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Abstract

This thesis addresses the important problem of locating survivors in
collapsed buildings after an earthquake to assist search and rescue
efforts. Traditional approaches are mainly based on predefined maps
and manual search, making them very time-consuming and dangerous.
A new approach where multiple unmanned aerial vehicles can detect
a person independently is used in this study. The drones are equipped
with cameras and flown in a simulated environment constructed with
Gazebo. The autonomous navigation and decision-making of the
drones are powered by reinforcement learning, particularly the us-
age of the Deep Deterministic Policy Gradient algorithm from Stable
Baselines. With this, the continuous velocity actions regarding real-
time camera observations of the drone could efficiently explore the
environment and detect the people. A custom training environment
was developed using Robot Operating System nodes in Python. The
nodes communicate, guaranteeing a multi-drone system will always
cover the whole disaster site, which minimizes search time. This is
very critical in optimizing search strategy to avoid overlaps and en-
sure that the entire area is well covered in its search. In the current
research, the performance of the proposed system is tested through
simulations. Results from these simulations manifest the potential of
reinforcement learning methods to enhance the efficacy of search and
rescue missions with a robust framework that would further develop
and can be tested in disaster scenarios. This thesis contributes to
the area of autonomous systems and disaster response by providing
insight into how, in practice, reinforcement learning can be used for
search and rescue. The outcome contributes to this area of research
by pointing out the various strengths and weaknesses of the approach.
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Chapter 1

Introduction

1.1 Background

Finding lost people after a natural disaster as quickly as possible is a critical
challenge due to the urgent need for first aid and an inability to ask for help
since these individuals are traumatized. Actually, in most cases, these people are
not only physically incapacitated but are also mentally disoriented, and hence
their chances of signalling their locations to the rescuers further diminish. The
situation is compounded by the fact that traditional means of reaching people,
such as highways, often become impassable or severely damaged in the occur-
rence of a big disaster. Rescue teams then have a hard time trying to navigate
blocked roads and hazardous conditions, a factor that delays vital interventions
even further. Besides, communication channels get saturated or disrupted with
the quantum of need, making proper coordination for rescue very difficult. Whole
regions may get completely cut off from means of communication, leaving vic-
tims in isolation without even a glimmer of hope to call for help. Immediate
assistance is very vital, especially within the first 72 hours following the disaster,
since this is considered the so-called ”golden hours” for saving lives. Survival pos-
sibilities beyond this window become very low as the non-treatment of trauma
and exposure to harsh conditions begin to take hold. Concerning this, one of the
interesting responses to these situations is the use of unmanned aerial vehicles
to spot injured and trapped people. UAVs can efficiently scan wide areas, and
they can access those areas that are not accessible due to debris or collapse of
infrastructures. Flying over these hazardous zones, UAVs provide a new type of
viewpoint that, from the ground, could barely be accessible to the ground teams
and, therefore, allow one to identify survivors much sooner. Using several UAVs
shortens the search process substantially, increasing the likelihood of finding sur-
vivors within the critical time window. Parallel research with different sectors,
as enabled by multi-drones, increases the efficiency of the whole operation once
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1.2 Introduction

more. Traditional search methods tend to depend on previously made maps of
the environment, which can be highly inaccurate due to the disaster. The very
dependence upon maps imposes a serious limitation since a natural disaster can
change the looks of the landscape beyond recognition. Buildings that served as
orientation points may be fully destroyed while new obstacles can take the form of
a building collapse or fire. By contrast, reinforcement learning provides the most
flexible approach. Trained reinforcement learning algorithms can work without
a detailed map and generalize their search patterns to similar types of buildings
and environments quite effectively in settings with dynamic and unpredictable
conditions. All this flexibility gives way to UAVs, carrying such an algorithm, to
make decisions on the fly in adjusting their paths following prevailing conditions
they may come across. By leveraging the capabilities of UAVs combined with
reinforcement learning, rescue teams can be more effective and efficient in find-
ing and helping survivors. As technology develops, these autonomous systems
will most likely assume responsibilities involving delivering emergency supplies
to trapped persons in inaccessible areas. This technological synergy meets not
only the immediate need for a rapid response but also accommodates the shift-
ing conditions common in disaster areas. Most importantly, the near-constant
stream of data from UAVs can be used to update rescue strategies in real-time,
thus enabling teams to tailor their efforts to the evolving situation. Therefore,
integrating UAVs with advanced search algorithms is an essential part of disaster
responses that may save countless lives in these natural catastrophes. Besides
offering a ray of hope for quicker rescues, this innovative strategy opens the way
to further developments in automatic disaster relief technologies.

1.2 Introduction

Locating missing individuals after an earthquake as quickly as possible is a critical
and challenging task due to the immediate need for medical intervention and the
complexity of the post-earthquake environment. The urgency of this challenge is
raised by the fact that traditional means of reaching people, such as highways,
can be damaged after major earthquakes. Additionally, communication channels
may be disrupted by the high volume of need, making it difficult to coordinate
rescue efforts effectively Reuters (2023). In such circumstances, the deployment of
UAVs to locate wounded and trapped individuals presents a promising solution.
Drones are capable of quickly covering large areas and accessing locations that
are otherwise unreachable due to collapse. Figure 1.1 summarizes the proposed
DRL structure for search and rescue tasks.

It has two parts the upper one shows the training phase and the bottom one
shows the test phase. In the training phase, the image data is taken from the
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1.2 Introduction

Figure 1.1: Graphical representation of training and the testing phases.

environment with the help of the drone camera and extracts the features of the
image frame into three components such as target distance, x-center of the target
and, y-center of the target. Then, these observation feeds the three different
reinforcement learning (RL) algorithms. These are Proximal Policy Optimization
(PPO), Soft Actor Critic (SAC), and DDPG for this case. Then RL algorithms
give three velocity outputs to control the drone agent, which are linear x, linear
z, and angular z velocities.

To test the success rate of the training, the drone agent is loaded with the
RL models and finds the target on the different floors of the building. The key
innovation lies in the multi-drone setup tested in this phase, where two UAVs,
equipped with the same trained model, searched different floors simultaneously.
This parallel search capability drastically improves the speed and efficiency of
the operation. If the distance between these agents is dangerous the controller
intervenes in the actions by disturbing both agents in slightly reverse directions to
prevent a potential crash. A continuous action space is utilized in the RL model
to achieve precise navigation and effective obstacle avoidance. This approach
enables the UAVs to perform fine-tuned movements, enhancing their ability to
maneuver through the unpredictable terrain of collapsed structures. The training
of the RL agent takes place within the Gazebo simulation environment, utilizing
the ROS2 framework to process camera inputs and issue velocity commands at
each operation step. The results from this study indicate that the trained RL
agent successfully located the target individuals, even when they were situated on
different floors of the collapsed building which is placed in the Gazebo simulation
environment. The success rate of these search operations will be discussed in
further detail in the results section.
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1.3 Thesis Structure

1.3 Thesis Structure

The structure of this thesis is outlined as follows:

1. Literature Review: This section gives an overview of the work that has
so far been done on this topic and locates it within the broader scope of the
field of drone technology and reinforcement learning. It gives a comprehen-
sive account of the different technologies put into the drones used for this
simulation, detailing their functions and why they are applied. Further,
the chapter details reinforcement learning with some fundamental theories
laying the foundation for it. It enumerates various algorithms, explaining
their applications for various scenarios and linking them with the aims of
this research.

2. Problem Statement and Objectives: The focus of this thesis is on elab-
orating a core problem being addressed in detail. Specific objectives of the
research are put forth to act as a guide to subsequent sections. This chapter
states the hypothesis on trial, examining the logical basis and implications
for the design of the study.

3. Methodology: This chapter presents the detailed methodology followed
at every step of the research. It provides information about the environ-
mental setup required for the multi-drone system to work, which comprises
hardware specifications and software configurations. In this chapter, the
algorithms adopted in the framework will be discussed by providing the
criterion and working process that form the basis for their selection. The
communication protocols followed by the drones to make them work effec-
tively with each other are also explained, and the exact architecture of the
system is made amply clear.

4. Experiments and Results: This section deals with the experiments con-
ducted to test the hypotheses and objectives of the study. It details how
the training process was designed, including the experiment design and data
collection methods, the performance metrics used, and the outcomes of the
experiments conducted showing the efficacy of the multi-drone system and
pointing out all its features.

5. Discussion: In this chapter, the results will be discussed in the light of the
research questions put forward at the outset. These findings are critically
analyzed with a view to the literature and theories set out above. Secondly,
there is a discussion of limitations related to this study; this too will provide
valuable insights into the problems encountered and the consequences this
may have for the reliability and validity of these results.
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1.3 Thesis Structure

6. Conclusion: This last chapter summarizes what this research added both
to drone technology and to reinforcement learning. The significance of the
findings and how they could influence further research and practical appli-
cation have been discussed. Furthermore, suggestions for future research
by pointing out some avenues for further exploration and refinement of
methodologies and technologies discussed are provided.

7. References: This is the last part of the thesis, which involves a compre-
hensive reference list summarizing those works referenced in this research
effort. The section will not only be indicative of foundational works that
have, in one way or the other, influenced this study but also serve as a
useful companion for other researchers who might be interested in looking
into the aspects of drone technology and reinforcement learning.

5



Chapter 2

Literature Review

There is a growing area demonstrating that DRL can effectively address the chal-
lenge of drone navigation, especially in complex and unstructured environments
where traditional methods may struggle. In such environments, employment of
multiple UAVs, the search process can be significantly accelerated, increasing the
chances of finding survivors within the critical time as mentioned in Robotics
(2023). Traditional methods as explained in Souissi et al. (2013) A* and Dijk-
stra’s algorithm struggle in dynamic and unstructured environments. However,
these methods rely on pre-existing maps and structured environments, making
them less suitable for post-earthquake scenarios where the environment is dy-
namic and unpredictable. Simultaneous localization and mapping (SLAM) is
another method for the search operations which requires a map of the area as
shown in Wang et al. (2020). Although slam maps unknown environments while
simultaneously navigating through them, it depends on highly accurate sensor
data and requires building and updating maps in real-time which can be prob-
lematic in a collapsed building environment. Machine learning algorithms used
in Sambolek & Ivasic-Kos (2021) can also be applied to this problem but need
a huge dataset to achieve high precision. It is also very hard to gather such
large datasets in this environment and collecting it takes too much time. In
contrast to these approaches, RL presents a novel and advantageous alternative
that does not require a pre-existing map of the environment. This flexibility is
particularly beneficial in GPS-denied environments, where DRL can effectively
guide UAVs without relying on external positioning systems as mentioned in Bodi
et al. (2023). RL does not require any map of the environment and collects data
during training. Although lidars are commonly used in RL such as Ramezani &
Atashgah (2024), RGB-depth (RGBD) cameras are preferred due to their easy
calibration, affordability, and lightweight design used in Kang et al. (2019). One
approach, q-learning has been utilized for path planning for UAVs where the
drone takes discrete actions to navigate through its environment as mentioned in
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Yan & Xiang (2018). Another study uses the deep q-network (DQN) to control
drone altitude by selecting discrete actions, showing how DRL can be applied
to control specific aspects of drone flight which is shown in Zhou et al. (2020).
Additionally, DQN has been successfully used in scenarios where images are em-
ployed as the observation space, highlighting its versatility in processing visual
inputs for navigation purposes as Zuluaga et al. (2018) suggested. The potential
of DRL extends further into 3D navigation, where images and drone positions
are incorporated into the observation space. This approach allows drones to ma-
neuver within complex 3D environments, guided by visual and positional data
used in Kim et al. (2017). Some studies have explored the use of DDPG for path
planning, particularly in 2-dimensional spaces. In these cases, DDPG enables
the UAV to take continuous actions based on its position, which is provided as a
state at each step of the learning process mentioned in Lillicrap et al. (2015). For
instance, an improved DDPG algorithm has been proposed for UAVs navigating
in large-scale, complex terrains, highlighting its potential in such challenging sce-
narios shown in Peng et al. (2023). In environments where multiple UAVs are
used, the search process can be significantly accelerated, increasing the chances
of finding survivors within the critical time frame, this approach is used in Pham
et al. (2018). Moreover, DDPG is effective in teaching drone agents to navigate
in 3D environments by taking continuous actions while continuously observing
their positions, Bouhamed et al. (2020) used continuous action space in the 3D
environment. Notably, an improved version of DDPG has been developed to
enhance UAV navigation accuracy by incorporating corrective feedback mecha-
nisms, which have proven effective in complex environments as mentioned in Wu
et al. (2022). Furthermore, the application of DDPG has been expanded to sce-
narios such as rescue missions, where UAVs need to operate autonomously and
adaptively in post-earthquake settings as shown in Ma & Chen (2022). Over-
all, traditional methods and machine learning methods contribute under specific
conditions. However, the versatility of DRL, especially continuous action spaces,
makes it the most suitable among all presented approaches for searching and
rescuing operations in a building that collapsed. The possibility to navigate
without prior maps, the use of efficient sensors like RGBD cameras, and multi-
UAV coordination make it a robust framework to deal with the difficulties of this
application.
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Chapter 3

Problem Statement and
Objectives

3.1 Problem Statement

Building collapses resulting from earthquakes or other disasters leave people
buried under debris, always a big challenge during search and rescue operations.
Conventional methods of locating survivors employ manual searches and dogs
that are specially trained, both of which are time-consuming and hazardous for
rescue workers. These traditional methods generally require prior knowledge of
the structure of the building, which may be missing or unreliable after the disas-
ter.

The crucial challenge this thesis solved was to quickly and efficiently detect
the survivors in the collapsed building using an autonomous multi-drone system.
So, for such traditional labour-intensive search methods with a variety of limita-
tions, the proposed solution uses an advanced sensor and reinforcement learning-
equipped unmanned aerial vehicle. These drones will then autonomously navigate
the disaster site, communicate with each other to ensure complete coverage and
identify the presence of survivors, independent of any prior maps of the building.
The challenge is to devise a system operating in an unpredictable and cluttered
environment, effective coordination among multiple drones, and real-time sensory
data for making accurate decisions. This problem enables the thesis to work its
way into speeding and safeguarding the searching and rescue process for higher
salvation chances in the instance of a disaster. In general, the aim of the thesis
is the development of an autonomous multi-drone system for detecting survivors
in buildings that collapse using reinforcement learning. Specific objectives are
defined ın the following section to achieve this goal.
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3.2 Objectives

3.2 Objectives

1. Configure and Calibrate Drones: Equip the drones with advanced
RGBD cameras. Develop and implement publishers and subscribers within
the ROS to enable seamless communication and data exchange. This in-
volves ensuring that each drone’s camera system is precisely calibrated for
accurate data collection and transmission.

2. Implementing a Controller: Design and apply a classical Proportional
Integral Derivative (PID) controller to the drone system. The objective is to
validate the drone’s ability to reach predetermined goal positions accurately
using consistent velocity commands. This process involves fine-tuning the
PID parameters to achieve optimal control performance in various operating
conditions, ensuring reliable and stable drone navigation.

3. Creating Training Environment to Test RL Algorithms: Adapt the
DDPG algorithm from the Stable Baselines library for a multi-drone sys-
tem. This entails defining the action space and observation space for each
drone, as well as designing a comprehensive reward structure that encour-
ages efficient and effective task completion. The training environment must
be robust and capable of simulating a variety of realistic scenarios that the
drones might encounter in actual deployments.

4. Train the Drone in the Collapsed Building: Conduct extensive train-
ing sessions within a simulated collapsed building environment to optimize
the drones’ performance. The goal is to enhance the drones’ ability to ex-
plore disaster sites and accurately detect survivors. This phase involves
iterative training and testing, refining algorithms and strategies to improve
search efficiency, accuracy, and overall mission success rates.

5. Adding Multiple Drones to the Environment: Integrate additional
drones into the operational scene by duplicating all necessary publishers,
subscribers, and callback functions. This ensures that the system can man-
age and coordinate multiple drones simultaneously, facilitating collaborative
search and rescue efforts. Each drone must be capable of independent op-
eration while maintaining seamless communication and coordination with
other drones.

6. Analyze and Interpret Results: Perform a detailed analysis and in-
terpretation of the system’s performance data. Compare the results with
different DRL algorithms to identify the strengths and weaknesses of the
proposed system. This analysis should highlight the system’s advantages
in terms of efficiency, accuracy, and reliability, as well as potential areas for

9



3.3 Hypotheses

further enhancement. The insights gained will inform future development
and optimization efforts to improve the overall effectiveness of drone-based
search and rescue operations.

3.3 Hypotheses

The following hypotheses are formulated to guide this research:

• Hypothesis 1: Utilizing multiple drones equipped with RGBD cameras
and reinforcement learning algorithms will significantly reduce the time
required to locate survivors in a simulated collapsed building compared to
traditional search and rescue methods.

• Hypothesis 2: The proposed multi-drone system will achieve a faster
solution in detecting survivors compared to single-drone systems, due to
improved coverage and inter-drone communication.

• Hypothesis 3: The reinforcement learning algorithm, specifically the DDPG
algorithm, will enable drones to effectively navigate and search the simu-
lated environment without prior knowledge of the building layout.

10



Chapter 4

Methodology

4.1 Drone Model

The drone model taken from NovoG93 (2022) is often utilized in research and
development for various applications, including aerial robotics, path planning,
and control strategies. The drone has a quadrotor configuration, which consists
of four rotors positioned at the corners of a rectangular or square frame. This
configuration allows for good stability and maneuverability. It can carry various
payloads, such as cameras, sensors, or additional equipment for specific tasks.

4.1.1 Mathematical Dynamics

The dynamics of a quadrotor drone can be described using a combination of
Newton-Euler equations and kinematic equations. The motion can be analyzed
in terms of translational and rotational dynamics.

4.1.1.1 Translational Dynamics

The translational dynamics of the drone can be represented by the following
equations:

ẋ = ux (4.1)

ẏ = uy (4.2)

ż = uz (4.3)

Where:

• x, y, z are the positions in the world frame.

11



4.1 Drone Model

• ux, uy, uz are the velocity components in the respective directions.

The forces acting on the drone are typically the thrust generated by the rotors
and the gravitational force:

F = m · g − T (4.4)

Where:

• F is the net force,

• m is the mass of the drone,

• g is the acceleration due to gravity,

• T is the total thrust produced by the rotors.

4.1.1.2 Rotational Dynamics

The rotational dynamics can be described using Euler angles (ϕ, θ, ψ) for roll,
pitch, and yaw. The rotational motion can be represented as:

ϕ̇ = p+ sin(ϕ) tan(θ)q + cos(ϕ) tan(θ)r (4.5)

θ̇ = cos(ϕ)q − sin(ϕ)r (4.6)

ψ̇ =
sin(ϕ)

cos(θ)
q +

cos(ϕ)

cos(θ)
r (4.7)

Where:

• p, q, r are the angular velocities around the body-fixed axes.

The rotational dynamics can be expressed with the moment of inertia and the
torques generated by the rotors:

τx = L · (T2 − T4) (4.8)

τy = L · (T1 − T3) (4.9)

τz = K · (T1 + T2 + T3 + T4) (4.10)

Where:

• L is the distance from the center of the drone to the rotors,

• K is a constant related to the rotor characteristics,

• T1, T2, T3, T4 are the thrust forces produced by each rotor.
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4.2 Classical Control

4.1.2 Control Inputs

The drone’s control inputs typically consist of:

• Throttle: Adjusts the total thrust produced by all rotors.

• Roll, Pitch, Yaw Commands: Adjusts the distribution of thrust among
the rotors to control the orientation and direction of flight.

4.1.3 Environment Interaction

When analyzing the dynamics, the interaction with the environment, such as
wind or obstacles, is crucial. Environmental factors can be modeled as additional
forces or disturbances affecting translational and rotational motion.

4.1.4 Simulation

This drone model is often simulated in the Gazebo environment, where various
factors, including dynamics, control strategies, and environmental interactions,
can be tested.

4.2 Classical Control

The first step before starting to implement an advanced method to control the
drone is applying a PID controller. This step is necessary to ensure that the
drone model in the simulation works properly with the selected velocities. First,
a target is created in the Gazebo simulation environment and a PID controller is
implemented. It gets the distance between the target and the drone and publishes
the correct velocity messages to reach the target.

The control loop feedback mechanism is another critical component of a PID
controller in readjusting the movement of the drone proportionally to the error
it detects against the desired position and the actual position of a target. Three
salient components comprise the PID controller, which is stated as follows:

• Proportional (Kp): This is a term in proportion to the current error. The
larger the error, the larger the control output will be to allow immediate
correction.

• Integral (Ki): This is accumulated from all the errors that have been realized
in the past. The longer this drone has stayed consistently off target, the
stronger this term becomes in output to help clear out steady-state errors
and ensure the drone reaches a desired position.
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• Derivative (Kd): This estimates future errors based on the rate of change
of the current error. This dampens the system response by preventing
overshooting of the target.

4.2.1 Frame Processing

The overall control logic is coordinated by the function process frames. It com-
putes the reference and actual positions and then estimates the distance and
orientation errors. The PID controllers use these to derive the required veloci-
ties. Computed velocities are published as motor commands in order to control
movements.

4.2.2 Action Item

The ‘take action‘ method publishes the computed velocity commands in order to
make the drone adjust based on outputs from PID controllers.

This means that the code enables the drone to make its way independently
in the environment and, with the help of vision, find the blue objects. For fly-
ing accurately, PID controls the drone movement with great precision while the
DDPG optimizes it using reinforcement learning. Due to this combination, the
interaction capability of the drone with the environment improves and is thus
suitable for tasks such as search and rescue or inspection. The algorithm below
shows how it works:
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Algorithm 1 PID Control

1: Input: Proportional gain Kp, Derivative gain Kd, Integral gain Ki

2: Output: Control signal u
3: Initialize prev error ← 0
4: Initialize integral← 0
5: function Compute(error, delta time)
6: integral← integral + error × delta time
7: if integral < integral min then
8: integral← integral min
9: else if integral > integral max then

10: integral← integral max
11: end if
12: derivative← (error − prev error)/delta time
13: u← Kp × error +Kd × derivative+Ki × integral
14: prev error ← error
15: if u < output min then
16: u← output min
17: integral ← integral − anti windup gain × (u − output min) ×

delta time
18: else if u > output max then
19: u← output max
20: integral ← integral − anti windup gain × (u − output max) ×

delta time
21: end if

return u
22: end function

4.3 Introduction to Markov Decision Process

Before starting to explain what is reinforcement learning it is important to under-
stand the Markov Decision Process which is the basis of reinforcement learning.
It is a mathematical framework used to model decision-making in environments
where outcomes are partly random and partly under the control of a decision-
maker. An MDP is defined by the following components:

• S: A set of states

• A: A set of actions

• P (s′|s, a): Transition probability function, representing the probability of
moving from state s to state s′ after taking action a
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• R(s, a): Reward function, representing the immediate reward received after
taking action a in state s

• γ ∈ [0, 1]: Discount factor, which represents the importance of future re-
wards.

Transition Probability Function

P (s′|s, a) = Pr(st+1 = s′ | st = s, at = a) (4.11)

This represents the probability of transitioning to state s′ given that the agent
was in state s and took action a.

Reward Function

R(s, a) = E[rt+1 | st = s, at = a] (4.12)

This is the expected reward received after taking action a in state s.

Policy

A policy π is a strategy for choosing actions. A deterministic policy π maps states
to actions, denoted as π(s) = a, while a stochastic policy defines a probability
distribution over actions:

π(a | s) = Pr(at = a | st = s) (4.13)

4.3.1 Value Functions

The value function gives the expected cumulative reward starting from a state,
under a given policy π. There are two main value functions:

• State-value function V π(s): The expected return when starting in state
s and following policy π thereafter:

V π(s) = Eπ

[
∞∑
t=0

γtrt+1 | s0 = s

]
(4.14)

• Action-value function Qπ(s, a): The expected return when starting in
state s, taking action a, and following policy π thereafter:

Qπ(s, a) = Eπ

[
∞∑
t=0

γtrt+1 | s0 = s, a0 = a

]
(4.15)
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Example: Imagine you are in a video game where you are deciding whether
to move left or right in a maze:
State-value function V (s): If you’re in a certain location (state s) in
the maze, V (s) tells you the expected total score you will get if you follow
a particular strategy (policy π) from that location. It averages over all
possible actions according to the strategy.

Action-value function Q(s, a): It will tell the expected total score if you
are in state s, take action a (e.g., move left or move right), and then follow
the strategy π afterwards. It gives more specific information about what
might happen after a particular action.

4.3.2 Bellman Equations

The Bellman equations express the value functions recursively to simplify the
state-action value calculation. Instead of calculating the expected return for each
state or each state-action pair, we can use the Bellman equation according to
HuggingFace (2021a).

• Bellman equation for state-value function:

V π(s) =
∑
a

π(a | s)
∑
s′

P (s′ | s, a) [R(s, a) + γV π(s′)] (4.16)

• Bellman equation for action-value function:

Qπ(s, a) = R(s, a) + γ
∑
s′

P (s′ | s, a)
∑
a′

π(a′ | s′)Qπ(s′, a′) (4.17)

4.3.3 Monte Carlo vs Temporal Difference Learning

An RL agent learns by interacting with the environment by updating its value
function or policy according to the received reward. Monte Carlo and Temporal
Difference (TD) Learning are two different ways to train the function. While
Monte Carlo uses an entire episode of experience before learning, temporal dif-
ference only uses a step to learn mentioned in HuggingFace (2021c).

• Monte Carlo: Waits until the end of the episode then it calculates Gt and
updates the target V (St). That means it needs to wait until one episode
ends before updating the value function. Then starts the new episode with
this new knowledge.

V (S∗
t )← V (St) + α [Gt − V (St)] (4.18)

where:
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– V (S∗
t ) is the new value of state t

– V (St) is the estimation of the value of state t

– α is the learning rate

– Gt is the return at step t

• Temporal Difference: Waits for only one iteration St+1 to TD target and
update V (St) using Rt+1 and γV (St+1).

V (S∗
t )← V (St) + α [Rt+1 − γV (St + 1)− V (St)] (4.19)

where:

– V (S∗
t ) is the new value of state t

– V (St) is the estimation of the value of state t

– α is the learning rate

– Rt+1 is the reward

– γV (St + 1) is discounted value of next state

Optimal Policy

The goal of an MDP is to find an optimal policy π∗ that maximizes the expected
return. The optimal state-value and action-value functions are denoted as V ∗(s)
and Q∗(s, a), and they satisfy the Bellman optimality equations:

• Optimal state-value function:

V ∗(s) = max
a

∑
s′

P (s′ | s, a) [R(s, a) + γV ∗(s′)] (4.20)

• Optimal action-value function:

Q∗(s, a) = R(s, a) + γ
∑
s′

P (s′ | s, a)max
a′

Q∗(s′, a′) (4.21)

The optimal policy π∗ is the policy that selects actions which maximize
Q∗(s, a):

π∗(s) = argmax
a
Q∗(s, a) (4.22)
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4.4 Introduction to Reinforcement Learning

4.4.1 Reinforcement Learning

Reinforcement learning (RL) is an interdisciplinary area of machine learning and
optimal control concerned with how an intelligent agent takes action in a dynamic
environment to maximize the cumulative reward according to Wikipedia (2024).
The RL consists of two main parts which are the agent and the environment.
The agent is the robot which learns to do some task by taking some actions in
the environment in which the robot is located. After every action, it observes
new states and also gets a reward according to how good or bad is the action it
selected. The goal is to maximize the cumulative reward which is called return.
Fig. 4.1 shows the agent and environment interactions in RL.

Figure 4.1: RL loop

In RL, the agent does not know the transition probabilities P (s′|s, a) or the
reward function R(s, a). Instead, the agent interacts with the environment, learns
through trial and error, and improves its policy over time. MDPs provide the the-
oretical foundation for RL because they describe how the environment responds
to the agent’s actions. The agent’s task in RL is to approximate the optimal
policy for this MDP.

• States and Observations: The state s describes the environment fully
without extracting any information. A robot state can be represented as
positions and velocities. While observation o is a partial description of a
state, which may omit information. For example, it can be an RGB matrix
of the image given in Openai (2018b). The agent can observe the states
fully or not depending on the environment. For instance, it fully observes
the grid world or frozen lake environment but can not observe fully the
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Mario or the flappy bird environments. Fig. 4.2a shows a grid world which
is frequently used in RL. Fig. 4.2b shows a non-observable environment.

(a) Example grid world frozen lake
(b) Example environment which is not fully
observable

Figure 4.2: (a) shows frozen lake environment (b) shows flappy bird environment

• Action Spaces: The valid action that an agent can take depends on the
environment. For instance, games such as Atari or Go only accept dis-
crete action spaces while controlling a robot in a physical world needs
continuous action spaces.

• Discount Factor: The cumulative reward at each step is written as:

R(τ) = rt+1 + rt+2 + rt+3 + ... =
∞∑
k=0

rt+k+1 (4.23)

In this equation, τ represents the trajectory which means the sequence of
states and actions. In the Fig. 4.3 the mouse has to eat the maximum
amount of cheese without being eaten by the cat. As we can see in the
diagram, it’s more probable to eat the cheese near us than the cheese close
to the cat (the closer we are to the cat, the more dangerous it is). Conse-
quently, the reward near the cat, even if it is bigger (more cheese), will be
more discounted since we’re not sure we’ll be able to eat it. So the expected
cumulative reward should be decreased in each step and it is written as:

R(τ) = rt+1 + γrt+2 + γ2rt+3 + ... =
∞∑
k=0

γkrt+k+1 (4.24)
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Figure 4.3: Example cheese eating game

• Task types:

– Episodic: The tasks with a starting and ending point such as Super
Mario.

– Continuing: The tasks that last continuously such as stock trading.

• Exploration and Exploitation: Exploration means that the agent takes
random actions to find more information about the environment and ex-
ploitation is using the known information to maximize the reward.

There are two main approaches to solving RL problems:

• Policy-Based Methods: It can be deterministic or stochastic. The agent
directly learns a policy function. Fig. 4.4a directly shows which action
the agent should take in each step. The deterministic policy always gives
the same action a = π(s), while a stochastic policy defines a probability
distribution over actions π(a | s) = P [A | s].

• Value-Based Methods: The agent learns a value function which shows
the expected value of being in a state. Fig. 4.4b directly shows the values
for each step so the agent can select the highest values in each step. So,
this function shows the value-base policy

vπ(s) = Eπ

[
∞∑
k=0

γkrt+1 | St = s

]
(4.25)

• On-Policy: In these algorithms, the policy being learned and the policy
used to generate data (interact with the environment) are the same.

21



4.4 Introduction to Reinforcement Learning

(a) Policy-based approach (b) Value-based approach

Figure 4.4: (a) shows policy-based approach and (b) shows value-based approach

• Off-Policy: In these algorithms, the policy being learned is different from
the policy used to generate data.

4.4.2 Reinforcement Learning Algorithms

• Model-Based RL: In this model, the agent can simulate the environment,
predict future states, and plan optimal actions by looking ahead.

• Model-Free RL: In this model, the agent learns to optimize its behavior
by directly interacting with the environment, without constructing or using
a model of the environment’s dynamics. Instead, the agent learns a value
function (like Q-values) or a policy that maps states to actions based on ex-
perience. Deep Q-Learning (DQN), PPO, DDPG, and SAC can be counted
as model-free algorithms.

– Q-Learning: It is an off-policy value-based method to train its action-
value function. Fig. 4.5 shows the Quality of the action at a specific
state. The Q-table consists of state-action pair values. Figure taken

Figure 4.5: Q-learning algorithm.

from HuggingFace (2021d). At the beginning all values are zero, then
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it is filled with the Q values during the training. After the training,
we obtain the optimal Q-table. So, we have an optimal policy because
we know the best action to take in each state. The optimal policy is
calculated using the formula below:

π∗(s) = argmaxaQ
∗(s, a) (4.26)

Algorithm 2 Q-Learning

Require: policy π, positive integer num episodes
Ensure: value function Q (≈ qπ if num episodes is large enough)
1: Initialize Q arbitrarily (e.g., Q(s, a) = 0 for all s ∈ S and a ∈ A(s), and
Q(terminal state) = 0)

2: for i = 1 to num episodes
3: ϵ← ϵi
4: Observe S0

5: t← 0
6: repeat
7: Choose action At using policy derived from Q (e.g., ϵ-greedy)
8: Take action At and observe Rt+1, St+1

9: Q(St, At)← Q(St, At) + α [Rt+1 + γmaxaQ(St+1, a)−Q(St, At)]
10: t← t+ 1
11: until St is terminal
12: end
13: return Q

– DQN: The DQN algorithm is one such agent that combines Q-learning
with deep learning for solving reinforcement learning tasks with large
or high-dimensional state spaces, which could be represented by images
or video frames. In this instance, the agent learns to approximate
the Q-function using a neural network. The algorithm makes use of
experience replay, wherein the experiences of the past are stored in a
replay buffer and sampled randomly to take consecutive samples and
stabilize training. DQN also uses a target network for further stability
of training by keeping a separate network for computing the target
Q-values. It is updated not as often as the main network. The agent
follows the policy dictated by the derived Q-values, which help it pick
actions to maximize rewards, thus enabling it to learn effectively in
complicated environments.

– PPO: It is a policy-gradient method, which means it optimizes the
policy directly from states to actions. It tries to maximize a surrogate
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objective function and the key point is to avoid large updates according
to Openai (2017). It uses a ratio that indicates the difference between
the current and old policy and clips this ratio to the [1− ϵ, 1+ ϵ] range
given in HuggingFace (2021b). So, the agent can learn stably. The
objective function is shown below:

LCLIP(θ) = Et

[
min

(
rt(θ)Ât, clip(rt(θ), 1− ϵ, 1 + ϵ)Ât

)]
(4.27)

where

∗ Θ is the policy parameter

∗ Et denotes the empirical expectation over timesteps

∗ rt is the ratio of the probability under the new and old policies,
respectively

∗ Ât is the estimated advantage at time t

∗ ϵ is a hyperparameter, usually 0.1 or 0.2.

PPO trains a stochastic policy in an on-policy way, which means that it
explores by sampling actions regarding the latest version of the policy.
Over the training, the policy typically becomes less random, because
the update rule encourages it to exploit rewards that it has already
found.

– DDPG: It is an actor-critic model-free algorithm which learns a Q-
function and a policy. It uses off-policy data and the Bellman equation
to learn the Q-function and the Q-function to learn the policy. It
combines both policy and value-based methods and is suitable for the
continuous action space. This approach combines Deterministic Policy
Gradient (DPG) and DQN as written in Openai (2018a).

∗ Deterministic Policy: Unlike stochastic policies used in PPO, DDPG
uses a deterministic policy, so, the action is always the same value
instead of being a distribution.

∗ Actor-Critic Networks: The actor is a policy network that de-
termines which action to take in the current state. It outputs a
deterministic action, so, the action is always the same. The critic
is a value network that evaluates the action taken by the actor
by estimating the Q-value, which is the expected return (future
rewards) from taking a specific action in a given state.

∗ Off-policy Learning: It is an off-policy algorithm. So, it learns
from past experiences.

∗ Experience Replay: It uses experience replay this buffer stores
the list of (state, action, reward, nextstate) and instead of learning
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only from recent experience, we learn from sampling all of our
experience accumulated so far. It consists of actor, critic, target
actor and target critic networks mentioned in Keras (2018).

∗ Target Networks: It uses target networks to stabilize the learning
for both actor and critic networks. The target networks help re-
duce the risk of the Q-values diverging during training. The target
network update formulas are given below:

θQtarget ← τθQ + (1− τ)θQtarget (4.28)

θπtarget ← τθπ + (1− τ)θπtarget (4.29)

where:

· τ is a small positive constant (typically equal to 0.005)

· ΘQ and Θπ are the parameters of the main critic and actor
networks, respectively.

· ΘQ
target and Θπ

target are the parameters of the target critic and
actor networks, respectively.

– SAC: It is an algorithm that optimizes a stochastic policy like PPO
but in an off-policy way. So it is an algorithm in between PPO and
DDPG. The main feature of this algorithm is entropy regulariza-
tion. It is trained to maximize the trade-off between expected return
and entropy, which is the measure of randomness in the policy. In-
creasing entropy results in more exploration given in Openai (2018c).
The entropy regularization formula is given below:

H(π) = Est [α log π(at|st; θπ)] (4.30)

where:

∗ H(π) is the entropy of the policy.

∗ α is the temperature parameter that controls the trade-off between
reward and entropy. A higher α increases the emphasis on entropy,
leading to more exploration.

∗ π(at|st; θπ) is the policy’s probability distribution over actions
given state st parameterized by Θπ.

Table 4.1 compares the PPO, DDPG and SAC algorithms which are used to
train the drone agent in this project.
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Feature PPO DDPG SAC

Type On-policy Off-policy, deter-
ministic

Off-policy,
stochastic

Action Space Continuous or
Discrete

Continuous Continuous

Exploration Strategy No explicit ex-
ploration

Noise addition Entropy maxi-
mization

Stability Highly stable Can be unstable Highly stable

Sample Efficiency Moderate to
High

High High

Table 4.1: Comparison of PPO, DDPG, and SAC algorithms

4.4.3 Deep Reinforcement Learning Framework for Nav-
igation and Rescue Operations

DRL enables autonomous systems like drones to navigate complex environments,
make real-time decisions, and adapt to challenges during rescue missions. This
can significantly increase the efficiency and effectiveness of search-and-rescue op-
erations, especially in inaccessible areas, by reducing human risk and improving
the chances of locating survivors quickly. In order to solve this problem a drone
agent equipped with an RGBD camera is trained to find the target position in a
collapsed building which is placed in the Gazebo environment using three differ-
ent RL algorithms which are PPO, SAC and DDPG. Fig. 4.6 shows the general
RL structure with these algorithms. This agent has an RGBD camera and this
camera images are extracted to three elements to reduce the input observation
space. Then these three components are sent to the RL algorithms to calculate
the velocity actions by considering the rewards collected in each step.

4.4.4 Observation and Action Spaces

For this project RGBD image information is used for the observation space and
the continuous velocity actions are used for the action space. This means that
the drone agent needs to learn from the RGBD information and directly take
velocity actions. The reason of choosing PPO, SAC and DDPG is that all of
these algorithms allow to take continuous actions. Because the drone agent in
the environment should take continous actions instead of only discrete actions in
order to ensure that it can easily reach the target by doing continuous manuevers.
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PPO, SAC, DDPG

Policy

AGENT

ENVIRONMENT

Observation Action

Reward

Figure 4.6: Agent-Environment interaction loop with different algorithms

4.4.5 Reward Function Design

4.4.6 Termination Conditions

In this custom environment which is created for the drone agent, there are 3
termination conditions:

• Termination 1: The first termination condition occurs if the agent crashes
to something in the environment.

• Termination 2: The second termination condition occurs if the agent
reaches the target position.

• Termination 3: The third one is actually a truncation instead of a ter-
mination, because it truncates the episode if the agent can not find the
target within 60 seconds. This kind of terminal condition is called trunca-
tion because the agent is not able to learn how much time it takes and why
it is terminated suddenly. For example, the drone agent is flying around
and collecting some rewards then it can stay in a position and get so much
reward but it is actually not the solution we would like it to be found by the
agent. The goal is getting closer to the target position as soon as possible.
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4.4.7 Custom Environment for Reinforcement Learning

A custom environment is created for training the agent using a ROS node. The
Algorithm 3 describes this environment. The ROS 2 node is initialized, which
serves as the communication hub for subscribing to sensor data and publishing
commands to control the drone. The environment subscribes to various ROS
2 topics to receive real-time data from the drone. These subscriptions include
RGB and depth images from the drone’s cameras and odometry data to track
the drone’s position. Additionally, collision states are monitored to detect any
impacts or crashes. The take action function publishes velocity commands ac-
cording to the RL algorithm in each step when called by the step function. The
step function returns observation, reward, termination and truncation. Episodes
reset when the drone has collided with or collected the target, in these cases ter-
mination flag is true or reset if the agent cannot find the target in 60 seconds, in
this case truncation flag is true. The reset function lands the drone to the initial
position, resets the reward and the observation space.

4.4.8 Communication Interfaces

The ROS 2 node is initialized, which serves as the communication hub for sub-
scribing to sensor data and publishing commands to control the drone. This setup
allows the environment to interface seamlessly with the drone’s simulated sensors
and actuators. The environment subscribes to various ROS 2 topics to receive
real-time data from the drone. These subscriptions include RGB and depth im-
ages from the drone’s cameras and odometry data to track the drone’s position.
Additionally, collision states are monitored to detect any impacts or crashes.
To control the drone, the environment publishes commands to ROS 2 topics.
These commands manage the drone’s movement by sending velocity instructions
and handling flight operations such as taking off and landing. This bidirectional
communication ensures that the environment can observe the drone’s state and
commands to direct its behavior.

4.4.9 Multi-Drone Communication

The diagram in Fig. 4.7 illustrates the system architecture designed to control
and manage multiple drones using an RL model.

This architecture is only applied during the test phase, which means both
drone agents have loaded the same trained model and they only tested together
to decrease the total searching time. The system consists of two main compo-
nents: the custom environment and the distance controller. Each drone operates
within the environment, which provides position information necessary for navi-

28



4.4 Introduction to Reinforcement Learning

Algorithm 3 Drone Environment

1: Initialize drone controller clients, publishers, subscribers
2: Initialize observation space and action space
3: Initialize agent position, rewards, observation
4:

5: Function collision callback:
6: Check for collisions and update contact status
7: Function rgb callback:
8: Process RGB image data and detect the target if it is in the field of view
9: Function depth callback:

10: Process depth image data and update distance to the target
11:

12: Function take action(v yaw, v x, v z):
13: Publish velocity commands to the drone
14: Function takeOff():
15: Command the drone to take off
16: Function land():
17: Command the drone to land
18:

19: Function step(action):
20: Execute action and update the drone’s position
21: Calculate distance to the goal and check for success or collision
22: Compute reward based on goal distance and penalties
23: return (observation, reward, terminated, truncated)
24:

25: Function reset():
26: Reset simulation, call land function and resets drone state
27: Take off the drone and set the goal position
28: return initial observation
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Figure 4.7: System architecture in ROS

gation. This position data is sent to the distance controller, and if the distance
between the drones is too large, the distance controller sends speed messages to
both drones in the same direction to bring them closer together. In the oppo-
site case, it sends speed messages in opposite directions to separate the drones
until the distance is within the safety limits. Otherwise, drones continue to take
the actions, coming from the RL model. Algorithm 4 shows how the distance
controller node works to control drone distances. This architecture enables the
autonomous and adaptive operation of multiple drones using the same trained
model.

4.5 Drone Configuration and Sensors

The drone description package is used for the training. The illustration of the
quadcopter in the environment is displayed in Fig. 4.8.

Figure 4.8: The drone model in Gazebo environment.
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Algorithm 4 Distance Controller Pseudocode

1: Class DistanceController
2: Function DistanceController init()

3: Initialize node, position subscriptions, velocity publishers
4: End Function
5: Function drone1 position callback

6: Update drone1 position

7: End Function
8: Function drone2 position callback

9: Update drone2 position

10: End Function
11: Function check distances()

12: Compute distance between drones
13: if distance > 10.0 or < 1.0 then
14: Adjust drone velocities via publishing velocity messages
15: end if
16: Publish new velocity commands
17: End Function
18: Function main()

19: Initialize ROS, create DistanceController node, spin and shutdown node
20: End Function
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It is suitable for ROS2 and has a Unified Robot Description Format (URDF)
file for the drone. This model allows to sending of both linear and angular ve-
locity commands to the drone as well as getting the ground truth position and
orientation information of the drone model. This drone model is equipped with
an RGBD camera in the front to detect people and their distance from the drone.
It has a collision detection topic already which provides feedback when it hits
somewhere.

4.5.1 Collaborative Approach for Drones

Search-and-rescue operations in collapsed buildings are enhanced in efficiency
and effectiveness through the use of multiple drones. Such teams of drones would
be able to survey larger areas faster, providing a more comprehensive search as
opposed to single-drone operations. In the experiments, after the training phase
of three different algorithms developed for the optimization of drone navigation
and target detection, a new drone was added to the setting. This new drone
joining the setup was then tasked to find the same target that the other deployed
drones were searching for using the same model. The integrated effort solely
aimed to test whether using more drones would speed up the target location
speed and accuracy, hence reducing the time for its identification and rescue.

4.5.2 Search and Rescue Operation Workflow

When the drones start their flight, they maintain a maximum separation of 10
meters to ensure robust communication between them. If the drones come closer
than 1 meter to each other, they are automatically pushed apart to avoid inter-
ference. Within the 1 to 10-meter range, the drones operate according to their
trained algorithms. They communicate effectively by sending alerts to each other
if one of them detects a target, allowing the other drones to cease their search.
Custom environments consist of observation, action space, reset logic, reward
function and actions for every step taken. The RL model node is to train the
agent with different algorithms. The distance controller checks the distance be-
tween drones and adjusts their positions in dangerous situations like getting too
close or too far from each other.

4.6 Simulation Environment

The custom environment is designed to create a simulation environment for au-
tonomous drone navigation using reinforcement learning techniques. This envi-
ronment combines OpenAI Gym, ROS 2, and Gazebo to facilitate the training
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and evaluation of drone control algorithms. An illustration of the collapsed build-
ing environment is shown in Figure 4.9 taken from Viswanathan et al. (2023) and
the same environment is shown with the drone agent and with the target in Figure
4.10.

Figure 4.9: Collapsed building environment in Gazebo.

Figure 4.10: Collapsed building environment and the target inside it. The target
is shown in blue square and the drone is shown in red square.

4.7 Training Loop

The agent is trained with reinforcement learning using the Stable Baselines3 li-
brary, and it is designed to train agents in a custom multi-drone environment. It
begins by importing various algorithms from Stable Baselines3, including DDPG,
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SAC and PPO. The code creates directories for saving trained models and logging
data, using the current timestamp to ensure unique folder names. It then sets
up a vectorized environment using the ‘MultiDroneEnv‘ class, configuring action
noise to enhance exploration during training. The total training timesteps and
save intervals are defined, although the model creation and training process is
commented out. In this section, a DDPG model would be instantiated with spe-
cific parameters, and a loop would allow the model to learn and save periodically.
Finally, the code loads a pre-trained DDPG model from a specified path, resets
the environment, and enters an infinite loop to predict and execute actions based
on the current observation, effectively running the trained model in the environ-
ment. The commented section for resetting the environment upon termination
can be activated for proper episode management.
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Chapter 5

Experiments and Results

5.1 Reward Function Design

5.1.1 Maze Scenario

Designing the reward function is very essential to obtain a well-trained agent. For
that reason, the agent is trained with various reward functions. The main idea was
to use negative rewards which are used to be more stable than positive rewards.
Then, the actions were sorted from the most useful to the most dangerous for
our agent. The first idea was to put only one green ball in a maze in Gazebo and
the agent needed to collect these balls one by one. To achieve this the reward
function is given in the equation below:

R = −1 + 2/(1 + ed/ngp+1) (5.1)

where:

• d is the ground truth distance from the drone to the ball

• ngp is the number of green pixels in the field of view of the drone camera

According to this reward function given in the 5.1, the agent got higher re-
wards when it saw more green pixels and got closer to the green ball. In this
figure, while the x-axis shows the distance between the agent and the ball, the
y-axis shows the reward.

The agent is trained with this reward function and obtains good training
results which can find the green ball even if it is not in the field of view at
the beginning. So it was starting to search for it by turning around. However,
with this training, the agent was not able to find a green ball which is behind
the walls. Also, the training took too long and it was not possible to try many
different reward functions just for an easy task.
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5.2 Simulation Results

Figure 5.1: Reward curve for different values of the green pixels from 0 to 200

5.1.2 Earthquake Scenario

In this scenario, the observation space was reduced and that gave me the flexibility
to change and try more reward functions. The main idea was again to use a
negative reward function to ensure the stability of the training. The successful
reward equation is given below:

R = −1 ∗ dist+ pen+ coll (5.2)

where:

• dist is the ground truth distance to the goal position

• pen is the penalty if the agent is more than 10 meters far from the origin
which means it is also far from the building

• coll is the collision penalty when the closest distance is closer than 2 meters
to the drone

5.2 Simulation Results

In order to simplify the problem, the agent is trained using only an RGB camera
and the scenario was collecting the green ball in the environment. This can be
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Figure 5.2

seen in the figure 5.2.
This purpose was achieved with the StableBaselines DDPG algorithm with

a 10−5 learning rate. But it was only able to collect the green ball if it was
in the field of view during the training which was not applied for a search and
rescue scenario. After that, the idea was extended to train the agent using RGBD
camera observation, which means 480*640*4 pixels in each step. While 480*640
is the height and the width of the frame, 4 contains the colour (RGB) and depth
values of each pixel. The huge amount of information came into the camera in
each step and the agent needed to reason which pixels were the most useful. Most
of these pixel values change in each step. So, a compilation of the learning process
took too much time even with a powerful graphic card and hard to do parameter
tuning as it could converge in any timestep. For that reason, different types of
reducing techniques were tried to reduce the learning time.

• Grayscaling: The first approach was grayscaling the observation space
which reduces the space to 480*640*1. The first intention was that the
agent could learn to differentiate shapes either and not need color channels.
However, the agent needs to differentiate obstacles from the target according
to their colors. Because this approach failed after training with different
learning rates.

• Reducing Resolution: This approach contains training the agent with
different resolutions via changing the camera resolution. However, this ap-
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5.2 Simulation Results

proach also did not work because the agent needed high resolution while
moving.

• Changing Neural Network Sizes: Also adding extra layers and changing
the network dimensions did not make any visible effects during the training
phase.

As a result, the pixel values were extracted before putting them into the obser-
vation space. This reduced the observation space size drastically from 480*640*4
to 3.

5.2.1 Single Drone

The training of the drone agent is extensive while in a very challenging dynamic
environment of a collapsed building, with several RL algorithms. This is a well-
simulated case of a post-disaster scene: a non-homogenous structure with each
floor presenting a different challenge in layout, obstacles, and navigation diffi-
culties. While other environments may possess uniformly structured floors, the
different floors in this building environment were designed to pose an increasing
level of difficulty with the intent of making the agent change its behavior each
time a new floor configuration is encountered. These included variations in the
arrangement of debris, gaps between floors, broken walls, and other obstructions
common in real-life collapses. It underscored the strength but, simultaneously,
the flexibility of the RL approach regarding so many factors that cannot be fore-
casted.

In all of the training, the goal position that the drone had to fly toward was
fixed and was located on the second floor of the building. With the initial height
of the drone close to the second floor, this setup keeps the training consistent
and focused on learning optimal paths under challenging circumstances, making
sure it is starting in the vicinity of the target with enough complexity to test its
navigation capabilities. The more restrictive starting condition provided the RL
agent to learn and experience the fine details of vertical and horizontal movements
within a confined 3D space. In this paper, three different RL algorithms were used
in training the drone: Proximal Policy Optimization, Deep Deterministic Policy
Gradient, and Soft Actor-Critic having different strengths concerning stability,
exploration, and convergence speed. These algorithms were diverse, ensuring
that the methods of reinforcement learning applied to drone-based search and
rescue tasks in challenging environments were extensively evaluated.

Following the training phase was a protocol for rigorous testing that sought the
performance of the trained agent on various floors of the collapsed building. These
tests were designed to stress the learned policy of the drone by randomly varying
both the initial starting height and the goal position. For example, although the
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goal in the training was always positioned on the second floor, during the test, the
positions of the goals were slightly shifted and the initial positions of the drone
were randomized across different heights to consider real-world scenarios where
exact initial conditions are often unknown or subject to changes. These changes
were necessary to check the generalization capability for new situations of the
learned policy and to assure that the agent didn’t just memorize the training
environment but, instead, knew generalizable strategies that could be used to
navigate collapsed structures.

Each of these algorithms PPO, DDPG, and SAC is tested on the same set of
10 tests per floor to make sure the comparison among them is comprehensive yet
fair. These floors are very different in terms of layout and complexity, and tests
on each were conducted from different initial heights to simulate drones starting
from multiple levels of elevation. The success criterion of each test was defined
as an agent navigating within 3 meters to the target position without collision
with obstacles within a time limit of 60 seconds. This metric was chosen based
on the assumption that, in real-world search and rescue missions, proximity to
the target, like a survivor or point of interest, in a reasonable amount of time
with the safety of the drone’s operation in fragile environments is very important.
The time limit imposed by setting the timer to 60 seconds represented a balance
between the need for rapid performance in emergencies and realism regarding the
battery life of drones and risks of environmental exposure.

The results for these tests, as highlighted in Table 5.1, were very promising.
For the average success rate across all tests conducted on all algorithms combined,
it stood at about 84.4%. It means this high success rate that the trained agent
smoothly ran in the collapsed building environment, reaching the target position
and avoiding collisions in most conditions. If further breakdown is sought for indi-
vidual algorithm performance, PPO has good stability and reliability, performing
extremely well under higher random noise of an environment, while DDPG does
the fastest convergence to an optimal path in a less complicated environment.
Nevertheless, all three algorithms could demonstrate that they could do the job
of coming up with successful agents for this challenging task.

5.2.2 Multi-Drone

The full-scale testing of the DDPG algorithm is conducted on a multi-drone
scenario designed to simulate realistic and complex search-and-rescue missions
within a collapsed building environment. For this experiment, independently
navigating two drones are searching for one target across several floors of the
structure. The aim was to see how well the drones could cooperate in efficiently
scanning various parts of the building to maximize the chances of finding the
target in the minimum amount of time. Each of the drones is initialized at
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5.2 Simulation Results

Table 5.1: Number of Successes in Different Floors for Different Algorithms

Algorithm Number of Successes for 10 Trials
Metric PPO DDPG SAC

First Floor 9 10 8
Second Floor 9 9 9
Third Floor 7 8 7

aNumber of successes in different floors for each algorithm.

different heights so that during the search operations, each of them will focus on
different floors. This difference in starting points was fundamental to the division
of labour’s development, as every drone focused its efforts on one floor until one
of them found the target.

Another important feature in this experiment was the role played by the drone
controller node in coordinating the movements of both drones during the search
process. This controller constantly checked the relative position of each drone and
sent corrections in the velocity for each to maintain an optimum distance between
them. This was a very important function, ensuring that the drones did not collide
with one another or stray too far apart to render the search operation inefficient.
The controller hence assured that at all times the two drones flew between one
and ten meters apart, a balance optimizing safety and area covered, by sending
regular velocity commands. Such dynamic coordination by the controller was
among the crucial elements for the overall success of this operation.

The scenario of Figure 5.3 showed the red and blue targets on each floor; red
targets were placed on every floor.

During the first test sessions, both robots were programmed to search for
only the red targets, since they are relatively easier to detect and approach. Each
robot was assigned to a different floor: one to the first and one to the second
floor. For example, when the red target was on the second floor, the setup
allowed for parallel exploration where the second drone’s task would be to find
it and the first drone was responsible for scanning the floor below. The drones
were, in that sense, independent yet collaborating on a common goal. These
experiments were repeated on three different floors of a building 10 times each to
check the consistency and performance of the drones under different conditions.
The reason for such repetition in tests is essential for verifying whether the DDPG
algorithm works reliably in performing complex tasks of searching in multi-drone
environments.

Further to the red target search, there was another more challenging experi-
ment concerning the search for blue targets. The blue targets, on the other hand,
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Figure 5.3: Collapsed building environment and different targets inside it. The
red squares show the multi-drones in the environment.

were placed such that they should be a little difficult to find within the building.
This has been done to test the limits of the drones in terms of their capability for
navigation through complex environments and around obstacles. Success rates
for locating the blue targets were understandably much lower than those realized
during the search for the red target. This nonetheless allowed the collection of
important information about the capabilities and limitations of the drones when
handling environments with increasing difficulties. Success rates of both target
searches are summarized and presented in Figure 5.4, showing the performance
of the DDPG algorithm with varying levels of task difficulty.

In summary, this research presented a strong demonstration of the perfor-
mance that DDPG can ensure in complex, real-world-inspired tasks with the
requirement for precise coordination, autonomous decision-making, and efficient
exploration patterns. That the drones could autonomously operate while main-
taining a cohesive, coordinated search strategy in itself speaks volumes toward
DDPG’s potential for performance in real-world search-and-rescue missions. En-
vironments like building collapses or cluttered spaces, which are particularly chal-
lenging, call for strong, reliable methods to enable multi-agent collaboration, ef-
fectively map large and hazardous areas while avoiding as much redundancy as
possible, and realize maximum effectiveness.
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Figure 5.4: Reaching the target successfully on different floors for two different
target positions.

The balance that DDPG strikes between exploration and exploitation makes it
effective in view of the discussion above. Consider search and rescue, where agents
must explore an unknown, probably hazardous environment while remembering to
adapt their strategy to leverage learned paths and environmental clues. Mastery
by DDPG of these competing goals is critical since it allows drones not only to
efficiently travel around complicated spaces but also to find their targets under
difficult conditions. This experiment underlines how DDPG allows each drone
to perform autonomously for its search area while contributing to one general,
coherent mission objective that becomes a critical success factor in environments
where the coordination of multiple agents may provide the only difference between
success and failure.

Results obtained with this multi-drone setting further support the scalability
and suitability of DDPG for collaborative robotic systems. On one hand, DDPG
allowed drones to apply fine-grained changes in movement based on continuous
control-the result was stable trajectories with smooth navigation between obsta-
cles and adaptation to dynamic scenarios on their own without human interven-
tion. Furthermore, the efficiency of this algorithm in such settings is indicative
of its role as a backbone toward further advancements in autonomous search and
rescue systems, therefore providing a scalable and adaptive framework that may
be easily extended to larger teams of agents.

A framework like this would be really useful in situations when human re-
sponders are at a premium or have limited access, while this solution is highly
flexible and reliable, as well as able to efficiently cover areas with minimal overlap
and waste.
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Chapter 6

Discussion

6.1 Interpretation of Results

The agent was tested on its ability to locate targets across multiple floors of a
collapsed building, achieving an 84.4% accuracy. Further, a multi-drone setup
is evaluated, where two UAVs, equipped with the same trained model, searched
different floors simultaneously. This reduced the search time by half. The multi-
drone scenario is tested with the DDPG algorithm with an accuracy of 85%,
presenting how much this approach can enhance search and rescue missions in
difficult, post-earthquake environments.

6.2 Limitations

During the project, there were a lot of limitations such as version competencies,
simulation constraints and computational limits which are explained in detail
below:

6.2.1 Competence with the versions

Stable baselines3 library is the main part of this project that requires python3
installed in the computer. Since I would like to connect the agent to the Gazebo
environment, a drone model which is compatible with ros2 humble is used with
Ubuntu 22.04. The drone model is taken by NovoG93 (2022) drone repository.
For faster convergence in such a complex problem, the computations need to be
done in GPU. So, a computer with a GeForce RTX 4080 graphic card is used.
And cuda is installed according to this graphic card.
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6.2.2 Simulation Constraints

The gazebo simulation easily crashes when it reaches some boundaries when its
publishing to the topics to the drone because it is not designed for reinforcement
learning. Also, it highly depends on the wifi connection. So most of the time
it does not receive the messages on time so it can cause errors such as multiple
resetting of the episodes or not getting the correct drone positions.

6.2.3 Computational Limits

The initial idea was to give the image observation space to the agent. In that
case, the agent was receiving 480*640*3 RGB pixel inputs every second which
requires a very powerful computer and a very long training time. It took more
than 24 hours to learn to find a red ball which is 2 meters away from the drone
using RGB observations. And either Gazebo or directly Python were constantly
crashing during the training. That is why I could not succeed with the image
observation space directly and had to think about how to decrease the size of the
observation space. The first attempts were grayscaling the image and lowering
the resolution. But even after these reductions, the agent was not able to learn.
So, I tried to tune the learning rate, batch size, episode length, and discount
factor but could not find a solution. So, I decided to extract only the necessary
information for the agent and directly reduce the observation to that size which
is 3. The part I exracted was when the drone detects the target it calculates
the distance and pixel numbers which show the middle point of the target. If the
drone was not seeing the target the observation was given as zeros. This approach
helped to reduce the training time to 8 hours for DDPG, and 3 hours for PPO
and SAC.
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Chapter 7

Conclusion

7.1 Summary of Findings

In this thesis, a UAV simulation framework is designed to enable a UAV agent
to locate wounded individuals in a collapsed building. This framework uses three
different DRL algorithms within the Gazebo simulator environment. The inter-
action between the simulator and the agent is facilitated through ROS 2, allowing
for the transmission of velocity commands to the UAV and the retrieval of depth
information from its camera. Additionally, the framework is tested with two UAV
agents working collaboratively to search for target positions across various sec-
tions of the building, which enhances the efficiency of the search process. The
experiments conducted illustrate that the proposed framework not only functions
effectively but also improves the speed and accuracy of the search operations,
showcasing its potential for practical applications in emergency response scenar-
ios.

7.2 Contributions

This project has made significant contributions to the field of DRL across various
dimensions, addressing complex challenges and exploring innovative methodolo-
gies. Below are the key contributions:

• Observation Space: One of the prominent novelties introduced by this
work is the novel design of the observation space. Traditional approaches to
DRL normally exploit raw state information provided directly by the agent’s
environment. For real-world applications, this raw state information may
not be reliable at all times, since the state information might not be available
or may not be exact at each instant in time. To this end, this project
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removes this limitation because the agent in the project is using exclusively
the image data perceived by the RGBD camera mounted on the flying drone.
An agent, therefore, learns navigation and decision-making independently of
any state information but based purely on the visual streams of information
in an operationally more realistic emulation. In this way, the system can
be made much more robust and flexible in dynamic environments. This
is especially important in realistic applications where sensory input will
typically be noisy or incomplete.

• Utilization of Stable Baselines: This work is the first project using
the Stable Baselines library in a highly complex multi-drone environments
domain that has received no works, up until recently, that have published
their use of the framework. Stable Baselines provide a more organized
and efficient implementation of multiple deep reinforcement learning algo-
rithms, improving training stability and efficiency. Key features include
action clipping and advanced replay buffer management methods that sig-
nificantly speed up the learning and improve the general performance of
agents. When implemented, these techniques provide faster convergence
and reduce the large variances experienced in the DRL training process.
This will set the precedent for further research to better exploit this strong
library in other challenging environments.

• Addressing Search and Rescue Challenges: This project addresses a
very critical and challenging problem, that of search and rescue, in an in-
trinsically complex and unpredictable domain. Moreover, the unstructured
nature of the real environment introduces significant difficulties regarding
navigation and target identification. This work has contributed a great deal
to these aspects through the proposition of a new approach that marries
DRL with the excellent abilities of aerial drones. This would, in the end,
assist in coming up with better and more effective approaches toward search
and rescue missions. Theoretically rich, this research also addresses the pos-
sible practical influence on emergency situations where time and accuracy
form the basis of retrieval.

• Navigating Unstructured Environments: Most of the existing projects
have successfully employed reinforcement learning in structured gridded or
two-dimensional environments, but this project takes it a notch higher by
addressing challenges in three-dimensional space. An unstructured three-
dimensional space has immense complexities in navigation concerning ob-
stacle avoidance, depth perception, and path planning in a conducive way.
If such a space allows for successful development and training of a DRL
agent, then this research offers an extension of the application domain of
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DRL techniques and a stepping stone for future potential studies that would
investigate similar challenges in three-dimensional contexts.

• Advancements in Multi-Robot Systems: The project also contributes
to the development of multi-robot systems because it tests and validates
the performance of two drones which may act in a coordinated way for the
purpose of the search. That aspect of this research illustrates the possibility
of collaborative strategies in robotic systems where multiple agents may
work together to accomplish common objectives. The insights obtained
with this multi-drone approach go beyond the advances in the state of
the art on understanding cooperative behavior in robotic agents and give a
basis for further advances in coordinated multi-agent systems. This research
opens new perspectives toward efficiency in search operations, proving that
collaboration from autonomous drones can significantly cut down times used
in searches, raising the overall mission success rate.

7.3 Future Work

The present research work lays a good foundation in the area of DRL for drone
navigation and SAR; however, several aspects of the project can be further im-
proved and taken over for better performance, robustness, and applicability. Fol-
lowing are some proposed improvements and expansions:

• Real-time Testing: While this project was able to train a model on sim-
ulated environments, what matters is real-time tests that would help in the
validation of its true performance in a real operation scenario. Real-time
testing would mean deploying the trained drone in a controlled real-world
environment where one could observe its behavior, navigational capabili-
ties, and decision-making processes under dynamic conditions. Such tests
would yield great insight into how the model would generalize to real-world
challenges such as illuminations, unexpected obstacles, and the general un-
predictability of the environment. Additional refinements of the model
could be done with real-time data collection to create a feedback loop
to improve learning and adaptiveness. Real-world validation is, therefore,
needed, meaning that the gap between simulation and practical application
must be bridged, hence assurance can be accorded that the drone will work
in real emergency situations.

• RGBD Observation Space Enhancement: This might also be signifi-
cantly enhanced by increasing the observation space to include the complete
RGBD pixel data at each timestep for better navigation by the agent. When
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the agent is provided with such rich visual information, it could make up
its mind more effectively and progress better in complicated environments.
However, doing so would bring challenges of their own as it relates to com-
putational resources and processing time. Moreover, the RGBD camera
would generate high-dimensional data that require significant computa-
tional resources. In the present framework, this may also lead to latency in
decision-making. Optimizing the data processing pipeline with techniques
such as dimensionality reduction or feature extraction would allow for a bet-
ter balance between the richness of the observation space and the required
computational efficiency for real-time applications. Data granularity and
the speed at which it is processed are two ends of a scale that have to be
weighed against one another to arrive at the optimal balance.

• Incorporation of LSTM Layers: Long short-term memory (LSTM) lay-
ers may bring huge benefits to the neural network architecture in terms
of agent memory and learning from temporal sequences. The agent uses a
replay buffer for training by storing and then subsequently sampling past
experiences to break the correlation between consecutive experiences to sta-
bilize training. This mechanism is not utilized in the testing phase. Adding
the LSTM layers after the Actor and Critic networks enables the agent to
learn from past observations effectively, enhancing its capability for making
decisions based on historical context. LSTMs are useful when the current
state might not encapsulate valuable information for decision-making, such
as following moving targets or navigating areas with obstacles. This would
allow the agent to build up an increasingly nuanced understanding of its
environment over time and may lead to improved performance on complex
tasks.

• Exploration of Advanced Algorithms: This also extends into future
work on the implementation of more advanced or hybrid reinforcement
learning algorithms that extend from the basic ones implemented in this
work. Anyone reading this could try using PPO, SAC, or any meta-learning
methods that might result in better learning efficiency and robustness.
Many of these algorithms incorporate mechanisms for better exploration-
exploitation trade-offs, which hopefully results in improved performance
within complex and dynamic real-world environments. Further, applying
multi-agent reinforcement learning strategies could potentially offer better
coordination among multiple drones, hence enhancing collaborative capa-
bilities in search and rescue missions.

• Integration of Sensor Fusion Techniques: There is another area of
improvement incorporating sensor fusion, which integrates data besides the
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RGBD camera. The agent updates the information from other sources,
such as IMUs, GPS, or thermal cameras, for the overall understanding it
has about its environment. With such a method, one might improve nav-
igation accuracy, especially in conditions that are not very favourable for
navigation, such as dark environments or places where obstacles block the
view. It could also, by developing an effective sensor fusion framework, en-
hance the robustness of the system for real-world deployment in emergency
scenarios.

• Longer Training Duration and Fine-Tuning: This would further im-
prove with increased training time and hyperparameter tuning. The more
varied the scenarios the agent has seen during its training, the more gen-
eralizable its performance to new, unseen environments. Furthermore, au-
tomated hyperparameter optimization may result in even better values of
learning rate, batch size, and other critical parameters for the algorithm.
The outcome of such systematic fine-tuning would likely be a much more
robust and capable agent, able to adapt to many different operational con-
texts.

• User Interaction and Feedback Mechanisms: Finally, embedding
mechanisms of users’ interactions and feedback may yield a system that
is more adaptable and effective. Allowing the operators to give feedback in
real-time during actual missions may allow the agent to learn from these in-
teractions, constantly improving its performance and decision-making capa-
bilities. Such mechanisms could further advance human-robot collaboration
toward a more synergistic approach in search and rescue operations where
human insight would complement the autonomous capability of drones.

In the end, this work has indeed taken great strides in DRL for drone naviga-
tion but also has many exploratory paths left toward refinement and extensions
for future studies. Addressing these items will continue to enhance the contribu-
tion of the research to the state of the art and further advance on the path toward
more effective and assured solutions for search and rescue and other challenging
operational settings.
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Appendix A

Extra

A.0.1 Training Parameters

• PPO: Learning rate is 10−4, the batch size is 128, the replay buffer size is
1000000, the discount factor is 0.99, and tau is 0.005.

• SAC: Learning rate is 10−4, the batch size is 128, the replay buffer size is
1000000, the discount factor is 0.99, and tau is 0.005.

• DDPG: Learning rate is 10−4, the batch size is 128 and normal action noise
is used, its sigma parameter is 0.1, the replay buffer size is 1000000, the
discount factor is 0.99, tau is 0.005.

A.0.2 Training Curves

The agent is trained with 3 algorithms PPO, SAC and DDPG. Figure A.1, A.2
and A.3 shows the learning curves. The fastest convergence is achieved with SAC
and the slowest with DDPG.

Figure A.1
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Figure A.2

Figure A.3

A.0.3 PPO Algorithm

PPO is an on-policy algorithm that uses a clipped objective to improve stabil-
ity and performance. It is designed to prevent large policy updates, balancing
exploration and exploitation.
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Algorithm 5 PPO Algorithm

1: Initialize policy parameters θ0, value function parameters ϕ0

2: for each iteration do
3: Collect set of trajectories D by running policy πθk in the environment
4: for each trajectory do
5: Compute advantage estimates Ât

6: end for
7: for epoch 1, 2, . . . , K do
8: Update the policy by maximizing the PPO objective:

E
[
min

(
πθ(at|st)
πθold(at|st)

Ât, clip

(
πθ(at|st)
πθold(at|st)

, 1− ϵ, 1 + ϵ

)
Ât

)]
9: Update the value function using the mean squared error loss:

L(ϕ) =
1

T

∑
t

(
Vϕ(st)− V̂t

)2

10: end for
11: end for

A.0.4 SAC Algorithm

SAC is an off-policy actor-critic algorithm that aims to maximize both the ex-
pected reward and the entropy of the policy, encouraging exploration.

52



Algorithm 6 SAC Algorithm

1: Initialize critic networks Qϕ1 , Qϕ2 with random parameters ϕ1, ϕ2

2: Initialize actor network πθ with random parameters θ
3: Initialize target critic networks ϕtarget

1 , ϕtarget
2

4: Initialize replay buffer D
5: for each iteration do
6: for each environment step do
7: Sample action at ∼ πθ(at|st)
8: Observe reward rt and next state st+1

9: Store transition (st, at, rt, st+1) in replay buffer D
10: end for
11: for each gradient step do
12: Sample a batch of transitions (st, at, rt, st+1) from D

13: Compute target value y = rt +
γmin(Qϕtarget

1
(st+1, at+1), Qϕtarget

2
(st+1, at+1))− α log πθ(at+1|st+1)

14: Update critics by minimizing loss:

L(ϕ) =
1

|D|
∑

(Qϕi
(st, at)− y)2

15: Update actor by minimizing the loss:

L(θ) =
1

|D|
∑

(α log πθ(at|st)−Qϕ1(st, at))

16: Adjust temperature α if needed.
17: end for
18: Update target networks:

ϕtarget
i ← τϕi + (1− τ)ϕtarget

i

19: end for

A.0.5 DDPG Algorithm

DDPG is an off-policy, model-free algorithm that learns deterministic target poli-
cies in continuous action spaces.
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Algorithm 7 DDPG Algorithm

1: Initialize critic network Qϕ and actor network µθ with random parameters
2: Initialize target networks Qϕtarget , µθtarget with ϕ

target ← ϕ, θtarget ← θ
3: Initialize replay buffer D
4: for each episode do
5: Initialize random process N for exploration noise
6: Receive initial state s0
7: for each step in the episode do
8: Select action at = µθ(st) +Nt

9: Execute action at and observe reward rt and next state st+1

10: Store transition (st, at, rt, st+1) in replay buffer D
11: Sample a random batch of transitions (si, ai, ri, si+1) from D

12: Compute target for the critic:

yi = ri + γQϕtarget(si+1, µθtarget(si+1))

13: Update critic by minimizing the loss:

L(ϕ) =
1

|D|
∑

(Qϕ(si, ai)− yi)2

14: Update the actor using the sampled policy gradient:

∇θJ(θ) =
1

|D|
∑
∇aQϕ(s, a)|a=µθ(s)∇θµθ(s)

15: Update target networks:

θtarget ← τθ + (1− τ)θtarget, ϕtarget ← τϕ+ (1− τ)ϕtarget

16: end for
17: end for
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