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Abstract

Global types are a simple but expressive type formalism, used to model the intended
interaction structure among multiple participants exchanging messages in a network. Tra-
ditionally, global types have been used to ensure safety properties of interactions, such as
absence of communication errors, deadlock freedom and race freedom. Using the notion
of projection it is possible to obtain local types for the participants, which represent their
expected behaviour. In this way, it is possible to check that the network will evolve as
defined in the global type.

In the thesis, we have developed an implementation in co-logic programming of a novel
formulation of global types for asynchronous networks, where asynchrony is expressed at
the level of the type system. Besides providing an executable version of typechecking,
the benefit of this encoding is that it forces to clearly understand and express the either
inductive or coinductive nature of definitions, and the related termination issues.
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Introduction

The thesis is about the description of asynchronous networks of participants that com-
municate receiving and sending messages. In particular, the focus is on the use of type
formalisms to guarantee interesting properties of execution, for instance:

� Messages will never have a different type than expected (communication safety).

� All sent messages will be eventually read and every process waiting for a message
will eventually receive one (progress).

� All performed interactions will be complying with the global type describing the
global protocol (protocol fidelity).

The type formalism discussed in the thesis is called in literature global type. This model
describes the network at three levels:

� protocol description

� session description

� process description

The first level is a high-level description of the whole network; the second level describes a
portion of communicating participants; the third level describes the behaviour of a single
participant as a process. The whole model is based on the notion of session, firstly intro-
duced in [HVK98], that is, a series of message exchanges among some participants. The
other core concept of the model is projection. Projection takes in input a global type and
a participant and returns as output the corresponding session type. This type is used as
type for processes; if a process is well-typed with respect to the session type obtained by
projection, then the process behaviour is compliant with the global protocol.

In the thesis, we have developed an implementation in co-logic programming of a novel
formulation of global types for asynchronous netwoks, where asynchrony is expressed at
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the level of the type system. Co-logic programming is an extension of logic-programming
where predicates can be marked as coinductive. Besides, of course, providing an executable
version of typechecking, the benefit of this encoding is that it forces to clearly understand
and express the either inductive or coinductive nature of definitions, and the related ter-
mination issues.

Chapter 1 is a presentation of the formalism of global types in its classical version in the
literature; in particular, we describe the process language, the global and the session types,
the reduction rules, that are the execution rules of the network, and the typing rules.

In Chapter 2 we introduce the fundamental ingredients of the coinductive approach used in
the thesis work. First, we recall the notion of coinductive definition, as opposed to inductive
definition, in the framework of inference systems. Then, we recall classic notions and
definitions of logic programming, and how the classic paradigm can be extended to support
non-well founded structures, such as infinite lists or graphs, and coinductive predicates.

Chapter 3 is a presentation of the new proposal of global types. This proposal has two
main differences with respect to the classical approach described in Chapter 1:

� Processes and types are defined coinductively, and, correspondingly, functions han-
dling them, e.g., projection is defined coinductively. The coinductive approach allows
a natural way to define infinite terms, e.g., a process term representing a server run-
ning forever, replacing the explicit fixed-point operator used in the classical approach.
Moreover, as said above, the purpose of these formalisms is to guarantee properties,
and to guarantee properties on infinite objects it is often required to reason on infi-
nite proof trees, handled in a natural way by coinductive techniques. Finally, such
coinductive approach will be exploited in Chapter 4 to provide a implementation in
co-logic programming.

� Global types specify send and receive operations separately. In this way, they are less
abstract then the global types in the first chapter, that is, the notion of asynchrony
is present also in the protocol description. Instead, usual global types, when used
to describe asynchronous networks, have to be combined with a subtyping relation
on session types, which however has been shown to be undecidable. One aim of the
novel proposal is indeed to provide a decidable approach.

Chapter 4 is the core of the thesis, and consists in a detailed description of the SWI-Prolog
implementation of definitions in Chapter 3. The explanation focuses on termination issues;
notably, sometimes inductive predicate are adequate, whereas in many cases it is necessary
to use the coinductive extension of SWI-Prolog, relying on a mechanism of cycle detection
which ensures (successful) termination when the same goal is encountered twice. Moreover,
some predicates need to be implemented, rather than directly, as the negation of a predi-
cate defined coinductively. Finally, in some cases, it is necessary to implement a by-hand
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cycle detection mechanism, since neither a standard inductive definition, nor a coinductive
definition using the built-in cycle detection are enough to ensure termination. For instance,
projection is implemented by an inductive predicate using an ad-hoc mechanism, which, to
detect a cycle, considers, rather than the whole goal, only some of its arguments. The com-
plete code, together with a test suite, and instructions for using the prototype, can be found
at https://github.com/RiccardoBianc/Asynchronous-global-types-implementation.

Finally, in Chapter 5 we summarize the contribution of the thesis and discussed future
developments.
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Chapter 1

Introduction to global types

In this chapter we report the main notions and formal definitions about global types as
they are given in the literature. In particular, our presentation is based on the papers
[CDPY15], [HYC08] and [BCD+08]. In Sect. 1.1 we describe the programming paradigm
based on communication, using the “Two Buyers” example from [HVK98]. In Sect. 1.2
we define the process calculus with its reduction and congruence rules, in Sect. 1.3 we
provide the syntax of both global and session types, and the definition of projection, and
in Sect. 1.4 the typing rules and an informal presentation of the main results.

1.1 Communication-based programming

Nowadays, programming distributed software is increasingly common, so it is important to
have languages and formalisms appropriate to these contexts. Many such languages and
formalisms have been proposed so far for the description of software based on communica-
tion.

This programming paradigm is based on the concept of session, introduced in [HVK98].
A session is a series of interactions among some participants. If the participants are two,
then the session is called binary or dyadic, otherwise the session is called multiparty. The
communication is allowed by one or more channels, that can be shared among participants
or local to participants. In the calculus they are implemented with queues. A session is
accessed with a shared name, used to identify the session itself. After an acceptance phase,
the channels are initialised as empty and the session starts.

This model is structured into three levels of abstraction, each one with its formalism:

� Global type level
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This level is the description of the whole network, from an external point of view; all
interactions are described with the participants involved and the messages exchanged.

� Session type level
This level describes the behaviour of a single session, among one or more participants.
This is a local description of the network obtained after the projection of a global
type on a single participant.

� Process level
This level describes the behaviour of a single participant. Very often the formalism
used to describe a process is a dialect of the π-calculus, see [Mil99].

In order to present the calculus, the session types and the global types, we will use the
example of the “Two Buyers” protocol from [HYC08].

This example system is composed of three participants: Buyer1, Buyer2 and Seller.

� In the first phase the three participants establish a session, then

� Buyer1 sends a message containing the title of a book to Seller,

� Seller sends to both the buyers their quote of the price,

� Buyer1 sends to Buyer2 its quote of the price;

� after receiving its quote, Buyer2 has two choices:

– either to send ok and the address to Seller, and then waiting for a message from
Seller containing the date,

– or to send quit and to give up.

This protocol can be described by the following sequence diagram:
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P,Q,R ::= a[p](y).P (Session request) M ::= ∅ | M ·m (Queue)

| a[p](y).P (Session acceptance) m ::= 〈p, v, q〉 (Message)

| c!〈p, e〉.P (Value sending) | 〈p, l, q〉
| c?(p, x).P (Value reception) | 〈p, s[p′], q〉
| c!〈〈p, c′〉〉.P (Channel delegation) p, q (Partecipant number)

| c?((q, y)).P (Channel reception ) c ::= y | s[p] (Channel)

| c⊕ 〈p, l〉.P (Label sending) v ::= true | false (Value)

| c&(p, {li : P}i∈I) (Branch) x (Value variable)

| if e then P else Q (Conditional) e (Expression)

| P ‖ Q (Parallel) s[p] (Channel (with role))

| 0 (Zero) X,Y (Process variable)

| µX.P (Recursion) l (Label)

| X (Process variable) s (Session name)

| (νs)(P) (Session hiding) a (Service name)

| s :M ( Session queue) y, z, t (Channel variable)

The grey background denotes runtime syntax, not occurring in code written by the programmer.

Figure 1.1: Syntax of processes

This example is interesting, because it is not easy to describe the communications as
exchanges of messages between pairs of participants. Instead, it is necessary to use a single
multiparty session to describe the entire protocol. Note that communications are always
between different participants, i.e., a participant cannot send/receive a message to/from
himself.

1.2 Process calculus

The behaviour of this example can be formalized using a process language. In particular,
each participant can be described in isolation, and then the three behaviours can be exe-
cuted in parallel. We will use a restriction with only global service names of the calculus
in [CDPY15] (originally introduced in [BCD+08]).

The syntax of the process calculus is given in Fig. 1.1. A channel variable y is a binder in
session request, session acceptance and channel reception. A value variable x is a binder
in value reception. A process variable X is a binder in recursion. Finally, a session name is
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a binder in session hiding. We omit the standard definition of free variables and names.

Processes of shape a[p](y).P and a[p](y).P cooperate in starting a multiparty session, using
a service name identified by a. Participants are represented by progressive numbers, ranged
over by p, q. Among the processes that share the same service name, the one with the
highest number is indicated with the syntax a[p](y).P. In this way, during the request
phase it is possible to know the number of participants needed to start the session looking
only at that process.

Once a session is established, the channel variable y in a[p](y).P is replaced, in P, by a
channel (with role), of shape s[p]; this syntax represents the channel of the participant p
in the session s.

Sessions have three primitives of communication, corresponding to three types of messages:

� sending and receiving a value

� delegating and receiving a channel

� sending a label and receiving one of the labels in a set (branch)

We formalize asynchronous communications, so sends are non-blocking. Channel delega-
tion is a mechanism allowing the receiving process to participate in a session it was not
part of. In this way, it is possible for the receiving participant to communicate as if it was
the sender, allowing to distribute the session among the participants in a way that can
be disciplined by the programmer. In selection and branching, a process sends one of the
labels expected by the receiving process.

In communication operations, c can be either a channel variable y or, during the execution,
a channel s[p]. Each participant in a session has its own channel, that is assigned at
the beginning of the session and from which it reads the messages sent to him by the
other participants. If two participants could share the same channel, as in the calculus of
[HYC08] where explicit channels are used, then the reading/writing order of the messages
could depend on the evaluation order, leading to non-deterministic results. To avoid this,
in [HYC08] some linearity conditions were introduced (Definition 3.5).

For the conditional construct we assume to have an expression language, with, at least,
boolean expressions. Processes may be parallel compositions and the process 0 is the
inactive process. Recursion is assumed to be guarded, in the sense that a unique process
should be defined; for instance, the process term as µX.X is ill-formed.

The syntax (νs)(P) makes the session name s local to P and can only be used in runtime
expressions.

After the acceptance phase, when a session is established, a corresponding queue is cre-
ated. Queues are part of the runtime language, that is, they cannot be handled by the
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programmer. Messages in the queue are triples consisting of the sender p, the receiver q,
and either a value, or a label, or a channel.

A value message 〈p, v, q〉 indicates that the value v was sent by the participant p and the
recipient is the participant q. A channel message (delegation) 〈p, s[p′], q〉 indicates that
p delegates to q the role of p′ in the session s. A label message 〈p, l, q〉 is similar to a
value message, however labels are only used to conditionally execute code, and contain no
information, whereas values have a type as in programming languages.

The empty queue is denoted by ∅, andM·m denotes the queue obtained by concatenating
m to the queue M.

The participants above can be written using the process calculus in this way:

Buyer1 = a[1](y).y!〈3, title〉.y?(3, x).y!〈2, x/2〉.0
Buyer2 = a[2](y).y?(3, x).y?(1, x).if (x < 6) then y⊕ 〈3,ok〉.y!〈3, address〉.y?(3, x).0 else y⊕ 〈3, quit〉.0
Seller = a[3](y).y?(1, x).y!〈2, 10〉.y!〈1, 10〉.y&(2, {ok : y?(3, x).y!〈2, date〉.0, quit : 0})

The initial network of the example can be written in this way:

Buyer1 ‖ Buyer2 ‖ Seller

The operational semantics consists of reduction rules and structural equivalence rules that
permit rearranging the terms in order to apply a specific reduction rule.

Structural equivalence is denoted by ≡ and defined adding α-conversion to the rules below,
where fn(Q) is the set of free session names in Q.

(P ‖ Q) ‖ R ≡ P ‖ (Q ‖ R) P ‖ Q ≡ Q ‖ P P ‖ 0 ≡ P

(νs)(P) ‖ Q ≡ (νs)(P ‖ Q) if s /∈ fn(Q)

(νs)((νs′)(P)) ≡ (νs′)((νs)(P)) (νs)(0) ≡ 0 (νs)(s : ∅) ≡ 0

µX.P ≡ P[µX.P/X]

The congruence rules state that the parallel operator is associative, commutative and the
inactive process 0 is the neutral element. In session hiding, a binder can be extended to
a process in paralleli if this does not capture free names, exchanged with another, and
removed if applied to the inactive process or to an empty queue for the corresponding
session. Finally, a recursive process is congruent to its unfolding.

The order of elements in the queue can be changed following this equivalence rule:
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(Init) a[1](y).P1 ‖ . . . ‖ a[n− 1](y).Pn−1 ‖ a[n](y).Pn −→
(νs)(P1{s[1]/y} ‖ . . . ‖ Pn−1{s[n− 1]/y} ‖ Pn{s[n]/y} ‖ s : ∅) (s fresh)

(Snd) s[p]!〈q, e〉.P ‖ s :M−→ P ‖ s :M · 〈p, v, q〉 (e ↓ v)

(Rcv) s[p]?(q, x).P ‖ s : 〈q, v, p〉 ·M −→ P[v/x] ‖ s :M

(Deleg) s[p]!〈〈q, s′[p′]〉〉.P ‖ s :M−→ P ‖ s :M · 〈p, s′[p′], q〉

(RcvCh) s[p]?((q, y)).P ‖ s : 〈q, s′[p′], p〉 ·M −→ P{s′[p′]/y} ‖ s :M

(SndL) s[p]⊕ 〈q, l〉.P ‖ s :M−→ P ‖ s :M · 〈p, l, q〉

(Branch) s[p]&(q, {li : Pi}i∈I) ‖ s : 〈q, lj , p〉 ·M −→ Pj ‖ s :M (j ∈ I)

(If-T) if e then P else Q −→ P (e ↓ true)

(If-F) if e then P else Q −→ Q (e ↓ false)

(Par)
P −→ P′

P ‖ Q −→ P′ ‖ Q
(Hide)

P −→ P′

(νs)(P) −→ (νs)(P′)
(Congr)

P ≡ P′ P′ −→ Q′ Q′ ≡ Q

P −→ Q

Figure 1.2: Reduction rules

M · 〈p, ζ, q〉 · 〈p′, ζ ′, q′〉 ·M′ ≡M · 〈p′, ζ ′, q′〉 · 〈p, ζ, q〉 ·M′ if p 6= p′ or q 6= q′

In other words, the only order that matters is that between messages with the same sender
and receiver. This structural equivalence amounts to say that a message queue can be seen
as a map from pairs p, q of participants to sub-queues which are ordered lists of labels.

Reduction rules, modelling asynchronous execution of communications, are given in Fig. 1.2:

In rule (Init), n participants, using the shared service name a, start a new session s, and a
new queue is created, which will be used for their interactions in this session. We denote by
P[s[p]/y] the process obtained from P by replacing the channel variable y with the channel
s[p]. In rules (Snd), (Deleg) and(SndL), messages are added to the queue; in the corresponding
receiving rules, (Rcv), (RcvCh), and (Branch), messages are removed from the queue when they
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are read. The rules (If-T) and (If-F) have the standard interpretation, where e ↓ v denotes
that expression e evaluates to value v.

The reduction of the example is given below.

a[1](y).y!〈3, title〉.y?(3, x).y!〈2, x/2〉.0 ‖
a[2](y).y?(3, x).y?(1, x).if (x < 6) then y⊕ 〈3,ok〉.y!〈3, address〉.y?(3, x).0 else y⊕ 〈3, quit〉.0 ‖
a[3](y).y?(1, x).y!〈2, 10〉.y!〈1, 10〉.y&(2, {ok : y?(3, x).y!〈2, date〉.0, quit : 0}) ‖
applying (Init) −→

(νs)(s[1]!〈3, title〉.s[1]?(3, x).s[1]!〈2, x/2〉.0 ‖
s[2]?(3, x).s[2]?(1, x).if (x < 6) then s[2]⊕ 〈3,ok〉.s[2]!〈3, address〉.s[2]?(3, x).0 else s[2]⊕ 〈3, quit〉.0 ‖
s[3]?(1, x).s[3]!〈2, 10〉.s[3]!〈1, 10〉.s[3]&(2, {ok : s[3]?(3, x).s[3]!〈2, date〉.0, quit : 0}) ‖
s : ∅)

applying (Send) to Buyer1 −→

(νs)(s[1]?(3, x).s[1]!〈2, x/2〉.0 ‖
s[2]?(3, x).s[2]?(1, x).if (x < 6) then s[2]⊕ 〈3,ok〉.s[2]!〈3, address〉.s[2]?(3, x).0 else s[2]⊕ 〈3, quit〉.0 ‖
s[3]?(1, x).s[3]!〈2, 10〉.s[3]!〈1, 10〉.s[3]&(2, {ok : s[3]?(3, x).s[3]!〈2, date〉.0, quit : 0}) ‖
s : 〈1, title, 3〉)

applying (Rcv) to Seller −→

(νs)(s[1]?(3, x).s[1]!〈2, x/2〉.0 ‖
s[2]?(3, x).s[2]?(1, x).if (y < 6) then s[2]⊕ 〈3,ok〉.s[2]!〈3, address〉.s[2]?(3, x).0 else s[2]⊕ 〈3, quit〉.0 ‖
s[3]!〈2, 10〉.s[3]!〈1, 10〉.s[3]&(2, {ok : s[3]?(3, x).s[3]!〈2, date〉.0, quit : 0}) ‖
s : ∅)

applying (Send) to Seller two times −→

(νs)(s[1]?(3, x).s[1]!〈2, x/2〉.0 ‖
s[2]?(3, x).s[2]?(1, x).if (y < 6) then s[2]⊕ 〈3,ok〉.s[2]!〈3, address〉.s[2]?(3, x).0 else s[2]⊕ 〈3, quit〉.0 ‖
s[3]&(2, {ok : s[3]?(3, x).s[3]!〈2, date〉.0, quit : 0}) ‖
s : 〈3, 10, 1〉 · 〈3, 10, 2〉)
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applying (Rcv) to both Buyer1 and Buyer2 −→

(νs)(s[1]!〈2, x/2〉.0 ‖
s[2]?(1, x).if (y < 6) then s[2]⊕ 〈3,ok〉.s[2]!〈3, address〉.s[2]?(3, x).0 else s[2]⊕ 〈3, quit〉.0 ‖
s[3]&(2, {ok : s[3]?(3, x).s[3]!〈2, date〉.0, quit : 0}) ‖
s : ∅)

applying (Send) to Buyer1 −→

(νs)(s[2]?(1, x).if (y < 6) then s[2]⊕ 〈3,ok〉.s[2]!〈3, address〉.s[2]?(3, x).0 else s[2]⊕ 〈3, quit〉.0 ‖
s[3]&(2, {ok : s[3]?(3, x).s[3]!〈2, date〉.0, quit : 0}) ‖
s : 〈1, 5, 2〉)

applying (Rcv) to Buyer2 and evaluating the if guard to true) −→

(νs)(s[2]⊕ 〈3,ok〉.s[2]!〈3, address〉.s[2]?(3, x).0 ‖
s[3]&(2, {ok : s[3]?(3, x).s[3]!〈2, date〉.0, quit : 0}) ‖
s : ∅)

applying (Sel) to Buyer2 −→

(νs)(s[2]!〈3, address〉.s[2]?(3, x).0 ‖
s[3]&(2, {ok : s[3]?(3, x).s[3]!〈2, date〉.0, quit : 0}) ‖
s : 〈2, ok, 3〉)

applying (Branch) to Seller −→

(νs)(s[2]!〈3, address〉.s[2]?(3, x).0 ‖
s[3]?(3, x).s[3]!〈2, date〉.0 ‖
s : ∅)

applying (Send) to Buyer2 and then (Rcv) to Seller −→

(νs)(s[2]?(3, x).0 ‖
s[3]!〈2, date〉.0 ‖
s : ∅)

applying (Send) to Seller and then (Rcv) to Buyer2 the computation stops

1.3 Session types and global types

As explained above, in order to guarantee some properties of the network, a type formalism
can be used, that describes in an abstract and general way the protocol of the system.

Types used to describe the whole network are known in literature as global types, and have
been introduced in [HYC08]. Global types describe the interactions among all the partici-
pants, listing the participants with their messages. In a sense, they provide a description
from an external point a view. Asynchrony in communications is not considered, that is,
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the model is abstract from this point of view.

The syntax of global types is given below. Sort types are types of values (e.g., booleans).
Exchange types are either sort types or closed session types (see below), ranged over by T.

S ::= bool | . . . (Sort)

U ::= S | T (Exchange type)

G ::= p −→ q : 〈S 〉.G (Value passing)

| p −→ q : 〈T〉.G (Channel passing)

| p −→ q : {li : Gi}i∈I (Branching)

| µg.G | g (Recursion)

| End (End)

The global type p −→ q : 〈S 〉.G means that the participant p sends a value of sort S to
participant q, and then the interactions described in G take place; analogously, the syntax
p −→ q : 〈T〉.G means that p delegates to q a channel of type T and then the interactions
described in G take place. The global type p −→ q : {li : Gi}i∈I means that the participant
p sends one of the labels li to participant q. If lj is sent, then the interactions described in
Gj take place. The global type µg.G is a recursive type, where, as for processes, recursion
is assumed to be guarded, in the sense that a unique global type should be defined. We
take an equi-recursive view of recursive types, that is, we do not distinguish between µg.G
and its unfolding G[µg.G/g] [Pie02, §21.8]. The global type End represents the termination
of the session.

The global type of our example, in which we write participants with legible symbols instead
of numbers, is the following:

B1→ S : 〈string〉.
S→ B2 : 〈int〉. S→ B1 : 〈int〉.
B1→ B2 : 〈int〉.
B2→ S : {ok : B2→ S : 〈string〉.S→ B2 : 〈date〉.End , quit : End}

Another type formalism is used to describe the type of a single participant. Such types are
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called session types, and their syntax is the following:

T ::= !〈p, S〉.T (Value sending)

| !〈p,T〉.T (Channel delegation)

| ?(p,U).T (Value or channel reception)

| ⊕ 〈p, {li : Ti}i∈I〉 (Label sending (selection))

| &(p, {li : Ti}i∈I) (Label receiving (branch))

| µt.T | t (Recursion)

| End (End)

Session types represent the input-output actions performed by single participants. The
send types express, respectively, the sending of a value of sort S to participant p or the
sending of a channel of type T to participant p, followed by the communications described
by T. The selection type represents the transmission to participant p of a label li chosen
in the set {li | i ∈ I}, followed by the communications described by Ti. The reception and
branching types are dual of send and selection types. Recursion is guarded also in session
types, and we consider them modulo folding/unfolding as done for global types.

1.4 Projection and type checking

The three formalisms introduced so far (processes, global types and session types) are
linked together using two operations: projection and process typing. Projection computes
the local type of a single participant starting from a global type. This operation links the
global type level with the session type level. Process typing checks that a single process
complies with the specification given by a session type, so it links the session type level
with the process level.

Projection The projection of a global type G on a participant q is the session type G�q
defined inductively as follows:

(p→ p′ : 〈U〉.G′)�q =


!〈p′, U〉.(G′ �q ) if q = p

?(p, U).(G′ �q ) if q = p′

G′ �q otherwise

(p→ p′ : {li : Gi}i∈I)�q =



⊕〈p′, {li : Gi �q }i∈I〉 if q = p

&(p, {li : Gi �q }i∈I) if q = p′

T if q 6= p, q 6= p′

and Gi �q = T for all i ∈ I
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(µg.G)�q =

{
µtg.(G�q ) if G�q 6= tg

End otherwise

End�q = End

g �q = tg

We assume an injective map which associates to each global type variable g a session type
variable tg.

Note that the projection is not always defined. For example, the projection of a branching
on a participant which is neither the sender nor the receiver is defined only if the projections
of all branches on the participant are equal. This is due to the fact that this participant is
not aware of the label being sent so it cannot behave differently in different branches. A
global type G is called well-formed if the projection on all its participants is defined.

The projections of the global type G of our example are

G�S =?(B1, string).!〈B2, int〉.!〈B1, int〉.&(B2, {ok; ?(B2, string).!〈B2, date〉.End , quit;End})
G�B1 = !〈S, string〉.?(S, int).!〈B2, int〉.End
G�B 2 =?(S, int).?(B1, int).⊕ 〈B2, {ok; !〈S, string〉.?(S, date).End , quit;End}〉

Type checking For brevity we do not describe type checking of runtime syntax, e.g.,
queues and processes containing channels with roles. The typing judgements for expressions
and processes have the following shape:

Γ ` e : S and Γ ` P .∆

where

� ∆ is a map from channels to session types

� Γ is a type environment, that is, a map from values to sorts, from service names to
global types, and from process variables to maps ∆

Given a type environment, type checking assigns to an expression a sort, and to a process
a map assigning session types to the channels possibly used by the process.

Maps are represented by list of pairs as follows:

Γ ::= ∅ | Γ, x : S | Γ, a : G | Γ,X : ∆

∆ ::= ∅ | ∆, c : T
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We assume that the occurrences of x, a, and X are unique in the list, hence ∆,∆′ is
well-formed only if the domains of the two maps are disjoint.

The typing rules are given in Fig. 1.4. Recall that T denotes a session type, whereas T
denotes a closed session type. The latter notation is used in channel sending and receiving.
Rule (NameT) assigns the type to the variables using the map Γ. Rule (RequestT) permits
to type the request on a service a of type G, checking that y is the projection of Gon the
participant p, that must have the highest role. The rule (AcceptanceT) is the same, but pis
not the highest role. The rules (SndT),(RcvT),(DelegT),(ChRcvT), (LSndT),(BranchT) check that
the input/output process are compliant with the corresponding type. Note that, in rule
(DelegT), the channel c′ which is sent is removed from the context in the premise. Indeed,
when a channel is delegated, it can no longer be used by the sender, but only by the
receiver. Rule rule (ChRcvT) is symmetrical, that is, the received channel is added to the
context in the premise, meaning that from now on it can be used by the receiver. The rule
(ParT) checks that the two processes in parallel have different channels.

The top-level type environment will contain the association between service names and
their global types. The rules (RequestT) and (AcceptanceT) require each participant to use
its channels according to the projection of the global type associated with the initiated
service. The other rules are straightforward. In rule (ZeroT), ∆ End only means that the
session types of the channels in ∆ must be End.

If the processes in a network are typed by session types which are the projections of a
well-formed global type, then the network has the following properties.

� Communication Safety: Interactions within sessions never incur a communication
error.

� Progress: The network is deadlock-free, that is, if there are non-inactive processes
the network will evolve.

� Session Fidelity: The communication sequences follow the scenario declared by the
global type.

Going back to our example, we show a part of the proof that the network is well-typed.

Consider the processes associated to the two buyers and the seller:

Buyer1 = a[1](y).y!〈3, title〉.y?(3, x).y!〈2, x/2〉.0
Buyer2 = a[2](y).y?(3, x).y?(1, x).P2

Seller = a[3](y).y?(1, x).y!〈2, 10〉.y!〈1, 10〉.Ps

20



Γ, a : G ` a : G (NameT) Γ, x : S ` x : S (VarT)

Γ ` true : bool (TrueT) Γ ` false : bool (FalseT)

Γ ` a : G Γ ` P .∆, y : G�p p = max part(G)

Γ ` a[p](y).P .∆
(RequestT)

Γ ` a : G Γ ` P .∆, y : G�p p < max part(G)

Γ ` a[p](y).P .∆
(AcceptanceT)

Γ ` e : S Γ ` P .∆, c : T

Γ ` c!〈p, e〉.P .∆, c :!〈p,S 〉.T
(SndT)

Γ, x : S ` P .∆, c : T

Γ ` c?(p, x).P .∆, c :?(p,S ).T
(RcvT)

Γ ` P .∆, c : T

Γ ` c!〈〈p, c′〉〉.P .∆, c :!〈p,T′〉.T, c′ : T′ (DelegT)
Γ ` P .∆, c : T, y : T

Γ ` c?((q, y)).P .∆, c :?(q,T).T
(ChRcvT)

Γ ` P .∆, c : Tj j ∈ I
Γ ` c⊕ 〈p,P〉 .∆, c : ⊕〈p, {li : T}i∈I〉

(LSndT)
Γ ` Pi .∆, c : Ti ∀i ∈ I

Γ ` c&(p, {li : P}i∈I) .∆, c : &(p, {li : T}i∈I)
(BranchT)

Γ ` P .∆ Γ ` Q .∆′

Γ ` P ‖ Q .∆,∆′ (ParT)
Γ ` e : bool Γ ` P .∆ Γ ` Q .∆

Γ ` if e then P else Q .∆
(IfT)

∆ End only

Γ ` 0 .∆
(ZeroT)

Γ, X : ∆ ` P .∆

Γ ` µt.P .∆
(RecT) Γ,X : ∆ ` X .∆ (ProcVarT)

Figure 1.3: Typing rules

and the session types obtained as projections of G:

Ts =?(1, str).!〈2, int〉.!〈1, int〉.T′s
T1 =!〈3, str〉.?(3, int).!〈2, int〉.End
T2 =?(3, int).?(1, int).T′2

Let Γs = a : G, x : str and Γ1 = a : G, x : int. Type derivations for the processes modeling
the “Two Buyer” example are given in Fig. 1.4.
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a : G ` a : G

Γs ` 10 : int

Γs ` 10 : int

...

Γs ` Ps . Ts

Γs ` y!〈1, 10〉.Ps . y : !〈1, int〉.T′s
Γs ` y!〈2, 10〉.y!〈1, 10〉.Ps . y : !〈2, int〉.!〈1, int〉.T′s

a : G ` y?(1, x).y!〈2, 10〉.y!〈1, 10〉.Ps . y :?(1, str).!〈2, int〉.!〈1, int〉.T′s
a : G ` a[3](y).y?(1, x).y!〈2, 10〉.y!〈1, 10〉.Ps . ∅

a : G ` a : G

a : G ` title : str

Γ1 ` x/2 : int Γ1 ` 0 . y : End

Γ1 ` y!〈2, x/2〉.0 . y :!〈2, int〉.End

a : G ` y?(3, x).y!〈2, x/2〉.0 . y :?(3, int).!〈2, int〉.End

a : G ` y!〈3, title〉.y?(3, x).y!〈2, x/2〉.0 . y :!〈3, str〉.?(3, int).!〈2, int〉.End

a : G ` a[1](y).y!〈3, title〉.y?(3, x).y!〈2, x/2〉.0 . ∅

a : G ` a : G

...

a : G, x : int, x1 : int ` P2 . y : T′2

a : G, x : int ` y?(1, x1).P2 . y : ?(1, int).T′2

a : G ` y?(3, x).y?(1, x1).P2 . y :?(3, int).?(1, int).T′2

a : G ` a[2](y).y?(3, x).y?(1, x1).P2 . ∅

Figure 1.4: (Part of) type derivations for the processes of the example.
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Chapter 2

Coinduction and co-logic
programming

In this chapter we introduce the fundamental ingredients of the coinductive approach
used in the thesis work. First, in Sect. 2.1 we recall the notion of coinductive definition,
as opposed to inductive definition, in the framework of inference systems. Coinductive
definitions will be extensively used in Chapter 3. Then, in Sect. 2.2, we recall basic
notions of logic programming, and how the classic paradigm can be extended to support
coinductive predicates. The implementation we have developed, described in Chapter 4,
uses SWI-Prolog, a Prolog environment where predicates can be marked as coinductive.

2.1 Inference systems

A very used and comprehensible way to express inductive and coinductive definitions is by
inference systems. An inference system is a set of rules, describing how we can derive a
new object/judgment (consequence) starting from some premises.

Formally, let U be a set, called universe, whose elements are called judgments. An inference

rule is a pair
Pr

c
, where Pr ⊆ U is a set whose elements are called premises, c ∈ U is

called consequence. We call inference system a set I of inference rules. A rule whose set
of premises is empty is called axiom. It is customary to define an infinite set of rules in a
finitary way using meta-rules. For example, taken as universe the set of natural numbers,
the rules that define the set of even numbers are infinite, but can described using the
following two meta-rules, where the meta-variable n ranges over the universe.

23



0

n

n+ 2

An inference system defines a set of judgments; in particular, two possible interpretations
are possible: the inductive and the coinductive interpretation. These definitions are based

on the notions of closed and consistent set. Given S ⊆ U , S is closed if, for all
Pr

c
∈ I,

Pr ⊆ S implies c ∈ S; S is consistent if, for all x ∈ S, there exists
Pr

x
∈ I such that Pr

⊆ S. Then:

� The inductive interpretation of I, denoted Ind(I), is the smallest closed set, that is,
the intersection of all the closed sets.

� The coinductive interpretation of I, denoted CoInd(I), is the largest consistent set,
that is, the union of all the consistent sets1.

The inductive and coinductive interpretations can also be characterized in terms of proof
trees. That is, defining a proof tree in I as a tree whose nodes are (labeled with) judgments

in U , and there is a node c with set of children Pr only if
Pr

c
∈ I, it can be shown [LG09]

that Ind(I) and CoInd(I) are the sets of judgments which are the root of a finite2and an
arbitrary (finite or infinite) proof tree, respectively. From this definition we derive that
Ind(I) ⊆ CoInd(I).

Typically, we want to prove that a given set S (the expected semantics) can be defined ei-
ther inductively, that is, as Ind(I), or coinductively, that is, as CoInd(I), by some inference
system I.

For a set defined inductively, the induction principle provides a technique to prove that
Ind(I) ⊆ S, that is, that the inductive definition is sound with respect to S.

For a set defined coinductively, the coinduction principle provides a technique to prove
that S ⊆ CoInd(I), that is, that the coinductive definition is complete with respect to the
S.

The two proof principles are stated below.

� Given a closed set S ⊆ U , Ind(I) ⊆ S (Induction principle).

1It can be proved that an intersection of closed sets is closed, and an union of consistent sets is consistent
2Under the common assumption that the set of premises of all the rules are finite, otherwise we should

say a finite depth tree.
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� Given a consistent set S ⊆ U , S ⊆ CoInd(I) (Coinduction principle).

Consider, for instance, the predicate allPos on (possibly infinite) lists of integers, such that
allPos(l) holds iff all the elements of the list l are positive, and the following inference
system:

allPos(Λ)

allPos(l)

allPos(x : l)
x > 0

where Λ represents the empty list and : represents the concatenation of an element to a
list. In this example, the inductive interpretation contains all the judgments allPos(l) such
that l is finite and all its elements are positive. On the other side, there is no proof tree
if l is infinite. If we consider the coinductive interpretation, instead, then the judgment
is derivable, with an infinite proof tree, for infinite lists with all positive elements. For
instance, the following infinite proof trees prove that the list of all odd natural numbers,
and the list [1,2,1,2,...], respectively, contain only positive elements:

...

allPos(5 : 7 : 9 : . . .)

allPos(3 : 5 : 7 : . . .)

allPos(1 : 3 : 5 . . .)

...

allPos(1 : 2 : 1 : . . .)

allPos(2 : 1 : 2 : . . .)

allPos(1 : 2 : 1 . . .)

Hence, in this case, the expected semantics on possibly infinite lists is provided by the
coinductive interpretation. However, this is not always the case: it is easy to see that for
the predicate member such that member(x, l) holds iff x is an element of l, the following
inference system

member(x, x : Λ)

member(x, l)

member(x, y : l)
x 6= y

should be interpreted inductively, since otherwise the judgment member(x, l) could be al-
ways derived for l infinite list. These examples show that, when working with possibly
infinite structures, both inductive and coinductive definitions are needed, as actually sup-
ported by co-logic programming.

We conclude this section by a very important remark, concerning the difference between the
two proof trees shown above. Indeed, whereas both are infinite, the latter is regular, that is,
has a finite number of subtrees. In other words, it requires only the proof of finitely many
different judgements. In this case, it is possible to design an algorithm, checking whether a
judgement can be derived, which successfully terminates on the derivable judgements. The
algorithm keeps track of already encountered judgements and, if the same judgement is
found again, we can use it as an axiom. The same idea is used in the operational semantics
of coinductive logic programming, see next section.
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2.2 Co-logic programming

In this section we recall basic concepts about logic programming, and how the classic
paradigm can be extended to support coinductive predicates.

A signature consists in a set of predicate symbols p, function symbols f and variables
X, each one associated with an arity ≥ 0. Variables have arity 0. A function with
arity 0 is called constant. A term is a tree whose nodes are labeled with functions and
variable symbols, so that the number of children is the arity. An atom is a tree whose
nodes are labeled with a predicate symbol and other nodes are labeled with function and
variable symbols. Terms and atoms are ground if they do not contain variables, and
finite (or syntactic) if they are finite trees. A logic program is a set of clauses, of shape
A :- B1, . . . , Bn, where A,B1, . . . , Bn are finite atoms. A clause where n = 0 is called a
fact.

A substitution θ is a mapping from a finite subset of variables into terms. We write tθ for
the application of a substitution θ to a term t, and call tθ an instance of t. These notions
can be analogously defined on atoms and clauses. A substitution is ground if it maps
variables into ground terms, syntactic if it maps variables into finite (syntactic) terms.

The declarative semantics of a logic program describes its meaning in an abstract way, as
the set of ground atoms which are defined to be true by the program, in a sense to be made
precise depending on the kind of declarative semantics we choose, as detailed below.

The Herbrand universe HU is defined as the set of finite ground terms, and the Herbrand
base HB as the set of finite ground atoms. Sets I ⊆ HB are called interpretations. Given
a logic program P , we can define the inference operator TP : ℘(HB)→ ℘(HB) as follows:

TP(I) = {A | (A :- B1, . . . , Bn) ∈ ground(P), {B1, . . . , Bn} ⊆ I}

where ground(P) is the set of instances of clauses in P obtained by a ground syntactic
substitution.

An interpretation is a model of a program P (is closed with respect to P) if TP(I) ⊆ I.
The standard declarative semantics Ind(P) of P is the least interpretation which is a model
taking as order set inclusion, that is, the intersection of all closed interpretations. Defining
a proof tree for a ground atom A as a tree where the root is A, nodes are ground instances
of rules, and leaves are ground instances of facts, the standard declarative semantics can
be equivalently characterized as the set of finite ground atoms which have a finite proof
tree.

The operational semantics of a logic program is an effective procedure which, given a goal
of shape ?− A1, . . . , An, finds its solutions, represented by substitutions.
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The standard operational semantics of a logic program is SLD-resolution, which, at each
step, selects an atom A from the current goal, looks for a clause A′ :- B1, . . . , Bn in the
program whose head unifies with the selected atom, replaces A by atoms B1, . . . , Bn in the
current goal and applies the substitution deriving from the unification. These steps are
iterated until getting an empty goal.

A limit of the standard declarative semantics described above is that we cannot define
predicates on non-well-founded structures, such as infinite lists. To overcome this, logic
programming can be extended to support coinduction by coinductive logic programming
[SMBG06b, SMBG06a, AD15], where terms are coinductively defined, that is, can be
infinite, and predicates are coinductively defined as well. Possibly infinite terms are
represented by finite sets of equations between finite terms. For instance, the equation
L P [1,2|L] represents the infinite list [1,2,1,2,...]. On the other hand, the infinite
list of odd numbers cannot be represented by a finite set of equations. The following logic
program defines the predicate allPos described in Sect. 2.1.

allPos ([]).

allPos ([N|L]) :- N>0, allPos(L).

To define the declarative semantics, first of all infinite terms and atoms should be included.
The complete Herbrand universe co-HU is the set of (finite and infinite) ground terms.
The complete Herbrand base co-HB is the set of (finite and infinite) ground atoms. Sets
I ⊆ co-HB are called co-interpretations.

We can define the inference operator TP : ℘(co-HB) → ℘(co-HB) analogously to that
above:

TP(I) = {A | (A :- B1, . . . , Bn) ∈ co-ground(P), {B1, . . . , Bn} ⊆ I}

where co-ground(P) is the set of instances of clauses in P obtained by a ground substitution.

A co-interpretation I is a co-model of P (is consistent with respect to P) if and only
if I ⊆ TP(I). The coinductive (declarative) semantics of P , denoted CoInd(P), is the
greatest co-interpretation which is a co-model taking as order set inclusion, that is, the
union of all consistent co-interpretations. Equivalently, CoInd(P) can be characterized as
the set of ground atoms which have a (finite or infinite) proof tree.

As the reader may have note, the above definitions can be seen as a particular case of
those given in Sect. 2.1, since the clauses of a logic program can be seen as meta-rules of
an inference system where judgments are ground atoms.

In coinductive logic programming, standard SLD resolution is replaced by co-SLD resolu-
tion [SMBG06a, AD15], which, roughly speaking, keeps trace of the already encountered
goals, called (dynamic) coinductive hypotheses, so that, when a goal is found the second
time, it is considered successful. In this way, for instance, resolution can give a positive
answer to the goal 〈allPos(L); {L P [1,2|L]}〉.
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A drawback of coinductive logic programming is that all predicates are interpreted coin-
ductively, whereas in applications it is often the case that predicates to be interpreted either
inductively and coinductively should coexist. To overcome this issue, co-logic programming
[SBMG07] marks predicates as either inductive or coinductive; however, no mutual recur-
sion is allowed between an inductive and a coinductive predicate, that is, stratification
is needed. This approach of marking predicates is supported by SWI-Prolog, the Prolog
environment we have used for implementation, as described in Chapter 4. Thanks to the
constraint that no mutual recursion is allowed, at each layer we only have either only in-
ductive or only coinductive predicates. Hence each layer can be interpreted as the least or
greatest fixed point, respectively, of an inference system where the lower levels are assumed
as axioms.
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Chapter 3

Global types for asynchronous
networks

In this chapter, we describe a proposal, currently under development, for a new formalism
of global types. The main difference with respect to the classical approach described in
Chapter 1 is that output and input operations are specified separately. This feature makes
the global types more “low-level”, hence able to directly handle asynchrony at the level of
the type system, because the output and the corresponding input operations are not forced
to happen at the same time. Instead, usual global types only specify communications,
hence, when used to describe asynchronous networks, they have to be combined with a
subtyping relation on session types, firstly proposed in [MYH09a]. Unfortunately, this
subtyping has been shown to be undecidable [BCZ17a, LY17].

The other novelty with respect to the classical presentation is that a coinductive approach
is adopted. Namely, processes and types with an infinite behaviour are expressed as infi-
nite regular terms, rather than by an explicit fixed point operator, and, correspondingly,
functions handling them, e.g., the projection, are also defined coinductively. Such coin-
ductive approach will be exploited in Chapter 4 to provide an implementation in co-logic
programming.

The proposed formalism, to keep the focus on the key new feature, which is explicitly
asynchronous communication, considers a greatly simplified calculus with respect to that
presented in Chapter 1. Notably, a global type describes a single session, so in the calculus
there is no notion of session, hence no hiding, and channels are implicit, one for each
pair of participants. Moreover, there is no information exchange among participants; they
can only send labels, used to have conditional branches in the behaviour. In this way,
it is possible to directly obtain processes as projections of global types, without having
to explicitly introduce session types, see Sect. 1.3. Finally, delegation, parallel operator,
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and conditional are omitted, whereas recursion is not needed, since recursive processes are
obtained as regular coinductive terms, see below.

In Sect. 3.1 we present the process calculus, in Sect. 3.2 the global types, and in Sect. 3.3
projection and type checking.

3.1 Process calculus

We assume base sets of participants p, q, r ∈ Part, and labels λ ∈ Lab. The syntax of
processes is as follows:

P ::=ρ p!{λi.Pi}i∈I | p?{λi.Pi}i∈I | 0

where I 6= ∅, and λj 6= λh for j 6= h. The symbol ::=ρ, in the definition above and
others in the following, indicates that the productions should be interpreted coinductively,
rather than inductively as in the standard case. That is, they define possibly infinite terms
(processes in the case above). However, we assume such terms to be regular, that is, with
finitely many distinct sub-terms. In this way, we only obtain terms (processes in the case
above) which are solutions of a finite set of equations, see [Cou83].

A process of shape p!{λi.Pi}i∈I (internal choice) chooses a label in {λi | i ∈ I} to be
sent to p, and then behaves differently depending on the sent label. A process of shape
p?{λi.Pi}i∈I (external choice) waits for receiving one of the labels {λi | i ∈ I} from p, and
then behaves differently depending on the received label. Note that the set of indexes in
choices is assumed to be non-empty, and the corresponding labels to be all different.

An internal choice which is a singleton is simply written p!λ.P, and p!λ.0 is abbreviated
p!λ; analogously for an external choice.

As in the calculus of Chapter 1, messages are triples 〈p, λ, q〉, denoting that participant
p has sent label λ to participant q. Accordingly with the simplification that there are no
sessions, there is a single queue, M, defined as before:

M ::= ∅ | 〈p, λ, q〉 ·M

Since the only order that matters is that between messages with the same sender and
receiver, the same structural equivalence of Chapter 1 holds:

M · 〈p, λ, q〉 · 〈r, λ′, s〉 ·M′ ≡M · 〈r, λ′, s〉 · 〈p, λ, q〉 ·M′ if p 6= r or q 6= s

Note that 〈p, λ, q〉 · 〈q, λ′, p〉 ≡ 〈q, λ′, p〉 · 〈p, λ, q〉. This is the situation in which both
participants p and q have sent a message to the other one, and neither of them has read
the message, as it could happen in a network with asynchronous communication. As noted
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in Sect. 1.2, an equivalent view of the queue is as a map from pairs of participants to lists
of labels.

Networks are composed of at least two components of shape p[[P ]] in parallel, each with a
different participant p, and a message queue. That is, a network has shape:

N ‖ M

where
N ::= p1[[P1 ]] ‖ · · · ‖ pn[[Pn ]] n ≥ 2, pi 6= pj for i 6= j

We can define the sets of participants of networks and queues:

part(p1[[P1 ]] ‖ · · · ‖ pn[[Pn ]]) = {p1, . . . , pn}
part(∅) = ∅
part(〈p, λ, q〉 ·M) = {p, q} ∪ part(M)

3.2 Global types

The new definition of global types is as follows:

G ::=ρ pq!{λi.Gi}i∈I | pq?λ.G | End

where I 6= ∅, p 6= q, and λj 6= λh for j 6= h. The basic difference, as said above, is that
output and input operations are specified separately. Moreover, accordingly with the fact
that value passing and delegation are omitted in the calculus, there are no exchange types.
Finally, as for processes, these global types are defined coinductively, so that infinite global
types are allowed, but only of regular shape.

When I is a singleton, we simply write pq!λ.G. Moreover, pq!λ.End and pq?λ.End are
abbreviated pq!λ and pq!λ, respectively.

A pair G ‖ M where G is a global type and M is a message queue is called configuration
type. The function part associates to global types their sets of participants, which are the
smallest sets such that:

part(pq!{λi.Gi}i∈I) = {p, q} ∪
⋃
i∈I part(Gi)

part(pq?λ.G) = {p, q} ∪ part(G)

part(End) = ∅

The function player associates to global types their sets of players, that is, participants
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that are active, which are the smallest sets such that:

play(pq!{λi.Gi}i∈I) = {p} ∪
⋃
i∈I play(Gi)

play(pq?λ.G) = {q} ∪ play(G)

play(End) = ∅

It is easy to see that, due to the regularity assumption on global types, the sets of partici-
pants and players are finite.

A path ξ in a global type G is a possibly infinite sequence of communications, of shape either
pq!λ or pq?λ. Set |ξ| ∈ N∪{ω} the length of ξ. We denote by ξn the n-th communication
in the path ξ, with 0 ≤ n < |ξ|, by ε the empty sequence, and by · the concatenation of a
finite sequence with a possibly infinite sequence. Set play(pq!λ) = p and play(pq?λ) = q.
Then, play(ξ) =

⋃
0≤n<|ξ| play(ξn).

The function Paths associates to global types their sets of paths, which are the greatest
sets such that:

Paths(End) = {ε}
Paths(pq!{λi.Gi}i∈I) =

⋃
i∈I{pq!λi · ξ | ξ ∈ Paths(Gi)}

Paths(pq?λ.G) = {pq?λ · ξ | ξ ∈ Paths(G)}

It is easy to check that play(G) =
⋃
ξ∈Paths(G) play(ξ).

To enforce by typing the property that a participant cannot wait forever, we have to
restrict ourselves to a subset of “well-behaved” global types, by imposing an additional
syntactic condition: the first occurrences of participants as players in a global type are at
a bounded depth in all paths starting from the root. A global type with this property is
called fair. This property is formalised by the following definition. For ξ ∈ Paths(G), set
depth(ξ, p) = inf{n | play(ξn) = p}, and define depth(G, p), the depth of p in G, as follows:

depth(G, p) =

{
1 + sup{depth(ξ, p) | ξ ∈ Paths(G)} if p ∈ play(G)

0 otherwise

Note that, if p /∈ play(ξ) for some path ξ, then depth(ξ, p) = inf ∅ = ∞. Hence, if p is
a player of a global type G, but it does not occur as a player in some path of G, then
depth(G, p) = ∞, modelling the fact that p may wait forever. For example, in the global
type G = pq!{λ1.pq?λ1; rq!λ3, λ2.pq?λ2.G}, the player r does not occur in the infinite path
ξ = pq!λ2 · pq?λ2 · pq!λ2 · pq?λ2 · . . ..

We can now formally define the fairness property introduced above: a global type G is fair
if, for all participants p ∈ play(G) and subterm G′ of G, depth(G′, p) is finite.
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3.3 Projection and type checking

Projection Configuration types are projected as in Sect. 1.4. However, due to the sim-
plification that there is no level of session types, projecting a configuration type we directly
get a process.

The fact that projecting G ‖ M on a participant p we get a process P is modeled by the
judgment 〈(G ‖ M)�p ,P〉, defined by the rules in Fig. 3.1. The thick line indicates that
such rules should be interpreted coinductively, rather than inductively as in the standard
case, so we allow possibly infinite proof trees. However, we assume such proof trees to be
regular, that is, with finitely many distinct sub-trees.

The projection definition uses process contexs with an arbitrary number of holes indexed
with natural numbers. We assume that each hole has a different index. Given a context
C with holes indexed in J , we denote by C[Pj]j∈J the process obtained by filling the hole
indexed by j by Pj, for all j ∈ J . The contexts have the following syntax:

C ::= [ ]n | P | p!{λi.Ci}i∈I | p?{λi.Ci}i∈I where I 6= ∅, and λj 6= λh for j 6= h

Rule (Ext) states that projecting on a participant which is not a player gives the inactive
process.

The following two rules describe the effect of projecting a configuration type where the
global type starts with the reception by participant q of the label λ sent by participant p,
and continues as G. In rule (In-Rcv), projecting on the player q (the receiver) is only possible
if λ is actually the label of the first message from p to q in the queue, and gives the process
waiting for the input λ from p, and then continuing as the projection of G and the queue
where the message has been read. In rule (In-Ext), projecting on another participant which
is a player in G simply gives the projection of G and the queue where the message has been
read. Note that the case where the participant is not a player in G is covered by rule (Ext).

The following three rules describe the effect of projecting a configuration type where the
global type starts with sending a label, chosen in a set, from participant p to participant
q, and continues, depending on the chosen label λi, as Gi.

Rule (Out-Snd) is symmetrical to rule (In-Rcv). That is, projecting on the player p (the
sender) gives the process (an external choice) sending a label in the given set to q, and
then continuing, for each chosen label λi, as the projection of Gi and the queue where the
corresponding message has been added. Moreover, in order to ensure that there are no
orphan-messages, that is, messages that are not eventually read, the added message should
be actually read by each Gi, as required by the side-condition, where:

� ζ is a (finite) sequence of labels
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(Ext)

〈(G ‖ M)�p ,0〉
p 6∈ play(G)

(In-Rcv)

〈(G ‖ M)�q ,P〉

〈(pq?λ.G ‖ 〈p, λ, q〉 ·M)�q , p?λ.P〉

(In-Ext)

〈(G ‖ M)�s ,P〉

〈(pq?λ.G ‖ 〈p, λ, q〉 ·M)�s ,P〉

s 6= q

s ∈ play(G)

(Out-Snd)

〈(Gi ‖ M · 〈p, λi, q〉)�p ,Pi〉 ∀i ∈ I

〈(pq!{λi.Gi}i∈I ‖ M)�p , q!{λi.Pi}i∈I〉
`read 〈Gi, p, q,M�(p, q) · λi〉 ∀i ∈ I

(Out-Rcv)

〈(Gi ‖ M · 〈p, λi, q〉)�q , C[p?λi.Pi,j ]j∈J〉 ∀i ∈ I

〈(pq!{λi.Gi}i∈I ‖ M)�q , C[p?{λi.Pi,j}i∈I ]j∈J〉

(Out-Ext)

〈(Gi ‖ M · 〈p, λi, q〉)�s , C[r?λ′i.Ri,j ]j∈J〉 ∀i ∈ I

〈(pq!{λi.Gi}i∈I ‖ M)�s , C[r?{λ′i.Ri,j}i∈I ]j∈J〉

s 6∈ {p, q}
s ∈ play(Gi) i ∈ I

`read 〈G, p, q, ε〉
`read 〈Gi, p, q, ζ〉 i ∈ I
`read 〈rs!{λi.Gi}i∈I , p, q, ζ〉

`read 〈G, p, q, ζ〉
`read 〈pq?λ.G, p, q, λ · ζ〉

`read 〈G, p, q, ζ〉
`read 〈rs?λ.G, p, q, ζ〉

r 6= p or s 6= q

Figure 3.1: Projection
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(T-Net)
〈(G ‖ M)�pi ,P′i〉 i ∈ 1..n Pi ≤ P′i i ∈ 1..n part(G) ⊆ {p1, . . . , pn}

` p1[[P1 ]] ‖ · · · ‖ pn[[Pn ]] ‖ M : G ‖ M

Figure 3.2: Network typing

� ∅�(p, q) is the sequence of labels occurring in messages from p to q inM, defined by:

∅�(p, q) = ε (〈r, λ, s〉 ·M)�(p, q) =

{
λ · (M�(p, q) ) if r = p and s = q,

M�(p, q) otherwise.

� the auxiliary judgment `read 〈G, p, q, ζ〉 means that (each path of) G reads a sequence
of messages from p to q with labels ζ. The straightforward (inductive) definition of
this judgment is given in the bottom part of Fig. 3.1.

In rules (Out-Rcv) and (Out-Ext), the projection on another participant is only defined if
projecting on such participant Gi, for i ∈ I, and the queue where the message has been
added, gives processes P′i possibly different, but which can be smoothly combined to provide
the resulting projection. More precisely, the common structure of all such processes is
modelled by a multi-hole context C, where, for each hole j ∈ J , this is filled by a different
process subterm in each P′i. Such different process subterms start with an input from the
same sender, and different labels1. In this way, they can be combined in an internal choice
which is used to fill the context in the resulting projection.

The only difference between the two rules is that, in rule (Out-Rcv), the same sender and
the different labels should be those of the output type to be projected, whereas in rule
(Out-Ext) they are arbitrary.

Rules in Fig. 3.1 define a relation, while usually projection is expected to be a function.
However, it can be proved that for fair global types this is the case.

Type checking The network type checking is formalized in Fig. 3.2. Type checking
succeeds if two conditions hold:

� For each participant, the associated process in the network should be consistent with
that obtained as projection of the global type.

� The set of participants of the global type is a subset of the participants of the network.

Moreover, recall that the global type is assumed to be fair.

In the first condition, the consistency relation expresses the fact that the protocol specified
through the global type can be more general than the process in the network, and it is

1In rule (Out-Ext) this follows from the well-formedness of the process in the consequence.

35



(≤-out)
Pi ≤ Qi i ∈ I

p!{λi.Pi}i∈I ≤ p!{λi.Qi}i∈I∪J

(≤-In)
Pi ≤ Qi i ∈ I

p?{λi.Pi}i∈I∪J ≤ p?{λi.Qi}i∈I

(≤-0)
0 ≤ 0

Figure 3.3: Preorder on processes

formalized as a preorder on processes. In the second condition, note that, whereas the
global type obviously cannot mention participants not present in the network, there could
be participants which are not mentioned in the global type. In this way it is guaranteed
that, if a network is well-typed, then also the equivalent networks obtained adding an
arbitrary number of inactive processes are well-typed.

The preorder on processes is defined in Fig. 3.3.

In rule (≤-Out), to be consistent with a protocol which is an internal choice, a process
should be an internal choice with the same or less labels, and, for each of them, behave
consistently with the protocol. Intuitively, the process may never send some label, and
this can be seen as a more specific version of the protocol. A symmetric reasoning can be
done for rule (≤-In). That is, to be consistent with a protocol which is an external choice,
a process should be an external choice with at least those labels, and, for each of them,
behaving consistently with the protocol. Intuitively, the process may wait for some label
that will never be received; this again can be seen as a more specific version of the protocol.
In rule (≤-0), the inactive process is consistent with itself.

The properties enforced by the type system for a well-typed network are:

� a participant whose associated process starts with an internal choice will eventually
find one the corresponding messages on the queue;

� a message on the queue will be eventually read.

The definition of the operational semantics and the proof of such properties is outside
the aim of the current thesis, which focuses on providing a mechanical verification of the
network typing rule.
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Chapter 4

Implementation

In this chapter we describe how the formal definitions in Chapter 3 are implemented in
co-logic programming. We only report the interesting portions of code. The complete
code, together with a test suite, and instructions for using the prototype, can be found at
https://github.com/RiccardoBianc/Asynchronous-global-types-implementation.

4.1 Processes, networks and global types

Processes are defined coinductively, so they are implemented by a coinductive predicate
process. A predicate is declared to be coinductive by using the directive coinductive,
followed by the name of the predicate and its arity, as shown below.

:- coinductive process /1.

The predicate is defined by three clauses, corresponding to the three productions in the
definition given in Sect. 3.1.

process(send_process(A,[Lambda -P|LPs ])) :-

participant_name(A),

map_from_to(label ,process ,[Lambda -P|LPs]),!.

process(receive_process(A,[Lambda -P|LPs ])) :-

participant_name(A),

map_from_to(label ,process ,[Lambda -P|LPs]),!.

process(zero).

We use Prolog variables A, B, C for participants, Lambda for labels, and P for processes. The
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notation Lambda-P is used in SWI-Prolog to denote a pair (called key-value pair), in this
case consisting of a label Lambda and a process P. Finally, following a widely-used Prolog
convention, we use Xs for a list of X, so the variable LPs denotes a list of pairs Lambda-P.

The predicate participant_name checks that the argument is a participant name (in the
implementation, a string). The predicate map_from_to, with arguments Dom, Cod, and KVs,
checks that the list of pairs KVs represents a map with domain Dom and codomain Cod. In
the code above, it checks that it is a map from labels into processes, that is, keys are labels
(in the implementation, strings), values are processes, and there are no repeated keys. The
same predicate will be instantiated in the following to implement queues, networks, global
types, and contexts. The definition is the following.

map_from_to(Dom ,Cod ,KVs) :-

unique_keys(KVs),

maplist (({Dom ,Cod }/[K-V]>> call_pair(Dom ,Cod ,K-V)), KVs).

unique_keys(KVs) :- pairs_keys(KVs ,Ks), is_set(Ks).

call_pair(X,Y,Left -Right):- call(X,Left), call(Y,Right ).

The predicate unique_keys extracts the keys from a list of pairs and checks that the
resulting list is a set. Then, it is checked that, for each pair K-V in KVs, K satisfies predicate
Dom, and V satisfies predicate Cod. This is obtained by using the higher-order features
offered by SWI-Prolog. Notably, the predefined higher-order predicate maplist applies a
goal (predicate) to all the elements of a list, and in the code above this goal is a lambda
expression. The parameters in curly brackets (Dom and Cod) are shared with the surrounding
context, so a goal with only one argument K-V is obtained. The definition of call_pair

uses the predefined higher-order predicate call, whose first argument is a goal (predicate),
which is called on the second argument.

Here and in the following, code contains cuts !, which are mostly inserted only for opti-
mization purpose.

As described in Sect. 2.2, regular processes can be represented by equations. For instance,
the following process, written using the syntax of Sect. 3.1:

P = p!λ.q?λ.P

can be represented as follows:

P = send_process("p" ,["lambda"-receive_process("q"["lambda"-P])])

The message queue is defined in Sect. 3.1 as a list of messages, that is, triples 〈p, λ, q〉,
modulo the equivalence that the only order that matters is that between messages with the
same sender and receiver. As mentioned there, this structural equivalence amounts to say
that a message queue can be seen as a map from pairs p, q of participants to sub-queues
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which are lists of labels. The implementation follows the latter approach, which makes
easy to find the right sub-queue maintaining the order.

label_list ([]).

label_list(Lambdas) :-

maplist(label ,Lambdas ).

participant_pair(A-B) :-

participant(A),

participant(B).

queue ([]).

queue([A-B-Lambdas|M]) :-

map_from_to(participant_pair ,label_list ,[A-B-Lambdas|M]).

As for other maps, the message queue M is implemented as a list of pairs; the first element
(key) of the pair is in turn a pair, consisting of a sender A and a receiver B, the second
element (value) is the list Lambdas of labels sent from A to B. The predicate map_from_to,
described above, checks that this list of pairs represents a map from pairs of participants
into lists of labels.

Networks are implemented by the following predicate:

network ([A1 -P1 ,A2 -P2|APs]-M) :-

map_from_to(participant ,process ,[A1-P1,A2-P2|APs])

queue(M).

A network is a pair consisting of a list with at least two elements, and a message queue.
The elements of the list are pairs participant-process. As in processes and queues above,
it is checked that this list of pairs represents a map from participants to processes.

As processes, global types are defined coinductively, so they are implemented by a coin-
ductive predicate global_type. The predicate is defined by three clauses, corresponding to
the three productions in the definition given in Sect. 3.2.

The functor1 output_type has three arguments: the sender, the receiver, and a (non-
empty) list of pairs consisting of a label and a global type. The functor input_type has
four arguments: the sender, the receiver, the label, and the following global type. Finally,
the functor end implements the inactive global type.

global_type(output_type(A,B,[Lambda -G|LGs ])) :-

A \= B,

participant_name(A),

1That is, function symbol.
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participant_name(B),

map_from_to(label ,global_type ,[Lambda -G|LGs ]).

global_type(input_type(A,B,L,G)) :-

A \= B,

participant_name(A),

participant_name(B),

label(L),

global_type(G).

global_type(end).

The predicate map_from_to applies the predicates label and global_type to all pairs in
the list, as explained before.

Participants of a global type are computed as follows.

participants(output_type(A,B,[Lambda -G|LGs]),Res) :-

participants_list ([Lambda -G|LGs],As),

union ([A],As,As_whith_A),

union ([B],As_whith_A ,As_with_A_and_B),

permutation(As_with_A_and_B ,Res).

participants(input_type(A,B,_,G),Res) :-

participants(G,As),

union ([A],As,As_whith_A),

union ([B],As_whith_A ,As_with_A_and_B),

permutation(As_with_A_and_B ,Res).

participants(end ,[]).

participants(end ,[_|_]).

participants_list ([_-G],As) :-

participants(G,As).

participants_list ([_-G|LGs],As3) :-

participants(G,As1),

participants_list(LGs ,As2),

union(As1 ,As2 ,As3).

The predicate is declared coinductive. The global type is scanned recursively checking
that the participants present at each step are present in the result set, so that repetitions
are removed and the order is immaterial. The predicate participants_list applies to the
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second component of each pair in the list of pairs the predicate participants. When a
global type is encountered twice, the built-in cycle detection of Prolog accepts the goal.
Note that the predicate as defined above also holds when the set of participants of the
global type is a subset of the second argument. To implement a version of predicate in
which the two sets should be equal, we should use a by-hand cycle detection mechanism.
That is, when the same global type is encountered a second time, the predicate shoud hold
only if it is associated with the same set of participants as the first time. However, in our
implementation this predicate is only used for the typing predicate, where it is enough to
check subset inclusion, see Sect. 4.3.

The implementation of the notion of player shows an interesting use of coinductive features.
On an infinite (regular) global type, an inductive definition of player would not terminate
in the negative case (an argument which is not a player), while a coinductive definition
would be not correct, since it would be successful, when finding a cycle (that is, the same
global type), for an arbitrary argument. The solution is to define player as the negation
of a coinductive predicate not_player, as shown below.

player(G,A) :- \+ not_player(G,A).

not_player(output_type(A,_,LGs), B):-

B \= A,

not_player_list(LGs , B).

not_player(input_type(_,B,_,G), A) :-

A \= B,

not_player(G,A).

not_player(end ,_).

Being this predicate coinductive, when a cycle is found the call succeeds, hence the pred-
icate player fails, correctly, in the negative case. On the other hand, in the positive case
(an argument which is a player) the predicate not_player finitely fails, hence the predicate
player succeeds.

In Sect. 3.2 at page 32, fairness of a global type (a participant cannot wait forever) is
expressed by requiring that, for all participants p and subterm G of the global type, the
depth of p in G is finite. This is implemented by the predicate fair below.

fair(G) :-

participants(G,As),

fair_list(G,As).

fair_list(_,[]).
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fair_list(G,[A|As]) :-

all_finite_depth(G,A), fair_list(G,As).

The set of participants of the global type is computed, and then, for each participant,
it is checked that its depth in each subterm of the global type is finite, by the predicate
all_finite_depth, described below.

The depth of a participant p in G is defined in Sect. 3.2 in an abstract way, by computing
its depth in each of the paths of G. In particular, if p is a player of G, but it does not
occur as player in some path of G, then depth(G, p) = ∞, modelling the fact that p may
wait forever.

To enforce fairness in an algorithmic way, in the implementation we take a different ap-
proach, by defining the predicate finite_depth which holds if a participant has finite depth
in a global type. That is, if the participant is a player, then it occurs as player in each path
of the given global type. Then, we define the predicate all_finite_depth which checks
that finite_depth holds for each subterm of the given type.

finite_depth(G,A,_) :-

not_player(G,A).

finite_depth(output_type(A,_,_),A,_).

finite_depth(input_type(_,A,_,_),A,_).

finite_depth(output_type(A,B,LGs),C,G_found) :-

\+ member(output_type(A,B,LGs),G_found),

finite_depth_list(LGs ,C,[ output_type(A,B,LGs)| G_found ]).

finite_depth(input_type(A,B,_,G),C,G_found) :-

\+ member(input_type(A,B,_,G),G_found),

finite_depth(G,C,[ input_type(A,B,_,G)| G_found ]).

In the first clause, if the participant is not a player of the global type, then the depth is 0,
so it is finite.

In the second and third clause, if the participant is a player in the root node, then the
depth is 1, so it is finite. Otherwise, we have to check that the participant is a player for
all the paths starting from the children nodes. To avoid non-termination in this check, we
use a by-hand cycle detection mechanism, implemented with the argument G_found. This
argument is the list of already encountered global types, which grows at each recursive
call. When the same global type is encountered twice, that i, is already in G_found, then
the goal is rejected, because it means that following that path the participant has not been
found as a player, so its depth is infinite.
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The predicate finite_depth_list, not reported, is the lifting to lists of pairs label-global
type of the predicate.

Finally, note that there is no clause for the inactive process because this case is covered by
the first clause.

The above predicate is applied to all the sub-terms of a global type by the predicate
all_finite_depth.

all_finite_depth(output_type(A,B,LGs),C) :-

finite_depth_list(output_type(A,B,LGs),C,[]),

all_finite_depth_list(LGs ,C).

all_finite_depth(input_type(A,B,Lambda ,G),C) :-

finite_depth_list(input_type(A,B,Lambda ,G),C,[]),

all_finite_depth(G,C).

all_finite_depth(end ,_).

This predicate is declared coinductive, because in this case when the goal is encountered
twice it must be accepted. The predicate all_finite_depth_list, not reported, is the
lifting to lists of pairs label-global type of the predicate.

4.2 Projection

The projection definition uses process contexts with an arbitrary number of holes indexed
with natural numbers, where we assume that each hole has a different index. Hence, first
of all we describe the predicate context, implementing such contexts.

context(hole).

context(Ctx) :-

process(Ctx).

context(send_process(A,[Lambda -Ctx|LCtxs ])) :-

participant_name(A),

map_from_to(label ,context ,[Lambda -Ctx|LCtxs ]).

context(receive_process(A,[Lambda -Ctx|LCtxs ])) :-

participant_name(A),

map_from_to(label ,context ,[Lambda -Ctx|LCtxs ]).

The predicate is defined by four clauses, corresponding to the four productions in the
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definition given in Sect. 3.3. In the last two clauses contexts are implemented by the
same functors as for processes. However, in this case the base cases are either a hole (first
clause) or a process ( second clause). Note that the predicate is defined inductively, since
the context should contain an arbitrary, but finite, number of holes. In other words, a
context term can be infinite only if it contains an infinite process subterm.

Recall that, given a context C with holes indexed in J , we denote by C[Pj]j∈J the process
obtained by filling the hole indexed by j by Pj, for all j ∈ J . This operation is implemented
by the predicate fill_context, which has three arguments: the context, the list of processes
replacing the holes, and the resulting process. The predicate visits the context following a
DFS approach and, when a hole is found, it is replaced it with the first process in the list.
Processes are expected to be exactly as many as the holes, otherwise the predicate fails,
as detailed below.

fill_context(Ctx ,Ps ,P) :- fill_aux(Ctx ,Ps ,P,[]) ,!.

fill_aux(hole ,[P|Ps],P,Ps) :- !.

fill_aux(Ctx ,Ps,Ctx ,Ps) :- process(Ctx),!.

fill_aux(send_process(A,LCtxs),Ps,send_process(A,LPs),Remaining) :-

fill_aux_list(LCtxs ,Ps,LPs ,Remaining ),!.

fill_aux(receive_process(A,LCtxs),Ps,

receive_process(A,LPs),Remaining) :-

fill_aux_list(LCtxs ,Ps,LPs ,Remaining ),!.

The auxiliary predicate fill_aux has four arguments: the first three arguments are the
same as before, the fourth argument is the part of the list of processes which is not consumed
yet. To force to consume all the processes, the main predicate sets to the empty list this
argument. The first clause returns the first process in the list when the context is a hole,
hence the predicate fails when the processes are less than the holes. The second clause
returns the context itself if it is a process, so this is the case of a context with no holes. The
remaining two clauses are the propagation of the predicate to the subterms, implemented
by the predicate fill_aux_list.

The projection is implemented by the predicate projection, which takes four arguments:
the global type, the message queue, the target participant, and the process resulting as
projection.

projection(G,M,A,P) :-

list_to_assoc(M,M_assoc),

empty_assoc(GPM_found),

projection_cycle_detect(GPM_found ,G,M_assoc ,A,P).

44



The predefined predicate list_to_assoc converts a list of key-value pairs (as the queue M is
implemented, see before) into an association list, an SWI-Prolog structure which has more
efficient operations. The auxiliary predicate projection_cycle_detect requires one more
argument, the map GPM_found, which keeps trace of already encountered global types, as
motivated and detailed below.

This additional argument is necessary to guarantee the termination of the predicate, which
in this case would be not ensured by the built-in mechanism of cycle detection for coin-
ductive predicates. Indeed, this mechanism detects a cycle when the same goal is found,
whereas in this case it should be detected when the same global type is found. In fact, it
is possibile that the same global type is found, but the queue has grown.

To solve this problem, we defined the predicate as inductive and implemented by hand the
cycle detection, adding an argument GPM_found which is a map from global types to pairs
process-queue. In this way, when a global type is encountered twice, we check that it is
associated with the same process and the same queue. This map is updated every time
a new global type is found, thus avoiding non termination, since global types are regular
terms.

The predicate projection_cycle_detect will be described clause by clause below. The
following auxiliary predicate is used, which adds a global type G, with the associated
process P and queue M, to GPM_found, if not present yet.

add_if_not_present(GPM_found ,G,P,M,GPM_found_modified) :-

assoc_to_keys(GPM_found ,Gs_found),

\+ member(G,Gs_found),

put_assoc(G,GPM_found ,P-M,GPM_found_modified ).

The predefined predicate assoc_to_keys extracts from the map the list of already encoun-
tered global types, and put_assoc updates GPM_found returningGPM_found_modified.

The first clause handles the case of an already found global type:

projection_cycle_detect(GPM_found ,G,M,_,P) :-

get_assoc(G,GPM_found ,P-M),!.

Rule (Out-Rcv) is modelled by two clauses. Recall that in this rule the projection of an
output type pq!{λi.Gi}i∈I is only defined if projecting each Gi gives processes Pi with a
common structure, modelled by a multi-hole context C, and, moreover, the “fillings”, that
is, the process subterms replacing the holes, for process Pi, all start with an input from
p, and label λi. That is, Pi = C[p?λi.Pi,j]j∈J . In this way, they can be combined in an
external choice which is used to fill the context in the resulting projection.

projection_cycle_detect(GPM_found ,

output_type(A,B,[Lambda -G]),M,C,P) :-

C \= A,
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add_if_not_present(GPM_found ,output_type(A,B,[Lambda -G]),P,M,

GPM_found_modified),

add_to_queue(A,B,Lambda ,M,M_modified),!,

projection_cycle_detect(GPM_found_modified ,G,M_modified ,B,P),!.

projection_cycle_detect(GPM_found ,

output_type(A,B,[Lambda1 -G1,Lambda2 -G2|LGs]),

M,B,P) :-

add_if_not_present(GPM_found ,

output_type(A,B,[Lambda1 -G1,Lambda2 -G2|LGs]),

P,M,GPM_found_modified),

projection_list(GPM_found_modified ,A,B,M,

[Lambda1 -G1,Lambda2 -G2|LGs],B,

[Lambda1 -P1,Lambda2 -P2|LPs]),!,

build_context(P1,P2,A,Lambda1 ,Lambda2 ,Context),

pairs_keys(LGs ,Lambdas),

pairs_values(LPs ,Ps),

check_each_process(Context ,A,[Lambda1 ,Lambda2|Lambdas],

[P1,P2|Ps],LPss),

build_process_result(Context ,LPss ,A,P).

The first clause corresponds to an output type with only one pair Lambda-G, the second
clause to an output type with more than one such pair.

In the first case, it is enough to project the unique subterm G. Otherwise, the predicate
projection_list projects all the subterms, obtaining a list of processes, which should be
checked to have a common structure in the sense explained above.

The predicate build_context scans the first two processes P1 and P2, checking they are
equal apart from subterms which start with an input from the sender A, and labels Lambda1
and Lambda2, respectively. In this case, the variable Context will contain the context
corresponding to the common part among the two processes, with holes in place of their
different subterms.

After extracting the remaining labels Lambdas of the output type, and the remaining pro-
cesses Ps obtained as projections, the predicate check_each_process, reported in the fol-
lowing, checks that all the processes can be obtained by filling the holes of Context, and,
moreover, that the fillings for the i-th process all start with an input from P, and the i-th
label. That is, in the notation of the rule, Pi = C[p?λi.Pi,j]j∈J .

If it is the case, then the result LPss is a list with an element for each hole, where the
element for the j-th hole is a list of pairs, one for each process, where the pair for the i-th
process is (the representation of) 〈λi,Pi,j〉. Finally, the predicate build_process_result,
not reported, builds the result, which is the process P obtaining by filling each hole of
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Context, notably, the j-th hole by the external choice p?{λi.Pi,j}i∈I .

Also rule (Out-Ext) is modelled by two clauses, where the first one is the same described for
(Out-Rcv) above.

projection_cycle_detect(GPM_found ,output_type(A,B,

[Lambda1 -G1,Lambda2 -G2|LGs]),M,

C, P):-

A\=C, B\=C,

add_if_not_present(GPM_found ,

output_type(A,B,[Lambda1 -G1,Lambda2 -G2|LGs]),

P,M,GPM_found_modified),

player(output_type(A,B,[Lambda1 -G1 ,Lambda2 -G2|LGs]),C),

projection_list(GPM_found_modified ,A,B,M,

[Lambda1 -G1,Lambda2 -G2|LGs],C,

[Lambda1 -P1,Lambda2 -P2|LPs]),!,

build_context(P1,P2,R,Lambda1_prime ,Lambda2_prime ,Context),

pairs_values(LPs ,Ps),

check_each_process(Context ,R,[ Lambda1_prime ,Lambda2_prime|_],

[P1,P2|Ps],LPss),

build_process_result(Context ,LPss ,R,P).

The second clause is analogous to the second clause for (Out-Rcv), with the only difference
that in this case the predicate build_context is called with variables R, Lambda1_prime, and
Lambda2_prime which are free, corresponding to the fact that the rule can be instantiated
with arbitrary sender and labels. However, the sender must be the same for all processes,
and each label should be the same for all the fillings for a process.

Rule (Out-Snd) is modelled by the clause below.

projection_cycle_detect(GPM_found ,output_type(A,B,LGs),M, A,

send_process(B,P_children )) :-

add_if_not_present(GPM_found ,output_type(A,B,LGs),

send_process(B,P_children),M,GPM_found_modified),

consume_queue_list(LGs ,A,B,M),

projection_list(GPM_found_modified ,A,B,M,LGs ,A,P_children ),!.

The clause, after updating the cycle detection map, checks with consume_queue_list

that each global type in the list LGs will eventually read the corresponding sent mes-
sage. That is, this predicate, reported in the following, implements the side condition
`read 〈Gi, p, q,M�(p, q) · λi〉 ∀i ∈ I. After this check, the clause propagates the projection
to the subterms.

The rule (In-Rcv) is modelled by the clause below.

projection_cycle_detect(GPM_found ,input_type(A,B,Lambda ,G_children),

47



M,B,receive_process(A,[Lambda -P_children ])) :-

add_if_not_present(GPM_found ,input_type(A,B,Lambda ,G_children),

receive_process(A,[Lambda -P_children ]),M,GPM_found_modified),

remove_from_queue(M,A,B,Lambda ,M1),!,

projection_cycle_detect(GPM_found_modified ,G_children ,

M1 ,B,P_children ),!.

The clause removes the received message from the queue, using the last argument of pred-
icate remove_from_queue as output, and then propagates the projection to the subterms
with the new queue.

The rule (In-Ext) is expressed by the clause below.

projection_cycle_detect(GPM_found ,input_type(A,B,Lambda ,Gs),M,C,P) :-

C\=B,!,

add_if_not_present(GPM_found ,input_type(A,B,Lambda ,Gs),P,M,

GPM_found_modified),

player(input_type(A,B,Lambda ,Gs),C),

remove_from_queue(M,A,B,Lambda ,M1),!,

projection_cycle_detect(GPM_found_modified ,Gs ,M1 ,C,P).

The clause checks the side conditions that C differs from the receiver B, and that C is a
player in the global type. Then, it removes from the queue the received message, and it
propagates the projection to the following global type with the new queue.

We provide now the implementation of some predicates informally described above. The
predicate build_context has six arguments: two processes, a participant A, two labels
Lambda1, Lambda2, and a context. c ho eliminato gli ultimi due argomenti e scambiato le
due regole centrali c The predicate checks that the two processes are either equal, or differ
starting from input nodes from participant A, where the latter and former process receive
labels Lambda1 and Lambda2, respectively.

build_context(zero ,zero ,_,_,_,zero).

build_context(receive_process(A,[Lambda1 -P1]),

receive_process(A,[Lambda2 -P2]), A,Lambda1 ,Lambda2 ,

hole) :-

Lambda1 \= Lambda2.

build_context(receive_process(B,LP1),receive_process(B,LP2),A,Lambda1 ,

Lambda2 ,receive_process(B,Context )) :-

build_context_list(LP1 ,LP2 ,A,Lambda1 ,Lambda2 ,Context ).

build_context(send_process(B,LP1),send_process(B,LP2),A,Lambda1 ,

Lambda2 ,send_process(B,Context )) :-
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build_context_list(LP1 ,LP2 ,A,Lambda1 ,Lambda2 ,Context ).

The predicate is declared coinductive, because if the two processes are regular infinite
terms the predicate must hold if no difference is found. The predicate scans the processes
recursively checking at each step their shape. The second clause checks that the labels of
the two terms are different. In this case, the scan stops, and a hole is returned as context,
otherwise the scan should continue.

The predicate check_each_process has six arguments: a context, a participant P, a list of
labels, a list of processes, and a result LPss. As already mentioned, the predicate checks
that all the processes can be obtained by filling the holes of Context, and, moreover, that
the fillings for the i-th process all start with an input from P, and the i-th label. If it is
the case, then the result LPss is a list with an element for each hole, where the element for
the j-th hole is a list of pairs, one for each process, where the pair is the i-th label and the
filling for that hole.

check_each_process(Context ,_,[_],[P],[]) :-

process(Context),

fill_context(Context ,[],P).

check_each_process(Context ,A,[_|Lambdas],[P|Ps],[]) :-

process(Context),

fill_context(Context ,[],P),

check_each_process(Context ,A,Lambdas ,Ps,_).

check_each_process(Context ,A,[ Lambda],[P],LPss) :-

fill_context(Context ,Fillings ,P),

check_branch(Fillings ,A,Lambda ,LPs).

cons_branch(LPs ,LPss).

check_each_process(Context ,A,[ Lambda|Lambdas],[P|Ps],

LPss) :-

fill_context(Context ,Fillings ,P),

check_branch(Fillings ,A,Lambda ,LPs),

check_each_process(Context ,A,Lambdas ,Ps,LPss_Tail),

\+ member(Lambda ,Lambdas),

add_branch(LPs ,LPss_Tail ,LPss).

The first two clauses handle the case when the context is a process (that is, has no holes).
In this case, it is enough to check that each process in the list is equal to Context, and
this is obtained calling the fill_context predicate with the empty list of fillings. The first
and second clause deal with a list of processes with only one, and more than one, element,
respectively.
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Otherwise, the following two rules are applied, which again deal with a list of processes
with only one, and more than one, element, respectively.

For each process in the list, the predicate fill_context finds the corresponding fillings
(process subterms) to be inserted in place of the holes. As said above, the fillings for the
i-th process should all be of shape p?λi.Pi,j. This is checked by the predicate check_branch,
not reported, which also transforms each such filling into a pair 〈λi,Pi,j〉, and returns (the
representation of) such list of pairs in LPs.

After that, if the list of processes has only one element, then the list of pairs LPs is
transformed by the predicate cons_branch, not reported, in a list of list of pairs where
each element has length one. If the list of processes has more than one element, then
check_each_process is recursively called, returning LPss_Tail as result, which is completed
with the current result by the predicate add_branch, not reported.

The predicate consume_queue_list has four arguments: a list of pairs label-global type, a
sender, a receiver, and a list of labels. As already said, it implements the side condition
`read 〈Gi, p, q,M�(p, q) · λi〉 ∀i ∈ I of rule (Out-Snd).

consume_queue_list ([Lambda -G],A,B,M) :-

add_to_queue(A,B,Lambda ,M,M1),

get_assoc(A-B,M1 ,Lambdas),

consume_queue(G,A,B,Lambdas ).

consume_queue_list ([Lambda -G|LGs],A,B,M) :-

add_to_queue(A,B,Lambda ,M,M1),

get_assoc(A-B,M1 ,Lambdas),

consume_queue(G,A,B,Lambdas),

consume_queue_list(LGs ,A,B,M).

consume_queue(G,A,B,Lambdas) :-

\+ not_consume_queue(G,A,B,Lambdas ).

not_consume_queue(end ,_,_,[_|_]).

not_consume_queue(input_type(A,B,Lambda ,G),A,B,[ Lambda|Zeta]) :-

not_consume_queue(G,A,B,Zeta).

not_consume_queue(input_type(A,B,Lambda1 ,_),A,B,[ Lambda2|_]) :-

Lambda1 \= Lambda2.

not_consume_queue(input_type(A,B,_,G),C,D,Zeta) :-

(A \= C ; B \= D),

not_consume_queue(G,C,D,Zeta).
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not_consume_queue(output_type(_,_,LGs),A,B,Zeta) :-

not_consume_queue_children(LGs ,A,B,Zeta),!.

The predicate consume_queue implements the judgment `read 〈G, p, q, ζ〉 defined in the
bottom part of Fig. 3.1. This judgment cannot be implemented inductively, since it would
not terminate when the predicate does not hold. The solution is to implement the negation
of the judgment as a coinductive predicate. The predicate not_consume_queue has four
arguments: a global type, a sender, a receiver, and a list of labels. The predicate holds if
the global type does not consume all the labels. This can happen for two reasons: either,
after removing the labels from the queue for each input node with the given participants,
the queue is not empty, or the order of labels in the queue is not the same order of input
labels. The negation of the predicate corresponds to the judgment `read as expected, that
is, a predicate that holds if all the labels will be eventually consumed.

4.3 Type checking

The following predicate implements typing rule (T-Net).

typing ([A-P,B-Q|APs]-M,G-M) :-

project_net ([A-P,B-Q|APs],G,M),

pairs_keys ([A-P,B-Q|APs],As),

participants(G,As).

project_net ([A-P],G,M) :-

projection(G,M,A,P_first),

process_preorder(P,P_first ).

project_net ([A-P|APs],G,M) :-

projection(G,M,A,P_first),

process_preorder(P,P_first),

project_net(APs ,G,M).

The body of the clause for typing checks the premises of the rule. The first premise is
checked by project_net . That is, for each participant of the network, the projection is
computed, and the preorder constraint is checked on the result. Predicate pairs_keys

extracts the keys from the list of pairs, to obtain the participants of the network, then,
using the predefined predicate subset, it is checked that the participants of the global type,
obtained with participants, are a subset of the participants of the network. Finally, the
global type is checked to be fair (condition implicitly assumed in the rule).
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The following predicate implements the preorder on processes. The three clauses corre-
spond to rules (≤-Out), (≤-In), and r(≤-0), espectively.

process_preorder(send_process(A,[Lambda -P|LPs]),

send_process(A,[Lambda -Q|LQs ])) :-

pairs_keys ([Lambda -P|LPs],L1s),

pairs_keys ([Lambda -Q|LQs],L2s),

subset(L2s ,L1s),

process_preorder_list ([Lambda -P|LPs],[Lambda -Q|LQs],L1s).

process_preorder(receive_process(A,[Lambda -P|LPs]),

receive_process(A,[Lambda -Q|LQs])) :-

pairs_keys ([Lambda -P|LPs],L1s),

pairs_keys ([Lambda -Q|LQs],L2s),

subset(L1s ,L2s),

process_preorder_list ([Lambda -P|LPs],[Lambda -Q|LQs],L2s).

process_preorder(zero ,zero).

To check the premises, we have to check two costraints: the two set of labels are in a
subset relation, and the processes associated with the same label are, recursively, in the
preorder relation. To verify the costraints, first the predicate pairs_keys extracts from
the list of pairs of both arguments the labels, and then the predefined predicate subset

checks they are in the subset relation. The recursive check is performed by the predicate
process_preorder_list.

process_preorder_list ([Lambda -P],LQs ,Lambdas) :-

member(Lambda ,Lambdas),

pairs_keys_values(LQs ,[ Lambda],[Q]),

process_preorder(P,Q).

process_preorder_list ([Lambda -_],_,Lambdas) :-

\+ member(Lambda ,Lambdas ).

process_preorder_list ([Lambda -_|LPs],LQs ,Lambdas) :-

\+ member(Lambda ,Lambdas),

process_preorder_list(LPs ,LQs ,_).

process_preorder_list ([Lambda -P|LPs],LQs ,Lambdas) :-

member(Lambda ,Lambdas),

pairs_keys_values(LQs ,[ Lambda],[Q]),

process_preorder(P,Q),

process_preorder_list(LPs ,LQs ,Index ).
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This predicate has three arguments: the list of pairs label-process of the right argument,
the list of pairs label-process of the left argument, and a set of labels. This set is different
depending on the rule: when used by (≤-In), it is the set of labels of the right argument,
whereas when used by rule (≤-Out) it is the set of labels of the left argument. The predicate
scans the list of the left argument, checking whether the current label is present in Lambdas,
and then appling recursively the predicates process_preorder and process_preorder_list.
The membership test is necessary, since in rule (≤-In) we do not consider labels that belong
only to the left argument. The second and third clauses ignore the labels continuing to
scan if the list has at least two elements or stopping the scan otherwise. In rule (≤-Out),
while scanning we are sure that the left labels are all present in the right arguments, so
this check is useless, but we preferred to implement only one predicate, avoiding repetion
of similar code.
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Chapter 5

Conclusion

The outcome of the thesis is an implementation in co-logic programming of a novel for-
mulation of global types for asynchronous netwoks, where asynchrony is expressed at the
level of the type system.

In the first two chapters we have described the state-of-the-art for the thesis work. Notably,
we have illustrated the classical notion of global types proposed in literature, based on three
abstraction levels of description of the the network: the global level, the session level and
the process level. The notion of projection provides a link between global and session
level, whereas type checking provides a link between session level and process level. The
aim of such formalisms is to ensure relevant properties of networks. Moreover, we have
introduced the fundamental ingredients of the coinductive approach used in the thesis work:
coinductive definitions, as opposed to inductive definition, in the framework of inference
systems, and co-logic programming, an extension of logic programming where predicates
can be marked as coinductive.

After these background chapters, we have presented a novel formulation of global types,
where infinite processes and global types are defined coinductively, rather than by an
explicit fixed point operator, and, more importantly, global types directly model asyn-
chrony. Finally, we have described in detail the implementation of this model in co-logic
programming, notably motivating our choices to solve termination problems, frequently
encountered in the development. Our solutions are based on coinductive techniques mixed
with inductive ones, possibly also employing user-defined cycle detection mechamisms.

The thesis work can be continued in many directions. First of all, the current implemen-
tation is a prototype, which should be refined and equipped with a suitable user interface
to become more usable.

On the theoretical side, we mentioned that standard global types introduce a subtyping
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relation, at the level of local types, that is, types for a single participant, that in our setting
are just processes, which allows to anticipate output operations [MYH09b, CDCY14]. The
intuition behind this approach is that, in an asynchronous communication model, output
operations are not blocking, hence anticipating them will not cause deadlocks. This ap-
proach has a big issue: the subtyping relation has been proved to be undecidable, hence it
cannot be used in practice, as typechecking must always terminate [BCZ17b]. However, it
provides a perfect reference model.

Therefore, we plan to compare on a formal basis our asynchronous global types with such
a reference model (standard global types and synchronous sybtyping). This could be done,
for instance, by showing that a process P obtained projecting an asynchronous global type
G has a super-process Q, w.r.t. the asynchronous subtyping relation, which is the projection
of a standard global type. To reach such a result, it could be useful to introduce a subtyping
relation between asynchronous global types, which simulates the one between processes.

The other direction, namely, a process typable by a standard global type using asyn-
chronous subtyping is typable also by an asynchronous global type, should not hold in
general, as we conjecture our system is decidable. However, it would be interesting to in-
vestigate whether, relaxing a bit the conditions on asynchronous global types, it is possible
to get also this direction, because, in this case, we could exploit our decidable system to
characterize a decidable fragment of asynchronous subtyping.

Another objective we would like to pursue is on the methodological side. We plan to
investigate the possibility of formalizing our global types in a proof assistant supporting
coinduction, such as Agda or Coq. This would provide a stronger support to our results,
as proofs, which in this context could be quite involved and error prone, would be auto-
matically checked and certified. Furthermore, proof assistants could help us developing a
certified type checker for asynchronous global types.
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