
Do the errors produced by generative AI in
formulating queries reflect students’

misconceptions in learning SQL?

Abdolhamid Livani

Master Thesis

Università di Genova, DIBRIS Via Opera Pia, 13 16145 Genova, Italy
https://www.dibris.unige.it/

MSc Computer Science
Data Science and Engineering Curriculum

Do the errors produced by generative AI in
formulating queries reflect students’

misconceptions in learning SQL?

Abdolhamid Livani

Advisor: Giovanna Guerrini, Davide Ponzini

Examiner: Barbara Catania

December, 2024

Acknowledgements

I am profoundly grateful to my advisors, Professor Giovanna Guerrini and Davide Ponzini,
for their invaluable guidance and support throughout this journey. I would also like to
extend my sincere thanks to Professor Barbara Catania, whose thoughtful feedback helped
elevate this work.

To my parents, whose steadfast support has made all of this possible and to my wife,
whose patience and encouragement have been my anchor—thank you, from the bottom of
my heart.

I am deeply appreciative of you all.

Abstract

The study compares the queries generated by ChatGPT and students to analyse the re-
spective misconceptions in SQL query construction. An important contribution is the
classification of common misconceptions as a basis for the study. Students’ SQL queries
as well as those generated by ChatGPT are analysed to find and classify misconceptions
from both sources. The final step is a thorough investigation of these misconceptions to
gain an understanding of the type and frequency of errors made by students compared to
those generated by ChatGPT. The results will be used to guide educational plans aimed at
improving SQL learning and to investigate the possible use of queries generated by artificial
intelligence to support education.

Table of Contents

List of Figures 8

List of Tables 9

Chapter 1 Introduction 10

1.1 Background . 10

1.2 Problem Statement . 12

1.3 Research Objectives . 12

1.4 Research Questions . 12

1.5 Scope . 13

1.6 Outline of the Document . 14

Chapter 2 Literature Review 15

2.1 Student Misconceptions . 15

2.2 SQL Learning and SQL Misconceptions . 17

2.2.1 Overview of SQL Learning Difficulties 17

2.2.2 Analysis of SQL Query Errors . 17

2.3 Generative AI in Education . 18

2.4 Using AI in SQL Learning . 19

2.5 Conclusions and Reference Categorisation 21

Chapter 3 Research Methodology 23

5

Chapter 4 Our Study 25

4.1 Datasets: SQL Schemas and Queries . 25

4.1.1 Schema 1: Database Exam . 25

4.1.2 Schema 2: Computer Science Database Laboratories 28

4.1.3 Schema 3: Engineering Database Laboratories 31

4.1.4 Schema 4: Miedema Thesis Database 33

4.1.5 Query Complexity . 37

4.2 Collecting Produced Queries . 38

4.2.1 Collecting Queries Produced by Students 38

4.2.2 Collecting Queries Produced by ChatGPT 39

4.3 Identifying Misconceptions Produced by Students and ChatGPT 41

4.4 Summary of Analysis Dimensions and Dataset Distribution 43

Chapter 5 Results 45

5.1 Overview of Result Based on Misconceptions Type 45

5.2 Correlation between Misconception Category and Author (Students vs Chat-
GPT) . 46

5.3 Impact of SQL Query Complexity on Misconceptions 48

5.4 Comparison of ChatGPT and Students on Individual Queries 49

5.5 Comparison Computer Science and Computer Engineering Top 10 miscon-
ceptions . 51

5.6 Comparison of ChatGPT-4o and ChatGPT-4o-mini Top 10 misconceptions 52

5.7 Related Queries Between Students and ChatGPT 53

5.8 Top 10 Misconceptions by ChatGPT and Students 53

5.9 Summary . 55

Chapter 6 Discussion 56

6.1 Interpretation of Top 10 Misconceptions 56

6.1.1 Extraneous Column in SELECT . 56

6

6.1.2 Unnecessary Join . 58

6.1.3 Missing Column from SELECT . 61

6.1.4 Undefined Column . 62

6.1.5 Implied, Tautological, or Inconsistent Expression 64

6.1.6 Nonstandard Keywords or Standard Keywords in Wrong Context . 66

6.1.7 Unnecessary DISTINCT in SELECT Clause 68

6.1.8 Extraneous Expression . 70

6.1.9 Improper Nesting of Expressions . 72

6.1.10 Unnecessary Complication . 74

6.2 Interpretation Based on Research Questions 76

6.3 Limitations of the Study . 77

Chapter 7 Conclusions 79

7.1 Summary of Research . 79

7.2 Key Findings . 79

7.3 Implications for SQL Education . 80

7.4 Future Research Directions . 81

Bibliography 82

Appendix A Query Complexity 88

Appendix B Misconceptions Categories Excel File 94

7

List of Figures

2.1 Semantic Errors and Error Categories [TSV18] 22

3.1 Our Study Methodology . 23

4.1 Sample Process of Preparing ChatGPT for Asking Queries 40

4.2 Tool Implemented for Identifying Misconceptions 42

5.1 Percentage of Misconception Types . 46

5.2 Correlation Between Misconception Types and Author Type (Students vs
ChatGPT) . 47

5.3 Percentage of Misconceptions in Each Complexity Category 48

5.4 Percentage of Correlation of ChatGPT and Students for Each Query . . . 50

5.5 Percentage of Comparison CS and CE Top 10 Categorization 51

5.6 Percentage of Misconception Based on ChatGPT-4o and ChatGPT-4o-mini 52

5.7 Percentage of Related Queries Between Students and ChatGPT 53

5.8 Top 10 Misconceptions by ChatGPT and Students 54

B.1 Misconceptions Categories Excel Sample 1 94

B.2 Misconceptions Categories Excel Sample 2 95

8

List of Tables

4.1 Dataset Overview . 36

4.2 Students Sample Collected Queries . 39

4.3 ChatGPT Sample Collected Queries . 41

6.1 Comparison of SQL Queries Based on Extraneous Column in SELECT . . 57

6.2 Comparison of SQL Queries Based on Unnecessary Join 59

6.3 Comparison of SQL Queries Based on Missing Column From SELECT . . 61

6.4 Comparison of SQL Queries Based on Undefined Column 63

6.5 Comparison of SQL Queries Based on Implied, Tautological or Inconsistent
Expression . 65

6.6 Comparison of SQL Queries Based on Nonstandard Keywords or Standard
Keywords in Wrong Context . 67

6.7 Comparison of SQL Queries Based on Unnecessary DISTINCT in SELECT
Clause . 69

6.8 Comparison of SQL Queries Based on Extraneous Expression 71

6.9 Comparison of SQL Queries Based on Improper Nesting of Expressions . . 73

6.10 Comparison of SQL Queries Based on Unnecessary Complication 75

A.1 Query Complexity Categorization . 93

9

Chapter 1

Introduction

The discipline of data education is thoroughly analysing the difficulties students have
when learning to write SQL (Structured Query Language) queries [HH16] and [CDRFM18].
SQL is the standard language for manipulating relational databases, and its knowledge is
required for students studying computer science and related subjects. Many students find
SQL difficult, despite its significance, which leads to frequent misconceptions and many
errors.

Recent studies [AFM24] and [PRH+24] have tackled these issues and identified specific con-
cepts that students find challenging and frequent misconceptions. One of the key questions
this thesis focuses on is whether these student issues match the flaws created by genera-
tive artificial intelligence (AI) systems when building SQL queries from natural language
inputs. Generative AI, backed by advanced machine learning models, could automate
processes such as SQL query formulation, yet these systems can also generate inaccurate
queries.

This study seeks to test the premise that the errors caused by generative AI systems
reflect the same misconceptions that students have when learning SQL. The research seeks
connections and trends in errors made by students and artificial intelligence. Understanding
these connections will help us to investigate the potential of generative AI as a tool for
SQL training and get a deeper knowledge of the learning process.

1.1 Background

For students in computer science and related fields, knowledge of SQL is an indispensable
ability since it is the main language used for relational database management and manipu-
lation. Though it is important, many students find learning SQL to be somewhat difficult.

10

Among these difficulties we can list grasping the ideas of relational databases, understand-
ing difficult query structures, and applying theoretical ideas to real-world problems. Many
times, these challenges result in misconceptions and repeated mistakes in SQL queries by
students.

As artificial intelligence and machine learning progress rapidly, generative AI systems have
developed into potent tools capable of automating various activities, including generating
SQL queries [Tia23]. These systems trained on big dataset algorithms might create SQL
queries derived from natural language descriptions. Generative AI is not free from mis-
takes, even if it shows duty in supporting education and software development. In fact,
generative AI models are taught on enormous volumes of web-based data, including queries
written by and searches generated by programmers of all degrees of expertise. These mod-
els thereby mirror the prevalent habits, patterns, and even errors in actual SQL query
authoring. This implies that, both right and wrong, the mistakes AI generates typically
reflect the strategy and formulation of questions programmers use. Analysing the type and
frequency of mistakes generated by generative AI systems can help one gain an important
understanding of the underlying mechanisms and restrictions of these technologies.

Studies [APBL16] and [TSV18] have found both typical student SQL errors as well as the
cognitive processes behind them. Studies show that pupils struggle with concepts such
as joins, subqueries, and proper use of aggregate functions. Good instructional tools and
tactics depend on an awareness of these mistakes.

Research on the comparability of errors committed by generative AI systems and those
produced by students is very rare. Should the mistakes produced by generative AI mirror
those of students, it would imply that, despite their increased capacity, generative AI
systems, in some measure, reflect human learning processes[MWL24]. This similarity helps
one to identify and manage student misunderstandings.

This work aims to carefully investigate the errors produced by generative AI in formulating
SQL queries and compare them with student errors in order to identify patterns and
relationships that could direct teaching efforts. The results could inspire the development
of focused treatments and technologies meant to clear misconceptions, hence enhancing
SQL learning results.

Located at the junction of computer science education, artificial intelligence, and edu-
cational technology, this study seeks to understand where students and generative AI
misconceptions are related to each other.

11

1.2 Problem Statement

Students usually find it difficult to comprehend and appropriately apply SQL ideas in com-
puter science coursework. These difficulties frequently lead to widespread misconceptions
and recurring errors while drafting SQL queries. The emergence of generative AI systems
that can construct SQL queries provides a new chance to check AI-generated queries for
faults. It is still uncertain whether the mistakes made by generative AI reflect the same
misconceptions students have when learning SQL.

This research aims to explore the similarities between AI-generated errors and student
misconceptions, with the goal of using AI as a diagnostic tool to improve SQL education.
By identifying and categorising the errors made by generative AI and comparing them
to those made by students, this study seeks to gain insights about the areas that can be
boosted to improve students faults.

1.3 Research Objectives

The research objectives of this thesis consist of three main goals:

• To contrast the usual misconceptions and blunders students run into while learning
SQL with the mistakes made by generative AI in formulating queries. This aim is to
investigate whether student misconceptions and mistakes produced by generative AI
show any noteworthy correlation.

• to find and categorise the typical errors caused by generative AI systems creating
SQL queries. This aim calls for a careful investigation to find a complete taxonomy
of these mistakes.

• to evaluate the possibility of identifying student misconceptions in SQL by use of
generative AI’s errors as a tool. This objective seeks to assess how well AI-generated
mistakes could draw attention to certain areas where students struggle, therefore
offering more thorough understanding of their learning difficulties.

1.4 Research Questions

In the following, we will specify our research questions. These questions intend to study
the specific types of mistakes generative AI systems occasionally generate in SQL query
construction. Finding and categorising these mistakes will help us to ascertain whether they

12

represent typical SQL learning misconceptions. Examining mistakes made by generative
AI alongside those often seen in student work in educational settings helps one to make
this comparison.

1. What kinds of faults may generative AI systems usually produce while
creating SQL queries?

2. How do these errors connect to common student misconceptions in learn-
ing SQL?

1.5 Scope

The study is centred on data education, with a particular emphasis on examining the errors
generated by AI systems when crafting SQL queries and comparing these with common
student misconceptions in learning SQL.

The errors made by one or more generative AI systems well-known for generating SQL
queries will be examined in this work. Popular artificial intelligence models include Google
Gemini, ChatGPT, Microsoft Copilot,Perplexity AI. We will use ChatGPT because it is
popular among students, easy to use for everyone, always improving, and can do many
things.

The study will gather and look at student common SQL query errors. One could find
this material from academic institutions, online coding tools, past research papers, or even
personal experience. In this thesis, we will focus on BSc students because they are at
the beginning of the learning process. So we gathered queries from three resources that
contain computer science database exams and labratories, computer engineering database
labratories, and Miedema Thesis. For each resource, we will analyse queries and extract
related queries for use in our study.

Errors from both generative AI systems and students will be categorised specifically into
syntactic, semantic, logical, and complication ones. Subsequently, the thesis will analyse
these groups by highlighting their differences in order to identify patterns and connections.

The data will inform the research in developing targeted educational interventions and
tools to address identified errors and misconceptions. These treatments may require the
use of technical tools, teaching strategies, and modifications to the course program.

The relevance of this research can thus be summarised as follows:

• This work provides a valuable evaluation of the challenges students face studying
SQL, as well as the detection and analysis of typical blunders generated by AI.

13

https://gemini.google.com/
https://gemini.google.com/
https://chatgpt.com/
https://copilot.microsoft.com/
https://everask.ai/

• Analysing the similarities between artificial intelligence and human learning systems
enables this research to support more general domains of AI and education.

• Teachers that recognise common student misconceptions and artificial intelligence-
created error patterns will have a better awareness of their students’ learning envi-
ronments.

• The study’s results can assist in developing customised learning routes for students.

1.6 Outline of the Document

This thesis is organized into six main chapters, each of them addressing a different aspect
of this research. Chapter 2: Literature Review examines the existing body of knowledge
relevant to the study, identifying gaps and establishing the theoretical foundation for the
research. Chapter 3: Research Methodology briefly introduces the main steps of the pro-
cess adopted to collect and analyze queries. Chapter 4: Our Study outlines the specific
datasets (schemas, corresponding query specifications), how queries produced by students
and generative AI are collected, and how issues and misconceptions are identified. Chapter
5: Results reports the findings derived from the study, including data analyses and other
relevant outcomes. Chapter 6: Discussion interprets the results by discussing the research
questions, highlighting implications and limitations of the study. Finally, Chapter 7: Con-
clusions synthesizes the key insights from the research, emphasizing its contributions to
the field and proposing recommendations for further investigation.

14

Chapter 2

Literature Review

The incorporation of generative artificial intelligence (AI) into learning environments has
brought new ideas for improving teaching and learning strategies. Teaching Structured
Query Language (SQL), which is fundamental to database management and information
retrieval, is a clear area where AI has shown promise. Using AI to teach SQL presents a
unique set of difficulties, even if it seems promising. Examining past research can help us
explore the nuances of learning SQL, the influence of AI in learning environments, and the
types of errors and misconceptions that students typically encounter. In this chapter, we
briefly review the related literature by first introducing the notion of misconception, then
focusing on learning SQL, then on the use of generative AI in education, and finally on the
proposals of using AI for assisting SQL learning.

2.1 Student Misconceptions

In the natural sciences, students that use overly simple explanations or everyday experi-
ences to challenge scientific ideas create misconceptions. For example, human intuition
guides their opinion even if scientific fact shows the opposite—that heavier objects fall
faster than lighter ones[MM24]. Correcting these misconceptions calls for an active teach-
ing strategy, one that uses inquiry-based learning—that is, where students investigate
and challenge the content instead of just knowing it. Teachers should also be aware of
these typical misconceptions and use focused techniques, including cognitive conflict (chal-
lenging a students current ideas), to lead them towards the proper knowledge. Marx et
al. [MWL24] conducted an interview-based study to identify misconceptions among sec-
ondary school students about machine learning concepts. Ignoring these misconceptions
might help pupils grow, which would challenge understanding of ever more complex scien-
tific ideas [GRGDNT+24].

15

A misconception in students learning to program refers to an incorrect understanding or
belief about how programming concepts, syntax, or logic work. Misconceptions often arise
when students attempt to form mental models about how programming operates but make
errors in reasoning or understanding due to incomplete or incorrect knowledge [MAF22].
This concept ties closely to two ideas:

• Incomplete mental models. A mental model is an internal representation of how a
system works, constructed by a learner based on their knowledge and experience.
In programming, students build mental models to understand how code executes,
how data flows, and how components of a program interact. When a mental model
is incomplete, it lacks the necessary details to accurately represent how the system
works. This can lead to incorrect reasoning, i.e., students make predictions about
code behaviour that do not align with reality, and misinterpretations, i.e., assuming
that a variable retains its value across different program runs without initialization.
For instance, a student might believe that a for loop runs forever if there is no explicit
condition, failing to understand that the loop iterates a fixed number of times or until
a specified condition is met[Juh13].

• The Notional Machine. The notional machine refers to a simplified, conceptual un-
derstanding of how a programming language or environment executes code. It is a
mental abstraction of the computers operation that helps students reason about their
programs. Misconceptions arise when students either do not yet have a clear notion
of the notional machine or have built a faulty notional machine due to misinterpre-
tation or incomplete instruction. For instance, a student might think that when a
function is called, the variables in the function scope are directly accessible outside
of it, reflecting a misunderstanding of scope and how the notional machine manages
memory [PM+01].

Misconceptions often stem from gaps or inaccuracies in the students mental model of the
notional machine. An incomplete mental model means the student is unable to predict
how the notional machine will behave in various scenarios, leading to errors and misunder-
standings. Addressing misconceptions involves helping students refine and expand their
mental models to more closely align with the actual workings of the notional machine.

Misconceptions can create significant barriers to learning programming because they affect
the students ability to debug, solve problems, and advance to more complex topics. Edu-
cators aim to identify and correct misconceptions early, using strategies like visualisation
tools, clear explanations of the notional machine, and targeted exercises that challenge and
refine students mental models.

16

2.2 SQL Learning and SQL Misconceptions

2.2.1 Overview of SQL Learning Difficulties

Learning SQL presents major difficulties for pupils because of its complexity and the twin
need of knowing both syntax and semantics [GM15]. Ahadi et al. [APBL16] claim that
students struggle with seven different kinds of SQL queries—from simple SELECT state-
ments to more sophisticated JOIN procedures. In line with this, Miedema et al. [MAF22]
conducted think-aloud research to highlight typical errors among beginners, including mis-
reading the relational model and wrongly using aggregate functions.

Taipalus et al. [TSV18] examine SQL syntax and semantics; notice that even little errors
may cause major misinterpretation. Their studies emphasise the important need for a
strong fundamental knowledge basis in both avoiding and fixing these errors. In a same
vein, Green and Petre [WS81] contrast procedural and non-procedural query languages.
They underline that, being a non-procedural language, SQL requires a different cognitive
approach, which might be especially difficult for students who know procedural program-
ming languages [AS13].

2.2.2 Analysis of SQL Query Errors

Educators who want to build targeted educational tactics must effectively categorise mis-
takes. When it comes to SQL training, building successful lesson plans and improving
learning outcomes is critically dependent on identifying and classifying student miscon-
ceptions. From syntactic errors to more advanced semantic and logical misinterpretations,
misconceptions in SQL query development can take many forms. Establishing a strong
framework for categorising these errors is essential to fully addressing these issues. Al-
Shuaily and Renaud [ASR14] propose a foundational framework for identifying and cate-
gorising common student errors that is pattern based.

Ahadi et al. [APBL16] classify frequent SQL faults into seven distinct categories, providing
a structured framework for identifying and correcting specific misconceptions. Building on
this, Poulsen et al. [PBAH20] analyse student solutions to identify recurring error pat-
terns that can be used to guide the development of educational materials. Additionally,
[PMHS21] highlights approaches to identify SQL errors, focusing on providing repair strate-
gies.

Taipalus investigates the causes of SQL query formulation problems in his work [Tai20],
so illuminating the manner in which individuals believe to contribute to these blunders.
Cagliero et al. [CDRFM18] underline how important it is to provide specific feedback
based on a thorough assessment of errors in order to address these issues and support a

17

data-driven approach to learning SQL.

Understanding the thinking aspects of learning SQL is key to figuring out why students
make mistakes so often [DLN+06]. Green and Petre [WS81] look at the human factors
involved with procedural and non-procedural query languages. They say that because
SQL is formal, it needs a different way of thinking. This difference is especially hard for
students who are used to procedural computer languages.

Biswas et al. [BKS14] stress how important cognitive and metacognitive task models are
for judging how people learn. These models give us a way to think about how students
think about SQL queries and where they might go wrong.

Examining the causes of errors in SQL query writing is the focus of both [TSV18] and
[Tai20]. Many of these errors, they discover, result from ignorance of the fundamentals
and inadequate grasp of SQL syntax and semantics.

Mitrovic [Mit03] and Hussan [HH16] highlight the significance of metacognitive methods
in SQL education, along with reflective learning practices in addressing misconceptions.
Cagliero et al. [CDRFM18] propose using a data-driven approach to classify and fix SQL
problems. They emphasise the importance of providing specific feedback that is based
on a comprehensive examination of the mistakes. By spotting these mistakes, teachers
may create more successful lesson plans and resources meant to target certain student
misunderstandings.

[Tra24] article aims to find and examine typical SQL misconceptions among students. The
research classifies SQL query formulation mistakes, including inappropriate usage of SQL
functions, erroneous joins, and extra columns in SELECT queries. The study seeks to find
trends in these errors to better grasp students difficulties with SQL and create focused
instructional plans for improving SQL learning results.

2.3 Generative AI in Education

Generative AI is becoming a powerful tool in schools because it allows for personalised
learning and quick feedback from students. Corbett and Anderson [CRA91] show that
artificial intelligence teachers have a lot of potential. For example, the CMU LISP tutor
has helped students learn a lot more by giving them feedback that is tailored to their
specific needs. To examining student learning behaviours, [BKS14] and [KPÇ24] explore
the function of cognitive and metacognitive task models, therefore demonstrating how AI
may be tailored to suit a broad spectrum of educational needs [SY23].

Arroyo et al. [AOP+04] investigate how artificial intelligence may encourage deeper knowl-
edge by forcing students to express their mental processes, hence augmenting the usefulness

18

of instructional discussion systems geared for self-explanation.

Ottenbreit-Leftwich et al. [OLGJ+23] looked at lessons learnt by adding artificial intelli-
gence into education with main students and teachers. Their findings highlight the poten-
tial of AI tools to support both teaching practices and student engagement, emphasizing
the importance of contextual adaptability in designing AI-driven educational interventions.

Researchers discovered [AB23] that Large Language Models (LLMs) have the ability to
assist instructors by generating content, simulated data, and queries utilising aggregate
functions. This feature not only saves a lot of time for exam preparation but also provides
numerous fascinating and appealing visuals.

Nevertheless, some teachers are reluctant to use LLMs in the classroom, largely because
of doubts over the accuracy and dependability of these instruments. [KAHM97] present
proof of their efficacy in several educational environments, therefore supporting the success
of AI tutoring systems in major applications.

2.4 Using AI in SQL Learning

Fletcher et al. [PRH+24] investigated if it would be feasible to introduce learning models
(LLMs) for database systems. Their research focused on the tailored instruction and
expected improvements in on-demand feedback these models may provide. According
to their research, LLMs could be really useful in the teaching of difficult SQL ideas by
providing careful explanations and customised assistance. Although this method needs to
be improved progressively to meet the complex specifics of SQL query development, it can
help students grasp and engage with the information.

[KRM+24] investigates the use of LLMs versus traditional web search methods in SQL
learning among students; it shows that students using instructor-tuned LLMs required
more interactions but achieved similar quality in SQL query output. Moreover, students in
the LLM condition reported lower mental demand, which suggests that the cognitive load
can be reduced by LLMs while learning SQL. The authors further state that LLMs could
support traditional methods within programming courses with structured and contextual
support.

[NGF+24] studies the performance of the LLM-based Text-to-SQL model on industrial-
scale complex databases and thus challenges the current LLM Text-to-SQL state-of-the-
art models, which tend not to perform well with large schemas and multiple relationships.
However, the models performed significantly worse on tests conducted on Mondial and an
industrial proprietary database compared to those conducted on benchmark settings. This
indicates that perhaps current LLMs are limited in their operability regarding databases
with large tables and foreign keys in the industrial world. This therefore presents a disparity

19

between controlled environments and real-life application in the capabilities of LLM, thus
proposing an area that needs enhancement in AI SQL-driven tools

Mitrovic [Mit03] offers a sophisticated SQL trainer available online that helps pupils by
mixing adaptive feedback with mistake detection. This web-based instructor has satis-
factorily solved common SQL errors and misconceptions. Mitrovic’s earlier work [Mit98]
introduced the concept of using tools for SQL learning and steps of developing. Moreover,
underscoring the advantages of reflective learning methods enabled by artificial intelligence,
Hussaan and Hassan [HH16] investigate the use of metacognitive techniques in SQL query
instruction with a teachable agent.

Ohlsson [Ohl94] further on this by talking about constraint-based student modelling, which
is meant to fit learning requirements and solve particular misconceptions as they develop.
This flexible approach works especially well in offering focused help where pupils most need
it.

Analysing common SQL query difficulties, Fletcher et al. [PRH+24] underlined the possi-
bility of LLMs to be taught in seeing and fixing these problems. Their studies showed that
LLMs can identify patterns in student mistakes and provide insightful analysis—qualities
needed to further understanding of SQL syntax and semantics. This method could sat-
isfy the objectives of constraint-based student modelling and increase the efficiency of
AI-powered teaching assistants [Ohl94].

Arroyo et al. [AOP+04] illustrate how encouraging students to explain themselves and
consider what they are thinking can help to increase cognitive understanding by use of
tutorial conversation systems. This clarifies any uncertainty and enables pupils to describe
their mental processes.

While the questions produced were relevant and logical, [AFM24] analysis of the usage of
LLMs to produce SQL workouts revealed that sometimes there were confusing or erroneous
aspects. This underlines the need for teachers to carefully review and confirm AI-generated
data to guarantee that typical student misconceptions are suitably handled and categorised.

[KAHM97] presents strong evidence supporting the usefulness of AI tutoring systems in
large-scale deployments, thus affirming the important significance of AI in educational
contexts.

Emphasising their possibilities to improve SQL learning [AOP+04] and [BKS14] investigate
the benefits of tutorial conversation systems and cognitive/metacognitive task models.
Moreover, Hussaan and Hassan [HH16] look at how metacognitive approaches might be
used in SQL query instruction, therefore proving the value of reflective learning methods
supported by artificial intelligence.

In [BBPP+24] the authors targeted remote or distant learning, such as during the COVID-
19 pandemic. The authors provide a chatbot-based learning environment designed to assist

20

students in acquiring knowledge in SQL. The platform was used by computer engineering
undergraduates to engage in SQL search exercises with the assistance of a chatbot for a
relevant case study. [AFM24] performed a feasibility study on the utilisation of ChatGPT-
3.5 for the creation of SQL exercises.

[DZG+23] presents the C3-methodology that, for the first time, leverages ChatGPT in a
zero-shot setting for the Text-to-SQL task and shows that it is able to achieve an execution
accuracy of 82.3 percent on the Spider dataset, significantly better than fine-tuning-based
approaches. The C3 approach introduces clear prompting, calibration with hints, and
consistent output to get over commonly observed limitations in the LLM-based text-to-
SQL conversion task. These results prove that zero-shot methods like C3 can be efficient
and cost-effective in generating SQL queries without requiring a tremendous deal of training
data.

In [AFM24] examines the extent of the ability of ChatGPT-3.5 in generating SQL ex-
ercises along with respective database schemas and question sets that could potentially
hasten curriculum development and goes on to state that indeed ChatGPT is able to gen-
erate relevant and organised SQL exercises, though some educators being contacted have
reservations regarding its consistency in advanced SQL concepts. It means that with LLMs,
educators could save a lot of preparation time, but they would need further refinement to
fit the educational standards.

[CFFM24] investigates ChatGPT as an automatic grader for SQL exercises. It finds that
it reaches the same level of grading accuracy as human instructors on benchmark data.
ChatGPT was able to detect syntactic and semantic errors with fairly detailed feedback,
thus giving scores that are comparable to human grading. This points to the potential
use of LLMs as efficient, scalable grading assistants in large database courses, though the
study mentions a decline in the models reliability when dealing with more complex SQL
queries.

The results of the study clearly indicate that students receive contextualised and per-
sonalised guidance from ChatGPT in a manner that clarifies programming concepts and
improves code accuracy. Indeed, the results show that ChatGPT helps students in basic
learning and initial code correction, but structured prompts with close relevance to course
objectives given by [MHLD24] work best for students.

2.5 Conclusions and Reference Categorisation

From the analysis of the literature, the lack of an analysis of the issues in AI-generated
SQL queries emerged, as well as a comparison of the common problems in AI-generated
queries with the typical student misconceptions. In this chapter, and in Section 2.2.2

21

specifically, we discussed different types of SQL misconceptions, methods for categorising
them, and identified some common errors that students made in their queries. For devel-
oping our analysis, we need to rely on a suitable categorisation of misconceptions about
SQL query formulation. We seek to find the proper framework covering all kinds of mis-
takes—syntactic, semantic, logical, and so on—by analysing the specific categorisations
shown in various important studies.

We will go over the classification techniques from various research, each offering special
analysis of the type of student mistakes. This thorough review is crucial to guarantee that
the selected framework not only covers the wide spectrum of student mistakes but also
offers pragmatic value for teachers and area of SQL education researchers.

The article [MAF22] authors mostly focus on categorising syntactic errors often generated
by pupils. Among these errors are typographic ones, missing semicolons, incorrect key-
words, and bad wording of sentences. In the study, [HW20] looks into student patterns
in SQL queries and mistake rates coming from these searches. It gathers mistakes arising
from incorrect SQL usage, including those brought about by JOIN operations or CASE
expressions.

The paper [RB13] defines mistakes resulting from common misconceptions, including mis-
interpretation of JOIN operations and GROUP BY clauses. The main emphasis is on
identifying logical and semantic problems that occur as a result of these misconceptions.
The paper [BG06] provides a thorough classification covering logical inconsistencies, erro-
neous SQL function application, and misreading of SQL semantics.

Syntactic faults, including typos, wrong keywords, and clause ordering errors, are classified
in the paper [ABV+16]. It also investigates how one may forecast student performance
using these mistake trends.

The work of Taipalus et al. [TSV18] is chosen for its exact and comprehensive categorisation
of SQL misconceptions 2.1.

Figure 2.1: Semantic Errors and Error Categories [TSV18]

This framework not only provides insightful analysis for teachers and researchers to improve
SQL education and appropriately manage student misconceptions but also fully covers
syntactic, semantic, and logical errors. This makes it the most appropriate option for our
investigation on whether students misconceptions in learning SQL influence the mistakes
generated by generative artificial intelligence in query formulation.

22

Chapter 3

Research Methodology

This chapter describes the methodology adopted for our analysis. The steps in this chapter
show a structured way to gather and sort data, focusing on misconceptions about how
students learn and how generative AI can answer questions. The study technique consists
of several essential stages, each of which is specifically designed to ensure a comprehensive
and accurate examination. Our methodology figure 3.1 consists of the following steps:

Figure 3.1: Our Study Methodology

1. Specify Schema and SQL Queries

• Clearly state the schema. Tables, relationships, and constraints ought to form
the structure of the SQL database. This is a stage of the process of creating the
database we want to retrieve data from.

• Make a list of questions you wish to probe. Organise SQL searches covering
many different case scenarios and degrees of difficulty.

2. Collect Students and ChatGPT Queries

23

• Data Collection: Gather SQL queries from students during classroom exercises,
assignments, or exams.

• Identify Misconceptions: Analyse these queries to find common errors and mis-
conceptions.

• Use ChatGPT to Generate Questions: Assign the same tasks given to students
to ChatGPT and record the SQL queries it produces.

• Identify Errors: Conduct a thorough review of these queries to identify any
inaccuracies or ambiguous sections.

3. Identify Misconceptions

• Establish Criteria for Error Detection: Formulate a set of guidelines for identi-
fying issues with SQL queries, such as semantic errors, logical errors, and syntax
errors.

• Use these guidelines to systematically evaluate queries from both students and
ChatGPT, identifying any issues.

24

Chapter 4

Our Study

This chapter discusses the specific sets of queries analysed in our study. Specifically, we
first discuss the reference databases, corresponding schemas, and queries on such data, and
then we discuss how we gather student queries on such data.

4.1 Datasets: SQL Schemas and Queries

This section will go over four distinct databases used to show different real-world situations.
Each schema has been carefully selected for its usefulness, complexity, and the variety of
SQL concepts it allows. The schemas provide a basis for performing searches that include
a wide range of SQL features, from basic select queries to more complex operations such
as joins, subqueries, and aggregate functions.

This section aims to provide a comprehensive explanation of each schema, including the
key columns, table structure, and relationships. We will examine the rationale behind the
selection of each schema, including its applicability in real-world contexts and its systematic
facilitation of SQL learning.

4.1.1 Schema 1: Database Exam

In this section, we present the SQL schema used in the context of a database course exam.
The schema consists of five main tables: GIOCATORE, TORNEO, CATEGORIA, REGISTRAZIONE,
and GIOCAIN. These tables are designed to represent key entities in a sports tournament
management system and facilitate complex queries related to player participation, tourna-
ment details, and performance analysis.

25

Table Overview

GIOCATORE: The GIOCATORE table stores information about players participating in tour-
naments. It contains the following fields:

• IdG (SERIAL PRIMARY KEY): A unique identifier for each player.

• Nome (VARCHAR(100)): The first name of the player.

• Cognome (VARCHAR(100)): The last name of the player.

• Genere (CHAR(1)): The gender of the player, represented by a single character ('M'
or 'F').

• DataN (DATE): The date of birth of the player.

• Nazione (VARCHAR(100)): The country of origin of the player.

TORNEO: The TORNEO table holds the details of various tournaments. Its fields are:

• IdT (SERIAL PRIMARY KEY): A unique identifier for each tournament.

• NomeT (VARCHAR(100)): The name of the tournament.

• Luogo (VARCHAR(100)): The location where the tournament takes place.

• DataI (DATE): The start date of the tournament.

• DataF (DATE): The end date of the tournament.

• NumTurni (INT): The number of rounds or turns in the tournament.

• Tipo (VARCHAR(50)): The type of tournament (e.g., singles, doubles).

• Terreno (VARCHAR(50)): The type of playing surface (e.g., grass, clay).

CATEGORIA: The CATEGORIA table categorizes tournaments based on gender or other factors:

• IdCat (SERIAL PRIMARY KEY): A unique identifier for each category.

• NomeCategoria (VARCHAR(100)): The name of the category (e.g., singles, doubles).

• GenereCategoria (CHAR(1)) : The gender category ('M' or 'F').

26

REGISTRAZIONE: The REGISTRAZIONE table records tournament registrations. It includes:

• IdT (INT): A reference to the tournament (foreign key to TORNEO).

• IdCat (INT): A reference to the category (foreign key to CATEGORIA).

• NumRegistrazione (SERIAL PRIMARY KEY): A unique registration number.

• DataRegistrazione (DATE): The date of registration.

• TestaDiSerie (BOOLEAN): Indicates whether the participant is a seeded player.

GIOCAIN: The GIOCAIN table tracks player participation in tournaments:

• IdT (INT): A reference to the tournament (foreign key to TORNEO).

• IdCat (INT): A reference to the category (foreign key to CATEGORIA).

• NumRegistrazione (INT): A reference to the registration (foreign key to REGIS-
TRAZIONE).

• IdG (INT): A reference to the player (foreign key to GIOCATORE).

Queries

1. Exam 1a: Players who participated in both the singles and doubles categories in the
same tournament

2. Exam 2a: The French players who have never been TestaDiSerie (Boolean attribute
TestaDiSerie)

3. Exam 1b: Italian players who have participated in both the US Open and the Australian
Open in the same year

4. Exam 2b: German players who have never participated in Wimbledon

5. Exam 1c: The tournament in which players from the greatest number of different
nations participated

6. Exam 2c: The player who has played the most different tournaments

7. Exam 1d: The tournament with the highest number teste di serie

27

8. Exam 2d: The tournament with the highest average age of players (also considered
correct current age)

Reasons for Schema Selection

With its five linked tables, GIOCATORE schema is perfect for analysing SQL learning and
misconceptions because of its complexity, practical relevance, and many query kinds.

• Understanding data integrity and relational dynamics in SQL depends on many-to-
many connections and foreign key restrictions; hence the schema includes both.

• The chosen searches cover many SQL ideas, from simple filtering to sophisticated
aggregation and sub-queries. This range shows how students and ChatGPT approach
several SQL functions and typical error-prone situations.

• The questions span basic to complicated, enabling study of SQL learning process and
identification of places where misconceptions usually surface.

4.1.2 Schema 2: Computer Science Database Laboratories

In the context of a computer science database laboratory, this part offers the SQL schema
intended for querying and analysis. Six tables total make up the model: Professori,
CorsiDiLaurea, Corsi, Studenti, Esami, and PianiDiStudio. These tables enable so-
phisticated searches concerning student enrollment, course administration, and test results
by capturing vital information for handling academic records, student information, and
course-related facts.

Table Overview

Professori: The Professori table stores information about professors within the aca-
demic institution.

• Id (DECIMAL(5,0) PRIMARY KEY): A unique identifier for each professor.

• Cognome (VARCHAR(30)): Last name of the professor.

• Nome (VARCHAR(30)): First name of the professor.

• Stipendio (DECIMAL(8,2) DEFAULT 15000): Salary of the professor, with a mini-
mum value of zero.

CorsiDiLaurea: The CorsiDiLaurea table holds details of the degree programs offered.

28

• Id (DECIMAL(3,0) PRIMARY KEY): A unique identifier for each degree program.

• Facolta (VARCHAR(50)): The faculty offering the program.

• Denominazione (VARCHAR(50)): Name of the degree program.

• Attivazione (CHAR(9)): The year the program was activated.

• Unique Constraint: Ensures unique records by faculty and course name.

Corsi: The Corsi table represents individual courses offered under each degree program.

• Id (CHAR(10) PRIMARY KEY): A unique identifier for each course.

• CorsoDiLaurea (DECIMAL(3)): A reference to the degree program (foreign key to
CorsiDiLaurea).

• Denominazione (VARCHAR(50)): Name of the course.

• Professore (DECIMAL(5,0)): A reference to the course instructor (foreign key to
Professori).

• Attivato (BOOLEAN DEFAULT FALSE): Indicates whether the course is currently ac-
tive.

Studenti: The Studenti table maintains records of students.

• Matricola (VARCHAR(10) PRIMARY KEY): A unique identifier for each student.

• Cognome (VARCHAR(30)): Last name of the student.

• Nome (VARCHAR(30)): First name of the student.

• Residenza (VARCHAR(30)): Place of residence.

• DataNascita (DATE): Birth date of the student.

• LuogoNascita (VARCHAR(30)): Birthplace of the student.

• CorsoDiLaurea (DECIMAL(3,0)): A reference to the degree program (foreign key to
CorsiDiLaurea).

• Iscrizione (INTEGER): Year of enrollment.

• Relatore (DECIMAL(5,0)): A reference to the advisor (foreign key to Professori).

29

• Laurea (DATE): Date of graduation (if applicable).

Esami: The Esami table records exams taken by students.

• Studente (VARCHAR(10)): A reference to the student (foreign key to Studenti).

• Corso (CHAR(10)): A reference to the course (foreign key to Corsi).

• Data (DATE): Date on which the exam was taken.

• Voto (DECIMAL(2,0)): The grade received by the student, constrained between 1
and 33.

PianiDiStudio: The PianiDiStudio table represents the study plans submitted by stu-
dents.

• Studente (VARCHAR(10)): A reference to the student (foreign key to Studenti).

• AnnoAccademico (INTEGER): The academic year of the study plan.

• Anno (DECIMAL(1,0)): Year of study, constrained to values between 1 and 6.

Queries

1. Lab CS 1: List the student ID and names of students enrolled before the academic
year 2007/2008 who are not yet in their thesis phase (i.e., have not been assigned
an advisor).

2. Lab CS 2: List degree courses activated before 2006/2007 and after 2009/2010, in
alphabetical order by faculty and course name.

3. Lab CS 3: List the student ID and names, in reverse ID order, of students whose
last name is not 'Serra,''Melogno,'or 'Giunchi,'or who reside in Genova,
La Spezia, or Savona.

4. Lab CS 4: List the student ID of those who graduated in computer science before
November 2009.

5. Lab CS 5: Return an alphabetical list of student names with their advisor’s last
name.

6. Lab CS 6: List students in the thesis phase who submitted their fifth-year study plan
for computer science in 2011/2012, without duplicates and in reverse alphabetical
order.

30

7. Lab CS 7: List the last name, first name, and status ('studente'or 'professore')
of students and professors.

8. Lab CS 8: List computer science students who passedDatabases 1 but not Graphic
Interfaces in June 2010.

9. Lab CS 9: List computer science students who passed both Databases 1 and Graphic
Interfaces in June 2010.

Reasons for Schema Selection

The Computer Science Database Laboratories schema was chosen to provide a structured
and realistic learning environment ideal for SQL practice in an academic laboratory setting.

• Controlled Laboratory Environment: Under this controlled laboratory environment,
students may investigate SQL in an environment where they have ample time to try
many strategies, experiment, and get a better knowledge of challenging searches.

• Diversity of Query Types and Complexity: Covering fundamental SQL abilities like
filtering, sorting, grouping, and time-based restrictions, the searches span basic to
sophisticated. This kind is suitable for laboratory exercises as it lets one experience
a slow learning process.

• Realistic Academic Relationships: Typical university database connections—one-to-
many and many-to-many—offer students real-world academic data structures within
the paradigm, therefore providing practical experience.

• Support for Error Exploration and Incremental Learning: The controlled environ-
ment enables students to learn from errors even if questions challenge them to think
critically and improve their SQL thinking. This structure promotes slow assessment
of SQL proficiency and skill growth.

4.1.3 Schema 3: Engineering Database Laboratories

This section presents the Engineering Database Laboratory schema, which is structured
to simulate an e-commerce or supply chain scenario. The model consists of five tables:
Categoria, Prodotto, Cliente, Ordine, and DettaglioOrdine. These tables represent
core entities in an ordering and inventory system, allowing for complex queries related to
product categories, customer orders, and order details.

Table Overview

Categoria: The Categoria table categorizes products.

31

• idCat (SERIAL PRIMARY KEY): Unique identifier for each category.

• nome (VARCHAR(255)): Name of the product category.

Prodotto: The Prodotto table stores information about each product.

• idProd (SERIAL PRIMARY KEY): Unique identifier for each product.

• nome (VARCHAR(255)): Name of the product.

• fornitore (VARCHAR(255)): Supplier of the product.

• idCat (INT): Foreign key linking to Categoria to categorize the product.

• prezzo (DECIMAL(10, 2)): Price of the product.

Cliente: The Cliente table holds customer information.

• idClient (SERIAL PRIMARY KEY): Unique identifier for each customer.

• nome (VARCHAR(255)): Customer’s name.

• indirizzo (VARCHAR(255)): Customer’s address.

• città (VARCHAR(255)): City of residence.

• nazione (VARCHAR(255)): Country of residence.

Ordine: The Ordine table records each order placed by a customer.

• idOrd (SERIAL PRIMARY KEY): Unique identifier for each order.

• idClient (INT): Foreign key linking to the Cliente table.

• data (DATE): Date when the order was placed.

DettaglioOrdine: The DettaglioOrdine table records details of each product within an
order.

• idOrd (INT): Foreign key linking to Ordine.

• idProd (INT): Foreign key linking to Prodotto.

• quantità (INT): Quantity of the product in the order.

32

Queries

1. Lab CE 1: Select the names of the products in the beverages category (bevande)
that were not ordered in 2023.

2. Lab CE 2: Select the total amount of the last order made by the customer having id
"1234".

3. Lab CE 3: Select the names of the products that have never been ordered by cus-
tomers residing in Venezia or Brescia.

Reasons for Schema Selection

The Engineering Database Laboratories schema was chosen because it offers a practical,
hands-on approach to learning SQL in a context familiar to engineering and business sce-
narios, such as inventory and order management.

• Computer engineering student: All our previous data was from computer science.
Considering Computer Engineering students helps us to generalise student behaviour
by focusing on a different set of students and on a different course and instructor.

• Perfect fit for laboratory learning: Without the pressure of a real work environment,
students have time to experiment with several query approaches, troubleshoot errors,
and test difficult SQL concepts in a lab.

• Examining the Many-to-Many relationships concept: Essential in database adminis-
tration, the Ordine and Prodotto tables are connected by DettaglioOrdine. Im-
portant abilities in managing linked data, connecting related tables, and handling
foreign keys, are let students practice under this framework.

4.1.4 Schema 4: Miedema Thesis Database

This part presents the Miedema Thesis Database, a created in a past PhD thesis with a
research topic closely related to our study[MAF22]. Six tables total make up this schema:
customer, store, product, shopping list, transaction, inventory. These tables provide
a complete basis for running many SQL searches concerning consumer and shop interactions
as they reflect basic entities for customer purchases, store management, product inventories,
and transactional data.

Table Overview

customer: The customer table stores information about customers.

33

• cID (DECIMAL(5,0) PRIMARY KEY): Unique identifier for each customer.

• cName (VARCHAR(255)): Name of the customer.

• street (VARCHAR(255)): Street address of the customer.

• city (VARCHAR(255)): City of residence.

store: The store table holds details of different stores.

• sID (DECIMAL(5,0) PRIMARY KEY): Unique identifier for each store.

• sName (VARCHAR(255)): Name of the store.

• street (VARCHAR(255)): Street where the store is located.

• city (VARCHAR(255)): City where the store is located.

product: The product table lists each product available for purchase.

• pID (DECIMAL(5,0) PRIMARY KEY): Unique identifier for each product.

• pName (VARCHAR(255)): Name of the product.

• suffix (VARCHAR(255)): Additional description or variation of the product.

shoppinglist: The shoppinglist table represents items in a customer’s shopping list.

• cID (DECIMAL(5,0)): Foreign key referencing customer.

• pID (DECIMAL(5,0)): Foreign key referencing product.

• quantity (DECIMAL(10,0)): Quantity of the product on the shopping list.

• date (DATE): Date the item was added to the list.

transaction: The transaction table records each purchase transaction.

• tID (DECIMAL(5,0)): Unique identifier for each transaction.

• cID (DECIMAL(5,0)): Foreign key referencing customer.

• sID (DECIMAL(5,0)): Foreign key referencing store.

34

• pID (DECIMAL(5,0)): Foreign key referencing product.

• date (DATE): Date of the transaction.

• quantity (DECIMAL(10,0)): Quantity of the product purchased.

• price (DECIMAL(10,2)): Price of the product in the transaction.

inventory: The inventory table tracks each store’s product inventory.

• sID (DECIMAL(5,0)): Foreign key referencing store.

• pID (DECIMAL(5,0)): Foreign key referencing product.

• date (DATE): Date of inventory record.

• quantity (DECIMAL(10)): Quantity of the product in stock.

• unit price (DECIMAL(10,2)): Price per unit of the product.

Queries

1. Miedema Thesis 1: List all IDs and names of customers living in Eindhoven.

2. Miedema Thesis 2: List all pairs of customer IDs who live on a street with the same
name but in a different city.

3. Miedema Thesis 3: List all customer IDs, dates, and quantities of transactions con-
taining products named Apples.

4. Miedema Thesis 4: Find the names of all inventory items that have a higher unit
price than Bananas.

5. Miedema Thesis 5: Return a list of the number of stores per city.

6. Miedema Thesis 6: Return the stores table ordered alphabetically by city.

7. Miedema Thesis 7: A store-chain consists of at least two stores with the same name
but different IDs. Find the names of the store-chains that, on average, sell products
in quantities of more than 4.

Reasons for Schema Selection

The Miedema Thesis schema was chosen as it strongly relates with the academic re-
search objectives of investigating SQL query misconceptions. Based on a prior PhD thesis
[MAF22], this model provides a reasonable basis for looking at SQL concepts within a
customer and inventory control situation.

35

• Originally intended for an academic thesis similar to this one, this model offers a
tested framework for analyzing SQL learning difficulties in a disciplined, research-
oriented environment.

• The design provides just a range of SQL queries—simple retrieval to advanced filter-
ing, conditional logic, and aggregation. This allows a comprehensive assessment of
SQL ability, therefore highlighting areas where both ChatGPT and students might
encounter difficult SQL operations.

In Table 4.1 we present an overview of the specifications of each schema and the corre-
sponding dataset.

Database
Exam

Computer
Science
Database
Laborato-
ries

Engineering
Database
Laborato-
ries

Miedema
Thesis
Database

Student Degree Computer
Science

Computer
Science

Computer
Engineer-
ing

Computer
Science

Number of Queries 8 9 3 7
Number of Subjects 25 23 12 21
(Students/Groups)
Language Italian Italian Italian English
Data Collection Method Paper online

submission
Paper online

submission
Answer Time Limited Not

Limited
Limited Not

Limited
Sample Data Provided No Yes Yes Yes
Group No Yes Yes No∗

Possibility to Run the Queries No Yes No Yes
Expected Results No Yes No No
Available

∗ The queries were formulated in an unsupervised context, so we cannot be sure that
students work alone.

Table 4.1: Dataset Overview

36

4.1.5 Query Complexity

We classify queries into three levels: simple, medium, and hard, in order to enable later
analysis depending on the complexity of the query. Simple queries are those that involve
simple filtering and a few joins. For example, a query such as finding the French players
who have never been in the TestaDiSerie is straightforward, as it consists mainly of filter-
ing by nationality and checking a Boolean attribute without complex aggregations or joins.
Similarly, identifying German players who have never played Wimbledon, even if slightly
more complex, is still simple, involving only a nationality filter and an exclusion condition
on a particular tournament. Finally, identifying players who have played singles and dou-
bles in the same tournament mostly involves grouping and filtering across categories, with
no complex logic other than simple grouping.

The medium-difficulty queries add a degree of complexity introduced by aggregation or
conditional logic. For example, finding the tournament with the highest number of Tes-
taDiSerie requires aggregating and counting records based on a Boolean attribute across
tournaments, which is one level of complexity. Finding the Italian players who participated
in both the US Open and the Australian Open in the same year requires the creation of
players who participated in more than one tournament within a given time period, making
the task even more difficult. Secondly, to find the player who has played the most different
tournaments, you would have to count the different tournament participations for each
player, which involves an aggregation function and is therefore moderately complex.

These hard queries use advanced features of SQL, including complicated joins, nested
conditions, and multi-table aggregations. Identifying the tournament with the most par-
ticipating nations involves multiple joins to count different nations for each tournament,
plus the added complexity of identifying the tournament with the highest number of unique
nationalities. This clearly requires extensive use of joins and grouping. Another challeng-
ing query is for the tournament with the highest average age of players, derived from each
players date of birth, as the nature of the date calculation question is to provide current
ages for players, hence aggregation per tournament. The combination of database calcula-
tion, aggregation, and grouping makes this one of the most complex queries in the set. It
also allows the queries to be categorised into a particular structure, from which each query
is analysed in terms of the associated challenges posed by the complexity of the different
types of SQL. (See Appendix A for the full complexity categories of the queries).

37

4.2 Collecting Produced Queries

4.2.1 Collecting Queries Produced by Students

To gather queries produced by students, we collect SQL queries from two sources. First,
we find and extract SQL queries recorded in [MAF22] related thesis. This involves a deep
analysis of the document, finding out the relevant parts where specific student SQL queries
are described, methodically extracting these queries, and structuring them (in either a
database or spreadsheet). We then ask our current computer science database students to
formulate the queries via an AulaWeb assignment (optional activity, with no incentive but
feedback from instructors/tutors).

Based on the schemas and queries described in Section 4.1, we developed or adapted SQL
queries that ranged in complexity from basic statements to more sophisticated actions.
These queries will be given to students via tests, assignments, or classroom activities.
Each answer is tagged with relevant information, including the student ID and task ID, so
that the results are collected, ordered, and stored in a disciplined manner.

In Table 4.2 we present a sample of the answers collected for this study. The full dataset
contains approximately 600 answers collected from students from a variety of sources,
including exams, lab sessions, and previously published queries from Miedema’s thesis.

38

Reference Written by Query Specification Student Answer
Miedema

thesis
Computer
Science

List all IDs and names of
customers living in

Eindhoven.

SELECT cId, cName FROM
Customer WHERE city =

"Eindhoven";
CS

Database
Laboratory

Computer
Science

List the student ID and
names of students enrolled
before the academic year

2007/2008 who are not yet
in their thesis phase (have

not been assigned any
advisor).

SELECT * FROM studenti
WHERE iscrizione<2007
AND relatore ISNULL;

CE
Database

Laboratory

Computer
Engineering

Select the names of the
products in the beverages
category (bevande) that
were not ordered in 2023.

SELECT Prodotto.idProd
FROM Prodotto, ORDINE,
DETTAGLIO-ORDINE WHERE

PRODOTTO.IDPROD =
DETTAGLIO-ORDINE.idProd

AND
DETTAGLIO-ORDINE.QUANTIT
= 0 AND ORDINE.DATA =

'2023';
Database

Exam
Computer
Science

Italian players who have
participated in both the US
Open and the Australian
Open in the same year

SELECT DISTINCT IDG
FROM GIOCATORI WHERE
IDG IS IN (SELECT
DISTINCT IDG FROM

GIOCAIN NATURAL JOIN
ONC)

Table 4.2: Students Sample Collected Queries

4.2.2 Collecting Queries Produced by ChatGPT

To gather queries created by ChatGPT, we ask the systems (ChatGPT 4o and ChatGPT
4o mini) to create an SQL query starting from a schema and the natural language speci-
fication of the query. We consider the identical set of SQL queries that the students have
been assigned, with identical schema specification and natural language specification. We
execute each request three times for ChatGPT 4o to get a range of SQL queries. These
queries will be noted and marked with pertinent information like the iteration count and
job identification. With ChatGPT 4o Mini, the same procedure is performed, running
each of the requests three times and compiling the produced searches. For this study,
we generated over 150 answers to queries using ChatGPT, covering scenarios from exams,

39

laboratory exercises, and the Miedema thesis database. See Figure 4.1 that indicates the
sample process of preparing ChatGPT for asking queries.

Figure 4.1: Sample Process of Preparing ChatGPT for Asking Queries

Every query gathered from both ChatGPT versions will be kept in an orderly manner so
that every query can be easily identified and retrieved. We will guarantee integrated data
management at every stage of the data collection process by using an Excel file with fixed
columns. The columns include AnswerID, QueryID, the query definition (natural language
request), the SQL code (response), categorisation, execution results, notes, checked by, and
the misconception type, type of writer (student or chatGPT). This methodical methodology
will enable us to methodically document, arrange, and evaluate the SQL inquiries so that
all pertinent data is gathered and readily available for further research. This approach
guarantees a complete comparison of SQL learning misconceptions between human students
and generative AI models.

Table 4.3 is a sample of the information collected from various sources, illustrating the
range of SQL queries categorised by complexity.

40

Reference Written by Query Specification ChatGPT Answer
Miedema

thesis
ChatGPT-

4o
List all IDs and names of

customers living in
Eindhoven.

SELECT cID, cName FROM
customer WHERE city =

'Eindhoven';
CS

Database
Laboratory

ChatGPT-
4o

List the list of degree
courses, in alphabetical

order by faculty and course
name, activated before the
academic year 2006/2007
(excluded) and after the
academic year 2009/2010

(excluded).

SELECT Facolta,
Denominazione FROM
CorsiDiLaurea ..

CE
Database

Laboratory

ChatGPT-
4o-mini

List the computer science
students who passed

Databases 1 (basi di dati 1)
but not Graphic Interfaces
(interfacce grafiche) in June

2010.

SELECT DISTINCT
s.Matricola, s.Cognome,
s.Nome FROM Studenti s

JOIN Esami e1 ON
s.Matricola =

e1.Studente JOIN Corsi
c1 ON e1.Corso = c1.Id

..
Database

Exam
ChatGPT-

4o-mini
German players/hedgehogs

who have never
participated in Wimbledon.

SELECT g.IdG, g.Nome,
g.Cognome FROM
GIOCATORE g ..

Table 4.3: ChatGPT Sample Collected Queries

4.3 Identifying Misconceptions Produced by Students
and ChatGPT

In this section, we discuss the categorisation and other relevant information for every query
ChatGPT generates and for students in our file. Using the comprehensive Excel file, we
will ensure that every query is correctly classified and has necessary information. The
classification is based on found sorts of misconceptions and other pertinent criteria to
provide a disciplined analysis of the mistakes.

Once the queries have been categorised, we will run every one using a tool we have de-
veloped. Designed to manage all SQL tables and data, this utility links to a PostgreSQL
database to do the searches. After that, we analysed each result of the tool and added or
removed some output and transferred it to Excel. Evaluating the execution outcome of

41

every query helps the tool to ascertain if the query executes successfully or comes across
problems. Figure 4.2 contains a screenshot of our created tool. This tool has three main
parts, which include query classification (1), query display (2), and query execution (3).

Figure 4.2: Tool Implemented for Identifying Misconceptions

We generated a dataset spanning 1,000 misconceptions using the information acquired
and the categories of misconceptions identified in Chapter 2. This extensive collection
provides a strong foundation for analysing the basic reasons for common errors in SQL
query creation, therefore helping to identify patterns and a better understanding of the
roots of certain misconceptions.

Process-wise, the searches—drawn from a variety of real-world academic and research set-
tings—including tests, laboratory activities, and insights from the Miedema thesis—generated
using ChatGPT were categorised based on difficulty. Specific criteria, including the num-
ber of joins, the requirement of grouping, and the existence of subqueries, influenced this
classification of difficulty level (Simple, Medium, and Hard). Every degree of query com-
plexity illustrates the range of logical structures and relational connections that students
and artificial intelligence models have to negotiate, therefore offering important data for
analysis of how mistakes show up in various query contexts.

Combining a broad range of settings and complexity, this structured dataset helps us to

42

explore further the difficulties students and AI models have with SQL, analysing frequency
and types of misconceptions throughout query complexity. (See Appendix B for the sample
Excel file to collect all data.)

4.4 Summary of Analysis Dimensions and Dataset Dis-
tribution

Dimensions of Analysis

Misconception Categories: The analysis focuses on four main misconception types:

• Logical

• Syntactic

• Complication

• Semantic

Complexity Levels: Queries are categorised as Simple, Medium, or Hard to understand the
impact of difficulty on misconception rates.

Authors: Comparisons are drawn between students and ChatGPT to highlight differences
and similarities in their SQL query approaches.

Context: Queries are analysed across different schemas, including:

• Miedema Thesis

• Computer Science Database Laboratories

• Engineering Database Laboratories

• Database Exam

Dataset Distribution

Query Complexity:

• Simple Queries: 20 percent of the total dataset

• Medium Queries: 35 percent of the total dataset

43

• Hard Queries: 45 percent of the total dataset

Student Demographics:

• Computer Science (CS): 70 percent of students

• Computer Engineering (CE): 30 percent of students

Misconception Categories:

• Logical: 35.2 percent

• Syntactic: 34 percent

• Complication: 19.2 percent

• Semantic: 11.6 percent

44

Chapter 5

Results

In this chapter, we analyse the misconceptions present in queries formulated by students
and those resulting from ChatGPT in relation to corresponding SQL queries. The aim of
the analysis is to see how closely the misconceptions generated by generative AI correspond
with the misconceptions among SQL-learning students. This overall goal of the analysis
is to explore the possibilities artificial intelligence presents as a diagnostic tool in learning
environments.

We first provide an overview of the results based on the types of misconceptions observed
in all queries in Section 5.1. Next, we investigate the relationship between each writer (i.e.,
students or ChatGPT) that is based on the kinds of misconceptions in Section 5.2. Next, in
Section 5.3 we evaluate how the complexity of SQL queries affects misconceptions for both
ChatGPT and students. Finally, we explore the comparison of ChatGPT and students on
individual queries in Section 5.4.

After that, we show the comparison of the top 10 misconceptions between students and
ChatGPT in Section 5.5. In Section 5.6, we highlight parallels and contrasts between the
top 10 categories of misconceptions for ChatGPT-4o and ChatGPT-4o-mini. Next, we
compare, in Section 5.7, queries by ChatGPT and students based on the occurrence of
misconceptions in both. Finally, we provide the main chart, "top 10 Misconceptions by
ChatGPT and Students" in Section 5.8.

5.1 Overview of Result Based on Misconceptions Type

Understanding the types of misconceptions that are common in SQL queries is critical to
identifying where learners, whether human or AI, struggle the most. This categorisation
helps trainers target specific areas for improvement in SQL training. Figure 5.1 shows the

45

percentage of misconceptions based on each misconception type.

Figure 5.1: Percentage of Misconception Types

The chart offers a general picture of the categories of misconceptions. The most com-
mon logical misconception is 35.2 percent; syntactic misconceptions come second closely at
34 percent. Semantic misconceptions account for just 11.6 percent; complications-related
misconceptions account for 19.2 percent. This points out that logical and syntactic mis-
conceptions are the most typically occurring types of mistakes because complexity and
semantic errors are least probable.

5.2 Correlation between Misconception Category and
Author (Students vs ChatGPT)

Comparing various authors’ misconceptions helps us to see trends and variations in how
generative AI models and human pupils handle SQL queries. Figure 5.2 shows the corre-
lation between misconception types and author types.

46

Figure 5.2: Correlation Between Misconception Types and Author Type (Students vs
ChatGPT)

This chart compares SQL misconceptions between ChatGPT and students across the four
main categories, namely logical, syntactic, complication, and semantic. Both are relatively
high, with logical misconceptions for ChatGPT at 15.66 percent and for students at 19.58
percent. This indicates both have equal logical errors in the sense that either the reasoning
is wrong or there are flaw conditions within the query. The outcome is that both of them
need to be more focused on logical structuring when teaching SQL.

Syntactic misconceptions are sharply different: student queries contain a lot more syntactic
misconceptions than ChatGPT, with 31.47 percent for the former and 2.52 percent for the
latter. That reflects the fact that students are really struggling with the syntax of SQL,
while ChatGPT is more capable of following syntax rules in a highly consistent manner.

Complications due to misplaced use of some SQL features are more present in the output
generated by ChatGPT: 7.41 percent vs. 11.75 percent for students’ queries. That would
point to the possibility that ChatGPT may have a tendency to include redundant joins or
non necessary columns or in general to formulate over-complex queries. This could be due
to the fact that most of the queries on which ChatGPT has been trained are more complex
that those used in training batabase students at Bachelor level and also suggests that
perhaps with focused model adjustments, ChatGPT could become more efficient query-
wise.

Finally, Semantic errors denote the failure to understand data or query context, and in

47

both groups, it stands a bit low; however, for students, it stands at 7.41 percent while
for ChatGPT is 4.20 percent. That suggests that there was a rather good foundation in
understanding the meaning of the data provided and the context of the query, even though
the ability may still need more emphasis within the settings of an educational framework.

5.3 Impact of SQL Query Complexity on Misconcep-
tions

Figure 5.3 is aimed at analysing the impact of query complexity on misconceptions, to
understand whether the difficulty level of SQL queries influences the error rates and how
these rates differ between generative AI and students.

Figure 5.3: Percentage of Misconceptions in Each Complexity Category

The picture illustrates the distribution of misconceptions between students and ChatGPT
across various degrees of query complexity: Simple, Medium, and Hard. Each bar illus-
trates the proportion of mistakes identified in query categorized by complexity, so offering
insights into the performance of each group across varying levels of difficulty.

This chart clearly demonstrates that as the complexity of queries increases, the rate of
misconceptions rises for both students and ChatGPT, albeit at different scales.

48

For students, the error rate grows from 15.97 percent for simple queries to 35.50 percent
for hard queries. This suggests a direct relationship between query complexity and mistake
probability. The significant rise in misunderstandings implies that students struggle more
in controlling the logical structure, syntax, and general knowledge needed to build reliable
SQL statements as searches become more complex.

For ChatGPT, too, the error rate rises with complexity from 4.10 percent for simple
searches to 15.44 percent for hard searches. Although the AI has a lower general error rate
than students, the increasing trend implies that tough questions demand more complicated
thinking and accurate query phrasing, which may lead errors even for an experienced AI
system.

The consistent increase in error rates for both groups underlines a fundamental trend: as
the cognitive and technical demands of SQL queries grow, so does the chance of errors.
This emphasises the need for better educational approaches to help students tackle complex
queries and also suggests areas where AI like ChatGPT could be further refined to improve
its handling of higher-complexity tasks.

5.4 Comparison of ChatGPT and Students on Individ-
ual Queries

By examining specific queries (Query Name), we can identify particular instances where
both AI and students struggle, providing a granular view of the misconception patterns.
Figure 5.4 shows for each query (Query Name) the comparison of the errors by ChatGPT
and students.

49

Figure 5.4: Percentage of Correlation of ChatGPT and Students for Each Query

By ChatGPT and students over different query areas—Miedema Thesis, Computer Science
and Engineering labs, and Exam queries—this graph compares the percentage of SQL query
misconception. The y-axis represents the percentage of error; the x-axis shows each query.

Some queries—especially those from CS labs—such as Lab CS 1 and queries like Exam
2d—seem to have more student misconceptions than others. That would imply that specific
queries are more likely to bring complicated SQL procedures or create specific difficulties
that cause pupils to generate error-ridden output. The final scores for ChatGPT distribute
the error rates more evenly, though there were noticeable spikes in many of the same queries,
hence showing points where both students and the AI model have shown to struggle.

Whereas queries from the Miedema Thesis set indicate a minor inclusion of misconcep-
tions in both ChatGPT and students, this might refer to simpler SQL structures or SQL
more conformed to standards. On the other hand, lab and exam appear to introduce
more complex queries, as defined by a greater number of variations or restrictions in SQL
assignments.

Thus, this analysis suggests that lab and exam questions have a greater complexity that
could be served by more specific instructions. In terms of ChatGPT, this insight into
which types of SQL tasks are more likely to be associated with higher misconception rates
helps to inform training adjustments that may better help the model to match the specific
challenges that students face in the educational environment.

50

5.5 Comparison Computer Science and Computer En-
gineering Top 10 misconceptions

Figure 5.5 shows the correlation between misconceptions in computer science and computer
engineering students. We should consider that the number of misconceptions related to
engineering was less than computer science because we just have access to 3 queries of
the computer engineering labratory, so it affects the distribution of data, but for us it is
important to just extract and analyse common misconceptions between both groups.

Figure 5.5: Percentage of Comparison CS and CE Top 10 Categorization

This chart shows SQL misconceptions for two sets of students, Computer Science and En-
gineering. The bars compare the frequency of each group’s errors across given categories;
the percentage of errors related to each type of misconception is reflected. Common mis-
conceptions between Computer Science and Engineering include unnecessary joins, invalid
schema names, missing columns from select, nonstandard keywords or standard keywords
in the wrong context, nonstandard operators, confusing the logical of keywords, and miss-
ing expressions.

These misconceptions are common among both Computer Science and Computer Engineer-
ing students because they stem from fundamental challenges in learning SQL. Concepts
like joins, schema names, column selection, and the correct use of keywords or operators
require a solid understanding of relational databases and query logic, which both groups
are still developing.

51

5.6 Comparison of ChatGPT-4o and ChatGPT-4o-mini
Top 10 misconceptions

Comparing different versions of generative AI models in Figure 5.6 allows us to evaluate
their relative performance and identify specific strengths and weaknesses, guiding future
development and application.

Figure 5.6: Percentage of Misconception Based on ChatGPT-4o and ChatGPT-4o-mini

Two gerative AI models from ChatGPT-4o and ChatGPT-4o-mini expose the most typ-
ically occurring types of SQL errors when compared. Every bar shows the mistake rate
within a certain group. With regard to their handling of projection errors (LOG-5), this
study indicates different behaviour across the models. ChatGPT-4o shows a higher er-
ror rate at 13.6 percent compared to ChatGPT-4o-mini’s 12.2 percent, with both models
tending to include unnecessary columns in SELECT operations.

In the Complication category (COM-1), which involves unnecessary joins, ChatGPT-4o
records an 8.0 percent error rate, while ChatGPT-4o-mini has a slightly lower rate at 5.6
percent. This suggests difficulties in determining essential joins for both models, with
ChatGPT-4o being somewhat more prone to these complications.

Projection Errors related to missing columns (LOG-5) yield similar results, with ChatGPT-
4o at 3.8 percent and ChatGPT-4o-mini at 3.3 percent, reflecting comparable challenges
in selecting the required columns for queries.

52

Furthermore, ChatGPT-4o has a somewhat higher rate of Nesting Errors (LOG-3) at
4.2 percent compared to ChatGPT-4o-mini’s 2.8 percent, and Inconsistent Expressions
(SEM-1), wherein ChatGPT-4o reports 4.2 percent against ChatGPT-4o-mini’s 1.9 per-
cent. These variations imply that while both models sometimes struggle with expression
structure, ChatGPT-4o has somewhat more trouble managing these challenging situations.

5.7 Related Queries Between Students and ChatGPT

Figure 5.7 links ChatGPT frequency of misconceptions in SQL queries generated by stu-
dents.

Figure 5.7: Percentage of Related Queries Between Students and ChatGPT

Each bar displays the percentage of misconceptions for a certain query; darker blue bars
show student misconceptions and lighter blue bars indicate ChatGPT misconceptions.

5.8 Top 10 Misconceptions by ChatGPT and Students

Based on the previous chart in Figure 5.7, we provide the top 10 misconceptions occurring in
ChatGPT and student queries in Figure 5.8. The top 10 SQL misconceptions found among

53

the more than 100 kinds of misconceptions gathered from different research publications
are shown on this chart.

Figure 5.8: Top 10 Misconceptions by ChatGPT and Students

Providing a targeted view of the recurrent difficulties in SQL query design, the graphic
shows the top 10 SQL misconceptions that often arise among both ChatGPT and student-
generated queries. Projection misconceptions, including obtaining unnecessary columns in
the SELECT clause, which implies that both students and ChatGPT frequently fail to
limit their queries to just the important data. Examining closely issues with unnecessary
joins exposes a general misconception about which tables and conditions are really required
to satisfy query aims.

Other well-known misconceptions include missing columns in SELECT queries, undefined
database objects, and erroneous expressions, each reflecting issues in accurate column
selection, schema traversal, and logical consistency. More problems, including nonstandard
syntax misconceptions and distinct use, highlight weaknesses in SQL’s best practices and
usefulness. These top 10 misconceptions expose common challenges between generative AI
models and students and learners, therefore providing a road map for areas needing focused
instruction and AI training. We will further examine these results in the upcoming chapter
to expose the fundamental causes and ramifications of these widespread misconceptions.

54

5.9 Summary

In this chapter, the student-generated queries and SQL errors found in ChatGPT were
examined in more detail. We carefully analysed and compared these errors to assess how
well the misconceptions produced by generative AI matched those seen in students learning
SQL.

In the next chapter, we will explore the branches of our conclusions and investigate ways
to eliminate misconceptions and therefore further explore these findings, also discussing
how generative AI can be a diagnostic tool to find and fix typical challenges in the SQL
learning environment.

55

Chapter 6

Discussion

The data from the charts reported in Chapter 5 provide understanding of both generative
artificial intelligence models and student performance with relation to SQL misconceptions.
More specifically, the results expose several kinds of mistakes produced by the generative
AI systems and show where student learning either fits or deviates from these mistakes. In
this chapter, we analyse our results based on the top 10 misconceptions occurring among
students and chatGPt and finally try to answer our research questions.

6.1 Interpretation of Top 10 Misconceptions

In this section, we analyse the top 10 misconceptions emerging from students and chatGPT.
This provides insights into why it happens and what we should consider in the learning
path for students by using chatGPT. In each subsection, we first report the information
request specification in natural language, then include a table with a correct expected
query, a student query, and a chatGPT query, that are then analyzed and discussed in the
text.

6.1.1 Extraneous Column in SELECT

Question: Identify German players who have never participated in Wimbledon.

56

Query Type SQL Query
Expected Query

SELECT DISTINCT IdG
FROM GIOCATORE
WHERE Nazione = 'Germania'
AND IdG NOT IN (SELECT DISTINCT IdG
FROM GIOCAIN NATURAL JOIN TORNEO
WHERE NomeT = 'Wimbledon');

Student Query
SELECT *
FROM GIOCATORE
WHERE NAZIONE = 'Germania'
AND IdG NOT IN (

SELECT IdG
FROM GIOCATORE
NATURAL JOIN GIOCAIN
NATURAL JOIN REGISTRAZIONE
NATURAL JOIN TORNEO
WHERE TORNEO.LUOGO = 'Wimbledon'

);

ChatGPT Query
SELECT g.Nome , g.Cognome
FROM GIOCATORE g
WHERE g.Nazione = 'Germany'
AND g.IdG NOT IN (

SELECT gi.IdG
FROM GIOCAIN gi
JOIN REGISTRAZIONE r ON gi.IdT = r.IdT AND
gi.IdCat = r.IdCat AND gi.NumRegistrazione
= r.NumRegistrazione
JOIN TORNEO t ON r.IdT = t.IdT
WHERE t.NomeT = 'Wimbledon'

);

Table 6.1: Comparison of SQL Queries Based on Extraneous Column in SELECT

57

Analysis of Extraneous Column in SELECT Misconception

Student Query: The students use of SELECT * pulls all columns from GIOCATORE instead
of simply IdG, therefore adding pointless data and straying from the purpose of identifying
players only by IdG.

ChatGPT Query: ChatGPT selects additional columns (Nome, Cognome), which aren’t
needed for the task, indicating a projection error. While the structure is more accurate
than the student’s query, this extra data reduces query clarity and performance.

Both the student and ChatGPT do not use the exact required columns. Students use
SELECT * thus returning all columns, and ChatGPT returns additional columns. Empha-
sising the need of choosing only necessary columns would help students as well as artificial
intelligence models like ChatGPT to solve this. Together with training on exact projection,
a more targeted strategy to grasp query aims will help to provide cleaner, more effective
queries more in line with expected outcomes.

One must recognise the careful utilisation of DISTINCT is vital. Teaching students when
to use DISTINCT helps to avoid duplicate results—particularly in queries requiring many
joins. For ChatGPT, raising knowledge of output requirements—such as choosing only
unique IDs when needed—would improve accuracy and clarity, thereby enabling returns
that are summary and fit for the purpose of the inquiry.

6.1.2 Unnecessary Join

Question: Players who participated in both the 'single ' and 'double ' categories in the
same tournament.

58

Query Type SQL Query
Expected Query

SELECT DISTINCT IdG
FROM GIOCATORE NATURAL JOIN GIOCAIN NATURAL
JOIN CATEGORIA WHERE Genere = 'f' AND
NomeCategoria = 'singolo'
AND (IdG , IdT) IN (SELECT DISTINCT IdG , IdT
FROM GIOCAIN NATURAL JOIN CATEGORIA
WHERE NomeCategoria = 'doppio')

Student Query
SELECT IDG
FROM GIOCATORE G NATURAL JOIN GIOCAIN
NATURAL JOIN REGISTRAZIONE R
NATURAL JOIN CATEGORIA
WHERE GENERE = F, NOMECATEGORIA = SINGOLI
AND EXISTS
(

SELECT *
FROM GIOCATORE N.JOIN GIOCAIN N.JOIN
REGISTRAZIONE N.JOIN CATEGORIA
WHERE IDG = G.IDG AND
R.IDT = REGISTRAZIONE.IDT
AND NOMECATEGORIA = 'DOPPI'

);

ChatGPT Query
SELECT DISTINCT g.IdG , g.Nome , g.Cognome
FROM GIOCATORE g
JOIN GIOCAIN g1 ON g.IdG = g1.IdG
JOIN GIOCAIN g2 ON g1.IdT = g2.IdT AND
g1.IdCat <> g2.IdCat
JOIN CATEGORIA c1 ON g1.IdCat = c1.IdCat
JOIN CATEGORIA c2 ON g2.IdCat = c2.IdCat
WHERE c1.NomeCategoria = 'singolo'
AND c2.NomeCategoria = 'doppio';

Table 6.2: Comparison of SQL Queries Based on Unnecessary Join

59

Analysis of Unnecessary Join

Student Query: The student’s focus is on nonusful links, especially way the REGISTRAZIONE
table is included in both the main and the subquestives. For the query—that is, to iden-
tify players (IdG) involved in both the singles (IdG) and doubles (NomeCategoria =
"doppio"—this table provides no relevant filtering or data retrieval. The repeated occur-
rence of REGISTRAZIONE complicates the query structure excessively and makes interpre-
tation and execution more difficult. This reflects a belief that, even in cases where such
tables lack relevant information, more tables connected in a query increase its resilience.

ChatGPT Query: Similar needless joins by duplicating GIOCAIN and CATEGORIA into
aliases (g1, g2, c1, c2) are introduced by the ChatGPT query. Although these joins
seek to compare categories (singolo and doppio) within the same tournament, the
structure entails needless duplication as fewer joins might get the same outcome. Further-
more, adding extra columns like Nome and Cognome to the SELECT clause goes beyond the
query’s need and increases even more processing complexity. This implies a misconception
wherein exactly specifying all fields or replicating tables improves query accuracy but, in
reality, it confuses the thinking and reduces efficiency.

Both queries reveal a common SQL misconception about using joins that including unnec-
essary tables not only complicates the queries but also increases the likelihood of logical
errors and inefficiencies. This suggests that both students and generative AI models, like
ChatGPT, would benefit from targeted instruction on join selection, focusing on including
only essential tables for the query purpose.

A more targeted approach to query needs and table connections will help to optimise
student and ChatGPT queries and prevent needless joins. Encouragement of students to
specify the particular data required for a query helps them to restrict their joins to only
those tables directly contributing to the outcome. Emphasising the goal of every join and
challenging its requirements helps pupils learn to include only the tables, enhancing the
output.

For ChatGPT, prompt engineering and fine-tuning should focus on enhancing context-
specific assessments, thereby enabling the model to better understand task requirements
and find when a particular table is worthless for the query. Moreover, demonstrating the
performance impact of meaningless joins might motivate generative AI as well as students
to adopt more straightforward, direct queries. Promoting purpose-driven joins, this better
approach would enable SQL query creation to be more precise, clear, and effective.

60

6.1.3 Missing Column from SELECT

Question: Select the total amount of the last order made by the customer having id
"1234".

Query Type SQL Query
Expected Query

SELECT O.idOrd , SUM (prezzo*d.quantita)
AS TotaleOrdine FROM Ordine O
JOIN DettaglioOrdine D ON O.idOrd=D.idOrd
JOIN Prodotto P ON D.idProd = P.idProd
WHERE O.idClient = '1234'
AND O.data = (SELECT MAX(data)
FROM Ordine WHERE idClient='1234')
GROUP BY O.idOrd

Student Query
SELECT SUM(PRODOTTO.PREZZO) FROM PRODOTTO
INNER JOIN DETTAGLIO_ORDINE
ON PRODOTTO.IDPROD=DETTAGLIO_ORDINE.IDPROD
INNER JOIN ORDINE
ON DETTAGLIO_ORDINE.IDORD=ORDINE.IDORD
WHERE ORDINE.DATA= (SEELCT MAX (DATA)
FROM ORDINE INNER JOIN CLIENTE
ON ORDINE.IDCLIENT=CLIENTE.IDCLIENT
WHERE CLIENTE.IDCLIENT='1234')
AND CLIENTE.IDCLIENT='1234'

ChatGPT Query
SELECT SUM(p.prezzo*do.quantita) AS totalAmount
FROM Ordine o JOIN DettaglioOrdine do
ON o.idOrd = do.idOrd
JOIN Prodotto p ON do.idProd = p.idProd
WHERE o.idClient = 1234
AND o.data = (SELECT MAX(data)
FROM Ordine WHERE idClient = 1234);

Table 6.3: Comparison of SQL Queries Based on Missing Column From SELECT

61

Analysis of Missing Column From SELECT

Student Query: Emphasising just SUM(PRODOTTO.PREZZO), the student’s query "o"
misses the O.idOrd column. This helps the question to fall short in providing necessary
background on the particular order ID connected with the overall determined value. Fur-
thermore, the lack of quantity —quantità— in the computation reveals a partial awareness
of the needs for the inquiry. This control produces an erroneous total and leaves uncer-
tainty on which sequence the total amount pertains to. Such exclusions draw attention
to misconceptions about the choice of only pertinent columns that completely meet the
objective of the query.

ChatGPT Query: Though it computes the total amount properly using SUM(p.prezzo *
do.quantità), ChatGPT’s query omits O.idOrd in the SELECT clause, same as the student
query. Without the order ID, the response lacks the needed precision, especially when
multiple orders are involved, increasing the risk of misinterpretation. The absence of this
key detail suggests a limited understanding of the assignment’s requirements, which reduces
the clarity and completeness of the answer, even if ChatGPT’s approach to calculating the
total aligns more closely with the question than the student’s.

Both queries define a frequent misconception in SQL queries where omitting significant
data like the order ID lowers the usefulness of the query return. This emphasises how
crucial it is for students to understand the need for providing results in their complete
context. Training should highlight the need to include basic essential IDs in SELECT clauses
to provide unambiguous, significant results.

By using a focused approach to SQL learning, raising knowledge of the purpose behind ev-
ery chosen column would aid in enhancing both student and ChatGPT queries. Encourage-
ment of students to validate that their queries meet the complete informational demand of
the assignment will help them to avoid missing significant columns. By prompt-engineering
or fine-tuning ChatGPT, its ability to grasp specific task demands might be enhanced, thus
pointing out when necessary columns—such as order IDs—are required. Encouragement
of the use of all pertinent data allows SQL query creation to be more precise, helpful, and
efficient for generative AI models as well as human learners.

6.1.4 Undefined Column

Question: Italian players who have participated in both the US Open and the Australian
Open in the same year.

62

Query Type SQL Query
Expected Query

SELECT DISTINCT IdG
FROM GIOCATORE NATURAL JOIN GIOCAIN NATURAL
JOIN TORNEO WHERE Nazione = 'Italia' AND
NomeT = 'US Open' AND (IdG ,YEAR(DataNascita))
IN (SELECT DISTINCT IdG , YEAR(DataNasdcita)

FROM GIOCAIN NATURAL JOIN TORNEO
WHERE NomeT = 'Australian Open')

Student Query
SELECT IdG FROM GIOCAIN NATURAL JOIN
REGISTRAZIONE NATURAL JOIN TORNEO T
WHERE T.NomeT = 'US Open' AND EXISTS (
SELECT IdG FROM GIOCAIN NATURAL JOIN
REGISTRAZIONE NATURAL JOIN TORNEO
WHERE NomeT = 'Australian Open'
AND DataF = T.DataF);

ChatGPT Query
SELECT DISTINCT g.Nome , g.Cognome , g.Nazione ,
t1.NomeT AS Torneo1 , t2.NomeT AS Torneo2 ,
EXTRACT(YEAR FROM t1.DataI) AS Anno
FROM GIOCATORE g JOIN GIOCAIN gi1 ON
g.IdG = gi1.IdG JOIN REGISTRAZIONE r1
ON gi1.IdT = r1.IdT AND gi1.IdCat = r1.IdCat
AND gi1.NumRegistrazione = r1.NumRegistrazione
JOIN TORNEO t1 ON r1.IdT = t1.IdT JOIN
GIOCAIN gi2 ON g.IdG = gi2.IdG JOIN
REGISTRAZIONE r2 ON gi2.IdT =
r2.IdT AND gi2.IdCat = r2.IdCat AND
gi2.NumRegistrazione = r2.NumRegistrazione JOIN
TORNEO t2 ON r2.IdT = t2.IdTWHERE g.Nazione =
'Italy'AND ((t1.NomeT = 'US Open' AND t2.NomeT
= 'Australian Open') OR (t1.NomeT =
'Australian Open' AND t2.NomeT = 'US Open'))
AND EXTRACT(YEAR FROM t1.DataI) =
EXTRACT(YEAR FROM t2.DataI);

Table 6.4: Comparison of SQL Queries Based on Undefined Column
63

Analysis of Undefined Column

Student Query: The student’s query encounters an issue with an undefined column,
particularly in the sub-query’s use of DataF, which incorrectly references T.DataF. Without
a clear join or explicit specification of DataF in relation to the main TORNEO table, this
creates an ambiguous reference. This mistake highlights a misconception of scope in sub-
queries, where the student assumes DataF will automatically link to T.DataF in the main
query. It is a misconception that can lead to runtime errors or unexpected behaviour in
certain SQL environments.

ChatGPT’s Query: ChatGPT’s query is moving to undefined columns because it in-
cludes additional, unnecessary fields like g.Nome, g.Cognome, and g.Nazione, along with
extra tournament fields.

Both queries reflect a need for greater clarity in context and column selection. The stu-
dent’s query makes a direct reference to an undefined column, while ChatGPT’s approach
includes ambiguous columns. This comparison highlights an opportunity for more precise
instruction on query scoping and selecting only relevant columns. Emphasising the impor-
tance of defining all referenced columns within the specific query context—and aligning all
fields with the query’s purpose—could help prevent such issues.

6.1.5 Implied, Tautological, or Inconsistent Expression

Question: Players who participated in both the singles and doubles categories in the same
tournament.

64

Query Type SQL Query
Expected Query

SELECT DISTINCT IdG
FROM GIOCATORE NATURAL JOIN GIOCAIN
NATURAL JOIN CATEGORIA
WHERE Genere = 'f' AND
NomeCategoria = 'singolo'
AND (IdG , IdT) IN (SELECT DISTINCT IdG , IdT
FROM GIOCAIN NATURAL JOIN CATEGORIA
WHERE NomeCategoria = 'doppio')

Student Query
SELECT IdG
FROM FROM GIOCATORE NATURAL JOIN
CATEGORIA NATURAL JOIN TORNEO
NATURAL JOIN GIOCAIN
WHERE genere = F AND AND IdG IN (SELECT IdG
FROM GIOCATORE NATURAL JOIN CATEGORIA NATURAL
JOIN TORNEONATURAL JOIN GIOCAIN
WHERE genere = F AND genereCategoria = Doppi)

ChatGPT Query
SELECT DISTINCT g.IdG , g.Nome , g.Cognome
FROM GIOCATORE g
JOIN GIOCAIN gi1 ON g.IdG = gi1.IdG
JOIN REGISTRAZIONE r1 ON gi1.IdT = r1.IdT AND
gi1.IdCat = r1.IdCat AND
gi1.NumRegistrazione = r1.NumRegistrazione
JOIN CATEGORIA c1 ON r1.IdCat = c1.IdCat
JOIN GIOCAIN gi2 ON g.IdG = gi2.IdG
JOIN REGISTRAZIONE r2 ON
gi2.IdT = r2.IdT AND gi2.IdCat = r2.IdCat AND
gi2.NumRegistrazione = r2.NumRegistrazione
JOIN CATEGORIA c2 ON r2.IdCat = c2.IdCat
WHERE c1.NomeCategoria = 'singles'
AND c2.NomeCategoria = 'doppio'
AND gi1.IdT = gi2.IdT;

Table 6.5: Comparison of SQL Queries Based on Implied, Tautological or Inconsistent
Expression

65

Analysis of Inconsistent Expression-Implied, Tautological or Inconsistent Ex-
pression

Student Query: The inconsistency with the WHERE clause was comprised of both du-
plicated and inconsistent conditions, such as "genere = F AND AND IdG x IN...", that
created a tautological versus implied expression. We suspect that such inconsistencies seem
to indicate either a gap in understanding the formation of logical expressions or perhaps a
trivial syntactic error not corrected by the student.

ChatGPT Query: Though still well-formed, the ChatGPT query is complex by the
numerous joins and repeated table references to the same data (e.g., JOIN GIOCAIN gi1
and JOIN GIOCAIN gi2), thereby resulting in a duplication on criteria NomeCategoria
("singles" and "doppio"). This excessive complications implies all of these relation-
ships that are not needed for the purpose of querying.

Both student and ChatGPT queries are good examples of a common SQL fallacy where
predicates become inconsistent or redundant due to implicit conditions making an expres-
sion vacuous or tautological. This is a good reminder for students that greater precision in
concise logical structuring, where expressions are arranged so that each directly supports
the desired conclusion—without irrelevant digressions—is critical. Fine-tuning ChatGPT
to better focus on relevant requirements and to avoid implied or additional relations would
produce simpler queries with corresponding SQL expressions that are clearer and more
efficient. For students, exercises focusing on removing implied conditions that do not con-
tribute to the logical expressiveness of the query would be beneficial.

6.1.6 Nonstandard Keywords or Standard Keywords in Wrong
Context

Question: Select the names of the products in the beverages category (bevande) that
were not ordered in 2023.

66

Query Type SQL Query
Expected Query

SELECT idProd , P.nome
FROM Prodotto P
JOIN Categoria C ON P.idCat = C.idCat
WHERE C.nome = 'Bevande'
AND idProd NOT IN (

SELECT idProd
FROM Ordine O
JOIN DettaglioOrdine D
ON O.idOrd = D.idOrd
WHERE EXTRACT (YEAR FROM data) = '2023'

)

Student Query
SELECT p.Nome
FROM Prodotto p JOIN
Dettaglio_ORDINE ON p.IDProd= d.IDProd
JOIN Ordine O ON O.IDORD = O.IDORDD
WHERE p.IdCat ="bevanDe" AND
EXTRACT(YEAR FROM date)! = 2023
OR O.IDPROD IS NULL

ChatGPT Query
SELECT P.nome
FROM Prodotto P
JOIN Categoria C ON P.idCat = C.idCat
LEFT JOIN DettaglioOrdine DO
ON P.idProd = DO.idProd
LEFT JOIN Ordine O ON DO.idOrd = O.idOrd AND
EXTRACT(YEAR FROM O.data) = 2023
WHERE C.nome = 'bevande' AND O.idOrd IS NULL;

Table 6.6: Comparison of SQL Queries Based on Nonstandard Keywords or Standard
Keywords in Wrong Context

Analysis of Nonstandard Keywords or Standard Keywords in Wrong Context

67

Student Query: The student’s query contains many syntax errors due to non-standard
use of terms and inappropriate use of SQL conventions. For example, for IdCat, bevanDe
is the value; presumably it should match the category Bevande, but the irregular cap-
italisation and quotation marks around bevanDe make this non-standard. In addition,
Dettaglio ORDINE and date are incorrectly capitalised and formatted, leading to ambi-
guity and potential execution errors. These linguistic errors illustrate the proper formatting
of conditional statements and a misreading of SQL’s keyword and case sensitivity rules.

ChatGPT Query: ChatGPT’s query shows a closer adherence to standard SQL syn-
tax but still contains some inconsistencies in keyword usage. Since "DO" is a reserved
word used in SQL, some people may be confused when DettaglioOrdine chooses "DO"
as a codename. It is also difficult to understand how LEFT JOIN with a condition on
EXTRACT(YEAR FROM O.data) = 2023 fits into the JOIN statement. ChatGPT’s query has
no major syntax errors but contains overly complex expressions that could be streamlined,
especially in the use of non-standard aliases and keywords in unconventional contexts.

In both queries, syntax errors and non-standard keyword usage reveal common SQL mis-
conceptions. Students often struggle with case sensitivity, poor operators, and inconsistent
capitalisation, leading to errors and misconceptions of results. Although better organised,
ChatGPT sometimes uses unusual aliases or contextually misleading terms, making the
query difficult to read. Emphasising normal SQL syntax norms, case sensitivity, and the
correct use of operators can help students reduce errors significantly. For ChatGPT, fine-
tuning could improve alias selection and context awareness to minimise the use of confusing
or non-standard keywords. Structured practice in the correct use of standard keywords and
operators and the avoidance of unconventional aliases would greatly improve the clarity
and accuracy of SQL queries for both students and AI models.

6.1.7 Unnecessary DISTINCT in SELECT Clause

Question: Select the names of products that have never been ordered by customers living
in Venice or Brescia.

68

Query Type SQL Query
Expected Query

SELECT idProd , nome
FROM Prodotto P
WHERE NOT EXISTS(SELECT nome
FROM Cliente C JOIN Ordine O
ON C.idClient= O.idClient
JOIN DettaglioOrdine D
ON P.idProd=D.idProd
WHERE C.citta IN ('Venezia', 'Brescia')
)

Student Query
SELECT P.NOME
FROM PRODOTTO P
WHERE p.idProd NOT IN (
SELECT DISTINCT d.IdProd
FROM Dettaglio_Ordine
JOIN Ordine O ON
d.idOrd= O.idOrd
JOIN Cliente C ON O.IdClient = c.idClient
WHERE C.citta = "venezia" OR
c.citta ="Brescia");

ChatGPT Query
SELECT nome
FROM Prodotto
WHERE idProd NOT IN (
SELECT DISTINCT DettaglioOrdine.idProd
FROM DettaglioOrdine
JOIN Ordine ON Dettaglio
Ordine.idOrd = Ordine.idOrd
JOIN Cliente ON
Ordine.idClient = Cliente.idClient
WHERE Cliente.citta IN ('Venezia', 'Brescia')
);

Table 6.7: Comparison of SQL Queries Based on Unnecessary DISTINCT in SELECT
Clause

69

Analysis of Unnecessary DISTINCT in SELECT Clause

Student Query: Not necessary in this case, the student query uses DISTINCT within the
sub-query to ensure original IdProd values. Using DISTINCT here adds extra processing
because NOT IN filters that depend on unique values do not affect the result. This is a
common mistake made by students, who may use DISTINCT to deal with apparent duplicate
values without fully understanding the purpose of NOT IN. Perhaps the student’s use of
DISTINCT shows a lack of confidence in SQL’s inherent ability to filter within the NOT IN
clause, resulting in a pointless and more complicated query.

ChatGPT Query: ChatGPT also uses DISTINCT in the subquery, although it is not
necessary. By doing this, ChatGPT’s query—along with the student’s—introduces an
additional level of complication that could affect performance. Although the form of the
ChatGPT query is more sophisticated, the pointless DISTINCT implies that the model lacks
sophisticated knowledge of the behaviour of SQL with NOT IN, where duplicates have no
effect on the output. This duplicity suggests that the AI model errs on the side of caution,
but at the cost of efficiency.

Both questions show misconceptions about the use of DISTINCT with NOT IN. For stu-
dents, this may be due to a belief that DISTINCT is always required to avoid repetition,
reflecting an over-reliance on this term without fully understanding its consequences. This
may indicate an underlying model behaviour for ChatGPT where redundancy is added to
ensure accuracy but without optimisation. Teaching students the specific scenarios where
DISTINCT is needed and when it is not would help them to produce more efficient SQL
queries. Similarly, improving ChatGPT to find situations where Distinct is unnecessary
would increase its efficiency, thereby generating correct and effective questions.

6.1.8 Extraneous Expression

Question: List the computer science students who passed Databases 1 (basi di dati
1) but not Graphic Interfaces (interfacce grafiche) in June 2010.

70

Query Type SQL Query
Expected Query

SELECT studente FROM esami
WHERE corso = 'bdd1n' AND voto >= 18
AND esami.data BETWEEN '2010 -06 -01'
AND '2010 -06 -30' EXCEPT SELECT studente
FROM esami WHERE corso = 'ig'
AND voto >= 18 AND esami.data BETWEEN
'2010 -06 -01' AND '2010 -06 -30';
)

Student Query
select matricola from studenti join esami on
studenti.matricola=esami.studente
where (corsodilaurea =9 and voto >=18 and
esami.corso='bdd1n' and data >'2010 -05 -31'
and data <'2010 -07 -01')
except select matricola from studenti join
esami on studenti.matricola=esami.studente
where (corsodilaurea =9 and voto >=18
and esami.corso='graf' and data >'2010 -05 -31'
and data <'2010 -07 -01');

ChatGPT Query
SELECT s.Matricola , s.Cognome , s.Nome
FROM Studenti s
JOIN Esami e1 ON s.Matricola = e1.Studente
JOIN Corsi c1 ON e1.Corso = c1.Id
LEFT JOIN Esami e2 ON s.Matricola = e2.Studente
AND e2.Corso = 'ig' AND e2.Data BETWEEN
'06/01/2010' AND '06/30/2010'
WHERE s.CorsoDiLaurea = 9
AND c1.Denominazione = 'Basi Di Dati 1'
AND e1.Voto >= 18
AND e1.Data BETWEEN '06/01/2010'
AND '06/30/2010'
AND (e2.Voto IS NULL OR e2.Voto < 18);

Table 6.8: Comparison of SQL Queries Based on Extraneous Expression

71

Analysis of Extraneous Expression

Student Query: The student’s query introduces unnecessary complexity by joining the
studenti table with esami and including a condition on corsodilaurea = 9, which has
no bearing on the goal of filtering students based on their exam performance in specific
courses (bdd1n and graf). Including this extraneous condition creates doubt and does
not assist in defining the main objective of the issue. Moreover, the repetitive, useless
duplicate filtering of the date range between both subqueries by the WHERE clause does
not optimise the reasoning. This is a myth wherein the learner can believe that adding
additional criteria or tables improves the accuracy of the query when in reality it just
needlessly complicates the statement.

ChatGPT Query: Though syntactically true, ChatGPT’s search adds extraneous words
that unnecessarily complicate the logic. Joining Corsi with redundant conditions like
c1.Denominazione = Basi Di Dati 1 adds overhead without contributing to get the in-
tended result. Additionally, the use of a LEFT JOIN with Esami (e2) and the condition
e2.Voto IS NULL OR e2.Voto < 18 offers an indirect method to accomplish what may
have been achieved more easily with a smaller exclusion criteria. These extra expressions
make the query more complex than required, reducing clarity and potentially affecting
performance.

Both searches expose a common SQL fallacy: the idea that adding table references or
more conditions would improve the correctness or thoroughness of the query. Actually,
this method adds pointless complexity, which makes debugging, reading, and optimising
searches more difficult.

For pupils, knowing succinct and targeted logical structures is crucial to make sure every
condition directly supports the desired result. Emphasising the need to remove pointless
joins and superfluous conditions from SQL queries, instructors should fine-tune ChatGPT’s
capacity to prioritise simplified, context-driven reasoning to assist in lowering unnecessary
expressions, thus producing more exact and efficient searches. Exercises aimed at removing
duplicates and preserving a clear, purpose-driven query structure will help students as well
as artificial intelligence systems.

6.1.9 Improper Nesting of Expressions

Question: List the computer science students who passed Databases 1 (basi di dati 1)
but not Graphic Interfaces (interface grafiche) in June 2010.

72

Query Type SQL Query
Expected Query

SELECT studente FROM esami
WHERE corso = 'bdd1n' AND voto >= 18
AND esami.data BETWEEN '2010 -06 -01'
AND '2010 -06 -30'EXCEPT SELECT studente
FROM esami WHERE corso = 'ig'
AND voto >= 18
AND esami.data BETWEEN '2010 -06 -01'
AND '2010 -06 -30';

Student Query
SELECT studenti.matricola , studenti.nome ,
studenti.cognome FROM studenti JOIN esami
on studenti.matricola = esami.studente
JOIN corsi on esami.corso = corsi.id
WHERE corsi.denominazione = 'Basi Di Dati 1'
AND esami.data >= '2010 -06 -01' and esami.data
<= '2010 -06 -30' AND studenti.corsodilaurea =
(SELECT id from corsidilaurea where
corsidilaurea.denominazione = 'Informatica')

ChatGPT Query
SELECT s.Matricola , s.Cognome , s.Nome
FROM Studenti s
JOIN Esami e1 ON s.Matricola = e1.Studente
JOIN Corsi c1 ON e1.Corso = c1.Id
WHERE c1.Denominazione = 'Basi Di Dati 1'
AND e1.Data BETWEEN
'06/01/2010' AND '06/30/2010'
AND e1.Voto >= 18 AND s.CorsoDiLaurea = 9
AND NOT EXISTS (SELECT 1 FROM Esami e2
JOIN Corsi c2 ON e2.Corso = c2.Id
WHERE e2.Studente = s.Matricola
AND c2.Denominazione = 'Interfacce Grafiche'
AND e2.Data BETWEEN '06/01/2010' AND
'06/30/2010' AND e2.Voto >= 18);

Table 6.9: Comparison of SQL Queries Based on Improper Nesting of Expressions

73

Analysis of Improper Nesting of Expressions

Student Query: The student’s query chooses students who passed Basi Di Dati 1 in a
particular range while attempting to remove those who also passed Interfacce Grafiche
during the same period. But its design uses EXCEPT with numerous joins and an integrated
sub-query to filter by corsidilaurea. Instead of directly focusing on the criteria to include
or exclude, this setup layers in extra joins that don’t contribute to the main goal. This
results in an overly nested structure that complicates understanding and makes the query
harder to follow. The query could have been simpler if it had more directly expressed the
inclusion and exclusion logic without these additional layers.

ChatGPT Query: ChatGPT’s approach, using NOT EXISTS for the exclusion criteria
within the main WHERE clause, is generally more streamlined. However, it still includes an
unrelated condition, s.CorsoDiLaurea = 9, which isn’t relevant to the main query goal
and occurs by nesting in the query.

Both times, we see a comparable problem: increasing complexity for no apparent use
related to the query. This implies that when creating queries, design calls for a more
direct, simpler approach. Students and artificial intelligence models should concentrate on
applying just necessary criteria and eliminating superfluous joins, thereby clarifying and
optimising their queries. Better query structure and readability may follow from teaching
students to identify and cut out these extraneous layers. This simplified technique not
only increases the accuracy of queries but also helps them to more closely relate with the
current work.

6.1.10 Unnecessary Complication

Question: List the student ID, who graduated in computer science (informatica) before
November 2009.

74

Query Type SQL Query
Expected Query

SELECT matricola
FROM studenti s JOIN corsidilaurea c ON
s.corsodilaurea = c.id
WHERE laurea < '2009 -11 -01'
AND denominazione = 'Informatica';

Student Query
SELECT DISTINCT Studenti.Matricola
FROM Studenti , Esami , Corsi
WHERE Studenti.Matricola = Esami.Studente
AND Esami.Corso = Corsi.Id
AND Corsi.CorsoDiLaurea = (

SELECT id
FROM CorsiDiLaurea
WHERE Denominazione = 'Informatica'

)
AND Studenti.Laurea < '2009 -11 -01';

ChatGPT Query
SELECT Matricola
FROM Studenti
WHERE CorsoDiLaurea IN (

SELECT id
FROM CorsiDiLaurea
WHERE Denominazione = 'Informatica'

)
AND Laurea < '2009 -11 -01';

Table 6.10: Comparison of SQL Queries Based on Unnecessary Complication

Analysis of Unnecessary Complication

Student Query: The student’s query introduces an unnecessary level of complexity by
including multiple joins and an additional sub-query. In particular, the student’s use of
tables such as Esami and Corsi in the query adds layers that do not contribute to the main
purpose, which is simply to find students in a particular degree program (Informatica)

75

who graduated before a certain date. By joining the Esami and Corsi tables and using
a sub-query to determine the course ID, the student has complicated the query beyond
what’s necessary. This overcomplication demonstrates the misconception that more tables
or joins will produce a more accurate result, when in fact they only increase the potential
for confusion and logical errors.

ChatGPT Query: Even if ChatGPT’s query is simpler than the student’s, it still has a
useless sub-query. It uses CorsoDiLaurea IN (SELECT id FROM CorsiDiLaurea WHERE
Denominazione = "Informatica"). This confuses things more than necessary. Simple
joins using CorsiDiLaurea would have produced the same results more quickly. Although
it still lacks the directness that would make it ideal, the structure of the question is better
than that of the student.

Both queries show a tendency to overuse subqueries and joins when a simpler solution
would suffice. This unnecessary complications could stem from the belief that SQL queries
require nested structures for accuracy, which isn’t always the case. Focusing on important
joins and criteria helps to make the query more efficient, and simpler SQL statements
follow. Teaching students when a simpler query structure is sufficient can help to avoid
this type of complexity and improve query speed and readability. For ChatGPT, a better
understanding of task-specific requirements could lead to more direct solutions free from
unnecessary frameworks. As a possible support measure for students, we could think in
explicitly stating whether a query requires subqueries or how many tables in total need to
be accessed.

6.2 Interpretation Based on Research Questions

What types of errors can generative artificial intelligence systems typically
produce when generating SQL queries?

Based on our results, generative AI systems often produce SQL problems that fall into
a few main categories: projection errors, unnecessary joins, missing essential columns,
overuse of distinct, and overly complicated query structures. The generative AI solutions
often result in duplicate or pointless components in the query, causing these errors. The
generative AI may therefore add complications or ambiguity, perhaps by offering non-
standard syntax or contextually incorrect keywords. In addition, sometimes AI-generated
queries lack the necessary structural alignment or filtering with the original query purpose,
resulting in inadequate responses.

How do these errors relate to common student misconceptions about learning
SQL?

Artificial intelligence errors might mirror typical SQL student errors like the motivation

76

to add pointless columns, joins, or duplicate subqueries driven on by the belief that more
data or complexity guarantees improved query accuracy. Particularly with clauses like tt
NOT IN, both artificial intelligence models and students replace tt DISTINCT for SQL’s
natural filtering capacity. These common mistakes draw attention to the belief that logical
coherence is subordinated to grammatical accuracy, therefore resulting in too complicated
and ineffective queries. Particularly in multiple-join or nested queries, generative AI models
such as ChatGPT-4o struggle with more general, context-specific semantics and logical
connections even when their training on error-free material usually helps them to avoid
syntactic errors.

In two main respects, generative artificial intelligence may support SQL teaching. First of
all, it offers precise examples to pupils and proper answers for syntactic problems. Second,
it may be a diagnostic tool, quickly spotting typical problems that cross over with student
errors, therefore lowering the requirement for hand-based query correction. The parallel
challenges faced by both groups underline the shared difficulty in mastering SQL’s logical
foundations. These insights emphasise the importance of developing logical reasoning in
SQL education and refining AI training to address complex, real-world query scenarios,
ensuring both students and AI models can construct precise and effective SQL queries.

6.3 Limitations of the Study

This research has some limits that need to be acknowledged. First of all, especially in
relation to student queries, the sample size was somewhat limited, therefore maybe not
entirely reflecting the spectrum of SQL learning difficulties experienced by a larger com-
munity. Small sample sizes may limit the extendability of the results and complicate the
process of getting solid conclusions on the larger population of students [Pil23].

Second, the generative AI models used in this work—such as ChatGPT-4o—are trained
on language models that rely heavily on the quality of their training data and prompt
design. While these models excel in natural language generation, their performance in
creating accurate and complex SQL queries is limited by the extent of their training and
fine-tuning for database-specific tasks. This limitation suggests that the AI’s ability to
generate SQL queries may not fully reflect student performance but rather highlights areas
where targeted prompt engineering, retrieval-augmented generation, or additional fine-
tuning could enhance the model’s capacity for complex SQL reasoning.

Moreover, focusing on already-existing generative artificial intelligence models restricts the
study by means of the knowledge base of the AI and training data. These models might
have been trained on obsolete or poor SQL patterns, therefore compromising their accuracy
against human learners.

77

Another restriction relates to the contextual knowledge of the artificial intelligence models.
Although good at syntactic creation, generative AI systems can lack the deep contextual
awareness required to manage challenging SQL quiries requiring a firm knowledge of data
connections. The fact that many students also suffer with SQL’s abstract logic adds to
this problem and makes it difficult to make unambiguous comparisons between artificial
intelligence and human performance [Sel24, ZK23].

Finally, the educational setting in which the generative AI models and students were eval-
uated could not be exactly like practical uses. The study does not fully include variations
in curriculum contents, instructional styles, or student backgrounds—which can influence
the nature and frequency of errors. This contextual gap could limit the application of the
findings to various learning environments [Dav24].

78

Chapter 7

Conclusions

7.1 Summary of Research

This thesis examined how errors produced by artificial intelligence matched student mis-
conceptions about SQL query creation. Analysing human learners in addition to artificial
intelligence models like ChatGPT-4o and ChatGPT-4o-mini assisted the research to iden-
tify common themes in SQL mistakes, most crucially in the domains of syntax, semantics,
complication, and logic. With an eye towards difficult situations requiring many joins and
sub-queries, the research sought to show where both artificial intelligence and students
struggle with SQL queries. The results highlight the limits of depending only on gener-
ative AI for teaching such a complex topic as well as providing ideas on how artificial
intelligence may support SQL instruction.

7.2 Key Findings

The key findings of this thesis highlight significant parallels between the SQL misconcep-
tions that students often encounter and those generated by ChatGPT. The most preva-
lent issues, including projection errors, unnecessary joins, and missing columns in SELECT
clauses, suggest a shared difficulty in understanding when to include only essential ele-
ments for the query’s intended outcome. Indicating a tendency to add components in an
effort to cover all possibilities rather than simplify for speed and clarity, both students and
AI may fall into the trap of overcomplicating queries with redundant joins or DISTINCT
statements.

One very striking result is that while organising queries, ChatGPT and students both
show comparable logical mistakes, suggesting that generative AI might act as a diagnostic

79

mirror to point out areas where students struggle conceptually. For instance, projection
errors where extraneous columns are included demonstrate that both students and AI
models benefit from explicit guidance on selecting only relevant data. The AI’s use of
nonstandard syntax in certain contexts mirrors student struggles with SQL’s syntactical
agreement, which points to a broader need for augmenting the importance of standardised
syntax in SQL instruction.

These repeating trends mention that ChatGPT, with its constraints, has promise as a
tool in instructional environments for spotting and fixing typical SQL mistakes. By using
AI-generated errors as learning points, educators can anticipate and preemptively address
specific SQL misconceptions, creating more effective and targeted instructional materials.
Furthermore, the results of this research reveal that focused training may enable artificial
intelligence models as well as students to produce SQL queries that are more precisely
linked with the objectives of database querying.

7.3 Implications for SQL Education

Studying SQL misconceptions and the difficulties students encounter reveals several areas
where SQL teaching needs to be improved [HW20] and [TS20]. Both syntactic knowledge
and a deeper awareness of SQL logic, complications, and semantics need to be given top
priority. Although many students struggle more with the logical and syntactic elements of
SQL, such as joins and nested queries, traditional training approaches generally emphasise
syntax, and this was also mentioned in [ASR10] and [FS15].

Studies have shown that combining theoretical knowledge with useful applications clar-
ifies for students how SQL works in real-world situations [AGS20]. As emphasised in
many educational methods, project-based learning and hands-on experience help students
avoid common misconceptions by improving their ability to use SQL in real-world contexts
[Pan24].

Virtual instructors could help improve learning by identifying and correcting errors in real
time [MGJ+24]. Artificial intelligence-based feedback systems provide another interactive
learning tool. These methods allow one to overcome logical problems in creating SQL
queries and learn from mistakes more quickly. In addition, peer-based learning environ-
ments—where students engage in dialogue and quizzes with each other—have been shown
to help clarify ideas between students, thereby reducing logical errors.

The evolution of SQL training will be greatly enhanced by the incorporation of AI-powered
tools for real-time identification and correction of logical and semantic errors. Artificial
intelligence technology has the potential to assist students in identifying and correcting
common errors before they become mainstream. In addition, these systems can provide

80

targeted feedback on areas of weakness and adapt to the individual needs of the student
to personalise the learning [AS12].

Finally, by incorporating AI-powered tools and collaborative environments and by adapting
SQL instruction to emphasise not only syntax but also deep logical understanding, students
would be better prepared to handle the intricacies of SQL in professional situations.

As a recommendation for educators, this study demonstrated that, at the current stage,
students cannot rely on generative AI only to learn SQL. Teachers should focus on teaching
the basic SQL query logic since both generative AI models and students struggle with
logical consistency in SQL queries. The lesson should emphasise how joins, sub-queries,
and conditions interact within a query. Since SQL is best acquired by experience, teachers
should provide chances where students might put theory to practice by working together
on practical database challenges. Through better communication of their mental processes,
collaborative learning enables students to understand SQL logic more fully.

Generative AI can be exploited as a complementing tool, e.g., in supporting students
learning SQL syntax and getting immediate feedback.

7.4 Future Research Directions

Future studies should widen the field by including more student SQL queries across many
experience levels. This would provide a closer understanding of how SQL knowledge devel-
ops and the particular phases in which students have difficulty. Comparing many artificial
intelligence models, outside of ChatGPT-4o and ChatGPT-4o-mini, would provide a more
complete picture of how SQL jobs are handled and where they may either exceed or lag
behind human learners.

Another study may look at how best to use artificial intelligence in SQL instruction to dispel
misconceptions. Adaptive learning systems that can both detect student and AI-based
mistakes, for example, can provide customised help to let students overcome particular
SQL issues. Longitudinal studies measuring how student assumptions evolve with greater
artificial intelligence integration over time will ultimately serve to define the long-term
efficacy of AI-assisted SQL training.

In general, even though generative AI models provide perceptive study of common SQL
errors, their limitations, along with those of human learners, highlight the need for contin-
uous SQL research and improvements.

81

Bibliography

[AB23] Eman A Alasadi and Carlos R Baiz. Generative AI in education and
research: Opportunities, concerns, and solutions. Journal of Chemical
Education, 100(8):2965–2971, 2023.

[ABV+16] Alireza Ahadi, Vahid Behbood, Arto Vihavainen, Julia Prior, and Ray-
mond Lister. Students syntactic mistakes in writing seven different types
of SQL queries and its application to predicting students success. In Pro-
ceedings of the 47th ACM Technical Symposium on Computing Science
Education, pages 401–406. IEEE, 2016.

[AFM24] Willem Aerts, George Fletcher, and Daphne Miedema. A feasibility study
on automated sql exercise generation with chatgpt-3.5. In Proceedings
of the 3rd International Workshop on Data Systems Education: Bridging
education practice with education research, pages 13–19, 2024.

[AGS20] Kenneth Li-Minn Ang, Feng Lu Ge, and Kah Phooi Seng. Big educa-
tional data & analytics: Survey, architecture and challenges. IEEE access,
8:116392–116414, 2020.

[AOP+04] Vincent Aleven, Amy Ogan, Octav Popescu, Cristen Torrey, and Kenneth
Koedinger. Evaluating the effectiveness of a tutorial dialogue system for
self-explanation. In Intelligent Tutoring Systems: 7th International Con-
ference, ITS 2004, Maceió, Alagoas, Brazil, August 30-September 3, 2004.
Proceedings 7, pages 443–454. Springer, 2004.

[APBL16] Alireza Ahadi, Julia Prior, Vahid Behbood, and Raymond Lister. Stu-
dents’ semantic mistakes in writing seven different types of SQL queries.
In Proceedings of the 2016 ACM Conference on Innovation and Technology
in Computer Science Education, pages 272–277, 2016.

[AS12] Huda Al-Shuaily. Analyzing the influence of SQL teaching and learning
methods and approaches. In 10th International Workshop on the Teaching,
Learning and Assessment of Databases, volume 3, 2012.

82

[AS13] Huda Al-Shuaily. SQL pattern design, development & evaluation of its
efficacy. PhD thesis, University of Glasgow, 2013.

[ASR10] Huda Al-Shuaily and Karen Renaud. SQL patterns-a new approach for
teaching SQL. In 8th HEA Workshop on Teaching, Learning and Assess-
ment of Databases, Abertay-Dundee, pages 29–40, 2010.

[ASR14] Huda Al-Shuaily and Karen Renaud. SQL Pattern Design and Develop-
ment. submitted for review, 2014.

[BBPP+24] Antonio Balderas, Rubén Baena-Pérez, Tatiana Person, José Miguel Mota,
and Iván Ruiz-Rube. Chatbot-based learning platform for SQL training.
International Journal of Interactive Multimedia and Artificial Intelligence,
2024.

[BG06] Stefan Brass and Christian Goldberg. Semantic errors in SQL queries: A
quite complete list. Journal of Systems and Software, 79(5):630–644, 2006.

[BKS14] Gautam Biswas, John S Kinnebrew, and James R Segedy. Using a cog-
nitive/metacognitive task model to analyze students learning behaviors.
In Foundations of Augmented Cognition. Advancing Human Performance
and Decision-Making through Adaptive Systems: 8th International Con-
ference, AC 2014, Held as Part of HCI International 2014, Heraklion,
Crete, Greece, June 22-27, 2014. Proceedings 8, pages 190–201. Springer,
2014.

[CDRFM18] Luca Cagliero, Luigi De Russis, Laura Farinetti, and Teodoro Montanaro.
Improving the effectiveness of SQL learning practice: a data-driven ap-
proach. In 2018 IEEE 42nd Annual Computer Software and Applications
Conference (COMPSAC), volume 1, pages 980–989. IEEE, 2018.

[CFFM24] Luca Cagliero, Laura Farinetti, Jacopo Fior, and Andrea Ignazio Manenti.
ChatGPT, be my teaching assistant! Automatic Correction of SQL Exer-
cises. In 2024 IEEE 48th Annual Computers, Software, and Applications
Conference (COMPSAC), pages 81–87. IEEE, 2024.

[CRA91] Albert T Corbett and John R Anderson. Feedback control and learning
to program with the CMU LISP tutor. In Feedback control and learning
to program with the CMU LISP tutor. Carnegie Mellon University, 1991.

[Dav24] Adrian John Davis. AI rising in higher education: opportunities, risks and
limitations. Asian Education and Development Studies, 2024.

83

[DLN+06] Jason Dagit, Joseph Lawrance, Christoph Neumann, Margaret Burnett,
Ronald Metoyer, and Sam Adams. Using cognitive dimensions: advice
from the trenches. Journal of Visual Languages & Computing, 17(4):302–
327, 2006.

[DZG+23] Xuemei Dong, Chao Zhang, Yuhang Ge, Yuren Mao, Yunjun Gao, Jinshu
Lin, Dongfang Lou, et al. C3: Zero-shot text-to-SQL with chatGPT. arXiv
preprint arXiv:2307.07306, 2023.

[FS15] Marin Fotache and Catalin Strimbei. SQL and data analysis. Some impli-
cations for data analysits and higher education. Procedia Economics and
Finance, 20:243–251, 2015.

[GM15] Philip Garner and John Mariani. Learning SQL in steps. Learning, 12:23,
2015.

[GRGDNT+24] Frank Guerra-Reyes, Eric Guerra-Dávila, Miguel Naranjo-Toro, Andrea
Basantes-Andrade, and Sandra Guevara-Betancourt. Misconceptions in
the Learning of Natural Sciences: A Systematic Review. Education Sci-
ences, 14(5):497, 2024.

[HH16] Aarij Mahmood Hussaan and Farhan Muhammad Hassan. Learning by
teaching SQL Queries to Teachable Agent Using Meta-cognitive tech-
niques. ASIAN JOURNAL OF ENGINEERING SCIENCES and TECH-
NOLOGY, 2016.

[HW20] Zahra Hatami and Peter Wolcott. Understanding Students’ Identification
and Use of Patterns While Writing SQL Queries. In Proceedings of the
21st Annual Conference on Information Technology Education, pages 20–
25, 2020.

[Juh13] Sorva Juha. Notional machines and introductory programming education.
ACM Trans. Comput. Educ, 13(2):1–31, 2013.

[KAHM97] Kenneth R Koedinger, John R Anderson, William H Hadley, and Mary A
Mark. Intelligent tutoring goes to school in the big city. International
Journal of Artificial Intelligence in Education, 8:30–43, 1997.

[KPÇ24] Yunus Kökver, Hüseyin Miraç Pektaş, and Harun Çelik. Artificial intel-
ligence applications in education: Natural language processing in detect-
ing misconceptions. Education and Information Technologies, pages 1–32,
2024.

84

[KRM+24] Harsh Kumar, Mohi Reza, Jeb Mitchell, Ilya Musabirov, Lisa Zhang,
and Michael Liut. Understanding Help-Seeking Behavior of Students
Using LLMs vs. Web Search for Writing SQL Queries. arXiv preprint
arXiv:2408.08401, 2024.

[MAF22] Daphne Miedema, Efthimia Aivaloglou, and George Fletcher. Identifying
SQL misconceptions of novices: Findings from a think-aloud study. ACM
Inroads, 13(1):52–65, 2022.

[MGJ+24] Chandra Maddila, Negar Ghorbani, Kosay Jabre, Vijayaraghavan Murali,
Edwin Kim, Parth Thakkar, Nikolay Pavlovich Laptev, Olivia Harman,
Diana Hsu, Rui Abreu, et al. AI-Assisted SQL Authoring at Industry
Scale. arXiv preprint arXiv:2407.13280, 2024.

[MHLD24] Matija Mikac, Miroslav Horvatić, Robert Logožar, and Emil Dumić.
ChatGPT in Education-Use Cases in an Introductory Web Programming
Course. In INTED2024 Proceedings, pages 3173–3182. IATED, 2024.

[Mit98] Antonija Mitrovic. Learning SQL with a computerized tutor. In Pro-
ceedings of the twenty-ninth SIGCSE technical symposium on Computer
science education, pages 307–311, 1998.

[Mit03] Antonija Mitrovic. An intelligent SQL tutor on the web. International
Journal of Artificial Intelligence in Education, 13(2-4):173–197, 2003.

[MM24] Khadija MAJHADI and Mustapha MACHKOUR. Chat-SQL: Natural
Language text to SQL Queries based on Deep Learning Techniques. Jour-
nal of Theoretical and Applied Information Technology, 102(12), 2024.

[MWL24] Erik Marx, Clemens Witt, and Thiemo Leonhardt. Identifying Secondary
School Students’ Misconceptions about Machine Learning: An Interview
Study. In Proceedings of the 19th WiPSCE Conference on Primary and
Secondary Computing Education Research, pages 1–10, 2024.

[NGF+24] Eduardo R Nascimento, Grettel M Garcıa, Lucas Feijó, Wendy Z Victorio,
Yenier T Izquierdo, Aiko R de Oliveira, Gustavo MC Coelho, Melissa
Lemos, Robinson LS Garcia, Luiz AP Paes Leme, et al. Text-to-SQL
Meets the Real-World. In 26th Int. Conf. on Enterprise Info. Sys, 2024.

[Ohl94] Stellan Ohlsson. Constraint-based student modeling. In Student mod-
elling: the key to individualized knowledge-based instruction, pages 167–
189. Springer, 1994.

85

[OLGJ+23] Anne Ottenbreit-Leftwich, Krista Glazewski, Minji Jeon, Katie Jan-
taraweragul, Cindy E Hmelo-Silver, Adam Scribner, Seung Lee, Bradford
Mott, and James Lester. Lessons learned for AI education with elementary
students and teachers. International Journal of Artificial Intelligence in
Education, 33(2):267–289, 2023.

[Pan24] Vijay Panwar. AI-Driven Query Optimization: Revolutionizing Database
Performance and Efficiency. arXiv preprint arXiv:2407.13280, 2024.

[PBAH20] Seth Poulsen, Liia Butler, Abdussalam Alawini, and Geoffrey L Herman.
Insights from student solutions to SQL homework problems. In Proceedings
of the 2020 ACM Conference on Innovation and Technology in Computer
Science Education, pages 404–410, 2020.

[Pil23] Giuseppe Carmelo Pillera. In dialogue with ChatGPT on the potential
and limitations of AI for evaluation in education. PEDAGOGIA OGGI,
21(1):301–315, 2023.

[PM+01] John F Pane, Brad A Myers, et al. Studying the language and structure
in non-programmers’ solutions to programming problems. International
Journal of Human-Computer Studies, 54(2):237–264, 2001.

[PMHS21] Kai Presler-Marshall, Sarah Heckman, and Kathryn Stolee. SQLRepair:
Identifying and repairing mistakes in student-authored SQL queries. In
2021 IEEE/ACM 43rd International Conference on Software Engineering:
Software Engineering Education and Training (ICSE-SEET), pages 199–
210. IEEE, 2021.

[PRH+24] Kishore Prakash, Shashwat Rao, Rayan Hamza, Jack Lukich, Vatsal
Chaudhari, and Arnab Nandi. Integrating LLMs into Database Systems
Education. In Proceedings of the 3rd International Workshop on Data
Systems Education: Bridging education practice with education research,
pages 33–39, 2024.

[RB13] Alexander Hoem Rosbach and Anya Helene Bagge. Classifying and mea-
suring student problems and misconceptions. Akademika forlag, 2013.

[Sel24] Neil Selwyn. On the limits of artificial intelligence (AI) in education.
Nordisk tidsskrift for pedagogikk og kritikk, 10(1):3–14, 2024.

[SY23] Jiahong Su and Weipeng Yang. Unlocking the power of ChatGPT: A
framework for applying generative AI in education. ECNU Review of
Education, 6(3):355–366, 2023.

86

[Tai20] Toni Taipalus. Explaining causes behind SQL query formulation errors.
In 2020 IEEE Frontiers in Education Conference (FIE), pages 1–9. IEEE,
2020.

[Tia23] Yang Tian. Limitations and Advancements of AI Teachers in Classroom
Instruction. Education and Teaching Research, 3:66–72, 2023.

[Tra24] Daniele Traversaro. Insegnare SQL a Chi Non Ha Mai Programmato:
Analisi delle Misconcenzioni. ITADINFO, 2024.

[TS20] Toni Taipalus and Ville Seppänen. SQL education: A systematic map-
ping study and future research agenda. ACM Transactions on Computing
Education (TOCE), 20(3):1–33, 2020.

[TSV18] Toni Taipalus, Mikko Siponen, and Tero Vartiainen. Errors and com-
plications in SQL query formulation. ACM Transactions on Computing
Education (TOCE), 18(3):1–29, 2018.

[WS81] Charles Welty and David W Stemple. Human factors comparison of a
procedural and a nonprocedural query language. ACM Transactions on
Database Systems (TODS), 6(4):626–649, 1981.

[ZK23] Zuhair Dawood Zaghlool and Mohamad Ahmad Saleem Khasawneh. In-
corporating the Impacts and Limitations of AI-Driven Feedback, Evalu-
ation, and Real-Time Conversation Tools in Foreign Language Learning.
Migration Letters, 20(7):1071–1083, 2023.

87

Appendix A

Query Complexity

Source Query SQL Query Complexity
Database
Exam Model
(GIOCA-
TORE)

The French players
who have never been
TestaDiSerie.

SELECT DISTINCT IdG FROM
GIOCATORE WHERE Nazione =
'Francia' AND IdG NOT IN (SE-
LECT DISTINCT IdG FROM GIO-
CAIN NATURAL JOIN REGIS-
TRAZIONE WHERE TestaDiSerie)

Medium

Database
Exam Model
(GIOCA-
TORE)

German players who
have never
participated in
Wimbledon.

SELECT DISTINCT IdG FROM
GIOCATORE WHERE Nazione =
'Germania' AND IdG NOT IN (SE-
LECT DISTINCT IdG FROM GIO-
CAIN NATURAL JOIN TORNEO
WHERE NomeT = 'Wimbledon')

Medium

Database
Exam Model
(GIOCA-
TORE)

Players who
participated in both
the singles and
doubles categories in
the same tournament.

SELECT DISTINCT IdG FROM
GIOCATORE NATURAL JOIN
GIOCAIN NATURAL JOIN CAT-
EGORIA WHERE Genere = 'f'
AND NomeCategoria = 'singolo'
AND (IdG, IdT) IN (SELECT DIS-
TINCT IdG, IdT FROM GIO-
CAIN NATURAL JOIN CATEGO-
RIA WHERE NomeCategoria =
'doppio')

Hard

88

Source Query SQL Query Complexity
Computer
Science
Database
Laboratories
Model

List the student ID
and names of students
enrolled before
2007/2008 who are
not yet in the thesis
phase.

SELECT matricola, nome, cognome
FROM studenti WHERE iscrizione
<2007 AND relatore IS NULL

Simple

Computer
Science
Database
Laboratories
Model

List the student ID of
students who
graduated in
computer science
before November
2009.

SELECT matricola FROM stu-
denti s JOIN corsidilaurea c ON
s.corsodilaurea = c.id WHERE lau-
rea <'2009-11-01' AND denomi-
nazione = 'Informatica';

Simple

Computer
Science
Database
Laboratories
Model

List degree courses, in
alphabetical order by
faculty and course
name, activated
before 2006/2007 and
after 2009/2010.

SELECT facolta, denominazione
FROM corsidilaurea WHERE
attivazione >'2006/2007'OR atti-
vazione >'2009/2010'ORDER BY
facolta, denominazione;

Simple

Engineering
Database
Laboratories
Model

Select the names of
products in the
beverages category
that were not ordered
in 2023.

SELECt idProd, P.nome FROM
Prodotto P JOIN Categoria C ON
P.idCat = C.idCat WHERE C.nome
= 'Bevande' AND idProd NOT
IN (SELECT idProd FROM Or-
dine O JOIN DettaglioOrdine D ON
O.idOrd = D.idOrd WHERE EX-
TRACT (YEAR FROM data) =
'2023')

Hard

Engineering
Database
Laboratories
Model

Select the total
amount of the last
order made by the
customer with ID
"1234".

SELECT O.idOrd, SUM
(prezzo*d.quantità) AS To-
taleOrdine FROM Ordine O
JOIN DettaglioOrdine D ON
O.idOrd=D.idOrd JOIN Prodotto P
ON D.idProd = P.idProd WHERE
O.idClient = '1234' AND O.data
= (SELECT MAX(data) FROM
Ordine WHERE idClient='1234')
GROUP BY O.idOrd

Hard

89

Source Query SQL Query Complexity
Engineering
Database
Laboratories
Model

Select the names of
the products that
have never been
ordered by customers
residing in Venezia or
Brescia.

SELECT idProd, nome FROM
Prodotto P WHERE NOT EX-
ISTS(SELECT nome FROM
Cliente C JOIN Ordine O
ON C.idClient= O.idClient
JOIN DettaglioOrdine D ON
P.idProd=D.idProd WHERE
C.città IN ('Venezia', 'Brescia'))

Hard

Miedema
Thesis
Database
Model

List all IDs and
names of customers
living in Eindhoven.

SELECT cID, cName FROM cus-
tomer WHERE city = 'Eindhoven';

Simple

Miedema
Thesis
Database
Model

Return the stores
table ordered
alphabetically by city.

SELECT city, COUNT(sID) AS
num-stores FROM store GROUP
BY city;

Simple

Database
Exam Model
(GIOCA-
TORE)

Italian players who
participated in both
the US Open and the
Australian Open in
the same year.

SELECT DISTINCT IdG FROM
GIOCATORE NATURAL JOIN
GIOCAIN NATURAL JOIN
TORNEO WHERE Nazione =
'Italia' AND NomeT = 'US Open'
AND (IdG,YEAR(DataNascita))
IN (SELECT DISTINCT IdG,
YEAR(DataNasdcita) FROM GIO-
CAIN NATURAL JOIN TORNEO
WHERE NomeT = 'Australian
Open')

Hard

Database
Exam Model
(GIOCA-
TORE)

The tournament with
the highest number of
TestaDiSerie.

SELECT DISTINCT IdT FROM
REGISTRAZIONE WHERE Tes-
taDiSerie GROUP BY IdT HAV-
ING COUNT(*) >= ALL (SE-
LECT COUNT(*) FROM REGIS-
TRAZIONE WHERE TestaDiSerie
GROUP BY IdT)

Medium

90

Source Query SQL Query Complexity
Database
Exam Model
(GIOCA-
TORE)

The player who has
played the most
different tournaments.

SELECT DISTINCT IdG FROM
GIOCATORE NATURAL JOIN
GIOCAIN NATURAL JOIN CAT-
EGORIA WHERE Genere = 'f'The
player who has AND NomeCate-
goria = 'singolo'The player who
has AND (IdG, IdT) IN (SELECT
DISTINCT IdG, IdT FROM GIO-
CAIN NATURAL JOIN CATEGO-
RIA WHERE NomeCategoria =
'doppio')

Hard

Computer
Science
Database
Laboratories
Model

List the last name,
first name, and status
('studente'/'
professore') of
students and
professors.

SELECT nome, cognome, 'stu-
dente' AS qualifica FROM stu-
denti UNION ALL SELECT nome,
cognome, 'professore' AS qualifica
FROM professori;

Medium

Computer
Science
Database
Laboratories
Model

List computer science
students who passed
Databases 1 but not
Graphic Interfaces in
June 2010.

SELECT studente FROM esami
WHERE corso = 'bdd1n' AND voto
>= 18 AND esami.data BETWEEN
'2010-06-01' AND '2010-06-30' EX-
CEPT SELECT studente FROM
esami WHERE corso = 'ig' AND
voto >= 18 AND esami.data BE-
TWEEN '2010-06-01 ' AND '2010-
06-30';

Hard

Computer
Science
Database
Laboratories
Model

List computer science
students who passed
both Databases 1 and
Graphic Interfaces in
June 2010.

SELECT studente FROM esami
WHERE corso = 'bdd1n' AND
voto >= 18 AND esami.data BE-
TWEEN '2010-06-01' AND '2010-
06-30' INTERSECT SELECT stu-
dente FROM esami WHERE corso
= 'ig' AND voto >= 18 AND
esami.data BETWEEN '2010-06-01'
AND '2010-06-30';

Hard

Miedema
Thesis
Database
Model

Return a list of the
number of stores per
city.

SELECT city, COUNT(sID) AS
num-stores FROM store GROUP
BY city;

Simple

91

Source Query SQL Query Complexity
Miedema
Thesis
Database
Model

List all pairs of
customer IDs who live
on a street with the
same name but in
different cities.

SELECT c1.cid AS id1, c2.cid AS
id2 FROM customer c1 JOIN cus-
tomer c2 ON c1.street = c2.street
AND c1.city != c2.city WHERE
c1.cID <c2.cID;

Medium

Database
Exam Model
(GIOCA-
TORE)

The tournament with
the highest average
age of players (also
considered correct
current age).

SELECT DISTINCT IdT FROM
TORNEO NATURAL JOIN GIO-
CAIN NATURAL JOIN GIOCA-
TORE GROUP BY IdT HAVING
AVG(DataI-DataN) >= ALL (SE-
LECT AVG(DataI-DataN) FROM
TORNEO NATURAL JOIN GIO-
CAIN NATURAL JOIN GIOCA-
TORE GROUP BY IdT)

Hard

Database
Exam Model
(GIOCA-
TORE)

The tournament in
which players from
the greatest number
of different nations
participated.

SELECT DISTINCT IdT FROM
GIOCAIN NATURAL JOIN
GIOCATORE GROUP BY IdT
HAVING COUNT(DISTINCT
Nazione) >= ALL (SELECT
COUNT(DISTINCT Nazione)
FROM GIOCAIN NATURAL
JOIN GIOCATORE GROUP BY
IdT)

Hard

Computer
Science
Database
Laboratories
Model

Return an
alphabetical list of
student names, with
the last name of their
associated advisor for
each one.

SELECT s.cognome, s.nome,
p.cognome FROM studenti s JOIN
professori p ON s.relatore = p.id
ORDER BY s.cognome, s.nome;

Medium

92

Source Query SQL Query Complexity
Computer
Science
Database
Laboratories
Model

Return the list,
without duplicates
and in reverse
alphabetical order, of
students who
submitted the study
plan for the fifth year
of the computer
science degree course
in 2011/2012 and are
in the thesis phase.

SELECT s.cognome, s.nome FROM
studenti s JOIN pianidistudio p on
s.matricola = p.studente WHERE
p.anno = 5 AND p.annoaccademico
= 2011 AND s.relatore IS NOT
NULL ORDER BY s.cognome
DESC, s.nome DESC;

Hard

Miedema
Thesis
Database
Model

List all customer IDs,
dates, and quantities
of transactions
containing products
named Apples.

SELECT t.cID, t.date, t.quantity
FROM transaction t JOIN prod-
uct p ON t.pID = p.pID WHERE
p.pName = 'Apples';

Hard

Miedema
Thesis
Database
Model

Retrieve store-chains
with multiple
branches within the
same city but
different addresses.

SELECT s.sName FROM store s
JOIN transaction t ON s.sID =
t.sID GROUP BY s.sName HAV-
ING COUNT(DISTINCT s.sID)
>= 2 AND AVG(t.quantity) >4;

Medium

Table A.1: Query Complexity Categorization

93

Appendix B

Misconceptions Categories Excel File

Figure B.1: Misconceptions Categories Excel Sample 1

94

Figure B.2: Misconceptions Categories Excel Sample 2

95

	List of Figures
	List of Tables
	Chapter Introduction
	Background
	Problem Statement
	Research Objectives
	Research Questions
	Scope
	Outline of the Document

	Chapter Literature Review
	Student Misconceptions
	SQL Learning and SQL Misconceptions
	Overview of SQL Learning Difficulties
	Analysis of SQL Query Errors

	Generative AI in Education
	Using AI in SQL Learning
	Conclusions and Reference Categorisation

	Chapter Research Methodology
	Chapter Our Study
	Datasets: SQL Schemas and Queries
	Schema 1: Database Exam
	Schema 2: Computer Science Database Laboratories
	Schema 3: Engineering Database Laboratories
	Schema 4: Miedema Thesis Database
	Query Complexity

	Collecting Produced Queries
	Collecting Queries Produced by Students
	Collecting Queries Produced by ChatGPT

	Identifying Misconceptions Produced by Students and ChatGPT
	Summary of Analysis Dimensions and Dataset Distribution

	Chapter Results
	Overview of Result Based on Misconceptions Type
	Correlation between Misconception Category and Author (Students vs ChatGPT)
	Impact of SQL Query Complexity on Misconceptions
	Comparison of ChatGPT and Students on Individual Queries
	Comparison Computer Science and Computer Engineering Top 10 misconceptions
	Comparison of ChatGPT-4o and ChatGPT-4o-mini Top 10 misconceptions
	Related Queries Between Students and ChatGPT
	Top 10 Misconceptions by ChatGPT and Students
	Summary

	Chapter Discussion
	Interpretation of Top 10 Misconceptions
	Extraneous Column in SELECT
	Unnecessary Join
	Missing Column from SELECT
	Undefined Column
	Implied, Tautological, or Inconsistent Expression
	Nonstandard Keywords or Standard Keywords in Wrong Context
	Unnecessary DISTINCT in SELECT Clause
	Extraneous Expression
	Improper Nesting of Expressions
	Unnecessary Complication

	Interpretation Based on Research Questions
	Limitations of the Study

	Chapter Conclusions
	Summary of Research
	Key Findings
	Implications for SQL Education
	Future Research Directions

	Bibliography
	Appendix Query Complexity
	Appendix Misconceptions Categories Excel File

