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“The poetic aspect of the story is that there are many ways of talking
about the natural world. As long as those ways latch on to something
real and causally efficacious about the functioning of the world, then

we attribute some reality and truth to them.”

– Sean Carroll





Introduction

Machine Learning Theory At its core, science aims to construct coherent, testable
representations of observed phenomena, models that not only predict accurately but also
offer deep insights into underlying processes. In the realm of Artificial Intelligence, Ma-
chine Learning develops algorithms that leverage data to build such models, capturing
complex patterns for prediction, classification, decision-making, and artificial generation.
Recent breakthroughs, such as large language models (e.g., GPT) and robotics capable
of real-world interaction, rely on advanced methods that achieve impressive performance,
yet they often lack the rigorous theoretical guarantees essential for scientific validity.

Statistical machine learning addresses this gap by providing a mathematical frame-
work to rigorously analyze why learning algorithms succeed or fail in practice. Rather
than treating models as “black boxes”, this theoretical perspective confronts fundamental
challenges: How do we ensure patterns learned from limited data generalize to new scenar-
ios? What conditions prevent complex models from becoming unreliable? By formalizing
these questions, statistical machine learning shifts the focus from empirical benchmarks to
understanding algorithmic behavior, a fundamental step for deploying models in scientific
domains, where interpretability and robustness are as important as accuracy.

The goal of this thesis is to establish such guarantees for the performance of a learning
algorithm within a dynamical system setting. To this end, we leverage ideas both from
statistical machine learning and dynamical systems theory.

Dynamical Systems: Beyond i.i.d. Data The study of dynamical systems focuses on
how states within an environment evolve over time based on specific rules. In many real-
world situations, uncertainty and inherent randomness play a significant role, resulting
in the development of stochastic dynamical systems. In these systems, the next state
depends not only on the current state but also on probabilistic factors.

In discrete time, we formalize stochastic dynamical systems using a state space S and
a transition probability function P (x,A), specifying the probability of transitioning from
a state x ∈ S to a measurable set of states A ⊆ S in one time step. We will consider
autonomous systems, where the transition probability P (x,A) remains constant over time.
Within this framework, sequential data is modeled as a Markov chain with values in S:

X = {X0, X1, X2, . . . },

where each random variable Xt represents the state of the system at time t and is dis-
tributed according to µ[t]. Here, µ denotes the initial distribution of the states, and µ[t]

the distribution after t time-steps.

Our objective is to learn, in a supervised setting, the regression function fρ, defined
pointwise by

fρ(x) = E[Xnext | X = x ],

3
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in order to best estimate the next expected value of the system’s state. Tackling this
forecasting problem requires moving beyond the classical statistical learning assumptions,
where data is usually assumed to be independent and identically distributed, an ideal-
ization that fails in this setting. Extending classical results to dynamical systems thus
presents two main challenges: dependency, which introduces correlations between obser-
vations, and non-stationarity, which causes changes in the data distribution over time.

The probabilistic framework of Markov chains and transition probability functions en-
ables analysis of the system’s behavior over time, including the study of long-term stability
and convergence. To achieve our results, we restrict our analysis to a class of dynami-
cal systems that ensure long-term convergence, effectively weakening the assumption of
identical distributions, by employing the following ergodicity assumption: there exists a
unique probability measure π on S satisfying

µ[t] t→∞−−−→ π

for any starting probability measure µ, meaning limt→∞ µ[t] − π = 0. In particular, we
utilize the norm  · (Cs(S))∗ in the dual of the Hölder space Cs(S), and require that this
convergence occurs at a sufficiently fast rate. This assumption ensures that the chain X
is asymptotically stationary, and thus it eventually behaves as samples from the limiting
measure π, allowing us to derive stable long-term properties of the learning process.

Forecasting Forecasting in stochastic dynamical systems is closely related to the well-
studied area of time series analysis, where the goal is to predict future values of a sequence
of observations indexed in time. Classic approaches often assume some form of stationarity,
where the statistical properties (mean, variance, autocorrelation structure) remain con-
stant over time. Under these assumptions, Autoregressive (AR), Moving Average (MA),
and combined ARMA models have become standard tools. These models capture tempo-
ral dependencies by expressing the current observation as a function of a finite number
of past values and past random errors. Parameter estimation in such models typically
involves techniques like Least Squares, Maximum Likelihood Estimation, or Yule-Walker
equations, among others.

Beyond these linear models, techniques such as moving averages or differencing can be
used to address basic trends, and more specialized time-series methods have been proposed
to capture certain behaviors (eg., irregular volatility). While these approaches offer well-
established statistical procedures, they typically rely on strong assumptions of stationarity
or limited dependence and often target narrow classes of problems. As a result, they do
not provide a unifying framework that can handle the rich variety of real-world dynamical
systems, particularly those exhibiting highly nonlinear dynamics.

On the side of statistical learning, approaches often assume access to complete datasets
upfront (batch or offline learning), with limited emphasis on dynamical scenarios like se-
quential forecasting. As we mentioned before, these methods are typically framed in static
settings rather than through the lens of dynamical systems or temporal dependencies. This
is particularly evident in techniques like kernel methods, where explicit learning guarantees
for dynamical systems are not established.

Contribution To address these challenges, we propose an Online Learning Algorithm
(OLA) in a Reproducing Kernel Hilbert Space (RKHS) for forecasting in stochastic dy-
namical systems. For tasks such as time series forecasting, optimal control, and system
identification, where data arrives sequentially, online learning algorithms are a natural
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choice. Unlike traditional batch learning, online learning algorithms process incoming
data incrementally, continuously updating the model.

The OLA presented in this work is an SGD-type algorithm given by the update

ft+1 := ft − pt

ft(xt)− xt+1


Kxt − λt ft


,

where at each step, a new data pair (xt, xt+1) is observed. Rather than assuming sta-
tionarity, we build on the theory of ergodic Markov chains and derive non-asymptotic
bounds, thereby bridging a gap between theoretical statistical learning and real-world ap-
plications. Specifically, we show convergence rates in expectation for ft → fρ as t → ∞,
where fρ is the target regression function. This framework unifies techniques from sta-
tistical machine learning and stochastic systems analysis, broadening the applicability of
kernel-based methods and offering new insights into learning in dynamical environments.

Outline The thesis is organized into five chapters. Chapter 1 reviews the foundations
of probability theory, recalling basic definitions from measure theory, random variables,
and stochastic processes. Chapter 2 covers Machine Learning with Kernels in the su-
pervised learning framework, including reproducing kernel Hilbert spaces (RKHS), batch
and online regression, and learning bounds under i.i.d. assumptions. Chapter 3 addresses
Stochastic Dynamical Systems and Markov Chains, covering fundamental concepts such
as ergodicity, irreducibility, and aperiodicity. Chapter 4 constitutes the core contribution
of this work by proposing a kernel-based online learning algorithm and proving the main
theorem concerning learning bounds for the algorithm. Finally, Chapter 5 outlines fu-
ture directions, proposing potential improvements, addressing learning for more general
state-spaces, and relaxing independence assumptions.





Chapter 1

Background: Probability Theory

This chapter provides an introduction to the fundamental concepts of probability the-
ory, essential for both machine learning and stochastic dynamical systems. Key concepts
will be briefly introduced, ranging from random variables and probability distributions to
stochastic processes and filtrations. Probability theory arises a specific instance of the
more abstract field of measure theory. The latter provides an appropriate framework to
rigorously ‘measure’, as a unifying language, general mathematical objects such as sets,
functions and even random phenomena. We will try to provide sufficient definitions with-
out delving deep into the topic. For more detailed discussions, refer to [18], [23], [17], [1].
For this part, classical notation commonly used in the literature on the subject will be
employed.

1.1 Probability Distributions and Random Variables

1.1.1 Measure Theory

Randomness, as an alternative to determinism, in modern mathematics has been formal-
ized systematically with the language of random variables and probability distributions.
These quantitatively describe uncertainty and allow us to make some predictions when
incomplete or noisy data is available. This framework is particularly well-suited to our
goal of predicting and understanding complex phenomena that involve some degree of
randomness.

The key concept of measure theory we introduce is that of a measure, which is defined
based on a particular set structure, the σ-algebra.

Definition 1.1.1 (σ-algebra). Let Ω be a non-empty set and 2Ω its power set. A collection
A ⊆ 2Ω is called a σ-algebra (or σ-field) if it satisfies the following properties:

(i) Ω ∈ A;

(ii) if A ∈ A, then A∁ ∈ A;

(iii) if A,B ∈ A, then A ∪B ∈ A.

We call measurable space the couple (Ω,A) and measurable set an element A ∈ A.

We are thus endowing the set Ω with a structure closed under set operations of union
and complement. In particular, one has that A is closed under countable union.

7
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Example 1.1.2 An example of a σ-algebra is the Borel σ-algebra B(R), whose elements
are called Borel sets. These link the concept of a σ-algebra with another fundamental
mathematical structure, that of topology1. In fact, it is the smallest σ-algebra containing
all the open sets of the underlying topology, in this case, the usual euclidean topology on
R generated by all open intervals.

Definition 1.1.3 (Sub-σ-algebra). Given a measurable space (Ω,A), a sub-σ-algebra
of A is any σ-algebra F such that F ⊆ A. Moreover, since F ⊆ A, every set in F is also
in A, and thus every event measurable with respect to F is also an event measurable with
respect to A.

Now let’s see how we are actually able to “measure” the measurable sets that we just
introduced.

Definition 1.1.4 (Measure). Given a non-empty set Ω and a σ-algebra A on Ω, a (posi-
tive) measure is a function µ : A −→ [0,+∞] such that:

(i) µ(∅) = 0;

(ii) given (An)n≥1 ∈ A a countable family of disjoint sets , we have2

µ

 ∞

n=1

An


=

∞

n=1

µ(An).

A well-known example of a measure is the Lebesgue measure, which generalizes the
concept of length, area, and volume in Rn. The Lebesgue measure is pivotal in various
fields of mathematics, including integration theory and probability, as it allows for the
measurement of more intricate sets that arise in these contexts.

A simpler yet fundamentally important example is the Dirac measure, often referred
to as the Dirac delta measure.

Example 1.1.5 Given a non-empty set Ω, a Dirac measure centered at a point ω ∈ Ω
is a measure δω : A −→ [0,+∞] defined by

δω(A) := 1A(ω) =


1 if ω ∈ A,

0 if ω /∈ A,
∀A ∈ A.

where 1A is the usual indicator function 1A(ω) =


1 if ω∈A,

0 if ω/∈A.

The Dirac measure δω assigns full measure to the singleton set containing ω. This
measure is particularly useful in probability theory and functional analysis for modeling
deterministic outcomes within probabilistic frameworks.

A measure µ on a measurable space (Ω,A) is called finite if µ(Ω) < ∞. Otherwise, it is
called infinite. Within the class of infinite measures, there is a subclass with an important
property, called σ-finiteness. Many fundamental facts of measure and integration theory
that we will use in later chapters only hold for measures that are σ-finite.

Definition 1.1.6 (σ-Finite measure). Let µ be a measure on a measurable space (Ω,A).
Then µ is called σ-finite if there is a sequence A1, A2, . . . ∈ A with

∞
i=1Ai = Ω and, for

all i = 1, 2, . . ., µ(Ai) < ∞.
1A collection of subsets of X containing the whole set X and the empty set, closed under finite inter-

section and infinite union. Its elements are called open sets.
2This property is called σ-additivity.
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1.1.2 Probability Space

With these notions, we now introduce the framework in which probability theory develops,
the probability space.

Definition 1.1.7 (Probability Space). A probability space is a triplet (Ω,A,P), where:

• Ω is the sample space, the set of all possible outcomes of an experiment;

• A is a σ-algebra on Ω, whose elements are called events;

• P is a probability measure on A: a measure whose image is in the interval [0, 1]
and such that P(Ω) = 1.

Remark 1.1.8 We denote with M(Ω,A), or simply M(Ω) when the σ-algebra is implicit,
the set of all possible measures on the measurable space; while M+(Ω) and P(Ω) denote
respectively the set of positive measures and the set of probability measures on (Ω,A).

The conditions we have placed on the measure provide us with a tool to consistently
quantify the possible outcomes of a random phenomenon. We can model these phenomena
with random variables.

1.1.3 Random Variables

Definition 1.1.9 (Random Variable). Given a probability space (Ω,A,P), consider a
function X : Ω → Ω′, where (Ω′,A′) is a measurable space. The function X is said to be
a random variable if it is (A,A′)-measurable, meaning that for every A ∈ A′,

X−1(A) ∈ A.

We will primarily focus on real-valued random variables, where Ω′ = R and A′ =
B(R), the Borel σ-algebra3. In this context, the measurability condition is equivalent to

X−1((−∞, a]) ∈ A ∀a ∈ R.

We will denote random variables with uppercase letters, such as X, and use lowercase
letters, such as x, for their corresponding observations (or realizations), expressed as
X(ω) = x. Our focus will be on describing the values that X can assume in relation to
the modeled uncertain phenomenon through its probability distribution.

Before proceeding, it is useful to introduce the concept of generated σ-algebra, which
will be important later when we discuss filtrations and conditional expectations.

Definition 1.1.10 (Generated σ-algebra). Let F be a collection of subsets of a set Ω.
The σ-algebra generated by F , denoted by σ(F), is the smallest σ-algebra containing
F . Formally, it is the intersection of all σ-algebras on Ω that contain F :

σ(F) =


{A ⊆ 2Ω | A is a σ-algebra and F ⊆ A}.

In particular, if X : Ω → Ω′ is a function (such as a random variable) from Ω to a
measurable space (Ω′,B), the σ-algebra generated by X, denoted by σ(X), is defined
as the σ-algebra generated by the collection of pre-images of sets in B under X:

σ(X) := σ

{X−1(A) | A ∈ B}


.

This means that σ(X) is the smallest σ-algebra on Ω such that X is measurable with
respect to it.

3The Borel σ-algebra B(R) can be generated from the intervals (−∞, a] with a ∈ R.
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One interesting σ-algebra will be the one generated by the Cartesian product of mea-
surable spaces.

Definition 1.1.11 (Product σ-algebra). Let (Ω1,A1), . . . , (Ωn,An) be measurable spaces
and Ω := Ω1 × . . .× Ωn. Then

A1 ⊗ . . .⊗An :=

n

i=1

Ai := σ


n

i=1

Ai : Ai ∈ Ai, i = 1, . . . , n


(1.23)

is called the product σ-algebra of the σ-algebras Ai, i = 1, . . . , n.

Note that the product σ-algebra A1⊗ . . .⊗An is not the Cartesian product A1× . . .×An.
Instead, the product σ-algebra is generated by the set system of all Cartesian products of
elements of the σ-algebras A1, . . . ,An. In Chapter 3, we give an equivalent specification
of a product σ-algebra, using projection mappings.

Building on the concept of the product σ-algebra, we now define the associated product
measure for σ-finite measures on these spaces.

Proposition 1.1.12 (Product measure). Let (Ωi,Ai, µi) be measure spaces with σ-finite
measures {µi}, i = 1, . . . , n. Then there exists a uniquely defined measure, denoted by
µ1 ⊗ · · ·⊗ µn, on the product space


n

i=1

Ωi,

n

i=1

Ai


,

satisfying

µ1 ⊗ · · ·⊗ µn(A1 × · · ·×An) = µ1(A1) · · ·µn(An), ∀(A1, . . . , An) ∈ A1 × · · ·×An.

This measure is σ-finite as well, and it is called the product measure of µ1, . . . , µn.

Definition 1.1.13 (Probability distribution). Let (Ω,A,P) be a probability space, and
let X : Ω → Ω′ be a random variable, where (Ω′,A′) is a measurable space.

(i) The distribution (or law) of X, denoted by L(X) or PX , is the probability measure
PX := P ◦X−1 on (Ω′,A′), defined by

PX(A) := P(X−1(A)), ∀A ∈ A′.

(ii) For a real random variable X : Ω → R, where (Ω′,A′) = (R,B(R)), the distribution
function (or cumulative distribution function, CDF) of X is the function FX :
R → [0, 1], defined by

FX(x) := P(X ≤ x), x ∈ R.

(iii) A random variable X is said to have distribution µ if L(X) = µ.

(iv) A family of random variables (Xi)i∈I is called identically distributed if PXi = PXj

for all i, j ∈ I.

This framework allows us to shift our focus from individual outcomes in the sample
space Ω to properties of X itself by studying the measure PX . Particularly for real-valued
random variables, this approach facilitates the use of tools from real analysis, such as
integration with respect to these measures.
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Theorem 1.1.14. For any distribution function F , there exists a real random variable X
with FX = F .

Definition 1.1.15. A random variable X on (Ω,A,P) is called discrete if there exists a
countable set {x1, x2, . . . } such that

P(X ∈ {x1, x2, . . . }) = 1.

In other words, X takes values in a finite, or at most countable, set of points, each
with a positive probability.

Definition 1.1.16. A random variable X is called continuous if the probability that it
takes any specific value is zero, that is

P(X = x) = 0 for every x ∈ R.

An even stronger condition than continuity is the one characterizing absolutely con-
tinuous random variables, which possess the valuable property of admitting a probability
density function.

Definition 1.1.17. A random variable X on (Ω,A,P) is said to be absolutely contin-
uous if the induced probability measure PX is absolutely continuous with respect to the
Lebesgue measure λ on R, that is, if

λ(A) = 0 ⇒ PX(A) = 0 ∀A ∈ B(R). (1.1)

This property ensures that the variable X does not assign positive probability to
“small” sets, where “small” means sets with zero Lebesgue measure. In particular, it
prevents X from assigning positive probability to individual points, instead distributing
the probability over continuous intervals. As mentioned before, absolute continuity is a
stronger condition than mere continuity because it guarantees the existence of probability
density functions.

Definition 1.1.18 (Density function). The probability density function of an abso-
lutely continuous random variable X is a function pX : R −→ [0,∞) such that for every
A ∈ B(R)

P(X ∈ A) =



A
pX(x)dx.

Intuitively, the probability density function pX describes how probability is concen-
trated in the outcome space and thus satisfies the important and useful property



R
pX(x)dx = 1. (1.2)

Example 1.1.19 (Uniform Distribution) A classic example of an absolutely continuous
random variable is one that is uniformly distributed on the interval [0, 1].

Let X be a random variable with density function

pX(x) =


1 if 0 ≤ x ≤ 1,

0 otherwise.

This X is said to be distributed as U(0, 1). Intuitively, X is equally likely to fall
anywhere in the interval [0, 1]. For any sub-interval [a, b] ⊆ [0, 1], the probability that X
lands in [a, b] is simply b− a.
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Definition 1.1.20 (Expectation). Let X be a real-valued random variable on (Ω,A,P).
The expected value (or mean) of X is defined as

E[X] =



R
x dPX(x),

where the distribution ofX is PX and provided the integral exists (i.e.,

R |x| dPX(x) < ∞).

Remark 1.1.21 While the expected value of a general random variable is defined via
integration with respect to its distribution, in the case of an absolutely continuous random
variable X with probability density function pX , the expected value simplifies to

E[X] =



R
x pX(x) dx.

This expression calculates the weighted average of all possible values that X can assume,
weighted by their probability density.

In situations involving multiple densities or variables, or when it is necessary to specify
the distribution explicitly, we use the notation

Ex∼PX
[X] = Ex[X] =



R
xPX(x),

which we read as “the expectation of X with respect to observations x distributed according
to PX”.

Random Vectors

Extending random variables to higher-dimensional spaces is fundamental in applied sci-
ences, allowing the modeling of multidimensional phenomena that describe signals and
data in high-dimensional spaces. A (real) random vector X of dimension k ∈ N>0 is a
measurable function from the probability space (Ω,A,P) to Rk, that is,

X : (Ω,A) −→ (Rk,B(Rk)),

such that for every Borel set A ∈ B(Rk), the preimage X−1(A) ∈ A.
Specifically, we can write

X = (X1, X2, . . . , Xk),

where each component Xi : Ω → R is a real-valued random variable. The random vector
X induces a probability measure on (Rk,B(Rk)), known as the joint distribution of X,
defined by

PX(A) := P

X−1(A)


, ∀A ∈ B(Rk).

If X is absolutely continuous, its joint distribution PX is absolutely continuous with
respect to the Lebesgue measure λk on Rk, and there exists a joint probability density
function pX : Rk → [0,∞) such that

PX(A) =



A
pX(x1, . . . , xk) dx1 · · · dxk, ∀A ∈ B(Rk).

The marginal distribution of a component Xi is the probability measure PXi on
(R,B(R)) defined by

PXi(B) := PX


{(x1, . . . , xk) ∈ Rk | xi ∈ B}


, ∀B ∈ B(R).
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If X has a joint density pX, then the marginal density of Xi is given by

pXi(xi) =



Rk−1

pX(x1, . . . , xk) dx1 · · · dxi−1 dxi+1 · · · dxk.

The concept of expectation extends naturally to random vectors. The expected value
(or mean vector) of X is defined as

E[X] := (E[X1],E[X2], . . . ,E[Xk]) ,

where each component E[Xi] is calculated with respect to the marginal distribution PXi

as

E[Xi] =



R
xi dPXi(xi).

In contexts where the dimension is not crucial, we will refer to multivariate random
variables simply as random variables. This simplifies the language and emphasizes that
many concepts apply regardless of dimensionality.

1.2 Independence

The notion of independence is central to probability theory and plays a pivotal role in both
theoretical and applied settings. Informally, two events are independent if the occurrence
of one does not affect the likelihood of occurrence of the other. This concept naturally ex-
tends to collections of events and to random variables, ultimately facilitating factorization
properties of joint distributions that greatly simplify analysis in more complex models.

Definition 1.2.1 (Independence of Events). Let (Ω,A,P) be a probability space, and let
(Ai)i∈I be a (finite or countably infinite) collection of events Ai ∈ A indexed by some set
I. We say that the family (Ai)i∈I is independent if for every finite subset J ⊂ I, we
have

P


j∈J
Aj


=



j∈J
P(Aj). (1.3)

In particular, for two events A,B ∈ A, this reduces to

P(A ∩B) = P(A)P(B).

If no such factorization can be achieved for a given collection of events, we say that the
events are dependent.

Remark 1.2.2 Independence of an infinite family (Ai)i∈I is thus a strong condition,
requiring this multiplicative structure for every finite subfamily. Independence is strictly
stronger than mere pairwise independence, as it requires joint factorization across all finite
subsets, not just pairs.

The definition of independence for events can be extended to σ-algebras and hence to
random variables.

A family of σ-algebras (Ai)i∈I is said to be independent if no one of them provides any
information about the others. More concretely, for every finite subset J ⊂ I, whenever
we pick one event from each Aj , j ∈ J , their joint probability measure factorizes into
the product of the individual probabilities. Since each random variable Xi generates a
σ-algebra σ(Xi) of events in Ω, this notion naturally extends to define independent
random variables.
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Definition 1.2.3 (Independence of Random Variables). Let (Xi)i∈I be a family of ran-
dom variables on (Ω,A,P) taking values in measurable spaces (Ωi,Ai), respectively. The
random variables (Xi)i∈I are independent if the family of σ-algebras (σ(Xi))i∈I is in-
dependent. Equivalently, for every finite J ⊂ I and every collection of measurable sets
(Aj)j∈J with Aj ∈ Aj , we have

P


j∈J
{Xj ∈ Aj}


=



j∈J
P(Xj ∈ Aj).

When each Xi in an independent family (Xi)i∈I shares the same distribution, we say
that (Xi)i∈I are i.i.d., i.e., independent and identically distributed.

Independence is a fundamental concept for building probabilistic models that assume
no underlying dependencies between components. Such assumptions are frequently em-
ployed in statistical learning methods, stochastic modeling, and the analysis of algorithms,
providing tractability and simplifying both theoretical analysis and numerical computa-
tion.

One particularly useful consequence of independence is the following theorem, which
relates the expectation of a product of independent random variables to the product of
their expectations.

Theorem 1.2.4 (Expectation of the product of random variables). Let Yi : (Ω,A, P ) →
(R,B), i = 1, . . . , n, be real-valued random variables that are non-negative or with finite
expectations, and assume that Y1, . . . , Yn are independent. Then,

E


n

i=1

Yi


=

n

i=1

E(Yi).

1.3 Conditioning and Filtrations

1.3.1 Conditional Expectation

In probability theory, the concept of conditioning is fundamental when we want to update
our understanding of a random phenomenon upon receiving some additional information.
We begin by considering conditioning on events and then naturally extend this idea to
conditioning on entire collections of events (i.e., on σ-algebras). This leads us to the notion
of a conditional expectation of a random variable given a σ-algebra.

Definition 1.3.1 (Conditional Probability Given an Event). Let (Ω,A,P) be a probability
space, and consider an event A ∈ A with P(A) > 0. The conditional probability of an
event B ∈ A given A is defined as

P(B | A) :=
P(A ∩B)

P(A)
.

This construction induces a new probability measure P(· | A) on A, normalized so that
P(A | A) = 1.

Similarly, if X : Ω → R is a (real) random variable, we can consider its conditional
distribution given A:

PX|A(B) :=
P(X ∈ B) ∩ P(A)

P(A)
, B ∈ B(R).
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The corresponding conditional expectation of X given A is

E[X | A] :=


R
x dPX|A(x).

Remark 1.3.2 While this notion is straightforward, it is limited because we are only
conditioning on a single event A. To capture the notion of conditioning on richer forms
of “information”, we now move to conditioning on a sub-σ-algebra F ⊆ A, which can be
viewed as encoding a system of events that provide partial information.

Definition 1.3.3 (Conditional Expectation with respect to a σ-algebra). Let (Ω,A,P) be
a probability space, F ⊆ A a sub-σ-algebra, and let X : Ω → R be an integrable random
variable (i.e. E[|X|] < ∞). A random variable Y : Ω → [0,+∞] is called a conditional
expectation of X given F , denoted by E[X | F ], if:

1. Y is F-measurable,

2. For all F ∈ F , 

F
Y (ω) dP(ω) =



F
X(ω) dP(ω).

Such a Y exists and is unique up to sets of P-measure zero.

Remark 1.3.4 Intuitively, E[X | F ] is the best F-measurable approximation to X (in the
L1 sense). If we think of F as representing the information available to us, then E[X | F ]
is the “updated expectation” of X once we incorporate that information. If we choose
F = {∅, A,Ac,Ω}, the conditional expectation reduces to the constant random variable
E[X | A], thus generalizing the event-based case.

From the definition, we can recover conditional probability given F by applying
the conditional expectation operator to indicator functions as

P(B | F) := E[1B | F ], B ∈ A.

1.3.2 Conditioning on a Random Variable

We have introduced conditional expectation with respect to a sub-σ-algebra F ⊆ A. One
common scenario is when this σ-algebra is generated by a particular random variable
X : Ω → (E, E). Conditioning on the random variable X can be viewed as conditioning
on the information encoded by the values thatX takes. Formally, we define the conditional
expectation of Y given X as the conditional expectation of Y with respect to σ(X).

Definition 1.3.5 (Conditional Expectation Given a Random Variable). Let (Ω,A,P) be
a probability space, X : Ω → (E, E) a random variable, and let Y ∈ L1(P), meaning
E[|Y |] < ∞.

The conditional expectation of Y given X is defined as

E[Y | X] := E[Y | σ(X)].

By definition, E[Y | X] is σ(X)-measurable and satisfies


X−1(A)
E[Y | X](ω) dP(ω) =



X−1(A)
Y (ω) dP(ω), for all A ∈ E .

In analogy with conditioning on an event, for x ∈ E, we write

E[Y | X = x]

provided that the integral exists, and call it a conditional expectation of Y with respect
to X. If there is no ambiguity, we may omit reference to P and simply write E[Y | X].
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Proposition 1.3.6 (Existence and Uniqueness). Let (Ω,A,P) be a probability space, F ⊆
A a sub-σ-algebra, and let Y ∈ L1(P). Then there exists a random variable E[Y | F ] that
is F-measurable and satisfies



F
E[Y | F ](ω) dP(ω) =



F
Y (ω) dP(ω) for all F ∈ F .

Moreover, this conditional expectation is unique up to P-null sets.

Definition 1.3.7. We can define the conditional probability of an event A given
X as

P(A | X) := E[1A | X].

For each fixed x in the image of X, this gives a probability measure P(· | X = x) on A.

Remark 1.3.8 The expression E[Y | X = x] is defined PX -almost surely. That is, it is
well-defined for almost every x with respect to the distribution of X.

In this way, we are updating our expectations and probabilities based on the specific
valueX takes. This perspective is especially useful in scenarios involvingMarkov processes,
where knowing the current state (the realized value of X) allows us to better understand
the behavior of the system moving forward.

Proposition 1.3.9 (Properties of Conditional Expectation). Let (Ω,A,P) be a probability
space and F ⊆ A a sub-σ-algebra. For integrable random variables X,Y : Ω → R, the
conditional expectation E[· | F ] satisfies:

(i) Linearity: For all constants λ, µ ∈ R,

E[λX + µY | F ] = λE[X | F ] + µE[Y | F ].

(ii) Stability: If Z is F-measurable, then

E[ZX | F ] = Z E[X | F ] a.s..

In particular, E[Z | F ] = Z.

(iii) Tower property: If F1 ⊆ F2 are sub-σ-algebras, then

E

E[X | F2] | F1


= E[X | F1].

This is also known as ’Law of total expectation’ and, in the case F1 = {∅,Ω}, it
implies

E

E[Z] | F


= E[Z].

(iv) Independence: If X is independent of F , then

E[X | F ] = E[X].

These fundamental properties mirror those of the usual expectation and ensure that
conditioning does not break essential rules like linearity. In particular, all these properties
also hold when we consider E[Y | X] by simply replacing F with σ(X).

In machine learning and stochastic dynamical systems, these conditional tools play
a fundamental role. They allow us to incorporate known information (such as observed
features in supervised learning or past states in a dynamical model) into probability dis-
tributions. As a result, conditional expectations and conditional distributions form the
backbone of many learning algorithms and methods for handling uncertainty.
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1.3.3 Filtrations

As we have seen, conditional expectations and probabilities naturally arise when we focus
on a certain subset of events, representing the information currently known. In many
applications, especially those involving time-evolution (such as stochastic processes), our
information about the system accumulates progressively. To capture this formally, we
introduce the concept of a filtration.

Definition 1.3.10 (Filtration). Let (Ω,A,P) be a probability space, and let T be a totally
ordered index set (often T = {0, 1, 2, . . . } or T = [0,∞)). A filtration (Ft)t∈T is a family
of sub-σ-algebras of A such that for every s, t ∈ T with s ≤ t we have

Fs ⊆ Ft.

Remark 1.3.11 Filtrations are central in the theory of stochastic processes and will play
a crucial role in defining adapted processes, and Markov processes. Intuitively, the idea is
that at each time t, certain aspects of the system have been observed, and the collection Ft

encodes exactly what is known at that point. As t grows, we gather more observations and
therefore have a richer σ-algebra Ft. This helps to bridge the gap between the intuitive
flow of information through time and the formalism of σ-algebras which would otherwise
not encapsulate time or causality by itself.

Example 1.3.12 Let us consider a two-step experiment where we roll a fair six-sided die
twice. The sample space is

Ω = {1, 2, 3, 4, 5, 6}× {1, 2, 3, 4, 5, 6},

and we equip Ω with the σ-algebra A = 2Ω and the probability measure P induced by
assuming each of the 36 outcomes (ω1,ω2) is equally likely with probability 1/36.

Define the random variables X1(ω) = ω1 and X2(ω) = ω2, corresponding to the results
of the first and second rolls, respectively. We consider three distinct times: before any
rolls have occurred (time 0), after observing the outcome of the first roll X1 but before
rolling the die the second time (time 1), and finally after both rolls have been observed
(time 2).

The filtration (Ft)t=0,1,2 associated with the natural information flow of this experiment
is:

F0 = {∅,Ω}, F1 = σ(X1), F2 = σ(X1, X2).

At time 0 we know nothing about the outcome. The only events we can determine
with certainty, i.e. measure, are the trivial ones: “no outcome” (∅) and “some outcome
occurs” (Ω). Thus,

F0 = {∅,Ω}.

At time 1 we know X1(ω) = ω1, the result of the first roll. The σ-algebra F1 = σ(X1)
consists of all events that can be expressed in terms of knowing the first coordinate.
Concretely, any event in F1 looks like

A× {1, 2, 3, 4, 5, 6} with A ⊆ {1, 2, 3, 4, 5, 6}.

Since there are 26 = 64 subsets of {1, . . . , 6}, we have

|F1| = 64.
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At time 2 we know both X1 and X2. The σ-algebra F2 = σ(X1, X2) is just A = 2Ω,
since with both coordinates known we can distinguish every single outcome in Ω. Thus,

F2 = 2Ω,

and since |Ω| = 36, it follows that
|F2| = 236.

We see the natural chain of information: F0 ⊂ F1 ⊂ F2. This filtration thus neatly
captures the idea of information accumulating over the course of the experiment.

1.4 Stochastic Processes

We conclude this chapter with a brief introduction to stochastic processes, which will
serve as a fundamental tool in Chapter 3. Stochastic processes provide a framework for
modeling systems that evolve over time with inherent randomness. They are particularly
useful for studying phenomena where future states depend on probabilistic rules, making
them crucial for understanding dynamical systems subject to random influences.

Definition 1.4.1. A stochastic process is a collection of random variables (Xt)t∈T ,
where T is an index set representing time. Each random variable Xt maps the sample
space Ω of a probability space (Ω,A,P) to a measurable space (S,B) usually called state
space, which can be either discrete or continuous. The index set T can be:

• Discrete, such as T = N, representing discrete-time processes where the evolution
occurs at integer time steps, or

• Continuous, such as T = R+, representing continuous-time processes where the
evolution is tracked over a continuous interval.

In both cases the process represents the evolution of the random variable Xt over the
parameter t ∈ T , typically representing time.

One important class of stochastic processes is the one of Markov processes, which
satisfy the Markov property: the future state of the process depends only on the current
state, not on the sequence of events that preceded it. Formally we have the following
definition.

Definition 1.4.2. For a discrete-time Markov process (also called Markov chain)
(Xt)t∈N, the property is given by

P(Xt+1 ∈ A | Xt, Xt−1, . . . , X0) = P(Xt+1 ∈ A | Xt), (1.4)

where A is a measurable subset of the state space.

In the case of a discrete-time Markov process with a finite state space, the evolution of
the system can be described by a transition matrix as follows: let S be a finite state space,
and let (Xn)n∈N be a discrete-time Markov process on S. The Markov property implies
that the process can be fully characterized by the probabilities of transitioning from one
state to another at each time step. These probabilities are encoded in a matrix called the
transition matrix.

The transition matrix P = (p(x, y))x,y∈S is defined as

p(x, y) := P(Xn+1 = y | Xn = x), x, y ∈ S,
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where p(x, y) represents the probability of transitioning from state x to state y in one time
step.

Each row of the matrix P corresponds to a probability distribution over the possible
next states, meaning that the entries of each row must sum to 1:



y∈S
p(x, y) = 1 for all x ∈ S.

This type of matrix is called a stochastic matrix, and it captures the dynamics of the
Markov chain over time. By multiplying the current state distribution by the transition
matrix, we can obtain the distribution of the process at the next time step. This mechanism
is fundamental for modeling the evolution of systems with probabilistic transitions.

We later explore how to transpose this concept in the case of continuous state spaces.
The following definition relates the concept of a filtration to the measurability of a

stochastic process, introducing the idea of adaptedness.

Definition 1.4.3 (Adapted Process). Let (Xt)t∈T be a stochastic process taking values
in a measurable space (S,B), and let (Ft)t∈T be a filtration on (Ω,A,P). The process
(Xt)t∈T is said to be adapted to (Ft)t∈T if for every t ∈ T , the random variable Xt is
Ft-measurable.

Remark 1.4.4 Naturally, every stochastic process is adapted to its natural filtration,
defined as (FX

t )t∈T , where
FX
t := σ(Xs : s ≤ t).

In this case, the filtration FX
t represents all the information that can be derived from the

process (Xs)s≤t up to time t.

In this sense, the Markov property can be stated as follows: the conditional distribution
of the next state Xt+1, given the entire past (Xs)s≤t, depends only on the current state
Xt. Formally, this means that for a stochastic process

P(Xt+1 ∈ A | Ft) = P(Xt+1 ∈ A | Xt) for all measurable A ⊆ S.

1.4.1 Classification of Stochastic Processes

Stochastic processes can be broadly categorized based on the nature of the state space
and the indexing set as follows:

1. Discrete-Time and Discrete-State Processes: These processes evolve in dis-
crete time steps, and the state space is finite or countable. A typical example is
the one previously mentioned regarding Markov chains, where the system moves
between states according to probabilities specified by a transition matrix.

2. Discrete-Time and Continuous-State Processes: The time is still measured
in discrete steps, but the state space is continuous. For instance, Markov processes
with transition probability kernels are a specific example that we will examine in the
Chapter 3.

3. Continuous-Time and Discrete-State Processes: The state changes at random
times, which may follow certain probability distributions. For instance, a Poisson
process counts the occurrences of random events over continuous time.

4. Continuous-Time and Continuous-State Processes: These processes involve
continuous evolution in both time and state space. Brownian motion is a classic
example, used to model various physical systems like the motion of atoms.





Chapter 2

Machine Learning with Kernels

Machine learning provides a framework for making predictions and extracting patterns.
In Chapter 1, we introduced the probabilistic foundations underpinning much of machine
learning theory, focusing on essential concepts such as random variables, distributions, and
expectations. Building on these principles, we introduce supervised learning, an approach
of learning by examples, where the objective is to infer relationships between inputs and
outputs from labeled data.

Specifically, our goal in this chapter is to introduce kernel methods, a class of algorithms
that combine theoretical rigor with practical flexibility.

Kernel methods offer a powerful alternative for introducing non-linearity into models.
While neural networks achieve this through hierarchical composition of non-linear func-
tions, kernel methods rely on mapping data into high-dimensional feature spaces, where
linear algorithms can operate effectively. This approach is grounded in the mathematical
framework of reproducing kernel Hilbert spaces (RKHS), which we will formally introduce.
Kernel methods have achieved widespread success in various tasks, including regression,
classification, and clustering, due to their balance between performance, computational
efficiency, and interpretability.

The chapter is structured as follows. We begin by formalizing the problem of supervised
learning in the classical i.i.d. setting, introducing key notions such as hypothesis spaces,
loss functions, and risk minimization. Next, we examine the theory of RKHS and kernel
functions, laying the groundwork for kernel-based learning methods. We then discuss
specific online-learning algorithms as applications of these methods, including recursive
least squares and Stochastic Gradient Descent (SGD), emphasizing their ability to handle
non-linear relationships in data. Finally, we conclude with an overview of learning bounds,
which provide theoretical guarantees on the performance of these kernel-based algorithms.

2.1 Supervised Learning: The Classical Setting

The goal of supervised learning is to find an input/output relation f̂ from a training set

{(x1, y1), . . . , (xn, yn)}

of input/output pairs (called samples or examples). Given a new input xnew, the function
f̂ should predict ynew as the output f̂(xnew). When f̂ provides good predictions for
previously unseen data, we say that f̂ generalizes.

In this section we formalize this idea by adopting the classical framework of Statistical
Learning Theory. We begin with a precise definition of the problem and explore its key
components: probability distribution, loss function, expected risk, and hypothesis space.

21
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2.1.1 Setting

The fundamental components of supervised learning are:

(i) A probability space (Ω,A,P), and a random variable Z = (X,Y ) : Ω → X × Y,
where X is called the input space, Y the output space, and X ×Y the data space. We
denote the law of Z by ρ ∈ P(X × Y).

(ii) A measurable function ℓ : Y × Y → [0,∞), called loss function.

Remark 2.1.1 The data space usually comes with a topology, and the corresponding
Borel σ-algebra is considered. However, other choices are also possible and may be used.

It’s worth mentioning that in the upcoming chapters, we’ll be using the Borel σ-algebra
in our interest.

For any measurable function f : X → Y we define the expected risk (or expected loss):

L(f) = E(x,y)∼ρ


ℓ

y, f(x)


=



X×Y
ℓ

y, f(x)


dρ(x, y).

The learning problem is then the minimization problem

min
f :X→Y

L(f),

assuming that the probability distribution ρ is fixed but unknown, and the only available
information about ρ is the finite data {(x1, y1), . . . , (xn, yn)}, where we assume that these
samples are independent and identically distributed from ρ.

It is evident that minimizing over all measurable functions {f : X → Y} is infeasible.
Moreover, since the data is finite, we need to define a data-driven algorithm that selects
f as a good approximation based on the samples {(x1, y1), . . . , (xn, yn)} and we have to
establish a method to evaluate how closely the obtained solution approximates the ideal
one.

Remark 2.1.2 In this chapter, the data space X × Y is assumed to be equipped with a
fixed probability distribution ρ and each observation (xi, yi) is then drawn i.i.d. according
to ρ. While the i.i.d. assumption is strong, since it implies that data points do not influence
each other and are drawn from the same underlying distribution, it is the classical starting
point for theoretical analysis.

Different options for the output space Y correspond to distinct types of learning prob-
lems. The most common choices in the supervised learning setting are:

• Regression: This corresponds to Y = R, while multivariate regression uses Y =
Rd, d ∈ N.

• Classification: Commonly, Y = {−1, 1} for the binary case and Y = {1, 2, . . . ,m}
for multiclass classification (in this case with m ∈ N distinct categories).

More intricate outputs can also be considered, for instance, by combining the ones
above through product spaces.

Let’s examine a simple example of regression next.

Example 2.1.3 (Regression) Consider the case where Y = R. Suppose the joint distri-
bution ρ on X × Y is governed by the relationship

yi = f∗(xi) + η i,
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where f∗ is an unknown function, η > 0 is a fixed noise level, and i is an i.i.d. random
variable with E[i] = 0. A common example is i ∼ N (0, 1), implying that conditioned on
xi, each yi is normally distributed around f∗(xi) with variance η2.

In statistical learning, this scenario is often called random design regression when (xi)
itself is drawn randomly from a distribution on X . Then each pair (xi, yi) is sampled i.i.d.
from ρ. Our goal is to estimate the underlying function f∗ from these noisy observations.

Remark 2.1.4 (Time-series) In many practical situations, however, the inputs {x1, x2, x3, . . . }
are not merely independent points but consecutive observations in time or space. For in-
stance, consider a time series {xt}t=1,2,... describing the state of a system at each discrete
time t. Under the classical regression assumption, we still treat {(xt, yt)} as i.i.d. samples;
however, this may be unrealistic in most cases. In Chapter 4, we will revisit regression
tasks without the i.i.d. requirement on the data, such as Markov samples, where the un-
derlying distribution is not fixed.

Example 2.1.5 (Classification) For Y = {−1,+1}, each ρ(· | x) is a distribution on two
labels:

ρ

y | x


=


ρ

y = 1 | x


, ρ


y = −1 | x


.

If f : X → R is a real-valued predictor, then the set

{x ∈ X : f(x) = 0}

is called the decision boundary, since classification decisions are usually determined by the
sign of f(x). Points where f(x) = 0 mark the exact boundary between predicting +1
versus −1.

As seen in the example above, the predictor f takes values in R instead of the binary
labeling set Y = {−1,+1}. This distinction is often a useful choice for the loss function,
which we can then write as ℓ : Y × Y ′ → [0,∞), where Y ′ is the range of the predictor
function f .

2.1.2 Target Function

The set of functions for which the expected error is well-defined is referred to as the target
space and is denoted by F . When the loss function is measurable with respect to both
arguments, this target space corresponds to the collection of all measurable functions. The
optimal solution to the learning problem is a function that minimizes the error, specifically:

inf
f∈F

L(f). (2.1)

Although achieving this infimum may not always be feasible, for many loss functions it is
possible to explicitly identify a minimizer fρ, known as the target function, which satisfies:

L(fρ) = min
f∈F

L(f).

Different choices of the loss function ℓ lead to different expected risks and, consequently,
to different solutions (or approximations) for the minimization problem. In the context of
regression tasks, which will be our central focus, the loss function is typically expressed as

ℓ(y, f(x)) = V (y − f(x)),

where V : R → [0,∞) serves as a penalty function. This penalty quantifies the cost
associated with deviations between the predicted value f(x) and the true label y, assigning
higher penalties to larger discrepancies.

Two widely used loss functions in regression are:
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• Square Loss: ℓ(y, a) = (y − a)2,

• Absolute Loss: ℓ(y, a) = |y − a|,

A useful way to analyze the target function and to ensure that the infimum in (2.1)
is achieved is through the inner risk. Note that, under suitable assumptions ([32] for
reference), we can decouple the integral as

L(f) =



X×Y
ℓ

y, f(x)


dρ(x, y) =



X



Y
ℓ

y, f(x)


dρ


y |x


dρX (x),

where ρX is the marginal distribution over X , and ρ(· | x) is the conditional distribution
given x. For each x ∈ X , we define the inner risk

Lx(a) :=



Y
ℓ

y, a


dρ


y |x


, a ∈ R.

Then

L(f) =



X
Lx


f(x)


dρX (x).

If for every x there is a real number ax minimizing Lx(a), then setting fρ(x) = ax
yields

Lx


fρ(x)


= min

a∈R
Lx(a), for almost all x.

By integrating over x with respect to ρX , it follows that fρ is indeed a global minimizer
of L. In many standard losses (e.g., squared or absolute), one can solve for ax explicitly,
thereby characterizing the target function fρ.

Example 2.1.6 (Square Loss) A fundamental example of the target function can be seen
when using the squared or absolute loss function.

Consider
ℓ

y, a


=


y − a

2
.

For a fixed x ∈ X , the inner risk is

Lx(a) =



Y


y − a

2
dρ

y | x


.

To find the minimizing a, one sets the derivative of Lx(a) with respect to a to zero:
d
daLx(a) = −2

 
y − a


dρ(y | x) = 0. Solving gives

a =


y dρ(y | x),

the conditional mean of y given x. Consequently, the corresponding target function is

fρ(x) =


y dρ


y | x


.

This is called the regression function for the squared loss.
If we instead consider the absolute value loss, ℓ(y, a) = |y− a|, one can similarly show

that the optimal choice at each x is the median of the conditional distribution ρ(· | x).
Remark 2.1.7 As we observed, the selection of loss function directly influences the in-
terpretation of the target function. Both the squared and absolute losses aim to estimate
specific characteristics of the conditional distribution ρ(y | x). However, the squared loss
prioritizes smoothness and sensitivity to variations in the conditional mean, while the
absolute loss focuses on robust predictions around the median.
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2.1.3 Empirical Risk Minimization (ERM)

As we mentioned earlier, it is clear that directly solving the optimization problem

min
f :X→Y

L(f)

using a finite amount of data is not feasible for two main reasons: the expected risk is
defined as an expectation, which may be impossible to evaluate exactly, and searching
over the entire space of all measurable functions is practically unmanageable.

A core idea in supervised learning is to replace the intractable expected risk L(f) with
a more manageable approximation L(f), called the empirical risk, and to constrain the
choice of functions f to a chosen subset of the target space of functions H ⊆ F ⊆ {f :
X → Y measurable}, called the hypothesis space.

Specifically, we define the empirical risk as:

L(f) =
1

n

n

i=1

ℓ

yi, f(xi)


, (2.2)

where {(xi, yi)}ni=1 are the training samples, and consider the following constrained opti-
mization problem:

min
f ∈H

L(f).

This approach, called Empirical Risk Minimization (ERM), is one of the simplest
frameworks for designing learning algorithms.

Linear Least Squares

To illustrate the fundamental principles of ERM, we concentrate on the specific example of
linear least squares regression, which serves as a foundation for extending these concepts to
more advanced methods, such as kernel-based learning, as discussed later in the chapter.

Suppose X = Rd, Y = R, and we adopt the square loss ℓ

y, f(x)


=


y − f(x)

2
.

Restricting f to linear functions of the form

fw(x) = x⊤w (for some w ∈ Rd),

defines the hypothesis space

H =

fw : fw(x) = x⊤w, w ∈ Rd


.

The empirical risk (2.2) then becomes the well-known least squares objective:

L(fw) =
1

n

n

i=1


yi − x⊤i w

2
=

1

n
y −X w2,

where X ∈ Rn×d is the data matrix whose i-th row is x⊤i , y ∈ Rn is the vector of outputs
(y1, . . . , yn), and  ·  denotes the euclidean norm. Hence, we can rewrite ERM as,

min
w∈Rd

y −X w2.
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Remark 2.1.8 Note that, in this linear least squares setting, each function fw ∈ H
corresponds uniquely to the parameter vector w ∈ Rd. This correspondence is a linear
isomorphism between H and Rd. Concretely,

H =

fw : w ∈ Rd


←→ Rd,

meaning that minimizing over all f in H is equivalent to minimizing over all w ∈ Rd. As a
result, we can interchangeably think of searching for the “best” linear function fw or the
“best” coefficient vector w. This perspective will remain consistent even when moving to
more general (e.g., feature-mapped or kernel-based) settings.

To solve this minimization problem, we divide it into two cases:

Case n ≥ d (Under-Parameterized). When the number of samples n is at least as
large as the dimension d, we speak of an under-parameterized regime. If X has full column
rank, the least squares solution is unique, and since the empirical risk function is convex
and differentiable, setting its gradient to zero yields the normal equations

X⊤X w = X⊤y,

leading to

w =

X⊤X

−1
X⊤y.

In this scenario, X⊤X is invertible, and w is the unique minimizer of y −Xw2.

Case n < d (Over-Parameterized). When the number of parameters d exceeds the
sample size n, we are in an over-parameterized regime. If X has full row rank, infinitely
many solutions can perfectly fit the data, i.e. X w = y. A classical selection is the minimal
norm solution

w := min
w∈Rd

Xw=y

w.

Solving by Lagrange multipliers shows that

w = X⊤XX⊤−1
y.

This choice has smallest w among all exact fits to the training data.

Remark 2.1.9 Regardless of n vs. d, the least squares estimator can be summarized via
the pseudoinverse X†:

w = X† y.

When n ≥ d, X† = (X⊤X)−1X⊤; when n < d, X† = X⊤(XX⊤)−1.

Remark 2.1.10 (Stability) If the matrix X has very small singular values (as identified
by its singular value decomposition, SVD), small changes in the data vector y can result in
large variations in the estimated solution w. This phenomenon, referred to as instability,
often indicates poor generalization: a model that fits the training data well but is overly
sensitive to noise or minor perturbations is unlikely to perform effectively on unseen data.
From a linear algebra perspective, small singular values magnify errors, emphasizing the
need for regularization techniques. For instance, Tikhonov regularization, which modifies
the objective function to

1

n
y −Xw2 + λw2,
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penalizes large norm solutions and alleviates this issue by promoting more stable and
robust models.

Moreover, regularization not only improves numerical stability but also helps in proving
theoretical learning guarantees. Specifically, it allows for deriving bounds on the error of
the algorithm by limiting the complexity of the model (through w or similar norms).
Without regularization (i.e., λ = 0), these guarantees could break down.

This completes our illustration of ERM in the linear least squares case. While linear
models provide a simple and tractable foundation, many real-world tasks demand richer
function spaces capable of capturing non-linear dependencies. A classical way to introduce
such flexibility is by transforming the data into more complex representations, where linear
methods can still operate effectively. We now turn to a brief introduction to the theory of
Reproducing Kernel Hilbert Spaces (RKHS), which offers a powerful framework for formal-
izing these ideas, unifying the advantages of linear algorithms with the representational
power needed for more complex problems.

2.2 Reproducing Kernel Hilbert Spaces (RKHS)

So far, we focused on linear learning models, where f(x) = w⊤x with w ∈ Rd, which are
straightforward to handle but often too limited for complex, real-world data. In fact, we
rarely expect intricate dependencies between inputs and outputs to be encapsulated by a
linear relationship.

There are two strategies for overcoming linearity:

f(x) = Φ

w⊤x


or f(x) = w⊤Φ(x),

where Φ is a non-linear transformation.

The first form underlies neural network architectures, which apply non-linear activa-
tions to linear combinations of inputs. Kernel methods, in contrast, rely on the second
approach: they map each x into a (potentially high- or even infinite-dimensional) feature
space where linear methods can be applied, while still capturing non-linear effects in the
original input space.

Consider a mapping Φ : X −→ Rp, with Φ(x) =

ϕ1(x), . . . ,ϕp(x)

⊤
, so that our

predictor is

f(x) = w⊤Φ(x) =

p

j=1

wj ϕj(x).

In effect, the {ϕj} serve as basis functions that allow us to represent a richer class of
predictors while preserving the simplicity of linear parameterization in the transformed
space.

Figure 2.1: Data transformation through feature map



28 CHAPTER 2. MACHINE LEARNING WITH KERNELS

While any high-dimensional feature map can expand representational power, we will
leverage a specific structure: the Reproducing Kernel Hilbert Space (RKHS). The prop-
erties of RKHS enable efficient computations and have profound implications for both
theoretical analysis (e.g., generalization bounds, interpretability) and algorithmic design
(e.g., the “kernel trick”).

To develop a deeper understanding of kernel-based learning methods, we introduce the
mathematical foundations of Reproducing Kernel Hilbert Spaces in this section.

2.2.1 Reproducing Kernels

Let (X,µ) be a Hausdorff space equipped with a positive finite Borel measure. We denote
L2
µ as the space of square-integrable functions f : X → R with respect to the measure µ, i.e.
f : X → R | f is measurable and


X |f(x)|2 dµ(x) < ∞


, and denote its inner product as

〈·, ·〉µ = 〈·, ·〉L2
µ
and the norm by  · µ =  · L2

µ
.

Definition 2.2.1 (RKHS). A Hilbert space H of real-valued functions on X is called a
Reproducing Kernel Hilbert Space (RKHS) if, for each x ∈ X , the Dirac evaluation
functional δx : f → f(x) is continuous (i.e. a bounded linear functional).

Recall Riesz’s representation theorem, which plays a pivotal role in characterizing
elements of an RKHS.

Theorem 2.2.2 (Riesz Representation Theorem). If Φ is a continuous linear functional
on a Hilbert space H, then there exists a unique u ∈ H, called the representer of Φ, such
that

Φ(f) = 〈f, u〉H, ∀f ∈ H.

In the specific case of Dirac evaluation functionals, for each δx, there exists a unique
representer ux ∈ H such that

δxf = f(x) = 〈f, ux〉H.

Definition 2.2.3 (Reproducing Kernel). Let H be a Hilbert space of functions from (a
non-empty set) X to R. A function K : X ×X → R is called a Reproducing Kernel of
H if it satisfies:

(i) ∀x ∈ X , kx := K(·, x) ∈ H,

(ii) ∀x ∈ X , ∀f ∈ H, 〈f,K(·, x)〉H = f(x), this is referred to as the reproducing
property.

Remark 2.2.4 Several properties of reproducing kernels follow directly from their defi-
nition:

• kx ∈ H is a function from X to R such that kx(y) = K(x, y).

• For any x, x′ ∈ X :

K(x, x′) = 〈K(·, x),K(·, x′)〉H = 〈kx, kx′〉H,

• K is symmetric, meaning:

K(x, y) = K(y, x) ∀x, y ∈ X .
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From the remark, we can deduce that the Hilbert space H contains all functions of the
form f =

N
j=1 αjK(·, xj), where xj ∈ X .

We can write the norm of such functions as

f2H =

N

j=1

N

i=1

αjαi〈K(·, xj),K(·, xi)〉H =

N

j=1

N

i=1

αjαi〈kxj , kxi〉H.

Proposition 2.2.5. If it exists, the reproducing kernel K for a Hilbert space H is unique.

Proof. Assume that H has two reproducing kernels K1 and K2. Then:

〈f,K1(·, x)−K2(·, x)〉 = f(x)− f(x) = 0, ∀f ∈ H, ∀x ∈ X .

In particular, if we take f = K1(·, x)−K2(·, x), we obtain:

K1(·, x)−K2(·, x)2H = 0 ∀x ∈ X ,

implying K1 = K2.

Proposition 2.2.6. Let H be a Hilbert space of functions f : X → R. Then the evaluation
operators δx are continuous functionals if and only if H has a reproducing kernel K.

Proof. First, assume that H is a Hilbert space with reproducing kernel K, then:

|δxf | = |f(x)| = |〈f,K(·, x)〉| ≤ K(·, x)HfH.

Hence, δx : H → R is a bounded linear operator.

Conversely, assume that δx : H → R is a bounded linear functional. By the Riesz
representation theorem, there exists a unique representer ux ∈ H such that

δxf = 〈f, ux〉H ∀f ∈ H.

Define K(·, x) := ux(·) for all x ∈ X . Then, it immediately follows:

〈f,K(·, x)〉H = δxf = f(x).

Thus, K is a reproducing kernel for H.

Definition 2.2.7 (Positive Definite Kernel). A function K : X × X → R is a positive
definite kernel if it is symmetric, i.e. K(x, y) = K(y, x) for all x, y ∈ X , and if for any
n ∈ N and any choice of points x1, . . . , xn ∈ X , the n×n matrix [K(xi, xj)]

n
i,j=1 is positive

semidefinite, i.e.

n

i,j=1

ci cj K

xi, xj


≥ 0 for all vectors (c1, . . . , cn) ∈ Rn.

We refer to [K(xi, xj)]
n
i,j=1 as the kernel matrix.

Theorem 2.2.8 (Moore-Aronszajn Theorem). Let K : X × X → R be a positive definite
kernel. Then there exists a unique (up to isomorphism) RKHS HK ⊂ RX with reproducing
kernel K.

Conversely, if K is the reproducing Kernel of an RKHS H, then it is positive definite.
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Proof. In the following we give an outline for the construction of HK . Given a symmetric,
positive definite kernelK on X , one can build the corresponding RKHSHK in the following
steps:

1. Pre-Hilbert space setup. Define

H0 =
 n

i=1

αiK(·, xi)
n ∈ N, αi ∈ R, xi ∈ X


,

the set of all finite linear combinations of kernel sections K(·, x).

2. Inner product. For f =
n

i=1 αiK(·, xi) and g =
m

j=1 βjK(·, yj) in H0, define

〈f, g〉 :=

n

i=1

m

j=1

αiβj K(xi, yj).

3. Completion. Endow H0 with the norm induced by the inner product. Its completion
is the Hilbert space HK . By construction, HK satisfies the reproducing property
〈f,K(·, x)〉HK

= f(x). See [26] for details.

This procedure yields a unique RKHS whose kernel is precisely K.

Conversely, assume that K is the reproducing kernel of an RKHS H. The symmetry
of K follows directly from the symmetry of the inner product in H:

K(x, y) = 〈Kx,Ky〉H = 〈Ky,Kx〉H = K(y, x).

For any n ∈ N, x1, . . . , xn ∈ X, and a1, . . . , an ∈ R, the positive definiteness of K is
established by:

n

i,j=1

aiajK(xi, xj) =



n

i=1

aiKxi



2

H

≥ 0.

We will also denote the inner product of HK as 〈f, g〉K := 〈f, g〉HK
and, similarly, the

norm as fK := fHK
.

Remark 2.2.9 The bilinear form

 n

i=1

αiK(·, xi),
m

j=1

βj K(·, yj)


K

=

n

i=1

m

j=1

αiβj K(xi, yj)

is a well-defined inner product on the pre-Hilbert space H0 = span{K(·, x) : x ∈ X}.
Remark 2.2.10 Convergence in  · K-norm implies pointwise convergence, thanks to

|fn(x)− f(x)| =
〈fn − f, K(·, x)〉K

 ≤ fn − fK K(·, x)K .

Hence each Cauchy sequence {fn} ⊂ H0 converges pointwise to a limit f . By including
all such limits, we obtain the RKHS HK where K remains the reproducing kernel.
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2.2.2 Mercer’s Theorem and the Integral Operator Viewpoint

Thus far, we have seen how a positive definite kernel K defines an RKHS HK . There is
an alternative characterization of K and HK via the integral operator

TK : L2
µ(X) → L2

µ(X), (TKf)(x) =



X
K(x, y) f(y) dµ(y),

also denoted TK,µ to make the dependency on the measure explicit. This perspective
clarifies the connection between kernels and their spectral (eigenfunction) expansions,
known as Mercer’s theorem.

Remark 2.2.11 For TK to be well-defined as an operator, one usually requires that
K is continuous on X × X and satisfies an integrability condition such as Tr(K) =

K2(x, x′) dµ(x) dµ(x′) < ∞. This condition is sometimes referred to as finite trace,
ensuring that K(·, x) ∈ L2

µ(X ) for each x. If K is not of finite trace over all of X , one can
restrict to a suitable sub-domain where this property holds. In this way the image of TK

in HK can be regarded in L2
µ(X ) by composition with the inclusion HK ↩→ L2

µ(X ).

Now recall the definition of eigenfunction and eigenvalue for a linear operator.

Definition 2.2.12 (Eigenfunction of TK). A function Φ ∈ L2
µ(X ) is called an eigenfunc-

tion of TK if there exists λ ∈ R such that

(TKΦ)(x) =



X
K(x, y)Φ(y) dµ(y) = λΦ(x), ∀x ∈ X .

In this case, λ is the corresponding eigenvalue.

Theorem 2.2.13 (Mercer’s Theorem). Let K : X × X → R be a continuous, positive
definite kernel, with X being compact. Then there exists an orthonormal set of eigenfunc-
tions {Φi}∞i=1 ⊂ L2

µ(X ) of TK , with corresponding non-negative eigenvalues {λi}∞i=1 that
accumulate only at 0, such that

K(x, y) =

∞

i=1

λiΦi(x)Φi(y),

and this series converges uniformly on X × X .
Moreover, the RKHS associated with K can be characterized via these eigenfunctions:

HK =

f ∈ L2

µ(X )


∞

i=1

〈f,Φi〉2µ
λi

< ∞

, with inner product 〈f, g〉K =

∞

i=1

〈f,Φi〉µ 〈g,Φi〉µ
λi

.

Sketch of proof. Under the stated assumptions, TK is indeed a compact, self-adjoint, and
positive operator on L2

µ(X ). The spectral theorem for such an operator ensures there is
an orthonormal basis of eigenfunctions Φi in L2

µ(X ) with eigenvalues λi ≥ 0 converging to
0. One can then expand

K(x, y) =

∞

i=1

λiΦi(x)Φi(y),

where the series converges uniformly by standard results on compact operators with con-
tinuous kernels. For the RKHS characterization, because each Φi is continuous and or-
thonormal in L2

µ(X ), we can represent f ∈ HK as

f =

∞

i=1

ciΦi,
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subject to the condition
∞

i=1
c2i
λi

< ∞. The inner product then becomes

〈f, g〉HK
=

∞

i=1

ci di
λi

for f =


i ciΦi and g =


i diΦi. For details, see [26].

Remark 2.2.14 (Compactness Assumption) Classically, Mercer’s Theorem assumes that
X is compact and K is continuous on X × X . Under these conditions, the operator TK

becomes compact, and one obtains the uniform convergence of the eigenfunction expansion.
Moreover, it is well known [6] that TK : L2

µ(X ) → L2
µ(X ) is a compact, self-adjoint, positive

operator, with TK ≤ κ2, where κ = supx∈X


K(x, x).
In some variants, one can replace or relax the compactness requirement by imposing

other conditions. For example, assuming that K(x, x) is uniformly bounded (i.e. κ < ∞)
and K satisfies suitable continuity or integrability assumptions relative to the measure
µ (eg. sigma-finiteness), then TK can still be treated as a compact operator on a re-
stricted sub-domain. The key idea is that one needs both boundedness of K (to ensure
the images K(·, x) ∈ L2

µ(X )) and appropriate continuity properties (to secure the spec-
tral decomposition). In practical settings, these assumptions ensure that K admits the
same eigenfunction-based representation without requiring X to be compact in the strict
topological sense.

A useful way to see the integral operator is through the sampling operator Sx. For
each x ∈ X , define Sx = 〈Kx, · 〉K : HK → R by Sx(f) = 〈Kx, f〉K = f(x), which is
linear, and let S∗

x be its adjoint, so S∗
x : R → HK sends c → cKx. Then S∗

xSx : HK → HK

is a rank-one positive operator given by (S∗
xSx)(f) = f(x)Kx. Taking expectation with

respect to µ, we obtain that for f ∈ HK ,

TK,µf(x) =



X
K(x, y)f(y) dµ(y) =



X
(S∗

ySyf)(x) dµ(y).

In this sense, the restriction TK,µ|HK
: HK → HK can be expressed as

TK,µ|HK
f = Ey∼µ


S∗
ySyf


,

which is usually known as the covariance operator of the measure µ in HK . From now
on we are going to denote the operator and its restriction simply as TK or TK,µ abusing
notation.

Definition 2.2.15 (Features). The Mercer theorem (2.2.13) ensures the existence of a
mapping Φ : X → H, such that

K(x, y) = 〈Φ(x),Φ(y)〉H,

for every positive definite kernel K.
The map Φ is called the feature map, and H is referred to as the feature space.

Remark 2.2.16 Since K(·, x) =
∞

i=1 λiΦi(·)Φi(x), we have for any f ∈ HK ,

〈f,K(·, x)〉K =

∞

i=1

ci

λiΦi(x)



λi
=

∞

i=1

ciΦi(x) = f(x),

thus showing again that K reproduces f(x) via its eigenbasis.
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Remark 2.2.17 Mercer’s theorem provides a link between the kernel K viewed as an
inner product in the RKHS, and the eigenfunction expansion of the compact operator
TK . In analogy to linear algebra, where we diagonalize a matrix to reveal its basis of
eigenvectors, here we diagonalize the integral operator TK to obtain an orthonormal basis
{Φi} of eigenfunctions in L2

µ(X ), with corresponding nonnegative eigenvalues {λi}.
We will exploit this for defining a regularity condition on our target function, know as

source condition.

Definition 2.2.18 (Source condition). Given a σ-finite measure µ and a kernel K :
X ×X → R, we say that fρ satisfies the regularity condition of order r, with r > 1

2 , if

fρ = T r
K,µg, (2.3)

for some g ∈ L2
µ(X ). Meaning that

fρ =

∞

i=1

λrgiΦi,

where Φi,λi are the eigenfunctions and eigenvalues of TK,µ respectively, and gi = 〈g,Φi〉µ.

Remark 2.2.19 The operator TK,µ being positive, self-adjoint, and compact on L2
µ(X )

guarantees we can consider its fractional powers T r
K,µ via the usual spectral theory. Also

note that T
1/2
K,µ(L

2
µ(X )) = HK , since for r = 1/2 the operator is an isometric isomorphism

and that 0 < a < b implies T b
K,µ(L

2
µ(X )) ⊆ T a

K,µ(L
2
µ(X )). Therefore f̂ ∈ HK for r ≥ 1/2.

To understand this inclusion, we examine the spectral decomposition of TK and analyze
how the RKHS norm of f̂ depends on r. Let TK,µΦi = λiΦi, with λi > 0, λi → 0 and
{Φi}∞i=1 an orthonormal basis in L2

µ(X ).

Any g ∈ L2
µ(X ) can be expanded as

g =

∞

i=1

giΦi, gi = 〈g,Φi〉µ.

Then

fρ = T r
K,µ g =

∞

i=1

λr
i giΦi.

Since 〈fρ,Φi〉µ = λr
i gi, we obtain

fρ2K =

∞

i=1

λ−1
i


λr
i gi

2
=

∞

i=1

λ2r−1
i g2i .

Whether this series converges depends on 2r − 1 and the decay of λi. If r > 1
2 , then

2r − 1 > 0 and λ2r−1
i → 0 as i → ∞, so the series converges (since g ∈ L2

µ(X ) implies∞
i=1 |gi|2 < ∞). Hence, fρ2K < ∞, thus fρ ∈ HK . Conversely, if r < 1

2 , one has
2r − 1 < 0, and for large i the term λ2r−1

i blows up, causing fρ2K to diverge. In that
case, fρ /∈ HK .
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2.3 Kernel Methods for Learning

Now that we laid out the mathematical groundwork of RKHS, we can expand our dis-
cussion to include learning with non-linear functions through feature maps and kernels.
We begin by revisiting some aspects of least squares with linear functions and examine
how to incorporate non-linearity using kernels in this framework. This leads us to discuss
recursive least squares and stochastic gradient descent algorithms.

Let us start by revisiting the linear least squares problem presented in the first section.
The goal is to find the linear function f(x) = x⊤w that minimizes the empirical risk, or
equivalently, finding the weight vector w that minimizes the objective, as

ŵλ = arg min
w∈Rd

1

n

n

i=1

(yi − w⊤xi)
2 + λw2, λ ≥ 0.

The solution to this problem can be expressed as:

ŵλ = X⊤(XX⊤ + nλI)−1y,

where X ∈ Rn×d is the input matrix and y ∈ Rn is the output vector. To simplify the
interpretation of the solution, we can rewrite it as:

ŵλ = X⊤c =
n

i=1

xici, where c = (XX⊤ + nλI)−1y.

This leads to the equivalent representation:

f̂λ(x) =

n

i=1

x⊤xici,

where the coefficients ci depend on the solution of the linear system.

As we discussed in the previous section, our approach will be similar, but instead of
using linear functions, we will consider functions of the form

f(x) = w⊤Φ(x),

where Φ is a feature map.

A simple example of a feature map is given by monomials.

Example 2.3.1 Let X = R, then one can consider the polynomial feature map (of degree
p)

Φ : R → Rp, Φ(x) = (x, x2, x3, . . . , xp)⊤.

Another example is the quadratic feature map:

Φ : R2 → R3, (x1, x2) → (x21,
√
2x1x2, x

2
2).

See Figure 2.1 for reference. With an appropriate choice of the mapping Φ, data in higher-
dimensional feature spaces can become linearly separable by a hyperplane.
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2.3.1 Learning in the Feature Space

Suppose each x ∈ X ⊆ Rd is mapped via

Φ : X −→ Rp, Φ(x) = [ϕ1(x), . . . ,ϕp(x)]
⊤,

and we restrict our hypothesis space to

HΦ :=

f
 f(x) = w⊤Φ(x), w ∈ Rp


.

As before, let {(xi, yi)}ni=1 be the training samples, and consider an empirical risk of
the form

Lλ(f) =
1

n

n

i=1

ℓ(yi, f(xi)) + λf2HΦ
,

where ℓ might be the squared loss, and fHΦ
= w if f(x) = w⊤Φ(x).

Definition 2.3.2 (Feature matrix). We define the feature matrix

Φ ∈ Rn×p with (Φ)ij = ϕj(xi),

and let y ∈ Rn denote the output vector (y1, . . . , yn).

For the squared-loss case we can write

Lλ(fw) =
1

n
y − Φw2 + λw2.

Similarly as before, minimizing over w ∈ Rp, yields the minimizer

wλ = Φ⊤

ΦΦ⊤ + λI

−1
y,

where we have scaled λ by n inside the matrix inversion, as it is a common notational
convention. Setting

c =

ΦΦ⊤ + λI

−1
y ∈ Rn, where (ΦΦ⊤)i,j = Φ(xi)⊤Φ(xj),

we can write

wλ = Φ⊤c, =

n

i=1

Φ(xi)ci.

So for each new point x,

fλ(x) = ( wλ)⊤Φ(x) =
n

i=1

ci


Φ(xi)

⊤Φ(x)

.

Hence fλ(x) is expressed as a linear combination of the inner products Φ(xi)
⊤Φ(x).

In fact,

fλ(x) =

n

i=1

ci〈Φ(xi),Φ(x)〉 where c = (ΦΦ⊤ + λI)−1y.
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Remark 2.3.3 (Kernel Trick) Notice that the coefficient vector c and the function values
fλ(x) never require explicit knowledge of each component ϕj . Instead, all expressions rely
on the dot products Φ(xi)

⊤Φ(xj). With this approach, we can replace HΦ with an RKHS
and Φ(xi)

⊤Φ(xj) by a kernel

K(xi, xj) = 〈Φ(xi),Φ(xj)〉,

which directly computes the dot product in the (potentially large or infinite-dimensional)
feature space. Thus, as it follows from the discussion on RKHS, once we express the solu-
tion fλ(x) in terms of inner products Φ(xi)

⊤Φ(x), we no longer need the explicit feature
map Φ.

This insight is commonly referred to as the kernel trick, and the procedure by which
algorithms can be performed by replacing inner products with a kernel is often called
kernelizing. Consequently, one can operate in an implicit feature space without explicitly
constructing Φ.

Example 2.3.4 (Kernelizing Regularized LLS) Recall the solution in the feature space:

fλ(x) =

n

i=1

ci〈Φ(xi),Φ(x)〉, where c = (ΦΦ⊤ + λI)−1y.

If we let K(xi, xj) = 〈Φ(xi),Φ(xj)〉, then

fλ(x) =

n

i=1

ciK(xi, x), and c = ( K + λI)−1y,

where K ∈ Rn×n is the kernel matrix of the training data with Kij = K(xi, xj). In

particular, fλ is an empirical approximation of the (regularized) minimizer of the expected
risk, which we can express using the integral operator TK as

fλ = (TK + λI)−1 TK fρ.

A proof of this fact can be found in [26].

This exemplifies a broader principle: solutions to regularized risk minimization in
RKHS can always be expressed as linear combinations of kernel evaluations at training
points. The Representer Theorem formalizes this observation.

Theorem 2.3.5 (Representer Theorem). Let HK be an RKHS with kernel K, and con-
sider the regularized empirical risk minimization problem:

min
f∈HK


Lλ(f)


, Lλ(f) =

1

n

n

i=1


yi − f(xi)

2
+ λf2K , λ > 0.

Any minimizer fλ ∈ HK admits a representation:

fλ(x) =

n

i=1

αiK(x, xi), αi ∈ R,

where the coefficients α = (α1, . . . ,αn)
⊤ solve the finite-dimensional system ( K + λI)α =

y.
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Proof Sketch. Let H ⊂ HK be the subspace spanned by {Kxi}ni=1. Decompose f ∈ HK as

f = f + f⊥, where f ∈ H and f⊥ ∈ H⊥
. By the reproducing property:

f⊥(xi) = 〈f⊥,Kxi〉K = 0 ∀i = 1, . . . , n.

Thus, the empirical risk depends only on f , while f2K = f2K + f⊥2K . Minimizing
Lλ(f) forces f⊥2K = 0, so f = f .

Remark 2.3.6 The theorem guarantees that even if HK is infinite-dimensional, solutions
lie in the n-dimensional subspace spanned by {Kxi}. This justifies parameterizing f as
f =

n
i=1 αiKxi during optimization, avoiding explicit feature maps Φ.

Example 2.3.7 (Polynomial Kernel) Consider the map

K(x, z) = (〈x, z〉+ 1)p,

with p ∈ N and x, z ∈ Rd. We claim that K can be written in the form

K(x, z) = Φ(x)⊤Φ(z),

for a suitably chosen (finite-dimensional) feature map Φ : Rd → RN .

Let us first examine the case x, z ∈ R for gaining some intuition. Then we can write

K(x, z) = (xz + 1)p =

p

k=0


p

k


(xz)k =

p

k=0


p

k


xkzk.

We can group coefficients expanding the binomial coefficients and define

Φ(x) :=


p

0


,


p

1


x,


p

2


x2, . . . ,


p

p


xp

⊤

∈ Rp+1.

A direct check shows Φ(x)⊤Φ(z) = (xz + 1)p. Thus

K(x, z) = 〈Φ(x),Φ(z)〉 for all x, z ∈ R.

For x, z ∈ Rd, we expand similarly by multinomial coefficients. Each monomial term
〈x, z〉k can be broken down into sums of products of coordinates xizi. The resulting
finite-dimensional feature map Φ : Rd → RN picks out all degree-p monomials in the
coordinates of x, up to appropriate constant factors. In particular, each coordinate of
Φ(x) has the form

√
Cα(x

α1
1 · · ·xαd

d ) for some multi-index α = (α1, . . . ,αd) ∈ Nd with

α1 = α1 + · · ·+ αd ≤ p. Thus, the feature space dimension N is

d+p
p


.

Hence K is a positive definite kernel, called the polynomial kernel of degree p.

Example 2.3.8 Consider the kernel function:

K(x, z) =
1

1− α2〈x, z〉 ,

where α2〈x, z〉 < 1. This can be expanded as a geometric series:

1

1− α2〈x, z〉 =

∞

s=0

(α2〈x, z〉)s.
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In the scalar case (d = 1), this becomes:

1

1− α2xz
=

∞

s=0

(α2xz)s = Φ(x)⊤Φ(z),

where:
Φ(x) = (1,αx,α2x2,α3x3, . . .)⊤.

Despite Φ(x) becoming an infinite-dimensional vector, the kernel can be computed
efficiently given α and 〈x, z〉.

For d > 1, an analogous construction exists, where K(x, z) can be interpreted as
enumerating all monomials xs with weights αs.

Remark 2.3.9 (Taking p → ∞) One can view certain kernels (like the above geometric
series) as the limit p → ∞ of polynomial expansions. The previous example illustrates how
one can systematically transform “basic” data coordinates into higher-order monomials,
enabling linear algorithms to fit more complex relationships. Although the explicit feature
map may be large (or even infinite) in general, the kernel function

K(x, z) = 〈Φ(x),Φ(z)〉

can be computed directly, rather than writing features explicitly, and efficiently, making
such expansions tractable in many learning applications.

Example 2.3.10 Another famous example of an infinite-dimensional feature expansion
is given by the Gaussian kernel. For x, z ∈ Rd and γ > 0, define

K(x, z) = exp(−γx− z2).

Below we illustrate how K can be expanded as an infinite sum of monomials, implying
that the kernel corresponds to an infinite-dimensional feature map.

Assume d = 1 for simplicity and let z, x ∈ R. Observe that

K(x, z) = exp(−γ(x− z)2) = exp(−γz2) exp(−γx2) exp(2γxz).

The factor exp(2γxz) has the power series expansion

exp(2γxz) =

∞

n=0

(2γxz)n

n!
,

hence

exp(−γ(x− z)2) = exp(−γx2) exp(−γz2)

∞

n=0

(2γxz)n

n!
.

Rearranging each term, we see that

K(x, z) =

∞

n=0


(2γ)n

n!
xn exp


−γx2

2


(2γ)n

n!
zn exp


−γz2

2


.

Thus, we may define an infinite-dimensional feature map

Φ(x) = (Φ0(x),Φ1(x),Φ2(x), . . .)
⊤ with Φn(x) =


(2γ)n

n!
xn exp


−γx2

2


,

so that K(x, z) = 〈Φ(x),Φ(z)〉.
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2.3.2 Online Learning

Up to this point, we have discussed batch (or offline) learning algorithms, where the
entire sample set {(xi, yi)}ni=1 is given from the start and we may use it all at once (e.g.
to minimize an ERM objective). In many real-world scenarios, however, data can arrive
sequentially and potentially unbounded in size, making batch learning not advantageous
for computations or even impossible. This prompts the study of online (or incremental)
learning, which processes examples sequentially, one at a time, and updates the hypothesis
on the fly.

Regression in Online Learning

We again consider the regression problem from the previous section, but instead of receiv-
ing all n data points at once, we observe a sequence of i.i.d. random examples

{zt}∞t=1, zt = (xt, yt) ∈ X × Y,

each drawn according to a probability measure ρ. The goal remains to approximate the
regression function

fρ : x →


Y
y dρ(y|x),

by minimizing the mean squared error,

L(f) = E

(f(x)− y)2


=



X×Y
(f(x)− y)2dρ(x, y),

or a regularized version of it, e.g.

Lλ(f) = L(f) + λf2K =



X×Y
(f(x)− y)2dρ(x, y) + λf2K . (2.4)

Rather than re-running a batch procedure each time we get a new example, a map Tt

updates its current hypothesis ft−1 to ft upon seeing (xt, yt). We write

ft = Tt


ft−1, xt, yt


,

where Tt is an update map Tt : H×X ×Y → H. We aim for ft → fρ in some sense (e.g. in
H or L2

ρX -norm). This procedure, in general, is referred to as an online learning algorithm
(OLA).

Remark 2.3.11 As each data point is processed in arrival order, the hypothesis can
be improved (or at least adapted) at each step, which can be crucial for large-scale or
streaming data. Moreover, the computational overhead for each update is typically smaller
than a full batch solve, at the expense of possibly more “noisy” updates.

Stochastic Gradient Descent in RKHS

Next, let us explore one specific instance of OLA. Let the hypothesis space HK be the
RKHS induced by a positive-definite kernel K on X × X . Assume there exists constant
κ ≥ 0 such that κ := supx∈X


K(x, x) < ∞, and Mρ ≥ 0 such that supp(ρ) ⊆ X ×

[−Mρ,Mρ]. We focus on an online algorithm for the squared-loss objective with an RKHS-
regularization term (i.e., Lλ(f) = L(f) + λf2K).

Given the t-th example (xt, yt), we update from ft−1 ∈ HK to ft by

ft = ft−1 − γt


ft−1(xt)− yt


Kxt + λt ft−1


, (2.5)

where:
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• (γt)t∈N is a sequence of positive reals called step-size (or learning-rate),

• (λt)t∈N is a sequence of non-negative regularization-parameters (or gains),

• Kxt := K(·, xt),

• f0 ∈ HK is an initial guess (often f0 = 0).

Algorithms of this type are referred to as stochastic gradient descent (SGD)-type al-
gorithms. In effect, at each iteration, we approximate the gradient of the (regularized)
expected risk Lλ, using a single “sample gradient”:

∇Lλ(ft−1) ≈

ft−1(xt)− yt


Kxt + λt ft−1.

Remark 2.3.12 (Measurability) Let F = (Ft)t∈N0 be the filtration generated by the
data, where

Ft = σ{(xi, yi) : 1 ≤ i ≤ t}.

Here, Et[·] = E[· | Ft] denotes the conditional expectation with respect to Ft. Note that
(ft)t∈N is an Ft-adapted stochastic process taking values in the RKHS HK . Recall that
the adaptation to Ft ensures that ft depends only on the data observed up to time t.

Remark 2.3.13 (SGD) To understand why the update (2.5) can be viewed as a (stochas-
tic) gradient descent procedure, we first recall how to define a gradient in a Hilbert space.

Let H be a real Hilbert space, and let V : H → R be a Fréchet-differentiable functional.
Then the gradient ∇V (f) ∈ H of V at f is the unique element in H such that, for all
g ∈ H,

〈∇V (f), g〉H = DV (f)[ g ],

where DV (f)[ g ] is the directional (or Fréchet) derivative of V at f in the direction g. In
the context of (2.5), each data point z = (x, y) defines a local objective

Vz(f) := 1
2

 
f(x)− y

2
+ λ f2K


,

where f ∈ HK is a function in the RKHS. We claim that

∇Vz(f) =

f(x)− y


Kx + λ f. (2.6)

Indeed, for g ∈ HK , we can check the directional derivative at f , which is the linear
functional DVz(f) : HK → R such that for g ∈ HK ,

lim
gK→0

|Vz(f + g)− Vz(f)−DVz(f)(g)|
gK

= 0.

By computing the limit and using the reproducing property of the kernel we get

DV (f)[ g ] = (f(x)− y)g(x) + λ〈f, g〉K = 〈(f(x)− y)Kx + λf, g〉K ,

which proves (2.6).
Hence, in the case of z = zt, f = ft, the update (2.5) becomes

ft+1 = ft − γt∇Vzt(ft),

showing that at step t, we descend in the negative gradient of Vzt taken at ft.
Because zt = (xt, yt) are drawn randomly (i.i.d. from the underlying distribution ρ),

we can see the gradient
∇Vz(f) = (f(x)− y)Kx + λf
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as a random variable dependent on z. Notably, the expectation satisfies

E[Vz(f)] =
1
2


L(f) + λf2K


,

meaning that the updates in (2.5) can thus be regarded as stochastic approximations of
gradient descent methods for solving the regularized expected risk minimization problem
(2.4), with time-varying regularization parameters λ = λt. In this sense, each iteration is
a stochastic gradient descent step in HK . Over many iterations, these individual random
steps approximate the global minimizer of the expected risk, while processing one sample
at a time.

In particular one can prove the following result.

Proposition 2.3.14. Fix λt = λ > 0 and set γt → 0 appropriately1, then

ft − fλK → 0, for t → ∞;

where fλ = (TK +λI)−1 TK fρ is the minimizer of the (regularized) expected risk objective

Lλ(f) =



X×Y
(f(x)− y)2 dρ(x, y) + λf2K .

Remark 2.3.15 One can show, under certain conditions on (γt,λt), that the algorithm’s
final hypothesis ft eventually approximates fρ at a rate comparable to batch methods.

Before concluding this section, let us state one remark on the role of independence and
conditional distribution in this framework.

Remark 2.3.16 (Independence, Conditional Distributions, and Stochastic Updates) Con-
vergence guarantees for the algorithm (2.5) hinge on two aspects of the data and target
function. First, we assume that the sequence of examples {zt = (xt, yt)}t∈N is i.i.d. from
the underlying distribution ρ. In particular, independence ensures that, at each step t, the
gradient estimate

∇Vzt


ft−1


= (ft−1(xt)− yt)Kxt + λt ft−1

is conditionally unbiased given the σ-algebra Ft−1 generated by the past data. As we
previously observed, the hypothesis ft−1 only depends on z1, . . . , zt−1 and is thus Ft−1-
measurable. Since zt is independent of Ft−1, the conditional expectation reduces to aver-
aging over zt while treating ft−1 as fixed:

Et−1


∇Vzt(ft−1)


= ∇Lλt


ft−1


,

where ∇Lλt(ft−1) = E(x,y)∼ρ


(ft−1(x)−y)Kx


+λtft−1. Each incremental update thereby

provides a fresh, unbiased sample of the full gradient. This property results in very useful
control of the variance of the updates (e.g., via martingale decomposition). If the data
were dependent, additional assumptions (e.g., mixing conditions) would be required to
decouple zt from prior hypotheses {fj}j<t.

Second, the conditional distribution determines the regression target

fρ(x) =



Y
y dρ(y | x).

For the iterative sequence {ft} to converge toward fρ, the RKHS HK must either contain
fρ exactly, or at least approximate it under some regularity assumption (for instance a
source condition, fρ = T r

Kg with r > 0, g ∈ L2
ρX ). These regularity assumptions bound

the approximation error and govern how effectively finite-sample stochastic updates can
learn fρ.

1γt =
1

(λ+k2)tθ
with k = supx∈X


K(x, x) < ∞ and θ ∈ ( 1

2
, 1)
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2.4 Learning Bounds

2.4.1 Excess Risk

The output of a learning algorithm is a function fz in the hypothesis space H (eg., RKHS
induced by a kernel K), dependent on the training data z = {(xi, yi)}ni=1, where each
sample (xi, yi) ∈ Z = X × Y is drawn from the underlying distribution ρ. A learning
algorithm can be thus seen as a map A : Zn → H that outputs a hypothesis fz = A(z),
whose empirical risk is L(fz) = 1

n

n
i=1 ℓ(yi, fz(xi)), given a chosen loss ℓ (eg. squared

loss). Since the true distribution ρ is unknown, we generally cannot find fρ exactly.

Instead, we look for fz whose expected risk L(fz)) is close to L(fρ). The quantity

L(fz)− L(fρ),

called the excess risk, measures how much worse L(fz) is compared to the ideal function.
Consistency means that this excess risk goes to zero as the sample size grows n → ∞.

This can be formalized in different ways, for example:

• Convergence in expectation: E[ L(fz)− L(fρ) ] → 0,

• Convergence in probabilty: P
L(fz) − L(fρ) ≥ 


→ 0 for all  > 0. Note that the

excess risk is a random variable Ω → Zn, ω → z = (z1, . . . , zn).

While consistency is an asymptotic notion, learning bounds offer finite-sample estimates
of how fast a learning algorithm converges. Such results often provide upper bounds of
the form

E

L(fz)− L


fρ


≤ (n, ρ,H),

or, for a confidence parameter δ ∈ (0, 1),

P

L(fρ) ≤ L(fz) + (n, δ,H)


≥ 1− δ,

where  may depend on the sample size n, the probability distribution ρ on Z = X × Y,
and the properties of H.

For instance, in the case of regularized algorithms in RKHS, the bound might be
expressed in terms of the norm ·K , the spectral properties of the kernel integral operator,
and the regularization parameter λ. One can then invert this dependence to derive a
sample complexity (i.e., how large n must be for a desired accuracy) or an error bound
(i.e., how small the difference in norm between fz and fρ). In the last section of this
chapter, for instance, we mention a bound in terms of excess risk and one in terms of
probability.

Remark 2.4.1 (No Free Lunch) A natural question is whether one can derive uniform
guarantees across all possible distributions ρ. Ideally, one might seek a single bound of
the form

sup
ρ


E
L(fz)− L(fρ)


≤ (n,H),

valid for every distribution on X ×Y. However, classical “no free lunch” results show that,
without additional assumptions, such uniform statements cannot hold in general. Indeed,
for any fixed learning algorithm, one can construct distributions ρ that cause arbitrarily
poor performance.

This observation does not preclude universal consistency, where each distribution is an-
alyzed separately, but it does underline that distribution-free performance bounds require
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restricting the set of possible distributions or making further hypotheses (e.g. smooth-
ness conditions). Hence, the assumptions we impose, are crucial for achieving meaningful
convergence guarantees in a broader sense.

Having introduced two main algorithms, the batch regularized linear least squares
(LLS) (Example 2.3.4) and the online SGD-type algorithm (2.5), we now discuss their
theoretical convergence properties.

2.4.2 Regularized Linear Least Squares: Batch Convergence

Recall the batch regularized linear least squares algorithm in feature spaces, described in
Example 2.3.4. Recall the hypothesis given by the training data {(xi, yi)}ni=1,

fλ(x) =

n

i=1

ciK(xi, x),

where c = ( K + λI)−1 y and Kij = K(xi, xj), approximates the solution

fλ = (TK + λI)−1 TK fρ,

which is the minimizer of L(f) + λf2K in HK .
Then the following theorem (from [37]) holds.

Theorem 2.4.2 (Regularized LLS Convergence). Let {(xi, yi)}ni=1 be i.i.d. samples drawn

from ρ, and let fλ be the regularized least squares estimator defined above. Suppose there
exists constants κ ≥ 0 such that κ := supx∈X


K(x, x) < ∞, and Mρ ≥ 0 such that

supp(ρ) ⊆ X × [−Mρ,Mρ].
Then, there exists a constant Cδ > 0 depending on δ ∈ (0, 1) such that, with probability

at least 1− δ,

L( fλ)− L(fλ) ≤ Cδ


A(λ) +

κ2B(λ)
n2λ

+
κA(λ)

nλ
+

κMρ

n2λ
+

MρN (λ)

n


,

provided the sample size satisfies

n ≥ Cδκ

2λ
max


N (λ),


2/Cδ


,

where A(λ) = fλ−fρ2ρ = T
1
2
K(fλ−fρ)2K , B(λ) = fλ−fρ2K , N (λ) = Tr


(TK + λI)−1TK


,

and Cη = 128 log2(8/δ).

2.4.3 SGD Algorithm: Convergence Guarantees

We now return to the online case, where the algorithm is given by the update (2.5), with
time-varying regularization λt and step-size γt:

ft = ft−1 − γt


ft−1(xt)− yt


Kxt + λt ft−1


,

where (xt, yt) are i.i.d. samples from ρ, and Kxt(·) = K(·, xt). We denote the target
function fρ in the RKHS HK satisfying

fρ = arg min
f∈HK


L(f) = E[(f(x)− y)2]


.

Then the following results hold [36].
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Theorem 2.4.3 (SGD Algorithm Convergence). Let {ft} be defined by (2.5), then

lim sup
t→∞

E[ft − fρ2K ] = 0,

assuming:

1. fρ ∈ HK (or satisfies a suitable source condition, fρ = T r
Kg),

2. γt,λt → 0 as t → +∞,

3. γt/λt → 0 and fλt − fλt−1K/γtλt → 0 ,

4.
∞

t=1 γtλt = ∞.

Furthermore, if r quantifies the regularity of fρ, meaning T−r
K fρ ∈ L2

ρX for some r ∈
(1/2, 3/2], and initial regularization parameter λ0 ≥ 1. Then, for all t ∈ N, with probability
at least 1− δ,

ft − fρK ≤ C0t
−1
∗ +


C1λ

−(r−1/2)
0 log

2

δ
+ C2γ1


t
− r− 1

2
r+1

∗ ,

where t∗ := t+ t0, with t0 ∈ N large enough, and constants

C0 := 2t
4r+3
4r+2

0 Mρ, C1 :=
20r − 2

(2r − 1)(2r + 3)
T−r

K fρρ, C2 :=
20(κ+ 1)2Mρ

κ
.

Corollary 2.4.4. In particular, in the case fρ = T r
Kg with r ∈ (1/2, 3/2], we have

E

ft − fρ2K


= O


t−(r−1/2)


.



Chapter 3

Stochastic Dynamical Systems and
Markov Chains

In the earlier chapters, we laid the groundwork for the discussions to come. Chapter 1
introduced the measure-theoretic foundations of probability, providing a rigorous frame-
work for understanding randomness and uncertainty. Building on this, Chapter 2 explored
classical machine learning concepts, focusing on kernel methods and learning bounds in
the i.i.d. setting.

Yet, many real-world scenarios deviate significantly from the i.i.d. paradigm. Appli-
cations such as time series analysis, evolving data streams, and sequences of dependent
observations often require a more flexible framework. In this work, we focus on relax-
ing the ‘identical’ assumption in i.i.d. data, while avoiding independence through a data
collection scheme discussed in Chapter 4. This allows us to address a broader range of
processes, including stochastic dynamical systems.

This chapter aims to provide the theoretical tools needed to analyze data arising from
stochastic dynamical systems. Unlike deterministic systems, stochastic dynamical sys-
tems incorporate inherent uncertainty. These systems evolve according to probability
kernels, extending deterministic trajectories to stochastic processes as Markov chains. As
we progress, we will explore key concepts such as ergodicity and the conditions under
which system state distributions converge to stationary distributions. These results will
enable us to work with data that falls outside the usual i.i.d. assumptions.

Our primary goal is to establish key properties, such as measure convergence and dy-
namics irreducibility, which will form the foundation for the learning framework discussed
in the next chapter.

The chapter is organized as follows. We begin by revisiting the concept of a dynamical
system, starting with the deterministic case before transitioning to the stochastic context.
Next, we introduce Markov processes and transition probability kernels, examining the
conditions under which these systems converge to stationary measures. Along the way, we
study notions such as irreducibility, aperiodicity, and various forms of ergodicity.

3.1 Dynamical Systems

In this section, we introduce the fundamental concepts of dynamical systems.

Traditionally, dynamical systems are represented by differential or difference equations
derived from fundamental physical laws. For instance, Newton’s second law F = ma serves
as a cornerstone for modeling mechanical systems. Physics-based models like this have
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enabled significant advancements by allowing precise simulations and control of various
systems.

However, as science ventures into complex and high-dimensional systems such as cli-
mate models, neural networks in the brain, financial markets, and language, deriving
accurate models from first principles becomes increasingly infeasible. These systems often
exhibit nonlinear behavior, high dimensionality, chaos, and stochasticity, making analyti-
cal solutions or even numerical simulations challenging, if not impossible.

The explosion of data availability in recent years presents an opportunity to approach
these complex systems differently. By leveraging data-driven techniques, we aim to con-
struct models that can accurately predict, control, and provide insights into the underlying
dynamics without relying solely on traditional physics-based approaches.

3.1.1 The mathematical modeling

In physics, a system is a collection of interacting parts enclosed within a boundary and
considered as a single entity. It usually models a specific portion of the universe that is
being studied or analyzed. The boundaries of the system might be physical or abstract
and they define what is included in the analysis versus what is considered to be the
surroundings. A dynamical system is a system that evolves in time.

In mathematics, a dynamical system is a collection of elements in a set, possibly
together with some structure (e.g., metric, probability measure), equipped with a function
that evolves the system over time.

Formally, we define S as the state space, whose elements represent the interacting
components of the system, and f : S → S as the evolution function that governs the
system’s dynamics. The specific nature of S and the map f depend on the characteristics
of the system being modeled and how it evolves over time. To formalize this concept in a
notationally efficient and general manner, we first introduce the notion of a monoid.

Definition 3.1.1 (Monoid). A monoid T is an algebraic structure consisting of a set
equipped with a binary operation ∗ satisfying:

(i) Associativity: (g ∗ h) ∗ k = g ∗ (h ∗ k) for all g, h, k ∈ T .

(ii) Identity Element: There exists an element e ∈ T such that g ∗ e = e ∗ g = g for
all g ∈ T .

utilizing the concept of a monoid, we can now formally define both discrete-time and
continuous-time dynamical systems as follows.

Definition 3.1.2 (Dynamical System). A dynamical system consists of:

(i) a set S called the state space, whose elements represent the states of the system,

(ii) a monoid T , representing the time domain or indexing set,

(iii) a map s : T → S that assigns to each time index t ∈ T the state of the system at
that time, denoted as st := s(t) ∈ S,

(iv) a function f : S → S called the evolution function, which describes how the
system evolves from one state to another.

Depending on the nature of the change, f can be adapted in order to model different
dynamics, e.g., f : S × T → S for non-autonomous systems or f : S × Ω → S, with Ω
being a sample set in a probability space, to introduce stochasticity; similarly the map
s : T → S will also be adapted. We will explore these cases later.
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We classify the system as:

• Discrete-time if the monoid is discrete, meaning its elements form a countable set,
e.g., T = N, T = Z/nZ.

• Continuous-time if the monoid is a continuous monoid, e.g., T = R≥0, T = R.

In this setting, T may still represent time in the traditional sense, with the binary
operation being ordinary addition, but it can also accommodate more generic indexing
structures, such as multidimensional spatial coordinates, the numbering of a word (or
token) in a text, or other parameters.

Remark 3.1.3 Although we have defined dynamical systems in a completely abstract
setting where S is simply a set, in practice the state space usually has additional structure
that is preserved by the map f . For example, (S,B) could be a measurable space and f
a measurable map, a topological space and a continuous map, or a metric space and an
isometry, or a smooth manifold and a differentiable map.

Example 3.1.4 (Continuous-Time Dynamical System) Consider a continuous-time dy-
namical system indexed by T = R≥0. Suppose the dynamics are governed by an ordinary
differential equation (ODE):

ṡ(t) = f(s(t)).

For example, let the state space S = R and define f(s(t)) = cs(t), where c ∈ R. Then
the ODE becomes ṡ(t) = cs(t). For each initial condition s(0) = s0, the unique solution
can be easily found as s(t) = s0e

ct.

Example 3.1.5 (Discrete-Time Dynamical System) Consider a discrete-time dynamical
system indexed by T = N. Suppose the dynamics are governed by a difference equation:

s(t+ 1) = f(s(t)).

Let the evolution function be f(s(t)) = c1s(t) + c2, with c1, c2 ∈ R. The difference
equation becomes s(t + 1) = c1s(t) + c2. As before, for each initial condition s(0) = s0,

the unique solution is s(t) = s0c
t
1 + c2

1−ct1
1−c1

, provided that c1 ∕= 1.

In the previous examples, the systems evolve depending only on the initial condition
and the choice of constants. Here, the systems’ evolution functions are not explicitly
dependent on the time parameter t ∈ T . We call such systems autonomous; otherwise,
if the dynamics explicitly depend on time, we call them non-autonomous, meaning that
the dynamics can change over time independently of the state.

3.1.2 From Deterministic to Stochastic Dynamical Systems

So far, we have considered dynamical systems that evolve deterministically, governed by an
evolution function f . In practice, however, many systems are better modeled by accounting
for stochasticity or are influenced by inherent randomness. There are multiple ways to
formalize randomness in this context. In what follows, we will focus on two important
perspectives: the one of stochastic dynamical systems (SDS) given by a stochastic evolution
function, and the one of Markov chains (MC) given by a probability kernel. We will show
how these two viewpoints are fundamentally intertwined.

First we lay down some fundamental working assumptions.
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From now on, we will only consider discrete-time autonomous systems (S,B), where
S is a compact state space, and B is a (countably generated) σ-algebra.

Remark 3.1.6 Note that most of the following discussion applies only when the state
space’s σ-algebra B is countably generated. This condition is quite mild. For instance,
any subset of Rd equipped with the standard Borel σ-algebra satisfies this condition, since
the Borel σ-algebra is generated by open balls with rational centers and rational radii,
which form a countable set.

Definition 3.1.7 (Stochastic Dynamical System (SDS)). Let (S,B) be a measurable state
space and (Ω,A,P) a probability space. Suppose we are given an S-valued random variable
X0 : Ω → S and a sequence of i.i.d. random variables {ϑt}t∈N such that ϑt : Ω → [0, 1]
and each ϑt is distributed as U(0, 1).

A stochastic dynamical system (SDS) is defined by a measurable function

f : S × [0, 1] → S,

called the stochastic evolution function, and the recursion

Xt+1 = f(Xt,ϑt) for all t ∈ N.

Each Xt is a measurable function Xt : Ω → S, representing the system’s random state
at time t. Each update Xt → Xt+1 is driven by the current state and an independent
U(0, 1) random input ϑt.

Remark 3.1.8 The choice of ϑt ∼ U(0, 1) is without loss of generality. By the probabil-
ity integral transform, any random variable can be generated from a U(0, 1)-distributed
random variable via an appropriate measurable transformation. It is a convenient choice
for representing arbitrary stochastic behavior in the evolution of the system.

As we will see in the next chapter, our ultimate goal is to best approximate certain
conditional expectations arising in the stochastic evolution, such as E[Xt+1 | Xt = x]. The
aim is to develop a learning algorithm that estimate these conditional expectations from
observed data and to establish theoretical guarantees on the sample complexity needed to
achieve reliable approximation in this setting.

Given an SDS, we can describe its evolution in probabilistic terms. From any current
state x ∈ S, the distribution of the next state Xt+1 is the law L(f(x,ϑt)). This naturally
leads us to define a transition probability kernel that encapsulates these probabilities.

Definition 3.1.9 (Transition Probability Function/Markov Kernel). Let (S,B) be a mea-
surable space (with countably generated σ-algebra). A transition probability function
(or transition probability kernel) is a function

P : S × B → [0, 1],

satisfying the following properties:

(i) For every x ∈ S, the map A → P (x,A) is a probability measure on (S,B);

(ii) For every A ∈ B, the map x → P (x,A) is B-measurable.

The value P (x,A) represents the probability of transitioning from state x ∈ S to a
measurable set of states A ∈ B in one time step. Such a function P is also called aMarkov
kernel.
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This definition generalizes the notion of a transition matrix, introduced at the end
of the first chapter, from the finite state space setting to more general state spaces. In
particular it allows us to move from discrete to continuous state spaces by working with
general probability measures rather than discrete probability distributions.

Remark 3.1.10 If we consider a transition kernel P (x, ·) that is a Dirac measure at the
point f(x), i.e. P (x,A) = δf(x)(A), then there is no randomness in the evolution and we
recover a deterministic system. Thus, taking P (x, ·) = δx(·) for some deterministic update
rule is a special case of a stochastic system where the randomness is trivial.

3.1.3 Path Space

In the deterministic setting, a dynamical system is represented by a unique function s :
T → S mapping each time t to the corresponding state st. In the stochastic setting, such
a function s is seen as an element of s ∈ ST , where ST = {s : T → S} is the class of
functions s : T → S. The element s, also called a path is now a realization of a sequence
of random variables {Xt}t∈T defined on the path space.

Definition 3.1.11 (Path Space). Let (S,B) be a measurable space and let T be our
discrete time domain (N in the countable case or {0, 1, . . . , T} in the finite case). The
measurable space (ST ,BT ) is called a path space, where BT denotes the σ-algebra on
ST generated by all evaluation maps πt : S

T → S, t ∈ T , given by πt(s) = s(t).

We denote with (ST ,BT ) the path space for T = {0, 1, . . . , T} and with (S∞,B∞) the
path space in the case of T = N.

If X : Ω → U ⊂ ST , then clearly Xt = πt ◦X maps Ω into S. Thus, X may also be
regarded as a function X(t,ω) = Xt(ω) from T × Ω to S. We will explore this precisely
after a few remarks on measurability in the path space.

Remark 3.1.12 Since the finite path space ST is just the T -times cartesian productT
n=0 S, and S∞ =

∞
n=0 S, one could ask if the corresponding σ-algebras coincide with

the product σ-algebras introduced in the first chapter. It is indeed the case, to see that
recall that:

(i) The product σ-algebra B ⊗ · · ·⊗ B is generated by all cylinder sets of the form

C = A1 × · · ·×AT , with At ∈ B for t = 1, . . . , T.

(ii) The σ-algebra BT on the path space is generated by the projections πt : S
T → S.

In particular, every set in BT can be expressed as a countable union of intersections of
cylinder sets, and every cylinder set belongs to BT . Hence, BT = B ⊗ · · · ⊗ B. Similarly,
in the infinite case, we have that

∞
n=1 B =σ({πt : t ∈ N}).

A rigorous proof relying on cylinder sets can be found in [34], p.75.

As a consequence we have the following lemma.

Lemma 3.1.13 (Measurability). Let (S,B) be a measurable space, T be the index set as
above, U ⊂ ST , and X : Ω → U be a function. The following conditions are equivalent:

(i) X is BT ∩ U -measurable.

(ii) Xt : Ω → S is B-measurable for every t ∈ T .
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A mapping X with the properties in Lemma 3.1.13 is called an S-valued (random)
process on T with paths in U . By the lemma it is equivalent to regard X as a collection
of random elements Xt in the state space S.

The next theorem shows that from any initial distribution and a transition kernel, we
can construct a stochastic process with the corresponding finite-dimensional distributions.
This result lays the foundation for relating a Markov chain with a given kernel as a
realization of an SDS, and conversely.

Theorem 3.1.14. For any initial measure µ on S, i.e., µ : B → [0, 1], and any transition
probability kernel P, {P (x,A) : x ∈ S, A ∈ B}, there exists an S-valued stochastic process
X = {X0, X1, . . .} on T with paths in some U ⊂ BT , and a probability measure Pµ on
ST such that Pµ(A) is the probability of the event {X ∈ A} for A ∈ U . Moreover, for
measurable sets Ai ⊆ Xi, i = 0, . . . , n, and any integer n, we have

Pµ(X0 ∈ A0, X1 ∈ A1, . . . , Xn ∈ An) =



A0

· · ·


An−1

µ(dy0)P (y0, dy1) · · ·P (yn−1, An).

(3.1)

In the case of µ = δx, the dirac measure at a point x ∈ S, we use the notation Pδx = Px.

Definition 3.1.15 (time-homogenous Markov chains (MC)). The stochastic process X is
called a time-homogeneous Markov chain with transition probability kernel P
and initial distribution µ if the finite-dimensional distributions of X satisfy (3.1) for
each n.

With these notions in place, we are now ready to formally establish the connections
between SDSs and Markov chains (MC). The following proposition confirms that any S-
valued time-homogeneous Markov process with a given transition kernel can be realized
as an SDS, and conversely, every SDS induces a time-homogeneous Markov process with
a corresponding transition kernel.

Proposition 3.1.16. Let X be an S-valued process on T . Then the following conditions
are equivalent:

(i) X is a time-homogeneous Markov process with transition kernel P and initial distri-
bution µ,

(ii) There exists a measurable function f : S × [0, 1] → S and i.i.d. U(0, 1) random
variables ϑ1,ϑ2, . . ., independent of L(X0) = µ, such that

Xn = f(Xn−1,ϑn) a.s. for all n ∈ N.

In this case, the transition kernel is given by P (x, ·) = L(f(x,ϑ)) almost surely.

This guarantees that discussing SDSs through stochastic evolution functions or as
(time-homogenous) Markov chains through transition kernels is essentially equivalent.
Hence, the study of the MC and its properties naturally extends to the corresponding
SDS.

This framework facilitates the formalization of asymptotic properties and trajectories
in stochastic systems. Trajectories, in particular, will play a crucial role in the next
chapter, as they are fundamental parts of our learning algorithm’s data.



3.2. MARKOV CHAINS 51

Definition 3.1.17 (Trajectory). Let (S,B) be a stochastic dynamical system with initial
probability measure µ. A trajectory is a realization of the stochastic process given by
Theorems 3.1.14 and 3.1.16 with L(X0) = µ, that is

X(ω) = {X0(ω), X1(ω), X2(ω), . . . }.

We call a trajectory of length L the finite truncation {X0(ω), X1(ω), . . . , XL−1(ω)}.

3.2 Markov Chains

In the previous sections, we have established that every stochastic dynamical system can be
represented as a time-homogeneous Markov chain {Xn}n∈N with a transition probability
kernel P and an initial distribution µ. Having identified this correspondence, we now turn
our attention to the long-term behavior of such chains. Specifically, we want to understand
under what conditions the sequence of measures µPn converges to a limiting (stationary)
distribution and, more importantly, how quickly this convergence occurs.

Our ultimate goal is to characterize conditions that ensure exponential convergence
of the induced measures. To achieve this, we will begin by examining the n-step transi-
tion probability kernels, which describe how distributions evolve over multiple time steps.
This approach will guide us through key concepts such as ergodicity, aperiodicity, and
irreducibility, which together form the backbone of the classical theory ensuring conver-
gence.

We denote by X(P,µ), or just X when there is no ambiguity, the Markov chain deter-
mined by the transition kernel P and the initial measure µ derived from our SDS (S,B).

3.2.1 Evolution of Probability Distributions

Definition 3.2.1 (n-step transition probability kernel). The n-step transition prob-
ability kernel is defined iteratively. We set P 0(x,A) = δx(A) and, for n ≥ 1, we define
inductively

Pn(x,A) =



S
P (x, dy)Pn−1(y,A), x ∈ S, A ∈ B. (3.2)

We write Pn for the n-step transition probability kernel {Pn(x,A), x ∈ S,A ∈ B}.

Theorem 3.2.2 (Chapman–Kolmogorov). For any m with 0 ≤ m ≤ n, the following
Chapman–Kolmogorov equation holds:

Pn(x,A) =



S
Pm(x, dy)Pn−m(y,A), x ∈ S, A ∈ B. (3.3)

We interpret (3.3) as saying that, as X moves from x into A in n steps, at any inter-
mediate time m, it must take some value y ∈ S; and that, being a Markov chain, it forgets
the past at that time m and moves the succeeding (n−m) steps with the law appropriate
to starting afresh at y. We can write (3.3) alternatively as

Px(Xn ∈ A) =



S
Px(Xm ∈ dy)Py(Xn−m ∈ A). (3.4)

Exactly as the one-step transition probability kernel describes a chain X, the m-
step kernel satisfies the definition of a transition kernel and thus defines a Markov chain
Xm = {Xm

n } with transition probabilities

Px(X
m
n ∈ A) = Pmn(x,A). (3.5)
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Definition 3.2.3 (m-skeleton of a Markov chain). The chain Xm with transition law
(3.5) is called the m-skeleton of the chain X.

We now explore how the evolution of measures and observables in terms of the tran-
sition kernel P .

Given an initial (σ-finite) measure µ on S, it evolves by recursively applying the Markov
transition function. The n-step evolution of µ acts pointwise on A ∈ B as

µ[n](A) :=



S
µ[n−1](dx)P (x,A), (3.6)

which, in terms of the n-step transition kernel Pn, is equivalent to

µ[n](A) = µPn(A) =



S
µ(dx)Pn(x,A).

As an operator, Pn acts on continuous measurable functions f on S as

Pnf(x) =



S
Pn(x, dy)f(y).

Remark 3.2.4 Since S is compact, every continuous function f : S → R is bounded and
thus integrable with respect to any probability measure on S. In particular, for any initial
measure µ and any Markov kernel P , the measures µPn are probability measures, and the
integrals defining Pnf and µPn are well-defined.

From now on, our main focus will be on the sequence of ditributions {µ[t]}t∈N, with
µ[t] := µP t. We will see what it means for this distributions to converge and study its rate
of convergence.

3.2.2 Ergodicity

The main results regarding the learning algorithm presented in Chapter 4 largely depend
on the convergence of distributions, for which we will need a fast rate of convergence.
Our aim for the rest of this chapter is to formalize this convergence precisely and study
sufficient conditions on our Markov Chains for this convergence to happen. To begin, let’s
recall the definition of the total variation norm in the classical setting.

Definition 3.2.5 (Total Variation Norm). If µ ∈ M(S), then the total variation norm
µTV is defined as

µTV := sup
f :|f |≤1

|µ(f)| = sup
A∈B

µ(A)− inf
A∈B

µ(A).

Definition 3.2.6 (Ergodicity). We call the system ergodic if there exists a unique proba-

bility measure π ∈ P(S) such that µ[t] = µP t t→∞−−−→ π for any starting probability measure

µ, meaning µ[t] − πTV
t→∞−−−→ 0 ∀µ ∈ P(S).

Although ergodicity is typically expressed in terms of the TV-norm, we will make use
of a different version, in particular with respect to the Hölder norm. To achieve this, let’s
first revisit the definition of Hölder space.

Definition 3.2.7 (Hölder Space). For s ∈ (0, 1], the Hölder space Cs(S) is defined as
the set of all functions f : S → R such that the Hölder norm fCs is finite, where the
Hölder norm is defined by
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fCs(S) = fC(S) + |f |Cs(S), with |f |Cs(S) = supx ∕=y
|f(x)−f(y)|

d(x,y)s .

Note that Cs(S) is a Banach space for each s ∈ (0, 1], as it is complete with respect
to the Hölder norm  · Cs(S). Moreover, a probability measure µ on S can be regarded as
an element of the dual space (Cs(S))∗. This is because the inclusion Cs(S) ↩→ C(S) is a
continuous embedding due to the simple inequality fC(S) ≤ fCs(S). Recall that S is
compact, and so every continuous function on S has a finite supremum norm fC(S) =
f∞ < +∞. Therefore, we have the following inclusion P(S) ⊂ M(S) = C(S)∗ ↩→
(Cs(S))∗, where P(S) is the space of probability measures and M(S) is the space of
signed bounded measures on S.

Definition 3.2.8 (Ergodicity with Hölder norm). We call the system ergodic, or simply

ergodic, if there exists a unique probability measure π ∈ P(S) such that µ[t] = µP t t→∞−−−→ π

for any starting probability measure µ, meaning µ[t] − π(Cs(S))∗
t→∞−−−→ 0 ∀µ ∈ P(S).

Equivalently, by definition of the dual, for each µ ∈ P(S)


S f(x)dµ[t] −


S f(x)dπ


fCs(S)

t→∞−−−→ 0 ∀f ∈ Cs(S), ∀t. (3.7)

From now on we will always assume this definition of ergodicity.

Remark 3.2.9 In general, a Markov chain can exhibit multiple “ergodic behaviors” if
there are several invariant measures, each attracting different initial distributions. Con-
cretely, the state space may decompose into distinct “ergodic regions,” and starting the
chain in one region leads to convergence to one particular invariant measure, while starting
in another region may lead to a different limit. However, in the setting where a unique
invariant measure π exists and attracts all initial distributions, we say the chain is ergodic.
This is precisely the scenario we are interested in: the limiting distribution is unique and
does not depend on the initial distribution.

To gain a clearer understanding of the limit measure of an ergodic system, we introduce
the concept of invariant measure and examine its connection to the long-term behavior.

Definition 3.2.10 (Invariant measures). A measure π ∈ M(S) is called invariant if it
satisfies πP = π, i.e.

π(A) =



S
π(dx)P (x,A) ∀A ∈ B.

Let us first recall what a stationary chain is and how it relates to the invariant measure
we just introduced.

A process is called stationary if, for any k, the marginal distribution of {Xn, . . . , Xn+k}
stays the same regardless of the value of n. While most Markov chains aren’t stationary
by default, we can sometimes create a stationary process {Xn, n ∈ N} by choosing the
initial distribution µ appropriately.

To generate an entire stationary process, it’s enough to ensure stationarity at the first
step. Starting with an initial invariant probability measure π, we can iterate as follows:

π(A) =



S
π(dx)P 2(x,A)

...

=



S
π(dx)Pn(x,A) = Pπ(Xn ∈ A),
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for any n and any A ∈ B.
By the Markov property, X is stationary if and only if the distribution of Xn does not

change over time.
Invariant probability measures are important not just because they define stationary

processes, but also because they determine the ergodic, behavior of the chain. To see why,
consider Pµ(Xn ∈ ·) for any initial distribution µ. If a limiting measure γµ exists on the
space of probability measures, such that

Pµ(Xn ∈ A) → γµ(A) ∀A ∈ B as n → ∞,

then

γµ(A) = lim
n→∞



S
µ(dx)Pn(x,A)

= lim
n→∞



S
µ(dx)


Pn−1(x, dw)P (w,A)

=



S
γµ(dw)P (w,A),

This shows that γµ is invariant under P . In particular, if there is a unique invariant
probability measure π, then γµ = π for any initial µ (provided the limit exists), showing
that the long-term behavior of the chain does not depend on the initial distribution µ.

Example 3.2.11 Consider a Markov chain {Xn} on the real line, where P (x, ·) = N

x
2 ,

3
4



for each x ∈ R. Equivalently,
Xn+1 =

1

2
Xn + Un+1,

where {Un} are i.i.d. with L(Un) = N

0, 34


.

Note that the standard normal distribution π = N(0, 1) is invariant. In fact, for any
A ∈ B(R),



R
π(dx)P (x,A) =



R

1√
2π

e−
1
2
x2



y∈A

2√
3
√
2π

e−
2
3(y−

x
2 )

2

dy


dx,

=



x∈R



y∈A

1√
2π

e−
1
2
x2 2√

3
√
2π

e−
2
3(y−

x
2 )

2

dydx,

=



y∈A



x∈R

2

2π
√
3
e−

1
2
x2− 2

3(y−
x
2 )

2

dxdy,

=



y∈A

1√
2π

e−
y2

2 dy = π(A).

which means the Markov chain {Xn} is stationary with respect to N(0, 1).

Remark 3.2.12 For this reason, we can express the limit measure of an ergodic system
as µPn → π, independently of the measure µ. Formally, in the sense of (Cs(S))∗, we have:

ψP t − φP t(Cs(S))∗
t→∞−−−→ 0 ∀ψ,φ ∈ P(S).

In particular, by fixing x ∈ S, we obtain Pn(x, ·) → π.

As we have observed, the relationship between the limit measure and the invariant
measure is valid as long as we can formalize the limit and, hence, the distance between
two measures. To achieve this, it is essential to define a norm for our measure space. The
Hölder norm we previously introduced is merely one specific option. In reality, a wide
variety of norms is used.
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Remark 3.2.13 Although the total variation (TV) norm is the most common choice for
measuring the distance between probability measures, in this chapter (and especially in
the next), we employ the Hölder norm because it allows us to derive explicit convergence
rates under additional smoothness assumptions on the Markov chain. Working in (Cs(S))∗

gives us finer control over certain error terms related to the chain’s transition dynamics,
which is crucial for obtaining quantitative bounds in Chapter 4. Nevertheless, convergence
in the TV-norm guarantees convergence for the Hölder norm as well, since the TV-norm
imposes a stronger condition in the space of measures. Keeping this in mind, we can be
reassured that the usual theoretical guarantees one has in the classical framework still
apply to our case of interest.

To derive explicit bounds for our use case rather than just asymptotic results, it is
essential to introduce a stronger form of ergodicity that requires a convergence rate: ge-
ometric ergodicity. Geometric ergodicity corresponds to the property, which not always
holds, that this convergence occurs exponentially quickly.

Definition 3.2.14 (Geometric Ergodicity). We say that the system above is geometri-
cally ergodic if:

(i) it is ergodic – in the sense of (Cs(S))∗;

(ii) there exists V : S → [0,+∞) measurable, C > 0 and α ∈ [0, 1) such that



S
V (x)dπ(x) < ∞ and P t(x, ·)− π(·)(Cs(S))∗ ≤ CαtV (x) ∀x ∈ S, ∀t ∈ N.

This definition formalizes what it means for an ergodic system to have a geometric
(or exponential) rate of convergence. There are several other definitions of ergodicity, the
one of our interest is uniformly geometric ergodicity. It is a stronger form of geometric
ergodicity where the function V (x) in the definition is constant. This means that the rate
of convergence to the limit distribution does not depend on the initial state x. Instead,
the convergence happens at a uniform exponential rate for all starting points in the state
space.

Remark 3.2.15 (Uniform ergodicity) Uniform ergodicity per se does not necessarily
imply an exponential rate of convergence, but together with the requirement of a geometric
rate, it insists that the same constants C and α in (4.2) work uniformly across the space.

Definition 3.2.16 (Uniformly geometric ergodicity). Let 0 ≤ s ≤ 1. We call the system
uniformly geometrically ergodic if there exist constants C > 0 and 0 < α < 1 such
that,

P t(x, ·)− π(·)(Cs(S))∗ ≤ Cαt, ∀t. (3.8)

Or, equivalently, for any initial measure µ,




S
f(x)d(µP t)−



S
f(x)dπ

 ≤ CαtfCs(X), ∀f ∈ Cs(X), ∀t. (3.9)

Remark 3.2.17 Trivially we have:

uniformly geometric ergodicity =⇒ geometric ergodicity =⇒ simple ergodicity.

This ergodicity assumption is equivalent to, or implied by, a number of different state-
ments, which in some cases might be easier to check. We explore this in the following by
introducing concepts such as irreducibility, aperiodicity and Harris recurrence.
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3.2.3 Irreducibility

Definition 3.2.18 (ϕ-irreducible). The process X with Markov kernel P , is said to be
ϕ-irreducible if there exists a non-zero σ-finite measure ϕ on S such that,

ϕ(A) > 0 =⇒ ∃n > 0 : Pn(x,A) > 0 ∀x ∈ S.

This basically means that every ’relevant’ measurable set, in the sense of ϕ, is always
accessible from any point x ∈ S in a finite amount of steps.

Example 3.2.19 Back to the example from the previous section (3.2.11), where {Xn} is
a Markov chain on the real line, with P (x, ·) = N


x
2 ,

3
4


for each x ∈ R.

Then, for any A ⊂ B(R) such that the Lebesgue measure λ(A) > 0, for all x ∈ R,

P (x,A) =



y∈A

2√
3
√
2π

e−
2
3(y−

x
2 )

2

dy > 0.

It follows that {Xn} is λ-irreducible.

While the concept of ϕ-irreducibility ensures that the Markov chain can, with some
positive probability, reach all sets of positive ϕ-measure from any starting point, it does
not guarantee uniqueness of the measure ϕ. In practice, there could be many different ϕ
that make the chain irreducible. To obtain a canonical irreducibility measure and a more
intrinsic notion of irreducibility, it is useful to introduce the idea of a maximal irreducibility
measure.

Proposition 3.2.20 (Maximal Irreducibility Measure). Suppose the Markov chain X is
ϕ-irreducible for some (nonzero) measure ϕ on S. Then there exists a measure ψ, called
a maximal irreducibility measure, such that:

(i) the chain is ψ-irreducible;

(ii) for any other measure ϕ′, the chain is ϕ′-irreducible if and only if ψ ≻ ϕ′ (i.e., any
set A ∈ B for which ϕ′(A) > 0 also satisfies ψ(A) > 0);

(iii) ψ(A) = 0 =⇒ ψ{x | ∃n > 0 s.t. Pn(x,A) > 0} = 0.

We will consistently use ψ to denote an arbitrary maximal irreducibility measure for
the chain X.

Definition 3.2.21 (ψ-irreducible). The Markov chain is called ψ-irreducible if it is ϕ-
irreducible for some ϕ, and the measure ψ is a maximal irreducibility measure satisfying
the conditions of Proposition 3.2.20.

We write

B+ := {A ∈ B : ψ(A) > 0}

for the sets of positive ψ-measure; the equivalence of maximal irreducibility measures
implies that B+ is uniquely defined.

With the definition of ψ-irreducibility as our baseline, we can further explore conditions
ensuring convergence.
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3.2.4 Aperiodicity

While ψ-irreducibility is a fundamental notion, it does not preclude the existence of peri-
odic structures that can hinder convergence. To address this, we introduce the concept of
small sets, which play an important role in establishing certain uniformity conditions and
in proving aperiodicity.

Definition 3.2.22 (Small set). A set C ∈ B is called a small set if there exists an integer
m > 0 and a nontrivial measure νm on S such that for all x ∈ C and all B ∈ B,

Pm(x,B) ≥ νm(B).

When this condition holds, we say that C is νm-small.

Intuitively, when a set C is small, and νm being non-trivial meaning that there exists
B measurable such that νm(B) > 0, then there is a positive chance for the chain to move
from the small set C to B in m steps, independently of the state x ∈ C.

The existence of small sets is central to establishing various ergodic properties of
Markov chains. In particular, for a ψ-irreducible chain, it can be shown that every set in
B+ contains a small set. Another important fact is the following

Proposition 3.2.23. Suppose the chain X is ψ-irreducible. If C ∈ B+(X) is νn-small,
then there exists M ∈ N, and a measure νM such that C is νM -small, and νM (C) > 0.

Hence we have PM (x, ·) ≥ νM (·), x ∈ C, and νM (C) > 0, so that, when the chain
starts in C, there is a positive probability that the chain will return to C at time M .
We will use the set C and the corresponding measure νM to define a cycle for irreducible
Markov chains.

Consider the set of time points for which C is νM -small with a minorizing measure νn
(meaning that for every x ∈ C and B ∈ B, we have Pn(x,B) ≥ νn(B)) proportional to
νM .

Formally the set is

EC = {n ≥ 1 : C is νn-small, with νn = εnνM for some εn > 0}.

For any B ⊆ C, if n,m ∈ EC , we know C is both νn-small and νm-small. Thus,

Pm(x,B) ≥ νm(B) = εmνM (B), x ∈ C,

and
Pn(y,B) ≥ νn(B) = εnνM (B), y ∈ C.

Using the Chapman-Kolmogorov equations, and restricting the integral to C, for x ∈ C
we obtain

Pn+m(x,B) =



S
Pm(x, dy)Pn(y,B) ≥



C
Pm(x, dy)Pn(y,B).

Substituting the minorization bounds:

Pn+m(x,B) ≥


C
εmνM (dy) εnνM (B) = [εmεnνM (C)] νM (B),

which shows that EC is closed under addition. Thus, there is a natural “period” for the set
C, given by the greatest common divisor (gcd) of EC . It can be shown that C is νnd-small
for all sufficiently large n, where d = gcd(EC).

We show that this value is in fact a property of the whole chain X, and is independent
of the particular small set chosen, in the following
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Theorem 3.2.24 (Periodic cycle). Suppose that X is a ψ-irreducible Markov chain on S.
Let C ∈ B+(X) be a νM -small set and let d be the greatest common divisor of the set EC .
Then there exist disjoint sets D1, . . . , Dd ∈ B (a “d-cycle”) such that:

(i) For x ∈ Di, P (x,Di+1) = 1, i = 0, . . . , d− 1 (mod d);

(ii) The complementary set N = [
d

i=1Di]
c is ψ-null, i.e., ψ(N) = 0.

The d-cycle {Di} is maximal in the sense that for any other collection {d′, D′
k, k =

1, . . . , d′} satisfying (i)-(ii), we have d′ dividing d; while for d = d′, then, by reordering
the indices (if necessary), D′

i = Di ψ-almost everywhere.

Proof. For i = 0, 1, . . . , d− 1 set

D∗
i =


y :

∞

n=1

Pnd−i(y, C) > 0


,

by irreducibility, S =


D∗
i .

The D∗
i are in general not disjoint, but we can show that their intersection is ψ-null.

Suppose there exists i, k such that ψ(D∗
i ∩D∗

k) > 0. Then for some fixed m,n > 0, there
is a subset A ⊆ D∗

i ∩D∗
k with ψ(A) > 0 such that

Pmd−i(w,C) ≥ εm > 0, w ∈ A

Pnd−k(w,C) ≥ εn > 0, w ∈ A

and since ψ is the maximal irreducibility measure, we can also find r such that


C
νM (dy)P r(y,A) = εc > 0.

Now we use the fact that C is a νM -small set. For x ∈ C, B ⊆ C, one can derive

P 2M+md−i+r(x,B) ≥


C
PM (x, dy)



A
P r(y, dw)



C
Pmd−i(w, dz)PM (z,B)

≥ [εcεm]νM (B),

so that [2M+md+r]−i ∈ EC . By identical reasoning, we also have [2M+nd+r]−k ∈ EC .
This contradicts the definition of d, and we have shown that ψ(D∗

i ∩D∗
k) = 0, i ∕= k.

Let N =


i,j(D
∗
i ∩ D∗

k), so that ψ(N) = 0. The sets {D∗
i \ N} form a disjoint class

of sets, for which the complementary of its union satisfies ψ([


i(D
∗
i \N)]c) = 0 . We can

find a set D such that P (x,D) = 1 for any x ∈ D and Di = D ∩ (D∗
i \N) are disjoint and

D =


Di. By the Chapman-Kolmogorov equations, if x ∈ D is such that P (x,Dj) > 0,
then we have x ∈ Dj−1, by definition, for j = 0, . . . , d−1 (mod d). Thus {Di} is a d-cycle.

To prove the maximality and uniqueness result, suppose {D′
i} is another cycle with

period d′, with N = [

D′

i]
c such that ψ(N) = 0. Let k be any index with νM (D′

k∩C) > 0,
since ψ(N) = 0 and ψ ≥ νM , such a k exists. We then have, since C is a νM -small set,

PM (x,D′
k ∩ C) ≥ νM (D′

k ∩ C) > 0 for every x ∈ C.

Since (D′
k ∩ C) is non-empty, this implies that M is a multiple of d′; since this happens

for any n ∈ EC , by definition of d we have d′ divides d as required. Also, we must have
C ∩D′

j empty for any j ∕= k; if not we would have some x ∈ C with PM (x,C ∩D′
k) = 0,

which contradicts the properties of C.
Hence we have C ⊆ (D′

k ∪N), for some particular k. It follows by the definition of the
original cycle that each D′

j is a union up to ψ-null sets of d/di elements of Di.
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From the proof, it is clear that the cycle does not depend, except perhaps for ψ-null
sets, on the small set initially chosen, and that any small set must be essentially contained
inside one specific member of the cyclic class {Di}.

Definition 3.2.25 (Aperiodic, strongly aperiodic). Suppose that X is a ϕ-irreducible
Markov chain.

The largest d for which a d-cycle occurs for X is called the period of X.

When d = 1, the chain is called aperiodic.

When there exists a ν1-small set A with ν1(A) > 0, then the chain is called strongly
aperiodic.

Example 3.2.26 Using the same example as in the previous sections (3.2.11), we can show
that {Xn} is aperiodic. Suppose, in the contrary, that {Xn} is periodic with periodic cycle
D1, . . . , Dd.

Let x ∈ D1, then

P (x,D2) =



y∈D2

2√
3
√
2π

e−
2
3(y−

x
2 )

2

dy = 1.

It follows that 

y∈Dc
2

2√
3
√
2π

e−
2
3(y−

x
2 )

2

dy = 0.

Since 0 < 2√
3
√
2π
e−

2
3(y−

x
2 )

2

< ∞, and that the chain is λ−irreducible, we have λ(Dc
2) = 0,

(where λ is the Lebesgue measure on R). Since D1 ⊂ Dc
2, λ(D1) = 0. Hence, for x ∈ Dd,

P (x,D1) =



y∈D1

2√
3
√
2π

e−
2
3(y−

x
2 )

2

dy = 0,

which contradicts periodicity.

3.2.5 Recurrence

In developing concepts of recurrence for sets A ∈ B, we will consider the event that X ∈ A
infinitely often (i.o.) defined by

{X ∈ A i.o.} :=

∞

N=1

∞

k=N

{Xk ∈ A}

which is well defined as an B∞-measurable event on the path space S∞. For x ∈ S, A ∈ B
we write

Q(x,A) := Px{X ∈ A i.o.}

Definition 3.2.27 (Harris recurrence). The set A is called Harris recurrent if

Q(x,A) = 1, x ∈ A.

A chain X is called Harris recurrent (or just Harris) if it is ψ-irreducible and every set
in B+ is Harris recurrent.

The following proposition provides a sufficient condition for a set to be Harris recurrent.
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Proposition 3.2.28. Given a set A ∈ B, if there exists n ∈ N>0 such that Pn(x,A) ≡ 1,
x ∈ A, then Q(x,A) = Pn(x,A) for every x ∈ S, in particular A is Harris recurrent.

Thanks to irreducibility and aperiodicity, we can now strengthen the connection be-
tween the chain X and its skeletons using the following theorem.

Theorem 3.2.29. If the chain X is ψ-irreducible and aperiodic, then

X is Harris ⇐⇒ the skeletons Xm are Harris for all m.

To study the long-term behavior of the chain (and hence of the system), we will divide
recurrent chains into two classes: the one of positive recurrent chains, which provides a
strong kind of stability, and the one of null recurrent chains, which will not be of our
interest.

The strongest form of stability is when the distribution of Xn remains unchanged for
different n, which is exactly the case of stationary processes induced by the invariant
measure π.

Definition 3.2.30 (Positive chains). A ψ-irreducible chain X is called positive if it
admits an invariant probability measure π. It is called null otherwise.

3.2.6 Convergence

In this concluding section of the chapter, we examine the convergence of distributions
and their ergodic behavior by integrating all the concepts we’ve explored so far. Let us
state the most important results of this section, which provide guarantees on the ergodic
behavior of the chain.

Theorem 3.2.31 (Aperiodic Ergodic Theorem). Consider the chain X to be aperiodic
Harris recurrent, with invariant measure π′. Then the following are equivalent:

(i) X is positive Harris

(ii) π′ is a finite measure

(iii) there exists a unique probability measure π ∈ P(S) such that, for every x ∈ S,

sup
A∈B

|Pn(x,A)− π(A)| −→ 0 as n → ∞.

In particular, π is a constant multiple of π′, so if any of the above conditions are met,
we can always consider the invariant measure to be a unique probability measure.

Proof. [20, p. 314]

Theorem 3.2.32. If X is positive Harris recurrent and aperiodic, then for any initial
measure µ

lim
n→∞

µPn − πTV = 0.

In particular,

lim
n→∞

µ[n] = lim
n→∞

µPn(A) = π(A) for all measurable A ∈ B.

Proof. [20, p. 328]
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Corollary 3.2.33. If X is positive Harris recurrent and aperiodic, then X is ergodic in
the sense of (Cs(S))∗ for s ∈ [0, 1].

Proof. From the previous theorem, for any initial probability measure µ, we have conver-
gence in total variation (TV) norm:

lim
n→∞

µPn − πTV = 0.

Since f∞ ≤ fCs(S) for all f ∈ Cs(S) and S is compact, it follows that any function
f with fCs(S) ≤ 1 also satisfies f∞ ≤ 1.

Hence, we have

µ(Cs(S))∗ = sup
fCs(S)≤1

|µ(f)| ≤ sup
f∞≤1

|µ(f)| = µTV.

This implies
µPn − π(Cs(S))∗ ≤ µPn − πTV.

Since we know µPn − πTV → 0 as n → ∞, it follows that

µPn − π(Cs(S))∗ → 0.

Thus, convergence in TV norm implies convergence in (Cs(S))∗ norm. Since the chain
is positive Harris recurrent and aperiodic, it converges to the unique stationary distribution
π, and therefore it is ergodic in the sense of (Cs(S))∗.

Remark 3.2.34 Once again, relating the chain with its skeletons, one can derive that if
X is ψ-irreducible and aperiodic, then for each m, a measure π is invariant for X if and
only if it is invariant for Xm.

Let us conclude with a result that not only guarantees ergodicity but also the desired
uniformly geometric ergodicity.

Theorem 3.2.35 (Uniformly Geometric Ergodic Theorem). Suppose X ψ-irreducible and
aperiodic. Then the following conditions are equivalent:

(i) there exist some α < 1, R < ∞ such that

Pn − πTV ≤ Cαn;

(ii) for some n ∈ N>0,
sup
x∈S

Pn(x, ·)− π(·) < 1;

(iii) X satisfies Doeblin’s condition, i.e., ∃φ ∈ P(S) such that for some integer m, ε <
1, δ > 0,

φ(A) > ε =⇒ Pm(x,A) ≥ δ,

for every x ∈ S.

Furthermore, any of these conditions implies that X is uniformly geometrically ergodic.

Proof. [20, p. 401]

Corollary 3.2.36. If X is positive Harris recurrent and aperiodic, then it is also uni-
formly geometrically ergodic.
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In the specific case of absolutely continuous Markov kernels, the conditions become
significantly easier to verify, ensuring that the same result as in Theorem 3.2.35 holds.

Proposition 3.2.37. If the transition probability function P (x, ·) is absolutely continuous
with respect to a strictly positive measure λ on S, that is, there exists a measurable function
ψ(x, y) such that P (x,A) =


A ψ(x, y) dλ(y), ∀x ∈ S, A ∈ B(S), where ψ(x, y) > 0 for all

x, y ∈ S, then the system is uniformly geometrically ergodic.

Proof. [10, p. 249] and [30, p. 13]



Chapter 4

Statistical Learning Bounds for
SDS & MC

In the previous chapter we examined the theory of stochastic dynamical systems from a
Markov chain perspective. We established some conditions that guarantee stability and
convergence of marginal distributions starting from arbitrary initial measures, ensuring
that under suitable assumptions the chain converges to a unique stationary distribution
at a controlled rate.

Our goal in this chapter is to introduce a machine learning algorithm that, given
a state x ∈ S, provides an approximation of the average system’s next state, formally
E[Xt+1|Xt = x], where Xt+1 is the random variable with distribution P (x, ·).

This chapter is based on the foundational work by Smale and Zhou on online learning
with Markov sampling where the i.i.d. assumption is weakened [30], meaning that we
will still assume our samples to be independent but not identically distributed. The
techniques developed by Smale and Zhou provide a framework for learning from non-
identically sampled data, using a reproducing kernel Hilbert space (RKHS) and a Mercer
kernel to formulate an online learning algorithm. It’s evident that to maintain some
statistical guarantees when dealing with changing distributions, we require rather strong
assumptions about how these distributions evolve and eventually converge. This motivates
the study conducted in the previous chapter, as it provides us with convergence rates rather
than merely asymptotic results.

In the first part of this chapter, we introduce the setting and the data generation
process. Then we introduce the online learning algorithm (OLA). After discussing some
assumptions on the learning problem we examine the main learning bounds for the algo-
rithm, along with a detailed error analysis.

4.1 Setting

Let (S,B) be a discrete-time autonomous systems, where S = [a, b] ⊂ R is the state
space, and B is a σ-algebra on S. As in the previous chapter, we will focus on the time-
homogenous Markov chain X characterizing the system, where X = {X0, X1, X2, . . . } is
the process evolving by the Markov transition Kernel P .

Our goal is to learn, in a supervised setting, the function, defined pointwise as

fρ(x) = E[Xt+1|Xt = x] =



S
P (x, dy)y.

63
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Remark 4.1.1 Recall Subsection 2.2.2, where we rely on Mercer’s Theorem under the
assumption that S is compact, ensuring TK is a compact, self-adjoint, positive operator.
However, compactness can often be replaced by other assumptions, such as bounded support
of µ (and suitable continuity conditions), or finite-trace:


K2(x, x′) dµ(x) dµ(x′) < ∞.

Restricting ourselves to a sub-domain where K satisfies the above, then still guarantees
a spectral decomposition analogous to Mercer’s Theorem. Hence, requiring a compact
domain is a classic but not exclusive choice to ensure TK remains well-defined and admits
an eigenfunction expansion.

4.1.1 Data Collection

When observing a dynamical system, it seems natural to look at how an initial state
evolves over time and take these consecutive observations as the data for our learning
algorithm. Recall that, a trajectory of the system is a realization of the stochastic process

X(ω) = {X0(ω), X1(ω), . . . },

where ω is an event in Ω. We will always denote the initial distribution as µ = L(X0).
Suppose we have a number T of trajectoriesX(ω0), X(ω1), . . . , X(ωT−1), where ω0, . . . ,ωT−1

are independent events in Ω.
Let us consider the sequence of examples {zt}, defined by the trajectories above, as

zt = (Xt(ωt), Xt+1(ωt)).

We will consider {zt}t=0,1,...,T−1 as our data and we will write zt = (xt, xt+1) for ease
of notation. Note that, the examples {zt} take values in S × S and are independent by
construction:

X0(ω0), X1(ω0)  
z0

, . . .

X0(ω1), X1(ω1), X2(ω1)  
z1

, . . .

X0(ω2), X1(ω2), X2(ω2), X3(ω2)  
z2

, . . .

...
. . .

X0(ωt), . . . Xt(ωt), Xt+1(ωt)  
zt

, . . .

This approach addresses the challenge of handling dependent data, a common issue when
working with dynamical systems (without relying on any additional conditions, e.g. mix-
ing).

Moreover, we focus on trajectories rather than just a single evolution (e.g.,X0 → X1) to
leverage the system’s ergodicity assumption. This ensures that the algorithm’s convergence
does not depend on the initial distribution.

Remark 4.1.2 (Length of trajectories) In practice, the problem of sampling trajectories
is highly task-dependent, and obtaining an arbitrary number of trajectories with arbitrary
length is often impractical or even impossible.

Our data collection scheme requires each trajectory X(ωi) to have a length Li ≥ i,
meaning

X(ωi) = {X0(ωi), X1(ωi), . . . , Xi(ωi), . . . , XLi−1(ωi)}.
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These truncated trajectories are sufficient to construct the dataset required for our
online algorithm.

In the final chapter, we briefly explore how to decrease the number of required trajec-
tories by introducing mixing conditions for the system. This method is useful in practical
scenarios where obtaining multiple initializations is difficult, while acquiring longer tra-
jectories, though in smaller amounts, is possible.

Remark 4.1.3 We can see the sample zt as a realization of the random variable Zt (with
values in S × S).

We have that Z = {Zt}t=0,...,T−1 are independent random variables such that, for
A,B ⊆ S measurable sets, we have

Pµ


Zt ∈ A×B


=



A
µ[t−1](dx)P (x,B).

4.2 Online Learning Algorithm (OLA)

Consider a Mercer kernel K : S × S → R and HK the corresponding RKHS. Learning is
performed with the following regularized algorithm:


f0 := 0,

ft+1 := ft − pt

(ft(xt)− xt+1)Kxt − λtft


, t ≥ 0

(4.1)

where pt is the step size parameter and λt is the regularization parameter. Note
that the i.i.d. case corresponds to zt = (xt, xt+1) being drawn from the same identical
distribution, as the usual supervised setting discussed in Chapter 2.

We will show that under regularity assumptions, rapidly converging distributions and
an appropriate choice for the parameters the algorithm effectively learns the regression
function, i.e. ft → fρ.

4.2.1 Convergence of distributions

The convergence of the algorithm largely depends on the convergence of the marginal
distributions µ[t] = µP t, for which we will need an exponential rate of convergence in the
dual of the Hölder space Cs(S), with s ∈ [0, 1]:

µ[t] − π(Cs(X))∗ ≤ Cαt, ∀t. (4.2)

for some C > 0 and 0 < α < 1.

Recall that, this convergence is obtained by requiring the system to be uniformly
geometrically ergodic, and that the convergence does not depend on the initial probability
measure µ.

4.2.2 Regularity conditions

Now consider a fixed Hölder exponent s ∈ [0, 1] and let us take a look at the assumption
on the Kernel.

Definition 4.2.1 (Kernel Condition). We say that the Mercer kernel K satisfies the
kernel condition (of order s) if:

(i) K ∈ Cs(S × S),
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(ii) there exists κ2s > 0 such that, for all u1, u2, v1, v2 ∈ S,

|K(u1, v1) +K(u2, v2)−K(u1, v2)−K(u2, v1)| ≤ κ2s (d(u1, v1))
s (d(u2, v2))

s .
(4.3)

Remark 4.2.2 If the Kernel is C2, then it satisfies the Kernel condition. Alternatively,
one might assume other conditions, as mentioned in previous chapters (2.2.14), such as
κ = supx∈X


K(x, x) < ∞; note that in our case this condition is implied by the other

assumptions. In more generality, when S ⊂ Rn with smooth boundary and K is C2, then
the kernel condition holds. A proof can be found in [44].

Now let us introduce a regularity assumption on the target function, involving the
integral operator TK,µ.

Remark 4.2.3 (Source condition) Recall from 2.2.2 that the integral operator TK,µ on
HK is the covariance operator

TK,µ = Ex∼µ


S∗
xSx


=



S
S∗
xSx dµ(x) =



S
Kx〈Kx, ·〉K dµ(x).,

where Sx : HK → R, Sx(f) = f(x) is the sampling operator and S∗ its adjoint.
We say that fρ satisfies the regularity condition of order r, with 1/2 < r ≤ 3/2, if

there exists g ∈ L2
µ(S), such that

fρ = T r
K,µg. (4.4)

See definition 2.2.18 for details.

We are now ready to state the main result.

4.2.3 Learning bounds

Let us first list the assumptions needed:

(A) Exponential convergence: The sequence {µ[t]} converges exponentially in the
sense of (4.2).

(B) Kernel condition: The kernel K satisfies the kernel condition (4.3).

(C) Regularity condition: The element fρ satisfies the regularity condition (4.4) with
1/2 < r ≤ 3/2.

Theorem 4.2.4 (Learning bounds). Under Assumptions (A–C) listed above, consider the
online learning algorithm (4.1) with parameters

λt := λ0(t+ 1)−β , pt := p0(t+ 1)−θ, (4.5)

where λ0, p0 > 0, θ ∈ (0, 1), and β ∈ (0, 1− θ].
Then the following bounds hold for t ∈ N:

E [ft − fρK ] ≤ gπλ
r− 1

2
0 t−β(r− 1

2
)

+







p0C

∗
1 +


Cλ

r− 3
2

0 + λ
r− 1

2
0


C∗
2


t−min{β(r− 1

2
), θ−β

2
}, if 0 < β < 1− θ,


p0C

∗
1 +


Cλ

r− 3
2

0 + λ
r− 1

2
0


C∗
2


t−min{β(r− 1

2
),θ− 1

2
,p0λ0} log(t+ 1), if β = 1− θ.

(4.6)
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Remark 4.2.5 The constants C∗
1 and C∗

2 depend on the kernel constant k := supx∈S


K(x, x),
on κ2s, α, β, θ, r, CK , and on the product p0λ0.

Corollary 4.2.6. If the Markov Chain X of the system is positive Harris recurrent and
aperiodic, then condition (A) is implied by the Uniformly Geometric Ergodic Theorem
3.2.35.

Remark 4.2.7 Moreover if β = 0, meaning the regularization parameter is fixed (λt ≡
λ0), then

E [ft − fρK ] ≤ gπλ
r− 1

2
0 +







p0C

∗
1 + Cλ

r− 3
2

0 C∗
2


t−

θ
2 , if α < 1,

p0C
∗
1 t

− θ
2 + Cλ

r− 3
2

0 C∗
2 t

θ, if α = 1.

Note that in both cases, the algorithm is not guaranteed to converge. In the first case,

where α < 1, the bound asymptotically reaches the bias term gπλr−1/2
0 . In contrast, for

α = 1, which corresponds to the situation where there is no exponential convergence for
the distributions, there is no assurance that the algorithm will converge. In this scenario,
the bound states

E [ft − fρK ] = O

tθ

.

4.3 Error Analysis

4.3.1 Error Decomposition

The offline (batch) version in the i.i.d. case of our OLA would be:

fλ,µ := arg min
f∈HK



S
(f(x)− fρ(x))

2 dµ(x) + λf2K

,

where µ replaces our µ[t] = µP t. So in the OLA, there is an error caused by the changing
measures {µ[t]}.
Remark 4.3.1 The function above can also be written as:

fλ,µ = (TK,µ + λI)−1 TK,µfρ. (4.7)

The error can be decomposed into three parts:

ft+1 − fρ =

ft+1 − fλt,µ[t]


+


fλt,µ[t] − fλt,π


+ (fλt,π − fρ) . (4.8)

• fλt,π − fρ is the approximation error ;

• fλt,µ[t] − fλt,π is the drift error. It depends on the measure difference, while the
regularization parameter is the same λt;

• ft+1 − fλt,µ[t] is the sample error.

4.3.2 Approximation Error

Proposition 4.3.2. If fρ satisfies the regularity condition, then ∀λ > 0:

fλ,π − fρK ≤ gπλr− 1
2 .
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Proof. To ease up the notation: T = TK,π.

(T + λI)fλ,π = Tfρ.

Subtracting from both sides (T + λI)fρ leads to:

(T + λI)fλ,π − (T + λI)fρ = −(λI)fρ.

Hence,

fλ,π − fρ = −λ(T + λI)−1fρ.

Splitting the power −1 = (r − 3
2) + (12 − r) of the term (T + λI) and writing fρ =

T rg = T r− 1
2T

1
2 g, we get:

fλ,π − fρ = −λ(T + λI)r−
3
2 [(T + λI)

1
2
−rT r− 1

2 ]T
1
2 g.

Now recall that T
1
2 : HK ↩→ L2

π(S) is an isometric isomorphism, since

T
1
2 g2K = 〈T

1
2 g, T

1
2 g〉K ,

and T being self-adjoint, yields

〈Tg, g〉K =



S
g(x)Kxdπ, g



K

.

Using the reproducing property we get



S
g2(x)dπ = g2π.

Thus,

T
1
2 gK = gπ.

Also observe that the eigenvalues of (T + λI)
1
2
−rT r− 1

2 are


σi

σi + λ

r− 1
2

,

with {σi}∞i=1 the eigenvalues of T (which is positive self-adjoint).

Since T is positive (σi ≥ 0) and since 1
2 < r ≤ 3

2 , we have:

(T + λI)
1
2
−rT r− 1

2 K ≤ sup
i


σi

σi + λ


r− 1

2

≤ 1,

and

(T + λI)r−
3
2 K ≤ λr− 3

2 .

Combining the other bounds concludes the proof.
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4.3.3 Drift Error

It follows from the reproducing property 〈f,Kx〉K = f(x), that

|f(x)| ≤ fKKxK ≤ kfK with k = sup
x∈S


K(x, x).

If K satisfies the kernel condition, then one could prove that:

HK ↩→ Cs(S) with the immersion bounded by fCs(S) ≤ (k + κ2s)fK ,

with κ2s coming from the kernel condition.

Proposition 4.3.3. If fρ ∈ Cs(S), and K satisfies the kernel condition, then:

fλ,µ − fλ,µ′K ≤ CK

λ
µ− µ′(Cs(S))∗fλ,µ′ − fρCs(S),

with
CK =


k2 + 2|K|Cs(S×S) + κ2s,

which is a constant depending on the Kernel K.

Corollary 4.3.4. In particular, for µ[t] → π converging exponentially, and fρ satisfying
the regularity condition, the following holds:

fλt,µ[t] − fλt,πK ≤ C̃KCgπαt(t+ 1)−β(r− 3
2
),

with the parameters defined in Theorem 4.2.4 and

C̃K :=
CK(k + κ2s)

λ
3
2
−r

0

.

Proof of Proposition. Notation: Let TK,µ = Tµ.
Having (Tµ′ + λI)fλ,µ′ = Tµ′fρ, we can write:

(Tµ + λI)fλ,µ − (Tµ′ + λI)fλ,µ′ = (Tµ − Tµ′)fρ.

Then, subtracting (Tµ + λI)fλ,µ′ from both sides and rearranging the terms, we get:

fλ,µ − fλ,µ′ = (Tµ + λI)−1[(Tµ − Tµ′)fρ + Tµ′fλ,µ′ − Tµfλ,µ′ ].

Simplifying further:

fλ,µ − fλ,µ′ = (Tµ + λI)−1(Tµ − Tµ′)(fρ − fλ,µ′).

Taking norms:

fλ,µ − fλ,µ′K ≤ 1

λ
(Tµ − Tµ′)(fρ − fλ,µ′)K . (4.9)

Now call f = fρ − fλ,µ′ ∈ Cs(S), since fλ,µ′ ∈ HK ⊆ Cs(S).
We estimate (Tµ − Tµ′)f2K in the following by first writing:

(Tµ − Tµ′)f2K = 〈


S
f(u)Kud(µ− µ′)(u),



S
f(v)Kvd(µ− µ′)(v)〉K ,
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so, expanding:

(Tµ − Tµ′)f2K =



S
f(u)



S
f(v)K(v, u)d(µ− µ′)(v)


d(µ− µ′)(u).

Define the auxiliary function

h(u) := f(u)



S
f(v)K(v, u)d(µ− µ′)(v)


.

Since the space of measures M(S) ⊆ (Cs(S))∗, we get:

(Tµ − Tµ′)f2K ≤ µ− µ′(Cs(S))∗hCs(S).

Estimating hCs(S)

Recall that

hCs(S) = hC(S) + |h|Cs(S), where |h|Cs(S) := sup
u ∕=v

|h(u)− h(v)|
d(u, v)S

.

1. Estimating hC(S)

hC(S) ≤ fC(S) · sup
u∈S




S
f(v)K(v, u)d(µ− µ′)(v)

 .

2. Estimating |h|Cs(S)

|h|Cs(S) =

f ·


S
f(v)K(v, u)d(µ− µ′)(v)


Cs(S)

≤ |f |Cs(S) sup
u∈S




S
f(v)K(v, u)d(µ− µ′)(v)

+fC(S) sup
u∈S




S
f(v)K(v, u)d(µ− µ′)(v)


Cs(S)

,

where the inequality is given by the following remark.

Remark 4.3.5 Note that

|h1h2|Cs(S) = sup
|h1(x)h2(x)− h1(y)h2(y)|

d(x, y)s
.

Expanding the difference,

|h1h2|Cs(S) ≤ sup
|h1(x)− h1(y)|

d(x, y)s
· sup |h2|+ sup

|h2(x)− h2(y)|
d(x, y)s

· sup |h1|,

thus,
|h1h2|Cs(S) ≤ |h1|Cs(S) sup |h2|+ |h2|Cs(S) sup |h1|.

For the first estimation we have:

sup
u∈S




S
f(v)K(v, u)d(µ− µ′)(v)

 ≤ µ− µ′(Cs(S))∗f(·)K(u, ·)Cs(S),

with

f(·)K(u, ·)Cs(S) = f ·K(u, ·)C(S)+|f ·K(u, ·)|Cs(S) ≤ fC(S)k
2+|f |Cs(S)k

2+fC(S)κ2s,
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where we applied the remark once again for the inequality.
For the second term, we focus on the Cs(X)-seminorm:




S
f(v)K(v, u) d(µ− µ′)(v)


Cs(X)

= sup
u ∕=u′


S f(v)[K(u, v)−K(u′, v)] d(µ− µ′)(v)


d(u, u′)s

.

≤ sup
u ∕=u′

µ− µ′(Cs(X))∗

f(·)
K(·, u)−K(·, u′)

d(u, u′)s


Cs(X)

.

As before, the last Cs(X) norm is bounded:

f(·)(K(·, u)−K(·, u′))/d(u, u′)sCs(X) ≤ fCs(X)(|K|Cs(S×S) + κ2s).

This gives us the upper bound for the second term.
Combining (1) and (2), we get:

hCs(S) ≤ µ− µ′(Cs(S))∗f2Cs(S)


k2 + κ2s + 2|K|Cs(S×S)


.

Finally, using what we derived at the beginning, we have:

(Tµ − Tµ′)f2K ≤ µ− µ′2(Cs(S))∗f
2
Cs(S)


k2 + κ2s + 2|K|Cs(S×S)


.

Together with (4.9), this ends the proof.

Proof of the Corollary. We start by recalling the results we have established so far:
From Proposition 1, we have:

fλ,µ − fλ,µ′K ≤ CK

λ
µ− µ′(Cs(X))∗fλ,µ′ − fρCs(X).

From the exponential convergence:

µ[t] − π(Cs(X))∗ ≤ Cαt.

By the remark on the embedding HK ↩→ Cs(X):

fCs(X) ≤ (k + κ2s)fK .

For the approximation error derived previously:

fλ,π − fρK ≤ gπλr− 1
2 .

Recall the parameters: λt := λ0(t+ 1)−β with λ0 > 0 and β ∈ [0, 1− θ].

Combining the above results:

fλt,µ[t] − fλt,πK ≤ CK

λt
µ[t] − π(Cs(X))∗fλt,π − fρCs(X),

substituting the exponential convergence of µ[t] → π and using the embedding inequal-
ity fλt,π − fρCs(X) ≤ (k + κ2s)fλt,π − fρK ,

≤ CK

λt
(Cαt)(k + κ2s)fλt,π − fρK .

Now use the approximation error bound we get

≤ CKCαt(k + κ2s)gπλ
r− 3

2
t .

Setting C̃K := CK(k+κ2s)λ
r− 3

2
0 and substituting the parameters, we recover the bound

stated in the corollary.
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4.3.4 Sample error

We study by iteration what changes when going from ft to ft+1. This involves examining
the transition from fλt−1,µ[t−1] to fλt,µ[t] .

We have:

fλt−1,µ[t−1] − fλt,µ[t] =

fλt−1,µ[t−1] − fλt−1,π + fλt,π − fλt,µ[t]


+

fλt−1,π − fλt,π


. (4.10)

Since the regularization parameter changes with each step, we need some additional
results.

Proposition 4.3.6 (Tarres and Yao). If fρ satisfies the regularity condition and λ,λ′ > 0,
then

fλ,π − fλ′,πK ≤ |λr− 1
2 − (λ′)r−

1
2 | gπ(r − 1

2)
−1.

See [36] for more details.

Corollary 4.3.7. Assuming all the convergence, regularity, and kernel conditions, as well
as the parameters given in Theorem 4.2.4, we have that for each t:

fλt−1,µ[t−1]−fλt,µ[t]K ≤





4gπ(C̃KC α t−1(t+ 1)β(

3
2
−r) + λ

r− 1
2

0 (t+ 1)−β(r−1
2 )−1), if β > 0,

2gπC̃KC α t−1, if β = 0.

Proof. We start from the identity:

fλt−1,µ[t−1] − fλt,µ[t] =

fλt−1,µ[t−1] − fλt−1,π + fλt,π − fλt,µ[t]


+


fλt−1,π − fλt,π


.

Taking the  · K norm, we have:

fλt−1,µ[t−1] − fλt,µ[t]K ≤ fλt−1,µ[t−1] − fλt−1,πK + fλt,π − fλt,µ[t]K + fλt−1,π − fλt,πK .

The first two terms on the right-hand side can be bounded using Corollary 4.3.4, while
the last term is controlled by Proposition 4.3.6.

If β = 0, then λt ≡ λ0 is constant. Hence, the last term is zero. Thus, combining the
first two terms, which also become simpler, we deduce:

fλt−1,µ[t−1] − fλt,µ[t]K ≤ gπC̃KCαt−1 + gπC̃KCαt ≤ 2gπC̃KCαt−1.

When β > 0, λt = λ0(t+ 1)−β introduces a more complex time dependence:

fλt−1,µ[t−1] − fλt−1,πK ≤ C̃KCgπαt−1tβ(
3
2
−r)

fλt,π − fλt,µ[t]K ≤ C̃KCgπαt(t+ 1)β(
3
2
−r)

fλt−1,π − fλt,πK ≤ |λr−1
2

t−1 − λ
r−1

2
t |gπ(r − 1

2)
−1

Using again αt ≤ αt−1 and tβ(
3
2−r) ≤ (t+ 1)β(

3
2−r) (since r ≤ 3

2), we get:

fλt−1,µ[t−1] − fλt−1,πK + fλt,π − fλt,µ[t]K ≤ 2C̃KCgπαt−1(t+ 1)β(
3
2
−r).
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Let us now focus on the last term. By the Mean Value Theorem applied to the auxiliary

function h(t) := λ
r− 1

2
t = (λ0(t+ 1)−β)r−

1
2 , for some t∗ ∈ (t− 1, t) we have

λr− 1
2

t−1 − λ
r− 1

2
t

 =
h′(t∗)

 = λ
r− 1

2
0 (t∗ + 1)−β(r− 1

2
)−1(r − 1

2)β.

Since t < t∗ + 1 and 0 < β < 1, we obtain

λr− 1
2

t−1 − λ
r− 1

2
t

(r − 1
2)

−1 ≤ λ
r− 1

2
0 t−β(r− 1

2
)−1.

Hence, the last term is bounded as

fλt−1,π − fλt,πK ≤ λ
r− 1

2
0 gπt−β(r− 1

2
)−1

Since t > t+1
2 for t ≥ 2, it follows that

t−β(r− 1
2
)−1 <


t+1
2

−β(r− 1
2
)−1

= 2β(r−
1
2
)+1 (t+ 1)−β(r− 1

2
)−1 ≤ 4 (t+ 1)−β(r− 1

2
)−1,

where we used β(r − 1
2) + 1 ≤ 2.

Putting together the bounds above and adjusting the constants to group the terms,
we can conclude the proof.

Let us state the following technical results that will be used in the subsequent proof.

Lemma 4.3.8 (Technical Lemma). (a) For c, a > 0, there holds:

exp(−cx) ≤
 a

ec

a
x−a, ∀x > 0. (4.11)

(b) Let c > 0 and q2 ≥ 0. If 0 < q1 < 1, then for any t ∈ N we have:

t−2

i=0

(i+ 1)−q2 exp

− c

t+1

j=i+2

j−q1

≤


2q1+q2

c
+


1 + q2

ec(1− 2q1−1)

 1+q2
1−q1


(t+ 1)q1−q2 .

(4.12)

In particular, for q1 = 1, we have:

t−2

i=0

(i+1)−q2 exp

− c

t+1

j=i+2

j−1

≤






2q2
|c−q2+1| t

−min{c,q2−1}, if c ∕= q2 − 1,

2q2(t+ 1)−c log(t+ 2), if c = q2 − 1.
(4.13)

Proof. See [30].

Before stating the full proof of Theorem 4.2.4, let us look at an outline first.

Outline of the Proof. Recall from (4.8) that the total error ft+1 − fρ splits into three
parts: 

ft+1 − fλt,µ[t]


  

sample error

+

fλt,µ[t] − fλt,π


  

drift error

+

fλt,π − fρ


  

approximation error

.

In the preceding sections, we derived bounds for the approximation error, which is bounded
by a regularization argument (Proposition 4.3.2) and the source condition is utilized to
demonstrate that fρ is approximable in the Reproducing Kernel Hilbert Space (RKHS).
The drift error is estimated using the measure-difference result (Corollary 4.3.4), which
relies on the exponential convergence of {µ[t]} toward π in the dual of Hölder space Cs(S).
The remaining task is to address the sample error. To accomplish this, the proof is divided
as follows.
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1. Sample Error Bound First we set Wt+1 = ft+1 − fλt,µ[t] and rewrite it via a one-
step recursion of the online algorithm. By iterating this recursion and separating out
certain operators (At) and correction terms (χt), we decompose Wt+1 in equation
(4.15) into two main summations:

• One summation captures how changes in the measure µ[t] affect fλt,µ[t] ; tools
like Proposition 4.3.6 and Lemma 4.12 provide estimates under exponential
decay conditions for this summation.

• The other summation consists of stochastic increments χt; we exploit the in-
dependence of samples {zt} to show that cross-terms vanish in expectation,
reducing the analysis to a diagonal sum of χi2K . Additional bounds follow
from uniform control of fλi,µ[i]K and a final application of the technical lem-
mas. (The analysis for this summation is also known as Reverse Martingale
Decomposition.)

2. Combining All Bounds. After bounding these two summations, we add the
bounds for the approximation error and the drift error. A final application of the
triangle inequality yields the stated convergence rates, with explicit constants C∗

1 , C
∗
2

given by combining the stepwise estimates.

Proof of Theorem 4.2.4. Denote the sample error term of the error decomposition as:

Wt+1 = ft+1 − fλt,µ[t] .

The first step of the proof is to establish a simple expression for Wt+1, by iterating a
one-step recursion.

From the definition of the sampling operator, we notice that xt+1Kxt = S∗
xt
xt+1 and

ft(xt)Kxt = Sxt(ft)Kxt = S∗
xt
Sxt(ft). Then, by definition of ft, we know that:

Wt+1 = ft − fλt,µ[t] − pt


S∗
xt
Sxt(ft)− S∗

xt
xt+1 + λtft


.

Expanding the terms we get:

Wt+1 = ft − fλt,µ[t] − pt


S∗
xt
Sxt(ft − fλt,µ[t]) + S∗

xt
Sxtfλt,µ[t] − S∗

xt
xt+1 + λtft


.

Grouping in terms of ft−fλt,µ[t] , we write λtft as λt(ft−fλt,µ[t])+λtfλt,µ[t] . Definition

(4.7) with the measure µ[t] yields λtfλt,µ[t] = TK,µ[t](fρ − fλt,µ[t]). Therefore, we have:

Wt+1 =

(1−ptλt)I−ptS

∗
xt
Sxt


(ft−fλt,µ[t])−pt


S∗
xt
Sxtfλt,µ[t]−S∗

xt
xt+1+TK,µ[t](fρ−fλt,µ[t])


.

Denote:

At = (1− ptλt)I − ptS
∗
xt
Sxt , χt = pt


S∗
xt
Sxtfλt,µ[t] − S∗

xt
xt+1 + TK,µ[t](fρ − fλt,µ[t])


.

Observe that E

S∗
xt
Sxtfλt,µ[t]


= TK,µ[t]fλt,µ[t] , and E


S∗
xt
xt+1


= E


Kxtxt+1


= TK,µ[t]fρ,

hence

E[χt] = pt E

S∗
xt
Sxtfλt,µ[t] − S∗

xt
xt+1 + TK,µ[t](fρ − fλt,µ[t])



= pt

E

S∗
xt
Sxtfλt,µ[t]


− TK,µ[t]fλt,µ[t] + TK,µ[t]fρ − E


S∗
xt
xt+1



= 0 (4.14)
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By definition of Wt, we have

Wt = ft − fλt−1,µ[t−1] and ft − fλt,µ[t] = Wt +

fλt−1,µ[t−1] − fλt,µ[t]


.

If we denote fλ−1,µ[−1] = 0, then there holds:

Wt+1 = AtWt +At


fλt−1,µ[t−1] − fλt,µ[t]


− χt, ∀t ∈ N.

Denote Πi = AtAt−1 · · ·Ai and Πt+1 = I. Since f0 = 0 gives W0 = 0, by iteration we
obtain:

Wt+1 =

t

i=0

Πi


fλi−1,µ[i−1] − fλi,µ[i]


−

t

i=0

Πi+1χi, ∀t ∈ N. (4.15)

The operator piλiI + piS
∗
xi
Sxi is positive and bounded by (piλi+ pik

2)I. So for i ≥ t0,

the smallest integer greater than (p0λ0+ p0k
2)1/θ, the operator Ai : HK → HK is positive

and bounded by (1 − piλi)I. Hence AiHK→HK
≤ 1 − piλi ≤ exp(−piλi). For i < t0,

AiHK→HK
≤ 1 + piλi + pik

2. It follows that the operator norm of Πi satisfies:

ΠiHK→HK
≤ D0 exp


− p0λ0

t

j=i

j−β−θ

, ∀ 0 ≤ i ≤ t, (4.16)

where D0 is the constant given by:

D0 = (1 + p0λ0 + p0k
2)(p0λ0+p0k2)1/θ exp


p0λ0(p0λ0 + p0k

2)1/θ

.

The second step of the proof is to bound the first term in (4.15). Apply Corollary 4.3.7
and (4.16). We find that:



t

i=0

Πi


fλi−1,µ[i−1] − fλi,µ[i]


K

(4.17)

≤






4gπD0
t

i=0 exp

− p0λ0

t
j=i j

−β−θ


C̃KCαi−1(i+ 1)β(
3
2
−r) + λ

r− 1
2

0 (i+ 1)−β(r− 1
2
)−1


,

2gπD0
t

i=0 exp

− p0λ0

t
j=i j

−θ

C̃KCαi−1,

(4.18)

for β > 0 and β = 0 respectively.

Consider the case β > 0 and α < 1. Because the exponential decay is faster than any
polynomial decay, we know that the term with αiiβ(

3
2
−r) is dominated by the polynomial

term i−β(r− 1
2
)−1. In fact, by Lemma 4.11 with c = log(1/α) and a = 2, we have:

αi = exp

− i log(1/α)


≤


2

e log(1/α)

2

i−2. (4.19)

For each i ∈ N,

αi−1(i+ 1)β(
3
2
−r) ≤


4

e log(1/α)

2

(i+ 1)−β(r− 1
2
)−1.
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It follows that:


t

i=0

Πi


fλi−1,µ[i−1] − fλi,µ[i]


K

≤ D2

t

i=0

(i+ 1)−β(r− 1
2
)−1 exp


− p0λ0

t

j=i

j−β−θ

,

where D2 is the constant:

D2 = 4gπD0


C̃KC


4

e log(1/α)

2

+ λ
r− 1

2
0


.

Applying Lemma 4.12 with c = p0λ0, q2 = β(r − 1
2) + 1, and q1 = β + θ, we obtain a

bound for the first term of (4.15) as:



t

i=0

Πi


fλi−1,µ[i−1] − fλi,µ[i]


K

≤






D4(t+ 1)−β(r− 1
2
)−1+β+θ, if β + θ < 1,

D4(t+ 1)−min{β(r− 1
2
),p0λ0}, if β + θ = 1, p0λ0 ∕= β(r − 1

2),

D4(t+ 1)−β(r− 1
2
) log(t+ 2), if β + θ = 1, p0λ0 = β(r − 1

2),

(4.20)
where D4 is the constant given by D4 = D2D3 with:

D3 :=






8
p0λ0

+ 1 +


2+β(r− 1
2
)

ep0λ0(1−2β+θ−1)

 2+β(r− 1
2 )

1−β−θ
, if β + θ < 1,

4
|p0λ0−β(r− 1

2
)| + 1, if β + θ = 1 and p0λ0 ∕= β(r − 1

2),

5, if β + θ = 1 and p0λ0 = β(r − 1
2).

The case β = 0 is easier. We apply (4.19) when α < 1. Lemma 4.12 with c = p0λ0

and q1 = θ yields:



t

i=0

Πi


fλi−1,µ[i−1] − fλi,µ[i]


K

≤





D4(t+ 1)−1, if β = 0,α < 1,

D4(t+ 1)θ, if β = 0,α = 1,

where the constant D4 is given by D4 = 2gπD0C̃KCD3 with:

D3 :=







4

e log(1/α)

2 
8

p0λ0
+ 1 +


3

ep0λ0(1−2θ−1)

 3
1−θ


, if β = 0,α < 1,

2
p0λ0

+ 1 +


1
ep0λ0(1−2θ−1)

 1
1−θ

, if β = 0,α = 1.

The third step of the proof is to estimate the second term of (4.15), which is


t

i=0

Πi+1 χi


K

.

First, expand


t

i=0

Πi+1 χi


2

K
=

t

i=0

t

ℓ=0


Πi+1 χi, Πℓ+1 χℓ


K
. (4.21)

Define F t
i := σ(zi, . . . , zt). Using the law of total expectation (see Proposition 1.3.9),

we have
E

〈Πi+1 χi, Πℓ+1 χℓ〉K


= E


E

〈Πi+1 χi, Πℓ+1 χℓ〉K

 F t
i+1


.
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By construction, χi is a function solely of the variable zi, and Πi+1 only of the random
variables {zi+1, zi+2, . . . , zt}. Therefore, for ℓ > i we have

E

E

〈Πi+1 χi, Πℓ+1 χℓ〉K

 F t
i+1


= E


〈E[Πi+1χi

 F t
i+1],Πℓ+1 χℓ〉K


,

where we use linearity of the inner product, linearity of expectation, and measurability of
Πℓ+1 χℓ with respect to F t

i+1 for moving the term Πℓ+1 χℓ out of the conditional expec-
tation. Finally, since Πi+1 is measurable with respect to F t

i+1, we can pull it out of the
conditional expectation by stability

E

Πi+1 χi

 F t
i+1


= Πi+1 E


χi

 F t
i+1


.

Now we use the fact that z1, . . . , zt are independent, which implies that χi is indepen-
dent of F t

i+1, hence
Πi+1 E


χi

 F t
i+1


= Πi+1 E


χi


= 0,

based on (4.14).
Therefore we have

E

〈Πi+1 χi, Πℓ+1 χℓ〉K


= 0 for ℓ > i.

Thus, only the terms with i = ℓ remain in the expectation of (4.21), yielding

E


t

i=0

Πi+1 χi


2

K


=

t

i=0

E

Πi+1 χi2K


.

It follows from (4.16) that:

E






t

i=0

Πi+1χi



2

K



 ≤
t

i=0

D2
0 exp


− 2p0λ0

t

j=i+1

j−β−θ

E

χi2K


.

Since
χi = pi


fλi,µ[i](xi)− xi+1


Kxi + TK,µ[i](fρ − fλi,µ[i])


,

we see that

χi2K ≤ 2p2i k
2


fλi,µ[i](xi)− xi+1

2
+ fρ − fλi,µ[i]2µ[i]


.

Then
E

χi2K


≤ 4p2i k

2

fρ − fλi,µ[i]2µ[i] +M2


.

To bound the norm, we take 4.7 with λ = λi and µ = µ[i], and bound

fρ − fλi,µ[i]2µ[i] + λifλi,µ[i]2K ≤ fρ2µ[i] ≤ M2.

Hence
fρ − fλi,µ[i]2µ[i] ≤ M2 and E


χi2K


≤ 8p2i k

2M2.

Therefore:

E






t

i=0

Πi+1χi



2

K



 ≤ 8p20k
2M2D2

0

t

i=0

(i+ 1)−2θ exp

− 2p0λ0

t+1

j=i+2

j−β−θ

.



78 CHAPTER 4. STATISTICAL LEARNING BOUNDS FOR SDS AND MC

Applying Lemma 4.12 with c = 2p0λ0, q2 = 2θ, and q1 = β + θ, and the Schwarz
inequality, we know that

E






t

i=0

Πi+1χi



2

K



 ≤






3p0kMD0D1(t+ 1)
β−θ
2 if β + θ < 1,

3p0kMD0D1(t+ 1)−min{θ− 1
2
,p0λ0} if β + θ = 1, p0λ0 ∕= θ − 1

2 ,

3p0kMD0D1(t+ 1)
1
2
−θ


log(t+ 2) if β + θ = 1, p0λ0 = θ − 1

2 .

where D1 is the constant given by

D1 =






2√
p0λ0

+ 1 +


2
ep0λ0(1−2β+θ−1)

 2
1−β−θ

, if β + θ < 1,

2√
|2p0λ0−2θ+1|

+ 1, if β + θ = 1, p0λ0 ∕= θ − 1
2 ,

3, if β + θ = 1, p0λ0 = θ − 1
2 .

This, in conjunction with (4.20), provides a bound for the error decomposition’s sample
error term.

The last step of the proof is to estimate the total error ft+1 − fρK by applying the
triangle inequality to the error decomposition. The approximation error is estimated in
Proposition 4.3.2 as

fλt,µ − fρK ≤ gπλ
r− 1

2
0 (t+ 1)−β(r− 1

2
),

while the drift error is bounded in Corollary 4.3.4 as

fλt,π − fλt,µtK ≤ C̃KCgπαt(t+ 1)−β(r− 3
2
).

Note that when α < 1, we have αt = exp{− log 1
α t} ≤ 1

e log 1
α

t−1 by Lemma 4.11 with

a = 1 and c = log 1
α . Adding bounds for the three terms verifies the error estimate in

Theorem 4.2.4 with the constants C∗
1 , C

∗
2 given explicitly by

C∗
1 = 3kMD0D1,

C∗
2 = gπ






CK(k+κ2s)

e log 1
α

+ 4D3D0


CK(k + κ2s)


4

e log 1
α

2
+ 1


, if β > 0,α < 1,

CK(k+κ2s)

e log 1
α

+ 2D3D0CK(k + κ2s), if β = 0,α < 1,

CK(k + κ2s)

1 + 2D3D0


, if β = 0,α = 1.

Finally, by changing t+ 1 → t and re-indexing ft+1 as ft, we obtain the stated bound
in terms of t. This completes the proof of Theorem 4.2.4.

4.4 Discussion

4.4.1 Interpretation of the Main Results

In this chapter, we extended the framework of learning a regression function in an RKHS
to the setting of Markovian data, where a stochastic dynamical system (SDS) or Markov
chain (MC) generates sequential samples. Our core problem was to learn the map

fρ(x) = E

Xt+1

 Xt = x

,
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which plays the role of the next-step predictor. As we mentioned before, the challenge
when dealing with dynamical systems is that data streams are not always stationary nor
independent. Hence, moving beyond i.i.d. samples requires a focus on these two issues.

Below, we discuss how we tackled these challenges and interpret the main technical re-
sults by making a more intuitive sense of the online learning algorithm and its convergence
properties. Finally we briefly contextualize this work in the literature.

Data Collection and Online Learning

• Independence: By collecting “diagonal” slices from multiple trajectories, we formed
a sequence of state transitions zt = (xt, xt+1) that are independent, despite coming
from dynamical trajectories, yet each zt follows a distinct distribution. This allows
us to merge Markov chain evolution with an online (i.e., incremental) update scheme,
while still retaining the key benefit of sample independence.

• Drifting distributions: To build intuition on how we handle non-identical distribu-
tions, recall the error decomposition


ft+1 − fλt,µ[t]


  

sample error

+

fλt,µ[t] − fλt,π


  

drift error

+

fλt,π − fρ


  

approximation error

,

and the update rule in (4.1):

ft+1 = ft − pt


ft(xt)− xt+1


Kxt + λt ft


.

The difference between the i.i.d. case and our case shows in the drift error, which is
controlled by Corollary 4.3.4 through the geometric rate Cαt, and in the iterations
of the sample error (4.10). When analyzing the latter, we encounter the transition
from fλt−1,µ[t−1] → fλt,µ[t] , which involves both the change in the distributions and
in the regularization parameter, and decompose it as

fλt−1,µ[t−1] − fλt,µ[t] =

fλt−1,µ[t−1] − fλt−1,π + fλt,π − fλt,µ[t]


+


fλt−1,π − fλt,π


.

The terms stemming from the decaying regularization λt → 0 associated with a
fixed measure are reminiscent of classic regularized SGD algorithms [36]. In the
limit, these terms are controlled as discussed in Chapter 2 (see 2.3.2).

In our case we have an additional complexity given by the changing distributions,
hence we don’t have a clear expected risk to minimize, nor a fixed gradient to ap-
proximate. The decay of the regularization happens simultaneously with the change
of distributions, thus we accumulate an iterative error.

Learning Bounds

Theorem 4.2.4. Our main result shows that, under the assumptions above, the function
produced by the online algorithm (4.1) converges to fρ at different rates depending on the
choice of parameters. In particular, for a decaying regularization λt → 0, i.e. β > 0, we
distinguish two cases:

Case β < 1− θ

E

ft − fρK


= O


t−min{β(r− 1

2
), θ−β

2
} ,
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Case β = 1− θ

E

ft − fρK


= O


t−min{β(r− 1

2
),θ− 1

2
,p0λ0} log(t)


.

Note that the term t−β(r−1
2 ) is reminiscent of classic SGD in the i.i.d. setting (see

2.4.4), it decays faster with bigger r, meaning a stronger source condition, or if we pick
β suitably. Here, we should note that we cannot choose r > 3

2 , as several bounds in the
error analysis depend on r ≤ 3

2 . Moreover, finding an optimal choice of parameters is
not trivial, since the asymptotic behavior depends both on the initialization and decay of
gain and learning rate, and on the regularity of fρ; it should thus be studied case by case
depending on the known conditions.

It is worth mentioning that this abrupt change in the bound for β = 1 − θ stems
directly from Lemma 4.12, which is a technical bound relying on the anti-derivative of a
term of the form t−β−θ. Hence for this specific choice of β we get two qualitatively different
guarantees on the algorithm’s convergence. Future work might include improvements for
this particular case.

Overall, the interpretation of these results is that as soon as the underlying Markov
chain’s distribution stabilizes (i.e. µ[t] → π are close enough), one can treat incremental
regression in an RKHS with only a mild penalty in convergence speeds compared to the
standard i.i.d. setting. This confirms the robustness of kernel-based online algorithms in
scenarios where data are generated by a stable stochastic dynamical system.

4.4.2 The context in the broader literature

The analysis of online learning in the context of non-stationary and dependent data has
long been a challenge in statistical learning. Our results contribute to the ongoing effort
to extend classical (i.i.d.) convergence guarantees to broader scenarios, particularly in
forecasting for Markov chains and stochastic dynamical systems. Here, we highlight the
areas where our framework integrates with existing literature.

Moving beyond i.i.d.

We can identify two lines of research on this topic. From a statistical and mathematical
perspective, initial analysis of RKHS-based (particularly ridge) regression focused on i.i.d.
data and established consistency along with optimal rates [6]. These assumptions were
systematically expanded: allowing non-identical yet independent samples [30, 16], incor-
porating mixing conditions for dependent but stationary processes [41, 47, 22, 42, 25, 45],
and covering more general dynamical systems. In contrast, applied domains such as system
identification, optimal control, or time series forecasting typically adopt more general dy-
namical models (where dependence and non-stationarity are inherent) and add simplifying
assumptions to approximate classical learning frameworks, since strictly i.i.d. conditions
are often impractical in real-world scenarios.

A similar distinction arises between offline and online learning paradigms. In statis-
tical machine learning, iterative techniques are driven mainly by memory constraints and
the growth of datasets. However, for real-time data streams in practical settings, the moti-
vation for incremental (online) methods becomes natural. Within the i.i.d. online learning
literature in RKHS, Smale and Yao [29], Ying and Pontil [40], Tarres and Yao [36], and
others [39, 13, 19, 11, 12, 7] have shown that suitably tuned step sizes and regularization
can yield consistency rates matching those of batch algorithms (see Corollary 2.4.3).

Moving beyond identical distributions, Smale and Zhou [30] and Hu [16] examined inde-
pendent but non-identical data (e.g., drifting marginals) under exponential or polynomial
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conditions, confirming convergence of regularized solutions. Our approach in Chapter 4 is
closely related to [30] but derives µ[t] from a stable Markov chain whose marginal converges
geometrically (uniformly) to π. Theorem 4.2.4 shows that this additional distributional
complexity is contained, leading to non-asymptotic error bounds. Several works [33, 38]
treat Markovian (or time-correlated) data in offline or semi-offline frameworks, but explicit
online convergence analyses in an RKHS remain relatively scarce.

In this work, we leverage ergodicity to address Markovian drift and use an online
algorithm suitable for real-world streaming data. This strategy bridges a gap between
the statistical perspective of relaxing i.i.d. assumptions with the applied perspective of
examining systems that exhibit an inherent more complex dynamics.

Outlook

Overall, Chapter 4 reinforces the viewpoint, initially proposed by Smale and Zhou [30],
that one can achieve nearly i.i.d. rates for online regression in an RKHS, provided the
time-varying measures converge at a sufficient pace and the target function fρ is regular
enough. We connect this distributional convergence directly to the ergodicity of a Markov
chain, providing a clear method to implement kernel-based online learning for stochastic
dynamical systems. This bridges a gap between purely i.i.d. or mixing-based offline analy-
sis in kernel methods and Markov chain/SDS stability analysis, enabling new applications
where data come from stable but nonstationary processes. Improvements might include
relaxing geometric ergodicity to sub-exponential (eg. polynomial), even non-uniform rates,
or replacing the ergodicity assumption by other conditions (eg. persistence of excitation).
Future directions could extend this setting to forecasting in higher-dimensional dynamical
systems, or including mixing conditions for weakening independence assumptions.





Chapter 5

Perspectives and Improvements

In this final chapter, we briefly discuss several directions for extending and enhancing our
framework. Now that we have established statistical learning bounds for one-dimensional
state spaces S ⊆ R, we propose improvements aimed at broadening both the theoretical
and practical applicability of our approach. In particular, we outline potential extensions
to multi-dimensional state spaces, the estimation of higher-order moments, and strategies
to weaken the independence assumption via mixing techniques.

5.1 Multidimensional state space

For a more general state space S ⊂ Rn, the stochastic process X = {Xi}i becomes vector
valued and so the problem of finding the regression function fρ(x) = E[xnext | x] ∈ S .
To extend our learning algorithm we first need to adapt the RKHS and its elements to
accomodate multidimensional outputs.

To handle multidimensional outputs we can consider a vector-valued RKHS [21, 5]. In
this setting, a reproducing kernel is a symmetric function

K : S × S → Rd×d,

such that for any x, x′ ∈ S, the matrix x′K(x, x′) is positive semidefinite. A vector-valued
RKHSHK is the Hilbert space of functions f : S → Rd with inner product 〈·, ·〉K satisfying
the reproducing property:

〈f, K(·, x) c〉K = f(x)⊤c for all c ∈ Rd, x ∈ S.

The choice of K corresponds to how one parameterizes the function of interest. In fact,
any function in HK lies in the closure of finite linear combinations of the form

f(x) =

p

i=1

K(xi, x) ci, ci ∈ Rd,

where each K(xi, x) is a d × d matrix acting on the vector ci. The norm fK typically
measures the complexity of f , reflecting the scalar-valued scenario.

Once the vector-valued kernel framework is in place, we can formulate an online update
rule analogous to the one-dimensional case, replacing scalar operations with matrix-vector
operations. For instance, a gradient-based approach might yield an update of the form:

ft+1 = ft − pt


ft(xt)− xt+1


K(xt, ·) + λt ft


,

83
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where ft : S → Rd, pt is the gain, λt is the regularization vector, and K(xt, ·) is the
operator applied to each x ∈ S. The same high-level analysis on approximation, sample,
and drift errors, carries over, although technically more involved due to the matrix-valued
nature of K. Notably, the increased computational overhead due to matrix operations can
significantly impact the algorithm’s practical implementation, highlighting an important
aspect of cost analysis for future research.

5.2 Learning More Than One Moment

In this work, our primary focus has been on learning the conditional expectation

fρ(x) = E[Xt+1 | Xt = x],

which represents the first moment of the transition distribution.

Remark 5.2.1 In our setting, the Markov chain X = {X0, X1, . . . } is time-homogeneous,
meaning that the transition probabilities, and thus the conditional distribution, are in-
variant with respect to time. This invariance ensures that the regression function fρ is
consistent across all time steps.

However, a more complete statistical description of the underlying dynamical system
can be obtained by estimating additional moments. In particular:

• Variance Estimation (Second Moment): Beyond the mean, learning the con-
ditional variance

σ2(x) = E


Xt+1 − fρ(x)
2

| Xt = x


would provide valuable information about the uncertainty and variability in the
system’s evolution. One approach is to extend the current online learning framework
to simultaneously estimate both the first and second moments by considering a
vector-valued RKHS for multi-output regression with the approach mentioned in
the section above. For instance, we may consider estimating the second moment
function

f (2)
ρ (x) = E


X2

t+1 | Xt = x

,

and then recover the variance via σ2(x) = f
(2)
ρ (x)−


fρ(x)

2
. For further details on

estimation of conditional variance functions, see [9] and [8].

• Kalman Filtering: In settings where the dynamics are linear or can be locally
approximated as linear, Kalman filtering offers estimates of both the state and its
uncertainty. Consider a linear state-space model

xt+1 = Axt + wt, yt+1 = Cxt+1 + vt+1,

where xt is the true state fo the system at time t and yt is its measurement. The
variables wt and vt represent process and measurement noise, respectively. The
Kalman filter recursively updates the state estimate via

x̂t+1 = Ax̂t +Kt


yt − Cx̂t


,

where the matrix Kt is known as the Kalman gain.

Using kernel-based online learning with Kalman filtering techniques may lead to
hybrid algorithms that capture both the mean and covariance structures of the
transition distribution. A kernel-based extension of the Kalman filter is discussed in
[35] and related works.
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• Moment Generating Functions: The moment generating function (MGF) of a
random variable X is defined as

MX(t) = E

etX


,

for t in an open interval around zero where the expectation exists. Since the MGF
uniquely characterizes the distribution of X (when it is finite in a neighborhood of
zero), its Taylor expansion yields

MX(t) =

∞

k=0

tk

k!
E[Xk].

The cumulant generating function (CGF) is then given by

KX(t) = logMX(t),

and, when differentiable, the kth cumulant κk is recovered via

κk =
dk

dtk
KX(t)


t=0

.

In particular, κ1 = E[X] and κ2 = Var(X).

Recent work [2] has proposed a kernel-based approach for learning the cumulants
by embedding the space of such functions into a reproducing kernel Hilbert space
(RKHS). In this framework, one constructs an estimator K̂X(t) in an RKHS HK

induced by a kernel K : R× R → R.
A possible direction is to extend this framework to ergodic systems by leveraging
the techniques developed in this work.

5.3 Weakening independence: Mixing

In our data collection we assumed that the trajectories {X(ωi)} are independent. However,
in many practical applications obtaining a large number of independent trajectories can
be challenging. A possible direction is to relax the independence assumption by assuming
mixing properties on the dynamical system.

Definition 5.3.1. Let (Ω,F ,P) be the probability space, and consider sub σ-algebras
A,B ⊆ F . Define

α(A,B) := supA∈A,B∈B |P(A ∩B)− P(A)P(B)|,

β(A,B) := supA∈A,B∈B
1
2

I
i=1

J
j=1 |P (Ai ∩Bj)− P (Ai)P (Bj)|,

where the supremum is over all (finite) partitions {A1, . . . , AI} and {B1, . . . , BJ} of Ω,
with Ai ∈ A, Bj ∈ B for all i, j respectively.

Definition 5.3.2. Let X = {Xt}∞t=0 be a stochastic process. Define the σ-algebra F j
i =

σ(Xi, . . . , Xj), and for each n ∈ N, let

α(n) = sup
j

α(F j
0 ,F

∞
j+n),

β(n) = sup
j

β(F j
0 ,F

∞
j+n).

These are known as the α-mixing and β-mixing coefficients, respectively.
The process X is called α-mixing if α(n) → 0 as n → ∞. Similarly, X is β-mixing

if β(n) → 0 as n → ∞.
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Remark 5.3.3 The α-mixing and β-mixing conditions quantify how the dependence be-
tween past and future observations in a stochastic process diminishes as the time gap
increases. These conditions ensure that events occurring before time t and after time t+n
become asymptotically independent as n → ∞, uniformly over t. Although consecutive
observations may exhibit strong dependence, observations that are sufficiently far apart
can be treated as approximately independent.

A key difference is that α-mixing measures the maximal deviation of joint probabilities
from the product of marginals, whereas β-mixing quantifies their total variation distance.
In fact, one can show that

α(A,B) ≤ β(A,B)

for any pair of σ-algebras, meaning that β-mixing is a stronger condition than α-mixing.

Remark 5.3.4 These definitions represent only a few of the many ways to quantify de-
pendence in stochastic processes. In addition to the α- and β-mixing coefficients defined
above, other strong mixing conditions (such as φ-mixing and ψ-mixing) offer alternative
formulations. In our framework, β-mixing is particularly well-suited, as stationary, ape-
riodic, Harris recurrent chains are known to be β-mixing (and therefore α-mixing) [4].
Recall that we assumed our chain to be positive Harris recurrent and aperiodic to ensure
ergodicity, thus we can think of the chain as asymptotically β-mixing.

Mixing Time

One practical approach is to partition a long trajectory into blocks that are separated
by a parameter, which defines how long it takes for the dependency of the chain to be
sufficiently small.

Definition 5.3.5 (Mixing Time). Given the definitions above and ε > 0, we define

tαmix(ε) := min
n

{α(n) ≤ ε}, tβmix(ε) := min
n

{β(n) ≤ ε}

Over an interval of length tmix, observations from distinct blocks can be regarded
as approximately independent. Note that choosing different mixing coefficients leads to
different mixing times, in particular tαmix ≤ tβmix.

One practical advantage of assuming mixing conditions for our data collection scheme
in 4.1.1, is that it allows us to extract multiple effective samples from a single trajectory,
thereby reducing the need for many independent trajectories:

X0(ω0), X1(ω0)  
z0

, . . . Xtmix(ω0), Xtmix+1(ω0)  
ztmix

,

X0(ω1), X1(ω1), X2(ω1)  
z1

, . . . Xtmix+1(ω1), Xtmix+2(ω1)  
ztmix+1

,

...
. . .

. . .

X0(ωtmix−1), . . . Xtmix−1(ωtmix−1), Xtmix(ωtmix−1)  
ztmix−1

, . . .

Remark 5.3.6 For our algorithm (4.1), the number of independent trajectories required
to compute the update ft is t + 1, which grows without bound as t → ∞. However,
assuming mixing, when t ≥ tmix no more than tmix trajectories are required. Thus, by
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sampling long trajectories, we can cap the maximum number of independent trajectories
necessary for implementing the algorithm. This approach is particularly useful in practical
scenarios where initializing new trajectories is costly and obtaining long trajectories is more
feasible.

Another advantage of mixing conditions is that by selecting blocks from the chain X
that are at least tmix apart, we obtain segments that are approximately independent. This
allows us to work directly with these blocks rather than relying on a data collection scheme
based on fully independent trajectories. Two common strategies in the literature exist:
one is to partition a long trajectory into disjoint blocks separated by intervals of length
tmix, ensuring negligible dependence between blocks; the other is to construct a family
of skeletons, Xtmix+c for 0 ≤ c ≤ tmix, by sampling the chain at different offsets from
the initial state. This approach effectively increases the number of independent samples
available from a single long trajectory. Future research could focus on quantifying the
trade-offs between block length and estimation accuracy, as well as on developing optimized
algorithms that automatically determine the optimal block-sampling strategy based on the
observed mixing rate [4, 3, 14].
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