
(it is necessary to extract features like MFCCs or the log-mel spectrogram):
a little part of the signal composed by the first n_fft samples is taken (512
samples is the value used here as it is suggested for speech audio), then a
custom window, for instance the default raised cosine window (i.e. hann),
with a given window length, for instance 400 samples, is applied to the
chosen n_fft samples; finally we do a translation of hop_length samples (for
instance 80), we take again another n_fft samples of the signal and we re-
peat the process till the end.

To match the length of the audio, the samples taken at the end are padded
with zeros. A smaller hop_length implies more frame oversampling (many
successive frames including the same samples) which gives better results
but it is computationally slower, a hop_length greater than n_fft implies
that some samples are not considered each time a filter is applied, a win-
dow length smaller than n_fft implies more temporal resolution of the STFT
(i.e. the ability to discriminate impulses that are closely spaced in time)
at the expense of frequency resolution (i.e. the ability to discriminate pure
tones that are closely spaced in frequency, a window length greater than
n_fft implies that the edges of the filter will not be used for filtering the
signal.

These values were not changed for the thesis.

Since sometimes numerical approximations of the computers creates some
problems during the computation of 3.1, it was necessary to approximate
the argument of floor to the first eight decimal numbers.

46

3.5 Audio Extraction and Conversion

Net2_1 is used only in the conversion phase since for the training even audio
samples with the same length are fine, while a model for the first Network,
i.e Netl was not necessary since it does not depend from the length of the
audios.

e The file data_load.py, that is necessary to load the data to the two Neu-

ral Networks, was slightly modified indeed it was changed the function
get_mfecs_and_spectrogram such that it is does not cut the audios in the con-
version phase: by doing this, when it calls the function _get_mfcc_and_spec
for extracting the MFCC features and the normalized amplitudes of the
STFT and log-mel spectrograms, the whole audio is passed as a Python
list.
For completeness, there will also shown in the next the classes that were
changed to iteratively loads the data for the two networks. Since these does
not work, the get_mfccs_and_spectrogram function was called everytime an
audio has to be processed by Net2.

— The class DataFlow, that is inherited by the classes NetlDataFlow
and Net2DataFlow used for loading the data inside the Networks, was
modified such that it can take as argument a boolean value called
rand (indicating whether or not the Networks must load the data ran-
domly), the duration of the audios, the path and the size of the batch.
Default values rand and duration were passed to make it compatible
also with the training phases described before. These values were set
as attributes as well as an index ¢ with a 0 value (used to iteratively
load .wav files and their duration in Net2DataFlow).

— While Net1DataFlow remained unchanged because in its training phase
Netl can also load the data randomly while in the conversion phase
is used to converts the same data as Net?2, it was necessary to change
Net2DataFlow such that it does not load the data randomly in the
conversion phase (in the original project it can be done since only one
file at time is converted). To do this, a condition was used: if rand
is equal to True (as in the training phase), the data can be loaded
randomly otherwise it is iteratively loaded the file at index ¢ (i is in-
cremented after the load) and the function get_mfecs_and_spectrogram
is yield such that it can be called everytime the data is available (this
happens also in the training phase).

e The file convert.py was rewritten such that it converts iteratively all the

audios that we want without cutting them: now it is no more a script
with the main function but it is instead a python module whose function

47

3.5 Audio Extraction and Conversion

audio_conversion takes as arguments the input and the output paths, and
then calls all the functions needed to process the audios.

This script firstly loads the latest Checkpoint files for loading the two Net-
works, then it calls the function do_convert passing to it the path indicating
the location of the files to be converted (input path) and the location on
which we desire to put the converted files (output path).

The function do_convert gets all the files that are inside the input path and
then it iteratively loads them using the wave library (if it is not already
installed, it may be installed using the command pip install wave), extracts
the name and the duration, and now it starts the conversion:

— It initializes Net2_1 by passing the duration
— It initializes the Tensorpack Predictor by specifying the model Net2_1
— It extracts the audio features by calling get_mfccs_and_spectrogram

— It converts the features by passing them to the Tensorpack Predictor
(Phonetic Posteriorgrams (PPGs), converted audio and original audio
spectrograms are returned by it)

— It converts the audios from frequency domain to time domain by ex-
ploiting the convert function

— It finally saves the converted audio in the output path

convert.py is thought to work even if exceptions occurs or some audios were
already converted.

Now it’s time to prepare the final Dataset file for speech2gesture. This is done
by the script extract_data_for_training.py that has inside a main function as well
as create_dataset, save_video_samples and convert. The latter is only a utility
created in case we want to change the audio paths inside the frames_df.cswv.
save_video_samples is the first function called by the main and it is used to save
the audio samples from the video files. To reach the goal, it extracts all the unique
IDs, as well as the start and the end frames, of all the clips inside the frames_df.csv
file, then it calls a function available on the original project of speech2gesture: this
function whose name is save_audio_sample_from_video simply extracts the audio
file from a video and saves it; the name of the video from which extract the audio,
the start and the end frames and the output paths are required by this function.
To do so, the function simply launches a command for running ffmpeg (see 3.11)
with the following options:

e -i for the input (path of the video)

48

3.5 Audio Extraction and Conversion

-ss that is a command which when used as an output option as in this case
(before an output path), decodes but discards input until the timestamps
reach position (start frame is passed)

-to to stop writing the output or reading the input at position (end frame).
-ac to set the number of audio channels (2 in this case)
-ar to set the audio sampling frequency (44100 in this case)

-vn to skip the inclusion of the video in the output path that is passed (so
only audio file is saved)

-y to overwrite the output files without asking

-loglevel to set the level of the logs (”warning” was set)

For more information about ffmpeg check the Documentation.

After this operation, the main calls audio_conversion to convert all the audio files
that were extracted.

Finally, by calling the create_dataset function, the dataset is created. To do it,
this function exploits the frames_df.csv file to do, for each clip ID, the following
operations:

Extraction of all the x and y coordinates from all the poses of the clip by
loading the pickle file in the path indicated in frames_df.csv

Loading of original and converted audios with a sampling rate equal to 16000
by using the librosa library (see 3.11). Only original audios are available
at a sampling rate of 44100 but loading them using this library means that
the Dataset will become much heavier (and it already is since it occupies
near 57 GB of memory).

Splitting all the data by creating data samples of 64 frames (sampled at 15
fps): this means taking exactly 64 consecutive poses since all the poses were
extracted at 15 fps. In the audio case, it is chosen to take all the samples
between the starting frame of poses and the end one (these information are
again inside frames_df.csv). The data are acquired by taking overlapped
samples: we acquire the data of poses and audio by shifting the clips by 5
frames each time; this means that between 2 consecutive frames there are
60 overlapping frames which are exactly four seconds at 15 fps.

This fact is very important since training the model with overlapping frames
indirectly push the model to learn the past and future contexts of the sam-
ples: by doing this, the Network can learn to map the poses that are asyn-
cronous with respect to the speech by learning what is the correlation of all

49

https://ffmpeg.org/ffmpeg.html

3.5 Audio Extraction and Conversion

the overlapping samples till to a maximum of 4 seconds.

It is worth to notice that in the project Speech Gesture Generation using
Trimodal Contezt the syncronization between speech features with gestures
is not learned by the Network because there is a belief that these features
are always syncronous with respect the co-speech gestures. This fact is not
always true as it is explained in Butterworth & Hadar (1989), this is why
in speech2gesture this element is learned directly by the model.

e Creating for each training sample a dictionary containing:

— the start frame

— the end frame

— the type of data (training/validation (dev in the code) /test)
— the culture (in the specific case it is always Indian)

— the video from which the sample was extracted

— the path to the original audio

— the path of the converted audio

— the index indicating the sample position in the Dataset
This dictionary is returned by create_dataset function.

e Saving a Dataset containing training and validation data, and a Dataset for
the test. Saving two different Datasets allows to test the Network also in
Google Colaboratory since the test set is much smaller than the others and
so avoids to face the Google Colaboratory limits (see 3.10). This time they
were saved as hickle files: hickles are similar to pickle files so they can be
managed very easily, but they are instead coded using the HDF5 format.
This makes the data faster to be processed and also it bypass the limit of
memory of the pickle files: experimentally there was found that these can’t
be larger than ~ 2GB.

There was also tested the possibility of managing hdfb files instead of hickle
ones by exploiting the h5py Python library, but it was much more complex
and the performances were nearly the same, so the hickle format was chosen.

create_dataset was called two times, one for the training and validation sets,
and one for the test set. The dictionaries returned are finally saved as train.csv
(test.csv) files by the main function.
At the end of the process, turn out to be saved 10572 test samples, 10722 valida-
tion samples and 95679 training samples: the amount of data results similar to
the amount used for training the original project of speechZgesture on a specific
speaker. As it will be shown in the 4 chapter, this amount of data revealed to
enough for correctly training the Network.

20

https://support.hdfgroup.org/HDF5/doc/H5.intro.html
https://pypi.org/project/h5py/

3.6 Training of the speech2gesture model

3.6 Training of the speech2gesture model

This is maybe the most important phase to see if the proposed approach whether
makes sense or not. To reach this goal of course it was necessary to modify some
parts of the original code. Preliminarily all the code was firstly adapted to Python
3 and Tensorflow2 for running it with the Server available into the University; the
version used in Google Colaboratory for the inference instead it was not adapted
to Tensorflow?2 since it must work together with the model for many-to-one VC:
the latter works only with Tensorflowl as explained in the section 3.10. Before
talking about the changes made, it is necessary to show what is the structure of
the speech2gesture project:

e it is divided into three main folders: audio_to_multiple_pose_gan that con-
tains the main code and the models used for the DNN, common that con-
tains some constants and useful functions necessary for the model to run,
data that contains the code for preparing the data samples and the train.csv

file.

The operations made by the functions inside the data folder are the

same explained in the last chapter except for the facts that all the samples
weren’t saved in hickle files, they did not contain both the original and
converted audio, and the problem of Voice Conversion was not addressed.

e the common folder contains a lot of modules exploited by the model inside
audio_to_multiple_pose_gan:

utils.py that contains some functions for getting the paths of the data

pose_plot_lib.py for plotting the poses and creating videos showing the
movements

pose_logic_lib.py for managing the keypoints (normalization, denormal-
ization, translation ecc.)

mel_features.py which was not used and contains some functions for
managing the features of the mel spectrogram (they were instead man-
aged in the file static_model_factory.py one step before getting used as
input inside the Network)

evaluation.py that contains the implementation of the PCK index
const.py that contains some useful constants used by the model
audio_repr only used for loading audio files

audio_lib.py that has some functions for saving audios from videos,
save an audio sample ecc. By seeing the code, it can be thought that
this module contains some functions for creating the Dataset but in
my project only the function save_audio_sample_from_video was used

o1

3.6 Training of the speech2gesture model

e audio_to_multiple_pose_gan instead contains:

— train.py that only launches the training and it contains the main func-
tion of the project

— tf layers.py that contains some functions that implements some spe-
cific operations used by the layers of the model (e.g. 2D and 1D Con-
volutions, Normalization ecc.) and some functions for processing the
data like to_motion_delta that computes the difference between poses
before using them as training samples (for more details, see the chap-
ter 2). It also has a function for implementing the L1 Loss and L2
Loss (only L1 was used).

— staticomodel_factory.py contains the models used for the Generator,
the model used for the Discriminator and a function ofr extracting log-
mel features given an audio. Even if there is only one model for the
Generator, two were implemented: they are both exactly the same U-
Net CNN models described in the chapter 2), but the main difference is
that one of them have some max-pooling layers. The one with pooling
layers is used for the no-GANs model, maybe because these layers can
optimize the time for the training process by extracting features that
are sharper. Even if this is not explained well in the project, I used
the model without pooling layers for the GANs while I used the model
with pooling layers for the no-GANs model, exactly as it was done in
the original project. Moreover, the name of these models suggest which
one to use during the training, indeed one is called audio_to_pose_gans
while the other audio_to_pose

— model.py is the core of the project: it initializes and trains the chosen
model.

— config.py contains all the configurations used. Some are necessary to
launch the project while some others have already some default values.

— dataset.py manages the data data inside the Dataset, it creates the
batches for the training and it preprocess the data for the the training.

— predict_audio.py is a script used for the inference of the Network by
giving to it an arbitraty audio file as input

— predict_to_videos.py is a script used for the inference but here there
were used samples coming from the Dataset

Now let’s see which of these files were changed and how, by also explaining what
was instead used in the original project.

Staring form the const.py file, there were defined 4 Python lists containing the
new keypoints order and it was changed the shape of the poses:

o2

3.6 Training of the speech2gesture model

BASE_KEYPOINT for the neck keypoint (0), same as the original project

RIGHT_BODY_KEYPOINTS for the keypoints of the right part of the body
(1,2,3); in the original project there was also the keypoint of the hand but
as we said previously, the hands keypoints are not considered

LEFT_BODY_KEYPOINTS for the keypoints of the left part of the body
(4,5,6); also here the left hand was not considered

CENTRAL for the central keypoints: 7 for the head and 8 for the hip. This
list is new since the head and the hip were not considered in the original
project

POSE_SAMPLE_SHAPE now is (64,18) instead of (64,96) since we have 18
coordinates for each pose

AUDIO_SHAPE remained unchanged and it loads 67267 samples which
correspond to little ca. 4 seconds of audio sampled at 16000 samples/sec
but there is a big difference from my project: in the original project indeed
all the audio samples used for training already had this shape, meaning
either that audios have been previously process or that they were extracted
in a different way from the videos by taking for each sample exactly 67267
samples. In my case this was not done, instead there were extracted the
audios corresponding to the 64 poses taken in the video, so they always
have different number of samples: this can make a big difference in the
training process since to be used for that purpose, my audio samples need
to be preprocessed in advance; if they have more samples then the last
samples are deleted, if they have less samples then 0 values are added to
have always 67267 samples. This may cause slight syncronization problems
since the Network learns also to map poses that have not a ground truth
audio, even if this happens for very short time instants. It is expected
that in average the result may be fine but a test for checking if there is a
difference among these kind of samples and the speech2gesture ones was not
executed.

In pose_logic_lib.py many changes were applied since it is the module that
manages the poses:

e the normalization function called normalize_relative_keypoints was com-
pletely changed and it was instead used the one proposed in the chapter
2: taking as input a set of 64 poses, the neck coordinates and a resize fac-
tor (this parameter was not used since this factor is computed inside the
function), the function computes for each pose the distance between neck

93

3.6 Training of the speech2gesture model

and head keypoints and between the two shoulders; if their ratio is higher
than 0.6 (meaning that neck is big or that the speaker is little bit sideways)
then the resize factor is defined as neck/0.6 (something similar to what can
be the shoulder lenght), otherwise it is equal to the shoulder length. Each
coordinate is divided by the resize factor and finally the normalized poses,
as well as the resize factors used to normalize them (one for each pose), are
returned by the function. The resize factor it is needed because if we test
the Network using for example the validation or the test sets, then we may
also want to denormalize the poses at the end of the inference to check the
results.

e the function preprocess_to_relative used to subtract the neck keypoint from
poses (so it can be the reference point) was adapted to work with the new
number of keypoints (9) and also to return the coordinates of the neck sub-
tracted since it will be necessary to functions like normalize_relative_keypoints.

e of course also the function de_normalize_relative_keypoints used to denor-
malize the keypoints was changed, for instance now it simply multiply the
normalized poses by the resize factor used to normalize them. This is why
now it takes as argument also the resize factor instead of taking only the
pose.

e decode_pose_normalized_keypoints is a function that, given a pose, reshapes
the vector such that it can be used by de_normalize_relative_keypoints, then
it call it, reshapes again the vector as it was before and finally translates
the denormalized keypoints if necessary (it is necessary only if we desire to
show side by side the generated pose and the real one). Also this function
was changed such that it reshapes vectors that have inside the coordinates
of the 9 keypoints.

All the other functions remained unchanged since they were not necessary
or they did not depend from the number of keypoints

Also pose_plot_lib.py was adapted to the specific case but since it was exploited
only after the inference, it will be explained better in the next section.
Regarding the model itself, i.e. the Generator and the Discriminator (used only in
the GANs case) implemented inside the module static_model_factory.py, only the
sizes of the output vector was changed since the Generator receives as input the
audio features of training samples (not dependent from the number of keypoints
in a pose) while the Discriminator receives as input poses that were previously
adapted in the processing phase (explained in the next lines). The output of the
Generator, as well as the one of the Discriminator, is a vector containing 64 poses

o4

3.6 Training of the speech2gesture model

of the 9 keypoints each, so its dimensions needed to be adapted for the specific
case.

Let’s now talk about the most important files, i.e. model.py and dataset.py. In
model.py the initialization of the models remained nearly unchanged except for
the fact that poses were taken by different functions: _get_training_keypoints cre-
ates an array by using the constants defined in consts.py (BASE_KEYPOINT,
RIGHT_BODY_KEYPOINTS, LEFT_BODY_KEYPOINTS,CENTRAL) for in-
dicating what keypoints must be taken from the samples and in which order,
while keypoints_to_train which is defined in tf layers.py extract the keypoints se-
lected by _get_training_keypoints and then creates a vector with all of them, so it
was necessary to change the dimension of the latter.

During the training phase, it is loaded the Dataset file containing the all the train-
ing and the validation samples , and the train.csv file that indicates the position
and the type of these samples in the Dataset as well as some other information
as described at the end of the last section. Many of these information were not
necessary this time but they were put to be sure that errors are not returned by
the program by making this file very similar to the one of the original project.
From this csv file, 512 random validation samples were chosen for validating the
Network then eventually checkpoints files are loaded to start the training from
the point it was left, and finally the training loop is started.

e The first operation executed is the test of the Network by using the sam-

ples chosen before. The Loss, as well as the PCK, are computed with this
inference process by calling the function predict_df that was rewritten for
my project: this time it takes as argument also the entire Dataset, it loads
the audio converted and not converted from the validation samples and
then calls iteratively the function predict_row used to predict a single test
sample, and finally it returns all the predicted and real keypoints (that are
512 x 64 x 2 x 9 where 512 is the number of test samples, 64 is the number
of poses in each sample, 2 is the number of coordinates, i.e. x,y, and 9 are
the keypoints), the losses of the test samples (512), all the converted and
original audios (512) and all the resize factors computed.
The function predict_row instead extract and preprocess the data of a sam-
ple from the Dataset by using all the functions needed inside dataset.py and
then it uses them as inference for the Network. At the end of the inference,
each single pose is denormalized by exploiting the resize factors computed
by calling the function _post_process_output: this is the main change with
respect the function of the original speech2gesture. Finally it returns all the
denormalized keypoints (for ground truth and predicted poses), the losses
and the resize factors computed to the function predict_df.

95

3.6 Training of the speech2gesture model

_post_process_output only calls the function decode_pose_normalized_keypoints
described above for denormalizing the poses.

In all this process the shifting of the keypoints is not executed since all
the plots and videos were created and saved externally by using the data
returned. This avoided problems with Google Colaboratory that gets stuck
when it plots the data.

e Then the PCK is computed: while the functions for computing it remained
unchanged, it was passed a different number of keypoints this time.

e All the data returned by predict_df are saved in an npz files called
real_and_predicted_keypoints.npz every 15 epochs inside folders that have as
name the number of epoch from which they were saved. As said before,
this data is used to make the plots and the videos of the data to check
subjectively how the Network performs.

e Now the train starts: for each step of the epoch it is generated a sample
with the same dimensions of the batch size (32) containing itself as many
training samples extracted from the Dataset file as the number of the batch
size. The samples are chosen in a random way and after they are loaded
by the generator inside dataset.py then are used to train the Generator and
the Discriminator in case GANs are used. Moreover, the Discriminator for
each step uses also the fake poses coming from the Generator.

Finally, let’s how the dataset.py module works and the changes made:

e In the case are used the validation or test samples, the first function called
is the function get_processor that only loads in memory the functions de-
code_pose_normalized_keypoints used to denormalize the data, and audio_pose_mel_spect
used to extract the data. In this way functions are initialized, loaded and
ready for getting the data such can be processed. In this function no changes
were made

audio_pose_mel_spect is used to take and preprocess all the data from the
dataset: this was completely changed since this time it must loads the data
of the Dataset file by finding their positions inside the train.csv file. The
positions (indexes) are extracted by predict_df in the case of validation /
test data, otherwise are extracted by other functions inside the module.

The audio of each sample is processed such that it match the size defined
in consts.py, i.e. AUDIO_SHAPE: if the audio has less samples than AU-
DIO_SHAPE then zeros are added, if it has more samples than the last
samples are removed. This was the best choice since by trying to remove or
add samples using interpolating methods much more noise is added. If this

o6

3.7 Inference of the speech2gesture model

noise is added to samples that are already noizy because of the audio con-
version process, then the samples become useless for the training purpose.

The poses instead were firstly subject to the neck extraction process of pre-
process_to_relative then to the normalization process of normalize_relative_keypoints
defined above. At the end, the function returns the new data as well as the

resize factors computed by normalize_relative_keypoints.

e In case training samples are used, it is necessary to create a generator that
randomly takes as many samples as the number of batch size from the
train.csv file and passes them to the function audio_pose_mel_spect for ex-
tracting the data from the Dataset file. The training generator is initialized
by the function load_train inside dataset.py that exploits the GeneratorEn-
quer method of Keras and some other methods inside the module. For
instance, the generator is set by calling the function load_set which extracts
only the type of data (train/validation) that we want from train.csv and
then calls set_generator. The latter creates batches iteratively by calling
the method generate_batch and passes to the next one by using the next
method implemented by the Keras decorator threadsafe_generator. Finally,
generate_batch calls as many times as it is the size of the batch the func-
tion audio_pose_mel_spect to process each sample. All these methods were
modified such that they also take as argument the Dataset file since it is
required by audio_pose_mel_spect.

All the other functions remained unchanged and the training process was

repeated for 300 epochs, 300 steps each, reaching a total number of 9000 iterations
to complete the training process as it was done in the original speech2gesture
project. The training was repeated 3 times as described in the 4 chapter.
The training can be launched by specifying if gans are used (1 yes and 0 no)
with command —gans, the arbitraty name of the test with the command —name,
the name of the model that we want to train with the command —arch_g or -ag,
the output path with the command —output_path and finally the checkpoint file
only if we want to restart the training from a specific point with the command
—checkpoint.

3.7 Inference of the speech2gesture model

The inference of the model was done in two different ways and for each method
a script was created.

The first methods is the testing inference where the data used comes directly
from the test set while the second method is the audio inference where an audio
of arbitrary length and without any ground truth data is provided.

57

https://github.com/keras-team/keras/issues/1638

3.7 Inference of the speech2gesture model

For the first method, it was created the script test_s2¢.py that has only a main
function and requires some configuration info to be used: the model that is used
(audio_to_pose or audio_to_pose_gans) by using the command -ag, a flag for telling
if gans are used (0 no, 1 yes) with the command -gans, the output path of the
test with the command —test_path, and finally the checkpoint file that is required
since this time we are using a trained Network that can be loaded with the com-
mand —checkpoint. The main function only loads the Dataset file containing the
test set, then it loads the Network and finally calls the method test defined inside
the models.py module. test is a very simple function, indeed it takes 512 random
test samples and it computes the mean and the standard deviation of the loss
extracted thanks to predict_df, it does the same with the PCK using the function
compute_pck defined inside evaluation.py, and finally also with the Jerk by using
the function compute_jerk defined by me inside models.py (for more details about
this index, check the chapter 4). All the operations are repeated by a personalized
test sample that contains audios of some people mixed with poses of other people
as explained again in 4): to mix them, the function predict_df was modified such
that by taking a flag called random_prediction as argument, it can choose whether
or not mixing the poses and the audios of the test samples.

Finally all the results are saved inside a hickle file.

For the second method, i.e. the one that does the inference using an audio of
arbitrary length, the script predict_audio.py was created. Also this script contains
a main function and to work it requires the path of the audio to be converted. To
generalize this function, it was written such that it can do the inference of many
arbitrary audios so in the path of original audios can be more than one.

It also requires the path for saving the converted audios such that both these
paths can be passed to the method audio_conversion for converting all the au-
dios. Both the original and the predicted audios are reshaped by adding zeros
such that they can match a set of poses multiple of 64: by doing in this way,
the model is inferred multiple times and each time it predicts 64 poses. The
model is firstly loaded by using the checkpoint file, then it is called the function
predict_audio defined inside model.py: this one passes to the model the padded
converted audios and then denormalize the returned poses: this time the resize
factor of each pose is not known in advance so a unique value is chosen in a way
that the poses can all result clearly visible in the plots. predict_audio.py finally
saves the predicted poses as well as the padded original and converted audios.

At the end of the process, it was created a script called video_test.py that plots
all the results: the plots and the videos are created by using the same functions
inside speech2gesture. Of course, the number and the type of the poses plotted
were changed to match the specific project. Since the audios were padded were
zeros, the poses generated at the end are still (the model can’t extract any feature

o8

3.7 Inference of the speech2gesture model

from the audio) and the video is stopped when some zeros are detected. If the
data contains also the ground truth poses (i.e. the one saved during the training
epochs), then video_test.py prints side by side poses as it is shown in 3.7, instead
if there is no ground truth (as in the data saved by predict_audio.py) then only
the predicted poses are shown as in 3.8.

Prediction Ground Truth

Figure 3.7: Plot of side by side poses obtained during the training of the model

29

3.8 2D to 3D pose mapping

Prediction Ground Truth

L

Figure 3.8: Plot of the poses obtained during the inference

3.8 2D to 3D pose mapping

Now it is time to map the poses from 2D to 3D. For this purpose, it was trained
and inferred the project available online on Github called 2d_to_3d_human_pose_converter;
in the main page of this project there are written some instruction to run the
training of the model and what is necessary to do. As in this written in this
page, the first step is to prepare the CMU Panoptic Dataset (Joo et al. (2015b)).
To reach this goal, there must be used the toolbox PanopticStudio again avail-
able online on Github. Since the 2d_to_3d_human_pose_converter model requires
a pickle file for the training and since the pickle files can occupy no more than 2
GB, the dataset was filtered such that only the most important parts are taken:

e Range of Motion: contains data about range of motion of diverse subjects

e Haggling: contains data about a game where two sellers promote their own
competitive products and a buyer selects one between them

60

https://github.com/youngwoo-yoon/2d_to_3d_human_pose_converter
https://github.com/CMU-Perceptual-Computing-Lab/panoptic-toolbox

3.8 2D to 3D pose mapping

e Dance: contains data about performances by professional dancers

Filtering the CMU Panoptic Dataset means changing the .sh files of the
PanopticStudio Toolbox such that only the poses of these kind are downloaded,
for instance only
hdPose3d _stagel_cocol9 tar files of each video that need to be extracted before
creating the pickle file. All this step was implemented in Google Colaboratory.
What must be noticed is that in the original 2d_to_3d_human_pose_converter
project, these files had different names so it was necessary to change a little bit of
code. To finally create the dataset it must be used the script generate_dataset.py
which loads all the needed
hdPose3d_stagel_cocol9 poses inside a folder, it augments the data by rotating
the 3D keypoints and by adding some noise, it normalizes them in the same way
proposed for the speech2gesture method and it finally creates the pickle file.
The training process remained unchanged with respect to the original project,
except for the fact that are loaded 2 more keypoints for the head and for the
heap; the keypoints order finally is:

0. Neck

1. Nose (center of the head)

2. BodyCenter (center of hips)
3. Left Shoulder

4. Left Elbow

5. Left Wrist

9. Right Shoulder

10. Right Elbow

11. Right Wrist

Notice that there are some keypoints in (6,7,8) that are not needed: this is
because the model used for this detection is different from the one used by Open-
pose and so also the order of poses is different.

The training process starts by launching the script train.py: the model of

2d_to_3d_human_pose_converter is defined in a class called Net which is explained
in the chapter 2, it is defined a function for the evaluation called wvalidate and
finally the training function train. The latter initializes the model, initializes the
data loader defined in the module data_loader.py which loads the 3D keypoints

61

3.8 2D to 3D pose mapping

written above and defines the input and the output of the model, and finally it
trains the Network for 10 epochs where for each epoch there are as many steps
as it is needed to load all the data with a batch size of 32. The Loss computed is
the mean squared error (squared L2 norm) between the z coordinate generated
by the Network from 2D ones and the ground truth z (this ones represents the
coordinate missing to have 3D poses). At the end of the training (which is very
fast in this case) a checkpoint file called trained_net.pt is generated.

The inference was done inside the script test.py. Here is loaded the npz file
outputted by predict_audio.py containing the predicted poses, it is defined the
output path, it loaded the trained network by loading the trained_net.pt, the
keypoints of the speech2gesture model are mapped to the ones defined above
thanks to a function called s2¢_to_panoptic, they are loaded inside the Network
and finally the predicted z is put together with the 2D coordinates to save finally
all the 3D poses.

The result of this process is shown in figure 3.9 thanks to some functions that
were already implemented in the original project; the saved poses are the ones
that finally will be mapped to the Pepper robot.

The test.py script is optimized such that it can iteratively convert an entire set
of movements: if we have for example 512 movements to convert (for example
the ones obtained by inferring the test set into speech2gesture), it can extract
all the 3D poses from them, saving everything to a unique npz file. The whole
project differently from the many-to-one VC and speech2gesture was implemented
using the Torch module (see the section 3.11) and it can be run both in Google
Colaboratory as well as locally since it does not have any restriction given from
the Cuda libraries.

62

3.9 Mapping to Pepper Joints configuration

-05

05
10

Figure 3.9: Plot of a 3D pose (at the right) obtained starting from 2D one (at
the left)

3.9 Mapping to Pepper Joints configuration

Finally we arrived to the final part of this project, the mapping of the 3D poses
to the Pepper robot. This is implemented inside the script test_pepper.py written
using Python 2.7 since it is required by the naogt libraries to work. This one have
a main2 function for mapping the poses, a random_movement function for gener-
ating random movements for Pepper (see the chapter 4, a function for creating a
SSH client (needed only for putting recorded audios inside the memory of Pepper,
operation that is not needed in the official evaluations) and some functions for
computing the 3D angles: rotmat2euler and rotation_matriz_from_vectors. The
main initializes the a qi session (necessary to use the methods for controlling the
robot) by connecting to the IP of the robot (it must be inside the same network)
and then sequentially calls the main2 and random_movement functions which
both require the session created to work.

The script main2 initializes all the methods needed for controlling the robot, for
instance his TTS (text to speech), the audio player (used only in unofficial tests),
the motion service (see Softbank (2018) for more info) and some other methods

63

3.9 Mapping to Pepper Joints configuration

necessary for the robot to be ready. Then, this function extracts all the poses
from the file saved by test.py of the project 2d_to_3d_human_pose_converter and
creates all the vectors needed: we have have one vector for the neck, one for the
hip, 2 for the links that start from the neck and end to the shoulder (one for
each side of the body), 2 for the links that start from the shoulder and go to the
elbow and 2 for the links that start from the elbow and go to the wrist. From this
set of vectors are computed all the possible angles of joints by using firstly the
function rotation_matriz_from_vectors for returning the rotation matrix between
each couple of vectors, and then the function rotmat2euler for returning the 3
Euler angles from the rotation matrices computed.

From all these angles are extracted for instance:

e Head Pitch

o Head Yaw

e Hip Roll

e Hip Pitch

e Left Shoulder Roll
e Left Shoulder Pitch
o Left Elbow Roll

o Left Elbow Yaw

e Right Shoulder Roll
e Right Shoulder Pitch
e Right Elbow Roll

e Right Elbow Yaw

These angles refer to the reference system of the robot (see Softbank (2018))
which is different from the reference system of the poses extracted from
2d_to_3d_human_pose_converter, so it was taken into account.

All these angles are extracted by taking poses at 3 frames per second which means
taking one pose every 5 ones since the poses of the model are taken at 15 fps.
For every frame, the angles described above are extracted and a time vector is
created to tell the robot at what time execute each angle.

Since the people talking in TED Talks are in average much taller than the robot

64

3.10 Computational Issues

and since many times they are on a stage so they usually look down it was neces-
sary to scale the Head Pitch angle by multiplying it by 0.3 (this value was chosen
by me after some subjective evaluations).

Finally, two thread are started, one for the poses and one for the speech. To
making smooth the first movement, the robot was programmed such that it goes
to the starting position in a second before starting the set of poses. After a second
also the thread of the speech starts and it was always used the Animated Speech
method of the naogi libraries. The function main2 was also optimized in a way
that it can run many movements iteratively one after the other after taking a
little pause, this was used to make the robot speak and move for 4 consecutively
sentences as described in chapter 4.

Let’s now talk about the last function, i.e. random_movement: also this
function initializes the same methods required by the robot plus the animated
speech used in the next, and for each sentence that the robot must say, it generates
some random movements defined as a set random angles. The type of angles
computed are the same as the ones used by main2 as well as the fps at which
they are generated. At the start, the robot takes one second to go to a starting
position that is similar to the ones of main2, then it starts to move by going to
the goal poses and speak using the Animated Speech. All the angles were limited
such that the generated poses are not so much different from the human ones
and all the tuning values were chosen by subjectively check the quality of the
generated movements.
random_movement has also a commented part that is the one used for the 4:
in this part it only calls the animated speech method by passing to it all the
sentences that it must say.

3.10 Computational Issues

In this section there will be explained all the computational issued addressed for
this thesis. Since there were used many different models of Neural Networks cre-
ated by different researchers with different libraries, it is easy to think that many
compatibility problems may occur, as well as computational problems since large
models like speech2gesture or the model of many-to-one Voice Conversion require
a lot of resources. Indeed, it was discovered that running these ones relying only
on the CPU is unfeasible so it is necessary to use something that is more power-
ful like GPUs. Using a GPU requires the installation of Nvidia drivers as well as
CUDA and cuDNN Nvidia libraries necessary for some frameworks like Tensor-
flow (Abadi et al. (2015)) to be exploited for the creation and data management
of DNNs.

65

3.10 Computational Issues

Unfortunately, both these models were created using old libraries, moreover the
model of many-to-one VC was created using Tensorpack (Wu et al. (2016)) that
is an optimized library based on Tensorflow capable of running models 1.2 to 1.5
times faster as it is explained in the Github repository. Many of these frameworks
loose their compatibility with CUDA >= 10 that are the only versions available
for modern GPUs. For the Tensorflow 2 there is an utility for migrating the
old code to newer versions: this one is called tf_upgrade v2 and automatically
converts most of the Tensorflow code. This script was necessary for converting
the speech2gesture model without putting so much effort even if some functions
required to be adjusted manually or to be imported from the Tensorflow addons
library. For Tensorpack tf upgrade_v2 was not available because the libraries it-
self are tought to be used only with Tensorflow I and CUDA <= 10: for this
reason and since there was not available a computer with powerful GPUs and
CUDA 9, Google Colaboratory was exploited.

Google Colaboratory is a Google product that allows anybody to write and ex-
ecute arbitrary python code through the browser, and is especially well suited
to machine learning, data analysis and education. More technically, Colab is a
hosted Jupyter notebook service that requires no setup to use, while providing
free access to computing resources including GPUs.

The latter has a lots of limits so it was used only for testing the whole setup (ex-
cept the part used to control the robot Pepper) with a little Dataset composed
by 49 videos, for training the model for many-to-one VC and exploiting it for
converting all the audios, testing the trained model of speechZ2gesture.

The main Google Colaboratory limits that I had to deal with were:

e Limited amount of RAM memory (~ 13G'B)

e Limited amount of Disk memory (~ 40GB free if GPU is used, otherwise
~ 70GB)

e Slow input/output operations even if data is loaded inside the Server
e Limited amount of files that can be stored on Google Drive

e Limited access (12 hours a day if free account is used otherwise 24)
e Can’t be established a TCP/IP connection

e Not always available

e Impossibility to install Python

e Impossibility to choose the GPU in the free version

66

https://github.com/tensorpack/tensorpack
https://www.tensorflow.org/guide/upgrade
https://pypi.org/project/tensorflow-addons/
https://research.google.com/colaboratory/faq.html

3.10 Computational Issues

There are also many other limits but ones these were the main and they were
addressed as follows:

e Openpose was used only for preparing a small Dataset: even if it slow
because of the bottleneck in the input/output operations and even if it
cannot be displayed, it is possible to use it in case all the JSON files are
deleted from Google Drive when a video finishes to be processed (only the
pickle file that groups the poses has to be maintained), or in case all the
JSON files are saved inside the Server memory and then exported. In the
first case we have to delete them since only 400000 files can be saved inside
Google Drive: 400000 seems to be a difficult limit to be exceeded but it
must be considered that Openpose outputs a JSON file for each frame of
the video processed.

e speech2qgesture was modified such that it uses only one Dataset file instead of
loading each time the poses: loading million of files is not possible because
of the limit of Input/Output operations and because of the total number of
data that can be stored on Google Drive.

e Also by taking this choice, it was possible to run speech2gesture only with
small Datasets because of the limit on RAM and Disk memories: for this
reason it was used only for the inference and the test phases while for the
training phase it was used a Server available in University with Ubuntu 20
and CUDA 11.

e Since only ~ 200 audios can be converted in one step because after that
the RAM memory gets full, many accounts and other versions of the ex-
tract_data_for_training.py script were created: each version converts the au-
dios following different orders so it is possible to convert more than ~ 200
each time by using different accounts. Notice that this is possible because
Google Colaboratory allows to access the same Google Drive memory at the
same time by using different accounts; with more accounts it is possible to
overcome the limit of 12 hours of usage.

e The part of speech2gesture that saves plots and videos was removed and
all the data that can be plotted is exported and plotted offline. Moreover,
speech2gesture that was originally written using Python 2.7 was converted
to a version compatible with Python 3. By doing this, it is possible to run
the project both on Google Colaboratory and the Server of University.

e Many modules work only with Python 3.6: at the moment Google Colab-
oratory works with Python 3.7 but fortunately there is still Python 3.6

67

3.11 Requirements

available. To use it, I run the scripts and pip commands by writing some-
thing like ”!python3.6 -m ...”.

e Since it is not possible to use Python 2.7 and TCP/IP connection required
for connecting the Pepper robot, the data needed is saved, downloaded and
then used in scripts external to the server of Google Colaboratory.

e Even if it possible to choose the GPUs, the ones that are available are
sufficient for running the models with the given configuration. In case of
very long audios to be converted or in case a particular setup of Openpose
is used (e.g. for detecting hands and face and for having more accuracy),
this is no more true. Fortunately this does not happened since the audios
were cut to have a have a maximum duration of 10 seconds and Openpose
was used only for detecting the body.

e All the code was optimized such that it is possible to start each operation
from the last thing that has to be processed: this is very important because
Google Colaboratory can disconnect at any tiextract_data_for_training.pyme
if an account is used a lot and all the data processed can be completely
lost. This is the main reason to why it was always preferred to save the
data directly to Google Drive instead of saving it inside the server and then
exporting it after a while.

Running all the project is really heavy from the computational point of view,
especially if Google Colaboratory is used. It is recommended to use a very pow-
erful machine that is compatible with CUDA 9.0 or to manually convert all the
Tensorpack code of the many-to-one VC model such that can be used with newer
CUDA versions.

3.11 Requirements

In the next is shown a list of all the requirements needed to run correctly the
project. Notice that some components need to be installed with the version
shown because it isn’t tried to run the project with other versions. All these
packages, except Python,Cuda (and eventually Cudnn) and Openpose, can be
easily installed with pip. It must be noticed that some packages were already
installed on Google Colaboratory so except for speech2gesture model, 2D to 3D
poses conversion model, the scripts used to show the results of speech2gesture and
the ones used to control the Pepper robot, there is not any proof that the other
parts of the project can run out of Google Colaboratory with only these packages
installed.

68

3.11 Requirements

Python 3.6 and Python 2.7 (needed only for controlling the Pepper robot),
see Python

Cuda 9.0 if the project runs on Google Colaboratory, otherwise Cuda >=
10.1

Installation of Openpose and all its requirements (see Openpose)
Tqdm

Torch >=1.1.0
Pillow 6.1.0

Google API

Youtube Downloader
Scene Detect

Scipy 1.2.2

Numpy 1.16.4
Tensorpack 0.8.6
Tensorflow-gpu 1.9.0
Keras 2.2.4

Librosa 0.6.2

Numba 0.48

Pydub

Google Text To Speech
Soundfile

Hickle

Pickle

PyYAML

Scikit Learn 0.20.3

69

https://www.python.org/downloads/
https://github.com/CMU-Perceptual-Computing-Lab/openpose
https://pypi.org/project/tqdm/
https://pypi.org/project/torch/
https://pypi.org/project/Pillow/6.1.0
https://github.com/googleapis/google-api-python-client
https://pypi.org/project/youtube_dl/
https://pypi.org/project/scenedetect/
https://pypi.org/project/scipy/1.2.2
https://pypi.org/project/numpy/1.16.4
https://pypi.org/project/tensorpack/0.8.6/
https://pypi.org/project/tensorflow-gpu/1.9.0/
https://pypi.org/project/keras/2.2.4/
https://pypi.org/project/librosa/0.6.2/
https://pypi.org/project/numba/0.48.0/
https://pypi.org/project/pydub/
https://pypi.org/project/gTTS/
https://pypi.org/project/SoundFile/
https://pypi.org/project/hickle/
https://pypi.org/project/pickle-mixin/
https://pypi.org/project/PyYAML/
https://pypi.org/project/scikit-learn/0.20.3/

3.11 Requirements

e Resampy 0.2.1

e Pandas 0.24.2

e Matplotlib 2.2.4

e Tensorflow plot

e Tensorflow addons
e OpenCV

e Python-csv

o Ffmpeg

e NaoQi only for controlling the Pepper robot

To run the speech2gesture model and Openpose on an external server, it is also
necessary to install nvidia-docker on this, create 2 containers from personalized
images (Docker Openpose Image, while for tensorflow-gpu check the one that is
compatible in Docker Tensorflow Tmage) each one with a shared folder between
host and server, eventually install the other required packages to run Openpose
or speech2gesture and finally control the containers through an SSH connection.

70

https://pypi.org/project/resampy/0.2.1
https://pypi.org/project/pandas/0.24.2/
https://pypi.org/project/matplotlib/2.2.4/
https://pypi.org/project/tensorflow-plot
https://pypi.org/project/tensorflow-addons/
https://pypi.org/project/opencv-python/
https://pypi.org/project/python-csv/
https://pypi.org/project/ffmpeg/
http://doc.aldebaran.com/2-5/dev/python/install_guide.html
https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/install-guide.html
https://hub.docker.com/r/cwaffles/openpose
https://www.tensorflow.org/install/docker

Chapter 4

Evaluation

In this chapter there will be shown all the methods that were applied to evaluate
the proposed approach, as well as the objective and subjective results obtained.
To do the evaluation, there were followed the suggested guidelines of the recent
study of Wolfert et al. (2021), in particular:

e A user study was conducted for the subjective evaluation

e An objective evaluation was exploited by using standard metrics like Jerk,
PCK, L1 regression

More contrastive approaches were used in the user testing evaluation

Direct measures on human-likeness (naturalness), fluency, appropriateness,
timing, amount and coherence were evaluated

Definition and design of the experimental setup and metrics for evaluating
the co-speech gestures of a humanoid robot

4.1 Objective Evaluation

The objective evaluation was conducted by training and testing the speech2gesture
model with and without using a Discriminator (i.e. whether or not GANs are
used) and by using different types of data. For instance, the model was trained
by using a GAN model for original audios, a GAN model for converted audios
and finally a no-GAN model for converted audios.

Let’s firstly see how the PCK index, i.e. the index which classifies a keypoint as
correct if it falls inside a range o max(h,w) of the same ground truth keypoint
(see 2), and how the Loss, which formula is defined in 2.6, perform in average
during the training of the model.

71

4.1 Objective Evaluation

As explained in chapter 2, for the PCK « = 0.2 while the bounding box is
represented by an ellipse formed by an axis parallel to x and another parallel
to y of the images; the first represents the maximum variation of width of that
keypoint in the ground truth video sample (which is taken at 15 fps and formed
by 64 frames), while the second axis represents the maximum variation in height
of the same keypoint in the same ground truth sample.

Regarding the Loss in equation 2.6, notice that in the no-GAN case it is repre-
sented by only the ALy, component (2.7) since there is not a Discriminator; in
the GAN cases \ was set to 1 as in the original speech2gesture project.

The models were trained in all cases for 300 epochs with 300 steps each, using a
batch-size of 32 and by computing each time the average PCK and Loss on a set
of 512 validation samples taken randomly from the Dataset. In the GANs case
the Discriminator for each step learns two times by viewing one time the ground
truth data (x 32 samples because of the batch size) and one time the fake data
coming from the Generator (again x32 samples), while the Generator learns only
one time by using the 32 data samples. In the no-GANs case the training of the
Discriminator is simply skipped.

By inspecting the results shown below, clear differences can be noticed between
the three cases:

e In the GANs model trained with converted audios (Image 4.1) the Loss
converged very fast even if at the start the gradient seemed to diverge in
some points: this behaviour can be justified by the fact that even if the
Generator seems to learn something since the start, these poses appear
to be not very similar to the ground truth from the Discriminator point of
view. So the Loss goes up and down until the Generator leans how to create
original data. The PCK index seems to slightly decrease a little bit but this
does not necessary mean that the Network is performing worse: in fact,
since the co-speech gestures are multimodal, the keypoints of these can fall
distant from the ground truth keypoints without creating unnatural poses.
With articulated and wide gestures the probability of having keypoints far
away from the ground truth ones increase, that is a reason why PCK cannot
be considered a good index for evaluating poses.

e In the GANs model trained with original audios (Image 4.2) it can be
clearly noticed that the training is very unstable: the Loss continuously
goes up and down showing that the gradient encounters a lot of difficulties
before going to a point of convergence. This means that the Generator
and the Discriminator can’t find an equilibrium point and everytime the
Generator seems to learn something, the Discriminator directly refuses its
poses because they are too fake. This suggests that, by using original

72

4.1 Objective Evaluation

audios in a TED Dataset composed by a lot of different speakers, there can
be too many audio features to be learnt by the Network clearly showing
that either a very different model has to be used or an audio conversion
must be executed in advance. As it will be shown in the next, the poses
generated are very noisy even if in average they seem to fall often near the
ground truth.

The no-GANs model trained with converted audios (Image 4.3) performs
as expected: the Loss always go down since there is not a Discriminator to
recognize fake poses, and the PCK goes up since the Network guided by the
L1 Loss leans how to push poses near the ground truth. As we will see in
the next, even if the Networks seems to work well theoretically, practically
the movements are very stiff. Notice that the Average Loss is always lower
than the other two methods, this because it is not considered the GANs
term is not considered in the equation.

73

4.1 Objective Evaluation

Average Validation Loss - GANs with converted audios

Lu

7

il
i

0
0:

Ly
L

0.29

0.27

0 10k20k 30K 40k 50k 60k 7OKBOK 90K

Average PCK - GANs with converted audios

0.715
0705
0. B4Y5

0 &85

0675

0. BBS

0 10k20k30k40k50k60k70kE80K90K

Figure 4.1: Average Validation Loss and PCK indexes evaluated for each training
epoch in the GANs case with converted audios being used. On the x axis there
are the step values (300 steps for each epoch) while on the y axis are shown the
values of the indexes

74

4.1 Objective Evaluation

Average Validation Loss - GANs with original audios
0.8 -
0.6

0.4

0.2

0 10k20k 30K40k 50Kk 60k 70k B8Ok 90k

Average PCK - GANs with original audios
0.73 4
071 |
069
067

0ES

0.63
0 10k20k 30k 40k 50k 60k 70k 80k 90k

Figure 4.2: Average Validation Loss and PCK indexes evaluated for each training
epoch in the GANs case with original audios being used

75

4.1 Objective Evaluation

Average Validation Loss - no GANs with converted audios

0029

0028

D02/

D026

0 20k 40k B0k 80K

Average PCK - no GANs with converted audios

0 10k20k30k40k50k60k70kE80K90K

Figure 4.3: Average Validation Loss and PCK indexes evaluated for each training
epoch in the no GANs case with converted audios.

76

4.1 Objective Evaluation

Let’s now move on and see how these three methods performed with the
test set. Using this set it is possible to evaluate how good the Network is for
generalizing its learning.

With respect to the original model of speech2gesture, here it was implemented
another evaluating method called Jerk: this parameter (shown in 4.1) is widely
used to compute the smoothness of movements and it is defined as the mean
of the time derivatives of the norm of the accelerations. Since it requires three
derivative to be computed, time T goes from the first to the fourth frame before
the last frame, i.e. from 1 to 61 (64 - 3) in this case since each sample of the test
set has 64 poses. Here the distance between 2 points is measured in pixels so the
unit of measurement of the Jerk is % :

For each test sample and for each metLod, it was computed the Average Jerk of
the body, the Jerk of the two hands, the L1 Loss, the PCK, and finally it was
computed the average of these indexes for all the test samples used (512).
Moreover, these indexes not only were computed for all the 3 methods using the
test set, but also by considering test samples with audios desyncronized from
poses for checking how much the poses generated by the model are coherent with
the speech: to do this, I combined the audio of a sample used as test with the
poses of another random test sample inside the test set, creating in this way 512
new test samples.

A set of Unpaired T-tests with 95% of significance (alpha=0.05) and two tails,
were conducted to check whether or not some differences were significant. For
using this kind of test, it was always assumed that the groups of samples are
coming from a normal distribution, that they have the same variance (Unpaired),
that are independent from each other and that the estimated value can be greater
or less than a certain range of values (this is why it is called two tailed T-test).
T-test was also computed in the subjective evaluation, as it will be shown in the
next section, and there were evaluated:

e If the Null Hypothesis Hy of having relationship between two groups is
accepted or rejected: if it is rejected then there can be a relationship between
the two groups (i.e. they can came from the same population), if it is
accepted then there can be a statistical difference with 95% of significance
between the groups.

e The t-value which is a ratio between the difference between two groups and
the difference within the groups. The larger the t-value, the more difference
there is between groups.

e the p-value which is the probability that the difference between groups
occurred by chance.
The p-value range is from 0 to 1; in this case we must have p—value <= 0.05

7

4.1 Objective Evaluation

(because of the 95% of significance) to have a statistical difference between
means.

(4.1)

T
1 .
Jerk = T ;1 Haccelt

To have comparable Loss values for the three different methods, in the Gans
models it was not used the Discriminator for the test phase. As we can see from
the table 4.1, even if it seems that there are not so much differences between
the Loss and PCK parameters, this is instead not true for the Loss. Indeed, by
computing the T-test between the different methods (table 4.3), it is possible to
prove that there are always differences among these methods, except for the PCK
parameter which seemed to be always similar and so to be not a good evaluating
method.

What is interesting to notice is that GANs returned the highest average L1 loss:
by analyzing the Jerk parameter, it is confirmed that having a higher L1 Loss
does not necessary means that the Network performs worse, indeed in this Net-
work the movements produced are much better than the other two since they
are not too still (as in the no-GANs case), neither too shaky (as in the GANs
with original audio case). This means that it is instead important to have poses
that in average are close to the ground truth positions to obtain a lower L1 Loss.
Since GANs produce much more natural movements, it may happen more often
that the keypoints end in places far from the ground truth ones.

In the original project of speech2gesture the results obtained with PCK and L1
Loss were a lot more meaningful with respect the current project, but in that
case there were used many more keypoints since there were detected also the
hands and only the audio features coming from the same person. The latter can
be an important difference with respect the proposed method, in fact even if the
audios converted seem very similar among them, they are also more noisy and
less human-like, so they can give a very different result if used for training.

For these reasons, this project was mainly based on the Jerk parameter for eval-
uating the three methods. As we can see from the images 4.4 and 4.5, even if
it was confirmed by the T-test in the table 4.3 that the GANs method produces
movements clearly different from the real ones, the latter performed way better
than the other two methods. The case of the GANs trained with original audios
showed to be the worse with very shaky movements, while the no-GANs method
with converted audios shown to produce very stiff hand and body movements.
For this reason, it was decided to use only the GAN method trained with con-
verted audios among this three for the subjective evaluation.

78

4.1 Objective Evaluation

Lastly, it must be noticed that all these methods performed nearly the same when
the asyncronous test samples were used (see the tables 4.2 and 4.4): since also in
this cases the poses were human-like and not completely random and since the
L1 Loss and PCK parameters were nearly the same, this may means that none
of these models is fine for producing movements syncronized with speech. But as
said before, L1 Loss and PCK were not good parameters for the evaluation so to
prove this fact objectively, other parameters must be used.

Average Jerk

250
200
150
100
50
16,15
i
0
Real No-GANs GANs GANs orig_audio

Figure 4.4: Histogram showing the Average Jerk values of the body computed
using the 512 test samples by the GANs model trained with converted audios,
the GANs model trained with original audios, and the no-GANs model trained
with converted audios. Moreover, it is also shown the value of the Average Real
Jerk (computed from the ground truth of test samples. The bars of the STD are
also shown.)

79

4.1 Objective Evaluation

Right Hand Average Jerk

400
350
300
250
200
150
100

50

Real No-GANs GANs GANs orig_audio

Figure 4.5: Histogram showing the Average Jerk values of the right hands com-
puted using the 512 test samples by the GANs model trained with converted
audios, the GANs model trained with original audios, and the no-GANs model
trained with converted audios. Moreover, it is also shown the value of the Aver-
age Real Jerk (computed from the ground truth of test samples. The bars of the
STD are also shown

80

4.1 Objective Evaluation

no_GANs GANs Orig_Audio
avg_loss 0,026+0,0055 | 0,03+0,007 | 0,02840,006
avg_pck 0,74+0,145 0,7£0,145 0,7240,15

avg_real_jerk | 28,88+7,385 | 28,88+7,385 | 28,88+7,385
avg_pred_jerk | 4,84+3,215 16,15+4,35 | 191,08422,29
avg real rjerk | 45,93+18,35 | 45,93+18,35 | 45,93+18,35
avg_pred _rjerk | 6,63+3,525 27,26£5,77 | 342,46+36,21

Table 4.1: in this table are shown the Average values and the Standard Deviations
of all the parameters computed using the 512 random test set samples on the three
different models trained.

The models trained are: No GANs with converted audios, GANs with converted
audios, GANs with original audio.

The parameters computed are: average Loss, average PCK, average Jerk of the
body of the ground truth poses, average Jerk of the right hand of the ground
predicted poses.

no_GANs GANs Orig_Audio
avg_rand _loss 0,027+0,0055 | 0,031+0,0065 | 0,0284+0,006
avg_rand_pck 0,734+0,145 0,6940,145 0,734+0,15

avg_rand_real_jerk 29,1447,43 29,6347,295 30,164+8,075

avg rand_pred_jerk 5,06+3,93 16,61+4,69 193,51£22,38
avg_rand_real_rjerk | 44,26+15,05 | 46,43+16,275 46,24+17,16
avg_rand _pred_rjerk 6,9+4,28 27,86+6,21 | 346,63+34,385

Table 4.2: in this table are shown the Average values and the Standard Deviations
of all the parameters computed using the 512 random test set samples which have
inside the speech audio combined with random poses of other test samples on the
three different models trained. The models trained as well as the parameters are
the same of the table 4.1

81

4.2 Subjective Evaluation

no-GANs, GANs no-GANs, Orig_Audio GANSs, Orig_Audio
Loss YES - t=4,74 - p<0.0001 | YES - t=2,11 - p=0,04 YES - t=2,81 - p=0,01
Jerk YES - t=23,63 - p<0,0001 | YES - t=93,46 - p<0,0001 | YES - t=87,05 - p<,0001
Rhand Jerk | YES - t=34,48 - p<0,0001 | YES - t=104,34 - p<0,0001 | YES - t=97,17 - p<0,0001
PCK NO - t=1,94 - p=0,05 NO - t=0,86 - p=0,39 NO - t=1,05 - p=0,29

Table 4.3: in this table are shown all the two-tailored and unpaired T-tests with
95% of significance between the three methods, i.e. no-GANs with converted
audio, GANs with converted audios and GANs with original audios, evaluated
with each of the four parameters, i.e. Loss, Jerk, Jerk of the Right hand, PCK,
using the 512 test samples. For each value of the table there are shown the results
of the T-test: YES means that the null hypothesis (Hy) of having a relationship
between two group is accepted, i.e. data is not correlated, No means that Hj is
rejected i.e. data may be correlated, t is the T-value, p is the P-value.

GANs, GANsrand | no-GANs, no-GANs_rand | Orig_Audio, Orig_Audio_rand
Loss NO - t=0,7 - p=0,45 NO - t=0,63 - p=0,53 NO - t=0,15 - p=0,88
Jerk NO - t=0,81 - p=0,42 | NO - t=0,50 - p=0,62 NO - t=0,87 - p=0,39
Rhand _Jerk | NO - t=0,80 - p=0,42 | NO - t=0,56 - p=0,58 NO - t=0,9 - p=0,35
PCK NO - t=0.85 - p=0,39 | NO - t=0,49 - p=0,62 NO - t=0,53 - p=0,60

Table 4.4: in this table are shown all the two-tailored and unpaired T-tests with
95% of significance between each of the three methods, i.e. no-GANs with con-
verted audio, GANs with converted audios and GANs with original audios, evalu-
ated with each of the four parameters using one time the 512 test samples and the
other time the 512 test set samples which have inside the speech audio combined
with random poses of other test samples.

4.2 Subjective Evaluation

Let’s now talk about the subjective evaluation. Even if this kind of evaluation
is difficult to be reproduced, it shows results that are much more meaningful
since the evaluation is directly conducted by the people. To evaluate this method
there were exploited 41 people with Indian culture and 41 people with different

82

4.2 Subjective Evaluation

cultures were recruited from the Amazon Mechanical Turk system. Each of them
had to complete a survey (created on JotForm) on which there were proposed
3 different videos showing 3 different methods used and some questions. The
methods proposed were:

e the GAN’s method: to use it, it was inferred the speech2gesture model
trained with converted audios. This model was also tried with human au-
dios and produced better results than audios coming from text-to-speech
methods (maybe because the human features are more similar to the ones
used for the training, moreover the speech of the humans is more natural
and articulated than conventional TTS), but since it was necessary to com-
pare the result coming from here to the other methods, it was used the
same T'TS of the Pepper Robot as the one used for the other two methods.
It was necessary to record the voice of the Pepper in advance and then use
the recorded voice to infer the Network. The problem of this approach is
that in any case it must be used the text-to-speech of Pepper and not the
recorded audio to compare this method with the others, but by doing this,
it is impossible to obtain a perfectly syncronized audios. So this fact has to
be taken into account. Another fact that must be taken in consideration is
that for the mapping the poses were downsampled to 3 fps because too fast
movements can’t be reproduced by the Robot. This can be seen as a tuning
value, having many frames means that the Robot can’t reach in time the
defined positions, resulting in very still movements or in important delays
since it can’t process all of them, having too few frames means that the
Robot has to interpolate too much between frames so the movements can
be seen very different from the ones outputted by the model. Changing this
value can change in a significant way the results.

e the Random method: for this method random gestures were generated by
Pepper while it was talking. Instead of generating completely random ges-
tures, there were instead generated gestures that stay in a range common to
the human ones and their speed it was adjusted such that the movements
seem smooth as the humans ones. In any case, they are completely asyn-
cronous with the speech and not related to it. The motions starts with the
arms flexed and with arms positioned near the chest, this position it can be
seen as the average position that humans make while they talk.

e the Animated Speech method: this is the default method used by Pepper
when it talks. It is a rule-base method so the movements are very similar
to the human ones. Moreover, they seems to be also dependent from the
speech context and articulation, but, as it is possible to imagine, they are
not so many neither they are not always syncronous with the speech.

33

https://www.mturk.com/
https://www.jotform.com/

4.2 Subjective Evaluation

All these methods as mentioned before, were all tested using the same TTS

of Pepper because different voices can have very different effects on people, and
because the TTS of Pepper is the only one that can be used with the Animated
Speech method.
There were recorded totally 6 videos: a video for each method (3) prepared for
the Indian culture (Random, GANs, Animated Speech), and a video for each
method prepared for all the other people (Random, GANs, Animated Speech).
The difference consists on the sentences pronounced by Pepper, for instance it
was chosen to use sentences more related to the Indian culture for the Indian
people and more general sentences to the others: this because there is a belief
that sentences which depend on culture can capture more the attention of the
listener and they seem more natural to its point of view. Moreover, since the
GANs model was trained with data of Indian people, there can be differences
in the gestures that it can produce from sentences that depend on the Indian
culture: if this is true, the gestures generated will be more natural and more
related to the speech.

The Indian sentences were:

1. I know that traditional Indian men’s clothes include dhoti and kurta, which
are paired with a Topi, while Sarees and Salwar Kameez are two of the most
famous traditional indian women’s clothes.

2. Diwali is the festival of lights that celebrates new beginnings and the tri-
umph of good over evil and light over darkness. I know that houses are
decorated with candles and colourful lights.

3. Somebody told me that the music of India includes multiple varieties of
classical music, folk music, filmi, Indian rock, and I know that the music of
India is one of the oldest unspoken musical traditions in the world. Indian
music is great!

4. T know that typical breakfast in India varies depending on region. It could
comprise of parathas or chapattis and a vegetable dish eaten lightly, or it
might include rotli, dosas or idlis, and different dips and chutneys, as well
as spiced potatoes.

while the sentences used for all the other cultures were:

1. Playing an instrument is a great way to exercise your body and your mind.
It is also a wonderful way to do something fun with other people! T think
that, if you know how to play an instrument, you are very lucky and you
should continue practicing it as much as you can.

84

https://youtu.be/2u3mAFlDd3w
https://youtu.be/u-EFW5wRHEo
https://youtu.be/AMsbF2uEN_c
https://youtu.be/GnfSAn3vzuc
https://youtu.be/iG2-DIz2dw0
https://youtu.be/qJ9I5cs1fik

4.2 Subjective Evaluation

2. The things we do every day sometimes may look all the same, but every
day is different. I am really enthusiastic to start this day!

3. Somebody told me that the fundamentals of baseball involve throwing the
ball, hitting the ball, and catching the ball. In other words, it is a game
played with a bat, ball and glove.

4. T am told that the Golden Age of Hollywood started with the silent movie
era. The first major silent movie was called the 'Birth of a Nation, and two

of the most popular movies of the Golden Age of Hollywood are Gone with
the Wind and Casablanca.

These sentences were not chosen randomly, in fact, the first sentences of both
kinds are closely related to iconic gestures, the second are related to metaphoric
ones, the third on the beat ones and the last to iconic gestures. Moreover, the
Indian sentences were directly extracted from Caresses (Menicatti et al. (2018))
that is a system capable of generating cultural dependent sentences.

For each of the videos that the Workers had to see, they had also to reply to
some questions closely related to some aspects of the gestures, for instance:

e Do the gestures interpret the verbal information correctly? - Related to the
coherence with speech

e Did you consider the observed shapes shown at different speech segments
appropriate? - Related with the appropriateness

e Was the movement fluid? - Related with the fluency

e Was the speed and the timing of the represented content appropriate? -
Related with timing

e Was the number of movements sufficient? - Related to the amount of ges-
ticulation

e How would you rate the overall robot’s talking gestures? (unnatural - hu-
manlike) - Related to the naturalness

The latter questions was considered the most important one since it depends
from all the other questions and it is the one related to what people globally per-
ceive from the robot; moreover, since the GANs method is trained using data of
real people, it is expected to be more realistic and natural than at least the Ran-
dom one. It may not be expected to be more realistic than the Animated Speech
since the latter was created by human annotations, but it may be expected to

85

4.2 Subjective Evaluation

produce more varied movements since the gestures of Animated Speech are very
limited.

To push the Workers to think more on the last question and to have a direct feed-
back to them, it was mandatory for them to reply to an open question related to
the Naturalness, for instance: ”Why did you choose to give that vote to the last
questions?”.

This question also suggest that all the others were not open questions but instead
they where questions on which Workers had to reply with a vote from 0 to 10; by
doing this, it is simpler to evaluate numerically the results. All were mandatory.
Finally, it was asked the age, the gender and the culture of the person before the
start and it was necessary for them to complete the survey to get a code at the
end: this code called also Survey code, was necessary to know whether or not
they completed the test.

In any case, it was not possible to check if they saw all the videos and they did
the experiment with commitment, but from the open questions it was possible to
see who replied with coherence and who not: the ones that wrote random words
or words not related to the survey were rejected.

To choose the workers adequately, it was filtered the country of origin and it was
checked what was written in the ”culture” field of the survey. By doing this, 41
surveys were collected from each group and the average results of the people with
Indian culture are shown in 4.6 while the results coming from people of all the
other cultures are shown in 4.7. These results are also reported numerically in
the tables 4.5 and 4.6.

The first thing that we can notice from these results is that the Animated
Speech always performed better than the other two methods while no significant
differences were found between Random and GANs on both the groups of people
(see table 4.7 and 4.8). What is interesting is the fact that even if no signifi-
cant differences were found between GANs and Animated Speech in the Indian
test, they were instead found in the General test; moreover, the parameter that
changes more in GANs is the Naturalness that is shown on 4.8. As it can be
noticed, in this figure is shown that the Naturalness of the GANs method tested
with Indian people changes in a significant way with respect to the GANs method
tested with the people of all the other cultures. This fact is confirmed by the ta-
ble 4.9 and suggests that the proposed GANs method is the only one that have
a cultural dependence.

Another confirmation to this fact is that in table 4.7 it can be noticed that there
is a significant difference between the Naturalness of the Random method and the
one of the Animated Speech so even if people didn’t notice so much the difference
of this parameter between GANs and Random, they still prefer the GANs one.

By analyzing the replies of Indian people to the open question proposed, some of

36

4.2 Subjective Evaluation

them said that in the GANs method there as a lack on movement, someone else
said that gestures were not enough to represent the speech and finally someone
noticed that gestures were not syncronized. These facts were also confirmed by
the people of the other cultures, but these ones were more affected by the fact
that the robot lacks in movements, suggesting that the in the Indian Culture
people move less the arms when they talk. It must be noticed that many of the
people which do not belong to the Indian Culture and participated to the Gen-
eral test were American so the test revealed to be more a comparison between
American and Indian culture instead of being a test among Indian and all the
other cultures.

It can be useful to notice also that someone that noticed a better voice in the
Animated Speech suggesting that sometimes the voice is perceived differently if
the robot uses different gestures. Finally, the lower standard deviation of the An-
imated Speech confirmed that people have less doubts on preferring this method.

Test on Indian culture
9,00

~
[=]
o

6,

o
[S]

5

o
o

8,00
4,

3

3

)
0

3,
0,

o
o

o
o

]
o
o

1

o
]

o

Coherence Appropriateness Fluency Timing Amount Naturaleness

B Random M GANs M Animated Speech

Figure 4.6: Histogram showing how the Animated Speech, the GANs and the
Random methods were evaluated by the people of the Indian Culture). Also the
STD bars are shown.

87

4.2 Subjective Evaluation

Test on all other cultures
10,00

9,00

8,00

=3

o

o
S

7
6,
5
4

,00
’0 | | |
0,00 | | |

=3
S

=3
S

=1
i<

3
2
1

=
S

Coherence Appropriateness Fluency Timing Amount Naturaleness

WRandom MGANs M Animated Speech

Figure 4.7: Histogram showing how the Animated Speech, the GANs and the
Random methods were evaluated by the people of all the Cultures except for the
Indian one). Also the STD bars are shown.

88

4.2 Subjective Evaluation

9,00

8,00

w
o
S]

N
o
o

=
o
o

Random

Naturalness

GANs

HINDIANS m GENERAL

Animated Speech

Figure 4.8: Histogram showing the evaluation differences on the Naturalness
parameter by the people of Indian Culture and people of different cultures. Also
the STD bars are shown.

INDIANS Mean
Coherence | Appropriateness | Fluency | Timing | Amount | Naturalness
Random 6,49 6,78 6,41 6,76 6,68 6,32
GANs 6,51 6,34 6,22 6,49 6,51 6,80
Animated Speech 6,83 6,98 6,90 7,15 6,76 7,46
INDIANS STD
Coherence | Appropriateness | Fluency | Timing | Amount | Naturalness
Random 2,03 1,92 2,46 2,19 2,35 2,57
GANs 2,18 1,92 2,29 1,79 1,86 2,20
Animated Speech 1,79 1,99 1,92 1,85 1,77 1,79

Table 4.5: in this table are shown all the Means and Standard Deviations of the

indexes evaluated during the Subjective Indian test.

89

4.2 Subjective Evaluation

GENERAL Mean
Coherence | Appropriateness | Fluency | Timing | Amount | Naturalness
Random 5,98 6,29 6,24 6,37 6,32 6,00
GANs 5,76 5,95 5,61 6,02 6,05 5,54
Animated Speech 6,93 7,27 7,68 7,34 7,34 7,22
GENERAL STD
Coherence | Appropriateness | Fluency | Timing | Amount | Naturalness
Random 2,66 2,23 2,28 2,33 2,54 2,50
GANs 2,45 2,53 2,23 2,23 2,57 2,86
Animated Speech 1,78 1,82 2,50 1,85 1,54 1,46

Table 4.6: in this table are shown all the Means and Standard Deviations of the
indexes evaluated during the Subjective test of all the cultures except the Indian

one.

T-test INDIANS

Ind R, Ind G

Ind R, Ind A

Ind G, Ind A

Coherence NO - t=-0,05 - p=0,96 | NO - t=-0,81 - p=0,42 | NO - t=-0,72 - p=0,47
Appropriateness | NO - t=1,12 - p=0,27 | NO - t=-0,45 - p=0,65 | NO - t=-1,47 - p=0,15
Fluency NO - t=0,37 - p=0,71 | NO - t=-1,00 - p=0,32 | NO - t=-1,47 - p=0,15
Timing NO - t=0,61 - p=0,55 | NO - t=-0,88 - p=0,39 | NO - t=-1,64 - p=0,11
Amount NO - t=0,36 - p=0,72 | NO - t=-0,16 - p=0,87 | NO - t=0,61 - p=0,54
Naturalness NO - t=-0,92 - p=0,36 | YES - t=-2,34 - p=0,02 | NO - t=-1,48 - p=0,14

Table 4.7: in this table are shown all the two-tailored and unpaired T-tests with
95% of significance among the three different methods used: Random gestures

(R), Animated Speech (A), GANs (G).

T-test GEN Gen R, Gen G Gen R, Gen A Gen G, Gen A
Coherence NO - t=0,39 - p=0,70| NO - t=-1,90 - p=0,06 | YES - t=-2,48 - p=0,02
Appropriateness|NO - t=0,65 - p=0,52|YES - t=-2,17 - p=0,03| YES - t=-2,71 - p=0,01
Fluency NO - t=1,27 - p=0,21|YES - t=-2,72 - p=0,01|YES - t=-3,95 - p=0,0001
Timing NO - t=0,68 - p=0,50| YES - t=-2,10 - p=0,04| YES - t=-2,91 - t=0,001
Amount NO - t=0,48 - p=0,64|YES - t=-2,20 - p=0,03| YES - t=-2,20 - p=0,03
Naturalness |NO - t=0,78 - p=0,44|YES - t=-2,70 - p=0,01| YES - t=-3,35 - p=0,001

Table 4.8: in this table are shown all the two-tailored and unpaired T-tests with
95% of significance between each the three different methods used in the test that
takes into account all the cultures except the Indian one (General test): Random
gestures (R), Animated Speech (A), GANs (G).

90

4.2 Subjective Evaluation

T-test IND-GEN

Ind R, Gen R

Ind G, Gen G

Ind A, Gen A

Coherence

NO - t=0,98 - p=0,33

NO - t=1,48 - p=0,14

NO - t=0,25 - p=0,81

Appropriateness

NO - t=1,06 - p=0,29

NO - t=0,79 - p=0,43

NO - t=-0,70 - p=0,49

Fluency

NO - t=0,33 - p=0,75

NO - t=1,22 - p=0,23

NO - t=1,58 - p=0,12

Timing

NO - t=0,78 - p=0,44

NO - t=1,03 - p=0,30

NO - t=-0,48 - p=0,63

Amount

NO - t=0,68 - p=0,50

NO - t=0,94 - p=0,35

NO - t=1,60 - p=0,11

Naturalness

NO - t=0,57 - p=0,57

YES - t=2,25 - p=0,03

NO - t=0,68 - p=0,50

Table 4.9: in this table are shown all the two-tailored and unpaired T-tests with
95% of significance between each the three different methods used in the Indian
and General test: Random gestures (R), Animated Speech (A), GANs (G). If
there is a statistical difference, for example in the case of the GANs Naturalness
parameter, there is also a difference between cultures in perceiving that method.

91

Chapter 5

Conclusions

This is the last chapter of this thesis and here there will be written a small sum-
mary of what is obtained, how it can be improved and what are the current limits.
Starting from the results obtained, it should be noticed that even if some elements
were proven, like the cultural dependence of gestures, the goodness of the GANs
method over the no-GANs one in creating more natural gestures (even if they
are as much as natural as the real ones), the very positive effect of the audio
conversion for the training of the Network, ecc.; some others were not and per-
formed worse than expected. One of these, maybe the most important one, is the
non-significant difference among the votes of people evaluating generated gestures
and random ones. This means that this method must be improved by a lot to
have results similar or better to rule-based methods like the Animated Speech of
the Pepper Robot. Another element that was not demonstrated is the significant
difference of the PCK index among the different methods, indeed it seemed to
be a completely useless index, and the importance of the L1 Loss. This suggests
that other objective indexes must be used to evaluate this approach, moreover for
the point of view of the culture whose difference was only proved by a subjective
evaluation. But there are some considerations that have to be taken into account,
let me show some.

Firstly, it is important to say that the GANs method was not tested in its best
setup: in fact, the model of many-to-one Voice Conversion can be trained more
to have less noise in the conversion stage, and getting audios with much less noise
can make a lot of difference in the results. Maybe, by only doing this change,
there can be obtained also more significant results with the PCK index, overall
lower L1 Loss or also slightly higher Jerk by having smoother motions. Moreover,
in the subjective evaluation, the GANs method was tested using a recorded audio
of the voice of the Robot and this fact gives two main disadvantages: firstly the
audio features are very different from the human speech, indeed sometimes the
Robot mispronounces some words and its voice is less articulated than the human

92

one, secondly the recorded audio was not the one played during the speech and
this creates asyncronous movements.

To solve the first problem there must be used a clear audio file with a human
voice for the inference of the model, or as an alternative a better T'TS system that
avoids mispronounciatons or that articulates more the speech; to solve the second
problem it is instead necessary to play the same audio used for the inference of
the training.

By doing some other unofficial experiments which were not reported in this
project, it was noticed that some audios related to TTS sometimes creates very
unnatural movements in the GANs model and even more in the no-GANs one,
and that the movements created by this method are slower than the movements
created by using a human speech, suggesting that the solution proposed above
can create better results.

Of course, there can’t be expected results that are much better because in any
case we are relying only on converted audio features so the context of the words is
completely lost as well as the human expressiveness during the audio conversion
stage. What is instead maintained is the articulation of the human voice which
again helped to obtain better results in the unofficial results, and it was noticed
that the element that the latter changes more is the rythm of the movements,
confirming that the audio features affect more the beat gestures. To create more
of the other kinds of gestures then some other approaches must be tried, one of
them can be the Multimodal approach whose example is shown in the chapter 2.
By taking into account the audio and the text features, much better results can
be obtained.

Another element that can be improved is the syncronization between speech and
co-speech gestures: with the proposed method the Network learns it without
specific rules, so it is very important to put samples with audios and gestures
perfectly syncronized. This may happen with the data created for the original
project of speech2gesture, but instead it doesn’t happen with the proposed method
since all the audios have different number of samples and for training the model,
there must be removed some of them or added some zeros such that they can
have the same number of samples.

The problem of the Multimodal approach is that again the map between the
speech and the gestures is learned by the Network and of course the result will
depend from the Dataset used: even if the TED videos show people talking in
a natural way, there must be considered that these ones are speaking in an un-
natural environment, indeed they are talking in conferences and with unknown
people, so there can be a lot of difference among this type of data and data ac-
quired for example in some other natural contexts; moreover, the larger part of
the gestures used in these setups are the beat ones while gestures of other kinds
like the iconic that are used for illustrating proprieties of an element or deictic

93

for pointing objects, are much less used so the gestures of these types are very
difficult to be learned by the Neural Network, even if text features are used.

An idea for getting around this problem is to create an hybrid approach between
the end-to-end one and the rule-based one: by using rule-based gestures for some
specific words or contexts, and end-to-end ones for all the others, it may be possi-
ble to create a much better setup for the co-speech gestures generation. Of course
both these methods must depend from the culture to obtain better results, ele-
ment that is very meaningful and whose importance was proven by a subjective
analysis in this thesis.

Of course this element needs more studies to be proved: for example it can be
meaningful to compare the differences between GANs methods trained with dif-
ferent cultures. Indeed, there is no proof, except for the Naturalness index, that
the model recognizes differences among data of different cultures. So, many other
indexes must be analyzed, in addition to the objective ones; indeed the cultural
difference was not evaluated by any objective index.

This method has also many limits, one of them is the computational one. Prepar-
ing the data, training the models, mapping the poses in 3D and reproducing the
poses on the Robot was a very long and challenging task, also from the point of
view of finding a setup that is able to run all this processes at once. A purpose
for the future work is to create a completely new model that maintains many of
the concepts of this one but that instead does all the operations at the same time:
for example, what will happens if Phonetic Posteriorgrams are directly used as
training features of the Neural Network? What will happen if we add Multimodal
features as suggested before? Is it possible to make the model compatible with
all the future versions of the frameworks, drivers and libraries used in a very
simple way? Is it possible to find a Dataset which is more controlled than the
TED talks? How much difference there can be if all the Dataset is created in a
controlled setup? There can be created a method fast enough to work online?
These are some questions that must be addressed for future works, for the mo-
ment we can be satisfied with this approach since it is the first known approach
for learning co-speech gestures by taking into account the Culture.

Another important actual limit in the subjective evaluation is that there isn’t any
control on the Workers that completed the survey, may the results be exactly the
same if the tests are repeated or it is better to prefer a more controlled evaluation
maybe also with less people? This is another question that must be addressed.
A physical limit is instead the one of the Robot: indeed it can’t reproduce the
movements smoother as they were computed so if we not choose a correct timing
for poses they can results too slow, shaky or also have important delays between
them, moreover, there must considered that when it is moving the localization of
its joints may be worse with the passing of the time and the result can be very
different from what we thought. These facts were noticed also by subjective eval-

94

uating the differences between the poses in the video and the poses reproduced
by the Robot and this may heavily influenced the performance in the subjective
evaluation. It is also to take into account that the 3D gestures were outputted by
Neural Network and sometimes may be not be as expected: to limit this prob-
lem they can be again processed before being reproduced by the Robot. Having
said that, this can of course be a good starting point for the future work and by
applying some small as well as big changes it can be improved by a lot and there
can be obtained very natural gestures. It must be taken into account that people
may not like very natural gestures being reproduced from an agent, but this fact
can be proved only by relying on some psychological studies.

95

References

ABADI, M., AGARWAL, A., BARHAM, P., BREvVDO, E., CHEN, Z., CITRO,
C., CorrADO, G.S., Davis, A., DEAN, J., DEVIN, M., GHEMAWAT, S.,
GOODFELLOW, I., HARP, A., IRVING, G., ISARD, M., JiA, Y., JOZEFOW-
1cz, R., KAISER, L., KUDLUR, M., LEVENBERG, J., MANE, D., MONGA,
R., MOORE, S., MURRAY, D., OrLAH, C., SCHUSTER, M., SHLENS, J.,
STEINER, B., SUTSKEVER, 1., TALWAR, K., TUCKER, P., VANHOUCKE, V.,
VASUDEVAN, V., VIEGAS, F., VINYALS, O., WARDEN, P., WATTENBERG,
M., Wicke, M., Yu, Y. & ZHENG, X. (2015). TensorFlow: Large-scale
machine learning on heterogeneous systems. Software available from tensor-
flow.org. 3, 65

AvrBAaLl, M.W., Kita, S. & Youna, A.J. (2000). Gesture and the process
of speech production: We think, therefore we gesture. Language and Cognitive
Processes, 15, 593-613. 1

ARCHER, D. (1997). Unspoken diversity: Cultural differences in gestures. Bib-
liovault OAI Repository, the University of Chicago Press, 20. 1

Bai, S., KOLTER, J.Z. & KovrTuN, V. (2018). An empirical evaluation of
generic convolutional and recurrent networks for sequence modeling. CoRR,
abs/1803.01271. 17

Bisong, E. (2019). Google Colaboratory, 59-64. Apress, Berkeley, CA. 3

BREMNER, P., P1PE, A., MELHUISH, C., FRASER, M. & SUBRAMANIAN, S.
(2011). The effects of robot-performed co-verbal gesture on listener behaviour.
In 2011 11th IEEE-RAS International Conference on Humanoid Robots, HU-
MANOIDS 2011, IEEE-RAS International Conference on Humanoid Robots,
458-465. 1

BUTTERWORTH, B. & HADAR, U. (1989). Gesture, speech, and computational
stages: a reply to mcneill. Psychological review, 96, 168—174. 50

96

REFERENCES

CAo, Z., HiIbDALGO MARTINEZ, G., SIMON, T., WEI, S. & SHEIKH, Y.A.
(2019a). Openpose: Realtime multi-person 2d pose estimation using part affin-

ity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence.
12

CAo, Z., HIDALGO MARTINEZ, G., SIMON, T., WEI, S. & SHEIKH, Y.A.
(2019b). Openpose: Realtime multi-person 2d pose estimation using part affin-

ity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence.
29

CHAN, C., GINOSAR, S., ZHou, T. & EFros, A.A. (2018). Everybody dance
now. CoRR, abs/1808.07371. 8

CHo, K., VAN MERRIENBOER, B., GULCEHRE, C., BOUGARES, F.,
SCHWENK, H. & BENGIO, Y. (2014). Learning phrase representations
using RNN encoder-decoder for statistical machine translation. CoRR,
abs/1406.1078. 16

DE MELJER, M. (1989). The contribution of general features of body movement
to the attribution of emotions. Journal of Nonverbal Behavior, 13, 247-268.
10

FEYEREISEN, .D.L.J.D., P. (1991). Studies in emotion and social interaction.
10

GArRoroLO, J., LAwmEL, L., Fisuer, W., Fiscus, J., PALLETT, D.,
DAHLGREN, N. & ZUE, V. (1992). Timit acoustic-phonetic continuous speech
corpus. Linguistic Data Consortium. 20

GINOSAR, S., Bar, A., KoHavi, G., CHAN, C., OWENS, A. & MALIK,
J. (2019). Learning individual styles of conversational gesture. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR). 2, 3,9

GOODFELLOW, I. (2017). Nips 2016 tutorial: Generative adversarial networks. 2

GooDpFELLOW, [.J., POUGET-ABADIE, J., MirzA, M., XU, B., WARDE-
FARLEY, D., OzAIRr, S., COURVILLE, A. & BENGIO, Y. (2014). Generative
adversarial networks. 2, 6, 7

GOOGLE (2021a). Google developers. https://developers.google.com. 28

GOOGLE (2021Db). Youtube data api. https://developers.google.com/youtube/v3.
28

97

REFERENCES

HazeN, T.J., SHEN, W. & WHITE, C. (2009). Query-by-example spoken term
detection using phonetic posteriorgram templates. In 2009 IEEE Workshop on
Automatic Speech Recognition Understanding, 421-426. 20

HEUSEL, M., RAMSAUER, H., UNTERTHINER, T., NESSLER, B., KLAMBAUER,
G. & HOCHREITER, S. (2017). Gans trained by a two time-scale update rule
converge to a nash equilibrium. CoRR, abs/1706.08500. 18

Huang, C. & MutLu, B. (2014). Learning-based modeling of multimodal be-
haviors for humanlike robots. In 2014 9th ACM/IEEFE International Conference
on Human-Robot Interaction (HRI), 57-64. 8

Isora, P., Zuu, J., Zuou, T. & EFros, A.A. (2016). Image-to-image trans-
lation with conditional adversarial networks. CoRR, abs/1611.07004. 7, 11

Joo, H., Liu, H., Tan, L., Gul, L., NABBE, B., MATTHEWS, 1., KANADE,
T., NOBUHARA, S. & SHEIKH, Y. (2015a). Panoptic studio: A massively
multiview system for social motion capture. In 2015 IEEE International Con-
ference on Computer Vision (ICCV), 3334-3342. 17

Joo, H., Liu, H., Tan, L., Gui, L., NABBE, B., MATTHEWS, [., KANADE,
T., NOBUHARA, S. & SHEIKH, Y. (2015b). Panoptic studio: A massively mul-
tiview system for social motion capture. In The IEEE International Conference

on Computer Vision (ICCV). 60

KierzmanN, J., LEE, L.W., McCARTHY, [.P. & KieTzmMANN, T.C. (2020).
Deepfakes: Trick or treat? Business Horizons, 63, 135-146, aRTIFICIAL
INTELLIGENCE AND MACHINE LEARNING. 2

Kipp, M. (2003). Gesture generation by imitation: from human behavior to
computer character animation. 8

KiTa, S. (2009). Cross-cultural variation of speech-accompanying gesture: A
review. Language and Cognitive Processes, 24, 145-167. 1

KoMINEK, J. & BLACK, A. (2004). The cmu arctic speech databases. SSW5-
2004 . 20

Krauss, R.M., CHEN, Y. & CHAwLA, P. (1996). Nonverbal behavior and
nonverbal communication: What do conversational hand gestures tell us? 28,
389-450. 1

LE, Q.A., HANOUNE, S. & PELACHAUD, C. (2011). Design and implementation
of an expressive gesture model for a humanoid robot. In 2011 11th IEEE-RAS
International Conference on Humanoid Robots, 134-140. 6

98

REFERENCES

LEVINE, S., KRAHENBUHL, P., THRUN, S. & KorrTuN, V. (2010). Gesture
controllers. In ACM SIGGRAPH 2010 Papers, SIGGRAPH ’10, Association
for Computing Machinery, New York, NY, USA. 8

McCNEILL, D. (1994). Hand and mind: What gestures reveal about thought.
Bibliovault OAI Repository, the University of Chicago Press, 27. 1, 10

MEDIUM.COM (2020). https://medium.com/analytics-vidhya/understanding-
the-mel-spectrogram-fca2afa2ceb3. 12

MEENA, R., JOKINEN, K. & WILCOCK, G. (2012). Integration of gestures and
speech in human-robot interaction. In 2012 IEEFE 3rd International Conference
on Cognitive Infocommunications (CoglnfoCom), 673-678. 6

MENICATTI, R., RECccHIUTO, C.T., BRUNO, B., ZACCARIA, R., KHALIQ,
A.A., KOCKEMANN, U., PECORA, F., SAFFIOTTI, A., Bul, H.D., CHONG,
N.Y., Lim, Y., PHAM, V.C., TuveN, N.T.V., MELO, N., LEE, J., Busy,
M., LAGRUE, E., MONTANIER, J., PANDEY, A.K. & SGORBISSA, A. (2018).
Collaborative development within a social robotic, multi-disciplinary effort:
the caresses case study. In 2018 IEEE Workshop on Advanced Robotics and its
Social Impacts (ARSO), 117-124. 85

Povey, D., GHOSHAL, A., BOULIANNE, G., BURGET, L., GLEMBEK, O.,
GoOEL, N., HANNEMANN, M., MoTLiCEK, P., QIAN, Y., SCHWARZ, P.,
SILOVSKY, J., STEMMER, G. & VESELY, K. (2011). The kaldi speech recog-
nition toolkit. 20

RODRIGUEZ, I., MARTINEZ-OTZETA, J.M., IRIGOIEN, I. & LAzKANO, E.
(2019). Spontaneous talking gestures using generative adversarial networks.
Robotics and Autonomous Systems, 114, 57-65. 8

RONNEBERGER, O., FIsCHER, P. & Brox, T. (2015). U-net: Convolutional
networks for biomedical image segmentation. CoRR, abs/1505.04597. 11

SEHCGAL, S., SINGH, H., AGARWAL, M., BHASKER, V. & SHANTANU (2014).
Data analysis using principal component analysis. In 2014 International Con-
ference on Medical Imaging, m-Health and Emerging Communication Systems

(MedCom), 45-48. 15

SOFTBANK, R. (2018). Naoqi api documentation. In 2016 I[EEE
International — Conference on Multimedia and Expo (ICME), vol.
http://doc.aldebaran.com/2-5/home,epper.html, 1 — —6.5,6, 16, 63, 64

99

REFERENCES

Sun, L., Kang, S., L1, K. & MENG, H. (2015). Voice conversion using deep
bidirectional long short-term memory based recurrent neural networks. 21

Sun, L., L1, K., WaNnG, H., KANG, S. & MENG, H. (2016). Phonetic posteri-
orgrams for many-to-one voice conversion without parallel data training. In 2016
IEEE International Conference on Multimedia and Exzpo (ICME), 1-6. 2, 11

Sun, L., L1, K., WaNnG, H., KaNG, S. & MENG, H. (2016). Phonetic posteri-
orgrams for many-to-one voice conversion without parallel data training. In 2016
IEEE International Conference on Multimedia and Ezpo (ICME), 1-6. 20

WiLson J.R., S.A.H.S.S.M.T.D.L., LEE N.Y. (2017). Hand gestures and verbal
acknowledgments improve human-robot rapport. Kheddar A. et al. (eds) Social
Robotics. 2

WOLFERT, P., ROBINSON, N.L. & BELPAEME, T. (2021). A review of evalua-

tion practices of gesture generation in embodied conversational agents. CoRR,
abs/2101.03769. 3, 71

Wu, Y. et al. (2016). Tensorpack. https://github.com/tensorpack/. 66

YANG, Y. & RAMANAN, D. (2013). Articulated human detection with flexible mix-
tures of parts. IEEFE Transactions on Pattern Analysis and Machine Intelligence,
35, 2878-2890. 14

Yoon, Y., Ko, W., JaNG, M., LEE, J., Kim, J. & LEE, G. (2018). Robots learn
social skills: End-to-end learning of co-speech gesture generation for humanoid
robots. CoRR, abs/1810.12541. 3, 9

YooNn, Y., CHA, B., LEg, J.H., JANG, M., LEE, J., Kim, J. & LEE, G. (2020).
Speech gesture generation from the trimodal context of text, audio, and speaker
identity. ACM Trans. Graph., 39. 17

100

https://github.com/tensorpack/

	1 Introduction
	1.1 Summary

	2 State of the Art
	2.1 Summary
	2.2 Rule-based method
	2.3 Data-driven method
	2.3.1 GANs
	2.3.2 Probabilistic approach
	2.3.3 End-to-end approach
	2.3.3.1 Audio to Gesture
	2.3.3.2 Word to Gesture
	2.3.3.3 Speech Gesture Generation using Trimodal Context

	2.4 Voice Conversion

	3 Methodology
	3.1 Summary
	3.2 Youtube Playlist
	3.3 Dataset Extraction
	3.3.1 Download of the videos
	3.3.2 Poses extraction
	3.3.3 Scene extraction
	3.3.4 Scene Filtering and poses selection
	3.3.4.1 data_utils.py
	3.3.4.2 main_speaker_selector.py
	3.3.4.3 clip_filter.py
	3.3.4.4 run_clip_filtering.py

	3.3.5 Creation of the Dataset
	3.3.6 Adaptation of the Dataset
	3.3.6.1 motion_preprocessor.py
	3.3.6.2 writecsv.py
	3.3.6.3 write_final_skeletons
	3.3.6.4 writecsv

	3.4 Training of the model for many-to-one Voice Conversion
	3.5 Audio Extraction and Conversion
	3.6 Training of the speech2gesture model
	3.7 Inference of the speech2gesture model
	3.8 2D to 3D pose mapping
	3.9 Mapping to Pepper Joints configuration
	3.10 Computational Issues
	3.11 Requirements

	4 Evaluation
	4.1 Objective Evaluation
	4.2 Subjective Evaluation

	5 Conclusions
	References

