
Università degli Studi di Genova

Department of Naval, Electric, and Electronic Engineering and
Telecommunications

Master’s Degree in Yacht Design

A Python-Implemented Vortex-Lattice
Approach for Propeller Optimisation

Author: Lisa Martinez

Supervisor: Simone Saettone, Asst. Professor at the Polytechnic University of Madrid

Tutor: Stefano Gaggero, Assoc. Professor at the University of Genoa

Date: March 2024

Location: Madrid, Spain

A Python-Implemented Vortex-Lattice Approach for Propeller Optimisation

To my mother and my brother

2

A Python-Implemented Vortex-Lattice Approach for Propeller Optimisation

Abstract
The aim of this study is to create a Python-based program utilizing the vortex lattice method
to enhance the efficiency of marine propellers while achieving a specified thrust.
The optimization procedure consists of solving a variational problem where the torque applied
to the propeller is minimized for a given propeller thrust. In classical theory, this problem is
addressed through an integral formulation where the propeller is represented as a lifting line
with a continuous distribution of circulation. Betz (1927) [1] and Lerbs (1952) [2] provided
solutions for this problem, respectively, for propellers in open water and in a radially varying
wake, establishing two optimal criteria. To tackle the problem, Munk’s displacement theorem is
applied, and the problem is linearized. The method employed in this study to solve the problem
is based on the approach outlined by Kerwin et al. (1986) [3].
In this method, the approach involves discretizing the continuous distribution of circulation,
which allows for a direct solution to the problem without relying on classical theory assumptions.
Unlike Kerwin et al., who employed a lifting line model for the propeller, this study utilizes the
vortex lattice method. This method enables the integration of the entire blade’s impact into
the optimization process. The vortex lattice method entails representing the propeller blade
with a grid of quadrilateral panels, each with constant circulation. Consequently, horseshoe
vortices are formed, following helical trajectories. According to Munk’s displacement theorem,
specifying the chordwise distribution of circulation is necessary to solve the variational problem.
However, it is noted that the primary contribution to the propeller blade’s forces comes from the
vortex located along the trailing edge, which combines the two shed vortices into a horseshoe
vortex. Indeed, in accordance with Munk’s displacement theorem, the form of the chordwise
distribution of circulation has only a small influence on the results. By incorporating the entire
blade in the optimization process, this study aims to examine the impact of propeller geometry
on the optimal circulation distribution, thus providing a comparison with Olsen’s findings [4].
The study compared the performance of four propellers, each with systematically varied skew
and skew-induced rake, from the David W. Taylor Naval Ship Research and Development Center
(DTNSRDC) series against the findings of Olsen (2001) [4]. This comparison was found to be
highly satisfactory, revealing a consistent trend in the results.
In conclusion, this study presents an approach to optimizing the distribution of circulation
along a propeller blade, leveraging the vortex lattice method to extend beyond the confines of
classical theory. This methodology facilitates a detailed integration of propeller blade geometry
into the optimization process, offering a deeper insight into how propeller geometry influences
performance. Importantly, the use of Python, a free and open-source programming language,
underscores the study’s commitment to accessibility and reproducibility. The Python code
developed for this project will be made available in the appendix, allowing others to replicate,
verify, and build upon this work without financial barriers. The findings align with and expand
upon previous research (Mishima and Kinnas 1997 [36]), notably demonstrating efficiency
improvements with increased skew.

3

A Python-Implemented Vortex-Lattice Approach for Propeller Optimisation

Riassunto
L’obiettivo di questo studio è creare un programma basato su Python che utilizzi il metodo
vortex-lattice per migliorare l’efficienza delle eliche marine, mirando a ottenere una spinta
specifica.
La distribuzione ottimale della circolazione è determinata risolvendo un problema variazionale in
cui la coppia dell’elica è minimizzata per una data spinta. Nella teoria classica, questo problema
viene affrontato attraverso una formulazione integrale, in cui l’elica è rappresentata come una
linea portante con una distribuzione continua di circolazione. Betz (1927) [1] e Lerbs (1952) [2]
hanno fornito soluzioni per questo problema, rispettivamente, per eliche in acque libere e con un
flusso sulla scia che varia radialmente, stabilendo due criteri ottimali. Per affrontare il problema,
si applica il teorema di Munk, e il problema viene linearizzato. Il metodo impiegato in questo
studio per risolvere il problema si basa sull’approccio delineato da Kerwin et al. (1986) [3].
In questo metodo, la distribuzione continua della circolazione è discretizzata, consentendo la
soluzione diretta del problema senza dipendere dalle ipotesi della teoria classica. A differenza di
Kerwin et al., che hanno utilizzato un modello a linea portante per l’elica, questo studio utilizza
il metodo vortex-lattice, consentendo l’integrazione dell’intera pala nell’ottimizzazione. L’utilizzo
del metodo vortex-lattice comporta la rappresentazione della pala dell’elica con una griglia di
pannelli quadrilateri con circolazione costante, risultando in vortici a ferro di cavallo che seguono
traiettorie elicoidali. Secondo il teorema di Munk, è necessario specificare la distribuzione di
circolazione lungo la corda per risolvere il problema variazionale. Si osserva che il principale
contributo alle forze sulla pala dell’elica, proviene dal vortice situato lungo il bordo d’uscita, dove
i due vortici liberi si combinano in un vortice a ferro di cavallo. Infatti, in accordo con il teorema
di spostamento di Munk, la forma della distribuzione di circolazione lungo la corda ha solo
una piccola influenza sui risultati. Considerando l’intera pala nel processo di ottimizzazione, è
possibile esaminare e confrontare l’impatto della geometria dell’elica sulla distribuzione ottimale
della circolazione, con i risultati di Olsen [4].
Lo studio ha confrontato le prestazioni di quattro eliche, ciascuna con Skew e Rake indotti da
Skew, sistematicamente variati, della serie di eliche David W. Taylor Naval Ship Research and
Development Center (DTNSRDC), con i risultati di Olsen (2001) [4]. Il confronto è risultato
molto soddisfacente e ha rivelato una tendenza coerente nei risultati.
In conclusione, questo studio presenta un approccio per ottimizzare la distribuzione della
circolazione lungo una pala d’elica, sfruttando il metodo vortex-lattice, per andare oltre i limiti
della teoria classica. Questa metodologia facilita l’integrazione dettagliata della geometria della
pala dell’elica nel processo di ottimizzazione, offrendo una visione più approfondita di come la
geometria dell’elica influenzi le prestazioni. L’uso di Python, un linguaggio di programmazione
libero e gratuito, sottolinea l’impegno dello studio verso l’accessibilità e la riproducibilità. Il
codice Python sviluppato per questo progetto sarà reso disponibile in appendice, consentendo
ad altri di replicare, verificare e sviluppare questo lavoro senza barriere finanziarie. I risultati
si allineano e ampliano le ricerche precedenti (Mishima e Kinnas 1997 [36]), dimostrando, in
particolare, miglioramenti dell’efficienza con l’aumento dello Skew.

4

A Python-Implemented Vortex-Lattice Approach for Propeller Optimisation

Acknowledgement
I would like to say few words for the people who accompanied me along this path and made
this project possible.

First and foremost to Simone Saettone, not only for being an excellent Supervisor and Professor
during my time in Madrid, but also for being a valuable guide. Your support, understanding,
and knowledge-sharing have been invaluable assets that I will carry over with me into my
future. Without your help this would not have been possible. Your teachings have illuminated
my academic path, and at the end of this journey, I am certain that you are one of the most
professional individuals I have had the luck to meet.

I extend my thanks to all the people I met at the Universidad Politécnica de Madrid for
welcoming me and making me feel at home from the very beginning. I will never forget the
kindness of each one of you, especially Javier, Ricardo, Gustavo, Wenzhe, and Gaia.

I am grateful to my entire family for supporting my dreams. A special thanks to my parents for
their unwavering support, for standing by me, and for loving me unconditionally.
To my mother, thank you for being there during tough times, for always understanding my
actions, and for loving me unconditionally.
To my father, thank you for providing me with the tools and for raising the woman I am today,
you are the example of my life.
To my brother, Andrea, thank you for every moment we’ve shared together and for understanding
my absence without ever making it a burden.
To my uncle Alessio, thank you for being there for me both physically and emotionally, you
have always been my benchmark in discovering the world.

A special thank to Rodrigo, although words are not enough to express my gratitude towards
you. You were the first to share the joys and difficulties of this journey with me, always by my
side. Thank you for your unconditional sweetness and love, for holding my hand when I was
scared, and for simply being in my life. I love you.

To my lifelong friends, Carla and Camilla, centuries may pass and galaxies may separate us, but
our bond will remain unbreakable. You are life’s precious gift, and with you, I am certain that I
am never alone.

Thanks to my friends in Spezia, the city that hosted me for five long years. To Selene, for
everything, for every moment we shared that I hold dear. To Billy, our souls are so similar, I
spent my best moments during my university time while we were in the same flat. To Davide,
for being there for me in difficult times, even though our friendship is relatively new, I know it
will last long. To Stefano, for always making me feel at home, for the talks and advice. To Ilario,
a lifelong friend, for being like me and for understanding me without a word, our connection
goes beyond words.

Finally, I would like to thank all the people I met this year in Madrid, especially Pierpaolo.
What we shared will bind us forever.

5

Contents
Abstract 3

Riassunto 4

Acknowledgement 5

1 Introduction 9
1.1 Investigating Adopted Strategies . 10
1.2 Objective of the Thesis . 11

2 Literature Review 12
2.1 Propeller Design . 12
2.2 Lifting Line Theory . 13
2.3 Lifting-Surface Method . 14
2.4 Boundary Element Method . 15
2.5 Computational Fluid Dynamics . 16
2.6 Conclusion . 17

3 Potential Flow Theory 18
3.1 Simplified Mathematical Models . 18
3.2 Irrotational Flow . 20
3.3 Kutta Condition . 21
3.4 Bernoulli Equation . 22
3.5 Lifting surface . 23
3.6 Linearised Thin Wing Theory . 24
3.7 Circulation . 26
3.8 Distribution of Vortex . 27

4 Optimisation Procedure 29
4.1 Introduction . 29
4.2 Geometry . 29

4.2.1 Propeller Geometry . 29
4.2.2 Grid Generation . 31
4.2.3 Horseshoe Vortex . 32

4.3 Forces and Velocities Calculations . 34
4.3.1 Force on the panel sides . 34
4.3.2 Onset Flow . 34
4.3.3 Induced velocities from the panels . 35
4.3.4 Induced velocities from the horseshoe vortices 36
4.3.5 Total velocity . 37

4.4 Weight Function . 37
4.5 Wake Alignment . 39
4.6 Thrust and Torque Calculation . 40
4.7 Optimum Circulation Distribution . 42

4.7.1 Skin Friction Drag . 43
4.7.2 Variational Problem . 43
4.7.3 Optimisation Procedure . 45

5 Validation 47

6

A Python-Implemented Vortex-Lattice Approach for Propeller Optimisation

5.1 Grid Study . 48
5.1.1 Thrust Loading . 49

5.2 Advance Ratio . 50
5.3 Skew . 51
5.4 Skew-Induced Rake . 52
5.5 Skin Friction Drag . 54

6 Conclusions 55

7 References 56

8 Code 58

7

List of Tables
Table 1 Results from Grid Study . 49
Table 2 Results obtained by varying thrust coefficient, CTh = 2 50
Table 3 Results obtained by varying Advance Ratio 50
Table 4 Results obtained by varying Skew . 52
Table 5 Results obtained by varying Skew-induced Rake 53
Table 6 Variation of Skin Friction Drag Results 54

List of Figures
Figure 1 Simply connected region with a cut . 21
Figure 2 Notation for two-dimensional section . 24
Figure 3 Left: Camber line with angle of attack α . Right: Symmetric section with

thickness τ . 25
Figure 4 Vortex Distribution for flat plate . 26
Figure 5 Coordinate system for the propeller . 30
Figure 6 Velocity triangle for the propeller . 31
Figure 7 Description of a panel and a trailer . 32
Figure 8 Example of grid, trailers and direction of the circulation for the propeller 33
Figure 9 Description of the total circulation at the panel side 34
Figure 10 Application of the Biot–Savart law to a general vortex filament 35
Figure 11 Description of the parameters used in the application of Biot-Savart law 36
Figure 12 Parameters used to evaluate the induced velocity from a straight vortex . 36
Figure 13 Description of total circulation at a panel side 38
Figure 14 Grid for DC4381 Propeller, No Skew-No skew-induced rake. Msp ×Nch =

20× 10 . 47
Figure 15 Grid for DC4497 Propeller, 36° Skew, No Skew-induced rake. Msp×Nch =

20× 10 . 47
Figure 16 Grid for DC4382 Propeller, 36° Skew, Skew-induced rake. Msp ×Nch =

20× 10 . 47
Figure 17 Grid for DC4383 Propeller, 72° Skew, Skew-induced rake. Msp ×Nch =

20× 10 . 48
Figure 18 DC4381 Msp ×Nch = 5× 5 . 48
Figure 19 DC4381 Msp ×Nch = 20× 10 . 49
Figure 20 Comparison between results for the reference propeller, DC4381, the

propeller with 36° skew and skew-induced rake, DC4382, and the propeller with
72° skew and skew-induced rake, DC4383. 51

Figure 21 Comparison between results for the reference propeller,DC4381,and the
two propellers with 36° skew, DC4382 which has skew-induced rake and DC4497
which has no rake. J = 0.8 . 52

Figure 22 Comparison between results for the reference propeller, DC4381, and the
two propellers with 36° skew, DC4382 which has skew-induced rake and DC4497
which has no rake. J = 1.0. 53

Figure 23 Comparison between results for the reference propeller, DC4381, and the
36° skew, DC4497 which has no rake. 54

8

A Python-Implemented Vortex-Lattice Approach for Propeller Optimisation

1 Introduction
Despite the challenges posed by various global crises in recent years, including economic down-
turns, geopolitical tension, and pandemics, a significant portion of global trade-exceeding
two-thirds-continues to be conducted through maritime transport. This includes vital trade
involving food, energy, and other essential commodities. Specifically, maritime transport ac-
counts for 77% of European foreign trade and 35% of European trade [15]. As of beginning of
2023, the total maritime fleet comprised of 105,500 vessels of at least 100 gross tonnage (GT),
and offering a capacity of 2.3 billion deadweight tons (DWT), marking an increase of 70 million
DWT compared to the preceding year.

Moreover, the volume of maritime trade has been on an upward trajectory, experiencing a 2.3%
increase in 2023, with projections indicating a further growth rate of 2.1% over the coming five
years. This trend not only highlights the critical role of maritime transport in enabling global
trade but also brings to light the consequential rise in the average distance covered to transport
goods.Such an expansion in maritime trade activities has precipitated a notable increase in
carbon emissions, which, at the outset of 2023, were observed to be 20% higher than figures
recorded two decades prior [15]. This exacerbates the urgency of addressing the environmental
impact associated with maritime trade.

Given the current pace of trade expansion and increasing demand, emissions are forecasted to
escalate by 50% to 250% by the year 2050, barring the implementation of effective mitigatory
strategies. Presently, a staggering 98.8% [4] of the global shipping fleet is dependent on fossil
fuels, with the combustion of marine fuel oil (HFO) releasing significant quantities of carbon
dioxide (CO2), methane (CH4), and nitrous oxide (N2O) into the atmosphere. It’s worth noting
that merchant vessels emit approximately 16.14 grams of CO2 per kilometer for each ton of
cargo transported, although it is observed that larger ships and cargoes generally achieve greater
energy efficiency on a per-unit-load basis. This reality accentuates the pressing need to confront
and mitigate the environmental consequences stemming from maritime trade, underscoring the
urgency of action in this domain.

In response to growing environmental concerns, national and international organizations are
stepping up to tackle the pollution caused by ships. At the 76th session of the Marine Environ-
ment Protection Committee (MEPC 76) in June 2021, changes were made to the International
Convention for the Prevention of Pollution from Ships (MARPOL), which started being enforced
at the end of 2022. The International Maritime Organization (IMO) is now requiring ships
to adopt short-term actions to cut down on pollution [6]. The goal is to significantly lower
emissions by 2050, aiming for a 40% reduction by 2030 compared to 2008, and aiming even
higher with a 70% reduction by 2050. [23].

To put these new rules into practice, ships must calculate two things: the Energy Efficiency
Existing Ship Index (EEXI) and the Carbon Intensity Indicator (CII). This approach, which
started in 2013 for new ships with the Energy Efficiency Design Index (EEDI), is now being
applied to all ships. Specifically, ships that are 400 gross tonnage or larger must complete the
EEXI calculation. This is a big move towards making ships more energy-efficient and reducing
their impact on the environment.
The EEXI is represented by the amount of CO2 emitted per unit of traffic volume and is
calculated based on fuel consumption and other ship characteristics [7]. On the other hand, the
CII determines the annual reduction factor required to ensure a continuous improvement in the

9

A Python-Implemented Vortex-Lattice Approach for Propeller Optimisation

operational intensity of carbon emissions from a ship.

Various strategies proposed by the International Maritime Organization (IMO) aim to improve
the energy efficiency of maritime vessels. These include leveraging renewable energy for power
generation, adopting alternative fuels like liquefied natural gas (LNG) to lower emissions, refining
ship design and equipment for better operational efficiency, imposing power restrictions, provid-
ing shore-based electricity supply, and introducing supportive measures, such as improvements
in land-based transport and logistics management.

It is important to highlight that by concentrating on the hydrodynamic performance of ships,
which entails the optimization of propeller design, it is possible to significantly increase ship
efficiency. This approach is not only in alignment with the EEXI and CII regulations but also
emphasizes the potential for substantial improvements in maritime energy efficiency.

1.1 Investigating Adopted Strategies
Decarbonization strategies for ships focus on two main areas: improving energy efficiency, derived
from technical modifications to the ship’s structures and operational adjustements for better
navigation, and adopting new-generation clean fuels, specifically hydrogen, liquefied natural gas
(LNG) and ammonia. Research from the Norwegian University of Science and Technology [9]
has confirmed that emissions can be significantly reduced through these approaches, identifying
six key mitigation strategies with substantial potential for emission reduction: hull design
improvements (4-30%), economies of scale and advancements in power and propulsion (2-45%),
optimizing speed (1-60%), adopting cleaner fuels such as LNG and ammonia (25-84%), explor-
ing alternative energy sources (1-50%), and improving weather routing and scheduling (0.1-48%).

Within the power and propulsion strategies framework, a central approach to minimising emis-
sion in the maritime industry involves optimising propeller design [8]. This effort is integral
to improving the efficiency of ship propulsion system [9], directly impacting fuel consumption
and, consequently, emissions. Such optimisation is crucial for reducing the torque required
while maintaining the same thrust, thereby increasing the propeller’s efficiency. This approach
directly addresses the need to enhance propeller performance by achieving grater propulsion
efficiency with less energy cost. By optimising the design to minimise torque demands without
compromising on thrust, ships can achieve smoother and more fuel-efficiency operations, signifi-
cantly improving overall propeller and vessel efficiency.

10

A Python-Implemented Vortex-Lattice Approach for Propeller Optimisation

1.2 Objective of the Thesis
As of the current date, the selection of codes available for marine propeller optimization, remains
limited, with OpenProp, PROPAN, and Xfoil begin among the most notable. Despite their
open-source status, their implementation in either MATLAB or Fortran requires either financial
expenditure for a license or specialized programming expertise. This situation highlights the
urgent need for the development of a new open-source code utilizing Python programming
language. Such a development aims to offer a freely accessible and user-friendly alternative for
the broader community, overcoming the limitations associated with proprietary platforms.

The choice to implement the method in Python is dictated by the fact that it is the most widely
used programming language in the scientific field. This is because it is open to everyone and
has a simple language that is easy to understand. Additionally, it has been developed over the
years, providing a large library, manuals, and information developed by programmers. You
can implement and automate many functions, and its extensive collection of libraries makes it
usable across various fields.

11

A Python-Implemented Vortex-Lattice Approach for Propeller Optimisation

2 Literature Review

2.1 Propeller Design
The design of propellers is a complex task that balances efficiency, power, and noise reduction,
among other considerations. Primarily, there are three approaches to propeller design: the
series approach, numerical methods, and experimental methods. Each has its advantages and is
frequently used in combination with others to develop and refine propeller systems. The series
approach utilizes data from previously tested propellers under various conditions to create new
designs. It relies on systematic variations of essential propeller parameters such as diameter,
pitch, blade number, and shape. Designers can consult charts or databases documenting the
performance of different propeller geometries to select a design that closely meets their require-
ments. A renowned example is the Wageningen B-Series.
Numerical methods employ computational techniques to simulate the flow around propellers
and predict their performance. Within the realm of numerical approaches for propeller design,
two primary methods are significant: potential flow theory and Computational Fluid Dynamics
(CFD). Potential flow theory simplifies the complex physics of fluid motion by assuming the
fluid is inviscid and irrotational, effectively ignoring viscosity’s effects. While this simplification
reduces computational demands, it offers valuable insights into the flow field around propellers,
particularly beneficial during the preliminary design phases for a broad exploration of the design
space. CFD involves a range of computational techniques that solve the Navier-Stokes equations
to simulate fluid flow with high fidelity. It captures complex flow phenomena, including turbu-
lence, separation, and viscous effects, providing a detailed understanding of the flow around a
propeller. However, the high computational cost of CFD, requiring more powerful computing
resources and longer computation times, makes it less suitable for initial exploratory studies but
invaluable for finalizing designs and conducting detailed performance analyses.
Experimental testing involves physically manufacturing a propeller and testing it in a controlled
environment, such as towing tanks and cavitation tunnels. These tests yield essential data on
the propeller’s performance, including thrust, torque, and efficiency, along with insights into
flow patterns, noise, and vibration levels. Experimental methods are often used to validate
and refine designs derived from series or numerical simulations. Despite being expensive and
time-consuming, experimental testing remains an indispensable part of the propeller design
process, especially for final validation before production or for investigating new concepts.

Concentrating on potential flow theory, several key methodologies stand out. Among these, the
lifting line model is particularly noteworthy for its simplicity in depicting propeller action. In this
model, the intricate aerodynamic profiles of blade sections are elegantly replaced with a singular
line vortex, providing a streamlined yet effective approach to understanding propeller dynamics.
However, this simplification also serves as its primary limitation, as it fails to accurately capture
three-dimensional flow effects and complex vortical patterns, especially near the blade tips.
Moving on to the lifting surface model, this approach offers a more nuanced representation
by considering the propeller blades as finite lifting surfaces. This method allows for a better
approximation of the three-dimensional flow around the blades, capturing the essential aspects
of blade geometry and its influence on performance. Despite its increased accuracy over the
lifting line model, the lifting surface model is still hampered by its reliance on potential flow
theory, which overlooks viscous effects and may not accurately predict performance in off-design
conditions. [10].
Lastly, the boundary element method (BEM) represents a further advancement in modeling
marine propellers. By discretizing the propeller blade and surrounding fluid domain into small
elements, BEM can simulate the flow around the propeller with high fidelity, incorporating

12

A Python-Implemented Vortex-Lattice Approach for Propeller Optimisation

both potential flow and viscous effects under certain formulations. This method is particularly
effective in analyzing complex flow phenomena, such as cavitation and highly skewed flows.
However, BEM’s computational demand is significantly higher, requiring more sophisticated
computational resources and longer processing times, which can be a considerable drawback for
extensive parametric studies or real-time applications.
In summary, while each method has its pros and cons, the choice between the lifting line, lifting
surface model, and boundary element method depends on the balance between computational
efficiency and the level of detail required for accurate propeller performance prediction..

As mentioned previously, CFD provides detailed information about flow and pressure distri-
butions, surpassing previous methods in its ability to capture complex fluid dynamics and
interactions in marine propellers. Among the most commonly used solvers in CFD are the
Reynolds-Averaged Navier-Stokes (RANS), Detached Eddy Simulation (DES), and Large Eddy
Simulation (LES). These solvers offer different approaches to modeling turbulence, which is a
key aspect in understanding the flow around marine propellers. In practice, fluid equations are
substituted with discrete approximations at grid points, and the solution remains dependent
on the spacing between grid points. Sometimes, the vortex lattice method or BEM method
is coupled with a Reynolds-Averaged Navier-Stokes (RANS) method [11] , providing valuable
information on the viscous and cavitation behavior of propellers in analytical cases.While CFD
yields accurate results, its practical complexity and computational times make it challenging to
implement automated optimization.

2.2 Lifting Line Theory
Betz (1919) [1] expanded upon Prandtl’s lifting-line theory to establish the basis for determining
the radial distribution of circulations [10]. In this theory, the lift generated by a wing or propeller
blade results from the circulation development around the section, following the Kutta-Joukoski
law (the flow separates from the trailing edge in a ’smooth’ manner with a finite velocity value).
Betz introduced a criterion for minimal energy loss, defining the concept of an optimum propeller.
The optimum propeller develops a trailing vortex system, creating a rigid helicoidal surface that
extends infinitely downstream from the blade. This surface must translate as a rigid entity in
the downstream direction. While the Betz condition remains accurate for propellers operating
in uniform flow, it begins to demonstrate limitations for heavily loaded propulsors.

Goldstein (1929) [24], solved the potential problem, following Prandtl’s concept: the three-
dimensional problem can be solved by concentrating circulation around the blades on individual
lifting lines, and the flow in each radial section could be considered two-dimensional if the
velocity induced by the free flow alters the field in which they are located. The solution proved
successful for aircraft. However, it was unsatisfactory for marine propellers, which are designed
with low aspect ratios to mitigate cavitation phenomena. Additionally, the onset flow for
propeller rotation is typically non-uniform. In the initial stages, corrections were made to adjust
the camber of 2-D sections to accommodate the induced curvature of the flow. This curvature
results from the velocity induced by the trailing vortex sheet, which is greater at the trailing
edge than at the leading edge.

13

A Python-Implemented Vortex-Lattice Approach for Propeller Optimisation

Seventeen years later, Cox (1961) [25], published precise results of these corrections, which were
obtained using computers. In summary, analytical methods for practical applications were not
available before the 1950s. In 1952 [2], Lerbs introduced changes by extending lifting line theory
to include propellers with arbitrary radial distributions of circulation under both uniform and
radially varying inflow conditions. Subsequently, in the 1960s, this procedure was computerized.

2.3 Lifting-Surface Method
Lerbs’ method continues to be utilized for radial distribution in the initial stages of design.
During this period, Eckhart and Morgan (1955) [26], developed a combination of Lerbs’ lifting-
line theory and lifting-surface correction for camber and angle of attack, marking a significant
advancement in lifting surface theory. As technology became more available, numerical methods
for lifting surface evolved, including those developed by Kerwin (1961) and van Manen &
Bakker (1962) [11]. However, these methods were based on simplifying assumptions that became
inadequate with technological advancements.

During the early stages of lifting surface analysis, linear theory was employed to simplify the
problem. Linear theory assumes that the blade and wake can be projected onto stream surfaces
formed by the undisturbed flow. This was necessary for the design process, where only a
partial understanding of the blade surface geometry is initially available. Determining the
radial distribution of pitch, as well as the chordwise and radial distribution of camber, becomes
necessary, and for calculating their induced velocity, sources and vortices must be positioned.
However, in reality, the resulting blade surfaces often deviate from the assumptions made
in linear theory. Therefore, the procedure computes the total fluid velocity at a number of
points on the surface and then adjusts the surface in such a way as to annul its normal component.

Two calculation methods for the lifting surface are PROPLS, developed by Brockett (1981) [27],
which directly integrates the resulting singular integrals, and PBD-lO, developed by Kerwin
[11], which employs a vortex-lattice procedure. In Kerwin’s method, the process starts with
assuming the pitch and camber, then calculating the total flow velocity. Afterward, the surface
is adjusted, the process is repeated using the new reference surface until convergence is obtained.
In the vortex lattice approach, continuous distributions of vortices and sources are substituted
with a series of concentrated rectilinear elements. These elements have endpoints positioned
along the average surface of the blade. Velocities are subsequently computed at control points
strategically positioned between these elements. Therefore, proper placement of control points
and lattice elements is crucial.Vortex lattice methods are typically highly robust and James
(1972) [17] and Lan (1974) [18] both provided rigorous demonstrations of the convergence of
vortex-lattice methods in two-dimensional flow. James specifically addressed scenarios with
constant vortex spacing, confirming that placing the control point at three-fourths of the element
length yields the correct solution.

Subsequent advancements in propeller design were pioneered by Tsakonas et al. (1983) [28],
Lee (1978) [29], van Gent (1977) [30], and Greeley (1982)[31]. These methods diverged from
traditional approaches by acknowledging that induced velocities might not always be negligible
compared to the initial flow velocity. They allowed for deviations in the positions, of the blade
and the wake, of the trailing vortex from the undisturbed flow surface. The primary objective

14

A Python-Implemented Vortex-Lattice Approach for Propeller Optimisation

was to address the limitations of previous methods, particularly in their treatment of chord-wise
lift, and to incorporate the effects of skew and rake into the analysis.

Lee and Kerwin et al. developed the vortex lattice code PUF-3 in its original form (1978) [29]
then, Greeley and Kerwin expanded upon the existing approach by introducing a semi-empirical
method aimed at forecasting the leading-edge separation point (1982). Greeley employed a
program that utilizes a vortex lattice model for the blades, aligning with the design process
outlined earlier. However, in this approach, each vortex element along the span is treated
as an unknown and determined through collocation using an equal number of control points
distributed across the blade. To model the strength of circulation/lift, a distribution of vortices
is positioned on the mean surface of the blades. These vortices represent the circulation or lift
generated by the blades. Additionally, to account for induced drag, several free trailing vortices
are shed from each blade element.

Initially, the circulation distribution on the blades, and consequently in the wake, is determined
based on an assumed wake geometry. This circulation distribution remains fixed while iteratively
adjusting the position of the wake to align with the flow. This iterative process continues
until convergence is achieved, indicating that the wake is accurately aligned with the flow.Once
convergence is reached, the circulation distribution is recalculated based on the adjusted wake
geometry, and the entire process is repeated. Iterations continue until the changes in the
circulation distribution fall below a certain predefined tolerance level.

Brockett [27], calculates the induced velocities on the blades through one of direct numerical
integrations. He assumes the blades to be thin, which allows the singularities distributed on
both sides of the blades to collapse into a single surface. Additionally, he suggests defining
the effective wake as the total velocity at any point in the fluid with a propeller in operation,
subtracting the potential component of the propeller-induced velocity. This definition simplifies
the propeller problem to determining the velocity potential in an unbounded fluid, satisfying
the kinematic boundary condition on the propeller surface, along with kinematic and dynamic
boundary conditions at the trailing edge and on the trailing vortex sheets behind the blades.
However, he himself demonstrates the robustness of the convergence proofs of vortex-lattice
methods in two-dimensional flow.

During recent years, development in studies on less conventional propeller designs and wake
alignment has advanced. Leading figures in this area include Kerwin et al. (1986)[3], Andersen
(1997)[32], developed the theory for tip-modified geometry, where the lifting line can be curved,
in order to include the influence of skew and rake, and Jong (1991) [20]. Additionally, for
investigations into energy coefficients and analyses under unsteady and off-design conditions,
Caponetto (2000)[33], and Karim et al. (2001) [34], have made significant contributions.

2.4 Boundary Element Method
The boundary element method for propeller analysis has been developed in recent years to
overcome two challenges of lifting surface analyses. The first relates to the occurrence of local
errors near the leading edge, while the second concerns more widespread errors near the hub,
where blades are closely spaced and relatively thick.

15

A Python-Implemented Vortex-Lattice Approach for Propeller Optimisation

Although a local correction derived from Lighthill’s work can address the first problem to some
extent, the second problem persists. Boundary element methods, essentially panel methods,
were initially introduced in the aircraft industry and later applied to propeller technology in the
1980s.
Hess and Valarezo (1985) [35], introduced an analysis method based on earlier work by Hess and
Smith. Hoshino subsequently developed a surface panel method for hydrodynamic analysis of
propellers operating in steady flow. These methods have achieved good agreement between the-
oretical and experimental results for blade pressure distributions and open water characteristics.
Further advancements, such as those by Kinnas and colleagues at the University of Texas,
Austin, have extended boundary element codes to solve for unsteady cavitating flow around
propellers, considering non-axisymmetric inflow conditions and other factors such as mid-chord
cavitation and unsteady tip vortex cavitation.

Additionally, efforts have been made to enhance slipstream flow prediction using iterative
methods aligning the wake surface to local flow conditions. Within the framework of the
MARIN-based Cooperative Research Ships organization, Vaz and Bosschers have developed a
three-dimensional sheet cavitation model using a boundary element model of marine propellers.
These developments aim to improve prediction accuracy under various conditions, including
behind conditions and cavity volume variations influenced by non-cavitating propeller effects
and viscous effects.

2.5 Computational Fluid Dynamics
During the past decade, significant advancements have been achieved in applying computational
fluid dynamics (CFD) [13]. These advancements have enabled valuable insights into the viscous
and cavitation behaviors of propellers, particularly in the analysis context. However, while
progress has been made in using these methods for design purposes, widespread acceptance has
not yet been attained. Various modeling approaches, including Reynolds Averaged Navier–Stokes
(RANS) method, Large Eddy Simulation (LES), Detached Eddy Simulations (DES), and Direct
Numerical Simulations (DNS), have been developed for analyzing flow around cavitating and
non-cavitating propellers.

However, in practical propeller computations, computational efforts limit the application of
many of these methods. RANS codes are favored due to their relatively lower computational
times compared to other methods. Despite common features such as multi-grid acceleration and
finite volume approximations, differences exist among practitioners in grid topology, cavitating
flow modeling, and turbulence modeling.

16

A Python-Implemented Vortex-Lattice Approach for Propeller Optimisation

2.6 Conclusion
The propeller optimization code employs the vortex-lattice approach. This method stands out
for its computational efficiency, achieving significant savings in computational time during the
design phase without compromising on accuracy. Over the years, the demonstrated functionality
of the vortex lattice method has underscored its reliability in providing accurate approximations
of propeller performance. Notably, it facilitates effective calculation of circulation on propeller
blades, further highlighting its utility. The lifting line model was not selected because the vortex
lattice method offers a superior capability to capture three-dimensional flow effects without
significantly increasing computational time or complexity. Furthermore, the complexity of the
Boundary Element Method (BEM) and the extensive computational demands of Computational
Fluid Dynamics (CFD) rendered them unsuitable for the current project. Additionally, the
prohibitive costs associated with physical model testing render such approaches impractical for
the current project.

This study utilizes Kerwin’s method (1986) [3] to establish the optimal distribution of circulation
by minimizing torque for a given thrust through solving a variational problem. Essential to this
approach is the incorporation of the entire blade’s effect. Thrust and torque calculations for
the propeller are executed using the vortex lattice method, accommodating nearly arbitrary
propeller geometries. The method integrates a simple wake and blade alignment procedure
akin to moderately loaded lifting lines, with thickness and hub effects omitted for simplicity.
The study also considers skin friction drag. Providing input data such as propeller radius, hub
radius, number of blades, chord length, skew, and rake distributions is required.

17

A Python-Implemented Vortex-Lattice Approach for Propeller Optimisation

3 Potential Flow Theory
In fluid dynamics, the potential flow theory describes the velocity field of an inviscid, incom-
pressible, and irrotational fluid as the gradient of a scalar function called potential, denoted as Φ:

∂Φ

∂xi

= ui (1)

This equation defines each component of the velocity in terms of the local spatial partial
derivative, in the direction of the velocity component.

3.1 Simplified Mathematical Models
In fluid dynamics, the behavior of fluids is governed by various forces and moments, similar
to how rigid bodies are governed. However, in fluids, these forces are distributed continuously
throughout the fluid rather than acting at specific points. This means that the motion of
fluid particles and the distribution of forces are described continuously, assuming that the
individual molecules can be treated as part of a continuum. The three principal forces are
inertial, gravitational, and viscous. Typically, gravitational forces are ignored, and the fluid can
be considered inviscid with a high Reynolds number, because viscous effects are limited to the
boundary layer. Consequently, external forces are primarily due to the lifting surface in the fluid

Before delving into describing fluid flows with the velocity potential, it’s crucial to introduce
two foundational principles: the equations for conservation of mass and for the conservation of
momentum. In this discussion, simplified forms following Newman’s approach will be utilized.
[13]. The principle of conservation of mass, when applied to a continuum of fluids in motion,
asserts that within a three-dimensional volume in space—modeled as a cube—where mass can
flow through each face of this geometric element, mass cannot be created or destroyed over time
but is conserved. Consequently, the net inflow into the volume, subtracted from the net outflow
from the volume, equals the net change in mass within the volume.

∂

∂t

∫
V

ρ dV +

∫
S

ρ(~u · ~n) dS = 0 (2)

∂
∂t

represents the partial derivative with respect to time t.∫
V
ρ dV denotes the integral of mass density ρ over volume V .∫

S
ρ(~u · ~n) dS represents the integral of the mass flux ρ~u across the surface S with the normal

vector ~n.

Similarly, the conservation of momentum states that, the sum of all forces acting on the fluid
volume, must equal the rate of change of momentum density of fluid particles.

∂

∂t

∫
V

ρ~u dV +

∫
S

ρ~u(~u · ~n) dS =
∑

~F (3)

∂
∂t

represents the partial derivative with respect to time t.

18

A Python-Implemented Vortex-Lattice Approach for Propeller Optimisation

∫
V
ρ~u dV denotes the integral of momentum density ρ~u over volume V .∫

S
ρ~u(~u · ~n) dS represents the integral of the momentum flux ρ~u(~u · ~n) across the surface S with

the normal vector ~n.∑ ~F represents the sum of all external forces acting on the system, such a surface and body forces.

The mass and momentum equations are sufficient to describe fluid motion, but the use of
a differential representation is more practical. However, these equations are quite complex,
nonlinear, and interconnected, which makes solving them a challenge. Although empirical
evidence supports the Navier-Stokes equations for describing Newtonian fluids (where viscosity
stays constant regardless of flow velocity or stress), finding analytical solutions is often difficult.
To make progress in fluid dynamics, simplifications are often applied to the equations by
neglecting certain terms or assuming their values to be zero. However, these simplifications
may introduce errors into the analysis. Despite this, using simplified equations is often justified
because they are easier to compute compared to the full equations. In the following, situations
where such simplifications can prove advantageous, will be discussed.

• Inviscid flow

• Irrotational flow

• Incompressible flow

In numerous applications, it’s common to assume, that the fluid density remains constant. This
assumption holds true not just for liquid flows, where compressibility can often be neglected,
but also for gases when the Mach number is below 0.3. Incompressible flow refers to motion
that doesn’t involve expansion. Additionally, if the flow is isothermal, the viscosity remains
constant as well.
The flow can be treated as inviscid, because in flows far from solid surfaces, viscosity effects
are typically minimal. When viscous effects are completely neglected, essentially assuming the
stress tensor reduces to zero, the Navier-Stokes equations simplify to the Euler equations. Since
the fluid is considered non-viscous, it doesn’t stick to walls, allowing for slip at solid boundaries.
At high velocities, the Reynolds number is very high, and viscous and turbulence effects only
become significant in a small region near the walls. By incorporating a frictional drag coefficient,
the friction drag between the fluid and the body is accounted for. Using the Euler equations,
flow motion can be predicted accurately.

The continuity equation for a steady incompressible and inviscid fluid becomes:

∇ · ~u =
∂ux

∂x
+

∂uy

∂y
+

∂uz

∂z
= 0 (4)

and the momentum equations:

∇
(
p

ρ
+

1

2
|~u|2
)
− ~u× ~w =

~F

ρ
(5)

where: ∇ = (∂
∂x
, ∂
∂y
, ∂
∂z
) is the gradient operator.

~w = ∇× ~u is the vorticity.
p is the pressure.
F represents the external force exerted by the lifting surface in the fluid. The forces exerted

19

A Python-Implemented Vortex-Lattice Approach for Propeller Optimisation

by the fluid on these surfaces, are equal in magnitude but opposite in direction, to the forces
exerted by the surfaces on the fluid.

After these initial assumptions, the equations of motion become independent of time and rely
solely on the Cartesian coordinates (x, y, z). Additionally, the studied body is fully submerged,
the fluid is water, and it is assumed that the wake behind the hull is steady and axi-symmetric.

3.2 Irrotational Flow
To further simplify these equations, let’s start by narrowing down the range of fluid motions
and introducing the concept of circulation. By applying Kelvin’s theorem to two points P1 and
P2 within a connected region of the fluid, connected by paths forming a closed and continuous
loop C, the circulation, denoted as Γ, is defined as the integral of tangential velocity around
this closed contour C. This circulation remains constant if the fluid is subjected to conservative
forces.

Γ =

∫
C

~ui d~xi (6)

Thanks to Stokes’s theorem, the circulation can be related to the vorticity vector. For a
continuously differentiable vector ~u, it holds that:∫

S

(∇× ~u) · dS =

∫
C

~u · d~x (7)

In a frame tied to the body, where the velocity remains steady, it only varies with position and
stays constant infinitely far away. As a result, the vorticity w remains zero across all points in
the flow field, that can be traced back to infinity through streamlines. This outcome is a direct
implication of Kelvin’s theorem, stating that the circulation measured along any closed material
line, remains constant over time.

Consequently, any motion starting from a stable condition, will persist as irrotational over time.
The absence of rotation in a potential flow, arises from the fact that the curl of a gradient is
always zero, causing circulation to vanish. Since the flow starts from a state of rest, circulation
should remain zero, indicating that the integrand must be zero as well. Thus, the fluid’s motion
is irrotational:

∇× ~v = 0 (8)

This conclusion holds significant implications because an irrotational vector field can be rep-
resented as the gradient of a scalar function. This assertion is a consequence of Helmholtz’s
theorem in vector analysis, which states that any continuous and finite vector field can be
expressed as the sum of the gradient of a scalar function Φ and the curl of a zero-divergence
vector, this vector vanishes identically, if the original vector field is irrotational. Therefore, if
the velocity field is irrotational, it can be simplified to just the gradient of the scalar function Φ,
also known as the velocity potential.

This simplification greatly aids in analyzing and understanding fluid motion, as it reduces the
complexity of the vector field representation to a scalar function.

20

A Python-Implemented Vortex-Lattice Approach for Propeller Optimisation

∇Φ = ~u (9)

and inserting this in the continuity Equation (4), one obtains:

∇ · ~u = ∇ · ∇Φ = ∇2Φ = 0 (10)

The motion can now be described by Laplace’s equation:

∇2φ =
∂2Φ

∂x2
+

∂2Φ

∂y2
+

∂2Φ

∂z2
= 0 (11)

• It is a partial differential equation.

• It is a linear equation (for which superposition of effects applies), and the elementary
solutions/functions, which are continuous and derivable except possibly at some contour
points, can be used to derive solutions of more complex problems

• It is solvable, like any differential equation, once the boundary conditions are provided

– Dirichlet Conditions: The value of the potential is imposed on the boundary.
– Neumann Conditions: The value of the normal derivative of the potential is imposed

on the boundary of the domain.

3.3 Kutta Condition
The derivation of the Laplace equation is valid only for simply connected regions, where, the
circulation (line integral) of velocity, along a closed curve is always zero (6). This also guarantees
the uniqueness of the solution, except for an additive constant, that does not affect the velocity
problem, as they are the derivatives of the potential, indifferent to constants. If the region is
multiply connected, it can be made simply connected by ”cutting” the region itself. However,
the circulation calculated around a non-reducible curve, is no longer zero: its value is constant
for any curve surrounding the body and is constant along the cut. The uniqueness of the solution

Figure 1: Simply connected region with a cut

21

A Python-Implemented Vortex-Lattice Approach for Propeller Optimisation

to the potential problem, for regions made simply connected, is guaranteed if the intensity of
this circulation is specified. To ensure the uniqueness of the solution, it is necessary to know
the circulation and consider the nature of the physical phenomenon under study. Considering
points 1 and 2, boundary conditions must be applied due to the discontinuity of the potential
on the boundary:

• The normal derivative of the potential in the wake must not only be constant but also
zero.

• The potential jump in the wake remains constant.

• The pressure must be equal across the cut, as per the Kutta condition P1 = P2.

3.4 Bernoulli Equation
The velocity is determined without requiring dynamic considerations; it simply needs to be
kinematically compatible and respect the boundary conditions. The pressure is derived from
the momentum equation, taking into account that the body force is conservative and can be
expressed using a scalar function E, ~F = −∇E. The Euler equation for incompressible and
irrotational flow, with a conservative body force becomes:

∇(
p+ E

ρ
+

|~u|2

2
) = 0 (12)

The terms in the brackets should be constant to satisfy the equations, and the equation often
referred to as the Bernoulli equation is:

(
p+ E

ρ
+

|~u|2

2
) = C (13)

From the momentum conservation equation, the integrated form of Bernoulli’s equation, allows
the derivation of pressure given the knowledge of velocity, completing the solution. Time does
not explicitly appear in the Laplace equation due to its nature, which assumes an infinite
propagation velocity of disturbances, causing the flow field to adapt instantaneously to changes
in boundary conditions. However, it’s important to note that time does appear in the expression
for pressure and in the velocity field.

At this point, it’s important to remember, as mentioned, that the Laplace equation is linear. This
implies that the boundary problem can be separated into a value problem, for the undisturbed
onset flow φonset and for the perturbed flow φ. Then, these two values can be summed. The
potential flow for the onset flow can now be expressed as:

Φonset = ~U · ~x = U0,xx+ U0,yy + U0,zz (14)

If the disturbance velocity of the body is small compared to the undisturbed flow, the equation
can be linearised (Breslin and Andersen, 1994) [21]:

p∞ − p = ρU0ux (15)

22

A Python-Implemented Vortex-Lattice Approach for Propeller Optimisation

Where ux represents the axial component of disturbance velocity. Rewriting the equation in
terms of pressure coefficient ∆Cp, it is formulated as follows :

∆Cp =
p− p∞
1
2
ρU2

0

≈ 2
ux

U0

(16)

3.5 Lifting surface
The importance of lifting surfaces in fluid mechanics, particularly in supporting aircraft, hydrofoil
boats, and various control surfaces such as rudders and yacht sails, cannot be overstated. These
surfaces are engineered to maneuver through the surrounding fluid at a slight angle of attack,
thereby generating hydrodynamic lift forces. The aspect ratio, which measures the extent to
which flow is influenced, by the three-dimensional nature of the surface, plays a crucial role. A
high aspect ratio suggests flow that is largely independent of the transverse coordinate, while a
lower aspect ratio indicates significant three-dimensional flow effects.

In the subsequent analysis, the scenario of a propeller operating under two-dimensional flow
conditions is examined, where the boundary conditions imposed on the contour are applied.
Two primary types of boundary conditions are addressed: a kinematic condition concerning
the fluid velocity at the boundary and a dynamic condition related to the forces acting on the
boundary. For a material boundary separating a fluid from another medium, the tangential
velocity at the surface must remain continuous. Specifically, if the solid surface is stationary, the
tangential velocity must be zero. In the case of an impermeable solid, it is assumed that there
is no separation or interpenetration; thus, the normal velocities of the fluid and the boundary
coincide. This is known as the kinematic condition or non-slip condition:

∇Φ · ~n = 0 (17)

Expanding upon the potential definition:

∂Φ

∂n
= −U0 · ~n = 0 (18)

where:

• ~n is the unit normal vector of the surface with direction from the surface into the fluid,

• U0 is the velocity for the undisturbed onset flow.

The Kutta condition ensures that the velocity at the trailing edge remains finite, thereby
mathematically enforcing the assumption of smooth tangential flow:

∇Φ < ∞ at trailing edge (19)

The influence of the body diminishes as the distance from it increases, therefore the perturbation
potential decreases from a finite value to zero at infinity:

∇Φ → 0 at infinity (20)

23

A Python-Implemented Vortex-Lattice Approach for Propeller Optimisation

In the general scenario, the perturbation potential, adheres to boundary conditions suitable
for slender bodies with small angles of attack. Airfoils exemplify such slender profiles where
separation effects remain negligible, allowing us to employ thin wing theory.

3.6 Linearised Thin Wing Theory
The thin wing theory, originally formulated for flow around two-dimensional wing sections,
assumes a purely two-dimensional flow in this context, confined to the x-z plane as depicted in
Figure 2, as the name implies, the theory is specifically tailored for slender profiles, with the
additional condition that the angle of attack remains small. An illustrative profile is presented
in the Figure 3:

Figure 2: Notation for two-dimensional section

where zu(x) delineates the upper side of the profile, zl(x) denotes the lower side, and c repre-
sents the chord length.For the thin wing assumption to hold, both zu(x) and zl(x) should be
significantly smaller than the chord length. Additionally, the slope of the profile, represented
by z′u(x) and z′l(x), should be considerably less than one. If these conditions are fulfilled, the
velocity boundary condition specified in Equation (18) can be linearised (Newman, 1978 [13]),
thus simplifying the analysis:

∂φ

∂z
= −Uz′u(x) on z = 0+, − c

2
≤ x ≤ c

2
∂φ

∂z
= −Uz′l(x) on z = 0−, − c

2
≤ x ≤ c

2

(21)

The singularities describing the foil in the linearised theory are located on the x-axis between
− c

2
≤ x ≤ c

2
. The question arises as to which singularities should be used to describe the profile.

This can be determined by dividing the disturbance potential into even and odd components
(Newman, 1978 [13]):

φ(x, z) = φe(x, z) + φo(x, z)

φe(x, z) = φe(x,−z) =
1

2
[φ(x, z) + φ(x,−z)]

φo(x, z) = −φo(x,−z) =
1

2
[φ(x, z)− φ(x,−z)]

(22)

24

A Python-Implemented Vortex-Lattice Approach for Propeller Optimisation

The boundary condition at z = 0∓

∂φe

∂z
= ∓1

2
U(z′u(x)− z′l(x)) on z = 0±,

∂φo

∂z
= −1

2
U(z′u(x) + z′l(x)) on z = 0±,

(23)

Figure 3: Left: Camber line with angle of attack α . Right: Symmetric section with thickness τ

The operator ∂
∂z

is odd, implying that ∂φe

∂z
is odd and ∂φo

∂z
is even, with respect to z. These

even and odd potentials correspond to two distinct physical scenarios. The the odd potential as
the potential of an asymmetric flow, passing an arc with zero thickness defined by the curve
z = 1

2
U(zu(x) + zl(x)), or the mean-camber line. Conversely, even potential as the potential

for a symmetrical profile, having thickness τ = (zu(x)− zl(x)), at zero angle of attack. Both
scenarios are depicted in Figure 3.

By decomposing the original problem into two parts, one representing thickness effects and the
other representing camber and angle of attack effects, Each aspect can be addressed separately.
Since the pressure distribution is symmetric in the thickness problem, there is no lift force
or moment involved. Therefore, thickness does not directly influence lift and moment, but
only affects practical considerations when modifications of the pressure distribution, influence
separation or cavitation.

The boundary condition for the even potential, as described in Equation (23), reveals an
asymmetric vertical velocity along the projection of the profile on the x-axis. This asymmetric
velocity arises from a distribution of sources along the projection, as discussed in works such as
Breslin and Andersen (1994 [21]). Conversely, the boundary condition for the odd potential, as
stated in Equation (23), necessitates a symmetric vertical velocity along the projection. Such
symmetry in velocity is achieved through a distribution of vortices,which are crucial for lift
generation, as also outlined in Breslin and Andersen (1994 [21]).

This explanation serves as a valuable reference, illustrating how a thin and horizontal profile can
be represented by a distribution of sources and vortices, along its projection on the x-axis. As
previously mentioned, the thickness is disregarded, and the foil is substituted with a distribution
of circulation.

25

A Python-Implemented Vortex-Lattice Approach for Propeller Optimisation

3.7 Circulation
Let’s center our analysis on the flow over the mean-camber line and the resultant lift force
and moment. The vertical position of the mean-camber line can be conveniently defined as:
z = 1

2
(zu(x) + zl(x)) = αx+ zf (x). This establishes the corresponding boundary condition on

the cut as :
∂φo

∂z
= −Uz′(x) = −U(αx+ z′f (x)) (24)

The boundary condition can be divided into two contributions: one from the angle of attack α
and another from the camber line, represented by zf . It’s necessary to know the distribution
along the chord. The distribution of circulation related to the angle of attack corresponds to a
distribution for a flat plate:

γFP (x) = 2U0α

√
c
2
+ x

c
2
− x

for −c

2
≤ x ≤ c

2
(25)

Figure 4: Vortex Distribution for flat plate

From the Equation (25), it’s possible to note that the value of circulation is highly intense near
the leading edge. As depicted in the Figure 4, the solution is not accurate at this point, but it
is accurate for the rest of the profile. Therefore, it is usable.
Regarding the circulation distribution related to the camber line, it is determined by utilizing
the linearized Bernoulli equation and a pressure distribution. The tangential velocity ux(x, z)
on both sides of a planar distribution of circulation along the x-axis is given by (Breslin and
Andersen [21]):

ux(x, 0±) = ∓ 2

γ(x)
for − c

2
≤ x ≤ c

2
(26)

Inserting this in Equation (16) one has:

γ(x) =
1

2U0

∆Cp(x) (27)

The circulation is known when ∆Cp(x) is defined. For this purpose, the NACA series is utilized:
the specific pressure distribution should be suitable regarding separation and cavitation. The
factor ’a’ denotes the fraction of the chord, measured from the leading edge, over which the
pressure remains constant. Towards the trailing edge, the pressure linearly decreases to zero,
creating what is often termed a rooftop pressure distribution.
The circulation distribution for these mean lines is:

26

A Python-Implemented Vortex-Lattice Approach for Propeller Optimisation

γRT (x) =

{
(c/2+x)U0

c(1−a2)
CL,i per − c

2
≤ x ≤ c

2
(1− 2a)

U0

1+a
CL,i per c

2
(1− 2a) ≤ x ≤ c

2

(28)

CL,i is the ideal lift coefficent. By combining the distributions of Equation (25) and Equation
(28), the chordwise circulation distribution becomes known, for a profile characterized by an
arbitrary rooftop pressure distribution and an arbitrary angle of attack, provided that the
limits of the linear theory are respected. Having clarified the linearized thin-wing theory in two
dimensions, it can be extended to the three-dimensional theory.

The three-dimensional flow varies also along spanwise direction, affecting circulation which
depends on both chordwise and spanwise coordinates, with chordwise variations described by
two-dimensional equations. Extending the linearized thin-wing theory to three dimensions is
achievable, provided that the two-dimensional assumptions remain valid along the chord.

In steady two-dimensional flow, irrotationality is reached with an infinite vortex downstream of
the propeller, compensating for propeller’s chordwise circulation. For three-dimensional flow,
this requirement is met by closed vortices with constant circulation. Therefore, in steady flow,
when a body exhibits a circulation variation along its span, a vortex sheet forms behind it,
merging the initially shed vortices with those created at the trailing edge. The circulation of
this vortex sheet is given by dΓ(y)

dy
, where Γ(y) represents the total chordwise circulation at the

spanwise coordinate y. As the vortex sheet is devoid of forces, it must move with the fluid, as
per Helmholtz’s theorem (a vortex line cannot start or end abruptly in a fluid).

Based on this theory, lifting surfaces such as propellers are modeled with vortex distributions
on their surfaces and a wake vortex sheet. Despite the constraints, potential flow theory has
been widely used and has proven reliable over time.

3.8 Distribution of Vortex
The method applied in this work divides the blade surface into a number of elements to describe
the surface. The calculation is made using vortex segments distributed along the blade to
represent its shape.
These vortex segments, form a gridwork that discretely represents the circulation distribution
across the blade, by constructing blocks of constant strength vortices.
The wake of the propeller is modeled with a sheet of trailing vortices convected downstream
with the mean flow.
Similar to the lifting line model, attention must be paid to how the trailing wake is modeled.

In determining the value of circulation, consideration must be given to the physical nature of
the phenomena: the flow has to leave the trailing edge smoothly, satisfying Kutta’s conditions:

• The vortex line cannot start or end abruptly,

• The vortex have to svanish into the flow,

• The velocity at trailng edge is finite.

27

A Python-Implemented Vortex-Lattice Approach for Propeller Optimisation

Γ(T.E.) = 0 (29)

The circulation at the trailing edge must be zero, meaning that the pressure must be zero on
the trailing edge. In practice, this condition is satisfied when the local streamline and the wake
are parallel, which means the strength of the wake is equal to the strength of the panel at the
trailing edge. Therefore, the vortex elements cannot end up on the wing but must vanish into
the flow, ensuring that no force acts on them.

To satisfy the solution, Helmholtz’s theorems are required:

~Q× ~Γwake = 0 (30)

• ~Q is the local flow

• ~Γwake is the circulation of the horseshoe vortex

At any point of the wake, the free vortex must be parallel to the local flow, and to satisfy this
condition:

• Each vortex has constant intensity,

• Each vortex can exist only as a closed (ring) line (infinite).

28

A Python-Implemented Vortex-Lattice Approach for Propeller Optimisation

4 Optimisation Procedure

4.1 Introduction
The principle of lifting surfaces is applied to the design of modern propellers to achieve better
lift-to-drag ratios. The objective of the optimization procedure is to determine the optimal
radial distribution of circulation on the propeller, aiming to maximize efficiency, through the
solution of a variational problem. By using this distribution of circulation, the corresponding
pitch distribution is found. In other words, the goal is to design the propeller configuration that
minimizes the power required to produce the desired thrust, thereby improving overall efficiency.

This methodology was initially developed by Prandtl and Betz in 1927 [1] for a single propeller
operating in open water conditions, employing linear theory and a lifting line model with integral
formulation. Betz identified the optimal circulation distribution, where the ratio between the
pitch angle of the onset flow, and the pitch angle for the total inflow, remained constant.
Lerbs (1952) [2] further advanced the method by introducing a radially varying onset flow. In
Lerbs’ formulation, an induction factor was incorporated to calculate induced velocity from the
trailing vortices, assumed with a helical shape. The shed vortices were aligned with the total
flow at the lifting line, coinciding with the criteria established by Betz in the case of open water
propellers.

Kerwin et al. (1986) [11], introduced a approach, that discretized the continuous distribution of
circulation, allowing for the direct solution of the variational problem. Subsequently, Coney
(1992 [12]) developed a vortex-lattice lifting line method, discretizing the continuous distribution
of vortices along the lifting line. These advancements showcased significant advantages of the
discrete model: linearization is not necessary, and it has the capability to handle theoretically
unlimited complex propeller geometries.
In the current optimization procedure, a lifting-surface model is utilized, enabling the integration
of the entire blade’s effects into the optimization process. Consequently, the optimum distribution
of loading is determined, followed by the calculation of the optimum distribution of pitch. For
simplicity, the hub is neglected in the optimization procedure.

4.2 Geometry
4.2.1 Propeller Geometry

A brief explanation of the propeller blade geometry is appropriate at this point: the propeller is
described in a Cartesian coordinate system which rotates with the propeller. The origin of the
coordinate system is at the center of the propeller hub. The x-axis is positive upstream, the
y-axis is positive to the port side and the z-axis completes the right-hand coordinate system,
see Figure (5).

Consider a propeller comprised of Z identical, symmetrically arranged blades attached to a hub
rotating at a constant angular velocity ω about the x-axis. The blade is formed starting with a
mid-chord line defined parametrically by the radial distribution of the skew of the mid-chord
line of the propeller φm(s), positive in the opposite direction of φ and rake xm(s). By advancing

29

A Python-Implemented Vortex-Lattice Approach for Propeller Optimisation

a distance ±1
2
t along a helix of pitch angle β(s) , one obtains the blade’s leading and trailing

edges. The reference surface of propeller blade is described in function of arc length parame-
ter along midchord line s, and dimensionless chordwise parameter t, while c(s) is the chord length.

For the cylindrical coordinate system the radius r is positive away from the origin and the angle
φ is measured from the z-axis and is positive in the same direction as ω. The x-coordinate
for the cylindrical coordinate system is the same as for the Cartesian system. The cylindrical
system is also shown in Figure (5).
For the blade surface the description in the Cartesian coordinate system:

Figure 5: Coordinate system for the propeller

φ(s, t) = −φm(s) +
c(s)

rm(s)
cos(β(s))t

x(s, t) = xm + c(s)sin(β(s))t

y(s, t) = −rm(s)sin(φ(s, t))

z(s, t) = rm(s)cos(φ(s, t))

30

A Python-Implemented Vortex-Lattice Approach for Propeller Optimisation

for shub < s < stip and −1
2
= t(TrailingEdge) < t < t(LeadingEdge) =

1
2

β is the fluid pitch angle, of the propeller:

β(s) = tan−1

(
U0,x(s)− ux(s)

ωrm(s)− ut(s)− U0,t(s)

)
(31)

where:

• U0,x(s) is the x component of the onset flow,

• ux(s) is the total axial induced velocity,

• rm(s) is the radius for the propeller,

• ut(s) is the total tangential induced velocity,

• U0,t(s) is the tangential component of the onset flow.

Figure 6: Velocity triangle for the propeller

4.2.2 Grid Generation

As the continuous distribution of circulation is replaced with a discrete distribution, the blade
surface, is divided into a number of quadrilateral panels and the trailing vortex sheet is therefore,
reduced to a number of trailing horseshoe vortices.

The circulation is positive counterclockwise along the sides of each panel. To satisfy Kelvin’s
circulation theorem, the circulation along these sides remains constant. The corners of the
panels, or grid points, are labeled from P1 to P4 in the direction of circulation. The vectors
along the sides are denoted as ~l1 to ~l4, so the ~l2 representing the vector from P2 to P3.

31

A Python-Implemented Vortex-Lattice Approach for Propeller Optimisation

Figure 7: Description of a panel and a trailer

The radial discretization of the propeller follows James (1972) [17]. It’s worth noting that the
outermost grid points at the tips are shifted inward by one-quarter interval:

sgp,i =
4i− 3

4Msp + 2
(stip − shub) + shub for i = 1, 2, 3...,Msp + 1 (32)

scp,i =
1

2
(sgp,i + sgp,i+1) for i = 1, 2, 3...,Msp (33)

The cosine discretization in the chord-wise direction, following Lan’s method [18], is as follows:

tgp,1 = −1

2
located at T.E. (34)

tgp,i = −1

2
cos
(
(i− 3

2
)π

Nch

)
for i = 2, 3..., Nch + 1 (35)

tcp,i =
1

2
(tgp,i + tgp,i+1) for i = 1, 2, 3..., Nch (36)

where Nch is the number of chord-wise panels, Msp is the number of span-wise panels, gp refers
to grid points, cp refers to control points.

4.2.3 Horseshoe Vortex

As previously mentioned, the discretization process reduces the trailing vortex sheet to a finite
number of horseshoe vortices, providing a simplified representation of the wing’s vortex sys-
tem. Each horseshoe vortex comprises two trailing wing-tip vortices, which extend infinitely
downstream with the fluid flow, and a bound vortex, represented as a straight line positioned at
the trailing edge. The wing-tip vortices contribute to the downwash component responsible for
induced drag.

32

A Python-Implemented Vortex-Lattice Approach for Propeller Optimisation

To satisfy the Kutta condition, the circulation of the horseshoe vortex equals the circulation of
the adjacent trailing edge panel. For the propeller, it’s assumed that the sides of the horseshoe,
follow regular helices with constant pitch and radius.

Figure 8: Example of grid, trailers and direction of the circulation for the propeller

Consequently, the horseshoe vortex can be described by:

~x =


x −∞ < x < x(T.E.)

−rsin
(
2π
P
(x− x(T.E.)) + φ(T.E.)

)
y(T.E(Hub)) < y < y(T.E(Tip))

rcos
(
2π
P
(x− x(T.E.)) + φ(T.E.)

)
r(T.E(Hub)) < r < r(T.E(Tip))

(37)

where:
• r is the radius of the grid points at the trailing edge,

• P is the pitch of the helix, which is equal to the pitch of the reference flow (see section
4.5): P = 2πr tan(β)

• φ(T.E.) is the phase angle of the helix,

• x(T.E.) is the x at the trailing edge.

33

A Python-Implemented Vortex-Lattice Approach for Propeller Optimisation

4.3 Forces and Velocities Calculations
4.3.1 Force on the panel sides

The force on the panel sides is found by using the Kutta–Joukowski theorem:

~FSide = ρ~U(~x)× ~ΓSide (38)
where:

• ~ΓSide is the total circulation of the panel side, which is the difference in circulation for the
two adjacent panels (for the leading edge panel is equal to ~ΓPanel),

• ~U(~x) is the total velocity at the midpoint of the panel side. ~U(~x) = ~U0(~x) + ~u(~x)

where:

• ~U0(~x) is the onset flow at the midpoint of the side,

• ~u(~x) is the total induced velocity at the midpoint of the side.

Figure 9: Description of the total circulation at the panel side

4.3.2 Onset Flow

The undisturbed flow is given in cylindrical coordinates, allowing for its rearrangement into
Cartesian coordinates. It is assumed that the undisturbed flow depends solely on radial variation
and is independent of longitudinal position; furthermore, it is assumed to be axi-symmetric.
Therefore, the three Cartesian components can be expressed as follows:

~U0(~x) = (−U0,x(s),−U0,r(s) sinφ− (U0,t(s)− ωr(s))cosφ,

U0,r(s) cosφ− (U0,t(s)− ωr(s))sinφ)
(39)

where:

34

A Python-Implemented Vortex-Lattice Approach for Propeller Optimisation

• U0,x(s),U0,z(s),U0,y(s) are the wake velocities given in Cartesian coordinates,

• U0,r(s),U0,t(s) are the wake velocities given in cylindrical coordinates,

• ωr(s) is the tangential velocity caused by the rotation of the propeller(included because
the coordinate system is fixed to the blade).

4.3.3 Induced velocities from the panels

The induced velocity from the panels is determined by applying the Biot-Savart law. This law
is a general result of potential theory and describes both electromagnetic fields and inviscid,
incompressible flows. In general terms the law can be stated (see Figure 10) as the velocity du
induced at a point x of radius R from a segment dε of a vortex filament of strength Γ given by:

d~u =
Γ

4π

d~ε× ~R

|~R|3
(40)

Figure 10: Application of the Biot–Savart law to a general vortex filament

To rearrange the expression for calculating the velocity induced by a single panel at the point ~x,
it can be expressed as follows:

~ui(~x) =
Γi

4π

4∑
k=1

∫ sk

0

d~ε× ~R

| ~R |3
= Γiqi(~x) (41)

where Γi is the circulation of the panel, d~ε is the length element along the panel side with the
lenght sk. ~R is the vector from the vortex element, qi is defined as the velocity induced by the
entire panel with a unit circulation.The numerical evaluation of the induced velocity involves
the determination of the velocity induced by a unit circulation since at first the circulation is an
unknown.

Considering that the panel sides are linear segments, the computational assessment of the
induced velocity resulting from a panel side adheres to the methodology outlined by Olsen
(2001) [4]:

~u(~x) =
Γ

4π

~a× ~c

| ~a× ~c |
1

d
[cosα + cos β] = Γ

4π

~a× ~c

| ~a× ~c |
1

d

[
a− e

b
+

e

c

]
The vector (a×c)

|a×c| corresponds to a unit vector giving the direction of the induced velocity.

35

A Python-Implemented Vortex-Lattice Approach for Propeller Optimisation

Figure 11: Description of the parameters used in the application of Biot-Savart law

Figure 12: Parameters used to evaluate the induced velocity from a straight vortex

where:

• a =| ~a |=
√

(x2 − x1) + (y2 − y1) + (z2 − z1),

• b =
√

(x2 − x) + (y2 − y) + (z2 − z) ,

• c =
√

(x1 − x) + (y1 − y1) + (z1 − z),

• d =
√
(c2 − e2),

• e =| ~e |= a2+c2−b2

2a

4.3.4 Induced velocities from the horseshoe vortices

The induced velocity from the horseshoe vortices is divided into two parts:

• Transition wake:

– Extends from the trailing edge of the propeller to four radii downstream.
– The regular helix is approximated by a series of straight line vortices.
– The induced velocity can be determined using the same method as for the panel

sides.

• Ultimate wake:

36

A Python-Implemented Vortex-Lattice Approach for Propeller Optimisation

– Includes the region from the end of the transition wake to infinitely downstream.
– The induced velocity in this region is calculated using the method developed by de

Jong (1991) [20].

4.3.5 Total velocity

The total velocity at point ~x is the sum of the onset flow and the induced velocity from the
propeller itself:

~U(~x) =

Msp∑
j=1

Γ1+(j−1)Nch

Nch∑
i=1

ki~qi+(j−1)Nch
(~x) + ~U0 (42)

where:

• j is the counter for the span-wise panels,

• i is the counter for the chord-wise panels,

• Γ1+(j−1)Nch
is the circulation for the panel at the trailing edge,

• ki is the weight function,

• ~qi+(j−1)Nch
is the induced velocity from the panel i+ (j − 1)Nch with a unit circulation.

The induced velocities from the trailing vortices are included in ~qi+(j−1)Nch

• ~U0 is the onset flow.

4.4 Weight Function
Munk’s displacement theorem states that the induced drag for a lifting surface depends solely on
the total chord-wise circulation and not on the chord-wise distribution of the circulation. Hence,
to specify the chord-wise distribution of circulation for the propeller, it becomes necessary to
introduce the weight function. Essentially, the weight function establishes a relationship between
the chord-wise panels to determine the chord-wise distribution of circulation for the propeller.
For the propeller, the optimization problem is therefore simplified to finding the optimal distri-
bution of total circulation for each chord-wise strip, which corresponds to the circulation of the
horseshoe vortex.

In a discrete distribution of vortices, as depicted in Figure 13, the weight function is defined as
follows:

κn =
Γn

Γtot

(43)

The total circulation at grid point n, Γn, as shown in Figure 13, is the difference between the
circulation of two adjacent panels. Meanwhile, the total circulation for the chordwise direction
is given by: Γtot =

∫ c/2

−c/2
γ(x), dx, where γ represents the continuous distribution of circulation

calculated earlier in Section 3.7, as a combination of the flat plate and rooftop distributions.

37

A Python-Implemented Vortex-Lattice Approach for Propeller Optimisation

Figure 13: Description of total circulation at a panel side

For the discrete vortex, the cirulation can be approximated by:

Γn = c

∫ tcp,n

tcp,n−1

γ(t′), t′ ≈ γ(tgp,n)(tcp,n − tcp,n−1) (44)

where tcp,n follows Lan (1974) [18], and represents the location of the control point, while tgp,n
is described in Section 4.2.2.
The discrete circulation becomes:

Γn ≈ γ(tgp,n)C

√
(
1

2
− tgp,n)(

1

2
+ tgp,n) (45)

where C is a constant. Then, it’s possible to write the relationship between the weight
function κ and the circulation on the chord-wise panels as follows:

κ1 = 0

κn = Γn−1−Γn

Γtot
for i = 2, 3..., Nch

κNCh+1
=

ΓNCh+1

Γtot

(46)

This results in the weight function for the circulation of the panels:

38

A Python-Implemented Vortex-Lattice Approach for Propeller Optimisation

κn =

NCh+1∑
i=n+1

((1− ν)κRT
i + νκFT

i) for i = 1, 2, 3..., Nch (47)

where:

• Γtot is the total circulation for the chord-wise distribution,

• κRT
i is the weight function for the flat plate pressure distribution ,

• κFT
i ,is the weight function for the rooftop plate pressure distribution,

• ν is the ratio of the pressure distribution. In our case ν = 0.5.

4.5 Wake Alignment
The applied grid and wake alignment procedure assumes a constant pitch for the horseshoe
vortices and disregards slipstream contraction. It also assumes that the blade and horseshoe
vortices share the same pitch, determined by the total velocity at the midchord line of the blade.
The pitch of the helix is based on the total velocity at the mid-chord line of the blade, which is
located at t = 0. Consequently, the pitch angle of both the grid and horseshoe vortices is:

βi(s) = tan−1

(
U0,x(s)− ux(s)

ωrm − ut(s)− U0,t(s)

)
(48)

where:

• U0,x(s) is the x component of the onset flow,

• ux(s) is the total axial induced velocity,

• ω is the angular velocity,

• rm is the radius for the propeller,

• ut(s) is the total tangential induced velocity,

• U0,t(s) is the tangential component of the onset flow.

The applied alignment procedure corresponds to the wake alignment used in the moderately
loaded lifting-line theory. However, unlike the lifting-line theory, the induced velocity from
the bound vortices is included in the total induced velocity for the lifting-surface optimization.
While it’s assumed that the effects of these vortices are small, which holds true for a propeller
without skew and rake, for a skewed propeller, this assumption becomes more questionable.

39

A Python-Implemented Vortex-Lattice Approach for Propeller Optimisation

4.6 Thrust and Torque Calculation
As previously discussed, the forces on the propeller blades are found by the Kutta–Joukowski
theorem. Therefore, the force on one side of the panel is calculated using the following expression:

~FSide = ρ~U(~x)× ~ΓSide = ρΓSide

(
~U(~x)×~lSide

)
(49)

where:

• ~U(~x) is the total velocity calculated at the midpoint of the panel side,

• ~lSide is the vector for the side,

• ~ΓSide is the total circulation on the side.

The moment generated by one side of the panel can be expressed ass:

~MSide = ~r(~x)× ~FSide (50)

where:

• ~r(~x) is the vector from the origin of the coordinate system to the midpoint of the side.

The total thrust, T , and torque Q, generated by the propeller are determined by summing
the contributions from all the panel sides of all the blades. It’s important to note that, due
to the symmetric nature of the propeller and its operation under steady conditions, the forces
generated by all the blades are identical. Therefore, the forces generated by the entire propeller
can be calculated by multiplying the forces on one blade (the reference blade) by the number of
blades Z.
Therefore, the thrust (x-component of the total force) is:

T = Fx =ρZ

Msp∑
m=1

Γ1+(m−1)Nch

{ Nch∑
n=1

κn

4∑
k=1

[lz,n+(m−1)Nch,k
Uy(~xn+(m−1)Nch,k

)

− ly,n+(m−1)Nch,k
Uz(~xn+(m−1)Nch,k

)]− lz,1+(m−1)Nch,4
Uy(~x1+(m−1)Nch,4

)

+ ly,1+(m−1)Nch,4
Uz(~x1+(m−1)Nch,4

)

} (51)

where:

• lx is the x-component of ~l,

• ly is the y-component of ~l,

• lz is the z-component of ~l,

• Ux is the x-component of the total velocity,

• Uy is the y-component of the total velocity,

• Uz is the z-component of the total velocity,

40

A Python-Implemented Vortex-Lattice Approach for Propeller Optimisation

• m is the span-wise index,

• n is the chord-wise index,

• k is the side index.

For example, ~xn+(m−1)Nch,k
is the coordinate for the midpoint of side k of the panel number

n+ (m− 1)Nch,k.

The torque Q is the negative x-component of the total moment:

Q = −Mx = −
sides∑
i=1

(yFz − zFy) = Q2 −Q1 (52)

where:

Fy = ρZ

Msp∑
m=1

Γ1+(m−1)Nch

{ Nch∑
n=1

κn

4∑
k=1

[lx,n+(m−1)Nch,k
Uz(~xn+(m−1)Nch,k

)

− lz,n+(m−1)Nch,k
Ux(~xn+(m−1)Nch,k

)]− lx,1+(m−1)Nch,4
Uz(~x1+(m−1)Nch,4

)

+ lz,1+(m−1)Nch,4
Ux(~x1+(m−1)Nch,4

)

} (53)

Fz = ρZ

Msp∑
m=1

Γ1+(m−1)Nch

{ Nch∑
n=1

κn

4∑
k=1

[ly,n+(m−1)Nch,k
Ux(~xn+(m−1)Nch,k

)

− lx,n+(m−1)Nch,k
Uy(~xn+(m−1)Nch,k

)]− ly,1+(m−1)Nch,4
Ux(~x1+(m−1)Nch,4

)

+ lx,1+(m−1)Nch,4
Uy(~x1+(m−1)Nch,4

)

} (54)

Q1 = yFz = ρZP

Msp∑
m=1

Γ1+(m−1)Nch

{ Nch∑
n=1

κn

4∑
k=1

yn+(m−1)Nch,k
[ly,n+(m−1)Nch,k

Ux(~xn+(m−1)Nch,k
)

− lx,n+(m−1)Nch,k
Uy(~xn+(m−1)Nch,k

)] + y1+(m−1)Nch,4
[−ly,1+(m−1)Nch,4

Ux(~x1+(m−1)Nch,4
)

+ lx,1+(m−1)Nch,4
Uy(~x1+(m−1)Nch,4

)]

}
(55)

Q2 = zFy = ρZP

Msp∑
m=1

Γ1+(m−1)Nch

{ Nch∑
n=1

κn

4∑
k=1

zn+(m−1)Nch,k
[lx,n+(m−1)Nch,k

Uz(~xn+(m−1)Nch,k
)

− lz,n+(m−1)Nch,k
Ux(~xn+(m−1)Nch,k

)] + z1+(m−1)Nch,4
[−lx,1+(m−1)Nch,4

Uz(~x1+(m−1)Nch,4
)

+ lz,1+(m−1)Nch,4
Ux(~x1+(m−1)Nch,4

)]

}
(56)

• Fy is the y-component of the force on side i,

41

A Python-Implemented Vortex-Lattice Approach for Propeller Optimisation

• Fz is the z-component of the force on side i,

• Q1 and Q2 are introduced in order to make the expression above more readable.

The equations above satisfy the Kutta condition (Γ(T.E.) = 0). Let’s consider, for example,
Equation (47) and its last two components. This part of the equation is employed to eliminate
the contribution of segments at the trailing edge to the thrust, which was previously calculated
in the same equation:

lx,1+(m−1)Nch,4
Uz(~x1+(m−1)Nch,4

) + lz,1+(m−1)Nch,4
Ux(~x1+(m−1)Nch,4

) (57)

4.7 Optimum Circulation Distribution
As mentioned earlier, the objective of the optimization procedure is to determine the radial
distribution of circulation on the propeller. This distribution allows the propeller to generate a
specified thrust with minimal energy consumption. Consequently, minimizing the torque applied
to the propeller becomes crucial. In essence, the objective is to achieve the highest efficiency for
the propeller:

η =
J

2π

KT

KQ

(58)

where:
KT is the thrust coefficient:

KT =
Tr

ρn2D4
(59)

KQ is the torque coefficient:

KQ =
Qt

ρn2D5
(60)

J is the advance number:

J =
Ua

nD
(61)

Tr is the required thrust of the propeller : Tr = Tt − Tv

• Tt is the total required thrust of the propeller

• Tv is the thrust owed to the skin friction drag of the propeller (negative).

Ua is the mean inflow to the propeller disc, ρ is the mass density of the water, n is the rate of
revolution of the propeller, D is the propeller’s diameter and Qt is the total torque:

Qt = (Q2 −Q1) +Qv (62)

where Qv is the torque owed to the skin friction drag of the propeller (negative).

42

A Python-Implemented Vortex-Lattice Approach for Propeller Optimisation

4.7.1 Skin Friction Drag

Skin friction drag is the portion of drag resulting from the friction between a fluid and the
surface, of an object, moving through it. This drag arises within the boundary layer, due to the
viscosity of the fluid. It is directly proportional to the surface area in contact with the fluid and
increases with the square of the velocity. Additionally, it’s important to note that form drag is
disregarded in this context due to the vortex-lattice method’s reliance on potential flow theory:
The skin friction drag created by a panel of the propeller is:

dTv =
1

2
ρCf A |VT |VT (63)

dQv =
1

2
ρCf A |VT | (yPVTz − zPVTy) (64)

where:

• Cf = 2 · 0.004 is the frictional drag coefficient for the two faces of the panel,

• A is the area of the panel,

• VT is the total tangential velocity in the control point of the panel,

• yP is the y-coordinate of the control point of the panel,

• zP is the z-coordinate of the control point of the panel,

• VTz is the z-coordinate of the tangential velocity in the control point of the panel,

• VTy is the y-coordinate of the tangential velocity in the control point of the panel.

4.7.2 Variational Problem

The optimization procedure aims to determine the circulation distribution that enables the
propeller to achieve a specified thrust while minimizing energy consumption. Therefore, the
torque applied to the propeller should be minimized as well. This circulation distribution is
obtained by solving a discrete variational problem, as outlined in Kerwin et al. (1986) [3].

The functional for this problem is given by:

H(~Γ, λ) = Q(~Γ) + λ(T (~Γ)− (Tr − Tv)) (65)

where:

• ~Γ is the sought distribution of circulation,

• λ is the Lagrange multiplier,

Since the circulation on the blade is determined by the weight function and the circulation of
the trailing vortices, the number of unknown circulations corresponds to the number of radial
panels Msp. The optimum distribution is that which minimises the functional H. Thus, the
distribution can be found by setting the partial derivatives of H(~Γ, λ) with respect to ~Γ and λ
equal to zero.

This gives the following system of equations:

43

A Python-Implemented Vortex-Lattice Approach for Propeller Optimisation


∂H

∂Γ1+(m−1)Nch

=
∂Q

∂Γ1+(m−1)Nch

+ λ
∂T

∂Γ1+(m−1)Nch

= 0

∂H

∂λ
= T − (Tr − Tv) = 0

(66)

The provided equations demonstrate that the optimization procedure is nonlinear. This nonlin-
earity arises due to the presence of products involving λ and ~Γ, as well as the dependency of
induced velocities on circulation. Therefore, the non-linear problem is linearised, which results
in the following system of equations:

∂Q(~Γ)

∂Γ1+(m−1)Msp

+ λt−1 ∂T (~Γ)

∂Γ1+(m−1)Msp

+ λt ∂T (U0)

∂Γ1+(m−1)Msp

= − ∂Q(U0)

∂Γ1+(m−1)Msp

T (~Γ) = (Tr − Tv)− T (U0) for m = 1, 2, ...Msp

(67)

where:

• Q(~Γ) refers to the parts of Q that are functions of the circulation,

• T (~Γ) refers to the parts of T that are functions of the circulation,

• Q(U0) refers to the parts of Q that are functions of the onset flow,

• T (U0) refers to the parts of T that are functions of the onset flow,

• t is the value of the current iteration,

• t− 1 is the value from the previous iteration.

The primary challenge in determining the circulation distribution stems from the direct and
indirect dependencies of thrust and torque on circulation. For instance, considering the thrust
generated by one side:

~T = ρ ~U(~Γ)× ~Γ (68)

The equation above clearly illustrates the double dependence on circulation. Therefore, it
becomes necessary to employ an iterative method for solving the variational problem in order
to determine the radial distribution of circulation on the propeller.

As mentioned earlier, iterations are required to attain a solution to the problem. These iterations
continue until the residual Rt falls below a certain limit.

Rt = Max

(∣∣∣∣∣1− Γ
(t)
1+(m−1)Msp

Γ
(t−1)
1+(m−1)Msp

∣∣∣∣∣
)

for m = 1, 2, ...Msp (69)

44

A Python-Implemented Vortex-Lattice Approach for Propeller Optimisation

4.7.3 Optimisation Procedure

First of all, input parameters have to be specified in order to begin the optimisation procedure.
These include:

• main dimensions of the propeller (radius of the propeller, radius of the hub, number of
blades, etc.),

• size of the grid (number of span-wise panels, number of chord-wise panels, etc.),

• geometry of the mid-chord line, which is specified through the distributions of radius, rake
and skew. It is bear mentioning that these three parameters are function of the arc length
parameter s,

• chord length distribution in order to construct the grid.

• design point (advance number, required thrust, etc.),

• onset flow,

• ratio between the flat plate and the rooftop distributions ν.

Given the initial input, the initial system of equations for the variational problem is constructed,
according to Equation (67). Initially, the distribution of circulation is set to zero, and the
Lagrange multiplier is set to -1 (Coney, 1992) [22]. The iteration for the variational problem
continues until the residual, as described in Equation (69), falls below 10−5, typically achieved
in fewer than ten iterations. Once the variational problem has converged, the grid and the
trailers are aligned according to Equation (48). Subsequently, the system of equations for
the variational problem is updated with the new grid and wake geometry, and the variational
problem is solved again. The alignment of the grid and the wake continues until the residual for
the pitch distribution of the wake is less than 10−5:

Rt
align = Max

(∣∣∣∣∣1− P
(t)
m

P
(t−1)
m

∣∣∣∣∣
)

for m = 1, 2, ...Msp + 1 (70)

The number of iterations required for the wake alignment to converge varies based on the
propeller geometry and loading, but generally, convergence is slower than for the variational
problem. Once the wake alignment has converged, the distribution of circulation is saved to a
file, and the program terminates.
The flow chart below, clearly shows the optimisation procedure for the propeller:

45

A Python-Implemented Vortex-Lattice Approach for Propeller Optimisation

Input parameters propeller

Calculation of the weight function

Construction of the grid

Calculation of the onset flow

Calculation of the induced velocities from the grid

Calculation of the induced velocities from the horseshoe vortices

Calculation of the skin friction drag

Construction of the initial system of equations

Solve the system of equations
Update the system

Convergence?

Wake alignment and reconstruction of the grid

Convergence?

Write output

End

Yes

Yes

No

No

It is crucial to obtain the optimal distribution of circulation without altering either the wake
or the grid. This necessity arises from the fact that aligning the wake for each iteration of the
optimization procedure results in a heavily tip-loaded propeller, as demonstrated by Kerwin
(1986) [3]. Consequently, during the circulation optimization procedure, the induced velocities
remain fixed, as they are solely functions of the propeller’s geometry.

46

A Python-Implemented Vortex-Lattice Approach for Propeller Optimisation

5 Validation
The validation process of the computer program utilized the DTNSRDC propeller series, with
additional information on the series available in Kerwin and Lee’s work (1978) [29]. Subsequently,
the validation results were compared with findings from Olsen (2001) [4]. For this comparison,
four propellers from the series were selected. While these propellers share identical radial
distribution of circulation, expanded blade area, and thickness distribution, variations in skew
were introduced among them. Consequently, differences in pitch were observed.
The main dimensions and design points for the propellers are as follows:

Z = 5;R = 3.0m; ρ = 0.2;AE/A0 = 0.725; J = 0.889;KT,D = 0.2055;CTh = 0.662. (71)

Figure 14: Grid for DC4381 Propeller, No Skew-No skew-induced rake. Msp ×Nch = 20× 10

Figure 15: Grid for DC4497 Propeller, 36° Skew, No Skew-induced rake. Msp ×Nch = 20× 10

Figure 16: Grid for DC4382 Propeller, 36° Skew, Skew-induced rake. Msp ×Nch = 20× 10

47

A Python-Implemented Vortex-Lattice Approach for Propeller Optimisation

Figure 17: Grid for DC4383 Propeller, 72° Skew, Skew-induced rake. Msp ×Nch = 20× 10

The design thrust coefficient, KT,D, is approximated from Kerwin and Lee (1978) [29], which
also provides detailed geometry information of the propellers. The radius is chosen.
The four propellers include one reference propeller, which has no skew or rake (see Figure 14).
The other two are connected, so they both have the same skew, but only one of them has
skew-induced rake (see Figures 16 and 15). The last one has both skew and skew-induced rake,
and it is different from the other two due to the skew being 72° instead of 36° (see Figure 15).

5.1 Grid Study
Initially, a grid study was conducted to validate the results by varying the number of panels. This
approach aimed to assess both the consistency of the results and the impact of grid refinement.
The parameter was varied with configurations such as Msp ×Nch = 5× 5, 20× 10, 30× 20.
The grid study is done with the reference propeller, DC4381, and the linear theory is used.
Hence, the grids of the propellers are aligned with the onset flow and the grid is not changed.

0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1
0

0,5

1

1,5

2

2,5

3

r/R

10
0Γ

/π
D
U
0

Result Optimum
Olsen Optimum

Figure 18: DC4381 Msp ×Nch = 5× 5

The tables below shows the optimised torque coeffcient 10KQ for DC4381:

The table above illustrates a relative difference of 2.11% between the Olsen value and the
validation value. Additionally, it is observed that the absolute difference decreases as the number

48

A Python-Implemented Vortex-Lattice Approach for Propeller Optimisation

0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1
0

0,5

1

1,5

2

2,5

3

r/R

10
0Γ

/π
D
U
0

Result Optimum
Olsen Optimum

Figure 19: DC4381 Msp ×Nch = 20× 10

Table 1: Results from Grid Study

Grid cells 10KQ (Olsen) 10KQ (Validation)

5×5 0.3701 0.3587
20×10 0.3695 0.3611
30×20 0.3697 0.3619

of panels increases. From the grid study, it can be concluded that the number of grid points
does not significantly impact the final outcome, but rather concerns the desired resolution of the
solution. Furthermore, as the number of panels increases, the resulting values tend to converge.

5.1.1 Thrust Loading

The grid study involved varying the thrust coefficient to assess its agreement with Olsen’s results,
using a thrust coefficient of CTh = 2.0. However, due to the utilization of linear theory, the
results for high thrust loads (CTh = 2.0) may not be accurate, as the alignment of the trailers
was not considered. Nonetheless, these findings provide insights into the method’s performance,
under high thrust conditions.

Conversely, the lowest thrust load (CTh = 0.662) is considered sufficiently low to justify the
application of linear theory. Although slight differences may arise between results with and
without wake alignment, these variances are assumed to be negligible for this thrust load. It’s
worth noting that the disparities between the two sets of results are minimal.

49

A Python-Implemented Vortex-Lattice Approach for Propeller Optimisation

Table 2: Results obtained by varying thrust coefficient, CTh = 2

Grid cells 10KQ (Olsen) 10KQ (Validation)

5×5 0.2725 0.2428
20×10 0.2715 0.2602

5.2 Advance Ratio
At this point, the aim is to compare Olsen’s optimization of the lifting surface with the program’s
optimization, by varying the advance number. For this purpose, the reference propeller, DC4381,
was analyzed for a constant thrust loading and a range of advance numbers. Calculations were
performed for a thrust loading of 0.662 and a uniform onset flow with a velocity of 10.0m/s.
The chordwise loading is half flat plate and half rooftop (ν = 0.5). The advance number was
varied by changing the rotational speed of the propeller.

Table 3: Results obtained by varying Advance Ratio

J 0.8 1.0 1.2

n (rps) 2.083 1.667 1.398
w (rad/sec) 13.090 10.472 8.7266

KT 0.16645 0.26008 0.37453
KQ Olsen 0.02655 0.05371 0.09709

KQ Validation 0.02600 0.05249 0.09484
η Olsen 0.79810 0.77074 0.73673

η Validation 0.81464 0.78822 0.75376

An increase in circulation occurs when the advance numbers increase (see Figures 21 and 23).
This is expected, as the force on the blade is a function of speed and circulation (see Equation
38). Therefore, to maintain the same thrust, it is necessary for the circulation to increase, as the
rotational speed decreases. Olsen provides an explanation of this phenomenon by examining the
equations used and the force distribution on the lifting surface. In particular, he discusses the
contribution of panels to thrust and torque, as well as their dependence on induced velocities
and onset flow. He concludes that the circulation for optimizing the lifting surface load should
be increasingly tip-loaded for decreasing advance numbers. For a better explanation, see Olsen
[4].
As the advance numbers increase, there is an observed decrease in efficiency. This is attributed
to the increasing relative magnitude of the axial velocity compared to the rotational velocity at
higher advance numbers. Consequently, the torque also increases in relation to the thrust.

A grid consisting of 35 panels in the longitudinal direction and 20 panels in the chordwise
direction was used, employing linear theory. The validation results were reported in Table (3).
Also in this case, the differences in results are minimal.

50

A Python-Implemented Vortex-Lattice Approach for Propeller Optimisation

5.3 Skew
For further comparison between Olsen’s method and this program, the optimal distribution of
circulation is considered. Figure (20) illustrates the circulation distributions for the propeller
DC4381, as well as for two propellers with both skew and skew-induced rake, DC4382 and
DC4383. From the figure, it is evident that the maximum value of circulation decreases with
increasing skew. Hence, the shape of the propeller has a small but noticeable influence on the
optimal distribution of circulation. Consequently, the efficiency of the skewed propeller is higher
than that of the propeller without skew. Therefore, it can be concluded that the efficiency of
the propeller is positively influenced by the increase in skew.
The design point used:

• Msp ×Nch = 35 ∗ 20

• J = 0.8

• Ua = 10m/s

• CTh = 0.662

• KT = 0.1664

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

r/R

10
0Γ

/π
D
U
0

DC4381, No Skew
DC4382, 36°Skew
DC4383, 72°Skew

(a) Msp ×Nch = 35× 20 (b) Olsen optimum

Figure 20: Comparison between results for the reference propeller, DC4381, the propeller with
36° skew and skew-induced rake, DC4382, and the propeller with 72° skew and skew-induced
rake, DC4383.

51

A Python-Implemented Vortex-Lattice Approach for Propeller Optimisation

Table 4: Results obtained by varying Skew

J 0.8
KT 0.16645

Propeller 4381 4382 4383
Skew 0° 36° 72°

Indu.-rake no yes yes
KQ (Olsen) 0.02655 0.02641 0.2623

KQ (Validacion) 0.02600 0.02602 0.02595
η (Olsen) 0.79810 0.80252 0.80786

η (Validacion) 0.81464 0.81507 0.81642

5.4 Skew-Induced Rake
Figures (21) and (23) compare the results for the skewed propellers with and without skew-
induced rake, alongside the results for the reference propeller. The data is provided for J = 0.8
and J = 1.0. The Figures and Tables (5), illustrate that the circulation distribution and
efficiency for the propellers with and without skew-induced rake are nearly identical. These
results align with Munk’s displacement theorem.

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

r/R

10
0Γ

/π
D
U
0

DC4381, No Skew, No Rake
DC4497, 36°Skew, No Rake

DC4382, 36°Skew, Rake

(a) Msp ×Nch = 35× 20 (b) Olsen Optimum

Figure 21: Comparison between results for the reference propeller,DC4381,and the two propellers
with 36° skew, DC4382 which has skew-induced rake and DC4497 which has no rake. J = 0.8

52

A Python-Implemented Vortex-Lattice Approach for Propeller Optimisation

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

3

r/R

10
0Γ

/π
D
U
0

DC4381, No Skew, No Rake
DC4497, 36°Skew, No Rake

DC4382, 36°Skew, Rake

(a) Msp ×Nch = 35× 20 (b) Olsen Optimum

Figure 22: Comparison between results for the reference propeller, DC4381, and the two
propellers with 36° skew, DC4382 which has skew-induced rake and DC4497 which has no rake.
J = 1.0.

Table 5: Results obtained by varying Skew-induced Rake

J 0.8
KT 0.16645

Propeller 4381 4382 4497
Skew 0° 36° 36°

Indu.-rake no yes no
KQ (Olsen) 0.02655 0.02641 0.02639

KQ (Validation) 0.02600 0.02602 0.02598
η (Olsen) 0.79810 0.80252 0.80305

η (Validation) 0.81464 0.81507 0.81418

J 1
KT 0.26008

Propeller 4381 4382 4497
Skew 0° 36° 36°

Indu.-rake no yes no
KQ (Olsen) 0.05371 0.05330 0.05324

KQ (Validation) 0.05249 0.05236 0.05241
η (Olsen) 0.77074 0.77658 0.7743

η (Validation) 0.78822 0.79020 0.78948

53

A Python-Implemented Vortex-Lattice Approach for Propeller Optimisation

5.5 Skin Friction Drag
The following analysis focuses on the influence of Skin Friction Drag. Two propellers were
examined: the reference propeller, DC4381, and the propeller with skew but without induced
rake, DC4497. The results clearly indicate that the inclusion of skin friction drag results in a
more significant increase in torque and a decrease in efficiency. While potential flow theory
provides a good representation of reality, incorporating a correction coefficient to account for
the resistance generated in the boundary layer due to water viscosity brings our analysis closer
to a more accurate depiction of reality.

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

3

r/R

10
0Γ

/π
D
U
0

No Skin Friction Drag
Skin Friction Drag

(a) DC4381; Msp ×Nch = 35× 20

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

3

r/R

10
0Γ

/π
D
U
0

No Skin Friction Drag
Skin Friction Drag

(b) DC4497; Msp ×Nch = 35× 20

Figure 23: Comparison between results for the reference propeller, DC4381, and the 36° skew,
DC4497 which has no rake.

Table 6: Variation of Skin Friction Drag Results

Propeller ω (rad/sec) 10KQ (Inviscid) 10KQ (Viscid) η (Inviscid) η (Viscid)

DC4381 1.875 0.0374 0.0420 0.8020 0.71499
DC4497 1.875 0.0373 0.04249 0.8045 0.70755

54

A Python-Implemented Vortex-Lattice Approach for Propeller Optimisation

6 Conclusions
The outcome of this study demonstrates the successful development of a Python-based vortex
lattice method to optimize propeller efficiency for a given thrust, proving its effectiveness across
different grid resolutions and for various propeller loadings. Furthermore, the calculations
indicate that the impact of the chordwise pressure distribution is negligible, in accordance with
Munk’s displacement theorem. Despite incorporating the entire blade into the optimization
process, it becomes apparent that with the vortex-lattice method utilized, the majority of thrust
and torque originate from the sides of the horseshoe vortices along the trailing edges, where the
onset flow and induced velocities are fully incorporated. This observation is consistent with the
principles outlined in Munk’s theorem.
Comparison among the DTNSRDC propellers reveals variations in the distributions of circulation
and torque. Notably, skew enhances efficiency, and further gains in efficiency can be achieved
by eliminating skew-induced rake. Although the exact explanation behind this effect is not
fully understood, some insights can be obtained by examining the combination of circulation
distribution and total velocities at the trailing edge for different propellers. This comparison
suggests a beneficial impact of skew on induced velocities at the trailing edge, resulting in higher
efficiencies for skewed propellers. Further investigation is necessary to fully understand why
propellers with skew demonstrate superior efficiency, although similar findings are documented
in Mishima and Kinnas (1997) [36].
Furthermore, the calculations demonstrate that circulation and torque distributions are depen-
dent on blade geometry. Additionally, incorporating the Skin Friction Drag coefficient separately
in the calculation yields results closer to reality, accounting for a portion of drag neglected in
potential flow theory.

55

A Python-Implemented Vortex-Lattice Approach for Propeller Optimisation

7 References
[1] Betz, A. Prandtl, L.,Schraubenpropeller mit Geringstem Enegieverlust Goettnger

Nachtrichten, pp. 193-217, March 1919

[2] H.W. Lerbs, Moderately loaded propellers with a finite number of blades and an arbitrary
distribution of circulation, Trans. SNAME 60, 1952.

[3] J.E. Kerwin, W.B. Coney, C.-Y. Hsin, Optimum Circulation Distribution for Single and
Multi-Component Propulsors, in Messalle, R. F. (editor), Proc. of Twenty-First American
Towing Tank Conference, pp. 53–62, National Academy Press, Washington, D.C, 1986.

[4] A.S. Olsen Optimisation of Propellers Using the Vortex-Lattice Method. 2001.

[5] EEXI and CII - Ship carbon intensity and rating system, International Maritime Organization
https://www.imo.org/en/MediaCentre/HotTopics/Pages/EEXI-CII-FAQ.aspx

[6] EEXI – Energy Efficiency Existing Ship Index DNV

[7] E.A. Bouman, E. Lindstad, A.I. Rialland, A.H. Strømman. State-of-the-art technologies,
measures, and potential for reducing GHG emissions from shipping – A review Norwegian
University of Science and Technology, 2017. https://www.sciencedirect.com/science/
article/pii/S1361920916307015#t0005

[8] M. Issa, A. Ilinca, F. Martini, Ship Energy Efficiency and Maritime Sector Initiatives to
Reduce Carbon Emissions. Institut Maritime du Québec à Rimouski, 2022.

[9] F. Vesting, Marine Propeller Optimisation - Strategy and Algorithm Development,
CHALMERS UNIVERSITY OF TECHNOLOGY, 2015.

[10] W.B.Coney, A METHOD FOR THE DESIGN OF A CLASS OF OPTIMUM MARINE
PROPULSORS, MASSACHUSETTS INSTITUTE OF TECHNOLOGY, 1989.

[11] J.E.KERWIN MARINE PROPELLERS Marine Annual Review of Fluid Mechanics. Vol.
18:367-403, January 1986.

[12] J. CARLTON MARINE PROPELLERS AND PROPULSIONS, Global Head of Marine
Technology and Investigation, Lloyds Register, 2007.

[13] J.N. Newman, foreword by J. Grue. Marine Hydrodynamics, Massachusetts Institute of
Technology, 40th anniversary edition, 2017.

[14] J. Katz, A. Plotktin Low-Speed Aerodynamics, Second Edition, Cambridge University, 2001.

[15] European Environment Agency, 2023. https://www.eea.europa.eu/highlights/
eu-maritime-transport-first-environmental

[16] Review of Maritime Transport 2023, UNCTAD, United Nations publication, 2023.

[17] R.M. James. On The Remarkable Accuracy Of The Vortex Lattice Method, Computer
Methods in Applied Mechanics and Engineering, 1(1):5979, 1972.

[18] C.E. Lan. A Quasi-Vortex-Lattice Method in Thin Wing Theory, 1974.

[19] Towards a green and just transition, UNCTAD, United Nations publication, 2023.

56

https://www.imo.org/en/MediaCentre/HotTopics/Pages/EEXI-CII-FAQ.aspx
https://www.sciencedirect.com/science/article/pii/S1361920916307015#t0005
https://www.sciencedirect.com/science/article/pii/S1361920916307015#t0005
https://www.eea.europa.eu/highlights/eu-maritime-transport-first-environmental
https://www.eea.europa.eu/highlights/eu-maritime-transport-first-environmental

A Python-Implemented Vortex-Lattice Approach for Propeller Optimisation

[20] K. De Jong. On the Optimization and the Design of Ship Screw Propellers with and without
End Plates. PhD thesis, 1991.

[21] J.P. Breslin, P.Andersen, Hydrodynamics of Ship Propellers, Cambridge Ocean Technology
Series 3, Cambridge University Press, Cambridge, UK. 1994.

[22] W.B. Coney, Optimum Circulation Distributions for a Class of Marine Propulsors, Journal
of Ship Research, 36(3):210–222. 1992.

[23] How much does the shipping industry contribute to global CO2 emis-
sions?, SINAY, Maritime Data Solution, 2023. https://sinay.ai/en/
how-much-does-the-shipping-industry-contribute-to-global-co2-emissions/#:
~:text=In%202022%2C%20international%20shipping%20alone,contributor%20to%
20global%20carbon%20pollution

[24] S. Goldstein, On the vortex theory of screw propellers, Technical report, St. John’s College,
Cambridge, January 1929.

[25] G.G. Cox, Corrections to the Camber of Constant Pitch Propellers, Quaarterly Transactions
of the Royal Institution of Naval Architects, Vol. 103, pp. 27-243, 1961.

[26] M.K. Eckhardt, W.B. Morgan, A propeller design method Trans. SNAME, 63, 1955.

[27] T.E. Brockett, Lifting surface hydrodynamics for design of rotating blades, Propellers ’81,
Symp. SNAME, 1981.

[28] S. Tsakonas, W.R. Jacobs, P. Liao, Prediction of steady and unsteady loads and hydrodynamic
forces on counter-rotating propellers J.Ship Res., 27, 1983.

[29] J.E. Kerwin, Chang-Sup Lee. Prediction of steady and unsteady marine propeller performance
by numerical lifting-surface theory Trans.SNAME, Paper No.8, Annual Meeting, 1978.

[30] W. van Gent, On the Use of Lifting Surface Theory for Moderately and Heavily Loaded
Ship Propellers NSMB Report No. 536, 1977.

[31] D.A. Greeley, J.E. Kerwin, Numerical methods for propeller design and analysis in steady
flow, Trans. SNAME, 90, 1982

[32] P. Andersen, A Comparative Study of Conventional and Tip-Fin Propeller Performance, in
Proc. Twenty-First Symposium on Naval Hydrodynamics, pp. 930–945, National Academy
Press, Washington, D.C. 1997.

[33] M. Caponnetto, Optimisation and Design of Contra-Rotating Propellers, in Proc.Pro-
peller/Shafting 2000 Symposium, pp. 3.1–3.9, SNAME, Jersey City, N.J. 2000.

[34] M. Karim, M. Ikehata, K. Suzuki, H. Kai, Application of Micro-Generic Algorithm (µGA)
to the Optimal Design of Lifting Bodies, J. Kansai Soc. of Naval Architects, Japan, 235:1–8.
2001.

[35] J.L. Hess, W.O. Valarezo, Calculation of Steady Flow about Propellers by Means of a
Surface Panel Method, AIAA, Paper No. 85, 1985.

[36] S. Mishima, S.A Kinnas, Application of a Numerical Optimization Technique to the Design
of Cavitating Propellers in Nonuniform Flow, Journal of Ship Research, 41(2):93–107, 1997.

57

https://sinay.ai/en/how-much-does-the-shipping-industry-contribute-to-global-co2-emissions/#:~:text=In%202022%2C%20international%20shipping%20alone,contributor%20to%20global%20carbon%20pollution
https://sinay.ai/en/how-much-does-the-shipping-industry-contribute-to-global-co2-emissions/#:~:text=In%202022%2C%20international%20shipping%20alone,contributor%20to%20global%20carbon%20pollution
https://sinay.ai/en/how-much-does-the-shipping-industry-contribute-to-global-co2-emissions/#:~:text=In%202022%2C%20international%20shipping%20alone,contributor%20to%20global%20carbon%20pollution
https://sinay.ai/en/how-much-does-the-shipping-industry-contribute-to-global-co2-emissions/#:~:text=In%202022%2C%20international%20shipping%20alone,contributor%20to%20global%20carbon%20pollution

A Python-Implemented Vortex-Lattice Approach for Propeller Optimisation

8 Code�
1 """
2 Date: Q4 2023 - Q1 2024
3 Author: Lisa Martinez
4 Institution: Technical University of Madrid
5
6 Description: This is the main.
7 """
8
9

10 def main ():
11 from sources.propeller_geometry import propeller_geometry
12
13 (ir_prop, ix_prop, iskew_prop, ichord_prop, ithick_prop) = propeller_geometry()
14
15 from sources.Grid_Generation_Propeller import Grid_Generation_Propeller
16 (S_Distr_P, r_R_P, t_gp_P, s_gp_P, Grid_Points_P, Control_Points_P,
17 N_Panel_P, N_Bound_Vortex_P, Horseshoe_P, Points_Trans_Wake_P
18)=Grid_Generation_Propeller()
19
20 from sources.Weight_Function_Propeller_P import Weight_function_propeller
21 Weight_P = Weight_function_propeller()
22
23 from sources.Onset_Flow_Propeller_P import Onset_Flow_Propeller
24 V_Onset_P = Onset_Flow_Propeller()
25
26 from sources.Induced_Grid_Propeller_P import Induced_Grid_Propeller
27 V_Grid_P = Induced_Grid_Propeller()
28
29 from sources.Velocity_Total_No_Onset_Propeller_P import Velocity_Total_No_Onset_Propeller
30 V_Ind_P, V_Tral_P = Velocity_Total_No_Onset_Propeller()
31
32 from sources.System_Equations_Propeller_P import System_Equations_Propeller_P
33 Gamma_TE_P_No_dim, R_Circ_P_R = System_Equations_Propeller_P()
34
35 from sources.Advance_Ratio_P import Advance_Ratio_J
36 Advance_ratio = Advance_Ratio_J()
37
38 from sources.Skin_Friction_Drag_P import Skin_Friction_Drag
39 T_fr_P, Q_fr_P = Skin_Friction_Drag()
40
41 from sources.Efficiency_P import Efficiency
42 Eff, K_T, K_Q = Efficiency()
43
44 return Gamma_TE_P_No_dim
45
46
47 Gamma_TE_P_No_dim = main()
 	�

1 """
2 Date: Q4 2023 - Q1 2024
3 Author: Lisa Martinez
4 Institution: Technical University of Madrid
5
6 Description: This subroutine is tasked with creating and solving the system of
7 equations for the propeller analysis. It aligns the wake of the propeller,
8 ensuring that the flow dynamics are accurately represented and optimized.
9 """

10
11
12 import numpy as np
13 import sources.Variables as Var
14 from sources.Weight_Function_Propeller_P import Weight_function_propeller
15 from sources.Onset_Flow_Propeller_P import Onset_Flow_Propeller
16 from sources.Mid_Vect_Propeller_P import Mid_Vect_Propeller
17 from sources.Induced_Grid_Propeller_P import Induced_Grid_Propeller
18 from sources.Velocity_Total_No_Onset_Propeller_P import Velocity_Total_No_Onset_Propeller
19 from sources.Gamma_Initialization import Gamma_It
20 from sources.Propeller_Pitch import pitch
21 from sources.Velocity_Total_Propeller_P import Velocity_Total_Propeller
22 from sources.Align_Wake_Propeller_P import Align_Wake_Propeller
23 from sources.Skin_Friction_Drag_P import Skin_Friction_Drag
24
25
26 def System_Equations_Propeller_P():
27 Weight_P = Weight_function_propeller()
28 Gamma_TE_P = Gamma_It()
29 V_Onset_P = Onset_Flow_Propeller()
30 V_Ind_P, V_Tral_P = Velocity_Total_No_Onset_Propeller()
31 Points_Trans_Wake_P = np.loadtxt("output/Propeller_Points_Trans_Wake.txt",
32 skiprows= 1, usecols= (1,2,3))
33
34 # DECLARATION OF VARIABLES
35
36 matr_T = np.zeros((Var.Msp+1, Var.Msp+1))
37 matr_Q1 = np.zeros((Var.Msp+1, Var.Msp+1))
38 matr_Q2 = np.zeros((Var.Msp+1, Var.Msp+1))
39 matrix = np.zeros((Var.Msp+1, Var.Msp+1))
40 rhsQ = np.zeros((Var.Msp+1,2))
41 #Right hand side of the equation system
42 rhs = np.zeros((Var.Msp+1,1))
43
44 T_fr_P = 0.0
45 # Thrust - Skin friction drag - Propeller
46 Tr_P = 0.0
47

58

A Python-Implemented Vortex-Lattice Approach for Propeller Optimisation

48 R_Circ_P = np.zeros((Var.Msp))
49 # Radius where the circulation is calculated at the T.E.
50 R_Circ_P_R = np.zeros((Var.Msp))
51 # Dimensionaless radius where the circulation is calculated at the T.E.
52 pitch_0 = np.zeros((Var.Msp+1,1))
53
54 # INITIALIZATION
55
56 Cs_T_r = (Var.Tr_P)/Var.rho/float(Var.Z_Blade_P)
57 # Required thrust for each blade without rho (We don´t use rho in the system)
58
59 iteration = 1
60
61 # INITIALIZATION VARIABLE GAMMA
62
63 Gamma_TE_P_No_dim = np.zeros((Var.Msp,1))
64 #Distribution of circulation at the T.E. (Dimensionaless)
65 Gamma_Panel_P = np.zeros((Var.Msp*Var.Nch))
66 # Distribution of circulation on the blade
67
68 # ALIGNMENT LOOP
69
70 for j in range (Var.Msp+1):
71 rhs[j,0] = 0.0
72 rhsQ[j,0] = 0.0
73 rhsQ [j,1] = 0.0
74 for i in range (Var.Msp+1):
75 matr_T[j,i] = 0.0
76 matr_Q1[j,i] = 0.0
77 matr_Q2[j,i] = 0.0
78 matrix[j,i] = 0.0
79
80 # SYSTEM OF EQUATIONS - DOUBLE LOOP USED TO CALCULATE &T(Uo),&Q1(Uo),&Q2(Uo)
81
82 # This loop creates the system of equations (m = 1,2,3... Msp - Lines of the matrix)
83 for m in range(Var.Msp):
84 temp_T_0 = 0.0 # Initialization of the temporary variable used to calculate &T(Uo)
85 temp_Q1_0 = 0.0 # Initialization of the temporary variable used to calculate &Q1(Uo)
86 temp_Q2_0 = 0.0 # Initialization of the temporary variable used to calculate &Q2(Uo)
87
88 for n in range (Var.Nch): # First loop used to calculate the first sum (Nch)
89 npln = (n)+(m)*Var.Nch # Counter used to select the right panel
90
91 n_side = 4 # Number of sides for each panel
92 if n == 0:
93 n_side = 3
94 # If we are considering the T.E. panel, instead of removing
95 # the value of the T.E. side, we skip it
96
97 temp_T_1 = 0.0 # Initialization of the temporary variable used to calculate &T
98 temp_Q_11 = 0.0 # Initialization of the temporary variable used to calculate &Q1
99 temp_Q_22 = 0.0 # Initialization of the temporary variable used to calculate &Q2

100
101 for l in range(n_side):
102 # Second loop used to calculate the second sum (4)
103 xxn,xyn,xzn,xln,yln,zln = Mid_Vect_Propeller(npln,l)
104 # This subroutine is used to calculate the midpoint
105
106 temp_T_1 = temp_T_1 + zln*V_Onset_P[npln,l,1] - yln*V_Onset_P[npln,l,2]
107 # Temporary variable used to calculate &T
108
109 temp_Q_11 = temp_Q_11 + xyn*yln*V_Onset_P[npln,l,0] - xyn*xln*V_Onset_P[npln,l,1]
110 # Temporary variable used to calculate &Q1
111
112 temp_Q_22 = temp_Q_22 + xzn*xln*V_Onset_P[npln,l,2] - xzn*zln*V_Onset_P[npln,l,0]
113 # Temporary variable used to calculate &Q2
114
115 temp_T_0 = temp_T_0 + Weight_P[m,n] * temp_T_1
116 temp_Q1_0 = temp_Q1_0 + Weight_P[m,n] * temp_Q_11
117 temp_Q2_0 = temp_Q2_0 + Weight_P[m,n] * temp_Q_22
118 # Temporary variable used to calculate T(Uo) (Nch Loop)
119 # Temporary variable used to calculate Q1(Uo) (Nch Loop)
120 # Temporary variable used to calculate Q2(Uo) (Nch Loop)
121
122 matr_T [m,Var.Msp] = temp_T_0 # Value of &T(Uo) in the right position in the matrix (Temporary matrix matr_T)
123 rhsQ[m,0] = - temp_Q1_0 # Value of &Q1(Uo) in the right position in the matrix (Temporary matrix rhs_Q)
124 rhsQ[m,1] = - temp_Q2_0 # Value of &Q2(Uo) in the right position in the matrix (Temporary matrix rhs_Q)
125
126 # Double loop used to calculate &T(Gam),&Q1(Gam),&Q2(Gam)
127
128 # Loop used to select the line of the equation
129 # (We don´t have the loop n because we already did that in Induced_Grid_Propeller)
130 for m in range(Var.Msp):
131 # Loop used to select the spanwise layer that induces velocity (Columns of the matrix) - Msp SUM
132 for j in range (Var.Msp):
133 temp_T_Gam = 0.0 # Initialization of the temporary variable used to calculate &T(Gam)
134 temp_Q1_Gam = 0.0 # Initialization of the temporary variable used to calculate &T(Gam)
135 temp_Q2_Gam = 0.0 # Initialization of the temporary variable used to calculate &T(Gam)
136
137 #Loop used to select where the point is located (chordwise) - First SUM Nch
138 for n in range(Var.Nch):
139 npln = n + (m)*Var.Nch #Panel where the point is located
140
141 temp_T_1 = 0.0 # Initialization of the temporary variable used to calculate &T
142 temp_Q_11 = 0.0 # Initialization of the temporary variable used to calculate &Q1
143 temp_Q_22 = 0.0 # Initialization of the temporary variable used to calculate &Q2
144
145 n_side = 4 # If we are considering the T.E. panel,
146 if n == 0: # instead of removing the value of the T.E. side, we skip it
147 n_side = 3
148
149 for l in range (n_side):

59

A Python-Implemented Vortex-Lattice Approach for Propeller Optimisation

150 # Loop used to select the side of the panel
151
152 xxn,xyn,xzn,xln,yln,zln = Mid_Vect_Propeller(npln,l)
153 # This subroutine is used to calculate the midpoint
154
155 temp_T_1 = temp_T_1 + zln*V_Ind_P[j,npln,l,1] - yln*V_Ind_P[j,npln,l,2]
156 # Temporary variable used to calculate &T - Total thrust for that panel by j
157
158 temp_Q_11 = temp_Q_11 + xyn*yln*V_Ind_P[j,npln,l,0]- xyn*xln*V_Ind_P[j,npln,l,1]
159 # Temporary variable used to calculate &Q1 - Total torque 1 for that panel by j
160
161 temp_Q_22 = temp_Q_22 + xzn*xln*V_Ind_P[j,npln,l,2]- xzn*zln*V_Ind_P[j,npln,l,0]
162 # Temporary variable used to calculate &Q2 - Total torque 2 for that panel by j
163
164 temp_T_Gam = temp_T_Gam + Weight_P[m,n] * temp_T_1
165 temp_Q1_Gam = temp_Q1_Gam + Weight_P[m,n] * temp_Q_11
166 temp_Q2_Gam = temp_Q2_Gam + Weight_P[m,n] * temp_Q_22
167 # Temporary variable used to calculate Q1 (Nch Loop)
168 # Temporary variable used to calculate Q2 (Nch Loop)
169 # Temporary variable used to calculate T (Nch Loop)
170
171 for i in range (Var.Nch):
172 # Loop used to select where the point is located (chordwise)
173 # Second SUM Nch
174 npli = i + (j)* Var.Nch
175
176 temp_T_1 = 0.0
177 temp_Q_11 = 0.0
178 temp_Q_22 = 0.0
179 # Initialization of the temporary variable used to calculate &T
180 # Initialization of the temporary variable used to calculate &Q1
181 # Initialization of the temporary variable used to calculate &Q2
182
183 n_side = 4
184 if i == 0:
185 n_side = 3
186 # If we are considering the T.E. panel,
187 # instead of removing the value of the T.E. side, we skip it
188
189 for l in range(n_side):
190 xxi,xyi,xzi,xli,yli,zli = Mid_Vect_Propeller(npli,l)
191 # This subroutine is used to calculate the midpoint
192
193 temp_T_1 = temp_T_1 + zli*V_Ind_P[m,npli,l,1]- yli*V_Ind_P[m,npli,l,2]
194 # Temporary variable used to calculate &T
195 temp_Q_11 = temp_Q_11 + xyi*yli*V_Ind_P[m,npli,l,0] - xyi*xli*V_Ind_P[m,npli,l,1]
196 # Temporary variable used to calculate &Q1
197 temp_Q_22 = temp_Q_22 + xzi*xli*V_Ind_P[m,npli,l,2]- xzi*zli*V_Ind_P[m,npli,l,0]
198 # Temporary variable used to calculate &Q2
199
200 temp_T_Gam = temp_T_Gam + Weight_P[j,i] * temp_T_1
201 temp_Q1_Gam = temp_Q1_Gam + Weight_P[j,i] * temp_Q_11
202 temp_Q2_Gam = temp_Q2_Gam + Weight_P[j,i] * temp_Q_22
203 # Temporary variable used to calculate T (Nch Loop)
204 # Temporary variable used to calculate Q1 (Nch Loop)
205 # Temporary variable used to calculate Q2 (Nch Loop)
206
207 matr_T[m,j] = temp_T_Gam
208 matr_Q1[m,j] = temp_Q1_Gam
209 matr_Q2[m,j] = temp_Q2_Gam
210 # Value of &T(Gam) in the right position in the matrix (Temporary matrix matr_T)
211 # Value of &Q1(Gam) in the right position in the matrix (Temporary matrix matr_T)
212 # Value of &Q2(Gam) in the right position in the matrix (Temporary matrix matr_T)
213
214 # SYSTEM OF EQUATIONS - LOOP
215
216 V_Tot_P, V_Tot_No_Onset_P = Velocity_Total_Propeller ()
217 # It is used it in order to update V_Tot_P with the new values of gamma
218
219 # Loop for the T.E. panels (They don´t have the weight function)
220 for m in range(Var.Msp):
221 npl0 = (m)*Var.Nch
222 n_side = 3
223 temp_T_Gam = 0.0
224
225 for l in range(n_side):
226 xxm,xym,xzm,xlm,ylm,zlm = Mid_Vect_Propeller(npl0,l)
227 # This subroutine is used to calculate the midpoint
228
229 temp_T_Gam = temp_T_Gam + zlm*V_Tot_P[npl0,l,1] - ylm*V_Tot_P[npl0,l,2]
230 # Temporary variable used to calculate T (Nch Loop)
231
232 matr_T[Var.Msp,m] = temp_T_Gam
233 # Value of &T (T.E.) in the right position in the matrix (Temporary matrix matr_T)
234
235 # Loop for the other panels (They don´t have the weight function)
236 for n in range(1, Var.Nch):
237 npl1 = n + (m)*Var.Nch
238 n_side = 4
239 temp_T_2_Gam = 0.0
240
241 # Loop for the other panels
242 for l in range(n_side):
243 xxm,xym,xzm,xlm,ylm,zlm = Mid_Vect_Propeller(npl1,l)
244 # This subroutine is used to calculate the midpoint
245 temp_T_2_Gam = temp_T_2_Gam + zlm*V_Tot_P[npl1,l,1] - ylm*V_Tot_P[npl1,l,2]
246 # Temporary variable used to calculate T (Nch Loop)
247 matr_T[Var.Msp,m] = matr_T[Var.Msp,m] + Weight_P[m,n]*temp_T_2_Gam
248 # Value of &T in the right position in the matrix (Temporary matrix matr_T)
249
250 # CREATION OF THE MATRIX
251

60

A Python-Implemented Vortex-Lattice Approach for Propeller Optimisation

252 lamba_t_1 = Gamma_TE_P[Var.Msp]
253 # Lagrange multiplier lambda t-1
254
255 for i in range (Var.Msp):
256 rhs[i,0] = rhsQ[i,0] - rhsQ[i,1]
257 # rhs matrix
258
259 matrix[i,Var.Msp] = matr_T[i,Var.Msp] # System of equation (Left Matrix)
260 matrix[Var.Msp,i] = matr_T[Var.Msp,i] # System of equation (Left Matrix)
261
262 for j in range (Var.Msp):
263 matrix[i,j] = matr_Q1[i,j] - matr_Q2[i,j] + lamba_t_1*matr_T[i,j]
264 # System of equation (Left Matrix)
265
266 rhs[Var.Msp,0] = Cs_T_r + (abs(T_fr_P))/Var.rho
267 # Total thrust required (Required + Skin Friction Drag Propeller)
268 matrix[Var.Msp,Var.Msp] = 0.0
269
270 # SOLVE THE SYSTEM OF EQUATIONS
271
272 rhs = np.linalg.solve(matrix, rhs) #it solves the system of equations
273 #Computes the “”exact solution, x, of the well-determined, i.e.,
274 # full rank, linear matrix equation ax = b.
275
276 # CONVERGENS OF THE SYSTEM
277
278 res_0 = 0.0
279 # Loop used to check if the residual is below a certain small limit
280 for i in range(Var.Msp+1):
281 res_1 = abs(1-Gamma_TE_P[i]/rhs[i,0])
282
283 if res_1 > res_0:
284 res_0 = res_1
285 Gamma_TE_P[i] = rhs[i,0] # New values of circulation
286 with open ("output/Propeller_Gamma_TE_P.txt","w") as file:
287 for i in range (Var.Msp+1):
288 file.write(f"{Gamma_TE_P[i]:13.9f}\n")
289
290 while (res_0 > Var.epsi):
291 V_Tot_P, V_Tot_No_Onset_P = Velocity_Total_Propeller ()
292 # It is used it in order to update V_Tot_P with the new values of gamma
293
294 # Loop for the T.E. panels (They don´t have the weight function)
295 for m in range(Var.Msp):
296 npl0 = (m)*Var.Nch
297 n_side = 3
298 temp_T_Gam = 0.0
299
300 for l in range(n_side):
301 xxm,xym,xzm,xlm,ylm,zlm = Mid_Vect_Propeller(npl0,l)
302 # This subroutine is used to calculate the midpoint
303
304 temp_T_Gam = temp_T_Gam + zlm*V_Tot_P[npl0,l,1] - ylm*V_Tot_P[npl0,l,2]
305 # Temporary variable used to calculate T (Nch Loop)
306
307 matr_T[Var.Msp,m] = temp_T_Gam
308 # Value of &T (T.E.) in the right position in the matrix (Temporary matrix matr_T)
309
310 # Loop for the other panels (They don´t have the weight function)
311 for n in range(1, Var.Nch):
312
313 npl1 = n + (m)*Var.Nch
314 n_side = 4
315 temp_T_2_Gam = 0.0
316
317 # Loop for the other panels
318 for l in range(n_side):
319 xxm,xym,xzm,xlm,ylm,zlm = Mid_Vect_Propeller(npl1,l)
320 # This subroutine is used to calculate the midpoint
321 temp_T_2_Gam = temp_T_2_Gam + zlm*V_Tot_P[npl1,l,1] - ylm*V_Tot_P[npl1,l,2]
322 # Temporary variable used to calculate T (Nch Loop)
323 matr_T[Var.Msp,m] = matr_T[Var.Msp,m] + Weight_P[m,n]*temp_T_2_Gam
324 # Value of &T in the right position in the matrix (Temporary matrix matr_T)
325
326 # CREATION OF THE MATRIX
327
328 lamba_t_1 = Gamma_TE_P[Var.Msp]
329 # Lagrange multiplier lambda t-1
330
331 for i in range (Var.Msp):
332 rhs[i,0] = rhsQ[i,0] - rhsQ[i,1]
333 # rhs matrix
334
335 matrix[i,Var.Msp] = matr_T[i,Var.Msp] # System of equation (Left Matrix)
336 matrix[Var.Msp,i] = matr_T[Var.Msp,i] # System of equation (Left Matrix)
337
338 for j in range (Var.Msp):
339 matrix[i,j] = matr_Q1[i,j] - matr_Q2[i,j] + lamba_t_1*matr_T[i,j]
340 # System of equation (Left Matrix)
341
342 rhs[Var.Msp,0] = Cs_T_r + (abs(T_fr_P))/Var.rho
343 # Total thrust required (Required + Skin Friction Drag Propeller)
344 matrix[Var.Msp,Var.Msp] = 0.0
345
346 # SOLVE THE SYSTEM OF EQUATIONS
347
348 rhs = np.linalg.solve(matrix, rhs) #it solves the system of equations
349 #Computes the “”exact solution, x, of the well-determined, i.e.,
350 # full rank, linear matrix equation ax = b.
351
352 # CONVERGENS OF THE SYSTEM
353

61

A Python-Implemented Vortex-Lattice Approach for Propeller Optimisation

354 res_0 = 0.0
355 # Loop used to check if the residual is below a certain small limit
356 for i in range(Var.Msp+1):
357 res_1 = abs (1-Gamma_TE_P[i]/ rhs[i,0])
358
359 if res_1 > res_0:
360 res_0 = res_1
361 Gamma_TE_P[i] = rhs[i,0] # New values of circulation
362 with open ("output/Propeller_Gamma_TE_P.txt","w") as file:
363 for i in range (Var.Msp+1):
364 file.write(f"{Gamma_TE_P[i]:13.9f}\n")
365
366 print('Iteration Propeller Number: {}'.format(iteration), 'Circulation on the propeller at the TE:')
367
368 for i in range (Var.Msp+1):
369 print (i,Gamma_TE_P[i])
370
371 for i in range (Var.Msp):
372 j = (i)*Var.Nch
373
374 xx,xy,xz,xl,yl,zl = Mid_Vect_Propeller(j,3)
375 #This subroutine is used to calculate the midpoint px,py,pz
376
377 R_Circ_P[i] = np.sqrt(xy*xy + xz*xz)
378 R_Circ_P_R[i] = R_Circ_P[i]/Var.Rad_P
379
380 Gamma_TE_P_No_dim[i] = (Gamma_TE_P[i]*100)/(np.pi*2*Var.Rad_P*Var.V_Ship)
381
382 with open("output/Propeller_Gamma_TE.txt","w") as file:
383 file.write(" Gamma_Dim Gamma_No_Dim Radius\n")
384 for i in range (Var.Msp):
385 file.write("{:13.9f} {:13.9f} {:13.9f}\n.format. {Gamma_TE_P[i]} {Gamma_TE_P_No_dim[i]} {R_Circ_P[i]}\n")
386
387 with open ("output/Propeller_Gamma_TE_P.txt","w") as file:
388 for i in range (Var.Msp+1):
389 file.write(f"{Gamma_TE_P[i]}\n")
390
391 with open("output/Propeller_Print_Gamma_TE.txt","w") as file:
392 for i in range(Var.Msp):
393 file.write(f" {Gamma_TE_P_No_dim[i]}\n")
394
395 with open("output/Propeller_Print_Radius_TE.txt","w") as file:
396 for i in range(Var.Msp):
397 file.write(f"{R_Circ_P_R[i]}\n")
398
399 # DISTRIBUTION OF CIRCULATION AT THE REST OF THE BLADE
400
401 for i in range(Var.Msp):
402 npl_TE = i * Var.Nch
403 Gamma_Panel_P[npl_TE] = Gamma_TE_P[i]
404
405 for j in range (1,Var.Nch):
406 npl = j + i * Var.Nch
407 Gamma_Panel_P [npl] = Gamma_Panel_P[npl_TE] * Weight_P[i,j]
408
409 with open ("output/Propeller_Gamma_Blade.txt","w") as file:
410 file.write(" Panel Gamma\n")
411 for i in range(Var.Msp*Var.Nch):
412 file.write(f" {i:3d} {Gamma_Panel_P[i]:13.9f}\n")
413
414 # ALIGNMENT OF THE WAKE
415
416 pitch_0 = pitch()
417
418 Points_Trans_Wake_P , Grid_Points_P, Control_Points_P = Align_Wake_Propeller()
419 res_0 = 0.0
420 # Initialization of the residual
421
422 # Loop used to check if the residual is below a certain small limit
423 for i in range(Var.Msp +1):
424 i_1 = i+i*(Var.N_P_L)
425 res_1 = abs(1 - (Points_Trans_Wake_P[i_1,2] / pitch_0[i]))
426
427 if res_1 > res_0:
428 res_0 = res_1
429
430 while(iteration < 15): # If the the residual is greater than epsi the loop starts again
431 while (res_0 > Var.epsi):
432 V_Onset_P = Onset_Flow_Propeller()
433 V_Grid_P = Induced_Grid_Propeller()
434 V_Ind_P, V_Tral_P = Velocity_Total_No_Onset_Propeller()
435 T_fr_P, Q_fr_P = Skin_Friction_Drag()
436
437 iteration = iteration + 1
438
439 for j in range (Var.Msp+1):
440 rhs[j,0] = 0.0
441 rhsQ[j,0] = 0.0
442 rhsQ [j,1] = 0.0
443 for i in range (Var.Msp+1):
444 matr_T[j,i] = 0.0
445 matr_Q1[j,i] = 0.0
446 matr_Q2[j,i] = 0.0
447 matrix[j,i] = 0.0
448
449 # SYSTEM OF EQUATIONS - DOUBLE LOOP USED TO CALCULATE &T(Uo),&Q1(Uo),&Q2(Uo)
450
451 # This loop creates the system of equations (m = 1,2,3... Msp - Lines of the matrix)
452 for m in range(Var.Msp):
453 temp_T_0 = 0.0 # Initialization of the temporary variable used to calculate &T(Uo)
454 temp_Q1_0 = 0.0 # Initialization of the temporary variable used to calculate &Q1(Uo)
455 temp_Q2_0 = 0.0 # Initialization of the temporary variable used to calculate &Q2(Uo)

62

A Python-Implemented Vortex-Lattice Approach for Propeller Optimisation

456
457 # First loop used to calculate the first sum (Nch)
458 for n in range (Var.Nch):
459 npln = (n)+(m)*Var.Nch
460 # Counter used to select the right panel
461
462 n_side = 4 # Number of sides for each panel
463 if n == 0:
464 n_side = 3
465 # If we are considering the T.E. panel, instead of removing
466 # the value of the T.E. side, we skip it
467
468 temp_T_1 = 0.0
469 temp_Q_11 = 0.0
470 temp_Q_22 = 0.0
471 # Initialization of the temporary variable used to calculate &T
472 # Initialization of the temporary variable used to calculate &Q1
473 # Initialization of the temporary variable used to calculate &Q2
474
475 for l in range(n_side):
476 # Second loop used to calculate the second sum (4)
477 xxn,xyn,xzn,xln,yln,zln = Mid_Vect_Propeller(npln,l)
478 # This subroutine is used to calculate the midpoint
479
480 temp_T_1 = temp_T_1 + zln*V_Onset_P[npln,l,1] - yln*V_Onset_P[npln,l,2]
481 # Temporary variable used to calculate &T
482
483 temp_Q_11 = temp_Q_11 + xyn*yln*V_Onset_P[npln,l,0] - xyn*xln*V_Onset_P[npln,l,1]
484 # Temporary variable used to calculate &Q1
485
486 temp_Q_22 = temp_Q_22 + xzn*xln*V_Onset_P[npln,l,2] - xzn*zln*V_Onset_P[npln,l,0]
487 # Temporary variable used to calculate &Q2
488
489 temp_T_0 = temp_T_0 + Weight_P[m,n] * temp_T_1
490 temp_Q1_0 = temp_Q1_0 + Weight_P[m,n] * temp_Q_11
491 temp_Q2_0 = temp_Q2_0 + Weight_P[m,n] * temp_Q_22
492 # Temporary variable used to calculate T(Uo) (Nch Loop)
493 # Temporary variable used to calculate Q1(Uo) (Nch Loop)
494 # Temporary variable used to calculate Q2(Uo) (Nch Loop)
495
496 matr_T [m,Var.Msp] = temp_T_0 # Value of &T(Uo) in the right position in the matrix (Temporary matrix matr_T)
497 rhsQ[m,0] = - temp_Q1_0 # Value of &Q1(Uo) in the right position in the matrix (Temporary matrix rhs_Q)
498 rhsQ[m,1] = - temp_Q2_0 # Value of &Q2(Uo) in the right position in the matrix (Temporary matrix rhs_Q)
499
500 # Double loop used to calculate &T(Gam),&Q1(Gam),&Q2(Gam)
501
502 # Loop used to select the line of the equation
503 # (We don´t have the loop n because we already did that in Induced_Grid_Propeller)
504 for m in range(Var.Msp):
505 # Loop used to select the spanwise layer that induces velocity (Columns of the matrix) - Msp SUM
506 for j in range (Var.Msp):
507 temp_T_Gam = 0.0
508 temp_Q1_Gam = 0.0
509 temp_Q2_Gam = 0.0
510 # Initialization of the temporary variable used to calculate &T(Gam)
511 # Initialization of the temporary variable used to calculate &T(Gam)
512 # Initialization of the temporary variable used to calculate &T(Gam)
513
514 #Loop used to select where the point is located (chordwise) - First SUM Nch
515 for n in range(Var.Nch):
516 npln = n + (m)*Var.Nch
517 #Panel where the point is located
518
519 temp_T_1 = 0.0
520 temp_Q_11 = 0.0
521 temp_Q_22 = 0.0
522 # Initialization of the temporary variable used to calculate &T
523 # Initialization of the temporary variable used to calculate &Q1
524 # Initialization of the temporary variable used to calculate &Q2
525
526 n_side = 4
527 if n == 0:
528 n_side = 3
529 # If we are considering the T.E. panel,
530 # instead of removing the value of the T.E. side, we skip it
531
532 for l in range (n_side):
533 # Loop used to select the side of the panel
534
535 xxn,xyn,xzn,xln,yln,zln = Mid_Vect_Propeller(npln,l)
536 # This subroutine is used to calculate the midpoint
537
538 temp_T_1 = temp_T_1 + zln*V_Ind_P[j,npln,l,1] - yln*V_Ind_P[j,npln,l,2]
539 # Temporary variable used to calculate &T -
540 # Total thrust for that panel by j
541
542 temp_Q_11 = temp_Q_11 + xyn*yln*V_Ind_P[j,npln,l,0]- xyn*xln*V_Ind_P[j,npln,l,1]
543 # Temporary variable used to calculate &Q1 -
544 # Total torque 1 for that panel by j
545
546 temp_Q_22 = temp_Q_22 + xzn*xln*V_Ind_P[j,npln,l,2]- xzn*zln*V_Ind_P[j,npln,l,0]
547 # Temporary variable used to calculate &Q2 -
548 # Total torque 2 for that panel by j
549
550 temp_T_Gam = temp_T_Gam + Weight_P[m,n] * temp_T_1
551 temp_Q1_Gam = temp_Q1_Gam + Weight_P[m,n] * temp_Q_11
552 temp_Q2_Gam = temp_Q2_Gam + Weight_P[m,n] * temp_Q_22
553 # Temporary variable used to calculate Q1 (Nch Loop)
554 # Temporary variable used to calculate Q2 (Nch Loop)
555 # Temporary variable used to calculate T (Nch Loop)
556
557 for i in range (Var.Nch):

63

A Python-Implemented Vortex-Lattice Approach for Propeller Optimisation

558 # Loop used to select where the point is located (chordwise)
559 # Second SUM Nch
560 npli = i + (j)* Var.Nch
561
562 temp_T_1 = 0.0
563 temp_Q_11 = 0.0
564 temp_Q_22 = 0.0
565 # Initialization of the temporary variable used to calculate &T
566 # Initialization of the temporary variable used to calculate &Q1
567 # Initialization of the temporary variable used to calculate &Q2
568
569 n_side = 4 # If we are considering the T.E. panel,
570 if i == 0: # instead of removing the value of the T.E. side, we skip it
571 n_side = 3
572
573 for l in range(n_side):
574 xxi,xyi,xzi,xli,yli,zli = Mid_Vect_Propeller(npli,l)
575 # This subroutine is used to calculate the midpoint
576
577 temp_T_1 = temp_T_1 + zli*V_Ind_P[m,npli,l,1]- yli*V_Ind_P[m,npli,l,2]
578 # Temporary variable used to calculate &T
579 temp_Q_11 = temp_Q_11 + xyi*yli*V_Ind_P[m,npli,l,0] - xyi*xli*V_Ind_P[m,npli,l,1]
580 #Temporary variable used to calculate &Q1
581 temp_Q_22 = temp_Q_22 + xzi*xli*V_Ind_P[m,npli,l,2]- xzi*zli*V_Ind_P[m,npli,l,0]
582 # Temporary variable used to calculate &Q2
583
584 temp_T_Gam = temp_T_Gam + Weight_P[j,i] * temp_T_1
585 temp_Q1_Gam = temp_Q1_Gam + Weight_P[j,i] * temp_Q_11
586 temp_Q2_Gam = temp_Q2_Gam + Weight_P[j,i] * temp_Q_22
587 # Temporary variable used to calculate T (Nch Loop)
588 # Temporary variable used to calculate Q1 (Nch Loop)
589 # Temporary variable used to calculate Q2 (Nch Loop)
590
591 matr_T[m,j] = temp_T_Gam
592 matr_Q1[m,j] = temp_Q1_Gam
593 matr_Q2[m,j] = temp_Q2_Gam
594 # Value of &T(Gam) in the right position in the matrix (Temporary matrix matr_T)
595 # Value of &Q1(Gam) in the right position in the matrix (Temporary matrix matr_T)
596 # Value of &Q2(Gam) in the right position in the matrix (Temporary matrix matr_T)
597
598 # SYSTEM OF EQUATIONS - LOOP
599
600 V_Tot_P, V_Tot_No_Onset_P = Velocity_Total_Propeller ()
601 # It is used it in order to update V_Tot_P with the new values of gamma
602
603 # Loop for the T.E. panels (They don´t have the weight function)
604 for m in range(Var.Msp):
605 npl0 = (m)*Var.Nch
606 n_side = 3
607 temp_T_Gam = 0.0
608
609 for l in range(n_side):
610 xxm,xym,xzm,xlm,ylm,zlm = Mid_Vect_Propeller(npl0,l)
611 # This subroutine is used to calculate the midpoint
612
613 temp_T_Gam = temp_T_Gam + zlm*V_Tot_P[npl0,l,1] - ylm*V_Tot_P[npl0,l,2]
614 # Temporary variable used to calculate T (Nch Loop)
615
616 matr_T[Var.Msp,m] = temp_T_Gam
617 # Value of &T (T.E.) in the right position in the matrix (Temporary matrix matr_T)
618
619 # Loop for the other panels (They don´t have the weight function)
620 for n in range(1, Var.Nch):
621
622 npl1 = n + (m)*Var.Nch
623 n_side = 4
624 temp_T_2_Gam = 0.0
625
626 # Loop for the other panels
627 for l in range(n_side):
628 xxm,xym,xzm,xlm,ylm,zlm = Mid_Vect_Propeller(npl1,l)
629 # This subroutine is used to calculate the midpoint
630 temp_T_2_Gam = temp_T_2_Gam + zlm*V_Tot_P[npl1,l,1] - ylm*V_Tot_P[npl1,l,2]
631 # Temporary variable used to calculate T (Nch Loop)
632 matr_T[Var.Msp,m] = matr_T[Var.Msp,m] + Weight_P[m,n]*temp_T_2_Gam
633 # Value of &T in the right position in the matrix (Temporary matrix matr_T)
634
635 # CREATION OF THE MATRIX
636
637 lamba_t_1 = Gamma_TE_P[Var.Msp] # Lagrange multiplier lambda t-1
638
639 for i in range (Var.Msp):
640 rhs[i,0] = rhsQ[i,0] - rhsQ[i,1] # rhs matrix
641
642 matrix[i,Var.Msp] = matr_T[i,Var.Msp] # System of equation (Left Matrix)
643 matrix[Var.Msp,i] = matr_T[Var.Msp,i] # System of equation (Left Matrix)
644
645 for j in range (Var.Msp):
646 matrix[i,j] = matr_Q1[i,j] - matr_Q2[i,j] + lamba_t_1*matr_T[i,j]
647 # System of equation (Left Matrix)
648
649
650 rhs[Var.Msp,0] = Cs_T_r + (abs(T_fr_P))/Var.rho
651 # Total thrust required (Required + Skin Friction Drag Propeller)
652 matrix[Var.Msp,Var.Msp] = 0.0
653
654 # SYSTEM OF EQUATIONS - LOOP
655
656 rhs = np.linalg.solve(matrix, rhs) #it solves the system of equations
657 #Computes the “”exact solution, x, of the well-determined, i.e.,
658 # full rank, linear matrix equation ax = b.
659

64

A Python-Implemented Vortex-Lattice Approach for Propeller Optimisation

660 # CONVERGENS OF THE SYSTEM
661
662 res_0 = 0.0
663 # Loop used to check if the residual is below a certain small limit
664 for i in range(Var.Msp+1):
665 res_1 = abs(1-Gamma_TE_P[i]/rhs[i,0])
666
667 if res_1 > res_0:
668 res_0 = res_1
669 Gamma_TE_P[i] = rhs[i,0] # New values of circulation
670 with open ("output/Propeller_Gamma_TE_P.txt","w") as file:
671 for i in range (Var.Msp+1):
672 file.write(f"{Gamma_TE_P[i]:13.9f}\n")
673
674 while (res_0 > Var.epsi):
675 V_Tot_P, V_Tot_No_Onset_P = Velocity_Total_Propeller ()
676 # It is used it in order to update V_Tot_P with the new values of gamma
677
678 # Loop for the T.E. panels (They don´t have the weight function)
679 for m in range(Var.Msp):
680 npl0 = (m)*Var.Nch
681 n_side = 3
682 temp_T_Gam = 0.0
683
684 for l in range(n_side):
685 xxm,xym,xzm,xlm,ylm,zlm = Mid_Vect_Propeller(npl0,l)
686 # This subroutine is used to calculate the midpoint
687
688 temp_T_Gam = temp_T_Gam + zlm*V_Tot_P[npl0,l,1] - ylm*V_Tot_P[npl0,l,2]
689 # Temporary variable used to calculate T (Nch Loop)
690
691 matr_T[Var.Msp,m] = temp_T_Gam
692 # Value of &T (T.E.) in the right position in the matrix (Temporary matrix matr_T)
693
694 # Loop for the other panels (They don´t have the weight function)
695 for n in range(1, Var.Nch):
696 npl1 = n + (m)*Var.Nch
697 n_side = 4
698 temp_T_2_Gam = 0.0
699
700 # Loop for the other panels
701 for l in range(n_side):
702 xxm,xym,xzm,xlm,ylm,zlm = Mid_Vect_Propeller(npl1,l)
703 # This subroutine is used to calculate the midpoint
704 temp_T_2_Gam = temp_T_2_Gam + zlm*V_Tot_P[npl1,l,1] - ylm*V_Tot_P[npl1,l,2]
705 # Temporary variable used to calculate T (Nch Loop)
706 matr_T[Var.Msp,m] = matr_T[Var.Msp,m] + Weight_P[m,n]*temp_T_2_Gam
707 # Value of &T in the right position in the matrix (Temporary matrix matr_T)
708
709 # CREATION OF THE MATRIX
710
711 lamba_t_1 = Gamma_TE_P[Var.Msp]
712 # Lagrange multiplier lambda t-1
713
714 for i in range (Var.Msp):
715 rhs[i,0] = rhsQ[i,0] - rhsQ[i,1]
716 # rhs matrix
717
718 matrix[i,Var.Msp] = matr_T[i,Var.Msp] # System of equation (Left Matrix)
719 matrix[Var.Msp,i] = matr_T[Var.Msp,i] # System of equation (Left Matrix)
720
721 for j in range (Var.Msp):
722 matrix[i,j] = matr_Q1[i,j] - matr_Q2[i,j] + lamba_t_1*matr_T[i,j]
723 # System of equation (Left Matrix)
724
725 rhs[Var.Msp,0] = Cs_T_r + (abs(T_fr_P))/Var.rho
726 # Total thrust required (Required + Skin Friction Drag Propeller)
727 matrix[Var.Msp,Var.Msp] = 0.0
728
729 # SOLVE THE SYSTEM OF EQUATIONS
730
731 rhs = np.linalg.solve(matrix, rhs) #it solves the system of equations
732 #Computes the “”exact solution, x, of the well-determined, i.e.,
733 # full rank, linear matrix equation ax = b.
734
735 # CONVERGENS OF THE SYSTEM
736
737 res_0 = 0.0
738 # Loop used to check if the residual is below a certain small limit
739 for i in range(Var.Msp+1):
740 res_1 = abs(1-Gamma_TE_P[i]/rhs[i,0])
741
742 if res_1 > res_0:
743 res_0 = res_1
744 Gamma_TE_P[i] = rhs[i,0] # New values of circulation
745 with open ("output/Propeller_Gamma_TE_P.txt","w") as file:
746 for i in range (Var.Msp+1):
747 file.write(f"{Gamma_TE_P[i]:13.9f}\n")
748
749 print('Iteration Propeller Number: {}'.format(iteration), 'Circulation on the propeller at the TE:')
750
751 for i in range (Var.Msp+1):
752 print (i,Gamma_TE_P[i])
753
754 for i in range (Var.Msp):
755 j = (i)*Var.Nch
756
757 xx,xy,xz,xl,yl,zl = Mid_Vect_Propeller(j,3)
758 #This subroutine is used to calculate the midpoint px,py,pz
759
760 R_Circ_P[i] = np.sqrt(xy*xy + xz*xz)
761 R_Circ_P_R[i] = R_Circ_P[i]/Var.Rad_P

65

A Python-Implemented Vortex-Lattice Approach for Propeller Optimisation

762
763 Gamma_TE_P_No_dim[i] = (Gamma_TE_P[i]*100)/(np.pi*2*Var.Rad_P*Var.V_Ship)
764
765 with open("output/Propeller_Gamma_TE.txt","w") as file:
766 file.write(" Gamma_Dim Gamma_No_Dim Radius\n")
767 for i in range (Var.Msp):
768 file.write(f" {Gamma_TE_P[i]} {Gamma_TE_P_No_dim[i]} {R_Circ_P[i]}\n")
769
770 with open ("output/Propeller_Gamma_TE_P.txt","w") as file:
771 for i in range (Var.Msp+1):
772 file.write(f"{Gamma_TE_P[i]}\n")
773
774 with open("output/Propeller_Print_Gamma_TE.txt","w") as file:
775 for i in range(Var.Msp):
776 file.write(f" {Gamma_TE_P_No_dim[i]}\n")
777
778 with open("output/Propeller_Print_Radius_TE.txt","w") as file:
779 for i in range(Var.Msp):
780 file.write(f"{R_Circ_P_R[i]}\n")
781
782 # DISTRIBUTION OF CIRCULATION AT THE REST OF THE BLADE
783
784 for i in range(Var.Msp):
785 npl_TE = i * Var.Nch
786 Gamma_Panel_P[npl_TE] = Gamma_TE_P[i]
787
788 for j in range (1,Var.Nch):
789 npl = j + i * Var.Nch
790 Gamma_Panel_P [npl] = Gamma_Panel_P[npl_TE] * Weight_P[i,j]
791
792 with open ("output/Propeller_Gamma_Blade.txt","w") as file:
793 file.write(" Panel Gamma\n")
794 for i in range(Var.Msp*Var.Nch):
795 file.write(f" {i:3d} {Gamma_Panel_P[i]:13.9f}\n")
796
797 # ALIGNMENT OF THE WAKE
798
799 pitch_0 = pitch()
800
801 for i in range (Var.Msp+1):
802 i_1 = i+i *(Var.N_P_L)
803 pitch_0[i] = Points_Trans_Wake_P[i_1,2]
804 # I need to save the old value of the pitch in order
805 # to evaluate the residual for the pitch distribution
806
807 Points_Trans_Wake_P , Grid_Points_P, Control_Points_P = Align_Wake_Propeller()
808 res_0 = 0.0 # Initialization of the residual
809
810 # Loop used to check if the residual is below a certain small limit
811 for i in range(Var.Msp+1):
812 i_1 = i + i*(Var.N_P_L)
813 res_1 = abs(1 - (Points_Trans_Wake_P[i_1,2] / pitch_0[i]))
814 if res_1 > res_0:
815 res_0 = res_1
816 break
817
818 return Gamma_TE_P_No_dim, R_Circ_P_R
 	�

1 """
2 Date: Q4 2023 - Q1 2024
3 Author: Lisa Martinez
4 Institution: Technical University of Madrid
5
6 Description: This subroutine calculates the advance ratio.
7 """
8
9

10 import sources.Variables as Var
11 import numpy as np
12
13
14 def Advance_Ratio_J():
15
16 r_R_P,X_P,Skew_P,Chord_P,Thick_P = np.loadtxt("input/grid.txt", unpack=True)
17 U_0_P, U_R_P, U_T_P = np.loadtxt("input/onset.txt", unpack=True)
18
19 n_0 = 50 # Number of intervals (It is used to find the "step length" for the composite Simpson's rule)
20 n_1 = n_0 # Number of approximation values of the integral for the composite Simpson's rule
21 h = (Var.Rad_P - Var.R_Hub_P)/n_0 # "step length"
22 r_tmp = Var.R_Hub_P # Initial value for the radius r
23
24 Ua_tmp = 0 # Initialization of the approximation of the integral
25 j = 1 # First value of j
26
27 for i in range(n_1+1): # Simpson's rule used in order to solve the integral
28 j = - j #It used to have 2 or 4 in the composite Simpson's rule
29 Simpson = 3 + float(j) # This value is 2 or 4
30 if(i == 0 or i == n_1): # This if is used to have 1 as coefficient if we are considering the first
31 Simpson = 1 # or the last value of the integral
32
33 Ux_tmp = np.interp(r_tmp,r_R_P,U_0_P)
34 # Linear interpolation used to find the value of the axial velocity
35 Ua_tmp = Ua_tmp + (Ux_tmp * r_tmp) * Simpson
36 # Composite Simpson's rule
37 r_tmp = r_tmp + h
38
39 # Advance velocity
40 U_adv = 2 * h * Ua_tmp /(3*(Var.Rad_P**2 - Var.R_Hub_P**2))
41 # Advance ratio

66

A Python-Implemented Vortex-Lattice Approach for Propeller Optimisation

42 Advance_ratio = (U_adv * np.pi) / (Var.Omega * Var.Rad_P)
43 # Wake fraction
44 w_eff = 1 - U_adv/Var.V_Ship
45
46 if (w_eff < 1.0 - 10):
47 w_eff = 0
48
49 # Open the file for writing
50 with open("output/Propeller_Hydrodynamic_Characteristics.txt", "w") as file:
51 # Write the header line
52 file.write("{:2s}{:16s}{:4s}{:13s}{:4s}{:13s}\n".format("", "Advance velocity", "", "Advance ratio", "", "Wake fraction"))
53 file.write("{:3s}{:13.9f}{:5s}{:13.9f}{:4s}{:13.9f}\n".format("", U_adv, "", Advance_ratio, "", w_eff))
54 return Advance_ratio
55
56
57 Advance_ratio = Advance_Ratio_J()
 	�

1 """
2 Date: Q4 2023 - Q1 2024
3 Author: Lisa Martinez
4 Institution: Technical University of Madrid
5
6 Description: This subroutine contains a subroutine designed for optimizing
7 propeller flow through the generation of a new grid. It calculates induced
8 velocities at control points on mid-chord panels to determine a new beta
9 angle. This is crucial for the calculation of a new pitch, necessary for

10 grid generation. Pitch is interpolated at control points, with both blades
11 and trailers sharing the same pitch.
12 """
13
14
15 import sources.Variables as Var
16 import numpy as np
17 from sources.Weight_Function_Propeller_P import Weight_function_propeller
18 from sources.Induced_Grid_Propeller_P import Induced_Grid_Propeller
19 from sources.Panel_Induced_Velocity_Propeller_Align import Panel_Induced_Velocity_Propeller_Align
20 from sources.Trailing_Vortices_Propeller_P import Trailing_Vortices_Propeller
21
22
23 def Align_Wake_Propeller():
24
25 Grid_Points_P = np.zeros(((Var.Msp + 1) * (Var.Nch + 1), 3))
26 Control_Points_P = np.zeros(((Var.Msp) * (Var.Nch), 3))
27 Radius_cp_P = np.zeros((Var.Msp + 1))
28 r_R_P,X_P,Skew_P,Chord_P,Thick_P = np.loadtxt("input/grid.txt", unpack= True)
29 U_0_P, U_R_P, U_T_P = np.loadtxt("input/onset.txt",unpack=True)
30 Gamma_TE_P = np.loadtxt("output/Propeller_Gamma_TE_P.txt")
31 Control_Points_P = np.loadtxt('output/Propeller_Control_Points.txt')
32 t_gp_P = np.loadtxt("output/Propeller_t_gp.txt", skiprows = 1)
33 t_cp_P = np.loadtxt("output/Propeller_t_cp.txt", skiprows = 1)
34 s_gp_P = np.loadtxt("output/Propeller_s_gp.txt", skiprows = 1)
35 s_cp_P = np.loadtxt("output/Propeller_s_cp.txt", skiprows = 1)
36 Weight_P = Weight_function_propeller()
37 N_Bound_Vortex_P = np.loadtxt("output/Propeller_N_Bound_Vortex.txt",dtype= 'int')
38 N_Bound_Vortex_P = N_Bound_Vortex_P.reshape((Var.Msp+1, 1))
39 data_matrix = np.loadtxt("output/Propeller_Grid_Points_geom.txt")
40 Radius_gp_P = data_matrix[:, 0]
41 Chord_P_gp = data_matrix[:, 1]
42 Rake_P_gp = data_matrix[:, 2]
43 Skew_P_gp = data_matrix[:, 3]
44 data_matrix = np.loadtxt("output/Propeller_Control_Points_geom.txt")
45 Chord_P_cp = data_matrix[:, 0]
46 Rake_P_cp = data_matrix[:, 1]
47 Skew_P_cp = data_matrix[:, 2]
48
49 # SUBROUTINE
50 r_cp = np.zeros(Var.Msp) # Radius in the control points of the propeller where the new pitch is computed
51 tan_beta = np.zeros(Var.Msp)
52 beta = np.zeros (Var.Msp)
53 pitch_cp = np.zeros(Var.Msp)
54 pitch_gp = np.zeros(Var.Msp+1)
55 sin_b = np.zeros(Var.Msp + 1)
56 cos_b = np.zeros(Var.Msp + 1)
57 Theta_gp_P = np.zeros(Var.Nch + 1)
58 Theta_cp_P = np.zeros(Var.Nch + 1)
59
60 mid_point = (Var.Nch//2 + 1)
61
62 # Loop used to select the closest control points to the midchord line (Chordwise)
63 for j in range (Var.Msp):
64 mid_point_cp = (mid_point + j * Var.Nch) -1
65
66 p_x_mdp = Control_Points_P[mid_point_cp ,0] # X coordinate of the chosen control point of the propeller
67 p_y_mdp = Control_Points_P[mid_point_cp ,1] # Y coordinate of the chosen control point of the propeller
68 p_z_mdp = Control_Points_P[mid_point_cp ,2] # Z coordinate of the chosen control point of the propeller
69
70 r_cp[j] = np.sqrt(p_y_mdp**2 + p_z_mdp**2)
71 # Radius for the chosen control point of the propeller
72
73 # VELOCITIES IN THE CONTROL POINTS FROM THE PANELS OF THE PROPELLER
74
75 # Initialization of the variable used to store the induced velocity
76 # from the panels of the propeller (x), (y), (z)
77 u_x_panels = 0
78 u_y_panels = 0
79 u_z_panels = 0
80
81 # Loop used to select the spanwise level that induces velocity
82 # on the control points of the propeller

67

A Python-Implemented Vortex-Lattice Approach for Propeller Optimisation

83 for n in range (Var.Msp):
84
85 # Initialization of the variable used to calculate the induced
86 # velocity from the panels of the propeller (x), (y), (z)
87 u_x_panels_0 = 0
88 u_y_panels_0 = 0
89 u_z_panels_0 = 0
90
91 # Loop used to select the panel that induces velocity
92 # on the control points of the propeller
93 for m in range (Var.Nch):
94 npl = m + n * Var.Nch
95
96 u_x_temp,u_y_temp,u_z_temp = Panel_Induced_Velocity_Propeller_Align(npl,0,0,p_x_mdp,p_y_mdp,p_z_mdp)
97 # Induced velocity from the selected panel on
98 # the chosen control point of the propeller - No bound vortex
99

100 u_x_panels_0 = u_x_panels_0 + Weight_P[n,m] * u_x_temp
101 # Temporary variable used to calculate the induced velocity
102 # from the panels of the propeller (x)
103 u_y_panels_0 = u_y_panels_0 + Weight_P[n,m] * u_y_temp
104 # Temporary variable used to calculate the induced velocity
105 # from the panels of the propeller (y)
106 u_z_panels_0 = u_z_panels_0 + Weight_P[n,m] * u_z_temp
107 # Temporary variable used to calculate the induced velocity
108 # from the panels of the propeller (z)
109
110 u_x_panels = u_x_panels + Gamma_TE_P[n] * u_x_panels_0 # Induced velocity from the panels of the propeller (x)
111 u_y_panels = u_y_panels + Gamma_TE_P[n] * u_y_panels_0 # Induced velocity from the panels of the propeller (y)
112 u_z_panels = u_z_panels + Gamma_TE_P[n] * u_z_panels_0 # Induced velocity from the panels of the propeller (z)
113
114 # VELOCITIES IN THE CONTROL POINTS FROM THE HORSESHOE VORTEX OF THE PROPELLER
115
116 u_x_trail = 0
117 # Initialization of the variable used to calculate the induced velocity
118 # from the trailing vortices of the propeller (x)
119 u_y_trail = 0
120 # Initialization of the variable used to calculate the induced velocity
121 # from the trailing vortices of the propeller (y)
122 u_z_trail = 0
123 # Initialization of the variable used to calculate the induced velocity
124 # from the trailing vortices of the propeller (z)
125
126 u_x_trail_1,u_y_trail_1,u_z_trail_1 = Trailing_Vortices_Propeller(0,p_x_mdp,p_y_mdp,p_z_mdp)
127 # Induced velocity from the transition wake and from
128 # the semi-infinite helicoidal vortex of the propeller (First)
129
130 for n in range (Var.Msp): # Loop used to select the trailing vortex that induces velocity
131 n_1 = n + 1 # on the control points of the propeller
132 n_2 = (n+1) * (Var.Nch+1)
133
134 u_x_trail_2,u_y_trail_2,u_z_trail_2 = Trailing_Vortices_Propeller(n_1,p_x_mdp,p_y_mdp,p_z_mdp)
135 # Induced velocity from the transition wake and from the semi-infinite
136 # helicoidal vortex of the propeller (Second) selected of the propeller
137
138 u_x_trail = u_x_trail + Gamma_TE_P[n] * (u_x_trail_1 - u_x_trail_2)
139 # Induced velocity from the horseshoe vortex of the propeller (x)
140 # No bound vortex
141 u_y_trail = u_y_trail + Gamma_TE_P[n] * (u_y_trail_1 - u_y_trail_2)
142 # Induced velocity from the horseshoe vortex of the propeller (y)
143 # No bound vortex
144 u_z_trail = u_z_trail + Gamma_TE_P[n] * (u_z_trail_1 - u_z_trail_2)
145 # Induced velocity from the horseshoe vortex of the propeller (z)
146 # No bound vortex
147
148 u_x_trail_1 = u_x_trail_2 # For the next loop
149 u_y_trail_1 = u_y_trail_2 # For the next loop
150 u_z_trail_1 = u_z_trail_2 # For the next loop
151
152 # TOTAL INDUCED VELOCITY
153
154 u_x_tot = u_x_trail + u_x_panels # Total induced velocity on the propeller (x)
155 u_y_tot = u_y_trail + u_y_panels # Total induced velocity on the propeller (y)
156 u_z_tot = u_z_trail + u_z_panels # Total induced velocity on the propeller (z)
157
158 # BETA AND PITCH AT THE CONTROL POINTS
159
160 cos_theta = p_z_mdp / r_cp[j]
161 sin_theta = p_y_mdp / r_cp[j]
162
163 U_T_P_tot = - u_y_tot * cos_theta + u_z_tot * sin_theta
164 # Total tangential induced velocity in the control points of the propeller
165
166 U_0_P_beta = np.interp(r_cp[j],r_R_P,U_0_P) # Wake (Axial) in the control points (s)
167 U_T_P_beta = np.interp(r_cp[j],r_R_P,U_T_P) # Wake (Tangential) in the control points (s)
168
169 tan_beta[j] = abs(-U_0_P_beta + u_x_tot)/(Var.Omega * r_cp[j] - U_T_P_tot - U_T_P_beta) # New tangent beta
170
171 beta[j] = np.arctan(tan_beta[j])
172
173 pitch_cp[j] = tan_beta[j] * 2 * np.pi * r_cp[j]
174
175 with open("output/Propeller_Pitch_Control_Points.txt","w")as file:
176 file.write(" Spanw. Radius Pitch/D\n")
177 for j in range (Var.Msp):
178 file.write(f" {j:3d} {r_cp[j]:13.9f} {pitch_cp[j]/(Var.Rad_P*2):13.9f}\n")
179
180 with open ("output/Propeller_Beta.txt","w") as file:
181 file.write(" Radius Beta\n")
182 for j in range (Var.Msp):
183 file.write(" {:13.9f}{:3s}{:13.9f}\n".format(r_cp[j],"", np.arctan(tan_beta[j])))
184

68

A Python-Implemented Vortex-Lattice Approach for Propeller Optimisation

185 # INTERPOLATION OF THE PITCH
186
187 if Var.Msp == 0:
188 pitch_cp[Var.Msp-1] = 0
189
190 # This loop is used to find the values of the pitch in the grid points
191 # of the propeller (No tip - No Hub)
192 for i in range (1,Var.Msp):
193 pitch_gp[i] = np.interp(s_gp_P[i],s_cp_P,pitch_cp)
194
195 pitch_gp[0] = (pitch_cp[1] - pitch_cp[0])/(s_cp_P[1]-s_cp_P[0])*(s_gp_P[0] - s_cp_P[0]) + pitch_cp[0] # Pitch at the hub
196
197 pitch_gp[Var.Msp] = (pitch_cp[Var.Msp-1] - pitch_cp[Var.Msp-2])/(s_cp_P[Var.Msp-1] - s_cp_P[Var.Msp - 2] # Pitch at the tip
198)*(s_gp_P[Var.Msp] - s_cp_P[Var.Msp - 2])+ pitch_cp[Var.Msp - 2]
199
200 with open("output/Propeller_Pitch_Grid_Points.txt","w") as file:
201 file.write(" Spanw. Pitch\n")
202
203 for i in range (Var.Msp+1):
204 file.write(f" {i:3d}{pitch_gp[i]:13.9f}\n")
205
206 # GRID POINTS MATRIX - CALCULATION OF BETA(S(R)),CHORD(S),SKEW(S) AND RAKE(S)
207
208 for i in range (Var.Msp+1):
209
210 ipl = ((i+1)*(Var.Nch+1))-(Var.Nch+1)
211 # Counter used to order the Grid Points Matrix
212 p_ref_gp = np.sqrt(pitch_gp[i]**2 + (2*np.pi*Radius_gp_P[i])**2)
213 # Reference pitch (It has only a radial variation)
214 sin_b[i] = pitch_gp[i]/p_ref_gp
215 # sin(beta)
216 cos_b[i] = 2*np.pi*Radius_gp_P[i]/p_ref_gp
217 # cos(beta)
218 for j in range (Var.Nch+1):
219
220 npl = (j) + ipl # Second counter to order the Grid Points Matrix
221 Theta_gp_P[j] = -Skew_P_gp[i] + (t_gp_P[j] * Chord_P_gp[i] * cos_b[i]) / Radius_gp_P[i]
222
223 # X(s,t)
224 Grid_Points_P[npl, 0] = Rake_P_gp[i] + Chord_P_gp[i] * sin_b[i] * t_gp_P[j]
225 # Y(s,t)
226 Grid_Points_P[npl, 1] = - Radius_gp_P[i] * np.sin(Theta_gp_P[j])
227 # Z(s,t)
228 Grid_Points_P[npl, 2] = Radius_gp_P[i] * np.cos(Theta_gp_P[j])
229
230 with open('output/Propeller_Grid_Points.txt', 'w') as file:
231 for i in range((Var.Nch + 1) * (Var.Msp + 1)):
232 file.write(f" {Grid_Points_P[i, 0]:.9f} {Grid_Points_P[i, 1]:.9f} {Grid_Points_P[i, 2]:.9f}\n")
233
234 # GRID CONTROL POINTS MATRIX - CALCULATION OF BETA(S(R)),CHORD(S),SKEW(S) AND RAKE(S)
235
236 for i in range (Var.Msp): # Counter used to order the Grid Control Points Matrix
237 ipl = ((i+1)*(Var.Nch))-(Var.Nch)
238
239 Radius_cp_P[i] = 0.5 * (Radius_gp_P[i] + Radius_gp_P[i+1])
240
241 p_ref_gp = np.sqrt(pitch_cp[i]**2 + (2*np.pi*Radius_cp_P[i])**2) # Reference pitch (It has only a radial variation)
242
243 sin_b[i] = pitch_cp[i]/p_ref_gp # sin(beta)
244 cos_b[i] = 2*np.pi*Radius_cp_P[i]/p_ref_gp # cos(beta)
245
246 for j in range (Var.Nch): # t Loop
247 npl = (j) + ipl # Second counter to order the Grid Points Matrix
248 Theta_cp_P[j] = - Skew_P_cp[i] + (t_cp_P[j] * Chord_P_cp[i] * cos_b[i]) / Radius_cp_P[i]
249
250 # X(s,t)
251 Control_Points_P[npl, 0] = Rake_P_cp[i] + Chord_P_cp[i] * sin_b[i] * t_cp_P[j]
252 # Y(s,t)
253 Control_Points_P[npl, 1] = - Radius_cp_P[i] * np.sin(Theta_cp_P[j])
254 # Z(s,t)
255 Control_Points_P[npl, 2] = Radius_cp_P[i] * np.cos(Theta_cp_P[j])
256
257 with open('output/Propeller_Control_Points.txt', 'w') as file:
258 for i in range((Var.Nch) * (Var.Msp)):
259 file.write(f"{Control_Points_P[i, 0]:13.9f} {Control_Points_P[i, 1]:13.9f} {Control_Points_P[i, 2]:13.9f}\n")
260
261 # CREATION OF THE TRANSITION WAKE (STRAIGHT LINE VORTICES)
262
263 Points_Trans_Wake_P = np.zeros((((Var.N_P_L+1)*(Var.Msp+1)),3))
264
265 for i in range(Var.Msp+1):
266 i_1 = i+i*(Var.N_P_L)
267
268 x_trans_wake = Grid_Points_P[N_Bound_Vortex_P[i,0],0] # X value for the first point of the transition wake - T.E.
269 y_trans_wake = Grid_Points_P[N_Bound_Vortex_P[i,0],1] # Y value for the first point of the transition wake - T.E.
270 z_trans_wake = Grid_Points_P[N_Bound_Vortex_P[i,0],2] # Z value for the first point of the transition wake - T.E.
271
272 pitch_trans_wake = pitch_gp[i] # Pitch at the T.E. (It has only a radial variation)
273
274 r_trans_wake = np.sqrt(y_trans_wake**2 + z_trans_wake**2) # Radius at the T.E.
275
276 Points_Trans_Wake_P[i_1,0] = x_trans_wake # Grid points for the transition wake (x) - T.E
277 Points_Trans_Wake_P[i_1,1] = r_trans_wake # Grid points for the transition wake (radius) - T.E
278 Points_Trans_Wake_P[i_1,2] = pitch_trans_wake # Grid points for the transition wake (pitch) - T.E
279
280 delta_trans_wake = (-4 * Var.Rad_P - x_trans_wake)/(Var.N_P_L) # The transition wake goes four radii downstream
281
282 for j in range(Var.N_P_L): # Loop used to divide the transition wake in N_P_L parts (N_P_L+1 points)
283 i_2 = (i_1) + j+1
284
285 # Grid points for the transition wake
286 Points_Trans_Wake_P[i_2,0] = x_trans_wake + (j+1) * delta_trans_wake # (x)

69

A Python-Implemented Vortex-Lattice Approach for Propeller Optimisation

287 Points_Trans_Wake_P[i_2,1] = r_trans_wake # (radius)
288 Points_Trans_Wake_P[i_2,2] = pitch_trans_wake # (pitch)
289
290 with open("output/Propeller_Points_Trans_Wake.txt", "w") as file:
291 file.write(f"{'Point':<8}{'x':<12}{'r':<20}{'p':<20}\n")
292 for i in range(Var.Msp+1):
293 i_1 = i+i*(Var.N_P_L)
294 file.write(f"{i:<5}{Points_Trans_Wake_P[i_1,0]:13.9f}{Points_Trans_Wake_P[i_1 ,1]:13.9f}"
295 f"{Points_Trans_Wake_P[i_1,2]:13.9f}\n")
296
297 for j in range(Var.N_P_L):
298 i_2 = (i_1) + j+1
299 file.write(f"{i:<5}{Points_Trans_Wake_P[i_2,0]:13.9f}{Points_Trans_Wake_P[i_2,1]:13.9f}"
300 f"{Points_Trans_Wake_P[i_2,2]:13.9f}\n")
301
302 return Points_Trans_Wake_P , Grid_Points_P, Control_Points_P
 	�

1 """
2 Date: Q4 2023 - Q1 2024
3 Author: Lisa Martinez
4 Institution: Technical University of Madrid
5
6 Description: This subroutine calculates the area of a panel given its four
7 points.
8 """
9

10
11 import numpy as np
12
13
14 def Area_Panel(x_1, y_1, z_1, x_2, y_2, z_2, x_3, y_3, z_3, x_4, y_4, z_4):
15
16
17 s = 0 # Initialization of the variable
18
19 b_1 = x_4 - x_1 # X value of the first vector of the panel (Point 1 and Point 4)
20 b_2 = y_4 - y_1 # Y value of the first vector of the panel (Point 1 and Point 4)
21 b_3 = z_4 - z_1 # Z value of the first vector of the panel (Point 1 and Point 4)
22
23 e_1 = x_3 - x_1 # First side (x)
24 e_2 = y_3 - y_1 # First side (y)
25 e_3 = z_3 - z_1 # First side (z)
26
27 f_1 = x_2 - x_1 # Second side (x)
28 f_2 = y_2 - y_1 # Second side (y)
29 f_3 = z_2 - z_1 # Second side (z)
30
31 s_11 = f_2*b_3 - f_3*b_2 # X component of the first cross product
32 s_12 = b_1*f_3 - f_1*b_3 # Y component of the first cross product
33 s_13 = f_1*b_2 - f_2*b_1 # Z component of the first cross product
34
35 s_21 = b_2*e_3 - b_3*e_2 # X component of the second cross product
36 s_22 = e_1*b_3 - b_1*e_3 # Y component of the second cross product
37 s_23 = b_1*e_2 - b_2*e_1 # Z component of the second cross product
38
39 s = 0.5*(np.sqrt(s_11**2 + s_12**2 + s_13**2) + np.sqrt(s_21**2 + s_22**2 + s_23**2)) #Area of the panel
40
41 return (s)
 	�

1 """
2 Date: Q4 2023 - Q1 2024
3 Author: Lisa Martinez
4 Institution: Technical University of Madrid
5
6 Description: This subroutine calculates the velocities Ux, Uy, Uz from a line
7 element (x1,y1,z1) to (x2,y2,z2) at the point (px,py,pz) using Biot-Savart's
8 law. The process applies to all blades of the propeller. Given the propeller's
9 symmetry, only the point on the reference blade is needed. The induced velocity

10 from the vortex is calculated with a unit circulation.
11 """
12
13
14 import numpy as np
15
16
17 def Biot_Savart_Propeller(I_z, x_1, y_1, z_1, x_2, y_2, z_2, px, py, pz):
18
19 U_x, U_y, U_z = 0.0, 0.0, 0.0
20
21 d_theta = (2*np.pi)/float(I_z) # Angle between the blades
22 theta = 0.0 # Angle for the first blade
23 a_x = x_2 - x_1
24 d_y = y_2 - y_1
25 d_z = z_2 - z_1
26
27 b_x = px - x_2
28 c_x = px - x_1
29
30 for i in range(I_z):
31 cos_theta = np.cos(theta)
32 sin_theta = np.sin(theta)
33
34 a_y = d_y * cos_theta - d_z * sin_theta
35 a_z = d_z * cos_theta + d_y * sin_theta
36
37 b_y = py - y_2 * cos_theta + z_2 * sin_theta
38 b_z = pz - z_2 * cos_theta - y_2 * sin_theta

70

A Python-Implemented Vortex-Lattice Approach for Propeller Optimisation

39
40 c_y = py - y_1 * cos_theta + z_1 * sin_theta
41 c_z = pz - z_1 * cos_theta - y_1 * sin_theta
42
43 a_length = np.sqrt(a_x*a_x + a_y*a_y + a_z*a_z) # Lenght a
44 b_length = np.sqrt(b_x*b_x + b_y*b_y + b_z*b_z) # Lenght b
45 c_length = np.sqrt(c_x*c_x + c_y*c_y + c_z*c_z) # Lenght c
46
47 a_c = a_x*c_x + a_y*c_y + a_z*c_z # Dot product a.c (e)
48 a_b = a_x*b_x + a_y*b_y + a_z*b_z # Dot product a.b (c-e)
49
50 ac_x = a_y*c_z - a_z*c_y # X component of the cross product a^c
51 ac_y = a_z*c_x - a_x*c_z # Y component of the cross product a^c
52 ac_z = a_x*c_y - a_y*c_x # Z component of the cross product a^c
53
54 aclen2 = ac_x*ac_x + ac_y*ac_y + ac_z*ac_z
55 aclen = np.sqrt(aclen2) # Module of the cross product a^c
56
57 # This if is used to check the distance between the selected point and
58 # the side. If they are too close we have to skip it
59 if a_length != 0 and (aclen / a_length) > 1*10**(-5):
60
61 cstac = a_c/c_length # e/c
62 cstab = a_b/b_length # a-e / b
63 cstv = 1.0 / (4.0 * np.pi * aclen2)
64 cstv1 = cstv*cstac - cstv*cstab
65
66 U_x = U_x + ac_x * cstv1 # Induced Velocity (x)
67 U_y = U_y + ac_y * cstv1 # Induced Velocity (y)
68 U_z = U_z + ac_z * cstv1 # Induced Velocity (z)
69
70 theta = theta + d_theta
71
72 return (U_x, U_y, U_z)
 	�

1 """
2 Date: Q4 2023 - Q1 2024
3 Author: Lisa Martinez
4 Institution: Technical University of Madrid
5
6 Description: This subroutine calculates the Ci-function used in 'De_Jong' by
7 rational approximations.
8 """
9

10
11 import numpy as np
12
13
14 def Ci(xbar):
15
16
17 f = (xbar**8+38.027264*xbar**6+265.187033*xbar**4+335.677320*xbar**2+38.102495)/(
18 xbar**8+40.021433*xbar**6+322.624911*xbar**4+570.236280*xbar**2+157.105423)/xbar
19
20 g = (xbar**8+42.242855*xbar**6+302.757865*xbar**4+352.018498*xbar**2+21.821899)/(
21 xbar**8+48.196927*xbar**6+482.485984*xbar**4+1114.978885*xbar**2+449.690326)/xbar**2
22
23 Cires=f*np.sin(xbar)-g*np.cos(xbar)
24
25 return(Cires)
 	�

1 """
2 Date: Q4 2023 - Q1 2024
3 Author: Lisa Martinez
4 Institution: Technical University of Madrid
5
6 Description: This subroutine calculates the induced velocities Ux,Uy,Uz from a
7 semi infinitly vortex in the point px,py,pz. The calculations are made for 1
8 blade. The routine uses the helix radius r, pitch p and longitudinal starting
9 point x as input. The vortex starts at -infinity and stops at -x. The

10 calculations follows the procedure outlined by de Jong.
11 """
12
13
14 import numpy as np
15
16
17 def De_Jong(x, r, p, phi, px, py, pz):
18
19 from sources.Ci_P import Ci
20 from sources.Si_P import si
21
22 Ux = 0.0 # Initialization of the variable U_x
23 Uy = 0.0 # Initialization of the variable U_y
24 Uz = 0.0 # Initialization of the variable U_z
25
26 # CONSTANTS
27
28 pbar=2*np.pi/p
29 xbar=pbar*x
30 x2bar=2*xbar
31 xtld=pbar*px
32 x2tld=2*xtld
33
34 xsum=xbar+xtld
35 xsum2=2*xsum*xsum
36 xsum3=1.5*xsum2*xsum

71

A Python-Implemented Vortex-Lattice Approach for Propeller Optimisation

37 xsum4=xsum2*xsum2
38
39 x2sum=2*xsum
40 x2sum2=2*x2sum*x2sum
41 x2sum3=1.5*x2sum2*x2sum
42 x2sum4=x2sum2*x2sum2
43
44 r2=r*r
45 py2=py*py
46 pz2=pz*pz
47 rbar=r2+py2+pz2
48 p2=pbar*pbar
49 p3r2=p2*r2*pbar
50 p4r2=3*p3r2*pbar
51 p5r2=p4r2*pbar
52 p2x2=p2/xsum2
53 p4rb=3*p2*p2*rbar/xsum4
54
55 cxtld=np.cos(xtld)
56 sxtld=np.sin(xtld)
57 cx2tld=np.cos(x2tld)
58 sx2tld=np.sin(x2tld)
59 cxbar=np.cos(xbar)
60 sxbar=np.sin(xbar)
61 cx2bar=np.cos(x2bar)
62 sx2bar=np.sin(x2bar)
63 cxbar2=cxbar*cxbar
64 sxbar2=sxbar*sxbar
65
66 cphi=np.cos(phi)
67 sphi=np.sin(phi)
68 cphi2=cphi*cphi
69 sphi2=sphi*sphi
70 phi2=2*phi
71 c2phi=np.cos(phi2)
72 s2phi=np.sin(phi2)
73
74 Ci1 = Ci(xsum)
75 Ci2 = Ci(x2sum)
76 si1 = si(xsum)
77 si2 = si(x2sum)
78
79 cos11 = -cxtld*Ci1-sxtld*si1
80 cos112 = -cx2tld*Ci2-sx2tld*si2
81
82 sin11 = sxtld*Ci1-cxtld*si1
83 sin112 = sx2tld*Ci2-cx2tld*si2
84
85 cos12 = cxbar/xsum-sin11
86 cos122 = cx2bar/x2sum-sin112
87
88 sin12 = sxbar/xsum+cos11
89 sin122 = sx2bar/x2sum+cos112
90
91 cos13 = cxbar/xsum2-0.5*sin12
92 cos132 = cx2bar/x2sum2 -0.5*sin122
93
94 sin13 = sxbar/xsum2+0.5*cos12
95 sin132 = sx2bar/x2sum2+0.5*cos122
96
97 cos23 = cxbar2/xsum2-sin122
98 sin23 = sxbar2/xsum2+sin122
99

100 cos14 = cxbar/xsum3-sin13/3
101 cos142 = cx2bar/x2sum3-sin132/3
102
103 sin14 = sxbar/xsum3+cos13/3
104 sin142 = sx2bar/x2sum3+cos132/3
105
106 cos24 = cxbar2/xsum3-4*sin132/3
107
108 sin24 = sxbar2/xsum3+4*sin132/3
109
110 cos15 = cxbar/xsum4-0.25*sin14
111 cos152 = cx2bar/x2sum4 -0.25*sin142
112
113 sin15 = sxbar/xsum4+0.25*cos14
114 sin152 = sx2bar/x2sum4+0.25*cos142
115
116 cos25 = cxbar2/xsum4-2*sin142
117 sin25 = sxbar2/xsum4+2*sin142
118
119 # CALCULATION OF UX
120
121 p3 = p2*pbar
122 p4 = p3*pbar
123 p5 = p4*pbar
124 rbar3r = rbar+2*r2
125
126 c0 = -p5r2*rbar/xsum4/2+p3r2/xsum2
127 c1 = -p3*r*pz
128 c2 = -p3*r*py
129 c3 = 3*p5*r*pz*rbar3r/2
130 c4 = 3*p5*r*py*rbar3r/2
131 c5 = -p5r2*pz2
132 c6 = -p5r2*py2
133 c7 = -16*p5r2*py*pz
134
135 Ux = (c0+(c1*cphi-c2*sphi)*cos13 + (c2*cphi+c1*sphi)*sin13 + (c3*cphi-c4*sphi)*cos15+(c4*cphi+c3*sphi)*sin15 +
136 (c5*cphi2+c6*sphi2)*cos25 + (c6*cphi2+c5*sphi2)*sin25 + ((c5-c6)*8*s2phi+c7*c2phi)*sin152 - c7*s2phi*cos152)/4/np.pi
137
138 # CALCULATION OF UY

72

A Python-Implemented Vortex-Lattice Approach for Propeller Optimisation

139
140 d0 =-p2*pz/xsum2+1.5*p4*pz*rbar/xsum4
141 d1 = p2*r
142 d2 = d1
143 d3 = -3*p4*r*rbar/2
144 d4 = 4*p4r2*pz
145 d5 = p4r2*py
146 d6 = -3*p4*r*py*pz
147 d7 = 8*p4r2*py
148 d8 = -3*p4*r*(py2+3*pz2+r2)/2
149 d9 = p4r2*pz
150
151 Uy = (d0+d1*cphi*cos13+d1*sphi*sin13+(d8*cphi-d6*sphi)*cos15 + (d8*sphi+d6*cphi)*sin15+0.25*d4*cphi*cphi*cos25 +
152 0.25*d4*sphi*sphi*sin25 + (8*d5*c2phi+2*d4*s2phi)*sin152 - d7*s2phi*cos152-d1*sphi*cos12+d1*cphi*sin12-
153 d3*sphi*cos14 + d3*cphi*sin14+d5*sphi*sphi*cos24+d5*cphi*cphi*sin24 + (d4*c2phi-0.5*d7*s2phi)*sin142-
154 d4*s2phi*cos142)/4/np.pi
155
156 # CALCULATION OF UZ
157
158 e0 = p2*py/xsum2-1.5*p4*py*rbar/xsum4
159 e1 = p2*r
160 e2 = -e1
161 e3 = -3*p4*r*rbar/2
162 e4 = 4*p4r2*py
163 e5 = p4r2*pz
164 e6 = 3*p4*r*py*pz
165 e7 = 3*p4*r*(3*py2+pz2+r2)/2
166 e8 = -8*p4r2*pz
167 e9 = -p4r2*py
168
169 Uz = (e0+e1*cphi*cos12+e1*sphi*sin12+e1*sphi*cos13-e1*cphi*sin13 + e3*cphi*cos14+e3*sphi*sin14+
170 (e4*c2phi-0.5*e8*s2phi)*sin142 - e4*s2phi*cos142+e5*cphi*cphi*cos24+e5*sphi*sphi*sin24 -
171 e7*sphi*cos15+e7*cphi*sin15+e6*cphi*cos15+e6*sphi*sin15 - e8*s2phi*cos152+
172 (2*e4*s2phi+e8*c2phi)*sin152 + e9*sphi*sphi*cos25+e9*cphi*cphi*sin25)/4/np.pi
173
174 return (Ux,Uy,Uz)
 	�

1 """
2 Date: Q4 2023 - Q1 2024
3 Author: Lisa Martinez
4 Institution: Technical University of Madrid
5
6 Description: This function computes the propeller efficiency.
7 """
8
9

10 import sources.Variables as Var
11 import numpy as np
12 from sources.Mid_Vect_Propeller_P import Mid_Vect_Propeller
13 from sources.Weight_Function_Propeller_P import Weight_function_propeller
14 from sources.Skin_Friction_Drag_P import Skin_Friction_Drag
15 from sources.Advance_Ratio_P import Advance_Ratio_J
16
17
18 def Efficiency():
19
20 I_P_Points_P = (Var.Msp*Var.Nch)
21 Panel, Gamma_Panel_P = np.loadtxt("output/Propeller_Gamma_Blade.txt",skiprows = 1,unpack= True)
22 T_fr_P, Q_fr_P = Skin_Friction_Drag()
23 Weight_P = Weight_function_propeller()
24 V_Tot_P = np.loadtxt("output/Propeller_Velocity_Total.txt", skiprows=2, usecols= (2,3,4))
25 V_Tot_P = np.reshape(V_Tot_P, (I_P_Points_P, 4, 3))
26 Advance_ratio = Advance_Ratio_J()
27
28 # THRUST AND TORQUE (WITHOUT SKIN FRICTION DRAG)
29
30 Thr = 0
31 Tor = 0
32
33 T_tot_P = 0 # Initialization of the temporary variable used to calculate T
34 Tor_tot_P = 0
35
36 Q1_tot = 0 # Initialization of the temporary variable used to calculate Q1
37 Q2_tot = 0 # Initialization of the temporary variable used to calculate Q2
38
39 for m in range (Var.Msp): # Spanwise loop
40 npl_TE = (m-1)*Var.Nch
41
42 T_0 = 0 # Initialization of the temporary variable used to calculate T
43 Q_10 = 0 # Initialization of the temporary variable used to calculate Q1
44 Q_20 = 0 # Initialization of the temporary variable used to calculate Q2
45
46 for n in range (Var.Nch): # Chordwise loop
47 npl = n + (m-1)*Var.Nch
48
49 T_00 = 0 # Initialization of the temporary variable used to calculate T
50 Q_100 = 0 # Initialization of the temporary variable used to calculate Q1
51 Q_200 = 0 # Initialization of the temporary variable used to calculate Q2
52
53 for k in range (4): # Panel loop
54 xkx,xky,xkz,xlk,ylk,zlk = Mid_Vect_Propeller(npl,k)
55 # This subroutine is used to calculate the characteristics of the side k panel npl
56
57 T_00 = T_00 + zlk*V_Tot_P[npl,k,1] - ylk*V_Tot_P[npl,k,2]
58 # Thrust generated by side k panel npl without taking into account of the weight function
59
60 Q_100 = Q_100 + xky*ylk*V_Tot_P[npl,k,0] - xky*xlk*V_Tot_P[npl,k,1]
61 #Torque Q1 generated by side k panel npl without taking into account of the weight function
62

73

A Python-Implemented Vortex-Lattice Approach for Propeller Optimisation

63 Q_200 = Q_200 + xkz*xlk*V_Tot_P[npl,k,2]- xkz*zlk*V_Tot_P[npl,k,0]
64 #Torque Q2 generated by side k panel npl without taking into account of the weight function
65
66 T_0 = T_0 + Weight_P[m,n] * T_00
67 # Thrust generated by the panel npl taking into account of the weight function
68 Q_10 = Q_10 + Weight_P[m,n] * Q_100
69 # Torque Q1 generated by the panel npl taking into account of the weight function
70 Q_20 = Q_20 + Weight_P[m,n] * Q_200
71 # Torque Q2 generated by the panel npl taking into account of the weight function
72
73 xkx,xky,xkz,xlk,ylk,zlk = Mid_Vect_Propeller(npl_TE,3)
74
75 T_tot_P = T_tot_P + Gamma_Panel_P[npl_TE]*T_0 - Gamma_Panel_P[npl_TE
76]*zlk*V_Tot_P[npl_TE,3,1] + Gamma_Panel_P[npl_TE]*ylk*V_Tot_P[npl_TE,3,2] # No thrust generated by T.E. side
77
78 Q1_tot = Q1_tot + Gamma_Panel_P[npl_TE]*Q_10 - Gamma_Panel_P[npl_TE
79]*xky*ylk*V_Tot_P[npl_TE,3,0] + Gamma_Panel_P[npl_TE]*xky*xlk*V_Tot_P[npl_TE,3,1] # No torque generated by T.E. side
80
81 Q2_tot = Q2_tot + Gamma_Panel_P[npl_TE]*Q_20 - Gamma_Panel_P[npl_TE
82]*xkz*xlk*V_Tot_P[npl_TE,3,2] + Gamma_Panel_P[npl_TE]*xkz*zlk*V_Tot_P[npl_TE,3,0] # No torque generated by T.E. side
83
84 # EFFICIENCY
85
86 Thr = Var.rho*float(Var.Z_Blade_P)*T_tot_P + T_fr_P*Var.Z_Blade_P # Total thrust given by the propeller
87 Tor = Var.rho*float(Var.Z_Blade_P)*Q1_tot - Var.rho*float(Var.Z_Blade_P)*Q2_tot + Q_fr_P*Var.Z_Blade_P
88 # Total torque given by the propeller
89
90 K_T = Thr / (Var.rho * (Var.Omega/(2*np.pi))**2 * (Var.Rad_P*2)**4) # Thrust coefficient
91
92 K_Q = Tor / (Var.rho * (Var.Omega/(2*np.pi))**2 * (Var.Rad_P*2)**5) # Torque coefficient
93
94 Eff = Advance_ratio * K_T / abs(2 * np.pi * K_Q) # Efficiency
95 C_th = Thr/(0.5*Var.rho*Var.V_Ship**2*np.pi*Var.Rad_P**2)
96
97 with open("output/Propeller_Efficiency.txt", mode='w') as file:
98 file.write("Efficiency\n")
99 file.write("{:13.9f}\n".format(Eff))

100
101 with open("output/Propeller_Forces.txt", mode='w') as file:
102 file.write(" K_T K_Q T Q Cth\n")
103 file.write("{:13.9f} {:13.9f} {:10.1f} {:10.1f} {:13.9f}\n".format(K_T, -K_Q, Thr, Tor, C_th))
104 return Eff, K_T, K_Q
105
106
107 Eff, K_T, K_Q = Efficiency()
 	�

1 """
2 Date: Q4 2023 - Q1 2024
3 Author: Lisa Martinez
4 Institution: Technical University of Madrid
5
6 Description: This section is dedicated to the initialization of the variable
7 Gamma_TE_P.
8 """
9

10
11 import numpy as np
12 import sources.Variables as Var
13
14
15 def Gamma_It():
16
17 Gamma_TE_P = np.zeros((Var.Msp+1))
18
19 for j in range(Var.Msp+1):
20 Gamma_TE_P[j] = 0.0
21 Gamma_TE_P[Var.Msp] = -1 # lambda (t-1) initial
22 with open("output/Propeller_Gamma_TE_P.txt", "w") as file:
23 for i in range(Var.Msp+1):
24 file.write(f"{Gamma_TE_P[i]:13.9f}\n")
25 return Gamma_TE_P
26
27
28 Gamma_TE_P = Gamma_It()
 	�

1 """
2 Date: Q4 2023 - Q1 2024
3 Author: Lisa Martinez
4 Institution: Technical University of Madrid
5
6 Description: This subroutine is responsible for creating the initial grid for
7 the reference blade of the propeller, including Control Points & Grid Points.
8 Given the propeller's symmetry, generating the grid for the reference blade
9 alone suffices. Additionally, the subroutine undertakes the numbering of panels

10 and horseshoe vortices. Notably, the grid is aligned with the onset flow during
11 this phase.
12 """
13
14
15 import math
16 import numpy as np
17 import sources.Variables as Var
18 import pandas as pd
19
20
21 def Grid_Generation_Propeller():
22

74

A Python-Implemented Vortex-Lattice Approach for Propeller Optimisation

23 r_R_P, X_P, Skew_P, Chord_P, Thick_P = np.loadtxt("input/grid.txt", unpack=True)
24 U_0_P, U_R_P, U_T_P = np.loadtxt("input/onset.txt", unpack=True)
25
26 """ MID-CHORD LINE """
27
28 Midchord_line_P = np.zeros((Var.N_Iter,3)) # Create Matrix 3xN_Iter
29 # Initial point (x, y, z)
30 Midchord_line_P[0,0] = 0.0 # s line (x) - It begins at the hub-center but the first point is at the top of the hub
31 Midchord_line_P[0,1] = 0.0 # s line (y) - It begins at the hub-center but the first point is at the top of the hub
32 Midchord_line_P[0,2] = r_R_P[0] # s line (z) assuming that r_R_P contain the initial z values
33
34 # Cartesian coordinates for the blade surface
35 for i in range(1, Var.N_Iter):
36 Midchord_line_P[i, 0] = X_P[i] # x
37 Midchord_line_P[i, 1] = -r_R_P[i] * math.sin(Skew_P[i]) # y
38 Midchord_line_P[i, 2] = r_R_P[i] * math.cos(Skew_P[i]) # z
39
40 s_tip = 0.0
41 S_Distr_P = [0.0] * Var.N_Iter
42 S_Distr_P[0] = math.sqrt(Midchord_line_P[0,1]**2 + Midchord_line_P[0,2]**2) # First value of the midchord line
43 s_Hub_P = S_Distr_P[0]
44
45 for i in range(Var.N_Iter - 1): # This loop is used to find the length of the s line
46 b = abs(Midchord_line_P[i+1,1])-abs(Midchord_line_P[i,1]) # Y Distance
47 c = abs(Midchord_line_P[i+1,2])-abs(Midchord_line_P[i,2]) #Z Distance
48 Prov = math.sqrt(b**2+c**2)
49 S_Distr_P[i+1] = S_Distr_P[i] + Prov # This is used to find the distribution of s, which is always costant
50
51 s_tip = S_Distr_P[Var.N_Iter-1]
52
53 data = np.column_stack([S_Distr_P, r_R_P])
54 np.savetxt("output/Propeller_S_Distr.txt", data, fmt=['%13.9f','%13.9f'], delimiter= ' ', header = ' S_Distr Radius')
55
56 """ t FUNCTION """
57
58 t_gp_P=np.array([0.0]*(Var.Nch+1)) #Initialise the variable
59
60 for i in range(Var.Nch + 1):
61 t_gp_P[0] = -0.5
62 t_gp_P[i] = -0.5 * np.cos(float(i+1-1.5)*3.14159274/float(Var.Nch))
63 # (t) Grid points (always the same - it depends on Nch) - Cosine
64
65 t_cp_P = np.array([0.0]*(Var.Nch),dtype=np.float64) #Initialise the variable
66 for i in range (Var.Nch):
67 t_cp_P[i]= 0.5*(t_gp_P[i+1]+t_gp_P[i]) # (t) Control points (always the same - it depends on Nch) - Cosine
68
69
70 data_t = np.column_stack([t_gp_P])
71 np.savetxt("output/Propeller_t_gp.txt", data_t, fmt=['%13.9f'], delimiter= ' ', header = 't_gp')
72 data_t = np.column_stack([t_cp_P])
73 np.savetxt("output/Propeller_t_cp.txt", data_t, fmt=['%13.9f'], delimiter= ' ', header = 't_cp')
74
75 """ s FUNCTION """
76
77 s_gp_P = np.array([0.0]*(Var.Msp+1),dtype=np.float64) # (s) Grid points (always the same - it depends on Msp)
78 for i in range(Var.Msp+1):
79 aa = (i+1)*4.0 - 3.0 #Start with point after 0
80 bb = 4.0*float(Var.Msp) + 2.0
81 s_gp_P[i] = ((aa/bb)*(s_tip - s_Hub_P))+s_Hub_P
82
83 s_cp_P = np.array([0.0]*(Var.Msp),dtype=np.float64) # (s) Control points (always the same - it depends on Msp)
84 for i in range(0,Var.Msp):
85 s_cp_P[i] = 0.5 * (s_gp_P[i] + s_gp_P[i+1])
86
87 data_s = np.column_stack([s_gp_P])
88 np.savetxt("output/Propeller_s_gp.txt", data_s, fmt=['%13.9f'], delimiter= ' ', header = 's_gp')
89
90 data_s = np.column_stack([s_cp_P])
91 np.savetxt("output/Propeller_s_cp.txt", data_s, fmt=['%13.9f'], delimiter= ' ', header = 's_cp')
92
93 """ GRID POINTS MATRIX - CALCULATION OF BETA(S),CHORD(S),SKEW(S) AND RAKE(S) """
94
95 #Initialise the variables
96 Radius_gp_P = np.zeros(Var.Msp + 1)
97 Chord_P_gp = np.zeros(Var.Msp + 1)
98 Rake_P_gp = np.zeros(Var.Msp + 1)
99 Skew_P_gp = np.zeros(Var.Msp + 1)

100 sin_b = np.zeros(Var.Msp + 1)
101 cos_b = np.zeros(Var.Msp + 1)
102 Grid_Points_P = np.zeros(((Var.Msp + 1) * (Var.Nch + 1), 3))
103 Theta_gp_P = np.zeros(Var.Nch + 1)
104
105 # S Loop
106 for i in range(Var.Msp +1):
107 ipl = ((i+1) * (Var.Nch + 1)) - (Var.Nch + 1)
108
109 Radius_gp_P[i] = np.interp(s_gp_P[i],S_Distr_P, r_R_P) # Value of the radius in the grid points (s)
110 U_0_P_gp = np.interp(s_gp_P[i],S_Distr_P, U_0_P) # Wake (Axial) in the grid points (s)
111 U_T_P_gp = np.interp(s_gp_P[i],S_Distr_P, U_T_P) # Wake (Tangential) in the grid points (s)
112 Chord_P_gp[i] = np.interp(s_gp_P[i],S_Distr_P, Chord_P) # Value of the chord in the grid points (s)
113 Rake_P_gp[i] = np.interp(s_gp_P[i],S_Distr_P, X_P) # Value of the rake in the grid points (s)
114 Skew_P_gp[i] = np.interp(s_gp_P[i],S_Distr_P, Skew_P) # Value of the skew in the grid points (s)
115
116 V_tang = Var.Omega * Radius_gp_P[i] - U_T_P_gp # Tangential velocity
117 V_rel = np.sqrt(V_tang**2 + U_0_P_gp**2) # Tangential velocity
118 sin_b[i] = U_0_P_gp / V_rel # Sine (beta)
119 cos_b[i] = V_tang / V_rel # Cosine (beta)
120
121 # t Loop
122 for j in range(Var.Nch+1):
123 npl = (j) + ipl # Second counter used to order the Grid Points Matrix
124 Theta_gp_P[j] = -Skew_P_gp[i] + (t_gp_P[j] * Chord_P_gp[i] * cos_b[i]) / Radius_gp_P[i]

75

A Python-Implemented Vortex-Lattice Approach for Propeller Optimisation

125
126 Grid_Points_P[npl, 0] = Rake_P_gp[i] + Chord_P_gp[i] * sin_b[i] * t_gp_P[j] # X(s,t)
127 Grid_Points_P[npl, 1] = -Radius_gp_P[i] * math.sin(Theta_gp_P[j]) # Y(s,t)
128 Grid_Points_P[npl, 2] = Radius_gp_P[i] * math.cos(Theta_gp_P[j]) # Z(s,t)
129
130 with open('output/Propeller_Grid_Points_Old.txt', 'w') as file:
131 for i in range((Var.Nch + 1) * (Var.Msp + 1)):
132 file.write(f"{Grid_Points_P[i, 0]:.9f} {Grid_Points_P[i, 1]:.9f} {Grid_Points_P[i, 2]:.9f}\n")
133 with open('output/Propeller_Grid_Points.txt', 'w') as file:
134 for i in range((Var.Nch + 1) * (Var.Msp + 1)):
135 file.write(f"{Grid_Points_P[i, 0]:.9f} {Grid_Points_P[i, 1]:.9f} {Grid_Points_P[i, 2]:.9f}\n")
136 with open('output/Propeller_Grid_Points_geom.txt', 'w') as file:
137 for i in range((Var.Msp + 1)):
138 file.write(f"{Radius_gp_P[i]:.9f} {Chord_P_gp[i]:.9f} {Rake_P_gp[i]:.9f} {Skew_P_gp[i]:.9f}\n")
139
140 """ CONTROL POINTS MATRIX - CALCULATION OF BETA(S(R)),CHORD(S),SKEW(S) AND RAKE(S) """
141
142 #Initialise the variable
143 Radius_cp_P = np.zeros(Var.Msp + 1)
144 Chord_P_cp = np.zeros(Var.Msp + 1)
145 Rake_P_cp = np.zeros(Var.Msp + 1)
146 Skew_P_cp = np.zeros(Var.Msp + 1)
147 Theta_cp_P = np.zeros(Var.Nch + 1)
148 Control_Points_P = np.zeros(((Var.Msp) * (Var.Nch), 3))
149
150 for i in range(Var.Msp):
151 Radius_cp_P[i] = 0.5*(Radius_gp_P[i]+Radius_gp_P[i+1]) # Value of the radius in the control point (s)
152 U_0_P_cp = np.interp(s_cp_P[i],S_Distr_P, U_0_P) # Wake (Axial) in the control points (s)
153 U_T_P_cp = np.interp(s_cp_P[i],S_Distr_P, U_T_P) #Wake (Tangential) in the control points (s)
154 ipl = [0.0]
155 ipl = ((i+1)*(Var.Nch))-(Var.Nch) # Counter used to order the Control Points Matrix
156
157 Chord_P_cp [i] = np.interp(s_cp_P[i],S_Distr_P, Chord_P)
158 Rake_P_cp [i] = np.interp(s_cp_P[i],S_Distr_P, X_P)
159 Skew_P_cp [i] = np.interp(s_cp_P[i],S_Distr_P, Skew_P)
160 # Value of the chord in the control point (s)
161 # Value of the rake in the control point (s)
162 # Value of the skew in the control point (s)
163
164
165 V_tang = Var.Omega * Radius_cp_P[i] - U_T_P_cp # Tangential velocity
166 V_rel = math.sqrt(V_tang**2 + U_0_P_cp**2) # Relative velocity
167 sin_b[i] = U_0_P_cp/V_rel # Sine (beta)
168 cos_b[i] = V_tang/V_rel # Cosine (beta)
169
170 #t loop
171 for j in range(Var.Nch):
172 npl = j+(ipl) # Second counter used to order the Control Points Matrix
173 Theta_cp_P[j] = -Skew_P_cp[i] + (t_cp_P[j] * Chord_P_cp[i] * cos_b[i]) / Radius_cp_P[i]
174 Control_Points_P[npl, 0] = Rake_P_cp[i] + Chord_P_cp[i] * sin_b[i] * t_cp_P[j] # X(s,t)
175 Control_Points_P[npl, 1] = -Radius_cp_P[i] * math.sin(Theta_cp_P[j]) # Y(s,t)
176 Control_Points_P[npl, 2] = Radius_cp_P[i] * math.cos(Theta_cp_P[j]) # Z(s,t)
177
178 with open('output/Propeller_Control_Points_Old.txt', 'w') as file:
179 for i in range((Var.Nch) * (Var.Msp)):
180 file.write(f"{Control_Points_P[i, 0]:.9f} {Control_Points_P[i, 1]:.9f} {Control_Points_P[i, 2]:.9f}\n")
181
182 with open('output/Propeller_Control_Points.txt', 'w') as file:
183 for i in range((Var.Nch) * (Var.Msp)):
184 file.write(f"{Control_Points_P[i, 0]:.9f} {Control_Points_P[i, 1]:.9f} {Control_Points_P[i, 2]:.9f}\n")
185
186 with open('output/Propeller_Control_Points_geom.txt', 'w') as file:
187 for i in range((Var.Msp+1)):
188 file.write(f"{Chord_P_cp [i]:.9f} {Rake_P_cp [i]:.9f} {Skew_P_cp [i]:.9f}\n")
189
190 """ NUMERATION OF THE PANEL AND THE SIDE """
191
192 N_Panel_P = np.array([[0,1, Var.Nch + 2, Var.Nch +1]]) # Initialize the first panel
193
194 t = 0
195 for j in range(Var.Msp):
196 for i in range(1,Var.Nch):
197
198 t += 1
199 t2 = t - 1
200
201 N_Panel = N_Panel_P[t2] + 1
202 N_Panel_P = np.append(N_Panel_P, [N_Panel], axis=0)
203
204 if j != Var.Msp-1:
205 t += 1
206 t1 = t - 1
207 N_Panel = N_Panel_P[t1] + 2
208 N_Panel_P = np.append(N_Panel_P, [N_Panel], axis=0)
209
210 with open ("output/Propeller_Numeration_Panel.txt","w") as file:
211 for i in range((Var.Nch*Var.Msp)):
212 file.write(f"{N_Panel_P[i, 0]:2d} {N_Panel_P[i, 1]:2d} {N_Panel_P[i, 2]:2d} {N_Panel_P[i, 3]:2d}\n")
213
214 """ COORDINATES FOR THE BOUND VORTICES (T.E. SIDE) """
215
216 # It is a matrix with the grid points at the T.E.
217 N_Bound_Vortex_P = np.zeros((Var.Msp + 1, 1), dtype=int)
218 for i in range (Var.Msp+1):
219 N_Bound_Vortex_P[i] = i+i*(Var.Nch)
220
221 np.savetxt("output/Propeller_N_Bound_Vortex.txt", N_Bound_Vortex_P, fmt="%3d")
222
223 """ HORSESHOE VORTEX MATRIX """
224
225 Horseshoe_P = np.zeros(((Var.Msp),4),dtype=int)
226 for i in range(Var.Msp):

76

A Python-Implemented Vortex-Lattice Approach for Propeller Optimisation

227 Horseshoe_P[i,0] = i # This value is used to access to the N_Bound_Vortex_P
228 # matrix in order to select the Bound vortex (0-6)(6-12)..
229 Horseshoe_P[i,1] = i+1 # This value is used to access to the N_Bound_Vortex_P
230 # matrix in order to select the Bound vortex (0-6)(6-12)..
231 Horseshoe_P[i,2] =((i-1)+1)*Var.Nch # Number of the T.E panel (0-5-10..)
232 Horseshoe_P[i,3] = i # Number of the horseshoe vortex (0-1-2-3..)
233
234 with open("output/Propeller_Horseshoe.txt","w") as file:
235 for i in range(Var.Msp):
236 file.write(f" {Horseshoe_P[i,0]:2d} {Horseshoe_P[i,1]:2d} {Horseshoe_P[i,2]:2d} {Horseshoe_P[i,3]}\n")
237
238 """ COORDINATES FOR THE TRANSITION WAKE (STRAIGHT LINE VORTICES) """
239
240 # Initialize the variable
241 Points_Trans_Wake_P = np.zeros((((Var.N_P_L+1)*(Var.Msp+1)),3))
242
243 for i in range(Var.Msp+1):
244 i_1 = i+i*(Var.N_P_L)
245 x_trans_wake = Grid_Points_P[N_Bound_Vortex_P[i,0],0]
246 y_trans_wake = Grid_Points_P[N_Bound_Vortex_P[i,0],1]
247 z_trans_wake = Grid_Points_P[N_Bound_Vortex_P[i,0],2]
248 # X value for the first point of the transition wake - T.E.
249 # Y value for the first point of the transition wake - T.E.
250 # Z value for the first point of the transition wake - T.E.
251
252 r_trans_wake = np.sqrt(y_trans_wake**2 + z_trans_wake**2) # Radius at the T.E.
253 U_0_P_trans_wake = np.interp(r_trans_wake, r_R_P, U_0_P) # Wake (Axial) in the transition wake (s)
254 U_T_P_trans_wake = np.interp(r_trans_wake, r_R_P, U_T_P) # Wake (Tangential) in the transition wake (s)
255
256
257 V_tang = Var.Omega*r_trans_wake - U_T_P_trans_wake # Tangential velocity
258 pitch_trans_wake = (2*np.pi*r_trans_wake*U_0_P_trans_wake)/V_tang # Pitch at the T.E. (It has only a radial variation)
259 Points_Trans_Wake_P[i_1,0] = x_trans_wake # Grid points for the transition wake (x) - T.E
260 Points_Trans_Wake_P[i_1,1] = r_trans_wake # Grid points for the transition wake (radius) - T.E
261 Points_Trans_Wake_P[i_1,2] = pitch_trans_wake # Grid points for the transition wake (pitch) - T.E -
262 # It is costant everywhere (right now) because V_tang does not take into
263 # account of the induced velocity (due the fact that we don't know it yet)
264
265 delta_trans_wake = (-4 * Var.Rad_P - x_trans_wake)/(Var.N_P_L)
266 # The transition wake goes four radii downstream
267 # Loop used to divide the transition wake in N_P_L parts (N_P_L+1 points)
268 for j in range(Var.N_P_L):
269 i_2 = (i_1) + j+1
270
271 # Grid points for the transition wake
272 Points_Trans_Wake_P[i_2,0] = x_trans_wake + (j+1) * delta_trans_wake # (x)
273 Points_Trans_Wake_P[i_2,1] = r_trans_wake # (radius)
274 Points_Trans_Wake_P[i_2,2] = pitch_trans_wake # (pitch)
275
276 with open("output/Propeller_Points_Trans_Wake_Old.txt", "w") as file:
277 file.write(f"{'Point':<8}{'x':<12}{'r':<20}{'p':<20}\n")
278 for i in range(Var.Msp+1):
279 i_1 = i+i*(Var.N_P_L)
280 file.write(f"{i:<5}{Points_Trans_Wake_P[i_1,0]:13.9f}{Points_Trans_Wake_P[i_1,1]:13.9f}"
281 f"{Points_Trans_Wake_P[i_1,2]:13.9f}\n")
282
283 for j in range(Var.N_P_L):
284 i_2 = (i_1) + j+1
285 file.write(f"{i:<5}{Points_Trans_Wake_P[i_2,0]:13.9f}{Points_Trans_Wake_P[i_2,1]:13.9f}"
286 f"{Points_Trans_Wake_P[i_2,2]:13.9f}\n")
287
288 with open("output/Propeller_Points_Trans_Wake.txt", "w") as file:
289 file.write(f"{'Point':<8}{'x':<12}{'r':<20}{'p':<20}\n")
290 for i in range(Var.Msp+1):
291 i_1 = i+i*(Var.N_P_L)
292 file.write(f"{i:<5}{Points_Trans_Wake_P[i_1,0]:13.9f}{Points_Trans_Wake_P[i_1 ,1]:13.9f}"
293 f"{Points_Trans_Wake_P[i_1,2]:13.9f}\n")
294
295 for j in range(Var.N_P_L):
296 i_2 = (i_1) + j+1
297 file.write(f"{i:<5}{Points_Trans_Wake_P[i_2,0]:13.9f}{Points_Trans_Wake_P[i_2,1]:13.9f}"
298 f"{Points_Trans_Wake_P[i_2,2]:13.9f}\n")
299
300 return(S_Distr_P, r_R_P, t_gp_P, s_gp_P, Grid_Points_P, Control_Points_P,
301 N_Panel_P, N_Bound_Vortex_P, Horseshoe_P, Points_Trans_Wake_P)
302
303
304 (S_Distr_P, r_R_P, t_gp_P, s_gp_P, Grid_Points_P, Control_Points_P, N_Panel_P, N_Bound_Vortex_P, Horseshoe_P, Points_Trans_Wake_P
305)=Grid_Generation_Propeller()
 	�

1 """
2 Date: Q4 2023 - Q1 2024
3 Author: Lisa Martinez
4 Institution: Technical University of Madrid
5
6 Description: This subroutine is tasked with creating the helix geometry.
7 """
8
9

10 def Helix(x1, x2, y1, y2, dx):
11 delx = x2 - x1
12 a = (y2-y1-delx*dx)/delx/delx
13 b = dx-2*a*x1
14 c = y1 + a*x1*x1 - dx*x1
15 return (a, b, c)
 	�

1 """

77

A Python-Implemented Vortex-Lattice Approach for Propeller Optimisation

2 Date: Q4 2023 - Q1 2024
3 Author: Lisa Martinez
4 Institution: Technical University of Madrid
5
6 Description: This subroutine computes the induced velocities in the midpoints
7 of the segments (coefficient) from the entire grid of the propeller.
8 """
9

10
11 import numpy as np
12 import sources.Variables as Var
13 from sources.Weight_Function_Propeller_P import Weight_function_propeller
14 from sources.Mid_Vect_Propeller_P import Mid_Vect_Propeller
15 from sources.Panel_Induced_Velocity_Propeller_P import Panel_Induced_Velocity_Propeller
16
17
18 def Induced_Grid_Propeller():
19 Weight_P = Weight_function_propeller()
20 I_P_Points_P = (Var.Msp*Var.Nch)
21
22 V_Grid_P = np.zeros((Var.Msp,I_P_Points_P, 4,3)) # Induced velocity from the entire grid
23 n_plaux = np.array(([0.0]*(Var.Msp)), dtype = int)
24 npl = np.array(([0.0]*(Var.Msp)),dtype = int)
25
26 for i in range (I_P_Points_P): # This loop selects the panel where the point px,py,pz is located
27
28 for k in range (4): # This loop selects, inside the panel, the side where the point px,py,pz is located
29 px,py,pz,v_px,v_py,v_pz = Mid_Vect_Propeller(i, k) # This subroutine is used to calculate the midpoint px,py,pz
30
31 for j in range(Var.Msp):
32 U_x = 0 # Initialization of the variable U_x
33 U_y = 0 # Initialization of the variable U_y
34 U_z = 0 # Initialization of the variable U_z
35 n_plaux = (Var.Nch)*(j)
36
37 for h in range(Var.Nch): # This loop selects the panel (Chordwise) that induces velocity
38
39 npl = h + n_plaux
40 qx_pnl, qy_pnl, qz_pnl = Panel_Induced_Velocity_Propeller(npl,k,i,px,py,pz)
41
42 U_x += Weight_P[j,h] * qx_pnl # Temporary induced velocity in the point px,py,pz
43 U_y += Weight_P[j,h] * qy_pnl # due to the chordwise ring j (x),(y),(z)
44 U_z += Weight_P[j,h] * qz_pnl
45
46 V_Grid_P [j,i,k,0] = U_x # Induced velocity in the point px,py,pz
47 V_Grid_P [j,i,k,1] = U_y # due to the chordwise ring j (x),(y),(z)
48 V_Grid_P [j,i,k,2] = U_z
49
50 with open("output/Propeller_Velocity_Grid.txt", "w") as file:
51 file.write("{:>5s} {:>8s} {:>2s} {:>15s} {:>15s} {:>2s}\n".format("Point","Spanwise","Ux","Uy","Uz", ""))
52 file.write("{:>8s} {:>7s}\n".format("(Panel)", "(Side)"))
53
54 for i in range(I_P_Points_P):
55 for k in range(4):
56 for j in range(Var.Msp):
57 data_format = "{:>2d} {:>4d} {:>4d} {:>13.9f} {:>13.9f} {:>13.9f}\n"
58 file.write(data_format.format(i, k, j, V_Grid_P[j, i, k, 0], V_Grid_P[j, i, k, 1], V_Grid_P[j, i , k, 2]))
59 return V_Grid_P
60
61
62 V_Grid_P = Induced_Grid_Propeller()
 	�

1 """
2 Date: Q4 2023 - Q1 2024
3 Author: Lisa Martinez
4 Institution: Technical University of Madrid
5
6 Description: This subroutine calculates the midpoint coordinates
7 (mid_x,mid,mid_z) and the vector for the panel side
8 (vector_x,vector_y,vector_z) of the reference blade of the propeller.
9

10 Parameters
11 - n_pnl: number of the panel
12 - n_side: number of the side
13 """
14
15
16 import numpy as np
17 import sources.Variables as Var
18
19
20 def Mid_Vect_Propeller(n_pnl,n_side):
21
22 Grid_Points_P = np.loadtxt("output/Propeller_Grid_Points.txt")
23 N_Panel_P = np.loadtxt("output/Propeller_Numeration_Panel.txt",dtype='int')
24 j1 = n_side
25 j2 = (n_side+1)
26
27 # Special case for n_side = 3
28 if n_side == 3:
29 j2 = 0
30
31 mid_x = 0.5* (Grid_Points_P[N_Panel_P[n_pnl,j2],0] + Grid_Points_P[N_Panel_P[n_pnl,j1],0]) # Midpoint (x)
32 mid_y = 0.5* (Grid_Points_P[N_Panel_P[n_pnl,j2],1] + Grid_Points_P[N_Panel_P[n_pnl,j1],1]) # Midpoint (y)
33 mid_z = 0.5* (Grid_Points_P[N_Panel_P[n_pnl,j2],2] + Grid_Points_P[N_Panel_P[n_pnl,j1],2]) # Midpoint (z)
34
35 vector_x = Grid_Points_P[N_Panel_P[n_pnl,j2],0] - Grid_Points_P[N_Panel_P[n_pnl,j1],0] #Vector (x)
36 vector_y = Grid_Points_P[N_Panel_P[n_pnl,j2],1] - Grid_Points_P[N_Panel_P[n_pnl,j1],1] #Vector (y)
37 vector_z = Grid_Points_P[N_Panel_P[n_pnl,j2],2] - Grid_Points_P[N_Panel_P[n_pnl,j1],2] #Vector (z)

78

A Python-Implemented Vortex-Lattice Approach for Propeller Optimisation

38
39 return mid_x,mid_y,mid_z,vector_x,vector_y,vector_z
 	�

1 """
2 Date: Q4 2023 - Q1 2024
3 Author: Lisa Martinez
4 Institution: Technical University of Madrid
5
6 Description: This subroutine calculates the normal vector for a panel
7 """
8
9

10 import numpy as np
11
12
13 def Normal_Vector(x_1, y_1, z_1, x_2, y_2, z_2, x_3, y_3, z_3, x_4, y_4, z_4):
14 a_1 = x_2 - x_3
15 # X value of the first vector of the panel (Point 2 and Point 3)
16 a_2 = y_2 - y_3
17 # Y value of the first vector of the panel (Point 2 and Point 3)
18 a_3 = z_2 - z_3
19 # Z value of the first vector of the panel (Point 2 and Point 3)
20
21 b_1 = x_4 - x_1
22 # X value of the first vector of the panel (Point 1 and Point 4)
23 b_2 = y_4 - y_1
24 # Y value of the first vector of the panel (Point 1 and Point 4)
25 b_3 = z_4 - z_1
26 # Z value of the first vector of the panel (Point 1 and Point 4)
27
28 x = a_2 * b_3 - a_3 * b_2 # X component of the cross product
29 y = b_1 * a_3 - a_1 * b_3 # Y component of the cross product
30 z = a_1 * b_2 - a_2 * b_1 # Z component of the cross product
31
32 Norm = np.sqrt(x**2 + y**2 + z**2) # Norm of the vector
33
34 vector_x = x / Norm # X component of the normal vector
35 vector_y = y / Norm # Y component of the normal vector
36 vector_z = z / Norm # Z component of the normal vector
37
38 return (vector_x, vector_y, vector_z)
 	�

1 """
2 Date: Q4 2023 - Q1 2024
3 Author: Lisa Martinez
4 Institution: Technical University of Madrid
5
6 Description: This subroutine computes the onset flow at the midpoints of the
7 sides of the propeller. The onset flow is assumed to be axi-symmetric and
8 independent of the longitudinal position, meaning it has only a radial
9 variation.

10 """
11
12
13 import numpy as np
14 import sources.Variables as Var
15 from sources.Mid_Vect_Propeller_P import Mid_Vect_Propeller
16
17
18 def Onset_Flow_Propeller():
19 I_P_Points_P = (Var.Msp*Var.Nch)
20 r_R_P, X_P, Skew_P, Chord_P, Thick_P = np.loadtxt("input/grid.txt", unpack=True)
21 U_0_P, U_R_P, U_T_P = np.loadtxt("input/onset.txt", unpack=True)
22 U_0_P_Onset = np.zeros((Var.Msp * Var.Nch, 4, 3)) #Onset Flow (x) - Propeller
23 U_T_P_Onset = np.zeros((Var.Msp * Var.Nch, 4, 3)) #Onset Flow (y) - Propeller
24 U_R_P_Onset = np.zeros((Var.Msp * Var.Nch, 4, 3)) #Onset Flow (z) - Propeller
25 V_Onset_P = np.zeros((Var.Msp * Var.Nch, 4, 3))
26
27 for j in range(I_P_Points_P): # This loop selects the panel where the point px,py,pz is located
28 for k in range (4): # This loop selects, inside the panel, the sides where the point px,py,pz is located
29 xx, xy, xz, xl, yl, zl = Mid_Vect_Propeller(j, k)
30
31 #This subroutine is used to calculate the midpoint px,py,pz
32 r_sid = np.sqrt(xy*xy + xz*xz) # Radius of the points px,py,pz
33
34 U_0_P_Onset= np.interp(r_sid,r_R_P,U_0_P) # Wake (Axial) in the midpoints (s)
35 U_T_P_Onset= np.interp(r_sid,r_R_P,U_T_P) # Wake (Tangential) in the midpoints (s)
36 U_R_P_Onset= np.interp(r_sid,r_R_P,U_R_P) # Wake (Radial) in the grid midpoints (s)
37
38 V_Onset_P[j,k,0] = - U_0_P_Onset # Onset Flow (x)
39 V_Onset_P[j,k,1] = U_R_P_Onset*xy/r_sid - U_T_P_Onset*xz/r_sid + Var.Omega*xz # Onset Flow (y)
40 V_Onset_P[j,k,2] = U_R_P_Onset*xz/r_sid + U_T_P_Onset*xy/r_sid - Var.Omega*xy # Onset Flow (z)
41
42 with open("output/Propeller_Onset_Flow.txt", "w") as file:
43 file.write("{:5s}{:>6s}{:12s}{:15s}\n".format("Point", "Ux", "Uy", "Uz"))
44 file.write("{:<8s}{:<7s}\n".format("(Panel)", "(Side)"))
45
46 for j in range(I_P_Points_P):
47 for k in range(4):
48 file.write("{:2d}{:4d}{:5s}{:13.9f}{:5s}{:13.9f}{:5s}{:13.9f}\n".format(
49 j, k, "", V_Onset_P[j, k, 0], "", V_Onset_P[j, k, 1], "", V_Onset_P[j, k, 2]))
50
51 return V_Onset_P
52
53
54 V_Onset_P = Onset_Flow_Propeller()
 	

79

A Python-Implemented Vortex-Lattice Approach for Propeller Optimisation

�
1 """
2 Date: Q4 2023 - Q1 2024
3 Author: Lisa Martinez
4 Institution: Technical University of Madrid
5
6 Description: This subroutine calculates the induced velocities (coefficient)
7 from a panel in the point (px,py,pz) for all the blades of the propeller
8 without including the bound vortex.
9

10 Parameters:
11 - n_pnl : number of the panel that induces velocity in the point
12 (px,py,pz)
13 - mpnl : number of the panel that containes the point px,py,pz.
14 - msid : number of the side that containes the point px,py,pz.
15 """
16
17
18 import numpy as np
19 import sources.Variables as Var
20 from sources.Biot_Savart_Propeller_P import Biot_Savart_Propeller
21
22
23 def Panel_Induced_Velocity_Propeller_Align(n_pnl, msid, mpnl, px, py, pz):
24
25 Grid_Points_P = np.loadtxt("output/Propeller_Grid_Points.txt")
26 N_Panel_P = np.loadtxt("output/Propeller_Numeration_Panel.txt", dtype='int')
27
28 # DECLARATION OF VARIABLES
29
30 U_x = 0 # Initialization of the variable U_x
31 U_y = 0 # Initialization of the variable U_y
32 U_z = 0 # Initialization of the variable U_z
33
34 delta_theta = 2*np.pi/float(Var.Z_Blade_P)
35
36 x_10 = Grid_Points_P[N_Panel_P[n_pnl,0],0] # X value for the first point of the chosen panel of the propeller
37 y_10 = Grid_Points_P[N_Panel_P[n_pnl,0],1] # Y value for the first point of the chosen panel of the propeller
38 z_10 = Grid_Points_P[N_Panel_P[n_pnl,0],2] # Z value for the first point of the chosen panel of the propeller
39
40 #Loop for the number of blades
41 for j in range (Var.Z_Blade_P):
42 theta_blade = float(j*delta_theta)
43 cos_theta = np.cos(theta_blade)
44 sin_theta = np.sin(theta_blade)
45
46 x_1 = x_10 # X value for the first point of the chosen panel of the chosen blade of the propeller
47 y_1 = y_10*cos_theta - z_10*sin_theta
48 # Y value for the first point of the chosen panel of the chosen blade of the propeller
49 z_1 = z_10*cos_theta + y_10*sin_theta
50 # Z value for the first point of the chosen panel of the chosen blade of the propeller
51
52 # 4 sides of the panel
53 for i in range(4):
54 i_2 = i + 1 if i < 3 else 0
55
56 x_2 = Grid_Points_P[N_Panel_P[n_pnl,i_2],0] # X value for the second point of the chosen panel
57 # of the chosen blade of the propeller
58 y_20 = Grid_Points_P[N_Panel_P[n_pnl,i_2],1] # Y value for the second point of the chosen panel
59 # of the chosen blade of the propeller
60 z_20 = Grid_Points_P[N_Panel_P[n_pnl,i_2],2] # Z value for the second point of the chosen panel
61 # of the chosen blade of the propeller
62
63 y_2 = y_20 * cos_theta - z_20 * sin_theta
64 # Y value for the second point of the chosen panel of the chosen blade of the propeller
65 z_2 = z_20 * cos_theta + y_20 * sin_theta
66 # Z value for the second point of the chosen panel of the chosen blade of the propeller
67
68 if i == 1:
69 x_1, y_1, z_1 = x_2, y_2, z_2
70 continue
71 if i == 3:
72 x_1, y_1, z_1 = x_2, y_2, z_2
73 continue
74 else:
75 U_x_0, U_y_0, U_z_0 = Biot_Savart_Propeller(1, x_1, y_1, z_1, x_2, y_2, z_2, px, py, pz)
76
77 # Update induced velocities
78 U_x = U_x + U_x_0
79 U_y = U_y + U_y_0
80 U_z = U_z + U_z_0
81
82 x_1, y_1, z_1 = x_2, y_2, z_2
83
84 return(U_x, U_y, U_z)
 	�

1 """
2 Date: Q4 2023 - Q1 2024
3 Author: Lisa Martinez
4 Institution: Technical University of Madrid
5
6 Description: This subroutine calculates the induced velocities (coefficient)
7 from a panel at the point (px,py,pz) for all blades of the propeller.
8
9 Parameters:

10 - n_pnl: Number of the panel inducing velocity at the point (px,py,pz)
11 - mpnl: Number of the panel containing the point (px,py,pz)
12 - msid: Number of the side containing the point (px,py,pz)
13 """
14

80

A Python-Implemented Vortex-Lattice Approach for Propeller Optimisation

15
16 from sources.Biot_Savart_Propeller_P import Biot_Savart_Propeller
17 import numpy as np
18 import sources.Variables as Var
19
20
21 def Panel_Induced_Velocity_Propeller(n_pnl, msid, mpnl, px, py, pz):
22 Grid_Points_P = np.loadtxt("output/Propeller_Grid_Points.txt")
23 N_Panel_P = np.loadtxt("output/Propeller_Numeration_Panel.txt", dtype='int')
24
25 U_x, U_y, U_z = 0.0, 0.0, 0.0 # Initialization of the variable U_x, U_y, U_z
26
27 delta_theta = 2*np.pi/float(Var.Z_Blade_P)
28
29 x_10 = Grid_Points_P[N_Panel_P[n_pnl,0],0] # X value for the first point of the chosen panel of the propeller
30 y_10 = Grid_Points_P[N_Panel_P[n_pnl,0],1] # Y value for the first point of the chosen panel of the propeller
31 z_10 = Grid_Points_P[N_Panel_P[n_pnl,0],2] # Z value for the first point of the chosen panel of the propeller
32
33 for j in range(Var.Z_Blade_P): #Loop for the number of blades
34 theta_blade = (j) *delta_theta
35
36 cos_theta = np.cos(theta_blade)
37 sin_theta = np.sin(theta_blade)
38
39 x_1 = x_10
40 y_1 = y_10*cos_theta - z_10*sin_theta
41 z_1 = z_10*cos_theta + y_10*sin_theta
42 # X value for the first point of the chosen panel of the chosen blade of the propeller
43 # Y value for the first point of the chosen panel of the chosen blade of the propeller
44 # Z value for the first point of the chosen panel of the chosen blade of the propeller
45
46 # 4 sides of the panel
47 for i in range(4):
48
49 i_2 = i + 1 if i < 3 else 0
50 x_2 = Grid_Points_P[N_Panel_P[n_pnl,i_2],0]
51 # X value for the second point of the chosen panel of the chosen blade of the propeller
52 y_20 = Grid_Points_P[N_Panel_P[n_pnl,i_2],1]
53 # Y value for the second point of the chosen panel of the chosen blade of the propeller
54 z_20 = Grid_Points_P[N_Panel_P[n_pnl,i_2],2]
55 # Z value for the second point of the chosen panel of the chosen blade of the propeller
56
57 y_2 = y_20 * cos_theta - z_20 * sin_theta
58 # Y value for the second point of the chosen panel of the chosen blade of the propeller
59 z_2 = z_20 * cos_theta + y_20 * sin_theta
60 # Z value for the second point of the chosen panel of the chosen blade of the propeller
61
62 if n_pnl == mpnl and (j == 0) and i == msid:
63 x_1 = x_2 # The second point becomes the first point (x)
64 y_1 = y_2 # The second point becomes the first point (y)
65 z_1 = z_2 # The second point becomes the first point (z)
66 else:
67 U_x_0, U_y_0, U_z_0 = Biot_Savart_Propeller(1, x_1, y_1, z_1, x_2, y_2, z_2, px, py, pz)
68 # Induced velocity of that side of the panel of the propeller
69 # (I_z = 1 because I have al ready created a loop)
70 # Update induced velocity
71
72 U_x = U_x + U_x_0
73 U_y = U_y + U_y_0
74 U_z = U_z + U_z_0
75
76 x_1 = x_2 # The second point becomes the first point (x)
77 y_1 = y_2 # The second point becomes the first point (y)
78 z_1 = z_2 # The second point becomes the first point (z)
79
80 return(U_x, U_y, U_z)
 	�

1 """
2 Date: Q4 2023 - Q1 2024
3 Author: Lisa Martinez
4 Institution: Technical University of Madrid
5
6 Description: This subroutine is designed to open and process three specific
7 files containing data related to propeller characteristics, chord, and
8 velocities. It aims to facilitate the handling and analysis of aerodynamic
9 properties through these datasets.

10 """
11
12
13 import numpy as np
14 import pandas as pd
15 import sources.Variables as Var
16 from scipy.interpolate import CubicSpline
17
18
19 def propeller_geometry():
20 # Read from exel as Data Frame
21 data = pd.read_excel("input/geometry.xlsx", "geometry1", header=0)
22
23 # Radius
24 r_prop = data['Radius'].values
25 # Cartesian coordinate
26 x_prop = data['x'].values
27 # Skew in Radians
28 skew_prop = data['Skew (Rad)'].values
29 # Chord
30 chord_prop = data['Chord'].values
31 # Thickness
32 thick_prop = data['t'].values

81

A Python-Implemented Vortex-Lattice Approach for Propeller Optimisation

33 # Axial onset flow
34 u0_prop = data['U0'].values
35 # Radial onset flow
36 ur_prop = data['Ur'].values
37 # Tangential onset flow
38 ut_prop = data['Ut'].values
39
40 # Linear interpolation for the Radius
41 ir_prop = np.linspace(r_prop[0], max(r_prop), num=Var.N_Iter)
42
43 # Cubic spline interpolation for various properties along radial axis:
44 # x coordinate, skew, chord, thickness, axial onset flow, radial onset
45 # flow, tangential onset flow.
46 interpolator_x = CubicSpline(r_prop, x_prop, axis=0)
47 ix_prop = interpolator_x(ir_prop)
48
49 interpolator_skew = CubicSpline(r_prop, skew_prop, axis=0)
50 iskew_prop = interpolator_skew(ir_prop)
51
52 interpolator_chord = CubicSpline(r_prop, chord_prop, axis=0)
53 ichord_prop = interpolator_chord(ir_prop)
54
55 interpolator_thick = CubicSpline(r_prop, thick_prop, axis=0)
56 ithick_prop = interpolator_thick(ir_prop)
57
58 interpolator_u0 = CubicSpline(r_prop, u0_prop, axis=0)
59 iu0_prop = interpolator_u0(ir_prop)
60
61 interpolator_ur = CubicSpline(r_prop, ur_prop, axis=0)
62 iur_prop = interpolator_ur(ir_prop)
63
64 interpolator_ut = CubicSpline(r_prop, ut_prop, axis=0)
65 iut_prop = interpolator_ut(ir_prop)
66
67 # Define datasets
68 dataset = list(zip(ir_prop, ix_prop, iskew_prop, ichord_prop, ithick_prop))
69 dataset1 = list(zip(iu0_prop, iur_prop, iut_prop))
70
71 # Write dataset to 'grid.txt'
72 with open('input/grid.txt', 'w') as fileID:
73 format = '{:10.5f} {:10.5f} {:10.5f} {:10.5f} {:10.5f}\n'
74 for row in dataset:
75 fileID.write(format.format(*row))
76
77 # Write dataset1 to 'onset.txt'
78 with open('input/onset.txt', 'w') as file:
79 format = '{:10.5f} {:10.5f} {:10.5f}\n'
80 for row in dataset1:
81 file.write(format.format(*row))
82
83 # Write chord_prop to 'chord.txt'
84 np.savetxt('input/chord.txt', chord_prop, fmt='%10.5f')
85
86 return ir_prop, ix_prop, iskew_prop, ichord_prop, ithick_prop
87
88
89 ir_prop, ix_prop, iskew_prop, ichord_prop, ithick_prop = propeller_geometry()
 	�

1 """
2 Date: Q4 2023 - Q1 2024
3 Author: Lisa Martinez
4 Institution: Technical University of Madrid
5
6 Description: This function saves the old propeller pitch to evaluate the
7 residual for the pitch distribution.
8 """
9

10
11 import numpy as np
12 import sources.Variables as Var
13
14
15 pitch_0 = np.zeros((Var.Msp+1, 1))
16
17
18 def pitch():
19 pitch_0 = np.zeros((Var.Msp+1,1))
20 Points_Trans_Wake_P = np.loadtxt("output/Propeller_Points_Trans_Wake.txt", skiprows= 1, usecols= (1,2,3))
21 for i in range (Var.Msp+1):
22 i_1 = i+i*(Var.N_P_L)
23 pitch_0[i] = Points_Trans_Wake_P[i_1,2]
24 return pitch_0
 	�

1 """
2 Date: Q4 2023 - Q1 2024
3 Author: Lisa Martinez
4 Institution: Technical University of Madrid
5
6 Description: This subroutine calculates the Si-function used in 'De_Jong' by
7 rational approximations.
8 """
9

10
11 import numpy as np
12
13
14 def si(xbar):

82

A Python-Implemented Vortex-Lattice Approach for Propeller Optimisation

15 f = (xbar**8+38.027264*xbar**6+265.187033*xbar**4+335.677320*xbar**2+38.102495) / (
16 xbar**8+40.021433*xbar**6+322.624911*xbar**4+570.236280*xbar**2+157.105423)/xbar
17
18 g = (xbar**8+42.242855*xbar**6+302.757865*xbar**4+352.018498*xbar**2+21.821899) / (
19 xbar**8+48.196927*xbar**6+482.485984*xbar**4 +1114.978885*xbar**2+449.690326)/xbar**2
20
21 sires=-f*np.cos(xbar)-g*np.sin(xbar)
22
23 return(sires)
 	�

1 """
2 Date: Q4 2023 - Q1 2024
3 Author: Lisa Martinez
4 Institution: Technical University of Madrid
5
6 Description: This subroutine computes the skin friction drag at control points
7 of the propeller.
8 """
9

10
11 import numpy as np
12 import sources.Variables as Var
13 from sources.Weight_Function_Propeller_P import Weight_function_propeller
14 from sources.Area_Panel_P import Area_Panel
15 from sources.Panel_Induced_Velocity_Propeller_P import Panel_Induced_Velocity_Propeller
16 from sources.Trailing_Vortices_Propeller_P import Trailing_Vortices_Propeller
17 from sources.Biot_Savart_Propeller_P import Biot_Savart_Propeller
18 from sources.Mid_Vect_Propeller_P import Mid_Vect_Propeller
19 from sources.Normal_Vector_P import Normal_Vector
20
21
22 def Skin_Friction_Drag():
23 I_P_Points_P = (Var.Msp*Var.Nch)
24 Weight_P = Weight_function_propeller()
25
26 # DECLARATION OF VARIABLES
27
28 V_Tot_P = np.loadtxt("output/Propeller_Velocity_Total.txt", skiprows=2, usecols= (2,3,4))
29 V_Tot_P = np.reshape(V_Tot_P, (I_P_Points_P, 4, 3))
30 N_Panel_P = np.loadtxt("output/Propeller_Numeration_Panel.txt",dtype='int')
31 Grid_Points_P = np.loadtxt("output/Propeller_Grid_Points.txt")
32 Control_Points_P = np.loadtxt('output/Propeller_Control_Points.txt')
33 Radius, beta = np.loadtxt("output/Propeller_Beta.txt",skiprows = 1, unpack = True)
34 Gamma_TE_P = np.loadtxt("output/Propeller_Gamma_TE_P.txt")
35 Panel, Gamma_Panel_P = np.loadtxt("output/Propeller_Gamma_Blade.txt",skiprows = 1,unpack= True)
36 r_R_P,X_P,Skew_P,Chord_P,Thick_P= np.loadtxt("input/grid.txt",unpack = True)
37 U_0_P, U_R_P, U_T_P = np.loadtxt("input/onset.txt",unpack = True)
38 S_Distr_P,r_R_P = np.loadtxt("output/Propeller_S_Distr.txt", skiprows= 1, unpack= True)
39 Points_Trans_Wake_P = np.loadtxt("output/Propeller_Points_Trans_Wake.txt",
40 skiprows= 1, usecols= (1,2,3))
41
42 radius_cp = np.zeros((I_P_Points_P))
43 s_ring = np.zeros((Var.Msp))
44 vector_panel = np.zeros((3))
45 tangentialDirection = np.zeros((3))
46 T_Skin_F = 0.0
47 Q_Skin_F = 0.0
48 vector_x = np.zeros((Var.Msp))
49 vector_y = np.zeros((Var.Msp))
50 vector_z = np.zeros((Var.Msp))
51 r_cp_a = np.zeros((Var.Msp))
52 cos_theta_c = np.zeros((Var.Msp))
53 sin_theta_c = np.zeros((Var.Msp))
54 u_x_tot_a = np.zeros((Var.Msp))
55 u_y_tot_a = np.zeros((Var.Msp))
56 u_z_tot_a = np.zeros((Var.Msp))
57 u_tang_skin = np.zeros((Var.Msp))
58 u_rel_skin = np.zeros((Var.Msp))
59 Coeff_Corr_Camber = np.zeros((Var.Msp))
60 Coeff_Corr_Alpha = np.zeros((Var.Msp))
61 Coeff_Corr_Thick = np.zeros((Var.Msp))
62 Thick_P_skin = np.zeros((Var.Msp))
63 Chord_P_skin = np.zeros((Var.Msp))
64 L_Ring = np.zeros((Var.Msp))
65 L_Ring_x = np.zeros((Var.Msp))
66 L_Ring_y = np.zeros((Var.Msp))
67 L_Ring_z = np.zeros((Var.Msp))
68 C_L_Local = np.zeros((Var.Msp))
69 Camber_Dimless = np.zeros((Var.Msp))
70 ideal_angle_attack = np.zeros((Var.Msp))
71 angle_attack = np.zeros((Var.Msp))
72 beta_temp_surface = np.zeros((Var.Msp))
73 pitch_cp_final_surface = np.zeros((Var.Msp))
74
75 T_Skin_f = 0.0 # Initialization of the variable used to calculate the viscous drag
76 Q_Skin_f = 0.0 # Initialization of the variable used to calculate the viscous drag
77
78 s_tot = 0
79 for j in range (Var.Msp):
80 s_r = 0
81
82 for i in range(Var.Nch):
83 npl = i + (j) * Var.Nch
84
85 x_1 = Grid_Points_P[N_Panel_P[npl,0],0] # X value of the edge number one of the panel j
86 y_1 = Grid_Points_P[N_Panel_P[npl,0],1] # Y value of the edge number one of the panel j
87 z_1 = Grid_Points_P[N_Panel_P[npl,0],2] # Z value of the edge number one of the panel j
88
89 x_2 = Grid_Points_P[N_Panel_P[npl,1],0] # X value of the edge number two of the panel j

83

A Python-Implemented Vortex-Lattice Approach for Propeller Optimisation

90 y_2 = Grid_Points_P[N_Panel_P[npl,1],1] # Y value of the edge number two of the panel j
91 z_2 = Grid_Points_P[N_Panel_P[npl,1],2] # Z value of the edge number two of the panel j
92
93 x_3 = Grid_Points_P[N_Panel_P[npl,3],0] # X value of the edge number four of the panel j
94 y_3 = Grid_Points_P[N_Panel_P[npl,3],1] # Y value of the edge number four of the panel j
95 z_3 = Grid_Points_P[N_Panel_P[npl,3],2] # Z value of the edge number four of the panel j
96
97 x_4 = Grid_Points_P[N_Panel_P[npl,2],0] # X value of the edge number three of the panel j
98 y_4 = Grid_Points_P[N_Panel_P[npl,2],1] # Y value of the edge number three of the panel j
99 z_4 = Grid_Points_P[N_Panel_P[npl,2],2] # Z value of the edge number three of the panel j

100
101 s_parz = Area_Panel (x_1,y_1,z_1,x_2,y_2,z_2,x_3,y_3,z_3,x_4,y_4,z_4)
102 # Area of the panel where the control point is located
103
104 s_r = s_r + s_parz
105
106 s_ring [j] = s_r
107 s_tot = s_tot + s_r
108
109 Ae = s_tot
110 Ao = np.pi * Var.Rad_P**2
111
112 AeAo = Ae/Ao * Var.Z_Blade_P
113
114 # SKIN FRICTION DRAG
115
116 # Loop used to select all the control points of the propeller
117 for j in range (I_P_Points_P):
118
119 p_x_mdp = Control_Points_P[j,0] # X coordinate of the chosen control point of the propeller
120 p_y_mdp = Control_Points_P[j,1] # Y coordinate of the chosen control point of the propeller
121 p_z_mdp = Control_Points_P[j,2] # Z coordinate of the chosen control point of the propeller
122
123 x_1 = Grid_Points_P[N_Panel_P[j,0],0] # X value of the edge number one of the panel j
124 y_1 = Grid_Points_P[N_Panel_P[j,0],1] # Y value of the edge number one of the panel j
125 z_1 = Grid_Points_P[N_Panel_P[j,0],2] # Z value of the edge number one of the panel j
126
127 x_2 = Grid_Points_P[N_Panel_P[j,1],0] # X value of the edge number two of the panel j
128 y_2 = Grid_Points_P[N_Panel_P[j,1],1] # Y value of the edge number two of the panel j
129 z_2 = Grid_Points_P[N_Panel_P[j,1],2] # Z value of the edge number two of the panel j
130
131 x_3 = Grid_Points_P[N_Panel_P[j,3],0] # X value of the edge number four of the panel j
132 y_3 = Grid_Points_P[N_Panel_P[j,3],1] # Y value of the edge number four of the panel j
133 z_3 = Grid_Points_P[N_Panel_P[j,3],2] # Z value of the edge number four of the panel j
134
135 x_4 = Grid_Points_P[N_Panel_P[j,2],0] # X value of the edge number three of the panel j
136 y_4 = Grid_Points_P[N_Panel_P[j,2],1] # Y value of the edge number three of the panel j
137 z_4 = Grid_Points_P[N_Panel_P[j,2],2] # Z value of the edge number three of the panel j
138
139 radius_cp[j] = np.sqrt(p_y_mdp**2 + p_z_mdp**2) # Radius for the chosen control point of the propeller
140
141 cos_theta_c_skin = p_z_mdp/radius_cp[j]
142 sin_theta_c_skin = p_y_mdp/radius_cp[j]
143
144 # VELOCITIES IN THE CONTROL POINTS FROM THE ONSET FLOW
145
146 U_0_Onset = np.interp (radius_cp[j],r_R_P,U_0_P) # Wake (Axial) in the control points (s)
147 U_T_Onset = np.interp (radius_cp[j],r_R_P,U_T_P) # Wake (Tangential) in the control points (s)
148 U_R_Onset = np.interp (radius_cp[j],r_R_P,U_R_P) # Wake (Radial) in the control points (s)
149
150 u_x_onset = - U_0_Onset # Onset Flow (x)
151 u_y_onset = U_R_Onset*p_y_mdp/radius_cp[j] - U_T_Onset*p_z_mdp/radius_cp[j] + Var.Omega*p_z_mdp # Onset Flow (y)
152 u_z_onset = U_R_Onset*p_z_mdp/radius_cp[j] + U_T_Onset*p_y_mdp/radius_cp[j] - Var.Omega*p_y_mdp # Onset Flow (z)
153
154 # VELOCITIES IN THE CONTROL POINTS FROM THE PANELS
155
156 u_x_panels = 0
157 # Initialization of the variable used to store the induced velocity from the panels of the propeller (x)
158 u_y_panels = 0
159 # Initialization of the variable used to store the induced velocity from the panels of the propeller (y)
160 u_z_panels = 0
161 # Initialization of the variable used to store the induced velocity from the panels of the propeller (z)
162
163 # Loop used to select the spanwise level that induces velocity on the control points of the propeller
164 for n in range (Var.Msp):
165 u_x_panels_0 = 0
166 #Initialization of the variable used to calculate the induced velocity from the panels of the propeller (x)
167 u_y_panels_0 = 0
168 # Initialization of the variable used to calculate the induced velocity from the panels of the propeller (y)
169 u_z_panels_0 = 0
170 # Initialization of the variable used to calculate the induced velocity from the panels of the propeller (z)
171
172 # Loop used to select the panel that induces velocity on the control points of the propeller
173 for m in range (Var.Nch):
174 npl = m + (n) * Var.Nch
175
176 u_x_temp,u_y_temp,u_z_temp = Panel_Induced_Velocity_Propeller (npl,5,0,p_x_mdp,p_y_mdp,p_z_mdp)
177 # Induced velocity from the selected panel on the chosen control point of the propeller
178
179 u_x_panels_0 = u_x_panels_0 + Weight_P[n,m] * u_x_temp
180 # Temporary variable used to calculate the induced velocity from the panels of the propeller (x)
181 u_y_panels_0 = u_y_panels_0 + Weight_P[n,m] * u_y_temp
182 # Temporary variable used to calculate the induced velocity from the panels of the propeller (y)
183 u_z_panels_0 = u_z_panels_0 + Weight_P[n,m] * u_z_temp
184 # Temporary variable used to calculate the induced velocity from the panels of the propeller (z)
185
186
187 u_x_panels = u_x_panels + Gamma_TE_P[n] * u_x_panels_0 # Induced velocity from the panels of the propeller (x)
188 u_y_panels = u_y_panels + Gamma_TE_P[n] * u_y_panels_0 # Induced velocity from the panels of the propeller (y)
189 u_z_panels = u_z_panels + Gamma_TE_P[n] * u_z_panels_0 # Induced velocity from the panels of the propeller (z)
190
191 # VELOCITIES IN THE CONTROL POINTS FROM THE HORSESHOE VORTEX

84

A Python-Implemented Vortex-Lattice Approach for Propeller Optimisation

192
193 u_x_trail = 0
194 # Initialization of the variable used to calculate the induced velocity from the trailing vortices of the propeller (x)
195 u_y_trail = 0
196 # Initialization of the variable used to calculate the velocity from the trailing vortices of the propeller (y)
197 u_z_trail = 0
198 # Initialization of the variable used to calculate the induced velocity from the trailing vortices of the propeller (z)
199
200 x_T_E_1 = Grid_Points_P[0,0] # First point of the first trailing vortex of the propeller (x)
201 y_T_E_1 = Grid_Points_P[0,1] # First point of the first trailing vortex of the propeller (y)
202 z_T_E_1 = Grid_Points_P[0,2] # First point of the first trailing vortex of the propeller (z)
203
204 u_x_trail_1,u_y_trail_1,u_z_trail_1 = Trailing_Vortices_Propeller(0,p_x_mdp,p_y_mdp,p_z_mdp)
205 # Induced velocity from the transition wake and from the semi-infinite helicoidal vortex of the propeller (First)
206
207 # Loop used to select the trailing vortex that induces velocity on the control points of the propeller
208 for n in range (Var.Msp):
209 n_1 = n + 1
210 n_2 = (n+1) * (Var.Nch+1)
211
212 u_x_trail_2,u_y_trail_2,u_z_trail_2 = Trailing_Vortices_Propeller(n_1,p_x_mdp,p_y_mdp,p_z_mdp)
213 # Induced velocity from the transition wake and from the semi-infinite helicoidal vortex of the propeller (Second)
214
215 x_T_E_2 = Grid_Points_P[n_2,0] # Second point of the trailing vortex of the propeller (x)
216 y_T_E_2 = Grid_Points_P[n_2,1] # Second point of the trailing vortex of the propeller (y)
217 z_T_E_2 = Grid_Points_P[n_2,2] # Second point of the trailing vortex of the propeller (z)
218
219 U_x_s,U_y_s,U_z_s =

Biot_Savart_Propeller(Var.Z_Blade_P,x_T_E_1,y_T_E_1,z_T_E_1,x_T_E_2,y_T_E_2,z_T_E_2,p_x_mdp,p_y_mdp,p_z_mdp)
220 # Induced velocity from the bound vortex selected of the propeller
221
222 u_x_trail = u_x_trail + Gamma_TE_P[n] * (u_x_trail_1 - u_x_trail_2 + U_x_s)
223 # Induced velocity from the horseshoe vortex of the propeller (x)
224 u_y_trail = u_y_trail + Gamma_TE_P[n] * (u_y_trail_1 - u_y_trail_2 + U_y_s)
225 # Induced velocity from the horseshoe vortex of the propeller (y)
226 u_z_trail = u_z_trail + Gamma_TE_P[n] * (u_z_trail_1 - u_z_trail_2 + U_z_s)
227 # Induced velocity from the horseshoe vortex of the propeller (z)
228
229 x_T_E_1 = x_T_E_2 # For the next loop
230 y_T_E_1 = y_T_E_2 # For the next loop
231 z_T_E_1 = z_T_E_2 # For the next loop
232
233 u_x_trail_1 = u_x_trail_2 # For the next loop
234 u_y_trail_1 = u_y_trail_2 # For the next loop
235 u_z_trail_1 = u_z_trail_2 # For the next loop
236
237 # TOTAL INDUCED VELOCITY
238
239 u_x_tot = u_x_onset + u_x_trail + u_x_panels # Total induced velocity on the propeller (x)
240 u_y_tot = u_y_onset + u_y_trail + u_y_panels # Total induced velocity on the propeller (y)
241 u_z_tot = u_z_onset + u_z_trail + u_z_panels # Total induced velocity on the propeller (z)
242
243 # SKIN FRICTION DRAG
244
245 s = Area_Panel (x_1,y_1,z_1,x_2,y_2,z_2,x_3,y_3,z_3,x_4,y_4,z_4)
246 # Area of the panel where the control point is located
247
248 point_x_2,point_y_2,point_z_2,vector_xx,vector_yy,vector_zz = Mid_Vect_Propeller(j,1)
249 # This subroutine is used to calculate the midpoint of the panel side number 2
250 point_x_4,point_y_4,point_z_4,vector_xx,vector_yy,vector_zz = Mid_Vect_Propeller(j,3)
251 # This subroutine is used to calculate the midpoint of the panel side number 2
252
253 vector_panel[0] = point_x_4 - point_x_2 # Tangent vector to the panel (x)
254 vector_panel[1] = point_y_4 - point_y_2 # Tangent vector to the panel (y)
255 vector_panel[2] = point_z_4 - point_z_2 # Tangent vector to the panel (z)
256
257 vector_panel/= np.linalg.norm(vector_panel, ord=2) # Unit tangent vector to the panel
258
259 tangentialDirection[0] = 0.0 # Tangent vector in yz plane
260 tangentialDirection[1] = cos_theta_c_skin # Tangent vector in yz plane
261 tangentialDirection[2]= - sin_theta_c_skin # Tangent vector in yz plane
262
263 tangentialDirection/= np.linalg.norm(tangentialDirection, ord = 2) # Unit tangent vector in yz plane
264
265 V_tang = np.dot([u_x_tot, u_y_tot, u_z_tot], vector_panel) # Tangent velocity to the panel
266
267 dragInPanelDirection = Var.Skin_Coeff * 0.5 * Var.rho * (abs(V_tang)*V_tang) * s # Tangent force to the panel
268
269 T_Skin_F = T_Skin_F + dragInPanelDirection * vector_panel[0] # Skin friction drag (Thrust) - X force to the panel
270
271 Q_Skin_F = Q_Skin_F + dragInPanelDirection * np.dot(vector_panel, tangentialDirection) * radius_cp[j]
272 # Skin friction drag (Torque) - X force to the panel
273
274 T_fr_P = T_Skin_F
275 Q_fr_P = - Q_Skin_F
276
277 with open ("output/Propeller_Drag.txt", "w") as file:
278 file.write(" Drag T Drag Q Drag KT Drag KQ \n")
279 file.write(f"{(Var.Z_Blade_P * T_fr_P):9.1f} {(Var.Z_Blade_P * Q_fr_P):9.1f}\
280 {(Var.Z_Blade_P * T_fr_P / ((Var.Omega / (2 * np.pi))**2 * Var.rho * (Var.Rad_P * 2)**4)):0.6f}\
281 {Var.Z_Blade_P * Q_fr_P / ((Var.Omega / (2 * np.pi))**2 * Var.rho * (Var.Rad_P * 2)**5):0.6f}\n")
282
283 # OPTIMIZATION PARAMETERS - OUTPUT
284
285 mid_point = Var.Nch//2
286
287 # Loop used to select the closest control points to the midchord line (Chordwise)
288 for j in range (Var.Msp):
289 mid_point_cp = (mid_point) + (j) * Var.Nch
290
291 p_x_mdp = Control_Points_P[mid_point_cp ,0]
292 p_y_mdp = Control_Points_P[mid_point_cp ,1]

85

A Python-Implemented Vortex-Lattice Approach for Propeller Optimisation

293 p_z_mdp = Control_Points_P[mid_point_cp ,2]
294 # X coordinate of the chosen control point of the propeller
295 # Y coordinate of the chosen control point of the propeller
296 # Z coordinate of the chosen control point of the propeller
297
298 x_1 = Grid_Points_P[N_Panel_P[mid_point_cp ,0],0]
299 y_1 = Grid_Points_P[N_Panel_P[mid_point_cp ,0],1]
300 z_1 = Grid_Points_P[N_Panel_P[mid_point_cp ,0],2]
301 # X value of the edge number one of the panel
302 # Y value of the edge number one of the panel
303 # Z value of the edge number one of the panel
304
305 x_2 = Grid_Points_P[N_Panel_P[mid_point_cp ,1],0]
306 y_2 = Grid_Points_P[N_Panel_P[mid_point_cp ,1],1]
307 z_2 = Grid_Points_P[N_Panel_P[mid_point_cp ,1],2]
308 # X value of the edge number two of the panel
309 # Y value of the edge number two of the panel
310 # Z value of the edge number two of the panel
311
312 x_3 = Grid_Points_P[N_Panel_P[mid_point_cp ,3],0]
313 y_3 = Grid_Points_P[N_Panel_P[mid_point_cp ,3],1]
314 z_3 = Grid_Points_P[N_Panel_P[mid_point_cp ,3],2]
315 # X value of the edge number four of the panel
316 # Y value of the edge number four of the panel
317 # Z value of the edge number four of the panel
318
319 x_4 = Grid_Points_P[N_Panel_P[mid_point_cp ,2],0]
320 y_4 = Grid_Points_P[N_Panel_P[mid_point_cp ,2],1]
321 z_4 = Grid_Points_P[N_Panel_P[mid_point_cp ,2],2]
322 # X value of the edge number three of the panel
323 # Y value of the edge number three of the panel
324 # Z value of the edge number three of the panel
325
326 vec_x,vec_y,vec_z = Normal_Vector (x_1,y_1,z_1,x_2,y_2,z_2,x_3,y_3,z_3,x_4,y_4,z_4)
327 # This subroutine calculates the normal vector for the chosen panel
328
329 vector_x[j] = vec_x # X component of the vector
330 vector_y[j] = vec_y # Y component of the vector
331 vector_z[j] = vec_z # Z component of the vector
332
333 r_cp_a[j] = np.sqrt(p_y_mdp**2 + p_z_mdp**2) # Radius for the chosen control point of the propeller
334
335 cos_theta_c[j] = p_z_mdp/r_cp_a[j]
336 sin_theta_c[j] = p_y_mdp/r_cp_a[j]
337
338 # ONSET
339
340 U_0_P_Onset = np.interp(r_cp_a[j],r_R_P,U_0_P) # Wake (Axial) in the midpoints (s)
341 U_T_P_Onset = np.interp(r_cp_a[j],r_R_P,U_T_P) # Wake (Tangential) in the midpoints (s)
342 U_R_P_Onset = np.interp(r_cp_a[j],r_R_P,U_R_P) # Wake (Radial) in the grid midpoints (s)
343
344 u_x_onset = - U_0_P_Onset # Onset Flow (x)
345 u_y_onset = U_R_P_Onset*p_y_mdp/r_cp_a[j] - U_T_P_Onset*p_z_mdp/r_cp_a[j] + Var.Omega*p_z_mdp # Onset Flow (y)
346 u_z_onset = U_R_P_Onset*p_z_mdp/r_cp_a[j] + U_T_P_Onset*p_y_mdp/r_cp_a[j] - Var.Omega*p_y_mdp # Onset Flow (z)
347
348 # VELOCITIES IN THE CONTROL POINTS FROM THE PANELS OF THE PROPELLER
349
350 u_x_panels = 0
351 # Initialization of the variable used to store the induced velocity from the panels of the propeller (x)
352 u_y_panels = 0
353 # Initialization of the variable used to store the induced velocity from the panels of the propeller (y)
354 u_z_panels = 0
355 # Initialization of the variable used to store the induced velocity from the panels of the propeller (z)
356
357 # Loop used to select the spanwise level that induces velocity on the control points of the propeller
358 for n in range (Var.Msp):
359 u_x_panels_0 = 0
360 # Initialization of the variable used to calculate the induced velocity from the panels of the propeller (x)
361 u_y_panels_0 = 0
362 # Initialization of the variable used to calculate the induced velocity from the panels of the propeller (y)
363 u_z_panels_0 = 0
364 # Initialization of the variable used to calculate the induced velocity from the panels of the propeller (z)
365
366 # Loop used to select the panel that induces velocity on the control points of the propeller
367 for m in range (Var.Nch):
368 npl = m + (n) * Var.Nch
369
370 u_x_temp,u_y_temp,u_z_temp = Panel_Induced_Velocity_Propeller(npl,5,0,p_x_mdp,p_y_mdp,p_z_mdp)
371
372 # Induced velocity from the selected panel on the chosen control point of the propeller
373 u_x_panels_0 = u_x_panels_0 + Weight_P[n,m] * u_x_temp
374 # Temporary variable used to calculate the induced velocity from the panels of the propeller (x)
375 u_y_panels_0 = u_y_panels_0 + Weight_P[n,m] * u_y_temp
376 # Temporary variable used to calculate the induced velocity from the panels of the propeller (y)
377 u_z_panels_0 = u_z_panels_0 + Weight_P[n,m] * u_z_temp
378 # Temporary variable used to calculate the induced velocity from the panels of the propeller (z)
379
380 u_x_panels = u_x_panels + Gamma_TE_P[n] * u_x_panels_0 # Induced velocity from the panels of the propeller (x)
381 u_y_panels = u_y_panels + Gamma_TE_P[n] * u_y_panels_0 # Induced velocity from the panels of the propeller (y)
382 u_z_panels = u_z_panels + Gamma_TE_P[n] * u_z_panels_0 # Induced velocity from the panels of the propeller (z)
383
384 # VELOCITIES IN THE CONTROL POINTS FROM THE HORSESHOE VORTEX OF THE PROPELLER
385
386 u_x_trail = 0
387 # Initialization of the variable used to calculate the induced velocity from the trailing vortices of the propeller (x)
388 u_y_trail = 0
389 # Initialization of the variable used to calculate the induced velocity from the trailing vortices of the propeller (y)
390 u_z_trail = 0
391 # Initialization of the variable used to calculate the induced velocity from the trailing vortices of the propeller (z)
392
393 x_T_E_1 = Grid_Points_P[0,0] # First point of the first trailing vortex of the propeller (x)
394 y_T_E_1 = Grid_Points_P[0,1] # First point of the first trailing vortex of the propeller (y)

86

A Python-Implemented Vortex-Lattice Approach for Propeller Optimisation

395 z_T_E_1 = Grid_Points_P[0,2] # First point of the first trailing vortex of the propeller (z)
396
397 u_x_trail_1,u_y_trail_1,u_z_trail_1 = Trailing_Vortices_Propeller(0,p_x_mdp,p_y_mdp,p_z_mdp)
398 # Induced velocity from the transition wake and from the semi-infinite helicoidal vortex of the propeller (First)
399
400 # Loop used to select the trailing vortex that induces velocity on the control points of the propeller
401 for n in range (Var.Msp):
402 n_1 = n + 1
403 n_2 = (n+1) * (Var.Nch+1)
404
405 u_x_trail_2,u_y_trail_2,u_z_trail_2 = Trailing_Vortices_Propeller(n_1,p_x_mdp,p_y_mdp,p_z_mdp)
406 # Induced velocity from the transition wake and from the semi-infinite helicoidal vortex of the propeller (Second)
407
408 x_T_E_2 = Grid_Points_P[n_2,0] # Second point of the trailing vortex of the propeller (x)
409 y_T_E_2 = Grid_Points_P[n_2,1] # Second point of the trailing vortex of the propeller (y)
410 z_T_E_2 = Grid_Points_P[n_2,2] # Second point of the trailing vortex of the propeller (z)
411
412 U_x_s,U_y_s,U_z_s = Biot_Savart_Propeller(Var.Z_Blade_P,x_T_E_1,y_T_E_1,
413 z_T_E_1,x_T_E_2,y_T_E_2,z_T_E_2,p_x_mdp,p_y_mdp,p_z_mdp)
414 # Induced velocity from the bound vortex selected of the propeller
415
416 u_x_trail = u_x_trail + Gamma_TE_P[n] * (u_x_trail_1 - u_x_trail_2 + U_x_s)
417 # Induced velocity from the horseshoe vortex of the propeller (x)
418 u_y_trail = u_y_trail + Gamma_TE_P[n] * (u_y_trail_1 - u_y_trail_2 + U_y_s)
419 # Induced velocity from the horseshoe vortex of the propeller (y)
420 u_z_trail = u_z_trail + Gamma_TE_P[n] * (u_z_trail_1 - u_z_trail_2 + U_z_s)
421 # Induced velocity from the horseshoe vortex of the propeller (z)
422
423 x_T_E_1 = x_T_E_2 # For the next loop
424 y_T_E_1 = y_T_E_2 # For the next loop
425 z_T_E_1 = z_T_E_2 # For the next loop
426
427 u_x_trail_1 = u_x_trail_2 # For the next loop
428 u_y_trail_1 = u_y_trail_2 # For the next loop
429 u_z_trail_1 = u_z_trail_2 # For the next loop
430
431 # TOTAL INDUCED VELOCITY
432
433 u_x_tot_a[j] = u_x_onset + u_x_trail + u_x_panels # Total induced velocity on the propeller (x)
434 u_y_tot_a[j] = u_y_onset + u_y_trail + u_y_panels # Total induced velocity on the propeller (y)
435 u_z_tot_a[j] = u_z_onset + u_z_trail + u_z_panels # Total induced velocity on the propeller (z)
436
437 u_tang_skin[j] = - u_y_tot_a[j] * cos_theta_c[j] + u_z_tot_a[j] * sin_theta_c[j]
438 # Total tangential induced velocity in the control points of the propeller
439 u_rel_skin[j] = np.sqrt((u_x_tot_a[j]**2) + (u_tang_skin[j]**2))
440
441 # THRUST FOR EACH STRIP
442
443 # Spanwise loop
444 for m in range (Var.Msp):
445 npl_TE = (m)*Var.Nch
446
447 L_0_x = 0 # Initialization of the temporary variable used to calculate the lift of the stator (x)
448 L_0_y = 0 # Initialization of the temporary variable used to calculate the lift of the stator (y)
449 L_0_z = 0 # Initialization of the temporary variable used to calculate the lift of the stator (z)
450
451 # Chordwise loop
452 for n in range (Var.Nch):
453 npl = n + (m)*Var.Nch
454
455 L_00_x = 0 # Initialization of the temporary variable used to calculate the lift of the stator (x)
456 L_00_y = 0 # Initialization of the temporary variable used to calculate the lift of the stator (y)
457 L_00_z = 0 # Initialization of the temporary variable used to calculate the lift of the stator (z)
458
459 # Panel loop
460 for k in range (4):
461
462 xkx,xky,xkz,xlk,ylk,zlk = Mid_Vect_Propeller(npl,k)
463
464 L_00_x = L_00_x + zlk*V_Tot_P[npl,k,1] - ylk*V_Tot_P[npl,k,2] # Lift generated by side k panel npl (x)
465 L_00_y = L_00_y + xlk*V_Tot_P[npl,k,2] - zlk*V_Tot_P[npl,k,0] # Lift generated by side k panel npl (y)
466 L_00_z = L_00_z - xlk*V_Tot_P[npl,k,1] + ylk*V_Tot_P[npl,k,0] # Lift generated by side k panel npl (z)
467
468 L_0_x = L_0_x + Weight_P[m,n] * L_00_x # Lift generated by the panel npl (x)
469 L_0_y = L_0_y + Weight_P[m,n] * L_00_y # Lift generated by the panel npl (y)
470 L_0_z = L_0_z + Weight_P[m,n] * L_00_z # Lift generated by the panel npl (z)
471
472 xkx,xky,xkz,xlk,ylk,zlk = Mid_Vect_Propeller(npl_TE,3)
473
474 # Lift (Ring) - x
475 L_Ring_x[m] = Gamma_Panel_P[npl_TE]*L_0_x - Gamma_Panel_P[
476 npl_TE]*zlk*V_Tot_P[npl_TE,3,1] + Gamma_Panel_P[npl_TE]*ylk*V_Tot_P[npl_TE,3,2]
477 # Lift (Ring) - y
478 L_Ring_y[m] = Gamma_Panel_P[npl_TE]*L_0_y - Gamma_Panel_P[
479 npl_TE]*xlk*V_Tot_P[npl_TE,3,2] + Gamma_Panel_P[npl_TE]*zlk*V_Tot_P[npl_TE,3,0]
480 # Lift (Ring) - z
481 L_Ring_z[m] = Gamma_Panel_P[npl_TE]*L_0_z + Gamma_Panel_P[
482 npl_TE]*xlk*V_Tot_P[npl_TE,3,1] - Gamma_Panel_P[npl_TE]*ylk*V_Tot_P[npl_TE,3,0]
483 # Total Lift of the ring m
484 L_Ring[m] = L_Ring_x[m]*vector_x[m] + L_Ring_y[m]*vector_y[m] + L_Ring_z[m]*vector_z[m]
485
486 # CORRECTION FACTORS
487
488 for m in range (Var.Msp):
489 Chord_P_skin[m] = np.interp(r_cp_a[m],S_Distr_P,Chord_P) # Value of the chord
490 Thick_P_skin[m] = np.interp(r_cp_a[m],S_Distr_P,Thick_P) # Value of the thickness
491
492 Thick_0 = (Thick_P_skin[1]-Thick_P_skin[0])/(r_cp_a[1]-r_cp_a[0])*(-r_cp_a[0]) + Thick_P_skin[0] # Pitch at the hub
493
494 for m in range (Var.Msp):
495 Max_Skew = max(Skew_P)*180/np.pi
496 a = (3.5*AeAo) / (np.sqrt(r_cp_a[m]/Var.Rad_P * np.tan(beta[m]))) * (r_cp_a[m]/Var.Rad_P - 0.5)**2

87

A Python-Implemented Vortex-Lattice Approach for Propeller Optimisation

497 b = 0.71 * np.sqrt(r_cp_a[m]/Var.Rad_P * np.tan(beta[m])) + 0.56 * (
498 AeAo)**2 + (r_cp_a[m]/Var.Rad_P)*(5-Var.Z_Blade_P)/Var.Z_Blade_P + 0.46
499
500 Coeff_Corr_Camber[m] = a + b
501
502 Coeff_Corr_Thick[m] = 2*(5 + Var.Z_Blade_P)*Var.Z_Blade_P*Thick_0/(Var.Rad_P*2) * AeAo * (1-r_cp_a[m]/Var.Rad_P)**2
503
504 d = 1.2 * AeAo + 0.65 - 0.07*(2-np.pi*r_cp_a[m]/Var.Rad_P * np.tan(beta[m]))**3
505 e = 55/np.sqrt(np.pi*r_cp_a[m]/Var.Rad_P * np.tan(beta[m]))*AeAo*(r_cp_a[
506 m]/Var.Rad_P - 0.55)**4 + 1.2*r_cp_a[m]/Var.Rad_P*(5-Var.Z_Blade_P)/Var.Z_Blade_P
507 f = 0.08 * Max_Skew * (1- 20 * abs((r_cp_a[m]/Var.Rad_P - 0.4)**3))
508
509 Coeff_Corr_Alpha[m] = d + e + f
510
511 with open("output/Propeller_Correction_Factors.txt","w") as file:
512 file.write(" K_Camber K_Thickness K_Alpha\n")
513 for m in range(Var.Msp):
514 file.write(f" {Coeff_Corr_Camber[m]:7.4f} {Coeff_Corr_Thick[m]:7.4f} {Coeff_Corr_Alpha[m]:7.4f}\n")
515
516 for m in range (Var.Msp):
517 C_L_Local[m] = abs(L_Ring[m])/(0.5*(u_rel_skin[m])**2*s_ring[m]) # Lift Coefficient
518 Camber_Dimless[m] = (C_L_Local[m]*(1.0-Var.cny)) * 0.067 * Coeff_Corr_Camber[m] # / (1 - 0.83*Thick_P_skin[m]/Chord_P_skin[m])
519 # Value of the camber
520 ideal_angle_attack[m]= 1.40*(C_L_Local[m]*(1.0-Var.cny))/(180.0)*np.pi # Ideal angle of attack - 2D
521 angle_attack[m] = (C_L_Local[m]*Var.cny)/(np.pi*2.0) + ideal_angle_attack[m] # Angle of attack - 2D
522 beta_temp_surface[m] = angle_attack[m]*Coeff_Corr_Alpha[m] + beta[m] + Coeff_Corr_Thick[m]/180*np.pi
523 pitch_cp_final_surface[m] = np.tan(beta_temp_surface[m]) * 2.0 * np.pi * r_cp_a[m]
524
525 with open ("output/Propeller_Lift_Coefficient_Local_Parameters.txt","w") as file:
526 file.write(" C_L_Local Area Beta Angle of Attack f/c Ideal angle of attack Radius\n")
527 for m in range (Var.Msp):
528 file.write(f" {C_L_Local[m]:7.4f} {s_ring[m]:7.4f} {beta[m]:13.9f} {angle_attack[m]:13.9f}"
529 f" {Camber_Dimless[m]:13.9f} {ideal_angle_attack[m]:13.9f} {r_cp_a[m]:13.9}\n")
530 with open ("output/Propeller_Pitch_Control_Points_Angle_Add.txt","w") as file:
531 file.write(" Spanw. Radius Pitch/D\n")
532 for j in range (Var.Msp):
533 file.write(f" {j:3d} {r_cp_a[j]:13.9f} {(pitch_cp_final_surface[j]/(Var.Rad_P*2)):13.9f}\n")
534
535 return T_fr_P, Q_fr_P
536
537
538 T_fr_P,Q_fr_P = Skin_Friction_Drag()
 	�

1 """
2 Date: Q4 2023 - Q1 2024
3 Author: Lisa Martinez
4 Institution: Technical University of Madrid
5
6 Description: This subroutine calculates the induced velocities (coefficient)
7 from the transition wake and from the semi-infinite helicoidal vortex at a
8 single point for all propeller blades. Specifically, it addresses the selected
9 trailing vortex (n_tral_vortex) - options 1, 2, 3, 4 with Msp set to 3.

10 """
11
12
13 import numpy as np
14 import sources.Variables as Var
15 from sources.De_Jong_P import De_Jong
16 from sources.Biot_Savart_Propeller_P import Biot_Savart_Propeller
17 from sources.Helix_P import Helix
18
19
20 def Trailing_Vortices_Propeller(n_tral_vortex, px, py, pz):
21 Points_Trans_Wake_P = np.loadtxt("output/Propeller_Points_Trans_Wake.txt", skiprows= 1, usecols= (1,2,3))
22 Grid_Points_P = np.loadtxt("output/Propeller_Grid_Points.txt")
23 N_Bound_Vortex_P = np.loadtxt("output/Propeller_N_Bound_Vortex.txt",dtype= 'int')
24 N_Bound_Vortex_P = N_Bound_Vortex_P.reshape((Var.Msp+1, 1))
25
26 U_x = 0.0 # Initialization of the variable U_x
27 U_y = 0.0 # Initialization of the variable U_y
28 U_z = 0.0 # Initialization of the variable U_z
29
30 # INDUCED VELOCITIES FROM SEMI-INFINITE HELICOIDAL VORTEX
31
32 pyy = py
33 pzz = pz
34
35 k_2 = (n_tral_vortex + n_tral_vortex * Var.N_P_L)+Var.N_P_L
36 # k_2 is the location in Points_Trans_Wake_P for the last point of that trailing vortex
37 k_0 = k_2 - Var.N_P_L
38 # k_0 is the location in Points_Trans_Wake_P for the first point of that trailing vortex (T.E.)
39 k_2 = int(k_2)
40 k_0 = int(k_0)
41 n_tral_vortex = int (n_tral_vortex)
42
43 x_1 = - Points_Trans_Wake_P[k_2,0]
44 # First point for the semi-infinite helicoidal vortex (x) The - is because in infv the vortex starts at -infinity and stops at -x
45
46 r_1 = Points_Trans_Wake_P[k_2,1] # First point for the semi-infinite helicoidal vortex (Radius)
47
48 p_1 = Points_Trans_Wake_P[k_2,2] # First point for the semi-infinite helicoidal vortex (pitch)
49
50 x_T_E = Points_Trans_Wake_P[k_0,0]
51 r_T_E = Points_Trans_Wake_P[k_0,1]
52 p_T_E = Points_Trans_Wake_P[k_0,2]
53
54 delta_theta = 2*np.pi/float(Var.Z_Blade_P)
55
56 for i in range(Var.Z_Blade_P):

88

A Python-Implemented Vortex-Lattice Approach for Propeller Optimisation

57
58 y_T_E = Grid_Points_P[N_Bound_Vortex_P[n_tral_vortex ,0],1]
59 theta = np.arcsin(- y_T_E / r_T_E) # Theta for the T.E. point
60 xki = theta - 2*np.pi* x_T_E/p_T_E # Phase angle phi
61
62 U_xx, U_yy, U_zz = De_Jong (x_1,r_1,p_1,xki,px, pyy, pzz)
63 # This subroutine calculates the induced velocity for the ultimate wake that starts in x1,r1,z1 (De Jong) for the point

px,pyy,pzz
64
65 U_x = U_x + U_xx
66 U_y = U_y + U_yy
67 U_z = U_z + U_zz
68
69 theta_blade = (float(i+1)*delta_theta)# This is the angle of the blade that induces velocity on the reference blade
70
71 if (theta_blade < np.pi):
72 pyy = py*np.cos(theta_blade) + pz*np.sin(theta_blade)
73 pzz = pz*np.cos(theta_blade) - py*np.sin(theta_blade)
74 # In order to calculate the induced velocity in the point px,py,pz from the semi-infinite
75 # helicoidal vortices we do not change the helix (which is always located on the reference blade),
76 # but we change the location of the point and we keep costant the relative distance between the semi-infinite helicoidal

vortex
77 # and the point (the rotation depends on the location of the blade that induces velocity)
78 else:
79 pyy = py*np.cos(2*np.pi-theta_blade) - pz*np.sin(2*np.pi-theta_blade)
80 pzz = pz*np.cos(2*np.pi-theta_blade) + py*np.sin(2*np.pi-theta_blade)
81
82 # INDUCED VELOCITIES FROM THE TRANSITION WAKE
83
84 d_r = 0.0
85 d_p = 0.0
86
87 x_1 = Points_Trans_Wake_P[k_2,0]
88
89 for i in range(Var.N_P_L):
90 k2_i = k_2 - (i+1)
91
92 x_2 = Points_Trans_Wake_P[k2_i,0] # Second point for the selected side of the transition wake (x)
93 r_2 = Points_Trans_Wake_P[k2_i,1] # Second point for the selected side of the transition wake (radius)
94 p_2 = Points_Trans_Wake_P[k2_i,2] # Second point for the selected side of the transition wake (pitch)
95
96 a_r,b_r,c_r = Helix(x_1,x_2,r_1,r_2,d_r) # Calculates the coefficients a,b,c used in the polynomium
97 # for the radius for that side of the transition wake
98
99 a_p,b_p,c_p = Helix(x_1,x_2,p_1,p_2,d_p) # Calculates the coefficients a,b,c used in the polynomium

100 # for the pitch for that side of the transition wake
101
102 delta_x = (x_2-x_1) / float(Var.sub_interv)
103
104 x_11 = x_1 # First value of the element line (x) of the transition wake
105 r_11 = r_1 # First value of the element line (radius) of the transition wake
106 p_11 = p_1 # First value of the element line (pitch) of the transition wake
107
108 theta_1 = (xki + (2*np.pi) * x_11) / p_11 # First value of the element line (theta) of the transition wake
109
110 y_11 = - r_11 * np.sin(theta_1) # First value of the element line (y) of the transition wake
111 # Theta is positive in the other direction (sin(-theta) = - sin(theta))
112
113 z_11 = r_11 * np.cos(theta_1) # First value of the element line (z) of the transition wake
114
115
116 for j in range (Var.sub_interv):
117
118 x_12 = x_11 + delta_x # Second value of the element line (x) of the transition wake
119 r_12 = a_r*(x_12**2) + b_r*x_12 + c_r # Second value of the element line (radius) of the transition wake
120 p_12 = a_p*(x_12**2) + b_p*x_12 + c_p # Second value of the element line (pitch) of the transition wake
121
122 theta_2 = xki + (2*np.pi) * x_12 / p_12 # Second value of the element line (theta) of the transition wake
123 y_12 = - r_12 * np.sin(theta_2) # Second value of the element line (y) of the transition wake
124 z_12 = r_12 * np.cos(theta_2) # Second value of the element line (z) of the transition wake
125
126 U_x_w,U_y_w,U_z_w = Biot_Savart_Propeller (Var.Z_Blade_P,x_11,y_11,z_11,x_12,y_12,z_12,px,py,pz)
127
128 U_x = U_x + U_x_w
129 U_y = U_y + U_y_w
130 U_z = U_z + U_z_w
131
132 x_11 = x_12
133 y_11 = y_12
134 z_11 = z_12
135
136 x_1 = x_2
137 r_1 = r_2
138 p_1 = p_2
139
140 d_r = 2 * a_r * x_2 + b_r
141 d_p = 2 * a_p * x_2 + b_p
142
143 return (U_x, U_y, U_z)
 	�

1 '''
2 Date: Q4 2023 - Q1 2024
3 Author: Lisa Martinez
4 Institution: Technical University of Madrid
5
6 Description: This module contains the fixed variables.
7 '''
8
9

89

A Python-Implemented Vortex-Lattice Approach for Propeller Optimisation

10 # Density of water (kg/m^3)
11 rho = 1025
12 # Velocity of the ship (m/s)
13 V_Ship = 12.8611
14 # Convergence criteria
15 epsi = 0.0001
16 # Number of subdivisions of the input values
17 N_Iter = 500
18 # Total required thrust (N)
19 Tr = 3256000
20
21 # Preserved total required thrust for calculations
22 Tr_P = Tr
23 # Number of panels (spanwise)
24 Msp = 5
25 # Number of panels (chordwise)
26 Nch = 5
27 # Flat plate coefficient (0: pure rooftop, 0.5: half rooftop, 1: pure flat
28 # plate)
29 cny = 0.5
30
31 # Angular velocity (rad/s) - Propeller
32 Omega = 9.886
33 # Radius (m) - Propeller
34 Rad_P = 4.5
35 # Radius for the hub - Propeller
36 R_Hub_P = 0.189 * Rad_P
37 # Number of blades - Propeller
38 Z_Blade_P = 6
39 # Skin friction drag coefficient
40 Skin_Coeff = 0.008
41 # Number of straight line vortices (Transition Wake)
42 N_P_L = 5
43 # Number of subintervals for each line of the transition wake
44 sub_interv = 60
 	�

1 """
2 Date: Q4 2023 - Q1 2024
3 Author: Lisa Martinez
4 Institution: Technical University of Madrid
5
6 Description: This subroutine computes the induced velocities at the midpoints
7 of segments (coefficient) emanating from the horseshoe vortex across all blades
8 of the propeller. Furthermore, it calculates the total "velocity matrix" at
9 these midpoints, excluding the onset flow.

10 """
11
12
13 import numpy as np
14 import sources.Variables as Var
15 from sources.Induced_Grid_Propeller_P import Induced_Grid_Propeller
16 from sources.Mid_Vect_Propeller_P import Mid_Vect_Propeller
17 from sources.Biot_Savart_Propeller_P import Biot_Savart_Propeller
18 from sources.Trailing_Vortices_Propeller_P import Trailing_Vortices_Propeller
19
20
21 def Velocity_Total_No_Onset_Propeller():
22
23 Horseshoe_P = np.loadtxt("output/Propeller_Horseshoe.txt", dtype='int')
24 Grid_Points_P = np.loadtxt("output/Propeller_Grid_Points.txt")
25 N_Bound_Vortex_P = np.loadtxt("output/Propeller_N_Bound_Vortex.txt", dtype='int')
26 N_Bound_Vortex_P = N_Bound_Vortex_P.reshape((Var.Msp+1, 1))
27
28 I_P_Points_P = (Var.Msp*Var.Nch)
29 V_Grid_P = Induced_Grid_Propeller()
30 V_Tral_P = np.zeros((Var.Msp+1, I_P_Points_P, 4,3))
31 V_Ind_P = np.zeros((Var.Msp, I_P_Points_P, 4,3))
32
33 # HORSESHOE VORTEX
34
35 for i in range (I_P_Points_P):
36 # I used this loop in order to select the panel where the point xx,xy,xz is located
37
38 N_P_V = Horseshoe_P[0,0]
39 # First point of the first trailing vortex selected (Segment)
40
41 for k in range (4):
42 # I used this loop in order to select the side where the point xx,xy,xz
43 #is located and to calculate the induced velocity
44 # from the transition wake and from the semi-infinite helicoidal vortex for the selected trailing vortex (N_P_V)
45 xx,xy,xz,v_xx,v_xy,v_xz = Mid_Vect_Propeller(i,k) # This subroutine is used to calculate the midpoint xx,xy,xz
46
47 U_x1,U_y1,U_z1 = Trailing_Vortices_Propeller (N_P_V,xx,xy,xz)
48 # Induced velocity from the transition wake and from the semi-infinite helicoidal vortex (First)
49
50 V_Tral_P[0,i,k,0] = U_x1
51 V_Tral_P[0,i,k,1] = U_y1
52 V_Tral_P[0,i,k,2] = U_z1
53
54 x_1 = Grid_Points_P[N_Bound_Vortex_P[N_P_V,0],0] # X coordinate of the second point of the segment of the first trailing

vortex
55 y_1 = Grid_Points_P[N_Bound_Vortex_P[N_P_V,0],1] # Y coordinate of the second point of the segment of the first trailing

vortex
56 z_1 = Grid_Points_P[N_Bound_Vortex_P[N_P_V,0],2] # Z coordinate of the second point of the segment of the first trailing

vortex
57
58 for j in range(Var.Msp): # This loop is used to select the horseshoe vortex
59
60 j_2 = j+1

90

A Python-Implemented Vortex-Lattice Approach for Propeller Optimisation

61 N_P_V_2 = Horseshoe_P[j,1] # Second point of the trailing vortex selected (Segment)
62
63 x_2 = Grid_Points_P[N_Bound_Vortex_P[N_P_V_2,0],0] # X coordinate of the second point of the segment of the trailing

vortex
64 y_2 = Grid_Points_P[N_Bound_Vortex_P[N_P_V_2,0],1] # Y coordinate of the second point of the segment of the trailing

vortex
65 z_2 = Grid_Points_P[N_Bound_Vortex_P[N_P_V_2,0],2] # Z coordinate of the second point of the segment of the trailing

vortex
66
67 for k in range (4):
68 xx,xy,xz,v_xx,v_xy,v_xz= Mid_Vect_Propeller(i,k)
69
70 U_x2,U_y2,U_z2 = Trailing_Vortices_Propeller(N_P_V_2,xx,xy,xz)
71 # Induced velocity from the transition wake and from the semi-infinite helicoidal vortex (Second)
72
73 U_xs,U_ys,U_zs = Biot_Savart_Propeller(Var.Z_Blade_P,x_1,y_1,z_1,x_2,y_2,z_2,xx,xy,xz)
74 # Induced velocity from the bound vortex selected
75
76 V_Tral_P[j,i,k,0] = V_Tral_P[j,i,k,0] - U_x2 + U_xs # X velocity induced from the horseshoe vortex
77 V_Tral_P[j,i,k,1] = V_Tral_P[j,i,k,1] - U_y2 + U_ys # Y velocity induced from the horseshoe vortex
78 V_Tral_P[j,i,k,2] = V_Tral_P[j,i,k,2] - U_z2 + U_zs # Z velocity induced from the horseshoe vortex
79
80
81 V_Tral_P[j_2,i,k,0] = U_x2 # I need this value for the next i loop (U_x2 will be U_x1 for the next horseshoe

vortex)
82 V_Tral_P[j_2,i,k,1] = U_y2 # I need this value for the next i loop (U_y2 will be U_z1 for the next horseshoe

vortex)
83 V_Tral_P[j_2,i,k,2] = U_z2 # I need this value for the next i loop(U_y2 will be U_z1 for the next horseshoe

vortex)
84
85 x_1 = x_2 # This is used in order to have the first point of the next bound vortex (x)
86 y_1 = y_2 # This is used in order to have the first point of the next bound vortex (y)
87 z_1 = z_2 # This is used in order to have the first point of the next bound vortex (z)
88
89 # VELOCITY MATRIX
90
91 for j in range(Var.Msp):
92 for i in range(I_P_Points_P):
93 for k in range (4):
94 V_Ind_P[j,i,k,0] = V_Grid_P [j,i,k,0] + V_Tral_P[j,i,k,0] # Total induced velocity without the onset flow (x)
95 V_Ind_P[j,i,k,1] = V_Grid_P [j,i,k,1] + V_Tral_P[j,i,k,1] # Total induced velocity without the onset flow (y)
96 V_Ind_P[j,i,k,2] = V_Grid_P [j,i,k,2] + V_Tral_P[j,i,k,2]# Total induced velocity without the onset flow (y)
97
98 # Open the file for Propeller_Velocity_Total_No_Onset
99 with open("output/Propeller_Velocity_Total_No_Onset.txt", "w") as file:

100 file.write(" Point Spanwise Ux Uy Uz\n")
101 file.write(" (Panel) (Side)\n")
102
103 for i in range(I_P_Points_P):
104 for k in range(4):
105 for j in range(Var.Msp):
106 file.write(f" {i:2d} {k:4d} {j:4d} {V_Ind_P[j, i, k, 0]:13.9f} {V_Ind_P[j, i, k, 1]:13.9f}

{V_Ind_P[j, i, k, 2]:13.9f}\n")
107
108 # Open the file for Propeller_Velocity_Trailing_Vortices
109 with open("output/Propeller_Velocity_Trailing_Vortices.txt", "w") as file:
110 file.write(" Point Spanwise Ux Uy Uz\n")
111 file.write("(Panel) (Side)\n")
112
113 for i in range(I_P_Points_P):
114 for k in range(4):
115 for j in range(Var.Msp):
116 file.write(f" {i:2d} {k:4d} {j:4d} {V_Tral_P[j, i, k,0]:13.9f} {V_Tral_P[j, i, k, 1]:13.9f}

{V_Tral_P[j, i, k, 2]:13.9f}\n")
117
118 return V_Ind_P, V_Tral_P
119
120
121 V_Ind_P, V_Tral_P = Velocity_Total_No_Onset_Propeller()
 	�

1 """
2 Date: Q4 2023 - Q1 2024
3 Author: Lisa Martinez
4 Institution: Technical University of Madrid
5
6 Description: This subroutine calculates the total velocities at the midpoints
7 of segments (Onset + Induced & Onset) for the reference blade of the propeller.
8 """
9

10
11 from sources.Onset_Flow_Propeller_P import Onset_Flow_Propeller
12 from sources.Velocity_Total_No_Onset_Propeller_P import Velocity_Total_No_Onset_Propeller
13 import numpy as np
14 import sources.Variables as Var
15
16
17 def Velocity_Total_Propeller ():
18 Gamma_TE_P = np.loadtxt("output/Propeller_Gamma_TE_P.txt")
19
20 V_Ind_P, V_Tral_P = Velocity_Total_No_Onset_Propeller()
21 V_Onset_P = Onset_Flow_Propeller()
22
23 I_P_Points_P = (Var.Msp*Var.Nch)
24 V_Tot_No_Onset_P = np.zeros((I_P_Points_P ,4,3))
25 V_Tot_P = np.zeros((I_P_Points_P ,4,3))
26
27 for i in range (I_P_Points_P):
28 # This loop in used to select the panel where the point px,py,pz is located on the propeller
29

91

A Python-Implemented Vortex-Lattice Approach for Propeller Optimisation

30 # This loop in used to select the side of the panel where the point px,py,pz is located on the propeller
31 for k in range(4):
32
33 u_x = V_Onset_P[i,k,0] # Temporary variable used to store the onset flow (x)
34 u_y = V_Onset_P[i,k,1] # Temporary variable used to store the onset flow (y)
35 u_z = V_Onset_P[i,k,2] # Temporary variable used to store the onset flow (z)
36
37 u_xx = 0 # Initialization of the variable used to store the induced velocity
38 # of the propeller without the onset flow (x)
39 u_yy = 0 # Initialization of the variable used to store the induced velocity
40 # of the propeller without the onset flow (y)
41 u_zz = 0 # Initialization of the variable used to store the induced velocity
42 # of the propeller without the onset flow (z)
43
44 # This loop is used to calculate the total velocity
45 # at the midpoint of the panel of the propeller (Spanwise)
46 for j in range (Var.Msp):
47 u_x = u_x + Gamma_TE_P[j] * V_Ind_P[j,i,k,0]
48 # Onset Flow + induced velocity in the panel i side k of the propeller (x)
49 u_y = u_y + Gamma_TE_P[j] * V_Ind_P[j,i,k,1]
50 # Onset Flow + induced velocity in the panel i side k of the propeller (y)
51 u_z = u_z + Gamma_TE_P[j] * V_Ind_P[j,i,k,2]
52 # Onset Flow + induced velocity in the panel i side k of the propeller (z)
53
54 # Induced velocity in the panel i side k of the propeller
55 u_xx = u_xx + Gamma_TE_P[j] * V_Ind_P[j,i,k,0]
56 u_yy = u_yy + Gamma_TE_P[j] * V_Ind_P[j,i,k,1]
57 u_zz = u_zz + Gamma_TE_P[j] * V_Ind_P[j,i,k,2]
58
59 # Induced velocity of the propeller without the onset flow
60 V_Tot_No_Onset_P[i,k,0] = u_xx
61 V_Tot_No_Onset_P[i,k,1] = u_yy
62 V_Tot_No_Onset_P[i,k,2] = u_zz
63
64 # Total induced velocity from the propeller in the panel i side k of the propeller
65 V_Tot_P[i,k,0] = u_x
66 V_Tot_P[i,k,1] = u_y
67 V_Tot_P[i,k,2] = u_z
68
69
70 # Open the file for Propeller_Velocity_Total_No_Onset
71 with open("output/Propeller_Velocity_Total_No_Onset_V.txt", "w") as file:
72 file.write(" Point Ux Uy Uz\n")
73 file.write("(Panel) (Side)\n")
74
75 for i in range(I_P_Points_P):
76 for k in range(4):
77 file.write(f" {i:2d} {k:4d} {V_Tot_No_Onset_P[i, k, 0]:13.9f} {V_Tot_No_Onset_P[i, k, 1]:13.9f}

{V_Tot_No_Onset_P[i, k, 2]:13.9f}\n")
78
79 # Open the file for Propeller_Velocity_Trailing_Vortices
80 with open("output/Propeller_Velocity_Total.txt", "w") as file:
81 file.write(" Point Ux Uy Uz\n")
82 file.write("(Panel) (Side)\n")
83
84 for i in range(I_P_Points_P):
85 for k in range(4):
86 file.write(f" {i:2d} {k:4d} {V_Tot_P[i,k,0]:13.9f} {V_Tot_P[i, k, 1]:13.9f} {V_Tot_P[i, k, 2]:13.9f}\n")
87
88 return (V_Tot_P, V_Tot_No_Onset_P)
89
90
91 V_Tot_P, V_Tot_No_Onset_P = Velocity_Total_Propeller()
 	�

1 """
2 Date: Q4 2023 - Q1 2024
3 Author: Lisa Martinez
4 Institution: Technical University of Madrid
5
6 Description: This subroutine computes the weight function for the propeller,
7 involving the declaration of variables and arrays.
8 """
9

10
11 import numpy as np
12 import sources.Variables as Var
13
14
15 def Weight_function_propeller():
16
17
18 t_gp_P = np.loadtxt("output/Propeller_t_gp.txt", skiprows=1)
19 # Rooftop parameter a
20 a_roof = 0.8
21 # 2 / Pi
22 pi_inv = 2/np.pi
23 # Domain limit of the distribution of circulation (rooftop)
24 t_rest = 0.5 - a_roof
25 # First Denominator
26 t_slop = 2/(1 - a_roof*a_roof)
27 # Second Denominator
28 pcst = 2/(1 + a_roof)
29 # Rooftop Coefficient
30 cny1 = 1 - Var.cny
31
32 GF_tot = [0.0] # Weight equation´s numerator
33 GF_tmp = np.array([0.0]*(Var.Nch)) # Temporary Weight Function 2
34 GW = np.array([0.0]*(Var.Nch)) # Temporary Weight Funtion 2
35 G_Faux =np.array([0.0]*(Var.Nch))

92

A Python-Implemented Vortex-Lattice Approach for Propeller Optimisation

36 Weight_P = np.zeros((Var.Msp,Var.Nch))
37
38 #Weight equation´s numerator
39 for i in range(Var.Nch+1):
40 i_1 = i-1
41 t_gp_P_1 = 0.5 + t_gp_P[i] # Numerator - Flat plate distribution (gamma)
42 t_gp_P_2 = 0.5 - t_gp_P[i] # Denominator - Flat plate distribution (gamma)
43 Gamma_fp =pi_inv * np.sqrt(t_gp_P_1/t_gp_P_2) * Var.cny # Flat plate distribution (gamma)
44 Gamma_rt = pcst * cny1 # Rooftop distribution (gamma)
45
46 if t_gp_P[i]<t_rest: # Rooftop distribution (gamma)
47 Gamma_rt = t_slop * t_gp_P_1 * cny1
48
49 Gamma_Tot = Var.cny*Gamma_fp + cny1*Gamma_rt # This is the combination of flat plate distribution
50 # and rooftop distribution (gamma)
51
52 GF_tmp[i_1] = Gamma_Tot*np.sqrt(t_gp_P_1*t_gp_P_2)
53 GF_tot = GF_tot + GF_tmp[i_1] # Weight equation´s denominator
54
55 # Loop for the weight function (circulation of the panels)
56 for i in range(Var.Nch-1,-1,-1):
57 G_Faux += GF_tmp[i]/GF_tot
58 GW[i] = G_Faux[i]
59 #Loop used to write the weight function for all the panels# (it is the same for each spanwise level)
60 for j in range (Var.Msp):
61 for i in range (Var.Nch):
62 Weight_P[j,i] = GW[i] # Weight Function - j = spanwise level - i = chordwise level - Propeller
63
64 with open("output/Propeller_Weight_Function.txt", "w") as file:
65 file.write("Panel Weight Function\n")
66 for i in range(Var.Nch):
67 file.write(f"{i:3d} {Weight_P[0,i]:13.9f}\n")
68 return(Weight_P)
69
70
71 Weight_P = Weight_function_propeller()
 	

93

	Abstract
	Riassunto
	Acknowledgement
	Introduction
	Investigating Adopted Strategies
	Objective of the Thesis

	Literature Review
	Propeller Design
	Lifting Line Theory
	Lifting-Surface Method
	Boundary Element Method
	Computational Fluid Dynamics
	Conclusion

	Potential Flow Theory
	Simplified Mathematical Models
	Irrotational Flow
	Kutta Condition
	Bernoulli Equation
	Lifting surface
	Linearised Thin Wing Theory
	Circulation
	Distribution of Vortex

	Optimisation Procedure
	Introduction
	Geometry
	Propeller Geometry
	Grid Generation
	Horseshoe Vortex

	Forces and Velocities Calculations
	Force on the panel sides
	Onset Flow
	Induced velocities from the panels
	Induced velocities from the horseshoe vortices
	Total velocity

	Weight Function
	Wake Alignment
	Thrust and Torque Calculation
	Optimum Circulation Distribution
	Skin Friction Drag
	Variational Problem
	Optimisation Procedure

	Validation
	Grid Study
	Thrust Loading

	Advance Ratio
	Skew
	Skew-Induced Rake
	Skin Friction Drag

	Conclusions
	References
	Code

