
Scuola di Scienze Matematiche, Fisiche e Naturali

Dipartimento di Matematica

Tesi di Laurea Magistrale

High Probability Logic
through Conditional Logic:
a proof-theoretic approach

CANDIDATO:
Lorenzo Ferraris

RELATORE:
Prof. Sara Negri

CORRELATORE:
Prof. Marianna Girlando

ANNO ACCADEMICO 2023–24



Contents

Introduction 1

1 Lewis’ conditional logic 3
1.1 Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.1.1 Possible worlds accounts . . . . . . . . . . . . . . . . . . . . 5
1.1.2 Sphere models . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2 Axiomatizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Proof theory for Lewis’ logics 15
2.1 Labelled Calculi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2 Internal Calculi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2.1 Sequent calculi IL for Lewis’ logic V and extensions . . . . . 22
2.2.2 Cut elimination for IV . . . . . . . . . . . . . . . . . . . . . 25
2.2.3 Sequent calculi Ii

L
and completeness of IVW . . . . . . . . . 28

3 Adams’ Logic of High Probability 30
3.1 Logic HPA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.2 A characterization of theoremhood in HPA . . . . . . . . . . . . . . 35
3.3 The conditional operator > in probabilistic logic . . . . . . . . . . . . 38

4 Relationship between logics V and HPA 42
4.1 Completeness of V wrt HPA . . . . . . . . . . . . . . . . . . . . . . 42
4.2 Equivalence of VW and HPA . . . . . . . . . . . . . . . . . . . . . . 44

Conclusions 48

A Appendix: Derivations of the axioms 49

Bibliography 56

i



Introduction

Conditional logics play a fundamental role both in natural language and in formal rea-
soning. Under this name we group all the logics that aim to represent some kind of
conditionality - namely a dependence between two propositions - which is more fine-
grained than classical material implication. For this reason a different interpretation
than the one of classical logic is called for. The wide variety of conditionals found
in everyday language - ranging from factual, to non-monotonic, and to counterfactual
conditionals - makes their analysis and classification a complex task.

In this thesis we explore logical systems in which conditionality is represented by
enriching the classical logic propositional language with operators apt to represent con-
ditional sentences. Among the several alternative approaches that have been developed
we analyze the possible-worlds account, first introduced by Stalnaker [30] and Lewis
[23], which provides a semantic framework for the interpretation of the famous class of
counterfactual conditionals, and Adams’ probabilistic approach ([1], [3]), which sug-
gests that conditionals should be evaluated in terms of probability rather than absolute
truth. More specifically, we will discuss Lewis’ conditional logic V and its extensions,
and Adams’ logic HPA for high probability.

Proof theory is the discipline that studies proofs, treating them as mathematical ob-
jects and analyzing their properties in a formal system. In this context, we focus on
sequent calculus, a powerful and expressive formalism introduced by Gerhard Gentzen
in [13]. If compared with other proof systems, sequent calculus offers, among others,
the advantage that it is well-suited for automated proof search: to determine whether
a formula is derivable or not in a logical system, starting from the formula itself, in-
ference rules are systematically applied until either an instance of an initial sequent
is reached or no further rules can be applied. To this aim, sequent calculi pursue the
desirable property of analyticity: all that is needed to prove a formula has to be con-
tained in the formula itself. A key result is then to prove that certain rules like cut - that
depend from analyticity - can in fact be eliminated. We focus in this thesis on the proof-
theoretic properties of the conditional logics examined. Lewis’ conditional logic V is
already inserted in a rich apparatus of proof systems, of which we report the main ap-
proaches. High probability logic HPA, instead, is well-formalized in a (Hilbert-style)
axiomatic system, but lacks of a proof system with better analytic properties.

Our objective is to explore the connection between these two logics, exploiting the
good properties of the sequent calculi for the better-known logic V and assessing its
compatibility with HPA and the implications that follow.

Another relevant feature of this study is that it considers the two different ways to
define the logics in exam, namely the semantic account, relying on models, and the
(axiomatic) syntactic account, pointing out which are the relations between them. We
relate these two different approaches in two different types of sequent calculi. Labelled
sequent calculi are built starting from the semantics and feature a close relationship

1



with the models; internal sequent calculi, instead, are characterized by a “formula
interpretation”: every sequent of a derivation has a meaning in the language on which
the logic is based. The sequent calculi on which we are mainly interested are the
labelled calculus G3V, presented in [16] and the internal calculus IV, introduced in
[15]. In the paper [16] an interesting map relating these two calculi is presented as
well.

In conclusion, the primary objective of this thesis is to determine the relationship
between Adams’s logic HPA and the (much better-known) logics of Lewis, further
developing observations made by Adams himself (cf. [5]). Specifically, to achieve this
goal, we have employed the internal sequent calculus IV.

The structure of this thesis is as follows: Chapter 1 introduces Lewis’ conditional
logic, analyzing possible-world semantics and in particular sphere models. Chapter 2
addresses proof theory for conditional logics, focusing on labelled and internal sequent
calculi. Chapter 3 is dedicated to Adams’ high probability logic, while Chapter 4 exam-
ines the relationships between logic V (and its extensions) and logic HPA, evaluating
their theoretical implications.
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Chapter 1

Lewis’ conditional logic

A conditional is, in everyday natural language, an expression relating a proposition
(called the antecedent) to another proposition (the consequent). In the English lan-
guage, for example, the conditional with antecedent A and consequent B is often ex-
pressed by the sentence:

If A, then B.

The variety of conditionals in the natural language is wide. For instance, factual con-
ditionals express cause-effect relation, non-normal conditionals express a relation that
is usually true, deontic conditionals express obligation, counterfactual conditionals ex-
press consequences of a state of affairs that did not obtain. Many other types of con-
ditionals exist, and with the most varied and diverse features, making it hard to find
general criteria to classify them.

Also in mathematical reasoning conditionals play a key role: they make it possible
to deduct a conclusion from certain hypotheses, at different levels of reasoning. For
instance, the sentence

If the natural number n is divisible by four, then n is even.

is a conditional sentence. The usual interpretation of conditionals in mathematics is the
one of classical logic, in which a conditional is interpreted by material implication, here
denoted with ⊃. Material implication is truth-functional, in the sense that the truth value
of the conditional statement A ⊃ B is determined by the truth values of its components
A and B. In particular, a conditional A ⊃ B is classically true if either its antecedent A
is false, or its consequent B is true. This interpretation comes along with the so-called
“paradoxes of material implication”, namely the cases in which sentences that - to our
intuition - shouldn’t be true, or at least sound far-fetched, are instead validated. For
instance, “If 2 + 2 = 5, then there would be no even numbers” is classically true, since
its antecedent is false. Also conditional sentences with true consequent are always true,
leading to analogous problematic examples.

Given the large variety of conditionals in the natural language, this paradoxical
behaviour is even emphasized when it comes to everyday language. A very problematic
and relevant class of conditionals is the one of counterfactuals, that can be characterized
as conditional sentences in which the antecedent is false (in the actual world). In the
classical interpretation counterfactuals are true no matter what, since their antecedent
is false. In everyday reasoning we would like to give different truth values to them,
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though. For example the following two counterfactual statements - adapted from [14]
- are true, according to the classical interpretation:

(1) If Harris had won the elections, Trump would not be president.

(2) If Harris had won the elections, she would have refused the position.

Even if both are counterfactuals, we want to be able to tell that (1) is true, while (2) is
false, at least assuming Harris’ willingness to become president.

Simple sentences like the previous examples make it clear that there is a mismatch
between the classical, truth-functional interpretation of implication and the meaning
we want to give to some classes of conditionals. Counterfactuals are surely the most
notable example of this discrepancy; for this reason, several approaches have been
proposed to deal with counterfactuals, the principal ones being the possible worlds
account, developed notably by Lewis [23] and Stalnaker [30], and the probabilistic
account of Adams (among the others [1], [3]). These approaches, eventually with little
modifications, ended up to be fitting not only for counterfactuals, but for other classes
of conditionals as well. We will discuss Adams’ probabilistic account in Chapter 3, in
particular as regards sentences expressing high probability, while we will deepen the
possible world account and its developments in this chapter.

Among the many existing conditional logic systems we will mention logic PCL
(Preferential Conditional Logic), introduced by Burgess in [8], and look more closely
at logic V (logic of Variably strict conditionals), introduced by Lewis in [23]. The
strength of these basic systems is that it is possible to embrace different families of
conditionals by modifying them slightly.

To describe Lewis’ system of logics arising out of V we will look at it from the two
different points of view of semantics and syntax. A semantic characterization of the
logic consists in the construction of a class of models fitting the logic, i.e. a class of
structures endowed with an interpretation that assigns the truth values to formulas in
the language. A syntactic characterization consists in determining a set of axioms and
inference rules from which it is possible to derive true propositions from the axioms.
These two characterizations are linked by the results of soundness and completeness,
that prove that a formula is valid in the model if and only if it can be derived in the
syntactic system.

We will mention in Section 1.1 some different semantic models for conditional
logics, to finally define the models that Lewis found for conditional logic, namely
sphere models. Then in section 1.2 we will present two different axiomatizations for
Lewis’ conditional logics, that are sound and complete with respect to sphere models.
For a complete and detailed discussion over these topics we refer to [14].

1.1 Semantics
Many models have been conceived to describe conditional logics in the possible worlds
account. In this section we we will give a general overview on the principal models
of this kind designed for conditionals, namely selection function models, preferential
models, neighbourhood models and sphere models.

A large part of the efforts in this direction has focused on counterfactual condition-
als, which occupy a relevant position in this discussion for the evidence of the big gap
from classical implications; some attempts ended up to fit other classes of condition-
als though. In fact, selection function models have been devised by Stalnaker [30] to
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describe counterfactuals. Preferential models, studied by Lewis [23] and Burgess [8]
among the others, can fit some systems of non-monotonic logics, i.e. logics allowing
the conclusions to be revised in light of new information. Neighbourhood models are
a generalization of sphere models, that according to Lewis cover not only counterfac-
tuals, but also other classes of conditionals.

In particular, we will mention in Section 1.1.1 the main features of selection func-
tion models, preferential models and neighbourhood models. For the presentation of
these models we follow Sections 1.3 and 1.4 of [14]. Given this general framework, we
will introduce sphere models, which are our main focus, in Section 1.1.2. We will see
in Chapter 2 that basing a proof systems on sphere models can simplify the structure of
the rules; moreover, sphere models will play a role of primary importance in Chapter
4.

1.1.1 Possible worlds accounts
We want to showcase the models for conditional logic mentioned above and some of
their main properties.

The language for conditional logics we will employ in this section is the extension
of the classical propositional language with the binary conditional operator >:

Definition 1.1. Let Prop be a countably denumerable set of propositional variables.
The set of well formed formulas F> of a propositional conditional logic is generated
by the following grammar, for p in Prop and A, B in F>:

A, BF p | ⊥ | A & B | A ∨ B | A ⊃ B | A > B

The connective > is the conditional operator, which can be seen as expressing a non-
monotonic conditional, a counterfactual, a deontic conditional or conditionals of other
classes, depending on the system we are considering. We will call it conditional, or
non-material implication, in opposition to the (material) implication ⊃. Finally, for
any formulas A, B in F>, the negation of A is written ¬A, as an abbreviation of A ⊃ ⊥;
the constant for true is denoted by ⊤ and is an abbreviation of ¬⊥; the biconditional,
denoted A ⊃⊂ B, is an abbreviation for the formula (A ⊃ B) & (B ⊃ A).

We start from the observation that we want conditionals not to be truth-functional:
not only conditionals of different kinds, but also conditionals from the same class (such
as counterfactuals) may need to be evaluated in different ways, even if their compounds
have the same truth values. In Kripke models for modal logics (cf. [7]) this requirement
is met: truth of modal operators depend not only on the actual truth values of their
components, but also on the richer structure of the model. Operators of this kind are
called intensional. The modal operator □, for instance, features this property.

In order to draw inspiration from this perspective, we start this section with an
overview on Kripke models for the modal logic K. For a detailed treatment on modal
logic we refer to [7] and [26].

Definition 1.2. A (modal) frame F is a structure ⟨W,R⟩, where:

• W is a non-empty set, called the set of possible worlds;

• R ⊆ W ×W is a binary relation on W and we will call it the accessibility relation.

A propositional evaluation establishes which propositional variables are true at a
world x of the set W:
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Definition 1.3. Let F = ⟨W,R⟩ be a frame; a propositional evaluation is a map

⟦ ⟧: Prop −→ P(W)

Finally, building on the previous definitions, we define a Kripke model:

Definition 1.4. A Kripke Model M is a frame F=⟨W,R⟩ endowed with a valuation
⟦ ⟧:

M =⟨W,R, ⟦ ⟧⟩

We say that the modelM=⟨W,R, ⟦ ⟧⟩ is based on the frame F=⟨W,R⟩.

The propositional evaluation ⟦ ⟧ is extended to all the formulas of the modal lan-
guage as follows:

Definition 1.5. We call F□ the extension of the propositional language with the inten-
sional modal operator □. Let F=⟨W,R⟩ be a frame. The propositional evaluation

⟦ ⟧: Prop −→ P(W)

can be inductively extended to any formula of the modal language F□ in the following
“standard” way. Let x ∈ W:

• ⟦⊥⟧=∅

• x ∈ ⟦A & B⟧ iff x ∈ ⟦A⟧ ∩ ⟦B⟧

• x ∈ ⟦A ∨ B⟧ iff x ∈ ⟦A⟧ ∪ ⟦B⟧

• x ∈ ⟦A ⊃ B⟧ iff x ∈ ⟦A⟧ ⊆ ⟦B⟧

• x ∈⟦□A⟧ iff for all y ∈ W, if xRy then it holds that y ∈⟦A⟧

We can now set the standard definitions to describe different notions of validity of
a formula:

Definition 1.6. Given a Kripke modelM, with underlying set W and evaluation func-
tion ⟦ ⟧, we say that of a formula A is valid (or true) at a world x iff x ∈ ⟦A⟧, and we
will equivalently write x ⊩ A. We say that A is valid (or true) in the modelM, and
writeM |= A, iff A is true at all the worlds in the model. Finally, we say that A is valid,
and write |= A, iff A is valid in all models. In this case, we say that A is a theorem of
the logic.

Once we have given the basics for possible worlds Kripke semantics defined over
formulas of the modal language, we are now ready to include the conditional in the
discussion.

The framework of Kripke models looks suitable to describe conditionals. In fact,
all the models we present in this section are classes of Kripke models enriched or mod-
ified with certain properties. We list hereafter some of the main approaches existing, to
introduce in Section 1.1.2 the semantics of our main interest: sphere models.

A first attempt of describing (counterfactual) conditionals, by C. I. Lewis [22], is
to interpret them as a strict conditional, namely:

A > B B □(A ⊃ B)
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The conditional operator defined in this way is intensional, depending on the modal
necessity operator, and captures well the meaning of simple counterfactual sentences.
But this approach is problematic when we consider several counterfactuals together, as
pointed out by Lewis’ “party example”, in Section 1.2 of [23].

The fact that no Kripke model can describe situations of this kind brings in the idea
of enriching such models with additional properties, in order to capture more specific
aspects of different classes of conditionals.

In selection function models (cf. [30]), instead of a binary relation (as in Kripke
models) the models feature a selection function f . This function takes as arguments a
world x and the set ⟦A⟧ of the worlds in which a certain formula A is true, returning
the world y which is the most similar world to x, in which A holds.

The truth condition for a conditional A > B at a selection function models is

x ⊩ A > B iff f (x, ⟦A⟧) ⊩ B

i.e. the conditional A > B is true at the world x when, in the most similar world to the
actual one in which the antecedent A holds, also the consequent B holds. This truth
condition represents well counterfactuals. However, it was criticized by Lewis for be-
ing based on too strong assumptions; a detailed treatment on this topic is out of our
scopes.

Preferential models are structures

M = ⟨W, {Wx}x∈W , {⪯x}x∈W , ⟦ ⟧⟩

where W is a non-empty set, ⟦ ⟧ is a propositional evaluation and, for any world x,
Wx ⊆ W represents the set of the worlds accessible from x and ⪯x is a reflexive and
transitive relation over Wx. In these models, the notation y ⪯x z is interpreted as “world
y is more similar to world x than world z is”. Intuitively a conditional formula A > B
is true at x when for every world w in Wx in which the antecedent A holds, there is a
world y more similar to x than w such that A holds at y and A ⊃ B holds at every world
more similar to x than y.

Neighbourhood models are a generalization of sphere models (cf. Section 1.1.2)
in which to each world x is associated a family of sets of worlds, that in general does
not need to be nested. These sets are called neighbourhoods, and the worlds in each
neighbourhood are interpreted as the ones sharing the same degree of similarity to
the actual world x. The truth condition for conditional formulas is similar to the one of
sphere models (see Definition 1.9), but the inclusion between spheres - neighbourhoods
here - must be imposed.

On the other hand, this class of models is more general than sphere models, and
can thus represent wider classes of conditionals; on the other hand, though, the fur-
ther restriction that’s needed to express the truth of a conditional makes the condition
more complicated than the one of sphere models, and this is the reason why we have
preferred sphere models in this study.

1.1.2 Sphere models
Sphere models were introduced by Lewis in [23]. This particular class of Kripke mod-
els is enriched with spheres, sets of worlds with the same degree of similarity to the
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actual world, characterized by the property of being nested. Lewis came to this idea
in opposition to C. I. Lewis’ strict conditionals, presented in section 1.1.1. For sphere
models Lewis talks instead of variably strict conditionals, in the sense that not only the
worlds related to the actual ones matter in determining the truth value of a conditional
(as happened for the intensional strict conditional), but even how similar these worlds
are to the actual one is a key factor. In this way the truth value of a formula does not
depend just on the truth values of its constituents at a certain world, but also on how far
that world is from the actual one.

In fact, conditional sentences that are classically evaluated to the same truth value
can be evaluated differently in this framework. This makes particular classes of sphere
models (namely centered and weakly centered sphere models) an optimal setting to
work with counterfactuals; but sphere models can represent also other kinds of condi-
tionals, as we will see in the following.

We can now give our definition of a sphere model.

Definition 1.7. A sphere model is a structure

M = ⟨W, S , ⟦ ⟧⟩

where:

• W is a non-empty set; we call its elements (possible) worlds;

• S : W → P(P(W)) is a function that associates to every world x a family S (x) of
subsets of W; we call spheres around x the elements of S (x);

• ⟦ ⟧: Prop → P(W) is a propositional evaluation, which associates to every
atomic formula p the set of worlds at which p is true.

Moreover, S satisfies the following properties:

• Non-emptiness: For any α in S (x), α in non-empty;

• Nesting: For any α, β in S (x), either α ⊆ β or β ⊆ α;

• Closure under non-empty union: If H ⊆ S (x) and H , ∅, then
⋃

H is a sphere
in S (x);

• Closure under non-empty intersection: If H ⊆ S (x) and H , ∅, then
⋂

H is a
sphere in S (x).

We remark that Lewis’ original definition of sphere models introduced in Chapter
1 of [23], deviates from Definition 1.7 in two points:

1) In the original definition the condition of non-emptiness is absent and the con-
dition of closure under non-empty union is replaced by closure under union.
Thus for any world x, setting in our condition of closure under non-empty union
H = ∅ ⊆ S (x) we get by this last condition that also ∅ =

⋃
∅ is a sphere around

x;

2) Lewis includes in the original definition of sphere model the following property:

Centering: For all α in S (x) the set {x} is a sphere in S (x).
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Thus, combining this with the nesting and the non-emptiness properties , it turns
out that for any sphere α in S (x), {x} ⊆ α and thus x ∈ α.

Following the notations of [14] we chose to replace the technical and “counterintu-
itive” inclusion of the empty set of Lewis with the non-emptiness condition. Moreover,
Lewis’ choice of including the centering condition in [23] is due to the fact that the
model with the centering property turns out to be the one that best represents coun-
terfactuals. As we are not focused on counterfactual conditionals only, we choose
(following [14], again) to present the basic version of a sphere model of Definition 1.7.
Starting from it, with the modular addition of properties on the model, among which is
the centering property, we will be able to encompass different classes of conditionals.

To define the extension of the evaluation function ⟦ ⟧ to conditional formulas of
language F> we make use of the following notation, introduced in [27]:

Definition 1.8. LetM = ⟨W, S , ⟦ ⟧⟩ be a sphere model. Given a sphere α ⊆ W and a
formula A in F> we say that:

1) A existentially satisfies α, and write α ⊩∃ A, iff there exists a world x in α such
that x ⊩ A;

2) A universally satisfies α, and write α ⊩∀ A, iff for all worlds x in α, x ⊩ A.

The notation above permits to express in a convenient way the extension of the
propositional evaluation ⟦ ⟧ to conditional formulas:

Definition 1.9. LetM = ⟨W, S , ⟦ ⟧⟩ be a sphere model. Given two formulas A, B in
F>, the condition for a world x to belong to ⟦A > B⟧ is the following:

x ⊩ A > B iff if there exists α in S (x) such that α ⊩∃ A, then there exists β in S (x)
such that β ⊩∃ A and β ⊩∀ A ⊃ B.

As we mentioned above, adding the centering condition to sphere models makes
them a suitable model for counterfactuals; adding different conditions may make them
fit other classes of conditionals. Among all the additional model properties proposed
by Lewis in [23] we report the most interesting ones for our purposes:

Definition 1.10. Extensions of sphere models are defined by adding the following
properties to the function S of Definition 1.7:

N Normality: For all x in W it holds that S (x) , ∅;

T Total reflexivity: For all x in W there exists α in S (x) such that x ∈ α;

W Weak centering: For all x in W, for all α in S (x), it holds that x ∈ α;

C (Strong) Centering: For all x in W, for all α in S (x), it holds that {x} ∈ S (x), so
that {x} ∈ α;

U Local uniformity: For all x in W, α in S (x) and y in α, it holds that
⋃

S (x) =⋃
S (y);

A Local absolutness: For all x in W, α in S (x) and y in α, it holds that S (x) = S (y).

Remark 1.11. There are some (easy) relations between the conditions above: C im-
plies W, W implies T and T implies N; A implies U.
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As observed by Lewis, the basic sphere model is too weak, and we already dis-
cussed that adding condition C makes the system suitable to describe counterfactuals.
Condition W is motivated by Lewis by the fact that in the smallest sphere there may
be not only the actual world, but also other worlds so similar to the actual one that we
cannot detect the difference. Hence the actual world must belong to all the spheres,
but there may be other worlds with the same property. Condition T even permits the
actual world to be not in the inner sphere, but just in some of the spheres. Lewis claims
that this class of models could fit deontic conditionals: if the function S groups worlds
according to their grade of morality, inner spheres may contain worlds that are morally
better than the worlds that are just in the outer spheres. This way the innermost sphere
would be the one containing the “morally perfect” worlds, and the actual world (defi-
nitely) does not belong to it. Condition N is even weaker, and only requires the system
of spheres to be non-empty. Condition U imposes that the set of worlds belonging to
some sphere is always the same; condition A is stronger and it even imposes that the
set of the spheres of any two worlds is the same. Also models satisfying conditions U,
A or them both are designed by Lewis as suitable to represent deontic conditionals.

We will present in the next section possible axiomatizations that are sound and
complete with respect to these systems.

1.2 Axiomatizations
In this section we present two possible axiomatizations for Lewis’ conditional logics,
that are sound and complete with respect to the sphere models introduced in the pre-
vious section. One of them is based on the language F> introduced in Definition 1.1.
This axiomatization covers both the conditional logic families PCL and V, as well as
weaker systems. The other axiomatization relies on the comparative plausibility opera-
tor ≼, introduced by Lewis in [23], which is interdefinable with >. This axiomatization
covers logic V and its extensions. We will see in Chapter 2 that, regarding proof theory
for conditional logics, each of the two axiomatizations presents some benefits respect
to the other one.

Figure 1.1 shows the set of axiom schemata and inference rules based on the lan-
guage F>, introduced in Definition 1.1.

This axiomatization covers not only the logics PCL and V mentioned above, but
also the weaker system CK. Logic CK is the smallest normal conditional logic, i.e. the
smallest logic closed under rules (RCEA) and (RCK). It is sound and complete with
respect to class-selection function models, as proved by Chellas in [9]. As showed in
Figure 1.1, by adding axioms to CK one obtains logic PCL (Preferential Conditional
Logic), introduced in [8]. PCL is sound and complete with respect to preferential
models, and suitable to represent non-monotonic conditionals. Finally, Lewis’ basic
logic V (logic of Variably strict conditionals), is obtained by PCL by the addition of
the axiom (CV) of “strengthening of the antecedent”. Lewis himself proves in [23]
that V is sound and complete with respect to sphere models (cf. Definition 1.7). As
well as further model properties can be added to “basic” sphere models in order to
obtain new classes of sphere models, it is possible to add axioms to the basic axiomatic
system V in order to capture the logics that correspond to (i.e. are sound and complete
w.r.t.) the extensions of sphere models described in Definition 1.10. In figure 1.2
the “additional” axioms mentioned above are reported next to the frame conditions to
which they correspond. Both local uniformity and absoluteness are characterized by
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CK Axiomatization of classical propositional logic

(RCEA)
A ⊃⊂ B

(A > C) ⊃⊂ (B > C)

(RCK)
A ⊃ B

(C > A) ⊃ (C > B)
(R-And) (A > B) & (A > C) ⊃ (A > (B & C))

PCL Axiomatization of CK
(ID) A > A
(CM) (A > B) & (A > C) ⊃ ((A & B) > C)
(RT) (A > B) & ((A & B) > C) ⊃ (A > C)
(OR) (A > C) & (B > C) ⊃ ((A ∨ B) > C)

V Axiomatization of PCL
(CV) ((A > C) &¬(A > ¬B)) ⊃ ((A & B) > C)

Figure 1.1: Axiom systems of conditional logics

(N) ¬(⊤ > ⊥) Normality
(T) A ⊃ ¬(A > ⊥) Total reflexivity
(W) (A > B) ⊃ (A ⊃ B) Weak centering
(C) (A & B) ⊃ (A ⊃ B) (Strong) Centering
(U1) (¬A > ⊥) ⊃ ¬(¬A > ⊥) > ⊥ Uniformity (1)
(U2) ¬(A > ⊥) ⊃ ((A > ⊥) > ⊥) Uniformity (2)
(A1) (A > B) ⊃ (C > (A > B)) Absoluteness (1)
(A2) ¬(A > B) ⊃ (C > ¬(A > B)) Absoluteness (2)

Figure 1.2: Axioms for extensions

two axioms, namely (U1) and (U2), and (A1) and (A2) respectively.
Analogously to what we did with V, the same axioms can be added to logic PCL,

generating a version of the extensions in which the nesting condition does not hold.
For a more complete discussion over this topic we include also this family of logics in
Figure 1.3. We report in there logics V, PCL and their extensions, whose names follow
the notation that the letters added to the name of the basic logic stand for the axioms
added to their axiomatic systems. The conditional logic cube has to be interpreted
in the following way: if two systems are connected by a line, then the upper system
is an extension of the lower one. Thus we retrieve the relations between the model
conditions described in Remark 1.11:

Remark 1.12. In VC, (C) implies (W); in VW (W) implies (T ); in VT (T ) implies (N).
In VA, both (U1) and (U2) are valid.

We present now a second axiomatic system, that is equivalent to the previous one
but takes advantage of the comparative plausibility operator ≼. The alternative axioma-
tization that we are presenting in this section is based in fact on the following language.
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Figure 1.3: The conditional logic cube
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Definition 1.13. Let Prop be a countably denumerable set of propositional variables.
The language F≼, generated by the following grammar:

A, BF p | ⊥ | A & B | A ∨ B | A ⊃ B | A ≼ B

for p in Prop and A, B in F≼.

The symbol ≼ denotes comparative plausibility, and the formula A ≼ B is inter-
preted as “A is at least as plausible as B”.

The big difference between the languages F> and F≼ lies in the fact that the for-
mer assumes as primitive the conditional >, while the latter assumes as primitive the
comparative plausibility operator ≼. In logic V and its extensions the two operators are
interdefinable via the following equivalences:

(1) A > B ≡ (⊥ ≼ A) ∨ ¬((A &¬B) ≼ (A & B)) (1.1)
(2) A ≼ B ≡ ((A ∨ B) > ⊥) ∨ ¬((A ∨ B) > ¬A) (1.2)

Remark 1.14. As observed in [15], in logicV and its extensions the conditional can be
equivalently defined in terms of comparative plausibility with the following simplified
version of the expression 1.1:

A > B ≡ (⊥ ≼ A) ∨ ¬((A &¬B) ≼ A)

According to the equivalence 1.2, the truth condition of comparative plausibility in
a sphere modelM = ⟨W, S , ⟦ ⟧⟩ is, for any world x:

x ⊩ A ≼ B iff for all α in S (x), if α ⊩∃ B then α ⊩∃ A.

This condition is quite simple if compared with the truth condition in sphere models of
the conditional >. We will see in Chapter 2 how to take advantage of this property of
the comparative plausibility operator in sequent calculi for conditional logics.

As we showed for the conditional >, also for the comparative plausibility ≼ to-
gether with the semantic characterization comes an axiomatic description of the logics
in which we are interested. In Figure 1.4 the axioms for Lewis’ logic V and its exten-
sions are presented. The formulation therein displayed is indeed equivalent to the one
of Figure 1.1 for V, eventually complemented with the appropriate axioms from Figure
1.2 for the extensions.
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V Axiomatization of classical propositional logic

(CPR)
⊢ B ⊃ A

⊢ A ≼ B
(CPA) (A ≼ (A ∨ B)) ∨ (B ≼ (A ∨ B))
(TR) (A ≼ B) & (B ≼ C) ⊃ (A ≼ C)
(CO) (A ≼ B) ∨ (B ≼ A)

Extensions Axiomatization of V
of V (N) ¬(⊥ ≼ ⊤)

(T) (⊥ ≼ ¬A) ⊃ A
(W) A ⊃ (A ≼ ⊤)
(C) (A ≼ ⊤) ⊃ A

Figure 1.4: Lewis’ logics and axioms for ≼
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Chapter 2

Proof theory for Lewis’ logics

Labelled sequent calculi, as presented in [26], allow to obtain analytic sequent calculi
starting from a relational Kripke-style semantics, internalizing the semantics into the
language. In fact, the language is enriched with relational atoms, that represent rela-
tions between objects of the model, and the formulas are endowed with labels - thus the
name of this class of sequent calculi - corresponding to possible worlds, that express
the forcing relation (one for all, the formula x: A corresponds to x ⊩ A in the model).
In this way, it is possible to set up a sequent calculus with an in-built strong connection
with the model it ought to represent.

Internal sequent calculi on the other hand are calculi with the property that the
language is not modified, but the structure is enriched in order to reduce the complexity
of the rules. These calculi feature the property that every sequent in a derivation has
an interpretation in terms of the language of the logic they represent. This makes this
approach closer to the syntax we are interested in, even if the relation with the elements
of the model becomes less clear.

In this section we will mention some labelled sequent calculi for conditional log-
ics in Section 2.1, based on models of different kinds. Sequent calculi G3P and its
extensions (introduced in [18]) are based on preferential models, while sequent cal-
culi G3CL and its extensions (presented in [28]) are based on neighbourhood models.
Both these families of calculi are sound and complete with respect to logic PCL and
its extensions, including Lewis’ logics of the family of V. The conditional > is taken
as primitive in the axiomatizations we consider. Finally, labelled sequent calculi G3V
and extensions are the main focus of Section 2.1: they are built on sphere models,
representing logic V and some of its extensions. The axiomatization on which these
last systems are based is the one featuring the comparative plausibility operator ≼: this
choice, together with the nesting property, results in a much more simple truth condi-
tion in the models for ≼-formulas, than the one of the conditional >.

In Section 2.2 we introduce internal sequent calculi IV and its extensions, based on
the comparative plausibility axiomatization of logic V, in which the syntax is enriched
with blocks, structures of the form [A1, . . . , An ◁ B] with the meaning A1 ≼ B ∨ · · · ∨
An ≼ B. The calculus IV, in particular, will be used in Chapter 4 to give a direct
proof of the completeness of V w.r.t. Adams’ logic of high probability (see Chapter
3). In section 2.2.3 we cite the versions of IV with invertible rules, namely the sequent
calculi Ii

V and extensions, that feature better structural properties and better covers a
larger number of logics of Lewis’ family.

We conclude this general discussion observing that the two approaches of labelled
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and internal calculi, looking quite different for their structure and meaning, can be
linked. A lot of studies have been done to investigate the relations between sequent
calculi of the two kinds, since strict links between them could make it possible to
exploit the good properties of one type of calculi to obtain the analogous results in the
other one. We mention here the study conducted in this direction in [16], where the two
directions of a mapping between the labelled calculus G3V and the internal calculus
Ii
V are displayed.

2.1 Labelled Calculi
In this section we present labelled sequent calculi for conditional logics based on dif-
ferent semantics. Given two examples of labelled calculi, we focus on calculus G3V
and its extensions for Lewis’ logics of the family of V, based on sphere models.

The labelled sequent calculus G3P, introduced in [18], is based on preferential
models, whereas the labelled sequent calculus G3CL, introduced in [28], is based on
neighbourhood models. These calculi, despite arising from different semantics, have
some features in common. First of all, they cover logic PCL and its extensions, includ-
ing V (obtained by PCL by adding the axiom (CV), cf. Section 1.2) and its extensions.
Then, both the calculi are based on the axiomatization of conditional logics in which
the conditional > is primitive. Moreover these two families of calculi have good struc-
tural properties, they are sound and complete with respect to the corresponding logics,
and feature finite proof-search. For more detailed treatments of this topic and the com-
plete proofs of the properties of these families of calculi, we refer to [18] as for calculus
G3P and to [28] and [17] as for calculus G3CL.

Finally, we want to stress that both calculi are modular on the logics they cover,
in the sense that a labelled sequent calculus for a stronger conditional logic can be
obtained by adding the appropriate rules to the calculus for a weaker conditional logic.
Starting from this fact, we can introduce the sequent calculus G3V as a version of
G3CL for sphere models.

The sequent calculus G3V, introduced in [16], enters in this framework presenting
some differences from the calculi mentioned above. First of all, it is based on the ≼
axiomatization of logic V. Moreover it stems from sphere models, the class of neigh-
bourhood models featuring the property of nesting. In fact, G3V arises from G3CL,
but has a notably simplified structure with respect to the latter. Considering just some
particular logics (namely the ones corresponding to sphere models), with this approach
we lose the modularity over all of the conditional logics arising from PCL, that was
a strong property of G3P and G3CL instead; this is due to the fact that the condi-
tional > and the comparative plausibility ≼ are not interdefinable in logics weaker than
V. However, the benefit in terms of simplicity of the calculus is big enough to con-
sider this calculus to describe Lewis’ logics. Thus G3V is a notably simpler version of
G3CL, but just for a specific class of conditional logics.

To justify our choice of the sequent calculus G3V to deal with Lewis’ logics we
give here an idea of its simplification with respect to G3CL. We remind the truth
condition for a conditional formula in a sphere model, already presented in Definition
1.9:

x ⊩ A > B iff if there exists α in S (x) such that if α ⊩∃ A, then there exists β in S (x)
suche that β ⊩∃ A and β ⊩∀ A ⊃ B.
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We already explained in Section 1.1.1 that the corresponding condition for neighbour-
hood models is very similar: it just adds the condition that β is contained in α, to
retrieve the fact that in nested models any two neighbours are comparable. In fact,
calculus G3CL is based on this semantic interpretation of conditional. However, we
already noticed that this condition is too rich to be expressed by a single rule of infer-
ence, since it consists of an existential quantifier in the scope of a universal quantifier;
for this reason sequent calculi based on such condition (like G3CL) require quite com-
plex groups of rules to include the conditional >.

Consider now the axiomatization for Lewis’ logics featuring the comparative plau-
sibility operator ≼. Its truth condition in neighbourhood models has a similar complex-
ity than the conditional’s. In sphere models, instead, as already mentioned in 1.2, its
condition is remarkably simpler:

x ⊩ A ≼ B iff for all α in S (x), if α ⊩∃ B then α ⊩∃ A.

This makes the rules of the sequent calculus G3V much simpler than those of the
calculi based on other semantics (and axiomatizations).

To conclude this general introduction, sequent calculi G3P and G3CL, arising re-
spectively from preferential and neighbourhood models, are based on a language in
which the conditional operator > is primitive. For this reason the proof systems are
quite complicated, but on the other hand they have a wide modularity over all the
extensions of PCL. When restricting to sphere models, it is convenient to adopt the
language based on the comparative plausibility, as its semantic explanation in nested
neighbourhood models is much simpler than the one of the conditional. For this reason
we present in the following the labelled family of sequent calculi of G3V and out-
line some of their main properties. They cover only Lewis’ logic V and some of its
extensions, but have a very simple structure when compared to calculi based on the
conditional. For a detailed treatment of this discussion we refer to [14].

As already mentioned, we call G3V the basic sequent calculus of this family, cor-
responding to V. Its extensions G3VN, G3VT, G3VW, G3VC cover respectively VN,
VT, VW and VC. Finally, by G3V∗ we denote any of the calculi above.

Consider the language F≼ introduced in section 1.2: it is generated by the following
grammar, for p propositional variable and A, B formulas in F≼:

A, BF p | ⊥ | A & B | A ∨ B | A ⊃ B | A ≼ B

The labelled sequent calculus G3V is based on models characterized by the prop-
erty of nesting, i.e. Lewis’ sphere models. To give the rules of this calculus, built
starting from sphere models semantics, we first enrich language F≼ as follows:

Definition 2.1. Let x, y, z, . . . be variables for worlds in a sphere model, α, β, γ, . . .
variables for spheres and, for any world x, let S (x) denote the set of spheres around x.
We add to the language F≼ the formulas of the following form (and meaning), called
relational atoms:

• α ∈ S (x), “the sphere α belongs to the system of spheres around the world x”;

• x ∈ α, “the world x belongs to the sphere α”;

• α ⊆ β, “the sphere α is contained into the sphere β”.

Let A in F≼. The set of labelled formulas is defined by the following clauses, for
which we report the meaning, too:
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• Relational atoms are labelled formulas;

• x: A, “formula A is true at world x”, is a labelled formula;

• α ⊩∃ A, “A is true at some world belonging to the sphere α”, is a labelled for-
mula;

• α ⊩∀ A, “A is true at all worlds belonging to the sphere α”, is a labelled formula.

Moreover, we will denote by {x} the sphere consisting of the only world x and, for
any world x, by At(x) any of the formulas of the set {x: P, x ∈ α, α ∈ S (x), y ∈ {x}},
with P atomic formula. Notice that relational atoms expand the language describing the
structure of the sphere model, while the other labelled formulas are defined to represent
truth at a world (x: A stands for x ⊩ A), and at a sphere (α ⊩∃ A and α ⊩∃ A, with a
uniform notation with Definition 1.8).

We remind that a multiset is a collection of elements that keeps track of the multi-
plicity of any element. We can thus extend the usual notion of sequent as follows:

Definition 2.2. A sequent of G3V∗ is an expression Γ ⇒ ∆ where Γ and ∆ are multi-
sets of labelled formulas, and relational atoms may occur only in Γ.

We have displayed in Figure 2.1 the rules for the family of calculi G3V∗. Propo-
sitional rules are the usual ones, i.e. the ones of the labelled sequent calculus G3K
displayed in [26], p. 507. We write (x!) as the side condition of a rule to express the
requirement that label x must not occur in the conclusion of the rule. As for the exten-
sions of G3V, the system G3VN, corresponding to normal sphere models, is obtained
by adding rules N and 0 to G3V. Rule 0 stands for the requirement of non-emptiness
of spheres in the model, which is not necessary in the basic sequent calculus G3V. The
side condition (⋆) of this rule requires that no formulas of form w ∈ α are in Γ, and
that at least one formula of form α ⊩∃ A or α ⊩∀ A is in Γ ∪ ∆; these conditions are
added in order to avoid loops in the root-first proof-search and to ensure that the rule
0 is applied only when it is actually needed. System G3VT is obtained by adding the
rule T for total reflexivity to G3VN. G3VW, featuring weak centering, is obtained by
adding the rule W to G3VT. Finally G3VC covers the centering condition, by adding
to G3VW the four rules C,Single,Repl1 and Repl2.

To illustrate how the calculus works, we provide here an example of a derivation in
G3V∗ from [16].

Example 2.3. We show the derivation of axiom (T)

(⊥ ≼ ¬A) ⊃ A

in the corresponding labelled calculus G3VT; we denote by “. . . ” formulas that are
inessential in the derivation.

init
x: A, . . .⇒ x:⊥, x: A, . . .

R⊃
. . . ,⇒, x: A, x:¬A, . . .

R⊩∃

x ∈ α, α ∈ S (x), x:⊥ ≼ ¬A⇒ x: A, α ⊩∃ ¬A

L⊥
x ∈ α, x:⊥, . . .⇒ . . .

L⊩∃

α ⊩∃ ⊥, x ∈ α, α ∈ S (x), x:⊥ ≼ ¬A⇒ x: A
L≼

x ∈ α, α ∈ S (x), x:⊥ ≼ ¬A⇒ x: A
T

x:⊥ ≼ ¬A⇒ x: A
R⊃
⇒ x: (⊥ ≼ ¬A) ⊃ A
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Initial sequents

init
x: p,Γ⇒ ∆, x: p

L⊥
x:⊥,Γ⇒ ∆

Propositional rules
x: A, x: B,Γ⇒ ∆

L &
x: A & B,Γ⇒ ∆

Γ⇒ ∆, x: A Γ⇒ ∆, x: B
R &

Γ⇒ ∆, x: A & B

x: A,Γ⇒ ∆ x: B,Γ⇒ ∆
L∨

x: A ∨ B,Γ⇒ ∆

Γ⇒ ∆, x: A, x: B
R∨
Γ⇒ ∆, x: A ∨ B

Γ⇒ ∆, x: A x: B,Γ⇒ ∆
L⊃

x: A ⊃ B,Γ⇒ ∆

x: A,Γ⇒ ∆, x: A
R⊃
Γ⇒ ∆, x: A ⊃ B

Rules for local forcing
x ∈ α, x: A,Γ⇒ ∆

(x!) L⊩∃

α ⊩∃ A,Γ⇒ ∆

x ∈ α,Γ⇒ ∆, x: A, α ⊩∃ A
R⊩∃

x ∈ α,Γ⇒ ∆, α ⊩∃ A

Rules for comparative plausibility
α ⊩∃ B, α ∈ S (x),Γ⇒ ∆, α ⊩∃ A

(α!) R≼
Γ⇒ ∆, x: A ≼ B

α ∈ S (x), x: A ≼ B,Γ⇒ ∆, α ⊩∃ B α ⊩∃ A, α ∈ S (x), x: A ≼ B,Γ⇒ ∆
L≼

α ∈ S (x), x: A ≼ B,Γ⇒ ∆

Rules for inclusion and nesting
x ∈ α, α ⊆ β, x ∈ β,Γ⇒ ∆

L⊆
x ∈ α, α ⊆ β,Γ⇒ ∆

α ⊆ β, α ∈ S (x), β ∈ S (x),Γ⇒ ∆ β ⊆ α, α ∈ S (x), β ∈ S (x),Γ⇒ ∆
Nes

α ∈ S (x), β ∈ S (x),Γ⇒ ∆

Rules for extensions
α ∈ S (x),Γ⇒ ∆

(α!) N
Γ⇒ ∆

y ∈ α, α ∈ S (x),Γ⇒ ∆
(⋆) (y!) 0

α ∈ S (x),Γ⇒ ∆

x ∈ α, α ∈ S (x),Γ⇒ ∆
(α!) T

Γ⇒ ∆

x ∈ α, α ∈ S (x),Γ⇒ ∆
W

α ∈ S (x),Γ⇒ ∆

x ∈ {x}, {x} ∈ S (x),Γ⇒ ∆
Single

{x} ∈ S (x),Γ⇒ ∆

{x} ∈ S (x), {x} ⊆ α, α ∈ S (x),Γ⇒ ∆
C

α ∈ S (x),Γ⇒ ∆

y ∈ {x}, At(x), At(y),Γ⇒ ∆
(∗) Repl1

y ∈ {x}, At(x),Γ⇒ ∆

y ∈ {x}, At(x), At(y),Γ⇒ ∆
(∗) Repl2

y ∈ {x}, At(y),Γ⇒ ∆

(⋆) w ∈ α does not occur in Γ; α ⊩∃ A or α ⊩∀ A occur in Γ ∪ ∆.
(∗) At(x)F x: p | x ∈ α | α ∈ S (x) | y ∈ {x}, for p atomic formula.

Figure 2.1: Rules of G3V∗

19



We will outline now some properties of calculi G3V∗. We will not report here the
proofs for these results, since it is not the focus of this study. For a more detailed
treatment of this topic we refer to Chapter 3.7 of [14]. In particular, most of the follow-
ing results are proved adapting the proofs of the corresponding results for the >-based
sequent calculus G3CL and its extensions.

Theorem 2.4 (Soundness). If a sequent Γ⇒ ∆ is derivable in G3V∗, then it is valid in
all sphere models.

Besides the above result, these sequent calculi present a full apparatus of the desir-
able structural properties. Initial sequents with arbitrary formulas put in place of the
atom p - that we call generalized initial sequents - are derivable, as well as the gener-
alized versions of the replacement rules Repl1 and Repl2 (i.e. their instances in which
an arbitrary formula with label x replaces At(x), and the same formula with label y
replaces At(y)). The rule of reflexivity Ref and the rule of transitivity Tr, that we report
below, are respectively height-preserving admissible and admissible.

α ⊆ α,Γ⇒ ∆
Refl

Γ⇒ ∆

α ⊆ γ, α ⊆ β, β ⊆ γ,Γ⇒ ∆
Tr

α ⊆ β, β ⊆ γ,Γ⇒ ∆

Moreover, structural rules of weakening and contraction are admissible. Admissibility
of the rule of cut holds as well: it can be proved following the general strategy proposed
in [29] to prove cut-admissibility in labelled systems. We complete this list of results
by stating the result of completeness of G3V∗ with respect to logicV and its extensions:

Theorem 2.5 (Completeness). If a formula A in F≼ is valid in V or in one of its exten-
sions, then the sequent⇒ x: A is derivable in the corresponding calculus G3V∗.

This result has been proved in [14] by showing that the inference rules and the ax-
ioms of V and its extensions from Figure 1.4 are respectively admissible and derivable
in the corresponding calculus of family G3V∗. Finally following the strategy described
in Section 4 of [28] for G3CL and its extensions, it is possible to show that there is a
terminating proof search for G3V∗.

We want to conclude this section putting forward, in the next remark, an alternative
proof strategy for the completeness of G3V∗ with respect to the corresponding logic of
Lewis’:

Remark 2.6. An interesting - alternative - strategy to prove soundness and complete-
ness of calculi G3V∗ with respect to the corresponding extension of V is showing their
equivalence with G3CL and its extensions, which we denote hereafter with G3CL∗.

Our idea is to show a two-directions map between the two families of calculi, such
that:

• on sequents, it translates >-formulas into ≼-formulas and vice versa;

• on derivations, it is defined inductively on the height of the derivation, distin-
guishing cases according to the last rule applied.

This strategy is similar to the one adopted in [16] to show the equivalence of the cal-
culi G3V and IV. In the direction of the translation from G3CL∗ to G3V∗ we require
G3CL∗ derivation to be in a sort of “normal form”, in which the formulas belonging
to the language of G3CL that have no counterpart in the language of G3V are han-
dled immediately after their introduction in the derivation; the converse translation is
standard.
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Finally, as already claimed, this result, together with the soundness and complete-
ness of G3CL∗ with respect to V and its extensions - proved in [28] - would entail
soundness and completeness og G3V∗ as well.

We leave the detail of the alternative, modular proof of the completeness of G3V∗
already here to future works. We want to highlight the constructivity of this result,
that providing translations between derivations of different calculi goes in the direction
paved in [16].

2.2 Internal Calculi
Internal sequent calculi are calculi in which complicated (semantic) conditions are in-
cluded enriching the syntactic structure. Another characteristic property of this kind
of calculi is that sequents have a formula-interpretation: every sequent, despite its en-
riched structure, is equivalent to a well-formed formula in the language.

The sequent calculi IV and extensions, that we consider in this section, are char-
acterized by blocks, i.e. structures of the form [Σ ◁ A], where Σ is a finite multiset of
formulas and A is a formula of the language. They are based on the language in which
the comparative plausibility operator ≼ is primitive, and the formula-interpretation is
the following:

[A1, . . . , An ◁ B] means A1 ≼ B ∨ · · · ∨ An ≼ B

for any formulas A1, . . . , An, B.
The sequent calculi we present cover logic V and some of its extensions: in partic-

ular, we will be interested in the versions for V and VW in Chapter 4; however, it is
hard to find internal calculi for logics weaker than V, i.e. for PCL and its extensions
not including axiom (CV).

In this section we recall the standard sequent calculi introduced in [15] to describe
a large part of Lewis’ logics of counterfactuals, namely the logic V and its extensions
VN, VT, VW, VC, VA and VNA; we will hereafter generically denote any of them
by L. In fact, the calculi we are going to present are modular for the family of Lewis’
logics, in the sense that a sequent calculus for stronger logics can be obtained by adding
independent rules to the calculus for a weaker one. Calculi IL are standard in the sense
that each connective is handled by a finite number of rules, and each rule has a fixed
finite number of premisses.

We first introduce in Section 2.2.1 the family of calculi IL, which are the first ver-
sion of the calculi of this kind: they contain explicit contraction rules as well as some
non-invertible rules. Still, each of them is sound with respect to the corresponding
Lewis logic. Moreover, we show in Section 2.2.2 that the cut rule is eliminable for the
calculus IV, and this provides as a consequence the completeness of the calculus with
respect to Lewis’ logic V. This is enough to prove, in the next chapter, the important
result of completeness of IV with respect to Adams’ logic of high probability HPA.
We conclude this section by mentioning in 2.2.3 the alternative version Ii

L
of the cal-

culi IL, in which contraction rules are admissible and all rules are invertible, i.e. if an
instance of the conclusion of the rule is derivable, also the corresponding instance of
premiss(es) is (are). The calculi Ii

L
are in fact a refined version of IL, being equivalent

to the latter, but with a stronger apparatus of structural properties. This ensures com-
pleteness w.r.t. V and many of its extensions, namelyVN, VT, VW andVC, and allows
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terminating proof-search, thus providing a decision procedure for the respective logics.
Finally, we remark that completeness can be proved also for the logics VA and VNA,
the ones including the absoluteness condition among the logics mentioned above, but
we will not discuss these cases here. For this and other details we refer to [15], where
this class of calculi has been first introduced, and to [14] for a complete treatment of
this subject.

2.2.1 Sequent calculi IL for Lewis’ logic V and extensions
The family of calculi we will present in this section is based on the comparative plau-
sibility operator ≼ and not directly on the conditional >; therefore we will use the
language F≼, introduced in Definition 1.13.

Let Prop be a countably denumerable set of propositional variables. We recall that
the set of conditional formulas F≼ is given by the following grammar, for A and B in
F≼ and p in Prop:

A, BF p | ⊥ | A & B | A ∨ B | A ⊃ B | A ≼ B

Negation and true can be defined in terms of the other connectives as usual: for any
conditional formula A, the negation ¬A is defined as A ⊃ ⊥; true (⊤) is defined as ¬⊥.

We introduce now the internal sequent calculi IL for Lewis logic V and some
of its extensions, namely VN, VT, VW, VC, VA and VNA. Sequents are based on
multisets of formulas in order to make contraction rules explicit. As usual, we denote
the union of multisets Γ and ∆ by Γ,∆. Sequents for these calculi do not only consist of
formulas: the blocks mentioned above enrich their structure, providing a compact way
of representing disjunctions of ≼-formulas.

Definition 2.7. A conditional block is a structure consisting of a multiset Σ of formu-
las and a single formula A, written [Σ ◁ A]. A sequent is an expression Γ⇒ ∆, where
Γ is a multiset of conditional formulas and ∆ is a multiset of conditional formulas and
blocks. The formula interpretation of a sequent is given by:

ι(Γ ⊃ ∆′, [Σ1 ◁ A1], . . . , [Σn ◁ An]) B
∧
Γ ⊃
∨
∆′ ∨

∨
1≤i≤n

∨
B∈Σi

(B ≼ Ai)

In Figure 2.2 we report the sequent calculi IL for Lewis’ logic V and some of its
extensions. Notice that initial sequents and propositional rules, as well as two of the
contraction rules, are those of calculus G3c, the contraction-free sequent calculus for
classical propositional logic (cf. [29], [32]). The two new contraction rules, namely
CtrB and Ctri, are needed to handle contraction of blocks and inside blocks, respec-
tively. Given a sequent Γ ⇒ ∆, we call a derivation of Γ ⇒ ∆ in IL any tree in which
Γ ⇒ ∆ is the root, every leaf is an instance of the conclusion of rules init or L⊥, and
every non-leaf node is the conclusion of an instance of a rule of IL, having the pre-
misses of that instance as children. We say that sequent Γ⇒ ∆ is derivable in IL, and
write IL ⊢ Γ⇒ ∆, iff it has a derivation. As usual, given a formula G ∈ L, we say that
G is derivable in IL iff the sequent⇒ G is derivable in IL. Finally, we recall that the
height of a derivation is the maximum length of a branch, i.e. the maximum number of
nodes in a branch, minus one; so that a derivation consisting only of an initial sequent
has height 0.

Example 2.8. We illustrate now with an example how derivations are obtained in the
calculi IL : we derive the characteristic axiom T of logic VT in some of the extensions
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Initial sequents

init
P,Γ⇒ ∆, P

L⊥
⊥,Γ⇒ ∆

Propositional rules
A, B,Γ⇒ ∆

L &
A & B,Γ⇒ ∆

Γ⇒ ∆, A Γ⇒ ∆, B
R &

Γ⇒ ∆, A & B

A,Γ⇒ ∆ B,Γ⇒ ∆
L∨

A ∨ B,Γ⇒ ∆

Γ⇒ ∆, A, B
R∨
Γ⇒ ∆, A ∨ B

Γ⇒ ∆, A B,Γ⇒ ∆
L⊃

A ⊃ B,Γ⇒ ∆

A,Γ⇒ ∆, B
R⊃
Γ⇒ ∆, A ⊃ B

Conditional rules
Γ⇒ ∆, [D,Σ ◁ A] Γ⇒ ∆, [Σ ◁ C]

L≼
C ≼ D,Γ⇒ ∆, [Σ ◁ A]

Γ⇒ ∆, [A ◁ B]
R≼
Γ⇒ ∆, A ≼ B

Γ⇒ ∆, [Σ1,Σ2 ◁ A] Γ⇒ ∆, [Σ1,Σ2 ◁ B]
com

Γ⇒ ∆, [Σ1 ◁ A], [Σ2 ◁ B]

A⇒ Σ
jump
Γ⇒ ∆, [Σ ◁ A]

Structural rules
A, A,Γ⇒ ∆

CtrL
A,Γ,⇒ ∆

Γ⇒ ∆, A, A
CtrR

Γ⇒ ∆, A

Γ⇒ ∆, [Σ ◁ A], [Σ ◁ A]
CtrB

Γ⇒ ∆, [Σ ◁ A]

Γ⇒ ∆, [Σ, A, A ◁ B]
Ctri
Γ⇒ ∆, [Σ, A ◁ B]

Rules for extensions
Γ⇒ ∆, [⊥ ◁ ⊤]

N
Γ⇒ ∆

Γ⇒ ∆, B Γ⇒ ∆, [⊥ ◁ A]
T

Γ, A ≼ B⇒ ∆

Γ⇒ ∆,Σ
W
Γ⇒ ∆, [Σ ◁ A]

A,Γ⇒ ∆ Γ⇒ ∆, B
C

Γ, A ≼ B⇒ ∆

A,Γ≼ ⇒ ∆≼,Σ
A
Γ⇒ ∆, [Σ ◁ A]

Γ≼ ⇒ ∆≼ is Γ⇒ ∆ restricted to ≼-formulae and blocks.

IV B {init, L⊥, L & ,R & , L∨,R∨, L ⊃,R ⊃, L ≼,R ≼, com, jump,CtrL,CtrR,CtrB,Ctri}

IVN B IV ∪ {N}
IVT B IV ∪ {N,T}

IVW B IV ∪ {N,T,W}
IVC B IV ∪ {N,T,W,C}

IVA B IV ∪ {A}
IVNA B IV ∪ {N,A}

Figure 2.2: Sequent Calculi IV and extensions
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of IV. Axiom T is
(⊥ ≼ ¬A) ⊃ A

and, making explicit the notation ¬A ≡ A ⊃ ⊥, it is equivalent to

(⊥ ≼ (A ⊃ ⊥)) ⊃ A

We can derive axiom T in IVT as follows:

init
A⇒ A,⊥

R⊃
⇒ A, A ⊃ ⊥

L⊥
⊥ ⇒ ⊥

jump
⇒ A, [⊥ ◁ ⊥]

T
⊥ ≼ (A ⊃ ⊥)⇒ A

R⊃
⇒ (⊥ ≼ (A ⊃ ⊥)) ⊃ A

Notice that in this derivation we used the characteristic rule T of calculus IVT, whose
role is in fact making axiom T derivable in the calculus. Now, we show derivations of
axiom T in IVW and IVC which do not make use of rule T. These are:

init
A⇒ ⊥,⊥, A

R⊃
⇒ A,⊥, A ⊃ ⊥

W
⇒ A, [(A ⊃ ⊥),⊥ ◁ ⊤]

L⊥
⊥ ⇒ ⊥

jump
⇒ A, [⊥ ◁ ⊥]

L≼
⊥ ≼ (A ⊃ ⊥)⇒ A, [⊥ ◁ ⊤]

N
⊥ ≼ (A ⊃ ⊥)⇒ A

R⊃
⇒ (⊥ ≼ (A ⊃ ⊥)) ⊃ A

L⊥
⊥ ⇒ A

init
A⇒ A,⊥

R⊃
⇒ A, A ⊃ ⊥

C
⊥ ≼ (A ⊃ ⊥)⇒ A

R⊃
⇒ (⊥ ≼ (A ⊃ ⊥)) ⊃ A

Therefore axiom T is derivable, and the corresponding rule T could thus be omitted, in
the rule sets of IVW and IVC. We stress that the second derivation is a derivation in
IVC and not in IVW, since it makes use of rule C. The first derivation, instead, which is
a derivation in IVW, is actually a derivation also in IVC, as the set of the rules of IVW
is a subset of the set of rules of IVC. Note that we use in all three derivations the fact
that generalized initial sequents of form A,Γ ⇒ ∆, A are derivable in the calculi IL:
this fact will be proved in Lemma 2.11 below.

Remark 2.9. From the definition of the conditional > in terms of ≼, one can state its
left and right rules as follows:

⊥ ≼ A,Γ⇒ ∆ Γ⇒ ∆, [A &¬B ◁ A]
L>

A > B,Γ⇒ ∆

(A &¬B) ≼ A,Γ⇒ ∆, [⊥ ◁ A]
R>

Γ⇒ ∆, A > B

In fact, the sequent A > B,Γ⇒ ∆ is equivalent to (⊥ ≼ A) ∨ ¬((A &¬B) ≼ A),Γ⇒ ∆,
which can be derived as follows:

⊥ ≼ A,Γ⇒ ∆

Γ⇒ ∆, [A &¬B ◁ A]
R≼
Γ⇒ ∆, (A &¬B) ≼ A

L⊥
⊥,Γ⇒ ∆

L⊃
¬((A &¬B) ≼ A),Γ⇒ ∆

L∨
(⊥ ≼ A) ∨ ¬((A &¬B) ≼ A),Γ⇒ ∆
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Hence the sequent A > B,Γ ⇒ ∆ can be derived from sequents ⊥ ≼ A,Γ ⇒ ∆ and
Γ ⇒ ∆, [A &¬B ◁ A] in any calculus IL, and the left rule L > is an abbreviation for
the above derivation. Analogously, rule R > is an abbreviation for the derivation:

(A &¬B) ≼ A,Γ⇒ ∆, [⊥ ◁ A]
R≼

(A &¬B) ≼ A,Γ⇒ ∆,⊥ ≼ A
R⊃
Γ⇒ ∆,⊥ ≼ A,¬((A &¬B) ≼ A)

R∨
Γ⇒ ∆, (⊥ ≼ A) ∨ ¬((A &¬B) ≼ A)

The next theorem is a key result to tell what the relationship between the family of
sequent calculi IL and Lewis’ logics V and extensions is.

Theorem 2.10 (Soundness). If IL ⊢ Γ⇒ ∆, then ι(Γ⇒ ∆) is a theorem of L.

Proof. By induction on the height of the derivation of Γ⇒ ∆, analysing different cases
for any rule of IL. In particular it is possible to show that, for each rule of the calculus
IL, if there is a countermodel in the class of models forL for the formula interpretation
ι of its conclusion, then there is also a countermodel for at least one of its premisses.
The cases of the propositional rules and initial sequents are standard. For a detail of
the other cases we address to [14], pp. 124-125. □

We show now some of the structural properties of the calculi IL.

Lemma 2.11 (Derivability of generalized initial sequents). Generalized initial sequents,
i.e. sequents of the form A,Γ⇒ ∆, A, are derivable in IL for any formula A.

Proof. As in the propositional case, by induction on the weight of the formula A (cf.
[29]). Notice that, in case A is a propositional formula, the potential blocks in ∆ are not
involved in the proof. Then it is enough to extend the proof of the propositional case
of [29] with the case in which A = B ≼ C:

C ⇒ C, B
jump
Γ⇒ ∆, [C, B ◁ B]

B⇒ B
jump
Γ⇒ ∆, [B ◁ B]

L≼
B ≼ C,Γ⇒ ∆, [B ◁ C]

R≼
B ≼ C,Γ⇒ ∆, B ≼ C

We conclude observing that the premisses are derivable by inductive hypothesis. □

2.2.2 Cut elimination for IV
We now show the main structural properties of the calculus IV: the fundamental one
is the cut elimination. As for contraction rules, there is a cut rule handling “cuts within
blocks”. Hence, the cut rules that we consider are:

Γ⇒ ∆, A A,Σ⇒ Π
cut1

Γ,Σ⇒ ∆,Π

Γ⇒ ∆, [Ω ◁ A] Σ⇒ Π, [A,Θ ◁ B]
cut2

Γ,Σ⇒ ∆,Π, [Ω,Θ ◁ B]

We write ILcut for calculi IL extended with the cut rules cut1 and cut2. Moreover,
we write IL(cut) for a uniform notation for both the calculi IL and ILcut. Finally,
we denote derivability in n steps by ⊢n: we write IL(cut) ⊢n Γ ⇒ ∆ if there exists a
derivation of height less or equal than n in IL(cut), with endsequent Γ⇒ ∆.

25



Definition 2.12. The complexity of an application of cut1 or cut2 is the complexity
of the cut formula, i.e. the number |A| of symbols in the cut formula A. Given a
derivation D in ILcut, its formula cut rank rkcut1 (D) is the maximal complexity of
an application of cut1 in it. Analogously, its structural cut rank rkcut2 (D) is the
maximal complexity of an application of cut2 in it.

The idea for the cut elimination proof is eliminating the topmost applications of cut
of maximal complexity by first permuting them into the left premiss, until we reach an
occurrence of the cut formula which is principal, and then permuting them into the right
one. To do this, we need as a preliminary result the height-preserving admissibility of
the weakening rules:

Γ⇒ ∆
Wk
Γ,Σ⇒ ∆,Π

Γ⇒ ∆, [Σ ◁ A]
Wki
Γ⇒ ∆, [Σ,Ω ◁ A]

where the rule Wk is the usual one, while Wki is the rule for weakening inside the
blocks.

Lemma 2.13 (Weakening admissibility). The weakening rules are height-preserving
admissible in IL(cut), namely: If IL(cut) ⊢n Γ ⇒ ∆, then IL(cut) ⊢n Γ,Σ ⇒ ∆,Π;
and if IL(cut) ⊢n Γ⇒ ∆, [Σ ◁ A], then IL(cut) ⊢n Γ⇒ ∆, [Σ,Ω ◁ A]. Moreover, both
the formula cut rank and the structural cut rank are preserved.

Proof. Simultaneously for both the weakening rules, by induction on the height of the
derivation, distinguishing cases according to the last rule applied (cf. [14], p.126 to see
the proof of some cases in detail). □

Now, we report the strategy that brings to the result of syntactic completeness via
the cut elimination from [15]. Cut elimination is proved through three lemmas: the
first one, Lemma 2.14 shows how to eliminate occurrences of cut1; the two following
lemmas are needed to eliminate occurrences of cut2. Lemma 2.16 permutes the cut
upwards on the left premiss until an occurrence of jump is reached. When such an
occurrence is reached, Lemma 2.15 eliminates it, by permuting it upwards on the right
premiss. More detailed proofs are contained in [15], while for a much more complete
discussion on this topic we address to [14].

Lemma 2.14 (cut1-reduction). Suppose IVcut ⊢ Γ ⇒ ∆, An and IVcut ⊢ Am,Σ ⇒
Π by derivations D1 and D2 respectively, with rkcut1 (D1) < |A| > rkcut1 (D2) and
rkcut2 (D1) < |A| > rkcut2 (D2). There is a derivation D in IVcut of Γ,Σ ⇒ ∆,Π, with
rkcut1 (D) < |A| > rkcut2 (D).

Proof. By induction on the sum of the heights ofD1 andD2. □

Lemma 2.15 (Shift-right). Suppose that for k1, . . . , kn ≥ 1 we have IVcut-derivations
D1 and D2 of Γ ⇒ ∆, [Ω ◁ A] and Σ ⇒ Π, [Ak1 ,Θ1 ◁ B1], . . . , [Akn ,Θn ◁ Bn]
respectively, with rkcut1 (D1) ≤ |A| ≥ rkcut1 (D2) and rkcut2 (D1) < |A| > rkcut2 (D2)
such that the last applied rule in D2 is jump. There is a derivation D in IVcut, with
rkcut1 (D) ≤ |A| > rkcut2 (D), of the sequent

Γ,Σ⇒ ∆,Π, [Ω,Θ1 ◁ B1], . . . , [Ω,Θn ◁ Bn]

Proof. By induction on the height of D2, distinguishing cases according to the last
applied rule R inD2. □
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Lemma 2.16 (cut2-reduction). Suppose we have IV-derivations D1 and D2 of Γ ⇒
∆, [Ω1 ◁ A], . . . , [Ωn ◁ A] and Σ⇒ Π, [A,Θ ◁ B] respectively, with rkcut1 (D1) ≤ |A| ≥
rkcut1 (D2) and rkcut2 (D1) < |A| > rkcut2 (D2). There is a derivation D in IVCut, with
rkcut1 (D) ≤ |A| > rkcut2 (D), of the sequent

Γ,Σ⇒ ∆,Π, [Ω1,Θ ◁ B], . . . , [Ωn,Θ ◁ B]

Proof. By induction on the height of D1, distinguishing cases according to the last
applied rule R inD1. □

Theorem 2.17 (Cut elimination). If IVcut ⊢ Γ ⇒ ∆, then IV ⊢ Γ ⇒ ∆. In particular,
there is a procedure to eliminate cuts from a derivation in IVcut.

Proof. By lexicografic induction on the tuples ⟨rkcut1 (D), #cut2 (D), #cut1 (D)⟩, where
#cut1 (D) and #cut2 (D) are respectively the number of applications of cut1 and cut2 in
D with cut formula of complexity max{rkcut1 (D), rkcut2 (D)}. In fact we eliminate the
topmost applications of the rules cut1 and cut2 with maximal complexity by decreas-
ing the inductive parameter through the lemmas of cut1-reduction and cut2-reduction
respectively. □

A direct corollary of the cut admissibility is the syntactical proof of the complete-
ness of IV with respect to logic V:

Theorem 2.18 (Completeness). If a formula F is valid in V, then it is valid in IV, i.e.
there is a derivation of⇒ F in IV.

Proof. By deriving the axioms of the Hilbert-style calculus forV in IVcut and showing
that IVcut is closed with respect to the inference rules of the Hilbert-calculus for V.
By way of illustration, we report here some of the cases.

To prove the admissibility of the rule (CPR) we need to show that if its premiss
B ⊃ A is derivable, then also its conclusion A ≼ B is. Notice that by L ⊃ the sequent
B, B ⊃ A⇒ A is derivable:

init
B⇒ A, B

init
B, A⇒ A

L⊃
B ⊃ A, B⇒ A

Notice now that the sequent B ⇒ A, B ⊃ A is derivable from the premiss B ⊃ A of
(CPR), derivable by hypothesis, by admissibility of weakening. Therefore, we con-
clude by the following derivation:

B⇒ A, B ⊃ A B, B ⊃ A⇒ A
cut1

B, B⇒ A, A
CtrL+CtrR

B⇒ A
jump
⇒ [A ◁ B]

R≼
⇒ A ≼ B

The derivation of modus ponens involves the propositional rules and rule cut1, and is
standard.
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A ≼ B,Γ⇒ ∆, [B,Σ ◁ C] A ≼ B,Γ⇒ ∆, [Σ ◁ A], [Σ ◁ C]
L≼i

A ≼ B,Γ⇒ ∆, [Σ ◁ C]

Γ⇒ ∆, [Σ1,Σ2 ◁ A], [Σ2 ◁ B] Γ⇒ ∆, [Σ1 ◁ A], [Σ1,Σ2 ◁ B]
comi

Γ⇒ ∆, [Σ1 ◁ A], [Σ2 ◁ B]

A ≼ B,Γ⇒ ∆, B A ≼ B,Γ⇒ ∆, [⊥ ◁ A]
Ti

A ≼ B,Γ⇒ ∆

Γ⇒ ∆, [Σ ◁ A],Σ
Wi

Γ⇒ ∆, [Σ ◁ A]

A ≼ B,Γ⇒ ∆, B A ≼ B, A,Γ⇒ ∆
Ci

A ≼ B,Γ⇒ ∆

A,Γ≼ ⇒ ∆≼, [Σ ◁ A],Σ
Ai

Γ⇒ ∆, [Σ ◁ A]

Figure 2.3: Modified rules of Sequent Calculi Ii
V and extensions

Axiom (CPA) is derived as follows:

init
A⇒ A, B

init
B⇒ A, B

L∨
A ∨ B⇒ A, B

jump
⇒ [A, B ◁ A ∨ B]

init
A⇒ A, B

init
B⇒ A, B

L∨
A ∨ B⇒ A, B

jump
⇒ [A, B ◁ A ∨ B]

com
⇒ [A ◁ A ∨ B], [B ◁ A ∨ B]

R≼
⇒ [A ◁ A ∨ B], B ≼ A ∨ B

R≼
⇒ A ≼ A ∨ B, B ≼ A ∨ B

R∨
⇒ (A ≼ A ∨ B) ∨ (B ≼ A ∨ B)

The derivations of the other axioms of V are similar to the one of (CPA). □

We stress the fact that this syntactical proof of completeness strongly leans on the
cut elimination result 2.17 of IV: the derivation proving the admissibility of rule (CPR)
is a derivation in IVcut and not in IV, due to an application of rule cut1. At that point
the cut elimination 2.17 is what allows us to conclude.

2.2.3 Sequent calculi Ii
L

and completeness of IVW
To complete the discussion on internal calculi IL, we mention in this section the ver-
sion of cacluli IL with invertible rules and admissible contraction rules. These calculi
are equivalent to IL but have better structural properties. Our main interest in calculi
Ii
L

lies in the fact that it is possible to prove their completeness not only with respect
to V, but also for VN, VT, VW (which will play a key role in Chapter 4) and VC. For
a more detailed treatment of this topic refer to [15].

We report in Figure 2.3 the table of the rules of Ii
L

that are modified from IL (see
Figure 2.2). All the rules, with the exception of jump and Ai, are invertible. Weakening
rules are height-preserving admissible in these calculi. Contraction rules are admissible
as well, so they do not need to be included in the calculi.
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We state the equivalence mentioned above between IL and Ii
L

as follows:

Theorem 2.19 (Equivalence). Let A be a formula in F≼. The formula A is derivable in
the calculus IL if and only if A is derivable in the calculus Ii

L
.

This result can be proved by induction on the height of the derivation of A, and
exploits the admissibility of weakening and contraction rules. Finally, we mention that
the calculi Ii

L
allow terminating proof-search, thus providing a decision procedure for

the respective logics, and this gives as a consequence the semantic completeness for
Ii
V, Ii

VN, Ii
VT, I

i
VW and Ii

VC:

Theorem 2.20 (Semantic completeness). If a sequent Γ ⇒ ∆ is valid in V (resp.
VN,VT,VW,VC), then it is derivable in Ii

V (resp. Ii
VN,I

i
VT,I

i
VW,I

i
VC).

This result, together with the equivalence with the calculi IL, yields the complete-
ness of the IL-version of the calculi mentioned above. In particular the sequent calcu-
lus IVW, which plays an important rule in Chapter 4, is thus sound and complete with
respect to logic VW.

We conclude this section remarking that another way for proving completeness of
the calculi mentioned above is taking advantage of the non-standard sequent calculi
RL, presented in [21]. These calculi have infinite rules, but it is possible to show that
IL can simulate derivations in RL. This allows to prove also the completeness of the
calculi IL with respect to logics VA and VNA, that were left out of the treatment due
to the non-invertibility of rule Ai. We refer to [15] for the details of these arguments.
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Chapter 3

Adams’ Logic of High
Probability

According to Adams, the appropriate way to interpret (several classes of) conditionals
should be probabilistic. In fact, besides pointing out that it is questionable whether con-
ditionals with false antecedents can meaningfully be classified as either true or false,
as other authors do as well, Adams’ innovation in [1] is that of observing that most of
the conditionals of everyday language should be understood in terms of assertability
conditions, which naturally align with probability-based reasoning.

In fact, many conditionals seem to indicate a probabilistic connection between the
antecedent and consequent, rather than a purely deductive relation. The conditional

If a = b, then a + 1 = b + 1 (from [11])

expresses indeed a strict logical relationship; but many kinds of conditionals used in
the ordinary language, such as

If you boil this egg, it will become hard (from [20])

or, also,

If the light does not turn on, then the lamp must be broken (from [10])

actually imply that the consequents follow from the antecedents with a certain degree
of probability: in most cases, a high probability.

Central to Adams’ treatment of conditionals is the notion of conditional probability,
very similar to the one given by Kolmogorov [19]. Suppose that to every proposition
A is associated a probability P(A). Given two propositional formulas A and B, the
conditional probability of B given A is

P(B | A) =
P(A & B)

P(A)

provided that P(A) > 0. It can be shown that the probability P(A ⊃ B) of a material
implication is never less than the conditional probability P(B | A).

Adams’ central assumption is that for every propositional sentences A and B, the
probability of the conditional A > B equals the corresponding conditional probability:

P(A > B) = P(B | A) (3.1)
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provided that P(A) > 0.
We make a few comments on this approach. First, as pointed out by Lewis, the

application of the probabilistic account to counterfactuals is problematic, since the an-
tecedent of a counterfactual should have probability zero; similarly, Adams himself
remarks ([1]) that this theory works well just for assertable conditionals, treating con-
ditionals as static. Assuming to stick to to this class of conditionals, the second point is
that Adams’ theory doesn’t cover embeddings of conditionals, but just conditionals of
propositional formulas. This is a weakness of his logic compared to the ones of Adams
and Lewis, and an overview of possible solutions is delineated in [12], sec. 5.4. Fi-
nally, stating that a conclusion may be inferred from given premises with a reasonable
probability, is actually different from assigning a degree of probability to the corre-
sponding sentences, and could be hard to do in the practice. For this reason, the theory
of high probability proposed by Adams in [5], our main focus in this chapter, simpli-
fies Adams’ probabilistic interpretation of conditionals, accounting just for conditional
sentences that are “normally” verified.

For this introduction we followed [12], to which we refer for an overview on the
probabilistic interpretation of conditionals. For the complete description of Adams’
probabilistic account we relate to his seminal works [1], [2] and [3].

In this chapter we present the logic of high probability HPA proposed by Adams
in [5], namely an extension of classical propositional logic with a binary relation H,
where the meaning of the formula H(A, B) is that the ordinary language conditional
with antecedent A and consequent B is highly probable.

3.1 Logic HPA
The language on which this logic is based has two levels. The first is the basic-level,
or zero-level language, consisting of the terms built up from constants and variables
of a propositional calculus. We will denote this level of the language with LA

0 . The
second level is the first-level language, in which the only primitive operator is the “high
probability predicate” H. We will denote this level with LA

1 . The two levels are linked
since the arguments of the first-level predicate H are terms from the zero-level language
LA

0 . Formally, the languages introduced above are as follows:

Notation. Take a countably denumerable set of propositional variables Prop. Formu-
las in the zero-level language LA

0 are generated by the following grammar, for p in
Prop and A, B in LA

0 :

LA
0 F f | p | A ∧ B | A ∨ B | A→ B

Formulas in the first-level language LA
1 are generated by the following grammar, for

A, B in LA
0 and φ, ψ in LA

1 :

LA
1 F H(A, B) | ⊥ | φ&ψ | φ ∨ ψ | φ ⊃ ψ

In both languages negation, true and biconditional can be defined as usual in terms
of the already existing connectives. For A, B in LA

0 , the negation formula ∼A is an
abbreviation for A → f ; t stands for ∼ f ; and A ↔ B is an abbreviation for (A →
B) ∧ (B → A). Analogously, for A, B in LA

1 , ¬A stands for A ⊃ ⊥; ⊤ stands for ¬⊥;
and A ⊃⊂ B is an abbreviation for (A ⊃ B) & (B ⊃ A). Moreover, for A in LA

0 , we will
write H(A) as an abbreviation for H( t , A).
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Given the syntax of the two levels of the language, we describe here their usual
interpretation. Regarding the zero-level language LA

0 and its main abbreviations, we
have:

• the symbols for the constants t and f are interpreted respectively as tautology
and contradiction at the zero-level;

• the unary operation symbol ∼is interpreted as negation at the zero-level;

• the binary operation symbols ∧,∨,→ and↔ are interpreted respectively as con-
junction, disjunction, material implication and material biconditional at the zero-
level.

The first-level language LA
1 and its abbreviations, on the other hand, are interpreted as

follows:

• the application H(A, B) of the binary predicate H to formulas A and B of the zero-
level language means that the conditional of the ordinary language, i.e. the non-
material conditional, with antecedent A and consequent B is highly probable;

• the constants ⊤ and ⊥ stand respectively for tautology and contradiction in the
first-level language;

• the unary operation ¬ stands for negation in the first-level language;

• the binary operations & ,∨,⊃ and ⊃⊂ stand respectively for conjunction, dis-
junction, material implication and material biconditional in the first-level lan-
guage.

The abbreviation H(A) for H( t , A) reads as “A is highly probable”, thinking of the non
conditional formula A as equivalent to the corresponding conditional with tautological
antecedent.

Notice that there is no connective for the (non-material) conditional > in the zero-
level language: this is because of the assumption that the probabilities of non-material
conditionals are conditional probabilities, as discussed in detail by the same Adams in
[3]. Hence, also high probabilities of non-material conditionals are conditional high
probabilities, which in our language, enriched with the conditional operator > at the
zero-level, can be translated as:

H(A > B) ≡ H(A, B) (3.2)

Hence the non-material conditional is implicitly contained in the high probability op-
erator, as we will investigate more deeply in Section 3.3. In the following, before
officially introducing the conditional in the language, in Section 3.3 again, we will of-
ten informally refer to it using the symbol “>”. This symbol in fact is not part of the
zero-level language, but it is useful to give an idea of the meaning of the axioms, given
the usual interpretation “normally, B follows from A” for the formula A > B.

We call HPA the logic from Adams’ paper [5]. It is axiomatized as follows:

H1. If A, B ∈ LA
1 are such that B is a tautological consequence of A, then H(A, B) is

a theorem;

H2. If A, B ∈ LA
1 are tautologically equivalent, then H(A,C) ⊃ H(B,C) is a theorem;

H3. H(A,C) & H(B,C) ⊃ H(A ∨ B,C)
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H4. H(A, B) & H(A,C) ⊃ H(A ∧ B,C)

H5. H(A, B) & H(A ∧ B,C) ⊃ H(A,C)

H6. H(A,C) ⊃ H(A ∧ B,C) ∨ H(A,∼B)

The first two axioms are actually axiom schemas stated in natural language in terms of
tautological equivalence and tautological entailment in the original paper by Adams.
The succeding four axioms H3 − H6 are presented in Adams’ paper [5] as universal
closures of formulas in LA

1 .

Remark 3.1. Axioms H1 and H2 can be expressed through rules of inference as:

A→ B
H1

H(A, B)

A↔ B
H2

H(A,C) ⊃ H(B,C)

meaning that if A → B (resp. A ↔ B) is derivable in the axiomatic calculus, then also
H(A, B) (resp. H(A,C) ⊃ H(B,C)) is derivable. This formulation will be particularly
useful in the following, especially in studying the relation between Adams’ logic HPA
and Lewis’ family of logics for conditionals extending V.

Before making some remarks about this axiomatic system, we give the following
definitions:

Definition 3.2. A probability function at the zero-level language is a map

P:LA
0 −→ [0, 1]

assigning a probability value in the unit interval to each formula of the zero-level lan-
guage, and satisfying the usual axioms for probability functions.

A truth function is a probability function that has values only in {0, 1}, where 0
is interpreted as falsehood and 1 is interpreted as truth. We will usually denote a truth
function with T .

Moreover, any probability function P can be extended to a conditional probability
function

P:LA
0 × L

A
0 −→ [0, 1]

⟨A, B⟩ 7−→ P(A, B)

where

P(A, B) B

 P(A∧B)
P(A) if P(A) > 0

1 if P(A) = 0

Finally, the improbability function associated with P is

I:LA
0 −→ [0, 1]
A 7−→ I(A) B 1 − P(A)

I:LA
0 × L

A
0 −→ [0, 1]

⟨A, B⟩ 7−→ I(A, B) B 1 − P(A, B)

depending on whether P is a probability or a conditional probability function.
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Remark 3.3. 1. We can translate axiom H3 in a “vague ordinary language” by
stating that if both A > C and B > C are highly probable, then (A ∨ B) > C is
highly probable, too. In fact, H3 vaguely expresses the following improbability
inequality:

I(A > C) + I(B > C) ≥ I((A ∨ B) > C)

which means that the improbability of (A ∨ B) > C cannot be greater than the
sum of the improbabilities of A > C and B > C. The axiom H3 can be derived
in fact from the improbability inequality above, although we do not report here
a detailed proof of this fact. Intuitively, assuming that the improbabilities of the
antecedents are arbitrarily low we get that the improbability of the conclusion is
lower; this “vaguely implies” that it is possible for the conclusion (A∨ B) > C to
be arbitrarily high probable, provided that A > C and B > C have high enough
probabilities.

2. Actually all of the axioms from H1 to H5 can be seen as expressions of improb-
ability inequalities in which the improbability of the conclusion cannot exceed
the sum of the improbabilities of the premisses, like for H3. This means, as in
the case of H3 again, that we can ensure an arbitrarily high probability for the
conclusion just by requiring the premisses to be sufficiently highly probable, and
the axioms can be derived from the corresponding improbability inequalities as
outlined for H3. There is an analogy between this relationship and the one be-
tween premisses and conclusions of a valid non-conditional inference: this fact
makes this interpretation of axioms very natural.

3. Also H6 can be seen in terms of improbability inequalities, but with a slight dif-
ference: this is the only axiom, representing in fact the novelty of Adams’ paper
in relation to previous works ([1], [3], [4] among the others), having a disjunction
in the positive part of the formula and making the formula non-Harrop. Also the
theory axiomatized this way becomes non-Harrop, and this makes it much harder
to describe. The improbability inequality corresponding to H6 is

I(A > C) ≥ I((A ∧ B) > C) × I(A >∼B)

4. All of the axioms from H1 to H6 are formulas of the following form (C), which
gives us a way to treat together all of the six axioms:

(C) (H(A1, B1) & . . . & H(An, Bn)) ⊃ (H(C1,D1) ∨ · · · ∨ H(Cm,Dm))

where n,m ∈ N and all the arguments of H are terms of the zero-level language.
Varying n and m, this schema gives us the structure of all of the six axioms: H1
for n = 0 and m = 1, H2 for n = m = 1, H3, H4 and H5 for n = 2 and m = 1,
and H6 for n = 1 and m = 2 (with the convention that when n = 0 the antecedent
is true and for m = 0 the consequent is false). Previous works mentioned above,
and in particular [4], dealt only with “one-conclusion inferences” and a “one-
conclusion” form of the schema (C), in which m = 1 and only n varies. The
valid formulas of this kind are entailed by the only axioms H1-H5. Thanks to
the axioms H6, our system of axioms is instead sufficient to entail all the valid
formulas of form (C).

34



3.2 A characterization of theoremhood in HPA
In the original paper Adams looks at formulas of form (C) in detail, focusing in par-
ticular on their theoremhood or non-theoremhood according to the evaluation given by
improbability functions. We will not focus on this kind of results, but rather we will
have a quick look at just one of them. This result represents indeed a useful practi-
cal tool, giving a decision procedure to determine whether a formula of form (C) is a
theorem or not.

A truth-function T defined as in 3.2 is defined over LA
0 . We want to extend in a

certain sense the domain of such functions to the set of all high probability formulas
H(A, B):

Definition 3.4. A high probability formula H(A, B) is evaluated via a truth function
T as follows:

• If T (A) = T (B) = 1 then T (H(A, B)) = 1, that is T verifies the high probability
formula H(A, B);

• If T (A) = 1 and T (B) = 0 then T (H(A, B)) = 0, that is T falsifies the high
probability formula H(A, B);

• Otherwise, namely if T (A) = 0, the high probability formula H(A, B) is neither
verified nor falsified.

Notice that the truth function T extended this way is in fact a partial function, being
undefined on a subset of the high probability formulas. This is a way of having a grey
area between the truth values 0 and 1, but avoiding the structure of a many-valued logic.
Multivalent logical systems with finitely many truth values have been proved to be
unsuitable to model probabilistic or modal theories of conditionals, as McGee proves
in [25]. The fact that logic HPA with the truth-functions 3.4 is apparently three-valued
is not incompatible with McGee’s result, as explained in [6]. Also, we remark that the
material implication A ⊃ B associated to the high probability implication H(A, B) is
falsified by a truth function T if and only if the high probability implication is falsified
by T , and verified otherwise. Therefore, to have a correspondence with the zero-level
language interpretation, sometimes we will talk about a truth function T verifying the
material implication corresponding to the high probability formula H(A, B), rather than
of T not falsifying H(A, B); and of T falsifying A ⊃ B instead of T falsifying H(A, B).

We now extend the valuation function not to all LA
1 , but to inferences that are for-

mulas of the form (C); we see a (C) formula as an inference in which the set of the
premisses yields the ordered set of conclusions, according to the following definition:

Definition 3.5. Let m, n be in N. Given a (C) formula

H(A1, B1) & . . . & H(An, Bn) ⊃ H(C1,D1) ∨ · · · ∨ H(Cm,Dm)

with premisses H(Ai, Bi), for i ∈ {1, . . . , n} and ordered conclusions H(C j,D j) for j ∈
{1, . . . ,m}, we say that the premisses yield the conclusions iff m + n > 0 and the
following two conditions hold:

(1) any truth function T that verifies at least one premiss and falsifies none, verifies
at least one conclusion;

(2) for every j ∈ {1, . . . ,m}, any truth function T that falsifies one of H(C1,D1), . . . ,H(C j,D j)
and verifies none of them, falsifies at least one premiss.
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The Definition 3.5 of premisses yielding conclusions uses the convention that if
n = 0, the empty premiss is ⊤, verified by every truth function T ; while if m = 0
the conclusion is ⊥, falsified by every truth function T . We remark that Definition 3.5
actually depends on the order of the conclusions in the fact that clause (2) considers, for
any j ∈ {1, . . . ,m}, the truth functions T falsifying the first j high probability formulas;
we are not interested in the subsequent ones, and for this reason one can notice that the
order of the conclusions plays a role in the definition above. In the following examples
formula 3.4 better illustrates the dependence of the definition of yielding on the order
of the conclusions by showing how the definition applies in a specific notable case.

We can now state the result that gives a decision procedure for the logic:

Theorem 3.6. A formula of form (C) is a theorem if and only if a subset of its pre-
misses yields an ordered subset of its conclusions.

Examples 3.7. We give some examples of application of Theorem 3.6.

1. Consider the formula
H(A,C) ⊃ H(A ∧ B,C) (3.3)

called strengthening of the antecedent, that is valid for the material implication.
The premiss does not yield the conclusion though, since the truth function T such
that T (A) = T (C) = 1 and T (B) = 0 verifies the premiss but not the conclusion.
Then no subset of the premisses yields an ordered subset of the conclusions, and
by 3.6 this formula is not a theorem.

2. By adding an alternative conclusion to 3.3 we obtain the formula:

H(A,C) ⊃ (H(A ∧ B,C) ∨ H(A,∼B)) (3.4)

which is axiom H6. In this case, n = 1 and m = 2, so m+n = 3 > 0. Furthermore:

• Clause (1) of Definition 3.5 is satisfied: consider a truth function T that
verifies the premiss H(A,C), i.e. T (A) = T (C) = 1; now, either T (B) = 1
and the first conclusion H(A∧ B,C) is verified, or T (B) = 0 and the second
conclusion H(A,∼B) is verified;
• Clause (2) of 3.5 is satisfied: both for any truth function T falsifying the

first conclusion H(A∧B,C), and for any truth function T falsifying the sec-
ond conclusion H(A,∼B) while not verifying the first one, T (A) = T (B) = 1
and T (C) = 0; then also the premiss H(A,C) is falsified.

We just proved that 3.4 with the subset of all premisses and the ordered subset of
all the conclusions given in the order of 3.4 satisfies the Definition 3.5. Then for
3.6 the closure of 3.4 is a theorem.

Notice that choosing the other ordered subset of two conclusions, namely the
one in which H(A,∼B) comes before H(A ∧ B,C), wouldn’t satisfy Definition
3.5. This is because the truth function T for which T (A) = T (B) = T (C) = 1,
falsifying just the first conclusion H(A,∼B) (we are not interested in the action
of T on the second conclusion, since we are considering the case j = 1 of clause
(2) of Definition 3.5), actually verifies the only premiss H(A,C). We want to
highlight that the theoremhood of a formula is not sensitive to the dependence
on the order of the conclusions of Definition 3.5: in the formula 3.4 the premisses
yield the conclusions, while in

H(A,C) ⊃ (H(A,∼B) ∨ H(A ∧ B,C))
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they do not; however, according to Theorem 3.6, one of the two formulas is a
theorem if and only if the other one is, since it asks just for the existence of a
subset of the premisses yielding an ordered subset of the conclusions. Therefore,
Theorem 3.6 overcomes the dependence on the order of the conclusions of Defi-
nition 3.5; this allows us to consider as essentially equivalent formulas that differ
only in the order of the conclusions.

3. In the case of n = 0, the formula (C) has form:

H(C1,D1) ∨ · · · ∨ H(Cm,Dm) (3.5)

with m > 0, and by convention the premiss is ⊤, verified by any truth function
T . If 3.5 is a theorem, then by Theorem 3.6 a subset of the premisses yields an
ordered subset of the conclusions. Clause (1) of the Definition 3.5 says that for
every truth function T that verifies a premiss and falsifies none (i.e. for every
truth function), there exists a conclusion verified by such T ; this is not funda-
mental for the characterization we are going to give, anyway. Let’s consider now
clause (2) of Definition 3.5. If the formula 3.5 is a theorem, then there exists an
ordered subset of the conclusions of k elements such that for every j ∈ {1, . . . , k},
any truth function T that falsifies at least one of the j conclusions and verifies
none, falsifies at least one of the premisses. Let’s consider the easy case j = 1,
and let H(Ci,Di) the first element of the ordered set of the conclusions: for ev-
ery truth function T that falsifies H(Ci,Di), T needs to falsify at least one of the
premisses; but no truth function T can falsify the premiss ⊤, so no T can fal-
sify H(Ci,Di). This is equivalent to state that every truth finction T verifies the
material implication Ci ⊃ Di.

Hence, if formula 3.5 is a theorem, then there exists i ∈ {1, . . . ,m} such that
Ci ⊃ Di is a tautology. Since the converse trivially holds, the choice of the
ordered set of the only H(Ci,Di) as the subset mentioned in Theorem 3.6 is in
fact a characterization of the theoremhood of form 3.5.

4. Quite similarly to what was done in the previous example, if m = 0 and n > 0,
the (C) formula is

¬H(A1, B1) ∨ · · · ∨ ¬H(An, Bn) (3.6)

as an equivalent formulation of

(H(A1, B1) & . . . & H(An, Bn)) ⊃ ⊥

In this case, if 3.6 is a theorem, then a subset of the premisses satisfies clause
(2) of Definition 3.5: for every truth function T that falsifies ⊥ (i.e. for any truth
function T ), T falsifies at least one premiss. This way, also clause (1) is trivially
satisfied, since no truth function T verifies at least a premiss while falsifies none,
as a consequence of clause (2). This means that, if m = 0, if 3.6 is a theorem then
no truth function T can falsify no premiss; or, equivalently, that no truth function
T verifies all of the material implications A1 ⊃ B1, . . . , An ⊃ Bn.

Therefore, if 3.6 is a theorem then the material implications A1 ⊃ B1, . . . , An ⊃

Bn corresponding to the premisses are tautologically inconsistent. Again, the
converse trivially holds choosing the set of all premisses as the subset mentioned
in Theorem 3.6. Hence this last condition is a characterization for the theorem-
hood of 3.6.
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5. If for any j ∈ {1, . . . ,m}, C j = ⊤, the formula (C) has form:

(H(A1, B1) & . . . & H(An, Bn)) ⊃ (H(D1) ∨ · · · ∨ H(Dm)) (3.7)

Notice that, for any truth function T , for any j ∈ {1, . . . ,m}, since C j = ⊤,
T verifies (or, respectively, falsifies) the conclusion H(C j,D j) if and only if it
verifies (resp. falsifies) D j. Let H(Di) be the first element of the ordered subset
of conclusions mentioned in Theorem 3.6.

Then the material implication having the conjunction of A1 ⊃ B1, . . . , An ⊃ Bn as
antecedent of the implication and Di as conclusion is verified by any truth func-
tion T : if one tries to think of a truth function T verifying this last conjunction
(i.e. falsifying no premiss) and not Di, then T wouldn’t satisfy clause (2) of 3.5,
falsifying H(Di) but none of the premisses.

Now again, since the converse trivially holds choosing the set of all premisses
and the ordered set with H(Di) as only element, respectively, as the subset of
premisses and the ordered subset of conclusions mentioned in 3.6, we can state
that 3.7 is a theorem if and only if A1 ⊃ B1, . . . , An ⊃ Bn tautologically imply Di

for some i ∈ {1, . . . ,m}.

The last three examples tell something about the link between high probability im-
plications and their material counterparts in the basic-level language, in some particular
cases: formula 3.5 above being a theorem means that one of the material conditionals
must be highly probable no matter what; formula 3.6 tells us that several high prob-
ability conditionals are tautologically inconsistent if and only if their corresponding
material counterparts are; and finally, formula 3.7 is the case in which all conclusions
are actually inconditional. In this last case, we see that the inference to alternative
conclusions is valid only if there is a specific one of the conclusions that is validly in-
ferable: in fact, reasoning about factual propositions it is impossible to deduce that the
disjunction of two or more conclusions must be high probable, without being able to
say which one of the conclusions actually is.

3.3 The conditional operator > in probabilistic logic
Having displayed Adams’ logic for high probability from [5], given a tool to determine
the theoremhood of formulas in the logic, and shown some of the links of the high
probability operator H introduced there with the material implication ⊃, we are now
ready to investigate the relationship between this logic and the non-material conditional
>. More precisely, we are interested in what happens when we add it to the zero-level
language, trying to answer the following questions:

1) What happens if we (reasonably) add >-formulas as a possible argument for
high-probability formulas?

2) By translating the high probability formulas into >-formulas, do we find a corre-
spondence with an already existing logic?

To answer the first question, we extendLA
0 with the non-material conditional >. We

talk of reasonably adding > to the language in the sense that we want to complement
this extension with appropriate definitions and axioms handling the relationship be-
tween > and the other operations. First, as we already claimed in remark 3.2 we define
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H(A > B) to be equivalent to H(A, B), since we want high probabilities of non-material
conditional to be conditional high probabilities:

H(A > B) ≡ H(A, B) (3.8)

One can prove that adding this definition is conservative, in the sense that no new
formulas of form (C), not including >, can be derived just by the addition of 3.8. We
now add a further plausible assumption, under which we will prove an equivalence
in high probability of > and ⊃, and then a sort of “trivialization” of the logic. So,
we add as an assumption a qualitative version of the law of probability change by
conditionalization, known also as “import-export law”:

H(A ∧ B,C) ⊃⊂ H(A, B > C) (3.9)

What happens under this assumption is a trivialization of the high probability operator
H, that comes to be equivalent for a conditional formula and the corresponding material
implication formula. This aligns with the triviality results proved by Lewis in [24], that
underline the fact that the nesting of conditionals of this kind is problematic.

To prove the equivalence in high probability of the two implications we need the
following lemma of distributivity of the high probability operator H:

Lemma 3.8. For any formulas A, B in LA
0

H(A, B) ⊃ (H(A) ⊃ H(B)) (3.10)

is a theorem in HPA.

Proof. Formula 3.10 is classically equivalent to

(H(A) & H(A, B)) ⊃ H(B)

which is an abbreviation for

(H(t, A) & H(A, B)) ⊃ H( t , B)

This last formula is an instance of axiom H5, substituting in it t for A, A for B and B
for C, and considering that t∧ A is classically equivalent to A. Therefore, formula 3.10
is a theorem. □

We can now state the “equivalence in probability” mentioned above. While the
if direction holds in general, to prove the only if direction we found it necessary to
assume axiom W: (A > B) ⊃ (A→ B), although Adams does not specify this choice in
his paper [5].

Theorem 3.9. The following equivalence of formulas is a theorem:

H(A, B) ⊃⊂ H(A→ B) (3.11)

Proof. To prove the equivalence above, we prove the two implications separately:

⊂) The formula (∼A ∧ A)→ B is a classical tautology. Then, by axiom H1,

H(∼A ∧ A, B) (3.12)
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is a theorem. Now, the formula

H(∼A ∧ A, B) ⊃ H(∼A, A > B) (3.13)

is an instance of the only if direction of 3.9, and is therefore a theorem, too. By
modus ponens, 3.12 and 3.13 produce

H(¬A, A > B) (3.14)

Analogously, the classical tautology B & A → B makes H(B & A, B) a theorem
by axiom H1. This last formula, with the only if instance of 3.9 H(B & A, B) ⊃
H(B, A > B) and by modus ponens, produces

H(B, A > B) (3.15)

Consider now the instance of axiom H3

(H(∼A, A > B) & H(B, A > B)) ⊃ H(∼A ∨ B, A > B)

If we apply this last theorem to the conjunction of 3.14 and 3.15, by modus
ponens we obtain the formula H(¬A∨ B, A > B), which is classically equivalent
to

H(A→ B, A > B) (3.16)

If we apply now the Lemma 3.10 to 3.16, we obtain as a consequence

H(A→ B) ⊃ H(A > B)

which is equivalent to
H(A→ B) ⊃ H(A, B)

by the Definition 3.8.

⊃) We prove this direction by assuming axiom W to be valid. Thus (A > B) ⊃ (A→
B) holds. By the following derivation we conclude.

W
(A > B) ⊃ (A→ B)

H1
H(A > B, A→ B)

3.10
H(A > B) ⊃ H(A→ B)

□

Notice that the first formula H(A, B) is equivalent to H(A > B) by 3.8. This result
yields then an equivalence of the material and the non-material implication when they
are in the scope of high probability operators. Finally, we remark the following about
the ⊃)-direction of the proof above:

Remark 3.10. 1. We have proved that H(A > B) ⊃ H(A → B) with the strong
assumption that axiom W is valid. It is not clear in [5] whether Adams himself
proceeds this way or not;

2. The application of rule H1 in the proof of ⊃) does not strictly follow the axiom
H1, which deals about “classical tautologies”. Anyway, extending the basic lan-
guage LA

0 with the conditional operator >, it looks natural to extend the rule to
the formulas arose from the new axioms introduced to handle the conditional.
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To answer the second question at the beginning of this section, we introduce the
non-material implication > into Adams’ language in the following way. Consider the
language F>, whose formulas are recursively generated by the grammar:

A, BF p | ⊥ | A & B | A ∨ B | A ⊃ B | A > B

with p in Prop and A, B formulas in F>. We translate then Adams’ full language
LA

0 ∪L
A
1 into F> via the translation τ, that replaces every high probability formula with

the corresponding >-formula, and every connective in LA
0 with its counterpart in LA

1 .
Formally, translation τ is the map

τ:LA
0 ∪ L

A
1 −→ F> (3.17)

inductively defined as follows:

τ(p) B p

τ( f ) B ⊥

τ(A ∧ B) B τ(A) & τ(B)

τ(A ∨ B) B τ(A) ∨ τ(B)

τ(A→ B) B τ(A) ⊃ τ(B)

τ(H(A, B)) B τ(A) > τ(B)

τ(⊥) B ⊥

τ(φ&ψ) B τ(φ) & τ(ψ)

τ(φ ∨ ψ) B τ(φ) ∨ τ(ψ)

τ(φ ⊃ ψ) B τ(φ) ⊃ τ(ψ)

for p in Prop, A, B in LA
0 and φ, ψ in LA

1 . Notice that the translation τ is not surjective:
in the language F> nested applications of the conditional, i.e. conditionals having
conditional formulas as arguments, are allowed; the image of τ, on the other hand,
corresponds to the flat fragment of F>, namely the fragment in which the conditional
operators > are not nested. This restriction is due to the clause that the high probability
operator’s arguments are in LA

0 , and thus non-conditional.

Remark 3.11. Under the translation τ, formulas of form (C) get the form of counter-
factual (CFC) formulas:

(τ(A1) > τ(B1) & . . . & τ(An) > τ(Bn)) ⊃ (τ(C1) > τ(D1) ∨ · · · ∨ τ(Cm) > τ(Dm))

For a notational convenience, we will often write

(CFC) (A1 > B1 & . . . & An > Bn) ⊃ (C1 > D1 ∨ · · · ∨Cm > Dm)

where for any i in {1, . . . , n} and for any j in {1, . . . ,m} we omitted to make explicit the
translations via τ of the formulas Ai, Bi,C j,D j of LA

0 .

Notice that, given the standard interdefinitions between the conditional > and the
comparative plausibility operator ≼, the language F> is equivalent to language F≼ in-
troduced in Definition 1.13. We will discuss in the next chapter how the translation τ
is used to compare Adams’ logic HPA with the logics of Lewis’ V family.
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Chapter 4

Relationship between logics V
and HPA

In this section we discuss the key results of this study: we figure out what is the re-
lationship between Adams’ logic for high probability HPA, that he presented in [5],
and the better-known family of conditional logics that extend system V, introduced by
Lewis in [23]. In his paper [5] Adams claims an equivalence between a fragment of
his logic HPA and its translation in Lewis’ VW, and gives a sketch of the proof of this
fact. We refine the proof that Adams outlined, giving a complete and more detailed
one, and proving in addiction a stronger completeness result, namely that not only VW
is complete with respect to HPA, but in fact even Lewis’ basic logic V is. To do this,
we exploit at first the family of calculi IL from [15], which are built in a modular way
to be sound and complete with respect to logic V and many of its extensions, among
whichVW. These calculi are the tool that allows us to give an explicit proof of the com-
pleteness results. We report then an adaptation to our language of the proof sketched
in [5] by Adams, strongly based on Adams’ previous works, in order to prove also the
other direction of the equivalence between the two fragments mentioned above.

4.1 Completeness of V wrt HPA
In this section we present the proof of the main result we are concerned with: complete-
ness of the logic V with respect to Adams’ logic HPA. As we mentioned in Section
2.2, the sequent calculus IV is sound and complete with respect to the logic V; then we
will directly prove the completeness of calculus IV in order to achieve the complete-
ness of V as an equivalent condition. The completeness of VW sketched by Adams in
[5] immediately follows from this fact.

We prove the following theorem by directly showing the derivability of the axioms
and the admissibility of the rules of inference of the (Hilbert-style) axiomatic system
HPA in the calculus IV. To do this we have to make the language between the two
logics uniform. We recall first from Definition 1.1 the conditional language F> defined
by the following grammar:

A, BF p | ⊥ | A & B | A ∨ B | A ⊃ B | A > B
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with p in Prop and A, B in F>. The translation τ (defined in 3.17) is a map

τ:LA
0 ∪ L

A
1 −→ F>

that actually replaces every logical symbol in LA
0 with its counterpart in LA

1 and every
high-probability formula with the corresponding >-formula. The image of LA

0 ∪ L
A
1

through τ thus is not the whole language F>, but its flat fragment, i.e. its subset in
which conditionals are not nested. We remind now that the set of well-formed formulas
used in Section 2.2 to describe the internal calculi IL for Lewis’ logics is the language
F≼ introduced in Definition 1.13, which is defined by:

A, BF p | ⊥ | A & B | A ∨ B | A ⊃ B | A ≼ B

with p in Prop and A, B in F≼. Notice that the language F≼ is suitable to cover the
language F>, since > is definable in terms of ≼ (cf. Definition 1.1) and its addition to
F≼ would thus be inessential; then F> is a subset of F≼ enriched with the conditional
>. This shows that translation τ links the languages and allows us to state the following
completeness result:

Theorem 4.1 (Completeness). If a formula F is valid in HPA, then its translation τ(F)
is derivable in IV.

Proof. We show that, inIV, the translations via τ of the inference rules of the axiomatic
system HPA are admissible, and that the translations via τ of the axioms of HPA are
derivable.

H1:

init
A⇒ A,⊥

jump
⇒ [A,⊥ ◁ A]

⇒ A ⊃ B
Wk
⇒ ⊥, A ⊃ B

R⊃−inv.
A⇒ ⊥, B

L⊥
⊥, A⇒ ⊥

L &+R⊃
A &¬B⇒ ⊥

jump
⇒ [⊥ ◁ A &¬B]

L≼
(A &¬B) ≼ A⇒ [⊥ ◁ A]

R>
⇒ A > B

The derivations showing the admissibility of the rule H2 and the derivability of the
axioms H3 − H6 are reported in Appendix A. □

We report now some comments about the proof above:

Remark 4.2. The derivations in IV of the proof of completeness of IV with respect
to HPA can be transformed in derivations in Ii

V (since the two calculi are equivalent)
by actually adding some formulas to the premises of certain rules - the ones that are
modified from IV. Then, thanks to the translation between derivations in Ii

V and in
G3V, we can build the corresponding derivations in G3V. Hence, equivalent proofs of
completeness can be achieved by making use of other sequent calculi for V.

As we mentioned above, Theorem 4.1, together with soundness 2.10 of the calculus
IV with respect to logic V, immediately entail the following result:

Corollary 4.3. If a formula F is a theorem in HPA, then its translation τ(F) is derivable
in V.

Finally, also the following corollary immediately descends from Theorem 4.1:
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Corollary 4.4. If a formula F is a theorem in HPA, then its translation τ(F) is derivable
in VW.

Proof. Notice that a derivation in IV is a derivation also in IVW. Hence Theorem 4.1
proves that if a formula F is a theorem in HPA, then its translation τ(F) is derivable in
IVW. We conclude thanks to soundness of IVW with respect to VW 2.10. □

This result will be crucial to prove the equivalence of VW and HPA in the next
section.

4.2 Equivalence of VW and HPA
In this section we prove as a main result the equivalence of the fragments of logics VW
and HPA. To do this, we mimic the proof that Adams outlined in [5]: he actually proves
the equivalence of six conditions among which are the desired theoremhood of a (C)-
formula in HPA and the derivability of its translation in VW. The completeness of this
fragment ofVWwith respect to HPA is an immediate consequence of the completeness
ofV, proved in the previous section. For the other direction of the equivalence, instead,
it is essential to have logic VW. To do this we proceed similarly to what Adams did
in the original paper, presenting in fact a more detailed version of the proof of the
equivalence of four of the six conditions mentioned above. We obtain as a by-product
also the proof of Theorem 3.6.

We recall from Chapter 3 that a formula of form (C) in the logic HPA is:

(C) (H(A1, B1) & . . . & H(An, Bn)) ⊃ (H(C1,D1) ∨ · · · ∨ H(Cm,Dm))

where for any i in {1, . . . , n} and for any j in {1, . . . ,m} Ai, Bi,C j and D j are formulas
in the zero-level language LA

0 . As mentioned in 3.11 the translation via τ of the (C)
formula above is the following counterfactual formula:

(CFC) (A1 > B1 & . . . & An > Bn) ⊃ (C1 > D1 ∨ · · · ∨Cm > Dm)

where for any i in {1, . . . , n} and for any j in {1, . . . ,m} we identified for simplicity the
formulas Ai, Bi,C j,D j in LA

0 with their translations via τ.
Finally, we adapt from Chapter 3 the Definition of a truth function 3.4 to any >-

formula stipulating that it is the same as its high probability counterpart: for any propo-
sitional formulas A, B and any truth function T

T (A > B) B T (H(A, B))

As an immediate consequence, this allows to extend the Definition of yielding 3.5 to
sets of >-formulas, and thus to the conditional version of (C)-formulas: formulas of
form (CFC).

We present now p-orderings, defined also in [4] and first introduced in [2]. The
notion of p-ordering is involved in the four equivalent conditions of Theorem 4.8: the
idea we pursue here, following Adams’ strategy, is to make his language as similar
as possible to Lewis’ language, and including p-orderings of formulas of LA

0 in our
language is what enables us to link Adams’ logic HPA to Lewis’ V and its extensions.

Definition 4.5. A probability ordering (or p-ordering) ≼ is any weak ordering in LA
0 ,

i.e. a transitive (for any A, B,C in LA
0 , if A ≼ B and B ≼ C, then A ≼ C), strongly

connected (for any A, B in LA
0 , A ≼ B or B ≼ A) relation in LA

0 , that satisfies also the
following conditions. For any formulas A, B in LA

0 :
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(1) if A tautologically implies B, then B ≼ A;

(2) A ≼ (A ∨ B) or B ≼ (A ∨ B);

(3) t ≺ f ;

where for any A, B in LA
0 , A ≺ B stands for not B ≼ A.

This ordering satisfies all the properties of the comparative plausibility defined in
[23]. Notice that if we enrich LA

0 with the p-ordering relational symbol ≼ (and even-
tually translate the other connectives of the language via τ in order to have a uniform
notation), what we obtain is the fragment of language F≼ from section 1.2 in which
≼ can only be the main connective. Now we need this language to fit the first-level
language of HPA: given the formulas A, B in LA

0 we say that the conditional A > B
holds in the ordering ≼ iff either f ≼ A or (A & B) ≺ (A &¬B). This coincides with
the definition of the conditional in terms of the comparative plausibility operator:

Remark 4.6 (Comparative plausibility and p-orderings). Definition 4.5 above coin-
cides with the one of comparative plausibility given by Lewis in [23]; this brings the
probabilistic and conditional logics we are studying closer. We remark that the def-
inition of p-ordering given by Adams is the converse of the one above, and for that
definition Adams himself highlights in [5] that normal possibility orderings, namely
comparative plausibility orderings satisfying the normality condition N, are the con-
verse of his p-orderings. We decided to switch the p-ordering symbol so that it effec-
tively coincides with the comparative plausibility operator. This also allows us to have
a semantic interpretation for ≼ and for > too, since its definition in terms of p-orderings
is the same as the one by Lewis.

We internalize now the p-ordering defined above in the structure of our language:
assume that the zero-level language is generated from a non-zero, finite number k of
propositional variables p1, . . . , pk. The atoms are then arranged, for any p-ordering ≼,
on levels according to their probability as done in [4]. Since k is finite, suppose that
there are s levels in total. Atoms at level 1 are the ones equivalent to ⊤ in the ordering;
we suppose that there is at least an atom at this level. An atom pi is at level 2 if and
only if ⊤ ≺ pi and for no atom p j, ⊤ ≺ p j ≺ pi. The idea is that atoms at level 1 are the
most probable (or plausible) ones, atoms at level 2 are less probable than just atoms at
level 1 with no space between levels. In the end, at every level there are the atoms that
are less probable than and still the nearest to the ones at the previous levels, until we
meet the less probable atoms at level s. For any r ∈ {1, . . . , s} we call k(r) the number
of atoms at level r; then k = k(1) + · · · + k(s).

Consider now a formula C of form (C) and its translation via τ, C′, of form (CFC).
C′ can be seen also as an inference in which the premiss set is X = {A1 > B1, . . . , An >
Bn} and the conclusion set is Y = {C1 > D1, . . . ,Cm > Dm}.

Definition 4.7. Given a formula C of form (C) and C′, X,Y as above, a p-ordering is
said to be counterexample to the inference C iff all members of X hold in it, while
none of the members of Y does.

We have described now all the necessary elements to state the equivalence of the
four conditions mentioned above, that allows to prove not only the equivalence between
logics VW and HPA, but also Theorem 3.6. The proof strongly relies on the notions
presented above and hence on Adams’ previous works, as well as on Lewis’ sphere
semantics. We report here our proof of the implication from the condition H to the
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condition VW, and a formalization of Adams’ proof of the implication from VW to
C. For the proof of the implications “C implies D” and “D implies H”, not involving
Lewis’ logic VW, we relate to the proof given by Adams in the appendix of [5], that is
based on notions introduced in various previous works, and in particular similar proofs
from [4].

Theorem 4.8. The following four conditions are equivalent:

C. There is no p-ordering counterexample to C′;

D. A subset of X yields a subset of Y;

H. C is a theorem in HPA;

VW. C′ is valid in VW.

Proof. H implies VW: Follows from Corollary 4.4, since the translation via τ of the
(C)-formula C is the (CFC)-formula C′.

VW implies C: We report the proof proposed by Adams, adapting the notation to
the present work.

We prove that if C is false, then also VW is. Assume then that there is a p-ordering
≼ counterexample to C. To prove that VW does not hold, we build a weak-centered
sphere modelM = ⟨W, S , ⟦ ⟧⟩ in which the formula C′ is not valid. We can suppose
without loss of generality that the zero-level language is built upon a finite number of
atoms, since we can consider just the atoms involved in C: the ones not involved are
negligible. Let these atoms be called p1, . . . , pk and arrange them in levels of probabil-
ity as explained above. Let the positive number s in N be the number of levels. Finally,
let Sr be the set of the atoms of level at most r.

We can interpret the atoms as possible worlds:

W B {p1, . . . , pk}

The sphere system mentioned above is defined in the following way: for any i ∈
{1, . . . , k}, the sphere system corresponding to the world pi at level r is the collection
of nested sets

S (pi) B {S j| j ∈ {r, . . . , s}}

Notice that for any i, the sphere system S (pi)) is weakly centered on the world pi.
Focusing on p1, starting from the hypothesis that ≼ is a counterexample to C, it is
routine to show that, according to Lewis’ definition of truth at a possible world, all of
the formulas A1 > B1, . . . , An > Bn are true at p1, while none of C1 > D1, . . . ,Cm > Dm

is. Therefore the counterfactual formula C′ corresponding to C is not valid in VW. □

The two additional conditions included by Adams in the Appendix of [5] and
proved equivalent to the four conditions of Theorem 4.8 prove results about the va-
lidity of (C)-formulas through the evaluation of improbability functions, given in the
same paper and left out of this work. We refer to the original paper for the details of
these results and a sketch of the proof of the equivalence of these two more conditions
to the four of Theorem 4.8. We observe that in the proof of “C implies D” the clause
(3) of the Definition 4.5, representing the normality of the p-ordering, is essential.

We conclude this section with an important remark about Adams’ proof of “VW
implies C”, that we have adapted to our notation and explicited as much as possible
above.
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Remark 4.9. In his proof of Theorem 4.8, in [5], Adams does not make explicit how
the weakened sphere model that he mentions is defined: in fact, he does not specify
what is the assignment of the evaluation ⟦ ⟧ on the atoms, and to us this is a factor of
considerable relevance. Also, we noticed that it is not trivial to establish what is the
evaluation function to which Adams relates.

We came back to the previous works [4] and [23], on which Adams relies through-
out all the proof. Our idea is to exploit truth assignments as defined at p.154 of [4],
and build a sphere model in which the worlds are truth assignments, or sets of propo-
sitional variables. This would imitate the construction of the proof of “Deriving (D)
from (C)” of [4], p.173. Moreover, p-orderings as we formulated them are equivalent
to Lewis’ comparative possibility systems ([23], sec. 2.5), as Adams himself claims.
Lewis shows a way of building a sphere model starting from a comparative possibility
system, and shows that his construction preserves the satisfiability of formulas.

Combining these two notions, our idea is to consider the finite set W of truth assign-
ments over the propositional variables, and to build a comparative possibility system
on W. Finally, taking advantage of Lewis’ construction, build a sphere model corre-
sponding to the p-ordering counterexample for the formula C: since Lewis’ construc-
tion preserves the satisfiability of formulas, the sphere model thus designed would be
a countermodel for the formula C′.

We stress that the proof we outlined here is not the construction of Adams’ proof;
nevertheless, in our view this is a clearer and more explicit attempt at proving the result
in exam.

Having provided an explicit proof of one of the directions involving the condition
VW, namely the completeness of VW with respect to HPA, and outlined a sketch of
the proof of the other direction of our main interest (“VW implies C”), we leave the
details of this proof to future work.
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Conclusions

In this thesis we have explored two approaches for conditional logics: Lewis’ possible
worlds account and the family of conditional logics extending V on the one hand, and
Adams’ probabilistic account together with his logic HPA for high probability on the
other hand. We have examined both semantic and syntactic aspects of these logics and
focused on already existing proof systems for Lewis’ logics, to finally investigate the
interconnections between the extensions of V and HPA.

Through our study, we have formalized and clarified Adams’ theory of high prob-
ability logic HPA by giving explicit proofs of the main results claimed by Adams.

Additionally, we have demonstrated the completeness of Lewis’ logic V with re-
spect to HPA, showing that every theorem in HPA can be translated into a derivable
formula in V. Furthermore, we have highlighted the equivalence of a significant frag-
ment of VW and HPA, revisiting and elaborating on Adams’ original sketch of proof:
one direction is entailed by the previous completeness result; for the other way round
we have proposed an alternative proof strategy than the one outlined by Adams, lacking
relevant details.

Despite the significant progress made in this work, several open questions remain.
Future research could extend the rigorous formulation of Adams’ theory, in particular
completing a formalization of the steps of the proof of soundness of the logic VW with
respect to the fragment of formulas of form (C) of HPA: in this regard, an extensive
account of the proof strategy we have proposed in Remark 4.9 needs to be worked out
in detail.

Additionally, since we proved completeness of V, and some kind of soundness of
VW with respect to HPA has been established by Adams himself, we remark the non-
symmetric connection between the family of logics of V and HPA. An interesting
developement of this study would be determining if a weakened version of Theorem
4.8 is provable, in order to establish a connection between HPA and some of Levis’
logics that are between V and VW.

Finally, in the proof-theoretic framework it would be interesting to strengthen the
construction of translations between the various sequent calculi, like the maps between
derivations defined in [16] and the ones proposed in Remark 2.6. Such maps allow to
move from one calculus to another, making it possible to take advantage of the one that
better fits a certain context, especially in explicit uses of the calculus like the proof of
4.1.

In conclusion, this thesis contributes to the formal study of conditional logics by
bridging the gap between the well-established logics of Lewis and Adams’ probabilistic
approaches. By determining a clearer connection between Lewis’ and Adams’ frame-
works, we have laid the groundwork for further advancements in the logic of condi-
tionals and high probability reasoning.
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Appendix A

Appendix: Derivations of the
axioms

Proof of Theorem 4.1: We report here the derivations that show the admissibility of the
rule H2 and the derivability of the axioms H3 − H6.

In the derivations we adopt the following notation: given rules R1,R2,R of the se-
quent calculus IV we denote by R1+R2 the ordered application of the rule R1 followed
by the rule R2 bottom-up, displayed in a single inference step; analogously, by R∗ we
denote multiple applications of the rule R. For an invertible rule R we write R− inv. for
its inversion. Finally, (generalized) instances of the rule init are considered leaves; we
mark such instances, as well as the other leaves of the derivations, with the symbol

.

In the derivation of H2, the leaves in which the premiss of the rule H2 is reported are
marked with

Hp
.

H2:
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H3:
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H4:
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H5:
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H6:

□
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